WO2009125500A1 - 受信装置及び受信方法 - Google Patents

受信装置及び受信方法 Download PDF

Info

Publication number
WO2009125500A1
WO2009125500A1 PCT/JP2008/057215 JP2008057215W WO2009125500A1 WO 2009125500 A1 WO2009125500 A1 WO 2009125500A1 JP 2008057215 W JP2008057215 W JP 2008057215W WO 2009125500 A1 WO2009125500 A1 WO 2009125500A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional
data
fourier transform
transfer characteristic
power
Prior art date
Application number
PCT/JP2008/057215
Other languages
English (en)
French (fr)
Inventor
幸雄 林
義徳 阿部
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2008/057215 priority Critical patent/WO2009125500A1/ja
Priority to JP2010507107A priority patent/JPWO2009125500A1/ja
Publication of WO2009125500A1 publication Critical patent/WO2009125500A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • H04L25/023Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only

Definitions

  • the present invention relates to a receiver for terrestrial digital broadcasting, for example.
  • a pilot carrier signal for facilitating estimation of transmission path transmission characteristics is used together with a data carrier signal for transmitting information data such as video and audio.
  • a pilot carrier signal called a distributed pilot (SP) signal (hereinafter referred to as “SP signal”) is defined.
  • SP signal is known to be superimposed at a specific position in the same space when assuming an OFDM symbol space consisting of two dimensions of carrier frequency and symbol time, and its complex amplitude, that is, the absolute value of the SP signal.
  • the amplitude and phase are also predetermined. Therefore, in a receiving apparatus that receives digital broadcasting according to these standards, the SP signal is used to estimate the transfer characteristics for each carrier of the radio wave propagation path, and based on such estimation results, correction processing related to the received signal, etc. Can be performed.
  • the conventional receiver calculates the transfer function for each detection signal of the pilot carrier signal arranged in the OFDM signal symbol space, and the transfer function A two-dimensional data space is generated by performing a two-dimensional Fourier transform on the impulse delay time and the symbol frequency. Furthermore, the conventional receiving apparatus extracts a predetermined region of the two-dimensional data space by a filter extraction region, performs a two-dimensional inverse Fourier transform on the carrier frequency and symbol time for the data included in the extraction region, and performs an estimated transfer function (See Patent Document 1). Japanese Patent No. 3820311
  • the power spectrum distribution which will be described later, varies greatly depending on the reception environment in which the receiver is installed.
  • the power spectrum distribution described later changes greatly with time.
  • the sampling frequency of the crystal used in the AD converter has an error with a desired sampling frequency
  • a power spectrum distribution which will be described later, changes in the time axis direction over time.
  • a filtering process method that selectively extracts a fixed region as in the conventional receiving apparatus cannot calculate a two-dimensional filter window with high accuracy.
  • the problems to be solved by the present invention include the above-mentioned problems as an example.
  • the invention according to claim 1 is characterized in that a pilot signal having a specific known complex amplitude is transmitted using a transmission symbol generated by orthogonally modulating a plurality of carriers based on transmission data as a transmission unit.
  • a received signal obtained by receiving an OFDM signal superimposed on a predetermined carrier in a symbol and detecting a carrier group included in a plurality of consecutive transmission symbols is converted into a two-dimensional space corresponding to the carrier frequency and symbol time.
  • the characteristic estimation unit is configured to calculate a pilot signal transmission characteristic for a pilot signal arranged in the two-dimensional data region, and to perform a two-dimensional Fourier transform on the pilot signal transmission characteristic to obtain a transmission line delay time and a transmission line Transform means for generating two-dimensional Fourier transform data in a two-dimensional space corresponding to the fluctuation frequency, and supply means for calculating window coefficient determination information for passing a data group in a specific region of the two-dimensional Fourier transform data Filter means for selectively extracting the data group in the specific region determined based on the window coefficient determination information, and performing two-dimensional inverse Fourier transform on the selected and extracted data group, Generating two-dimensional inverse
  • Power calculating means for calculating a two-dimensional filter window based on the power provided from the power calculating means and a preset threshold noise power, the two-dimensional filter window, and the OFDM signal Aliasing separation means for removing the aliasing component based on the maximum power position and calculating window coefficient determination information.
  • the invention according to claim 5 is characterized in that a pilot signal having a specific known complex amplitude is transmitted with a transmission symbol generated by orthogonally modulating a plurality of carriers based on transmission data as a transmission unit.
  • a received signal obtained by receiving an OFDM signal superimposed on a predetermined carrier in a symbol and detecting a carrier group included in a plurality of consecutive transmission symbols is converted into a two-dimensional space corresponding to the carrier frequency and symbol time.
  • the transfer characteristic estimation step includes: a calculation step for calculating a pilot signal transfer characteristic for a pilot signal arranged in the two-dimensional data region; and a two-dimensional Fourier transform is performed on the pilot signal transfer characteristic to perform transmission.
  • a transform step for generating two-dimensional Fourier transform data in a two-dimensional space corresponding to a path delay time and a transmission path fluctuation frequency, and determination of a window coefficient for passing a data group in a specific region of the two-dimensional Fourier transform data A supply step for calculating information, a filter step for selectively extracting a data group in the specific region determined based on the window coefficient determination information, and a two-dimensional inverse Fourier transform for the selected and extracted data group To generate two-dimensional inverse Fourier transform data in a two-dimensional space corresponding to the carrier frequency and symbol time.
  • the OFDM symbol is composed of 13 segments as shown in FIG. 1, and each segment includes, for example, a carrier of 108 waves in the case of transmission mode 1. Yes.
  • the partial receiving apparatus is a receiving apparatus that demodulates only the carrier included in segment 0 located in the center of the 13 segments.
  • FIG. 4 is a block diagram illustrating a configuration example of the receiving device 1 in the present embodiment.
  • the receiving apparatus 1 mainly includes a symbol detection unit 11, a symbol storage unit 12, a frequency domain processing unit 13, a transfer characteristic estimation unit 20, and a data decoding unit 30.
  • the arrow which shows the flow of a signal in a figure shows the flow of the main signals between each component, For example, regarding signals, such as a response signal and a monitoring signal accompanying such a main signal, a figure. Including the case of transmission in the direction opposite to the arrow in the middle.
  • the arrows in the figure conceptually indicate the flow of signals between the components, and in an actual device, it is not necessary for each signal to be faithfully exchanged along the path indicated by the arrows. .
  • the symbol detection unit 11 detects a carrier group included in each symbol with respect to sequentially transmitted symbols, and obtains complex amplitudes (hereinafter referred to as “carrier amplitudes”) Sp, k of these carriers.
  • S p, k represents the p-th carrier amplitude of the k-th symbol
  • the symbol detection unit 11 is configured by each component circuit such as a tuner, an A / D converter, a transmission mode / guard interval ratio detector, a guard interval removal circuit, and an FFT circuit. It is not limited to cases.
  • the symbol storage unit 12 is a circuit that selects nX carrier amplitudes output from the symbol detection unit 11 and stores them for nY symbol times in the symbol time direction. . That is, for the carrier group of (2D region carrier width nX ⁇ 2D region symbol width nY) in the OFDM symbol space shown in FIG. 6, the carrier amplitude S p, q ( ⁇ nX / 2 ⁇ p ⁇ nX / 2) , K ⁇ nY ⁇ q ⁇ k). In the following description, these stored and held carrier amplitudes are considered as a two-dimensional array ⁇ S p, q : (p, q) ⁇ Z 2D ⁇ in the (p, q) space.
  • p is a carrier index
  • q is a symbol index
  • each index corresponds to a carrier frequency and a symbol time.
  • the Z 2D range is in the carrier frequency direction, ⁇ nX / 2 ⁇ p ⁇ nX / 2
  • the frequency domain processing unit 13 performs frame synchronization processing, TMCC demodulation processing, etc., generates symbol count values from 0 to 203 for each symbol, and stores them in the symbol storage unit 12.
  • the symbol storage unit 12 stores the symbol count value provided from the frequency domain processing unit 13 in association with each symbol provided from the symbol detection unit 11.
  • the data decoding unit 30 further includes an estimation region Z EST ( ⁇ wX / 2 ⁇ p ⁇ wX / 2, k ⁇ nY / 2) shown in FIG. 6 from the carrier amplitude data group stored in the symbol storage unit 12.
  • the carrier amplitude ⁇ S p, q : (p, q) ⁇ Z EST ⁇ within ⁇ wY / 2 ⁇ q ⁇ k ⁇ nY / 2 + wY / 2) is extracted, and this is subjected to decoding processing.
  • the transfer characteristic estimation unit 20 calculates an estimated transfer characteristic with respect to the carrier amplitude in the estimation region Z EST based on the carrier amplitude stored in the symbol storage unit 12, and supplies this to the data decoding unit 30 It is.
  • the data decoding unit 30 performs processing such as equalization, deinterleaving, and Reed-Solomon decoding based on the carrier amplitude from the symbol storage unit 12 and the estimated transfer characteristic from the transfer characteristic estimation unit 20, and is obtained as a result. Output received data.
  • the transfer characteristic estimation unit 20 estimates transfer characteristics for consecutive wY symbol intervals, so it does not need to operate at the timing of each received symbol, and is once per wY symbol reception. Should work. Such operation timing is the same for the operation timing of the data decoding unit 30.
  • the transfer characteristic estimation unit 20 mainly includes an SP transfer characteristic calculation unit 21, a two-dimensional Fourier transform unit 22, a two-dimensional filter circuit 23, a two-dimensional inverse Fourier transform circuit 24, and an estimated transfer characteristic output.
  • the circuit 25 and the filter coefficient determination circuit 26 are included.
  • these circuits are referred to as a calculation unit 21, a conversion unit 22, a filter circuit 23, an inverse conversion unit 24, an output circuit 25, and a determination circuit 26, respectively, in order to simplify the description.
  • the calculation unit 21, the determination circuit 26, and the inverse conversion unit 24, which are specific configurations in the present embodiment will be mainly described, and other circuit configurations will be described in the operation description.
  • the calculation circuit 21 includes an SP transfer characteristic calculation circuit 21a and an SP transfer characteristic extraction circuit 21b.
  • the SP transfer characteristic extraction circuit is referred to as an “extraction circuit”.
  • the SP transfer characteristic calculation circuit 21a extracts only the carrier amplitude related to the SP signal from the carrier amplitude supplied from the symbol storage unit 12, and divides this by the known transmission complex amplitude value. As a result, the SP transfer characteristic calculation circuit 21a can obtain the transfer characteristic ⁇ H p, q : (p, q) ⁇ Z 2D ⁇ for the SP signals scattered in the (p, q) space.
  • the extraction circuit 21b provides the conversion unit 22 with SP signal transfer characteristics for every three carrier indexes except for a carrier index on which no SP signal is superimposed.
  • the determination circuit 26 includes a power calculation circuit 26a, an average noise power calculation circuit 26b, a noise suppression / window coefficient calculation circuit 26c, and an aliasing separation circuit 26d.
  • the power calculation circuit 26a calculates the power ⁇ P m, n ⁇ in the (m, n) space, and provides it to the average noise power calculation circuit 26b and the noise suppression / window coefficient calculation circuit 26c.
  • the average noise power calculation circuit 26b calculates the average noise power NP based on the power ⁇ P m, n ⁇ in the (m, n) space, and supplies the average noise power NP to the noise suppression / window coefficient calculation circuit 26c.
  • the (m, n) space is based on the value obtained by multiplying the average noise power NP by the coefficient ⁇ and the power ⁇ P m, n ⁇ for each data in the (m, n) space. Calculate the above two-dimensional filter window ⁇ W m, n ⁇ .
  • the noise suppression / window coefficient calculation circuit 26c supplies the two-dimensional filter window ⁇ W m, n ⁇ thus calculated to the aliasing separation circuit 26d.
  • the aliasing separation circuit 26d performs aliasing separation based on the two-dimensional filter window ⁇ W m, n ⁇ and the maximum power position from the outside when removing an aliasing component using a tag to be described later.
  • the filter window ⁇ W ′ m, n ⁇ and the tag ⁇ Tag m, n ⁇ are calculated and provided to the filter circuit 23.
  • the maximum power position means a position where the received power is maximum in the time axis (m-axis) direction on the (m, n) space.
  • the aliasing component removal processing method using the tag is not necessarily performed in the present embodiment, and may be a processing method using no tag as long as the processing is equivalent.
  • the inverse transform unit 24 includes an inverse Fourier transform circuit 24a, a multiplication circuit 24b, and a Fourier transform circuit 24c.
  • the inverse Fourier transform circuit 24a performs an inverse Fourier transform process on the data in the symbol index direction over all carrier indexes.
  • the multiplication circuit 24b multiplies each carrier by a complex twiddle factor coefficient (exp ( ⁇ j ⁇ o t)). Note that j represents an imaginary unit, and exp (x) represents a complex function.
