CZ306448B6 - Polymerní vlákno a způsob jeho výroby - Google Patents

Polymerní vlákno a způsob jeho výroby Download PDF

Info

Publication number
CZ306448B6
CZ306448B6 CZ2015-790A CZ2015790A CZ306448B6 CZ 306448 B6 CZ306448 B6 CZ 306448B6 CZ 2015790 A CZ2015790 A CZ 2015790A CZ 306448 B6 CZ306448 B6 CZ 306448B6
Authority
CZ
Czechia
Prior art keywords
polymer
copolymer
spinning
weight
hydroxyvalerate
Prior art date
Application number
CZ2015-790A
Other languages
English (en)
Other versions
CZ2015790A3 (cs
Inventor
Ivana Márová
Vojtěch Kundrát
Ladislav Pospíšil
Original Assignee
Vysoké Učení Technické V Brně
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vysoké Učení Technické V Brně filed Critical Vysoké Učení Technické V Brně
Priority to CZ2015-790A priority Critical patent/CZ306448B6/cs
Priority to PCT/CZ2016/000116 priority patent/WO2017076374A1/en
Publication of CZ2015790A3 publication Critical patent/CZ2015790A3/cs
Publication of CZ306448B6 publication Critical patent/CZ306448B6/cs

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • D01D5/247Discontinuous hollow structure or microporous structure
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • D01F6/625Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters derived from hydroxy-carboxylic acids, e.g. lactones
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/78Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
    • D01F6/84Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyesters

Abstract

Způsob výroby polymerního vlákna z polyhydroxybutyrátu nebo kopolymeru hydroxybutyrátu s hydroxyvalerátem zvlákňováním z roztoku polymeru v rozpouštědle vytlačovaného do srážedla, kde množství hydroxyvalerátu v kopolymeru hydroxybutyrátu s hydroxyvalerátem činí maximálně 30 % hmotn., zvlákňovaný polymer nebo kopolymer má hmotnostně střední molekulovou hmotnost 50000 až 1000000 Da, srážedlem jsou alkoholy s teplotou tuhnutí vyšším než -70 .degree.C a koncentrací minimálně 75 % hmotn., rozpouštědlem polymeru nebo kopolymeru je chloroform, dichloretan a/nebo dichlormethan, přičemž koncentrace polymeru nebo kopolymeru v rozpouštědle nebo směsi rozpouštědel je 0,1 až 20 % hmotn., teplota roztoku polyhydroxybutyrátu nebo kopolymeru hydroxybutyrátu s hydroxyvalerátem je v rozmezí 0 .degree.C až 50 .degree.C a teplota srážedla je v rozmezí -70 .degree.C až 70 .degree.C.