  • the Fourier transform circuit 24 c calculates an estimated transfer characteristic by performing a Fourier transform process on the data in the carrier index direction over all symbol indexes, and provides it to the output circuit 25. That is, the multiplication circuit 24b and the Fourier transform circuit 24c perform the calculation in the carrier index direction.
  • the transfer characteristic estimation unit 20 As described above, in the terrestrial digital broadcasting of the ISDB-T standard, the position of the SP signal in the carrier arrangement in the OFDM symbol space and the complex amplitude value of the SP signal at the time of transmission are determined in advance. Therefore, the calculation unit 21 extracts only the carrier amplitude related to the SP signal from the carrier amplitudes supplied from the symbol storage unit 12, and divides this by the known transmission complex amplitude value. Thereby, the transfer characteristics ⁇ H p, q : (p, q) ⁇ Z 2D ⁇ can be obtained for the SP signals scattered in the (p, q) space. Such a calculation procedure is as follows.
  • the SP transfer characteristic calculation circuit 21a shown in FIG. 9 extracts only the carrier amplitude related to the SP signal from the carrier amplitude supplied from the symbol storage unit 12, and this is extracted as a known transmission complex amplitude value. Divide by.
  • the SP transfer characteristic calculation circuit 21a performs the following operation on data carrier signals other than SP signals.
  • H p, q 0
  • the transfer function ⁇ H p, q ⁇ is defined as follows.
  • the SP transfer characteristic calculation circuit 21a can obtain the transfer characteristic ⁇ H p, q : (p, q) ⁇ Z 2D ⁇ for the SP signals scattered in the (p, q) space.
  • the extraction circuit 21 b supplies the SP signal transfer characteristic ⁇ H p, q ⁇ for each three carrier index to the conversion unit 22 except for the carrier index on which no SP signal is superimposed.
  • the SP signal superimposed at a rate of 1 on 12 carriers is present only on every 3 carriers as shown in FIG.
  • the SP signal in which the superposition position has been cyclically changed by three carriers for each symbol has its superposition position cyclically changed by one carrier for each symbol.
  • the SP signal transfer characteristic ⁇ H of 2D-FFT region Z ′ 2D ( ⁇ mX / 2 ⁇ p ⁇ mX / 2, k ⁇ nY ⁇ q ⁇ k) ' p, q : (p, q) ⁇ Z' 2D ⁇ is provided to the conversion unit 22.
  • the range of the estimation region Z ′ EST is ( ⁇ vX / 2 ⁇ p ⁇ vX / 2, k ⁇ nY / 2 ⁇ wY / 2 ⁇ q ⁇ knY / 2 + wY / 2).
  • the transform unit 22 performs a two-dimensional Fourier transform on the SP signal transfer characteristic ⁇ H ′ p, q ⁇ in the (p, q) space, and performs this on the SP signal transfer characteristic ⁇ h in the (m, n) space.
  • m, n (m, n) ⁇ Z ′ TRA ⁇ That is, for the carrier frequency direction (p direction) in (p, q) space, IFFT (Inverse Fast Fourier Transform) processing is performed to convert the frequency domain to the time domain, and for the symbol time direction (q direction), The time domain is converted into the frequency domain by performing FFT (Fast Fourier Transform) processing.
  • FFT Fast Fourier Transform
  • the m-axis direction corresponds to the time dimension
  • the n-axis direction corresponds to the frequency dimension.
  • the region Z ′ 2D in the (p, q) space corresponds to the region Z ′ TRA converted in the (m, n) space, and this region is -MX / 2 ⁇ m ⁇ mX / 2
  • this region is -MX / 2 ⁇ m ⁇ mX / 2
  • ⁇ nY / 2 ⁇ n ⁇ nY / 2 Is defined as
  • the SP signal transfer characteristic ⁇ hm , n ⁇ calculated by performing the 2D Fourier transform process in the conversion unit 22 has the following properties due to the regular arrangement of the SP signals.
  • the SP signal transfer characteristic ⁇ h m, n ⁇ corresponds to h (m, n).
  • the variable mode represents the transmission mode, for example, 0 for mode 1, 1 for mode 2, and 2 for mode 3.
  • the function floor (x) is a function for calculating the maximum integer value less than or equal to x.
  • FIG. 14 shows the power spectrum distribution ⁇
  • equation (1) shows that an arbitrary SP signal transfer characteristic ⁇ h m, n ⁇ in the (m, n) space can be easily calculated from the SP signal transfer characteristic in the region H of FIG. Yes. Therefore, equation (1) means that the SP signal transfer characteristic ⁇ hm , n ⁇ is composed of one independent variable group and three dependent variable groups in the (m, n) space. This property is referred to as property A as a name.
  • FIG. 15 is a diagram showing the power spectrum distribution ⁇
  • 2 ⁇ represents the delay time up to 1/3 of the effective symbol length Te in the m-axis direction.
  • the n-axis direction represents the frequency of the symbol transmission frequency Fa.
  • the m-axis corresponds to time and the n-axis corresponds to frequency as described above.
  • the m-axis corresponds to the delay time of the impulse response of the transmission line
  • the n-axis corresponds to the fluctuation frequency (Doppler frequency) of the transmission line characteristic. Therefore, the power spectrum of the transmission path transfer characteristic appearing in the (m, n) space tends to concentrate in a specific area in the (m, n) space according to the reception environment.
  • FIG. 15 shows the power spectrum distribution
  • the shaded area is a pseudo representation of the density of the power spectrum distribution.
  • a condition required for the two-dimensional filter window includes a function of suppressing a noise component included in the received signal.
  • the pass band of the two-dimensional filter window may be narrowed, that is, the area of the region A shown in FIG.
  • the two-dimensional filter window is provided at an appropriate position in the (m, n) space and needs to pass only the power spectrum of the transmission path transfer characteristic. It is desirable to have a minimum size. For example, if the receiving apparatus 1 is used only in the environment of the receiving environment shown in FIG. 15, the pass band of the two-dimensional filter window is set only to a very narrow area near the origin in the (m, n) space. Set it.
  • the power spectrum distribution of the transmission path transmission characteristics in the (m, n) space varies greatly depending on the reception environment. For example, in an urban area where there are many buildings such as high-rise buildings, multipath delay due to reflected waves becomes large, and the power spectrum distribution is a distribution that spreads in the m-axis direction as shown in FIG. Further, under a reception environment where the receiving device is used mounted on a moving body such as a vehicle, the temporal variation of the transmission path characteristics increases, and the power spectrum distribution spreads in the n-axis direction as shown in FIG. Distribution.
  • the two-dimensional filter window is required to perform adaptive noise suppression and aliasing component removal according to the power spectrum distribution that varies greatly depending on various reception environments.
  • the SP signal transfer characteristic ⁇ hm , n ⁇ on the (m, n) space is composed of an independent variable group and three dependent variable groups subordinate to the independent variable group.
  • the aliasing component removal described later is a process of extracting only the independent variable group and removing the other three dependent variable groups.
  • the region is limited to an arbitrary 1 ⁇ 4 region in the region of the SP signal transfer characteristic ⁇ h m, n ⁇ , for example, the central 1 ⁇ 4 region ( ⁇ kX / 2 ⁇ m By limiting to ⁇ kX / 2, ⁇ nY / 2 ⁇ n ⁇ nY / 2), aliasing components can be easily removed.
  • tagging which will be described later, on the limited region H, adaptive aliasing components corresponding to the reception environment are removed.
  • tagging is performed as to which variable group of the independent variable group in the property A and three dependent variable groups subordinate to the independent variable belong.
  • a two-dimensional filter window ⁇ W ′ m, n ⁇ and a tag ⁇ Tag m, n ⁇ are used as coefficient decision information.
  • the SP signal transfer characteristic ⁇ h m, n ⁇ of the region H only in FIG. 14 and the two-dimensional filter window ⁇ W ′ m, n ⁇ and the tag ⁇ Tag m, n ⁇ as coefficient determination information are calculated. Based on this, the case of calculating the estimated transfer characteristic ⁇ g m, n ⁇ will be described.
  • FIG. 10 is a block diagram showing a configuration example of the determination circuit 26 shown in FIG.
  • the determination circuit 26 includes a power calculation circuit 26a, an average noise power calculation circuit 26b, a noise suppression / window coefficient calculation circuit 26c, and an aliasing separation circuit 26d.
  • the power calculation circuit 26a calculates the power ⁇ P m, n ⁇ in the (m, n) space, and provides it to the average noise power calculation circuit 26b and the noise suppression / window coefficient calculation circuit 26c.
  • the average noise power calculation circuit 26b calculates the average noise power NP based on the power ⁇ P m, n ⁇ in the (m, n) space, and supplies the average noise power NP to the noise suppression / window coefficient calculation circuit 26c. Specifically, the average noise power calculation circuit 26b divides the power ⁇ P m, n ⁇ in the (m, n) space into small sections as shown in FIG. 16, and calculates the average power in each section. . The average power in each section is shown as an example in the small sections delimited by the broken lines. The minimum average power calculated in this way is set as the average noise power NP, which is provided to the noise suppression / window coefficient calculation circuit 26c.
  • the noise suppression / window coefficient calculation circuit 26c the (m, n) space is based on the value obtained by multiplying the average noise power NP by the coefficient ⁇ and the power ⁇ P m, n ⁇ for each data in the (m, n) space. Calculate the above two-dimensional filter window ⁇ W m, n ⁇ .
  • the noise suppression / window coefficient calculation circuit 26c supplies the two-dimensional filter window ⁇ W m, n ⁇ thus calculated to the aliasing separation circuit 26d.
  • the noise suppression / window coefficient calculation circuit 26c calculates the threshold noise power NPth as a value obtained by multiplying the average noise power NP by the coefficient ⁇ as follows.
  • NPth ⁇ ⁇ NP
  • the noise suppression / window coefficient calculation circuit 26c calculates the two-dimensional filter window ⁇ W m, n ⁇ as follows based on the power ⁇ P m, n ⁇ and the threshold noise power NPth provided by the power calculation circuit. .
  • the average noise power NP is set to the minimum value among the average powers of the small sections, and therefore, when the coefficient ⁇ is set to 1, it is not always possible to sufficiently suppress the noise component. In such a case, it is possible to sufficiently suppress the noise component by setting the coefficient ⁇ to an appropriate value of 1 or more. For example, when the coefficient ⁇ is set to 2, noise component suppression processing is performed on the basis of a power value 3 dB larger than the average noise power NP, and the two-dimensional filter window ⁇ W m, n ⁇ is calculated.
  • the aliasing separation circuit 26d performs aliasing separation based on the two-dimensional filter window ⁇ W m, n ⁇ and the external maximum power position and removes the two-dimensional filter when performing aliasing component removal using a tag to be described later.
  • the window ⁇ W ′ m, n ⁇ and the tag ⁇ Tag m, n ⁇ are calculated and provided to the filter circuit 23.
  • the maximum power position means a position where the received power is maximum in the time axis (m-axis) direction on the (m, n) space. More specifically, the position of the main wave at which the received power from the transmitting station is maximized is relatively represented on the time axis (m-axis) in the (m, n) space.
  • the aliasing component removal processing using the tag is not necessarily performed in the present embodiment, and a processing method using no tag may be used as long as the processing is equivalent.
  • the aliasing separation circuit 26d may acquire the maximum power position from, for example, the symbol detection unit 11 as the above-described outside. Specifically, the symbol detection unit 11 may calculate the maximum power position in the (m, n) space based on the peak position of the correlation detected by the symbol synchronization processing using the general guard interval correlation. good. The aliasing separation circuit 26d detects the position where the power is maximum on the m-axis from the power spectrum distribution shown in FIG. 15 without acquiring the maximum power position from the outside as described above, and the detection result is determined as the maximum power position. You may make it acquire as. A detailed procedure example of the aliasing separation circuit 26d will be described later using a flowchart.
  • the filter circuit 23 is a circuit that performs a predetermined filtering process on the data group that has been Fourier-transformed in the (m, n) space by the conversion unit 22.
  • the estimated transfer characteristic ⁇ g m, n ⁇ is calculated based on the above and provided to the inverse transform unit 24. A detailed procedure example of the filter circuit 23 will be described later using a flowchart.
  • the inverse transform unit 24 performs a two-dimensional inverse Fourier transform, which is an inverse process of the two-dimensional Fourier transform, on the estimated transfer characteristic ⁇ g m, n ⁇ provided from the filter circuit 23, and from ⁇ g m, n ⁇ to ( p, q) Estimated transfer characteristic ⁇ Gp , q : (p, q) ⁇ Z 2D ⁇ in space is calculated.
  • the inverse transform unit 24 performs transform from the frequency domain to the time domain by the inverse Fourier transform circuit 24a shown in FIG. 11 performing an inverse Fourier transform process over the entire carrier index in the symbol index direction (n-axis direction).
  • the multiplication circuit 24b multiplies the complex twiddle factor coefficient (exp ( ⁇ j ⁇ o t)) so that a predetermined phase rotation occurs in the mX section in the time domain in the carrier index direction (m-axis direction).