Description

Polymerní vlákno a způsob jeho výroby
Oblast techniky
Vynález se týká polymerů obsahujících v hlavním řetězci heteroatomy kyslíku a patřících do kategorie polyesterů a způsobu přípravy vláken se submikronovou strukturou postupem zvlákňování z roztoku těchto polymerů.
Dosavadní stav techniky
Polyestery, hlavně pak polyethylentereftalát (PETP), jsou polymery, jejichž použití pro výrobu vláken je známo již mnoho desetiletí. PETP je v současnosti nej rozšířenějším polymerem používaným k výrobě vláken. PETP, stejně jako polyamidy (PA), jsou nyní průmyslově zvlákňovány výhradně z taveniny.
V posledních zhruba 25 letech je vyvíjeno úsilí o to, aby byly využívány v praxi i jiné druhy polyesterů, zvláště pak těch, které lze zařadit do kategorie polymerů vyráběných člověkem či jinými živými organizmy z obnovitelných přírodních zdrojů. Toho lze v případě PETP docílit pouze částečně tak, že ethylenglykol použitý v jeho syntéze, je vyráběn postupem, vycházejícím z látek patřících do skupiny sacharidů. Příkladem jsou sacharóza a škrob.
Polyestery, které lze zařadit do kategorie polymerů vyráběných člověkem či jinými živými organizmy z obnovitelných přírodních zdrojů obvykle patří do kategorie biodegradovatelných materiálů. Mezi biodegradovatelné materiály ovšem patří i polymery vyrobené ze surovin neobnovitelných, například polykaprolakton (PCL).
Z hlediska vyráběného množství je v současnosti nejvíce rozšířeným polymerem vyráběných člověkem či jinými živými organizmy z obnovitelných přírodních zdrojů kyselina polymléčná (PLA). Na významu nyní nabývá i polyhydroxybutyrát (PHB). Jeho biotechnologická příprava je popsána např. v patentu CZ 304 183 a patentové přihlášce WO 2014/032633/A1. Jak PLA, tak PEIB se ale vyznačují tím, že k dosažení prakticky použitelných vlastností výrobků vyráběných z taveniny těchto polymerů je nutno tyto polymery modifikovat. Konkrétně se jedná o jejich velmi rychlou krystalizaci z taveniny a z toho rezultující křehkost vyráběných výrobků.
Syntéze a zpracování PLA je věnována monografie [1], Zvlákňování polymerů lze uskutečnit technologicky třemi způsoby: z taveniny, z roztoku a z gelu. Zvlákňování polymerů z roztoku je technologie dobře známá a průmyslově využívaná již více než 100 let. V současnosti jasně dominuje postup zvlákňování z taveniny, kterým je vyráběno přibližně 50 až 100 milionů tun vláken a/nebo monofilů ročně.
Zvlákňování z gelu je používáno u polyvinylchloridu (PVC) a polyethylenu (PE). Tato vlákna jsou minoritní svým rozsahem výroby. Takto je nyní vyráběno přibližně sto tisíc tun vláken ročně.
Základní informace o zvlákňování z roztoku, včetně obrázků podává literatura [1] a [2], Zvlákňování z roztoku bylo a stále je používáno pro zvlákňování celulózy a jejích derivátů. Dále se běžné používá u polyakrylonitrilu (PAN). Takto je nyní vyráběno méně než jeden milion tun vláken ročně. Zvlákňování z roztoku je věnována celá řada patentů, např. CN103526371, US2013300013, JP2011256488, US5234651, US3996321, US3676540, JP2004277898, JP2004218169, JPH01156507, JPH02139407, JPS62141115, JPH0544104, JPS5988930, JPH0226911, JPS584833, CH707560.
- 1 CZ 306448 B6
Princip zvlákňování z roztoku je v principu jednoduchý. Polymer se rozpustí a pak vysráží zpět ve formě vlákna. Z hlediska roztoku polymeru je však nutno řešit výběr rozpouštědla či směsi rozpouštědel, koncentrace roztoku polymeru a teplotu roztoku polymeru. Z hlediska srážení polymeru je nutno řešit výběr srážedla či směsi srážedel a teplotu srážedla. Z hlediska zařízení je nutno řešit výtlak roztoku (ml/min), průměr vytlačovací trysky (mm), rychlost odtahu vlákna (cm/min) a vlivy dalších faktorů [1], Chceme-li tedy z polymerů jako je kyselina polymléčná (PLA), polykaprolakton (PCL) či polyhydroxybutyrát (PHB) (=přírodní polyestery) vyrábět vlákna, je výhodným pracovat technologií zvlákňování z roztoku. Roztoky lze zvlákňovat jak na nanovlákna metodou elektrostatického zvlákňování, jak uvádí např. spisy WO2014127099, US2014106167, CN103451753, DE 102012004227, CN101429685, US5234651, US3996321), tak na mikrovlákna technologií výše popsanou.
V případě PHB je tento postup zvláště výhodným, protože PHB je ze směsi získané biotechnologií izolován rozpuštěním PHB, následným odstředěním nerozpuštěného zbytku, vysrážením a vysušením. Případně může následovat i granulace. Použití roztoku PHB k výrobě vláken lze tedy vynechat kroky vysrážení a vysušení. Roztok PHB lze zvlákňovat jak na nanovlákna metodou elektrostatického zvlákňování tak na mikrovlákna technologií výše popsanou. Obě tyto technologie zvlákňování jsou použitelné i pro PLA a PCL. Zvlákňování PHB a/nebo kopolymeru PHBV je uváděno v řadě patentových spisů, jako například CN 102493021, CN102181960, CN102146598, CN102146597 a CN10293676.
Pro zvlákňování z roztoku na mikrovlákna je udáváno v literatuře [5], že pro zvlákňování za sucha jsou používány koncentrace polymeru 15 až 60 % hmotn. při zvlákňování mokrém (do srážedla) pak koncentrace polymeru 5 až 25 % hmotn.
Reference:
1. Auras R., Loong-Tak- L, Seike S.E.M., Hideto T. (Editors): POLY(LACTIC ACID), Synthesis, Structure, Properties and Applications, J. WILEY & SONS, Inc. Publications, New Jersey 2008, ISBN 978-0-470-29366-9 (cloth)
2. Kebl F.: Technologie chemických vláken, SNTL Praha 1977, str. 201 a 203
3. Pachekoski, W.M., Dalmolin, C, Marcondes Agnelli, J.A. Materials Research-IberoAmerican Journal of Materials 2013, 16, 2, 327-332
4. Mishra S.P.: A Text Book of Fibre Science and Technology, New Age International, Bombay 2000, ISBN 81-224-1250-5
5. Kudláček L., Blažek J., Lauruský V.: Technologie chemických vláken, SNTL Praha, 1986, str. 276
Podstata vynálezu
Při zvlákňování PHB z roztoku se zjistilo, že při použití koncentrací polyhydroxybutyrátu (PHB) od velmi nízké (0,1 % hmotn.) až po vysokou max. 20 % hmotn., při laboratorní teplotě 23 °C srážením (mokrým zvlákňováním) do čistého srážedla. Vzniklé mikrovlákno není kompaktního průřezu, ale obsahuje v celém průřezu nanopóry, mikropóry a také póry o velikosti 200 nm až 1 pm.
Předmětem vynálezu je způsob výroby polymerního vlákna z polyhydroxybutyrátu (PHB) nebo kopolymeru hydroxybutyrátu s hydroxyvalerátem (PHBV) zvlákňováním z roztoku polymeru v rozpouštědle vytlačovaného do srážedla, kde v případě kopolymeru hydroxybutyrátu s hydroxyvalerátem činí množství hydroxyvalerátu v polymeru hydroxybutyrátu s hydroxyvalerátem maximálně 30 % hmotn. Zvlákňovaný polymer nebo kopolymer má hmotnostně střední molekulovou hmotnost 50000-1000000 Da, srážedlem jsou alkoholy s teplotou tuhnutí vyšším než - 70 °C a koncentrací minimálně 75 % hmotnostních. Srážedlem může být ethanol, isopropanol a/nebo methanol. Rozpouštědlem polymeru nebo kopolymeru je chloroform, dichlorethan a/nebo dich
-2CZ 306448 B6 lormethan, přičemž koncentrace polymeru nebo kopolymeru v rozpouštědle nebo směsi rozpouštědel je 0,1 až 20% hmotn. Teplota roztoku polyhydroxybutyrátu nebo kopolymeru hydroxybutyrátu s hydroxyvalerátem je v rozmezí 0 °C až 50 °C a teplota srážedla je v rozmezí - 70 °C až 70 °C.
Při zvlákňování je pro dloužení využíváno rozdílu hustot rozpouštědel (vyšší hustota) a srážedel (nižší hustota), čímž je vlákno samovolně dlouženo gravitačním působením i bez mechanického odtahu vlákna.
Z uvedených polymerů se způsobem podle vynálezu získá polymemí vlákno, které má submikronovou strukturu, obsahující v celém průřezu nanopóry, mikropóry a také póry o velikosti 200 nm až 1 pm.
Objasnění výkresů
Obrázek 1: Schéma zvlákňování z roztoku do srážecí lázně [1]
Obrázek 2: Schéma zvlákňování z roztoku do temperované a odsávané komory [1]
Obrázek 3: Schéma zvlákňování z roztoku do srážecí lázně s prvním stupněm do vzduchu (plynu) [1]
Obrázek 4: Příčné řezy vláken z regenerované celulózy [2]
Obrázek 5: Schéma zvlákňování celulózy z roztoku [2]
Obrázek 6: SEM snímek PHB vlákna se submikronovou strukturou vyrobeného podle příkladu 1 - celé vlákno