  • j represents an imaginary unit
  • exp (x) represents a complex exponential function.
  • the Fourier transform circuit 24c performs transform from the time domain to the frequency domain by performing a Fourier transform process in the carrier index direction (m-axis direction).
  • the estimated transfer characteristic calculated by the inverse transform unit 24 is ⁇ G ′ p, q : (P, q) ⁇ Z ′ 2D ⁇ and the estimated region is Z ′ EST .
  • the region where the transfer characteristic estimation unit 20 should estimate the transfer characteristic is Z EST
  • the estimated region Z ′ EST is a region of 1/3 with respect to the carrier direction.
  • This SP transfer characteristic extraction circuit 21b with SP signal transfer characteristic ⁇ H p, q: (p , q) ⁇ Z 2D ⁇ extracts every three carriers SP signal transfer characteristic ⁇ H 'p, q: ( p, q ) ⁇ Z ′ 2D ⁇ is supplied to the conversion unit 22, and the estimated transfer characteristic calculated is also a result for every three carrier indexes.
  • the inverse transform unit 24 of the present embodiment performs an inverse Fourier transform process in the symbol direction (n-axis direction) in the inverse Fourier transform circuit 24a.
  • the multiplication circuit 24b multiplies the carrier direction by a complex twiddle factor coefficient
  • the Fourier transform circuit 24c performs Fourier transform in the carrier direction three times for each symbol.
  • the estimated transfer characteristic ⁇ G p, q (p, q) ⁇ Z 2D ⁇ including the range of the estimated region Z EST is calculated.
  • the estimated transfer characteristic ⁇ G p, q ⁇ calculated by the inverse conversion unit 24 is provided to the output circuit 25.
  • the output circuit 25 extracts the estimated transfer characteristic ⁇ G p, q : (p, q) ⁇ Z EST ⁇ corresponding to the carrier amplitude of the estimation region Z EST extracted by the data decoding unit 30 and extracts such extracted data. Is provided to the data decoding unit 30.
  • the reason why the estimated transfer characteristic for the entire Z 2D region is not output from the transfer characteristic estimating unit 20 to the data decoding unit 30 is that the estimated transfer characteristic is changed due to the influence of the end of the region in the peripheral part of the (p, q) space. This is because an error occurs.
  • the specific values of the two-dimensional region carrier width nX and the two-dimensional region symbol width nY values larger than those in the present embodiment may be used.
  • the coefficient determination information with high accuracy can be calculated by adaptively performing noise suppression processing and aliasing component removal processing (aliasing separation processing) according to the reception environment.
  • the estimated transfer characteristic can be calculated with high accuracy.
  • FIG. 19 is a flowchart illustrating an exemplary procedure of aliasing separation processing.
  • the aliasing separation process represents a process executed by the aliasing separation circuit 26d of the determination circuit 26.
  • means that the value on the right side is assigned to the variable on the left side.
  • the two-dimensional filter window ⁇ W m, n ⁇ which is the output of the noise suppression / window coefficient calculation circuit 26c, is described to be overwritten.
  • the overwritten two-dimensional filter window ⁇ W m, n ⁇ is described. Assume that ⁇ W ′ m, n ⁇ is provided to the filter circuit 23.
  • a tag initialization process is first performed (step S200).
  • the aliasing separation circuit 26d calculates the current default tag value ja based on the m-axis direction index x and the maximum power position pos.
  • the function “floor (x)” represents a function for calculating the maximum exponent less than or equal to x, and the symbol “&” represents that a logical product operation is performed on a variable or the like described on the left and right of the variable. ing.
  • the maximum power position pos is a value input from the outside of the filter coefficient determination circuit 26, and indicates the position on the m-axis of the main wave (radio wave with the maximum received power value) in the Te / 3 section.
  • the maximum power position pos is a value satisfying ⁇ 4 ⁇ kX ⁇ pos ⁇ 4 ⁇ kX.
  • step S101, S109, and S110 scanning is performed in the m-axis direction from ⁇ kX ( ⁇ Te / 24) to kX / 2 (Te / 24), and the m-axis direction index xa and the default tag value are scanned.
  • a first step process is performed based on ja (step S300).
  • step S105 a default tag value jb used in a second step process (step S400) described later is calculated.
  • the process is performed three times while updating the tag value jb for each first step based on the m-axis direction index xa and the default tag value jb.
  • FIG. 20 is a flowchart showing a procedure example of the tag initialization process shown in FIG.
  • the tag initialization process in the (m, n) space is performed based on the n-axis (frequency) index. As shown in FIG. 21, tag values (corresponding to “0”, “1”, “2”, “3” shown in the figure) are assigned to the (m, n) space divided into four on the n-axis, In step S206, it is stored in a memory (corresponding to Tag (xa, ya) shown). This tag value is used, for example, when data is expanded on the m-axis shown in FIG.
  • FIG. 23 is a flowchart illustrating a processing example of the first step processing illustrated in FIG. 19.
  • the first step process evaluates the continuity of the spectrum distribution in the n-axis direction based on the m-axis direction index xa and the default tag ja, thereby allowing the tag ⁇ Tag m, n ⁇ and the two-dimensional filter window ⁇ W m, n ⁇ Is being updated.
  • step S301a the position yg on the n-axis is calculated based on the default tag value ja.
  • scanning is performed on the n-axis in the range of ⁇ nY / 2 with the position yg as the center (steps S302, S310, and S312).
  • steps S303 and S304 the n-axis positive position ya and the negative position yb to be evaluated are respectively calculated based on the default tag value ja.
  • step S305 the value of the determination flag flg is evaluated, and the condition branches. If the value of the determination flag flg is 0, the value of the tag ⁇ Tag m, n ⁇ is updated (steps S306 and T307).
  • the tag ⁇ Tag m, n ⁇ corresponds to the tag (m, n) shown.
  • steps S308 and S309 if the two-dimensional filter window ⁇ W m, n ⁇ value does not exceed 0, it is determined that the continuity of the spectrum distribution in the n-axis direction is interrupted. In step S311, 1 is assigned to the determination flag flg.
  • step S313 it is determined in step S313 whether the tag ⁇ Tag m, n ⁇ in the positive direction position ya is equal to the default tag value ja.
  • the two-dimensional filter window ⁇ W m, n ⁇ (W (xa, ya) in the figure) at that position is updated to 0 (step S314). Further, for the position yb in the minus direction, the processes in steps S315 and S316 that are substantially the same as those in steps S313 and S314 are performed.
  • FIG. 24 is a flowchart showing a processing example of the second step processing.
  • step S401a a position yg on the n-axis is calculated based on the default tag value jb.
  • steps S403 to S416 the n-axis is scanned in the range of ⁇ nY / 8 with the position yg as the center (steps S402, S410, S412).
  • step S403 and S404 the positive position ya and the negative position yb of the n-axis to be evaluated are calculated based on the default tag value ja.
  • step S405 the value of the determination flag flg is evaluated and the condition branches.
  • step S405 When the value of the determination flag flg is 0 in step S405, when the tag ⁇ Tag m, n ⁇ (corresponding to “Tag (xa, ya) shown in the figure) is different from the default tag value jb in steps S406 and S407, Alternatively, when the two-dimensional filter window ⁇ W m, n ⁇ value does not exceed 0 in steps S408 and S409, it is determined that the continuity of the spectrum distribution in the n-axis direction is interrupted, and 1 is assigned to the determination flag flg in ST411.
  • step S405 When the value of the determination flag flg is 1 in step S405, if the tag ⁇ Tag m, n ⁇ in the positive direction position ya is equal to the default tag value jb in step S413, the two-dimensional filter window ⁇ W m, n ⁇ (corresponding to “W (xa, ya) in the figure) is updated to 0 (step S414).
  • the tag ⁇ Tag m, n ⁇ at the position yb in the negative direction is almost the same as steps S413 and S414. Similar processing is performed (steps S415 and ST416).
  • FIG. 25 is a flowchart illustrating a processing example of 2D filter circuit processing. Note that this 2D filter circuit processing indicates processing executed by the filter circuit 23. This 2D filter circuit processing includes processing to be performed for the above-described tag assignment. Although details will be described later, the 2D filter circuit processing includes, for example, rotation coefficient initialization processing (step S500), estimated transfer characteristic initialization processing (step S700), and 2D filter calculation processing (step S600).
  • FIG. 26 is a flowchart showing a processing example of the rotation coefficient initialization processing shown in FIG.
  • step S502 rotation coefficients having phases of 0 °, 90 °, 180 °, and 270 ° are sequentially stored in the memory tra (t).
  • This step S502 is executed, for example, four times (steps S501, S503, S504).
  • FIG. 27 is a flowchart of the process in the estimated transfer characteristic initialization process shown in FIG.
  • step S705 the estimated transfer characteristic ⁇ g m, n ⁇ in the entire area of (m, n) space is set to zero.
  • the estimated transfer characteristic ⁇ g m, n ⁇ here corresponds to g (xa, ya) shown in the figure. That is, this step S705 is repeatedly executed until ⁇ 4 ⁇ kX / 2 ⁇ m ⁇ 4 ⁇ kX / 2 and ⁇ nY / 2 ⁇ n ⁇ nY / 2 are satisfied (steps S701, S703, S706, S707, S708, S709).
  • FIG. 28 is a flowchart showing a processing example of the 2D filter calculation processing shown in FIG.
  • the variable mode in step S601 represents the transmission mode, which is 0 for mode 1, 1 for mode 2, and 2 for mode 3.
  • the variable symco is a symbol count value of a symbol arranged and stored at the q-axis origin in the symbol group provided to the conversion unit 22.
  • step S601 a value co4 is calculated based on the variables mode and symco.
  • steps S605, S606, and S607 in FIG. 28 the (phase) index z of the rotation coefficient is calculated based on the value co4 calculated in step S601 and the tag value Tag (xa, ya).
  • steps S608 and S609 indexes xe and ye for calculating the estimated transfer characteristic ⁇ g m, n ⁇ are calculated based on the tag value.
  • step S610 the SP signal transfer characteristic ⁇ h m, n ⁇ (corresponding to h (xa, ya) shown) and the two-dimensional filter window ⁇ W ′ m, n ⁇ (corresponding to W ′ (xa, ya) shown) ) And an estimated transfer characteristic ⁇ g m, n ⁇ (corresponding to g (xe, ye) in the drawing) based on the rotation coefficient.
  • the processes in steps S603 to S610 as described above are repeatedly executed until ⁇ kX / 2 ⁇ x ⁇ kX / 2 and ⁇ nY / 2 ⁇ n ⁇ nY / 2 are satisfied (steps S602, S604).
  • FIG. 29 is a flowchart illustrating a procedure example of 2D inverse Fourier transform processing.
  • the inverse Fourier transform process is executed by the inverse transform unit 24.
  • Symbol direction inverse Fourier transform processing indicates processing for performing inverse Fourier transform in the symbol direction for the (p, q) space (step S800a).
  • the carrier direction Fourier transform process also referred to as C-IFFT process indicates a process of performing a Fourier transform in the carrier direction for the (p, q) space (step S900).
  • each calculation formula is expressed as follows.
  • FFT indicates a function for performing Fourier transform
  • IFFT indicates a function for performing inverse Fourier transform
  • FIG. 30 is a flowchart showing a procedure example of the symbol direction inverse Fourier transform process shown in FIG.
  • the symbol “ ⁇ ” indicates that the value or expression on the right side is set to the variable on the left side.
  • step S802 an inverse Fourier transform process is performed on the symbol direction counter value n.
  • This step S802 is repeatedly performed in the carrier direction two-dimensional region carrier width kX times (steps S801, S803, S804a).
  • FIG. 31 is a flowchart showing a procedure example of the carrier direction Fourier transform process shown in FIG.
  • step S1000 a twiddle factor multiplication process is executed.
  • a twiddle factor coefficient based on the repetition index k and the carrier index m is multiplied in the carrier direction. Details of the twiddle factor multiplication process will be described later.
  • step S903 Fourier transform processing is performed on the carrier index m.
  • step S1100 an estimated area extraction process is executed. This estimated area extraction process extracts estimated transfer characteristics of the estimated area. In this estimated area extraction process, only the estimated transfer characteristic of the estimated area width vX (corresponding to the estimated area carrier width wX / 3 in FIG. 6) is extracted and stored in a memory (not shown).
  • steps S1000, S903, and S1100 are repeated three times for each symbol as an example (steps S902, S904, and S905).
  • the Fourier transform process in the carrier direction is repeatedly executed over the two-dimensional area symbol width nY (steps S901, S906, S907), but is repeatedly executed over the estimated area symbol width wY. Also good.
  • FIG. 32 is a flowchart showing a specific procedure example of the twiddle factor multiplication process shown in FIG.
  • step S1002a the complex exponent ph of the twiddle factor coefficient is calculated based on the repetition count index k and the carrier index m.
  • step S1003a the variable z is calculated.
  • step S1004 the twiddle factor exp (ph) is multiplied using the complex exponent ph calculated in step S1002.
  • FIG. 33 is a flowchart illustrating a specific procedure example of the estimation region extraction process illustrated in FIG. 31.
  • the target carrier calculation variable c represents a calculation variable for specifying a carrier to be processed.
  • step S1104a a variable z is set.
  • step S405 the estimated transfer characteristic calculated for each carrier direction Fourier transform is stored in a memory (not shown) for each three carrier index.
  • step S1106 the target carrier calculation variable c is incremented by 3 so that the carrier to be targeted is every three carriers.
  • Steps S1104a, S1105, and S1106 as described above are executed as an example from -nT / 2 to nT / 2 every three carriers (steps S1101, S1102, S1103, S1107, and S1108).
  • the receiving apparatus 1 is configured so that a pilot signal having a specific known complex amplitude with the transmission symbol generated by orthogonally modulating a plurality of carriers based on transmission data as a transmission unit is the transmission symbol. 2 received in a two-dimensional space corresponding to the carrier frequency and symbol time.
  • the received signal obtained by receiving the OFDM signal superimposed on a predetermined carrier and detecting the carrier group included in a plurality of consecutive transmission symbols.
  • the transfer characteristic estimation unit 20 includes a calculation unit 21 (SP signal transfer characteristic calculation unit) that calculates a pilot signal transfer characteristic for a pilot signal arranged in the two-dimensional data region;
  • a conversion means 22 (2D Fourier transform circuit) for performing two-dimensional Fourier transform on the pilot signal transfer characteristics to generate two-dimensional Fourier transform data in a two-dimensional space corresponding to the transmission path delay time and the transmission path fluctuation frequency;
  • Supply means 26 filter coefficient determination circuit) for calculating window coefficient determination information for passing a data group in the specific area of the two-dimensional Fourier transform data, and the specific area determined based on the window coefficient determination information
  • Filter means 23 (2D filter circuit) for selecting and extracting a data group
  • 2D inverse Fourier transform circuit 2D inverse Fourier transform circuit
  • the supply means 26 calculates power for each two-dimensional Fourier transform data in the two-dimensional space based on the two-dimensional Fourier transform data in the two-dimensional space.
  • Calculation means 26a power calculation circuit
  • window coefficient calculation means 26c for calculating a two-dimensional filter window ⁇ W m, n ⁇ based on the power provided from the power calculation means 26a and a preset threshold noise power.
  • a pilot signal having a specific known complex amplitude is superimposed on a predetermined carrier in the transmission symbol with a transmission symbol generated by orthogonally modulating a plurality of carriers based on transmission data as a transmission unit.
  • a received signal obtained by receiving a received OFDM signal and detecting a carrier group included in a plurality of consecutive transmission symbols is arranged in a two-dimensional data region on a two-dimensional space corresponding to the carrier frequency and symbol time.
  • the transfer characteristic estimation step for estimating the received signal transfer characteristic for each of the received signals based on the pilot signal arranged in the two-dimensional data region, the received signal and the received signal transfer characteristic
  • a data decoding step for decoding the transmission data.
  • the characteristic estimation step includes a calculation step for calculating a pilot signal transmission characteristic for a pilot signal arranged in the two-dimensional data region, and a two-dimensional Fourier transform is performed on the pilot signal transmission characteristic to obtain a transmission line delay time and a transmission line A transforming step for generating two-dimensional Fourier transform data in a two-dimensional space corresponding to the varying frequency, and a supplying step for calculating window coefficient determination information for allowing a data group in a specific region of the two-dimensional Fourier transform data to pass.
  • an aliasing separation step of calculating window coefficient determination information by removing aliasing components based on the maximum power position of the OFDM signal is a filter coefficient determination information by removing aliasing components based on the maximum power position of the OFDM signal.
  • aliasing components are adaptively removed by utilizing the fact that the power spectrum distribution continuously spreads in the n-axis (frequency) direction even when the power spectrum distribution largely changes depending on the reception environment.
  • window coefficient determination information it is possible to calculate window coefficient determination information with high accuracy.
  • an estimated transfer characteristic it is possible to calculate an estimated transfer characteristic with high accuracy.
  • the supply unit 26 further divides the two-dimensional space into small sections, and each of the two-dimensional space is based on two-dimensional Fourier transform data on the two-dimensional space.
  • Average noise power calculation means 26c average noise power calculation section
  • window coefficient calculation means 26c noise suppression
  • Window coefficient calculation circuit calculates the threshold noise power NPth based on the average noise power NP.
  • the window coefficient calculation unit 26c calculates the threshold noise power NPth by multiplying the average noise power by a coefficient ⁇ . It is characterized by that.
  • the noise component can be sufficiently suppressed by setting the coefficient ⁇ .
  • the receiving device 1 in the above embodiment further includes the aliasing separation circuit 26d (aliasing separation means) assigning a tag to each of the two-dimensional space, and the window coefficient determination information related to the tag.
  • the tag value is included in the filter means 23 (2D filter circuit), and the filter means 23 selectively extracts a data group in the specific area based on the window coefficient determination information.
  • the window coefficient determination information is accurately calculated based on an arbitrary 1 ⁇ 4 area in the (m, n) space of the SP signal transfer characteristic ⁇ h m, n ⁇ provided to the filter circuit 26. can do.
  • FIG. 14 is a power spectrum distribution ⁇
  • the (m, n) space corresponds to the OFDM symbol space.
  • the SP signal transfer characteristic ⁇ hm , n ⁇ calculated by performing the 2D Fourier transform process in the conversion unit 22 has the following properties due to the regular arrangement of the SP signals.
  • the SP signal transfer characteristic ⁇ h m, n ⁇ corresponds to h (m, n).
  • the variable mode represents the transmission mode, for example, 0 for mode 1, 1 for mode 2, and 2 for mode 3.
  • the function floor (x) is a function for calculating the maximum integer value less than or equal to x.
  • Equation (2) shows that an arbitrary SP signal transfer characteristic ⁇ h m, n ⁇ in the (m, n) space can be easily calculated from the SP signal transfer characteristic of the region H. Therefore, equation (2) means that the SP signal transfer characteristic ⁇ hm , n ⁇ is formed from one independent variable group and three dependent variable groups in the (m, n) space. This property is referred to as property A as a name.
  • the calculation processing amount of the conversion unit 22 is further reduced by devising only the SP signal transfer characteristic corresponding to the region H in FIG.
  • the modification of the embodiment described below is intended to further reduce the calculation processing amount of the conversion unit 22 by using the property A.
  • FIG. 34 is a block diagram illustrating a configuration example of a receiving device 1a according to a modification of the embodiment.
  • the receiving device 1a according to the modified example of the embodiment has substantially the same configuration as the receiving device 1 according to the present embodiment and performs substantially the same operation.
  • the same configuration and operation are denoted by the same reference numerals as in FIGS. 1 to 33 in the present embodiment, the description thereof is omitted, and the description below will focus on different points. .
  • the receiving device 1a includes a transfer characteristic estimation unit 20a having substantially the same function as the transfer characteristic estimation unit 20 instead of the transfer characteristic estimation unit 20 according to the present embodiment.
  • FIG. 35 is a block diagram showing a configuration example of the transfer characteristic estimation unit 20a shown in FIG.
  • the transfer characteristic estimation unit 20a according to the modification of the embodiment is mainly different from the transfer characteristic estimation unit 20 in the present embodiment in a part of the function of the calculation unit 21 and the configuration and function of the conversion unit 22. .
  • the SP transfer characteristic calculation circuit 21a of the calculation unit 21 extracts the transfer characteristic ⁇ H p, q ⁇ of the SP signal, for example, every three carrier indexes. Then, the SP transfer characteristic extraction circuit 21a extracts the transfer characteristic ⁇ H p, q ⁇ of only the SP signal for every 12 carrier indexes, for example.
  • the calculating unit 21 extracts only the carrier amplitude related to the SP signal from the carrier amplitude supplied from the symbol storage unit 12 by the SP transfer characteristic calculating circuit 21a shown in FIG. Divide by value.
  • ⁇ R p, q ⁇ is a known transmission complex amplitude value of the SP signal.
  • the SP transfer characteristic calculation circuit 21a performs the following operation on data carrier signals other than SP signals.
  • H p, q 0
  • the transfer function ⁇ H p, q ⁇ is defined as follows.
  • the SP transfer characteristic calculation circuit 21a can obtain the transfer characteristic ⁇ H p, q : (p, q) ⁇ Z 2D ⁇ for the SP signals scattered in the (p, q) space.
  • the extraction circuit 21b extracts only the SP signal transfer characteristic ⁇ H p, q ⁇ at the SP signal position and supplies it to the converter 22x. Specifically, the extraction circuit 21b extracts the SP signal transfer characteristic only at the SP signal position shown in FIG. 37, and supplies it to the conversion unit 22x in the form of packing in the carrier direction as shown in FIG.
  • the SP signal transfer characteristics ⁇ H ′′ p, q ⁇ provided to the converter 22x are arranged in the OFDM space as shown in Fig. 36.
  • the range Z ′′ 2D is ⁇ kX / 2 ⁇ p ⁇ kX / 2; k ⁇ nY ⁇ q ⁇ k Is defined.
  • the estimated area Z " EST is ⁇ uX / 2 ⁇ p ⁇ uX / 2; k ⁇ nY / 2 ⁇ wY / 2 ⁇ q ⁇ k ⁇ nY / 2 + wY / 2 Is defined.
  • the conversion unit 22x performs a two-dimensional Fourier transform on the SP signal transfer characteristic ⁇ H " p, q ⁇ in the (p, q) space provided from the SP transfer characteristic calculation unit 21, and converts this to (m, n ) SP signal transfer characteristics in space ⁇ h m, n : (m, n) ⁇ Z ′ TRA ⁇
  • the conversion unit 22 x outputs this to the filter circuit 23 and the decision circuit 26.
  • the inverse Fourier transform circuit 22a and the multiplier circuit 22b shown in FIG. 39 perform processing in the carrier index direction, and the Fourier transform circuit 22c performs processing in the symbol index direction.
  • the SP signal transmission characteristic provided to the converter 22x is degenerated in the carrier direction as shown in FIG. 38, and is different from the superimposed position in the (p, q) space as originally shown in FIG.
  • the SP signal superposition position is not shifted in the carrier direction every time. Therefore, the transform unit 22x performs the inverse Fourier transform process in the carrier direction for each symbol by the inverse Fourier transform circuit 22a using the frequency shift theorem described above, and then multiplies a predetermined complex twiddle factor coefficient in the multiplier circuit 22b. As a result, a result that is relatively shifted by a desired position on the time axis before the inverse Fourier transform processing is calculated.
  • the complex twiddle factor coefficient is determined based on the symbol count value and transmission mode associated with each symbol provided from the symbol storage unit 12. Therefore, the complex factor coefficient is updated for each symbol, and in the case of the present embodiment, the cycle is 4 symbols.
  • the SP signal transfer characteristic ⁇ h ′ m, n ⁇ in the (m, n) space is calculated by performing Fourier transform processing in the symbol direction.
  • 2 ⁇ of the SP signal transfer characteristic ⁇ h ′ m, n ⁇ calculated by the converter 22x is the effective symbol length Te in the m-axis direction.
  • the delay time is up to 1/12, and in the n-axis direction, the frequency is equal to the symbol transmission frequency Fa.
  • the SP signal transfer characteristic ⁇ h ′ m, n ⁇ calculated by the converting unit 22x corresponds to the region H in FIG. 14 used in the description of the property A described above.
  • the conversion unit 22x By utilizing the above properties A, was calculated by the conversion unit 22x SP signal transfer characteristic ⁇ h 'm, n ⁇ from the SP signal transfer characteristic ⁇ h m, n ⁇ calculated by the conversion unit 22 in the present embodiment easily in Conversion is possible. That is, the converter 22x outputs the SP signal transfer characteristic ⁇ h m, n ⁇ to the filter circuit 23 and the determination circuit 26.
  • the determination circuit 26, the filter circuit 23, the inverse conversion unit 24, and the output circuit 26 may be processed in the same manner as in the above embodiment. Since the determination circuit 26, the filter circuit 23, the inverse conversion unit 24, and the output circuit 25 are the same as those in the above embodiment, the description thereof is omitted.
  • FIG. 41 is a flowchart showing a procedure example of 2D Fourier transform processing.
  • This 2D Fourier conversion process represents a process performed by the conversion unit 22x.
  • the 2D Fourier transform process includes a carrier direction inverse Fourier transform process (corresponding to step S1500) and a symbol direction Fourier transform process (corresponding to step S1600).
  • the carrier direction inverse Fourier transform process as shown in FIG. 42, the Fourier transform process (step S1501) is repeatedly performed along the symbol direction (steps S1502 and S1503).
  • FIG. 43 is a flowchart showing a procedure example of the carrier direction inverse Fourier transform process shown in FIG.
  • step S1602 the shift amount s in the carrier direction for each symbol is calculated based on the transmission mode mode and the symbol count value symco.