Obrázek 7: SEM snímek PHB vlákna se submikronovou strukturou vyrobeného podle příkladu 1 - detail submikronové struktury uvnitř vlákna
Obrázek 8: SEM snímek PHB vlákna se submikronovou strukturou vyrobeného podle příkladu 1 - detail submikronové struktury na povrchu vlákna
Obrázek 9: SEM snímek PHB vlákna se submikronovou strukturou vyrobeného podle příkladu 7 - celé vlákno
Vynález je dále popsán podle příkladů provedení, které však žádným způsobem neomezují jiná možná provedení v rozsahu patentových nároků.
Příklady uskutečnění vynálezu
Příklad 1
Zvlákňování polyhydroxybutyrátu (PHB)
Polymemí vlákno se připravilo z komerčně dostupného polyhydroxybutyrátu (PHB) s hmotnostně střední molekulovou hmotností 900 000 Da. Připravil se roztok PHB o teplotě 23 °C v chloroformu (2,5 % hmotn.) jako rozpouštědle. Tento byl vytlačován z trysky o průměru 0,3 mm do ethanolu (azeotropická směs ethanol - voda obsahující 95,57 % hmotnostních ethanolu) o teplotě 23 °C. Rychlost vytlačování byla 1 ml/minuta a rychlost výtoku ve směru trysky byla 14 m/min. PHB se srážel ve formě vlákna cca. 30 mm od ústí trysky. Vysrážená vlákna byla pak vysušena při teplotě 23 °C a dále hodnocena.
Diferenciální dynamickou kalorimetrií (DSC) bylo zjištěno, že krystalinita PHB je 60% hmotnostních. Krystalinita (% hmotn.) = (Δνζ/Δ|Οο)*1ΟΟ, Δνζ je ethalpie tání měřeného vlákna. Pro en
-3 CZ 306448 B6 talpii tání PHB byl převzat údaj z literatury [3]. Entalpie tání 100 % krystalického PHB činí dle literatury 146 J.g1. Experimentálně získaný údaj entalpie činí 87,6 J.g1.
Na SEM snímcích (viz obrázky 6-8) je vidět submikronová struktura vzniklých vláken v celém jejich průřezu a na povrchu respektive.
Příklad 2
Zvlákňování polyhydroxybutyrátu
Polymemí vlákno se připravilo jako v příkladu 1 s tím rozdílem, že ethanol (azeotropická směs ethanol - voda obsahující 95,57 % hmotn. ethanolu) měl teplotu - 70 °C.
Příklad 3
Zvlákňování polyhydroxybutyrátu
Polymemí vlákno se připravilo jako v příkladu 1 s tím rozdílem, že jako srážedlo byl použit isopropanol při teplotě 23 °C.
Příklad 4
Zvlákňování polyhydroxybutyrátu
Polymemí vlákno se připravilo jako v příkladu 1 s tím rozdílem, že hmotnostně střední molekulová hmotnost PHB byla 80000 Da.
Příklad 5
Zvlákňování polyhydroxybutyrátu
Polymemí vlákno se připravilo jako v příkladu 1 s tím rozdílem, že koncentrace PHB z roztoku v chloroformovém roztoku byla 0,1 % hmotn.
Příklad 6
Zvlákňování polyhydroxybutyrátu
Polymemí vlákno se připravilo jako v příkladu 1 s tím rozdílem, že rozpouštědlem byl dichlorethan.
Příklad 7
Zvlákňování polyhydroxybutyrátu
Polymemí vlákno se připravilo jako v příkladu 1 s tím rozdílem, že roztok PHB byl ochlazen na teplotu 0 °C.
-4CZ 306448 B6
Příklad 8
Zvlákňování polyhydroxybutyrátu
Polymemí vlákno se připravilo jako v příkladu 1 s tím rozdílem, že roztok PHB byl ohřát na teplotu 50 °C.
Příklad 9
Zvlákňování polyhydroxybutyrátu
Polymemí vlákno se připravilo jako v příkladu 1 s tím rozdílem, že hmotnostně střední molekulová hmotnost PHB byla 80 000 Da, koncentrace polymeru v roztoku byla 20 % hmotn. a rozpouštědlem byl dichlormethan.
Příklad 10
Zvlákňování polyhydroxybutyrátu
Polymemí vlákno se připravilo jako v příkladu 1 s tím rozdílem, že srážedlem byl ethanol o koncentraci 75 % hmotn. a chloroform o koncentraci 25 % hmotn.
Příklad 11
Zvlákňování polyhydroxybutyrátu
Polymemí vlákno se připravilo jako v příkladu 1 s tím rozdílem, že srážedlem byl methanol.
Příklad 12
Zvlákňování kopolymeru hydroxybutyrátu s hydroxyvalerátem (PHBV)
Polymemí vlákno se připravilo jako v příkladu 1 s tím rozdílem, že polymerem byl kopolymer hydroxybutyrátu s hydroxyvalerátem s obsahem hydroxyvalerátu 30 % hmotn. PHBV měl s hmotnostně střední molekulovou hmotnost 900000 Da.
Průmyslová využitelnost
Polymemí vlákna připravená způsobem podle tohoto vynálezu jsou vyrobena z obnovitelných zdrojů a vyznačují biodegrabilitou. Jsou vhodná pro filtraci tekutin a plynů a mají využití také v oblasti tkáňového inženýrství.

Claims (2)

  1. PATENTOVÉ NÁROKY
    1. Způsob výroby polymemího vlákna z polyhydroxybutyrátu nebo kopolymeru hydroxybutyrátu s hydroxyvalerátem zvlákňováním z roztoku polymeru v rozpouštědle vytlačovaného do srážedla, vyznačující se tím, že množství hydroxyvalerátu v kopolymer u hydroxybutyrátu s hydroxyvalerátem činí maximálně 30 % hmotn., zvlákňovaný polymer nebo kopolymer má hmotnostně střední molekulovou hmotnost 50000 až 1000000 Da, srážedlem jsou alkoholy s teplotou tuhnutí vyšší než - 70 °C a koncentrací minimálně 75 % hmotn., rozpouštědlem polymeru nebo kopolymeru je chloroform, dichlorethan a/nebo dichlormethan, přičemž koncentrace polymeru nebo kopolymeru v rozpouštědle nebo směsi rozpouštědel je 0,1 až 20 % hmotn., teplota roztoku polyhydroxybutyrátu nebo kopolymeru hydroxybutyrátu s hydroxyvalerátem je v rozmezí 0 °C až 50 °C a teplota srážedla je v rozmezí - 70 °C až 70 °C.
  2. 2. Způsob podle nároku 1, vyznačující se tím, že srážedlem je ethanol, isopropanol a/nebo methanol.
CZ2015-790A 2015-11-06 2015-11-06 Polymerní vlákno a způsob jeho výroby CZ306448B6 (cs)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CZ2015-790A CZ306448B6 (cs) 2015-11-06 2015-11-06 Polymerní vlákno a způsob jeho výroby
PCT/CZ2016/000116 WO2017076374A1 (en) 2015-11-06 2016-10-24 Polymer-made fibre preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CZ2015-790A CZ306448B6 (cs) 2015-11-06 2015-11-06 Polymerní vlákno a způsob jeho výroby

Publications (2)

Publication Number Publication Date
CZ2015790A3 CZ2015790A3 (cs) 2017-01-25
CZ306448B6 true CZ306448B6 (cs) 2017-01-25

Family

ID=57442409

Family Applications (1)

Application Number Title Priority Date Filing Date
CZ2015-790A CZ306448B6 (cs) 2015-11-06 2015-11-06 Polymerní vlákno a způsob jeho výroby

Country Status (2)

Country Link
CZ (1) CZ306448B6 (cs)
WO (1) WO2017076374A1 (cs)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3560479A1 (en) 2018-04-24 2019-10-30 NAFIGATE Corporation, a.s. A uv filter based on polyhydroxybutyrate and a method of its preparation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012047100A1 (en) * 2010-10-05 2012-04-12 Polymer Research & Development Process for producing high-performance polymer fibers