  • the transmission mode mode is a variable that is, for example, 0 in mode 1, 1 in mode 2, and 2 in mode 3.
  • step S1603 a Fourier transform process in the carrier direction is performed.
  • step S1605 the complex index ph of the twiddle factor coefficient is calculated based on the deviation amount s calculated in step S1602 and the carrier index m.
  • step S1607 ⁇ H " z, q ⁇ (corresponding to H" (z, q)) subjected to the Fourier transform is multiplied by the twiddle factor exp (ph). The above process is repeated kX times in the carrier direction and nY times in the symbol direction.
  • the SP signal transfer characteristic ⁇ H p, q ⁇ to be provided to the conversion unit 22x is limited in the calculation unit 21, and the calculation is devised in the conversion unit 22x, compared with the present embodiment.
  • the amount of calculation can be further reduced without degrading the accuracy of the estimated transfer characteristic.
  • the filter coefficient determination circuit 26 calculates the average noise power NP as described above.
  • the present invention is not limited to this, and an average noise power NP having a preset value may be used.
  • the average noise power calculation circuit 26b can be omitted from the filter coefficient determination circuit 26.
  • FIG. 1 It is a block diagram which shows the structural example of the filter coefficient determination circuit shown in FIG. It is a block diagram which shows the specific structural example of the inverse transformation part shown in FIG. It is explanatory drawing which shows the structure of OFDM symbol space. It is explanatory drawing which shows the attribute of the carrier arrange
  • FIG. 20 is a flowchart illustrating a procedure example of tag initialization processing illustrated in FIG. 19.
  • FIG. 19 It is a figure which shows an example of a mode that the tag value was allocated to the specific area
  • FIG. 32 is a flowchart illustrating a specific procedure example of a twiddle factor multiplication process illustrated in FIG. 31.
  • FIG. It is a flowchart which shows the specific example of a procedure of the estimation area
  • FIG. 35 is a block diagram illustrating a configuration example of a transfer characteristic estimation unit illustrated in FIG. 34. It is explanatory drawing which shows the structure of OFDM symbol space. It is explanatory drawing which shows the attribute of the carrier arrange

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

【課題】従来の受信装置では精度良く窓位置検出を行うことができなかった。 【解決手段】電力算出回路26aでは、パイロット信号伝達特性より、2次元空間上の2次元フーリエ変換データ毎に電力を算出する。雑音抑制/窓係数算出回路26では、電力算出回路26aから供される電力と閾値雑音電力NPに基づいて窓係数を算出する。エイリアシング分離回路26dでは、2次元フィルタ窓とOFDM信号の最大電力位置に基づいてエイリアシング成分の除去を施して、窓係数決定情報を算出する。

Description

受信装置及び受信方法
 本発明は、例えば、地上デジタル放送の受信装置等に関する。
 一般に、OFDM方式を用いた地上波デジタル放送では、映像や音声などの情報データの伝送を担うデータキャリア信号と共に、伝送路伝達特性の推定を容易にするためのパイロットキャリア信号が使用される。例えば、前述のISDB-TやDVB-T等の規格においては、分散パイロット(Scattered Pilot;SP)信号(以下“SP信号”と称する)と呼ばれるパイロットキャリア信号が規定されている。SP信号は、キャリア周波数とシンボル時間の2次元からなるOFDMシンボル空間を仮想した場合、同空間内において特定の位置に重畳されることが既知であり、かつその複素振幅、即ちSP信号の絶対値振幅と位相も予め定められている。それ故、これらの規格によるデジタル放送を受信する受信装置では、SP信号を利用して電波伝搬経路の各キャリアに対する伝達特性を推定し、このような推定結果に基づいて受信信号に関する補正処理や等化処理を行うことが可能となる。
 従来の受信装置は、各キャリアに対する伝達特性の推定精度が低かったことを改善するため、OFDM信号シンボル空間内に配置されたパイロットキャリア信号の検波信号毎にその伝達関数を算出し、当該伝達関数をインパルス遅延時間とシンボル周波数とについて2次元フーリエ変換を施して2次元データ空間を生成している。さらに従来の受信装置は、当該2次元データ空間の所定領域をフィルタ抽出領域で抽出して、当該抽出領域に含まれるデータについてキャリア周波数とシンボル時間とについて2次元逆フーリエ変換を施して推定伝達関数を生成していた(特許文献1参照)。
特許第3802031号公報
 ところで、受信装置が設置される受信環境により後述するパワースペクトラム分布は大きく変化する。例えば、受信装置が車両などの移動体に搭載された場合、後述するパワースペクトラム分布は時間経過とともにも大きく変化する。また、AD変換器に使用されるクリスタルのサンプリング周波数が所望のサンプリング周波数と誤差が生じている場合、後述するパワースペクトラム分布は時間経過とともに時間軸方向に推移する。このように大きく変化するパワースペクトラム分布に対し、従来の受信装置のように固定領域を選択抽出するフィルタリング処理方法では精度の良い2次元フィルタ窓を算出することができなかった。
 本発明が解決しようとする課題には、上記した問題が一例として挙げられる。
 上記課題を解決するために、請求項1記載の発明は、複数のキャリアを送信データに基づいて直交変調することにより生成した伝送シンボルを伝送単位として特定既知の複素振幅を持つパイロット信号が前記伝送シンボル内の所定のキャリアに重畳されたOFDM信号を受信し、連続する複数の前記伝送シンボルに含まれるキャリア群を検波して得た受信信号をキャリア周波数とシンボル時間に対応した2次元空間上の2次元データ領域内に配置する信号検波部と、前記2次元データ領域内に配置されたパイロット信号に基づいて前記受信信号の各々に対する受信信号伝達特性を推定する伝達特性推定部と、前記受信信号及び前記受信信号伝達特性に基づいて前記送信データを復号するデータ復号部と、を有する受信装置であって、前記伝達特性推定部は、前記2次元データ領域内に配置されたパイロット信号に対するパイロット信号伝達特性を算出する算出手段と、前記パイロット信号伝達特性について2次元フーリエ変換を施して、伝送路遅延時間と伝送路変動周波数に対応した2次元空間上の2次元フーリエ変換データを生成する変換手段と、前記2次元フーリエ変換データのうち特定領域内のデータ群を通過させるための窓係数決定情報を算出する供給手段と、前記窓係数決定情報に基づいて確定された前記特定領域内のデータ群を選択抽出するフィルタ手段と、前記選択抽出されたデータ群に対して2次元逆フーリエ変換を施して、キャリア周波数とシンボル時間に対応した2次元空間上の2次元逆フーリエ変換データを生成し、前記生成されたデータに基づいて前記受信信号伝達特性を生成する生成手段と、を備え、前記供給手段は、前記2次元空間上の2次元フーリエ変換データに基づいて、前記2次元空間上の2次元フーリエ変換データ毎に電力を算出する電力算出手段と、前記電力算出手段から供される前記電力と予め設定された閾値雑音電力に基づいて2次元フィルタ窓を算出する窓係数算出手段と、前記2次元フィルタ窓と前記OFDM信号の最大電力位置に基づいてエイリアシング成分の除去を施して、窓係数決定情報を算出するエイリアシング分離手段と、を備える。
 上記課題を解決するために、請求項5記載の発明は、複数のキャリアを送信データに基づいて直交変調することにより生成した伝送シンボルを伝送単位として特定既知の複素振幅を持つパイロット信号が前記伝送シンボル内の所定のキャリアに重畳されたOFDM信号を受信し、連続する複数の前記伝送シンボルに含まれるキャリア群を検波して得た受信信号をキャリア周波数とシンボル時間に対応した2次元空間上の2次元データ領域内に配置する信号検波ステップと、前記2次元データ領域内に配置されたパイロット信号に基づいて前記受信信号の各々に対する受信信号伝達特性を推定する伝達特性推定ステップと、前記受信信号及び前記受信信号伝達特性に基づいて前記送信データを復号するデータ復号ステップと、を有する受信方法であって、前記伝達特性推定ステップは、前記2次元データ領域内に配置されたパイロット信号に対するパイロット信号伝達特性を算出する算出ステップと、前記パイロット信号伝達特性について2次元フーリエ変換を施して、伝送路遅延時間と伝送路変動周波数に対応した2次元空間上の2次元フーリエ変換データを生成する変換ステップと、前記2次元フーリエ変換データのうち特定領域内のデータ群を通過させるための窓係数決定情報を算出する供給ステップと、前記窓係数決定情報に基づいて確定された前記特定領域内のデータ群を選択抽出するフィルタステップと、前記選択抽出されたデータ群に対して2次元逆フーリエ変換を施して、キャリア周波数とシンボル時間に対応した2次元空間上の2次元逆フーリエ変換データを生成し、前記生成されたデータに基づいて前記受信信号伝達特性を生成する生成ステップと、を備え、前記供給ステップは、前記2次元空間上の2次元フーリエ変換データに基づいて、前記2次元空間上の2次元フーリエ変換データ毎に電力を算出する電力算出ステップと、前記電力算出ステップで算出された前記電力と予め設定された閾値雑音電力に基づいて2次元フィルタ窓を算出する窓係数算出ステップと、前記2次元フィルタ窓と前記OFDM信号の最大電力位置に基づいてエイリアシング成分の除去を施して、窓係数決定情報を算出するエイリアシング分離ステップと、を備える。
 以下、本発明の一実施の形態を図面を参照しつつ説明する。
 なお、以下に説明する全ての実施形態では、ISDB-Tによる地上波デジタル放送の部分受信装置を例にとって説明を行う。ISDB-Tの規格による場合、OFDMシンボルは、図1に示されるような13個のセグメントによって構成されており、各セグメントには、例えば、伝送モード1の場合、108波のキャリアが含まれている。そして、部分受信装置とは、この13セグメントのうちの中央部に位置するセグメント0に含まれるキャリアのみを復調する受信装置のことである。
 また、以下の事例においては、ISDB-T規格で定められた複数の伝送モードのうち、伝送モード1の場合を例にとって説明を行う。なお、伝送モード1における各変調パラメータの諸値を図2に、また、説明中で使用する各定数パラメータの諸値を図3に示す。