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3676540A (en) 1971-03-15 1972-07-11 American Cyanamid Co Wet-spinning shaped fibers
US3996321A (en) 1974-11-26 1976-12-07 E. I. Du Pont De Nemours And Company Level control of dry-jet wet spinning process
JPS62141115A (ja) 1985-12-12 1987-06-24 Kuraray Co Ltd 紡糸トウの伴切れ防止方法およびその装置
JPH01156507A (ja) 1987-12-12 1989-06-20 Kanebo Ltd 湿式紡糸による繊維製造法
JPH0226911A (ja) 1988-07-11 1990-01-29 Kanebo Ltd 湿式紡糸による繊維の製造方法
JPH02139407A (ja) 1988-11-17 1990-05-29 Mitsubishi Rayon Co Ltd 乾湿式紡糸法
JPH0544104A (ja) 1991-08-01 1993-02-23 Unitika Ltd 乾・湿式紡糸方法
US5234651A (en) 1991-09-12 1993-08-10 Kigen Kawai Dry-jet wet spinning of fibers including two steps of stretching before complete coagulation
JPH0584833A (ja) 1991-09-27 1993-04-06 Tsutsunaka Plast Ind Co Ltd 合成樹脂板材の突き付け接合方法
CA2186590C (en) * 1994-02-28 2001-07-03 Isao Noda Stirring processes for preparing biodegradable fibrils
JP2004218169A (ja) 2003-01-17 2004-08-05 Teijin Ltd 湿式紡糸方法及びそのための装置
JP2004277898A (ja) 2003-03-13 2004-10-07 Asahi Kasei Corp 湿式紡糸方法および湿式紡糸装置
TWI379022B (en) 2008-04-18 2012-12-11 Mitsubishi Rayon Co Wet spinning device and wet spinning method
CN101429685A (zh) 2008-12-08 2009-05-13 广东新会美达锦纶股份有限公司 异形纤维加工工艺及该工艺所用喷丝板
JP5299358B2 (ja) 2010-06-09 2013-09-25 豊田合成株式会社 湿式紡糸による繊維の製造方法
CN102181960A (zh) 2011-04-22 2011-09-14 中国科学院宁波材料技术与工程研究所 一种含phbv的生物基可降解纤维及其制备方法
CN102146598B (zh) 2011-04-22 2012-07-25 中国科学院宁波材料技术与工程研究所 一种含phbv的生物基化学纤维及其制备方法
CN102146597B (zh) 2011-04-22 2012-05-30 中国科学院宁波材料技术与工程研究所 一种含phbv的可降解纤维及其制备方法
CN102493021B (zh) 2011-12-06 2014-01-08 东华大学 一种纤维素纳米晶增强phbv纳米纤维的制备方法
DE102012004227A1 (de) 2012-03-06 2013-09-12 Carl Freudenberg Kg Verfahren und Vorrichtung zur Herstellung von superfeinen Polymerfasern durch Melt-blown-Technik
CZ304183B6 (cs) 2012-08-27 2013-12-11 Vysoké ucení technické v Brne Zpusob produkce polyhydroxyalkanoátu (PHA) na olejovém substrátu
US20140106167A1 (en) 2012-10-17 2014-04-17 The University Of Kentucky Research Foundation Method for hybrid dry-jet gel spinning and fiber produced by that method
CN102936761B (zh) 2012-12-11 2015-09-23 江南大学 一种资源可再生、生物可降解导电纤维及其制备方法
US10519569B2 (en) 2013-02-13 2019-12-31 President And Fellows Of Harvard College Immersed rotary jet spinning devices (IRJS) and uses thereof
CH707560A1 (de) 2013-02-13 2014-08-15 Rieter Ag Maschf Spinnstelle einer Luftdüsenspinnmaschine.
JP5988930B2 (ja) 2013-07-23 2016-09-07 日本電信電話株式会社 サーバ仮想化環境における予備系装置の配備装置およびその配備方法
CN103526371A (zh) 2013-08-27 2014-01-22 宁波宜科科技实业股份有限公司 一种麻纤维的潮态纺纱方法及喷潮装置
CN103451753B (zh) 2013-09-21 2016-06-22 北京化工大学 一种用于高粘度聚合物多射流的熔体静电纺丝装置及方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012047100A1 (en) * 2010-10-05 2012-04-12 Polymer Research & Development Process for producing high-performance polymer fibers

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
B. Azimi et al: "Poly(e-caprolactone) Fiber: An Overview" Journal of Engineered Fibers and Fabrics 9(3) s. 74-90 (2014) *
B. Gupta et al.: "Poly(lactic acid) fiber: An overview" Prog. Polym. Sci. 32, 455-482 (2007) *
M. R. Williamson, A.G.A.Coombes et al.: "Gravity spinning of polycaprolactone fibres for application in tissue engineering" Biomaterials 25, 459-465 (2004) *
POLY(LACTIC ACID) Synthesis, Structures, Properties, Processing, and Applications (R. Auras et al Eds.) Wiley, Hoboken 2010 ISBN 978-0-470-29366-9 (cloth) https://books.google.de/books?id=UBUdo_mbr6AC&pg=PA59&lpg=PA59&dq=polylactic+synthesis+structures+properties+applications&source=bl&ots=fOCnHu5eVH&sig=VXek54myLo71tnT0sScW1Skl1KE&hl=cs&sa=X&ved=0ahUKEwi7r77m5ZLNAhUGvxQKHTfjAhcQ6AEIYTAH#v=onepage&q=335&f=false *
S Vju et al.: "Preparation and properties of PLLA/PLCL fibres for potential use as a monofilament suture"The Journal of The Textile Institute 101(9), 835-841, 2010 *
S. Zhu et al.: "Study on the Morphologies and Formational Mechanism of Poly(hydroxybutyrate-co-hydroxyvalerate) Ultrafine Fibers by Dry-Jet-Wet-Electrispinning", Journal of Nanomaterials Vol. 2012, Article ID 525419 DOI: 10.1155/2012/525419 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3560479A1 (en) 2018-04-24 2019-10-30 NAFIGATE Corporation, a.s. A uv filter based on polyhydroxybutyrate and a method of its preparation

Also Published As

Publication number Publication date
CZ2015790A3 (cs) 2017-01-25
WO2017076374A1 (en) 2017-05-11

Similar Documents

Publication Publication Date Title
EP3404130B1 (en) Biodegradable aliphatic polyester-based fiber and method for producing same
Shi et al. Mechanical properties and in vitro degradation of electrospun bio-nanocomposite mats from PLA and cellulose nanocrystals
Cacciotti et al. Effect of silver nanoparticles and cellulose nanocrystals on electrospun poly (lactic) acid mats: Morphology, thermal properties and mechanical behavior
Xu et al. Effect of different solvent systems on PHBV/PEO electrospun fibers
US10443154B2 (en) Poly(lactic acid) membrane and method of making the membrane
Temesgen et al. Review on spinning of biopolymer fibers from starch
US20070009736A1 (en) Nanofiber and method for fabricating the same
US20130118981A1 (en) Porous hollow fiber
US20140041821A1 (en) Method for dry spinning neutral and anionically modified cellulose and fibres made using the method
Lu et al. Fabrication of hierarchical porous poly (l-lactide)(PLLA) fibrous membrane by electrospinning
Mujica-Garcia et al. Influence of the processing parameters on the electrospinning of biopolymeric fibers
Kim et al. Relationship between rheology and electro-spinning performance of regenerated silk fibroin prepared using different degumming methods
JP6592862B2 (ja) ポリエステル繊維
JP2007231480A (ja) ステレオコンプレックス構造を有するポリ乳酸繊維およびその製造方法
Zhong et al. Green electrospinning of chitin propionate to manufacture nanofiber mats
CZ306448B6 (cs) Polymerní vlákno a způsob jeho výroby
US20130085212A1 (en) Procedure for the obtainment of nanocomposite materials
CN101476165B (zh) 聚羟基丁酸戊酸共聚酯纤维及干法纺丝方法
Naeimirad et al. A Review on Melt-Spun Biodegradable Fibers
Svyntkivska et al. Solution electrospinning and properties of poly (ethylene 2, 5-furandicarboxylate) fibers
KR101635923B1 (ko) 회전 건조 방법을 이용한 실크 피브로인 필름의 제조방법
Matysiak et al. Analysis of the influence of electrospinning process parameters on the morphology of poly (lactic acid) fibres
Thomas et al. Electrospinning as an important tool for fabrication of nanofibers for advanced applications—a brief review
CN106147163A (zh) 微多孔聚乳酸取向薄膜
Khare et al. Synthesis of Poly (Lactic-co-glycolic) acid and its micro fabrication by Centrifugal force melt spinning Technique