 図4は、本実施形態における受信装置1の構成例を示すブロック図である。受信装置1は、主に、シンボル検波部11、シンボル記憶部12、周波数領域処理部13、伝達特性推定部20及びデータ復号部30を有する。なお、図中における信号の流れ示す矢印は、各構成要素間の主要な信号の流れを示すものであり、例えば、このような主要信号に付随する応答信号や監視信号等の信号に関しては、図中の矢印と逆方向の向きに伝達される場合を含むものとする。さらに、図中の矢印は、各構成要素間における信号の流れを概念的に示すものであって、実際の装置において、各信号が矢印で示される経路の通りに忠実に授受される必要はない。また、実際の装置では、各構成要素が同図に示されるように忠実に区分されている必要もない。
 シンボル検波部11は、順次送信されてくるシンボルに対して、各シンボルに含まれるキャリア群を検波して、これらのキャリアの複素振幅(以下、“キャリア振幅”と称する)Sp,kを求める。ここで、Sp,kとはk番目のシンボルのp番目のキャリア振幅を表し、キャリアインデックスpについては、図5に示すように、チャンネル中央のキャリアがインデックスp=0に対応するように割り振るものとする。すなわち、チャンネル中央のキャリアはS0,kに、セグメント0のキャリア群はS-54,k~S53,kに、それぞれ対応するものとする。シンボル検波部11は、例えば、チューナー、A/D変換器、伝送モード/ガードインターバル比検出器、ガードインターバル除去回路、及びFFT回路等の各構成回路によって構成されるが、その構成はこのような事例に限定されるものではない。
 次に、シンボル記憶部12は、シンボル検波部11から出力されるキャリア振幅のうち、チャンネル中央部のnX個を選択して、これをシンボル時間方向についてnYシンボル時間分に亘り記憶する回路である。即ち、図6に示されるOFDMシンボル空間内の(2次元領域キャリア幅nX×2次元領域シンボル幅nY個)のキャリア群について、キャリア振幅Sp,q(-nX/2≦p<nX/2,k-nY<q≦k)を記憶・保持する。以下の説明では、これらの記憶保持されたキャリア振幅を(p,q)空間上の2次元配列{Sp,q:(p,q)∈Z2D}と考えて説明を行う。
 なお、図6に示されるようにpはキャリアインデックス、qはシンボルインデックスであり、それぞれのインデックスが、キャリア周波数とシンボル時間に対応している。また、Z2Dの範囲は、キャリア周波数方向において、
 -nX/2 ≦ p < nX/2
として定義され、また、シンボル時間方向においては、
 k-nY < q ≦ k
として定義される。
 なお、OFDMシンボル空間である(p,q)空間上に2次元配列された各々のキャリア振幅情報と、各キャリアの属性(当該キャリアがSP信号、又はデータキャリア信号である属性)との関係を図7に示す。同図からも明らかなように、SP信号は12キャリアに1つの割合で重畳されており、その重畳位置は1シンボル毎に3キャリアずつ巡回推移する。
 周波数領域処理部13は、フレーム同期処理、TMCC復調処理などを施し、シンボル毎に0から203までのシンボルカウント値を生成してシンボル記憶部12に記憶する。なおシンボル記憶部12は、周波数領域処理部13から供されるシンボルカウント値をシンボル検波部11から供されるシンボル毎に付随させる形で記憶する。
 データ復号部30は、シンボル記憶部12に記憶されたキャリア振幅データ群の中から、さらに、図6に示される推定領域ZEST(-wX/2≦p<wX/2,k-nY/2-wY/2≦q<k-nY/2+wY/2)内のキャリア振幅{Sp,q:(p,q)∈ZEST}を抽出して、これに復号処理を加える部分である。
 また、伝達特性推定部20は、シンボル記憶部12に記憶されたキャリア振幅に基づいて、上記推定領域ZEST内のキャリア振幅に対する推定伝達特性を算出して、これをデータ復号部30に供する部分である。
 データ復号部30は、シンボル記憶部12からのキャリア振幅と、伝達特性推定部20からの推定伝達特性に基づいて、等化、デインターリーブ、リードソロモン復号等の処理を行って、この結果得られる受信データを出力する。なお、伝達特性推定部20は、連続するwY個のシンボル区間について伝達特性の推定を行うので、受信した1シンボル毎のタイミングで動作する必要はなく、wYシンボルを受信する毎に1回の割合で動作すれば良い。また、このような動作タイミングはデータ復号部30の動作タイミングについても同様である。
 次に、伝達特性推定部20の構成、及び動作について説明を行う。
 先ず、伝達特性推定部20の構成を図8に示す。同図に示されるように、伝達特性推定部20は、主に、SP伝達特性算出部21、2次元フーリエ変換部22、2次元フィルタ回路23、2次元逆フーリエ変換回路24、推定伝達特性出力回路25、及びフィルタ係数決定回路26から構成されている。なお、以下の説明では記載を簡略化すべく、これら各々の回路をそれぞれ、算出部21、変換部22、フィルタ回路23、逆変換部24、出力回路25、及び決定回路26と称する。以下の回路構成の詳細説明では、主として本実施形態において特有の構成である算出部21、決定回路26及び逆変換部24を中心として説明し、その他の回路構成については動作説明において説明する。
 算出回路21は、図9に示されるようにSP伝達特性算出回路21a及びSP伝達特性抽出回路21bを有する。このうちSP伝達特性抽出回路を「抽出回路」と称する。SP伝達特性算出回路21aは、シンボル記憶部12から供給されるキャリア振幅の中からSP信号に関するキャリア振幅のみを抽出して、これを既知の送信複素振幅値で除算する。これによってSP伝達特性算出回路21aは、(p,q)空間上に点在するSP信号に関し、その伝達特性{Hp,q:(p,q)∈Z2D}を求めることができる。抽出回路21bは、SP信号が全く重畳されていないキャリアインデックスを除き、3キャリアインデックス毎のSP信号伝達特性を変換部22に供する。
 決定回路26は、図10に示されるように、電力算出回路26a、平均雑音電力算出回路26b、雑音抑圧/窓係数算出回路26c及びエイリアシング分離回路26dを有する。電力算出回路26aでは、(m,n)空間上における電力{Pm,n}を算出し、平均雑音電力算出回路26b及び雑音抑圧/窓係数算出回路26cに供する。平均雑音電力算出回路26bでは、(m,n)空間上における電力{Pm,n}に基づいて平均雑音電力NPを算出し、平均雑音電力NPを雑音抑圧/窓係数算出回路26cに供する。雑音抑圧/窓係数算出回路26cでは、平均雑音電力NPに係数αを乗算した値と(m,n)空間上のデータ毎の電力{Pm,n}に基づいて、(m,n)空間上における2次元フィルタ窓{Wm,n}を算出する。雑音抑圧/窓係数算出回路26cは、このように算出した2次元フィルタ窓{Wm,n}をエイリアシング分離回路26dに供する。エイリアシング分離回路26dでは、後述するタグを用いたエイリアシング成分の除去を行う場合には、2次元フィルタ窓{Wm,n}と外部からの最大電力位置とに基づいてエイリアシング分離を行い、2次元フィルタ窓{W’m,n}とタグ{Tagm,n}を算出し、フィルタ回路23に供する。上記最大電力位置とは、(m,n)空間上における時間軸(m軸)方向で、受信電力が最大となる位置のことを意味している。また、このタグを用いたエイリアシング成分の除去処理方法は、本実施形態において必ずしも行われなければならない訳ではなく、等価な処理であればタグを用いない処理方法でも良い。
 逆変換部24は、図11に示されるように逆フーリエ変換回路24a、乗算回路24b及びフーリエ変換回路24cを有する。逆フーリエ変換回路24aは、シンボルインデックス方向のデータに対し、逆フーリエ変換処理を全キャリアインデックスにわたり施す。乗算回路24bは、複素回転因子係数(exp(-jωt))を各キャリアに対して乗算する。なおjは虚数単位を表しており、exp(x)は複素数関数を表している。フーリエ変換回路24cは、キャリアインデックス方向のデータに対し、フーリエ変換処理を全シンボルインデックスに亘り施すことで推定伝達特性を算出し、出力回路25に提供する。つまり乗算回路24b及びフーリエ変換回路24cはキャリアインデックス方向に演算を行っている。
 続いて、伝達特性推定部20の動作を説明する。上述のようにISDB-T規格の地上波デジタル放送では、OFDMシンボル空間のキャリア配列中におけるSP信号の存在位置、及び送信時におけるSP信号の複素振幅値は、予め定められている。それ故、算出部21は、シンボル記憶部12から供給されるキャリア振幅の中からSP信号に関するキャリア振幅のみを抽出して、これを既知の送信複素振幅値で除算する。これによって、(p,q)空間上に点在するSP信号に関し、その伝達特性{Hp,q:(p,q)∈Z2D}を求めることができる。このような算出手順は以下の通りである。
 算出部21は、図9に示されるSP伝達特性算出回路21aが、シンボル記憶部12から供給されるキャリア振幅の中からSP信号に関するキャリア振幅のみを抽出して、これを既知の送信複素振幅値で除算する。
 SP伝達特性算出回路21aは、図6に示される領域Z2D内の全ての要素(p,q)について、Sp,qがSP信号に相当する場合は、
 Hp,q=Sp,q/Rp,q
として、当該SP信号に関する伝達特性Hp,qを求める。ここで、Rp,qは、既知であるSP信号の送出複素振幅値である。
 一方、SP伝達特性算出回路21aは、SP信号以外のデータキャリア信号に対しては、
 Hp,q=0
として、その伝達関数{Hp,q}を定める。
 これによってSP伝達特性算出回路21aは、(p,q)空間上に点在するSP信号に関し、その伝達特性{Hp,q:(p,q)∈Z2D}を求めることができる。
 抽出回路21bは、SP信号が全く重畳されていないキャリアインデックスを除き、3キャリアインデックス毎のSP信号伝達特性{Hp,q}を変換部22に供する。
 つまり、12キャリアに1つの割合で重畳されていたSP信号は、図13に示されるように3キャリア毎にしか存在しないようになる。そして重畳位置が1シンボル毎に3キャリアずつ巡回推移していたSP信号は、その重畳位置が1シンボル毎に1キャリアずつ巡回推移している。
 即ち、図12に示されるOFDMシンボル空間内のキャリア群について、2D-FFT領域Z’2D(-mX/2≦p<mX/2,k-nY<q≦k)のSP信号伝達特性{H’p,q:(p,q)∈Z’2D}を変換部22に供する。また、同図において推定領域Z’ESTの範囲を(-vX/2≦p<vX/2,k-nY/2-wY/2≦q<k-nY/2+wY/2)とする。
 変換部22は、(p,q)空間上のSP信号伝達特性{H’p,q}について、2次元フーリエ変換を施して、これを(m,n)空間上のSP信号伝達特性{hm,n:(m,n)∈Z’TRA}に変換する。すなわち、(p,q)空間のキャリア周波数方向(p方向)については、IFFT(逆高速フーリエ変換)処理を施すことで周波数領域を時間領域に変換し、シンボル時間方向(q方向)については、FFT(高速フーリエ変換)処理を施すことで時間領域を周波数領域に変換する。
 この結果、2次元フーリエ変換後の(m,n)空間では、そのm軸方向が時間の次元に、そのn軸方向が周波数の次元に、それぞれ対応することになる。また、(p,q)空間上の領域Z’2Dが、(m,n)空間上に変換された領域Z’TRAに対応し、同領域は、m軸方向において、
 -mX/2 ≦ m < mX/2
として定義され、また、n軸方向において、
 -nY/2 ≦ n < nY/2
として定義される。
 ところで、変換部22において2Dフーリエ変換処理を施して算出したSP信号伝達特性{hm,n}は、SP信号の規則的な配置により以下の性質を有する。なおSP信号伝達特性{hm,n}はh(m,n)に相当する。
 h(m&(mX-1),n&(nY-1))
   =h(m&(kX-1),(n+k×nY/4)&(nY-1))
   ×exp(-j×2π/4×(k×co4)) ・・・(1)
 co4=(symco+(2<<mode))&3
 k=(4-floor(((m&(mX-1)+(kX/2))/kX))&3
 kX=mX/4
 変数modeは伝送モードを表しており、例えばモード1のときは0、モード2のときは1、モード3のときは2である。変数symcoは、変換部22に供されるシンボル群の内、q軸原点に配置、記憶されているシンボル、すなわちq=k-255シンボルに付随するシンボルカウント値である。関数floor(x)はx以下の最大の整数値を計算する関数である。
 図14は、SP信号伝達特性{hm,n}のパワースペクトラム分布{|hm,n}であり、上述した性質を説明する図である。図14においては(m,n)空間は(-mX/2≦m<mX/2、-nY/2≦n<nY)の範囲で表現されているが、(1)式では(0≦m<mX、0≦n<nY)の範囲で定義されている。即ち、図14における(m,n)空間上でm=-1は(1)式ではm=mX-1として定義されている。
 即ち、(1)式の右辺第一項目h(m&(kX-1),(n+k×nY/4)&(nY-1))は図14の領域Hのみを示している。よって、(1)式は図14の領域HのSP信号伝達特性から(m,n)空間上の任意のSP信号伝達特性{hm,n}を容易に算出することができることが示されている。よって、(1)式は(m,n)空間上でSP信号伝達特性{hm,n}は1つの独立変数群と3つの従属変数群から成立していることを意味している。この性質を呼称として性質Aと呼ぶこととする。
 図15は、変換部22の出力であるSP信号伝達特性{hm,n}のパワースペクトラム分布{|hm,n}を示す図である。
 本実施形態では、変換部22に3キャリアインデックス毎のSP信号伝達特性{H’p,q}を供するため、変換部22の出力であるSP信号伝達特性{hm,n}のパワースペクトラム分布{|hm,n}は、m軸方向については有効シンボル長Teの1/3までの遅延時間を表している。n軸方向についてはシンボル送出周波数Faの周波数を表している。
 また、(p,q)空間を2次元フーリエ変換した後の(m,n)空間上では、上述のように、そのm軸は時間に、そのn軸は周波数にそれぞれ対応している。これを、より正確に表現すれば、m軸は伝送路のインパルス応答の遅延時間に対応し、n軸は伝送路特性の変動周波数(ドップラー周波数)に対応している。それ故、(m,n)空間上に表れる伝送路伝達特性のパワースペクトラムは、受信環境に応じて(m,n)空間上の特定領域に集中する傾向を示す。
 例えば、受信装置1の周囲に高層ビル等の建物が存在しない郊外地域での静止受信(第1受信環境)の場合、受信電波のマルチパスによる遅延広がりは小さく、m軸方向の分散は少ない。また、受信装置1が固定されているので伝送路特性の時間的変動も小さいのでn軸方向に対する分散も少なくなる。図15は、このような受信環境下における(m,n)空間上のSP信号伝達特性のパワースペクトラム分布│hm,nを示すものであり、同図において、黒点部分及びその周囲の斜線部分はパワースペクトラム分布の濃密を擬似的に表したものである。
 一方、図15の領域Aの外側に点在している複数のパワースペクトラム分布は、本来の伝送路伝達特性のパワースペクトラムのエイリアシング成分である。即ち、算出部21は、本来(p,q)空間の全領域で定義されるべき信号伝達特性のうち、SP信号位置の伝達特性のみを算出して、これ以外の領域についてはHp,q=0として、零補間により伝達特性を近似している。つまり、算出部21の出力であるSP信号伝達特性{H’p,q}は、受信信号の伝達特性をSP信号の重畳点でサンプリングしたものであり、この結果、エイリアシング成分が(m,n)空間上に生じる。そして、後述する2次元フィルタ窓に要求される条件は、これらのエイリアシング成分を除去することにある。
 さらに、2次元フィルタ窓に要求される条件として、受信信号に含まれる雑音成分を抑圧する機能が挙げられる。因みに、このような雑音成分抑圧機能を高めるには、直感的に理解されるように、2次元フィルタ窓の通過域を狭く、即ち、図15に示される領域Aの面積を小さくすればよい。
 つまり、2次元フィルタ窓に要求される諸条件に鑑みれば、2次元フィルタ窓は、(m,n)空間上の適正な位置に設けられ、かつ伝送路伝達特性のパワースペクトラムのみを通過させる必要最小限の大きさを持つことが望ましい。例えば、受信装置1が図15に示される受信環境の環境下でのみ使用されるならば、2次元フィルタ窓の通過域を、(m,n)空間上の原点付近の、きわめて狭い領域にのみ設定すれば良い。
 しかしながら、(m,n)空間上における伝送路伝達特性のパワースペクトラム分布は、受信環境により大きく変化する。例えば、高層ビル等の建物が多い都会地域では、反射波によるマルチパス遅延が大きくなり、そのパワースペクトラム分布は、図17に示すようにm軸方向に拡がった分布となる。また、受信装置が車両等の移動体に搭載されて用いられる受信環境下では、伝送路特性の時間的変動が大きくなり、そのパワースペクトラム分布は、図18に示すようにn軸方向に拡がった分布となる。
 つまり、様々な受信環境により大きく変化するパワースペクトラム分布に応じた、適応的な雑音抑圧とエイリアシング成分の除去を行うことが2次元フィルタ窓には要求される。
 上述した性質Aで説明したように(m,n)空間上におけるSP信号伝達特性{hm,n}は独立変数群とその独立変数群に従属した3つの従属変数群から成立している。後述するエイリアシング成分の除去は、この内独立変数群のみを抽出し、他の3つの従属変数群を除去することを行う処理である。
 上記処理の具体例として、上述したSP信号伝達特性{hm,n}の性質Aを利用してエイリアシング成分の除去を行う場合について説明する。具体的には、まずSP信号伝達特性{hm,n}の領域の内任意の1/4領域に限定する、例えば図14における領域Hである中央1/4領域(-kX/2≦m<kX/2、-nY/2≦n<nY/2)に限定することでエイリアシング成分の除去を簡易的に行う。次に、限定した領域Hに後述するタグ付けを行うことで、受信環境に応じた適応的なエイリアシング成分の除去を行うようにする。要するに、限定した領域HにおけるSP信号伝達特性各々について、上述した性質Aでの独立変数群とその独立変数に従属した3つの従属変数群の内どの変数群に属するかタグ付けを行う。このようにタグ付けを行うことで、限定しない(m,n)空間上で独立変数群のみを上述した性質Aを利用し算出する。
 よって、決定回路26において図14の領域HのみのSP信号伝達特性{hm,n}に基づき、係数決定情報として2次元フィルタ窓{W’m,n}とタグ{Tagm,n}を算出し、フィルタ回路23において図14の領域HのみのSP信号伝達特性{hm,n}と係数決定情報としての2次元フィルタ窓{W’m,n}とタグ{Tagm,n}に基づき、推定伝達特性{gm,n}を算出する場合の説明を行う。
 図10は、図8に示す決定回路26の構成例を示すブロック図である。決定回路26は、電力算出回路26a、平均雑音電力算出回路26b、雑音抑圧/窓係数算出回路26c及びエイリアシング分離回路26dを有する。
 電力算出回路26aでは、(m,n)空間上における電力{Pm,n}を算出し、平均雑音電力算出回路26b及び雑音抑圧/窓係数算出回路26cに供する。電力算出回路26aでは、変換部22から供されるSP信号伝達特性{hm,n}に基づいて、(m,n)空間上のデータ毎にその電力{Pm,n}を下記の式ように算出している。なお、P(m,n)は{Pm,n}に、h(m,n)は{hm,n}に相当する。
 P(m,n)=|h(m,n)|
 
 平均雑音電力算出回路26bでは、(m,n)空間上における電力{Pm,n}に基づいて平均雑音電力NPを算出し、平均雑音電力NPを雑音抑圧/窓係数算出回路26cに供する。具体的には、平均雑音電力算出回路26bでは、(m,n)空間上における電力{Pm,n}を図16に示すように小区画に分割し、各々の区画における平均電力を算出する。破線で区切られた小区画内には例として各々の区画における平均電力を示す。このように算出した平均電力で最小のものを平均雑音電力NPとし、雑音抑圧/窓係数算出回路26cに供する。
 雑音抑圧/窓係数算出回路26cでは、平均雑音電力NPに係数αを乗算した値と(m,n)空間上のデータ毎の電力{Pm,n}に基づいて、(m,n)空間上における2次元フィルタ窓{Wm,n}を算出する。雑音抑圧/窓係数算出回路26cは、このように算出した2次元フィルタ窓{Wm,n}をエイリアシング分離回路26dに供する。具体的には、雑音抑圧/窓係数算出回路26cでは、平均雑音電力NPの係数αを乗算したものを閾値雑音電力NPthとして下記のように算出する。
 NPth=α×NP
 雑音抑圧/窓係数算出回路26cは、電力算出回路より供される電力{Pm,n}と閾値雑音電力NPthに基づいて、2次元フィルタ窓{Wm,n}を下記のように算出する。(m,n)空間において、電力{Pm,n}が閾値雑音電力NPthより大きい時は{Wm,n}を
 W(m,n)=0
と設定し、電力{Pm,n}が閾値雑音電力NPth以下の時は{Wm,n}を
 W(m,n)=(P(m,n)-NPth)/P(m,n)
と設定することで、雑音成分の抑圧を行うようにする。次に、算出した2次元フィルタ窓{Wm,n}をエイリアシング分離回路26dに供する。
 ここで注意したいことは、平均雑音電力NPは小区画の平均電力の内で最小値を設定した為係数αを1と設定した場合、雑音成分を十分抑圧できるとは限らない。そのような場合、係数αを1以上の適切な値に設定することで雑音成分を十分抑圧することが可能である。例えば係数αを2に設定した場合は、平均雑音電力NPより3dB大きな電力値を基準として、雑音成分の抑圧処理を施し、2次元フィルタ窓{Wm,n}を算出する。
 エイリアシング分離回路26dでは、後述するタグを用いたエイリアシング成分の除去を行う場合には、2次元フィルタ窓{Wm,n}と外部からの最大電力位置とに基づいてエイリアシング分離を行い2次元フィルタ窓{W’m,n}とタグ{Tagm,n}を算出し、フィルタ回路23に供する。上記最大電力位置とは、(m,n)空間上における時間軸(m軸)方向で、受信電力が最大となる位置のことを意味している。より具体的には、送信局からの受信電力が最大となる主波の位置を(m,n)空間上の時間軸(m軸)上で相対的に表したものである。また、このタグを用いたエイリアシング成分の除去処理は、本実施形態において必ずしも行われなければならない訳ではなく、等価な処理であればタグを用いない処理方法でも良い。
 エイリアシング分離回路26dは、上述した外部として、例えば、シンボル検波部11から最大電力位置を取得するようにしても良い。具体的には、シンボル検波部11では一般的なガードインターバル相関を用いたシンボル同期処理で検出した相関のピーク位置に基づいて(m,n)空間上の最大電力位置を算出するようにしても良い。なおエイリアシング分離回路26dは、このように外部から最大電力位置を取得しなくても、図15に示すパワースペクトラム分布よりm軸上で電力が最大となる位置を検出し、検出結果を最大電力位置として取得するようにしても良い。エイリアシング分離回路26dの詳細な手順例は、後にフローチャートを用いて説明を行う。
 フィルタ回路23は、変換部22で(m,n)空間上にフーリエ変換されたデータ群に対して、所定のフィルタリング処理を施す回路である。
 フィルタ回路23では、変換部22より供されるSP信号伝達特性{hm,n}と、決定回路26より供される2次元フィルタ窓{W’m,n}とタグ{Tagm,n}に基づいて推定伝達特性{gm,n}を算出し、逆変換部24に供する。また、フィルタ回路23の詳細な手順例は、後にフローチャートを用いた説明を行う。
 逆変換部24は、フィルタ回路23から供された推定伝達特性{gm,n}に、2次元フーリエ変換の逆処理である2次元逆フーリエ変換を施して、{gm,n}から(p,q)空間上の推定伝達特性{Gp,q:(p,q)∈Z2D}を算出する。
 逆変換部24は、図11に示される逆フ-リエ変換回路24aが、シンボルインデックス方向(n軸方向)について逆フーリエ変換処理を全キャリアインデックスにわたり施すことで周波数領域から時間領域に変換する。
 乗算回路24bは、時間領域においてキャリアインデックス方向(m軸方向)について、mX区間で所定の位相回転が生じるように複素回転因子係数(exp(-jωt))を乗算する。なおjは虚数単位を表しており、exp(x)は複素指数関数を表している。
 フーリエ変換回路24cは、キャリアインデックス方向(m軸方向)について、フーリエ変換処理を施すことで時間領域から周波数領域に変換する。
 なお、逆変換部24を、上記特許文献1と同様に逆フーリエ変換回路24aとフーリエ変換回路24cのみで構成した場合、逆変換部24で算出される推定伝達特性は{G’p,q:(p,q)∈Z’2D}となり、推定領域はZ’ESTとなる。伝達特性推定部20が伝達特性を推定すべき領域はZESTであるのに対し、推定領域Z’ESTはキャリア方向について1/3の領域となっている。これはSP伝達特性抽出回路21bでSP信号伝達特性{Hp,q:(p,q)∈Z2D}を3キャリア毎に抽出したSP信号伝達特性{H’p,q:(p,q)∈Z’2D}を変換部22へ供給しているからであり、算出される推定伝達特性についても3キャリアインデックス毎の結果となる。
 よって、本実施形態の逆変換部24は、逆フーリエ変換回路24aにおいてシンボル方向(n軸方向)に逆フーリエ変換処理を施す。次に、後述する周波数移動定理を用いて、乗算回路24bにおいて、キャリア方向に複素回転因子係数を乗算した後に、フーリエ変換回路24cにおいてキャリア方向にフーリエ変換を施すことをシンボル毎に3回行うことで、推定領域ZESTの範囲を含む推定伝達特性{Gp,q:(p,q)∈Z2D}を算出する。逆変換部24で算出された推定伝達特性{Gp,q}は、出力回路25に供される。
 例えば、具体的に時間軸においてmX区間でそれぞれ位相が0Π、2/3Π、4/3Π回転するような複素回転因子係数を乗算した後にフーリエ変換を施すことで、周波数軸においてそれぞれキャリアインデックスt=3・p、t=3・p+1、t=3・p+2(-mX≦p<mX)位置での推定伝達特性を算出することができ、領域Z2Dの範囲における推定伝達特性が算出される。
 <周波数移動定理について>
 F(ω)とf(t)がフーリエ変換対であるならば、下記の式が成り立つ。
 f(t)×exp(jωt) ⇔ F(ω-ω
 上記の式は「周波数領域でのωの移動は、時間領域でのexp(jωt)を乗算することと等価である」という定理を示している。
 出力回路25は、データ復号部30が抽出した推定領域ZESTのキャリア振幅に対応する推定伝達特性{Gp,q:(p,q)∈ZEST}が抽出されて、このような抽出データをデータ復号部30に供する。
 なお、伝達特性推定部20からデータ復号部30に、Z2D全領域についての推定伝達特性を出力しないのは、(p,q)空間の周辺部では、領域端部の影響により推定伝達特性に誤差が生じるためである。このような端部の影響を軽減するには、例えば、2次元領域キャリア幅nX、及び2次元領域シンボル幅nYの具体的数値として、本実施形態の値よりも更に大きな値を用いれば良い。本実施形態では、推定領域シンボル幅wYとしてwY=204なる値を用いているが、推定領域シンボル幅wYはこのような値に限定されるものではない。同様に、推定領域キャリア幅wXについても、本実施形態では、1セグメント部分受信装置の構成を考えて同セグメントに含まれるキャリア数に相当するwX=108なる値を用いたが、これについてもこのような値に限定されるものではない。例えば、伝送帯域の中央に配置された3セグメントを受信復調する受信装置の場合はwX=324とすれば良い。
 本実施形態においては、受信環境に応じた雑音抑圧処理、エイリアシング成分の除去処理(エイリアシング分離処理)を適応的に行うことで、精度の良い係数決定情報を算出することができる。またその結果として、精度良く推定伝達特性を算出することができる。
 次にエイリアシング分離処理の手順例を、具体的にフローチャートを用いて説明を行う。図19は、エイリアシング分離処理の手順例を示すフローチャートである。なおエイリアシング分離処理は、決定回路26のエイリアシング分離回路26dによって実行される処理を表している。以下の説明においては、一例として、上述したタグを用いたエイリアシング成分の除去処理を含めて説明する。なお「←」は右辺の値を左辺の変数に代入することを意味している。また、フローチャートでは雑音抑圧/窓係数算出回路26cの出力である2次元フィルタ窓{Wm,n}に上書きするように記述しているが、上書きした2次元フィルタ窓{Wm,n}を{W’m,n}としてフィルタ回路23に供するものとする。
 エイリアシング分離処理はまずタグの初期化処理が行われる(ステップS200)。次にステップS103では、エイリアシング分離回路26dがm軸方向インデックスxと最大電力位置posに基づいて、現在のデフォルトタグ値jaを算出する。なお関数「floor(x)」は、x以下の最大の指数を計算する関数を表しており、記号「&」は、その左右に記載された変数などをビット単位で論理積演算することを表している。最大電力位置posは、フィルタ係数決定回路26の外部から入力される値で、Te/3区間における主波(受信電力値が最大の電波)のm軸上での位置を示す。なお最大電力位置posは-4×kX≦pos<4×kXを満たす値である。
 次にステップS101,S109,S110に示されるように、m軸方向に-kX(-Te/24)からkX/2(Te/24)区間の走査を行い、m軸方向インデックスxaとデフォルトタグ値jaに基づいて第1ステップ処理を施す(ステップS300)。ステップS105では、後述する第2ステップ処理(ステップS400)で用いるデフォルトタグ値jbを算出している。第2ステップ処理では、m軸方向インデックスxaとデフォルトタグ値jbに基づいて、第1ステップ毎にタグ値jbを更新しながら3回ずつ処理を施す。
 図20は、図19に示すタグの初期化処理の手順例を示すフローチャートである。
 (m,n)空間上におけるタグの初期化処理は、n軸(周波数)インデックスに基づき行う。n軸上を4分割した(m,n)空間に対し、図21に示すようにタグ値(図示の「0」、「1」、「2」、「3」に相当)を割り当てていき、ステップS206でメモリ(図示のTag(xa,ya)に相当)に格納する。このタグ値は、例えば、図22に示すm軸上にデータを展開する場合に用いられる。
 例えば、静止受信環境下のように観測されるパワースペクトラムの分布がn軸上に±Fa/8以上に広がっていない場合は、このタグ値(図示の「0」、「1」、「2」、「3」に相当)に基づき、図22に示すようにm軸上にデータを展開することでエイリアシング成分の除去を行う。
 図23は、図19に示す第1ステップ処理の処理例を示すフローチャートである。第1ステップ処理は、m軸方向インデックスxaとデフォルトタグjaに基づいて、n軸方向のスペクトラム分布の連続性を評価することでタグ{Tagm,n}と2次元フィルタ窓{Wm,n}の更新を行っている。
 ステップS301aでは、デフォルトタグ値jaに基づいてn軸上の位置ygが算出される。次のステップS303~ステップS316は、位置ygを中心に±nY/2の範囲でn軸について走査が行われる(ステップS302,S310,S312)。まずステップS303,S304では、評価すべきn軸のプラス方向の位置yaとマイナス方向の位置ybがそれぞれデフォルトタグ値jaに基づき算出される。
 次にステップS305では判定フラグflgの値を評価し条件分岐する。もし判定フラグflgの値が0の場合、タグ{Tagm,n}の値が更新される(ステップS306,T307)。なおタグ{Tagm,n}は図示のTag(m,n)に相当する。
 そしてステップS308,S309では、それぞれ2次元フィルタ窓{Wm,n}値が0を越えない場合、n軸方向のスペクトラム分布の連続性が途切れたと判断される。ステップS311では判定フラグflgに1が代入される。
 一方、上記ステップS305において判定フラグflgが1である場合、ステップS313では、プラス方向の位置yaのタグ{Tagm,n}がデフォルトタグ値jaと等しいか否かについて判定され、等しい場合には、その位置の2次元フィルタ窓{Wm,n}(図示のW(xa,ya))が0に更新される(ステップS314)。さらにマイナス方向の位置ybについても、これらステップS313,S314とほぼ同様なステップS315,S316の処理が行われる。
 図24は、第2ステップ処理の処理例を示すフローチャートである。ステップS401aでは、デフォルトタグ値jbに基づいてn軸上の位置ygが算出される。次に示すステップS403~ステップS416は、位置ygを中心に±nY/8の範囲でn軸について走査が行われる(ステップS402,S410,S412)。
 ステップS403,S404では、評価すべきn軸のプラス方向の位置yaとマイナス方向の位置ybがデフォルトタグ値jaに基づき算出される。ステップS405では、判定フラグflgの値が評価され条件分岐する。
 ステップS405において判定フラグflgの値が0である場合、ステップS406,S407においてタグ{Tagm,n}(図示の「Tag(xa,ya)に相当)がデフォルトタグ値jbと異なっているとき、もしくはステップS408,S409において2次元フィルタ窓{Wm,n}値が0を越えないとき、n軸方向のスペクトラム分布の連続性が途切れたと判断される。ST411では判定フラグflgに1が代入される。
 ステップS405において判定フラグflgの値が1である場合、ステップS413においてプラス方向の位置yaのタグ{Tagm,n}がデフォルトタグ値jbと等しいときには、その位置の2次元フィルタ窓{Wm,n}(図示の「W(xa,ya)に相当)が0に更新される(ステップS414)。一方、マイナス方向の位置ybのタグ{Tagm,n}についても、ステップS413,S414とほぼ同様な処理を行う(ステップS415,ST416)。
 次に2Dフィルタ回路処理の手順例を、具体的にフローチャートを用いて説明を行う。図25は、2Dフィルタ回路処理の処理例を示すフローチャートである。なお、この2Dフィルタ回路処理は、フィルタ回路23によって実行される処理を示している。この2Dフィルタ回路処理は、上述したタグが割り付けられていることに対して行うべき処理が含められている。2Dフィルタ回路処理は、詳細は後述するが、例えば回転係数初期化処理(ステップS500)、推定伝達特性初期化処理(ステップS700)及び2Dフィルタ演算処理(ステップS600)を有する。
 図26は、図25に示す回転係数初期化処理の処理例を示すフローチャートである。ステップS502では、位相が各々0°、90°、180°、270°の回転係数が順次メモリtra(t)に格納される。このステップS502は、例えば4回に亘り実行される(ステップS501,S503,S504)。
 図27は、図27に示す推定伝達特性初期化処理における処理のフローチャートである。ステップS705では、(m,n)空間全領域における推定伝達特性{gm,n}を0に設定する。ここでいう推定伝達特性{gm,n}は図示のg(xa,ya)に相当する。つまりこのステップS705は、-4×kX/2≦m<4×kX/2、かつ、-nY/2≦n<nY/2を満たすまで繰り返し実行される(ステップS701,S703,S706,S707,S708,S709)。
 図28は、図25に示す2Dフィルタ演算処理の処理例を示すフローチャートである。ステップS601における変数modeは伝送モードを表しており、モード1の時は0、モード2の時は1、モード3の時は2である。また、変数symcoは、変換部22に供されるシンボル群の内、q軸原点に配置、記憶されているシンボルのシンボルカウント値である。
 ステップS601では、変数mode,symcoに基づいて値co4が算出される。図28のステップS605,S606,S607では、ステップS601で算出した値co4とタグ値Tag(xa,ya)に基づいて回転係数の(位相)インデックスzが算出される。ステップS608,S609ではタグ値に基づき、推定伝達特性{gm,n}を算出する為のインデックスxe,yeを算出する。
 ステップS610では、SP信号伝達特性{hm,n}(図示のh(xa,ya)に相当)と2次元フィルタ窓{W’m,n}(図示のW’(xa,ya)に相当)、回転係数に基づき、推定伝達特性{gm,n}(図示のg(xe,ye)に相当)を算出する。以上のようなステップS603~ステップS610の各処理は、-kX/2≦x<kX/2、かつ、-nY/2≦n<nY/2を満たすまで繰り返し実行される(ステップS602,S604,S611,S612,S613,S614)。
 次に、2D逆フーリエ変換処理の手順例を、具体的にフローチャートを用いて説明を行う。図29は、2D逆フーリエ変換処理の手順例を示すフローチャートである。逆フーリエ変換処理は逆変換部24によって実行される。
 シンボル方向逆フーリエ変換処理(S-IFFT処理とも称する)は、(p,q)空間についてシンボル方向に逆フーリエ変換を行う処理を示している(ステップS800a)。キャリア方向フーリエ変換処理(C-IFFT処理とも称する)は、(p,q)空間についてキャリア方向にフーリエ変換を行う処理を示している(ステップS900)。
 以下の説明においては各計算式が次のように表される。なお下記の式においては、「FFT」がフーリエ変換を施す関数を示しており、「IFFT」が逆フーリエ変換を施す関数を示している。
1.nについての1D(1次元)フーリエ変換処理
 F(p,q)=FFT(f(p,n))dn
2.qについての1D(1次元)逆フーリエ変換処理
 f(m,n)=IFFT(F(m,q))dq
 図30は、図29に示すシンボル方向逆フーリエ変換処理の手順例を示すフローチャートである。なお以降の各フローチャートにおける記号「←」は左辺の変数に右辺の値や式を設定することを表している。
 ステップS802では、シンボル方向カウンタ値nについて逆フーリエ変換処理を行う。当該ステップS802は、キャリア方向に2次元領域キャリア幅kX回繰り返し行われる(ステップS801,S803,S804a)。
 図31は、図29に示すキャリア方向フーリエ変換処理の手順例を示すフローチャートである。
 ステップS1000では回転因子乗算処理が実行される。この回転因子乗算処理は、繰り返し回数インデックスkとキャリアインデックスmに基づいた回転因子係数をキャリア方向に乗算する。この回転因子乗算処理の詳細については後述する。
 ステップS903では、キャリアインデックスmについてフーリエ変換処理を行う。ステップS1100では推定領域抽出処理が実行される。この推定領域抽出処理は推定領域の推定伝達特性を抽出している。この推定領域抽出処理は、推定領域幅vX(図6の推定領域キャリア幅wX/3に相当)の推定伝達特性のみを抽出し、図示しないメモリに格納する。これらステップS1000,S903,S1100は一例として1シンボル毎に3回に亘り繰り返される(ステップS902,S904,S905)。当該フローチャートでは、2次元領域シンボル幅nYに亘り、当該キャリア方向のフーリエ変換処理が繰り返し実行されているが(ステップS901,S906,S907)、推定領域シンボル幅wYに亘り繰り返し実行されるようにしても良い。
 図32は、図31に示す回転因子乗算処理の具体的な手順例を示すフローチャートである。
 ステップS1002aでは、繰り返し回数インデックスkとキャリアインデックスmに基づいて、回転因子係数の複素指数phを算出している。ステップS1003aでは変数zが算出される。ステップS1004では、ステップS1002で算出した複素指数phを用いて回転因子係数exp(ph)を乗算している。これらステップS1002a,S1003a,S1004は、推定領域キャリア幅kX/2に亘り繰り返し実行される(ステップS1001a,S1005,S1006a)。
 図33は、図31に示す推定領域抽出処理の具体的な手順例を示すフローチャートである。なおnTはキャリア方向算出範囲パラメータを表しており、本実施形態ではnT=wX/3と設定される(ステップS1101a)。また対象キャリア算出変数cは、処理の対象とすべきキャリアを特定するための算出用変数を表している。
 ステップS1104aでは、変数zが設定される。ステップS405では、キャリア方向フーリエ変換毎に算出される推定伝達特性を3キャリアインデックスごとに図示しないメモリに格納している。ステップS1106では、対象とすべきキャリアを3キャリア毎とするため、対象キャリア算出変数cが3インクリメントされる。
 以上のようなステップS1104a,S1105,S1106が一例として3キャリア毎に-nT/2~nT/2に亘り実行される(ステップS1101,S1102,S1103,S1107,S1108)。
 以上説明したように、本実施形態における受信装置1は、複数のキャリアを送信データに基づいて直交変調することにより生成した伝送シンボルを伝送単位として特定既知の複素振幅を持つパイロット信号が前記伝送シンボル内の所定のキャリアに重畳されたOFDM信号を受信し、連続する複数の前記伝送シンボルに含まれるキャリア群を検波して得た受信信号をキャリア周波数とシンボル時間に対応した2次元空間上の2次元データ領域内に配置する信号検波部11(シンボル検波部)と、前記2次元データ領域内に配置されたパイロット信号に基づいて前記受信信号の各々に対する受信信号伝達特性を推定する伝達特性推定部20と、前記受信信号及び前記受信信号伝達特性に基づいて前記送信データを復号するデータ復号部30と、を有する受信装置1であって、前記伝達特性推定部20は、前記2次元データ領域内に配置されたパイロット信号に対するパイロット信号伝達特性を算出する算出手段21(SP信号伝達特性算出部)と、前記パイロット信号伝達特性について2次元フーリエ変換を施して、伝送路遅延時間と伝送路変動周波数に対応した2次元空間上の2次元フーリエ変換データを生成する変換手段22(2Dフーリエ変換回路)と、前記2次元フーリエ変換データのうち特定領域内のデータ群を通過させるための窓係数決定情報を算出する供給手段26(フィルタ係数決定回路)と、前記窓係数決定情報に基づいて確定された前記特定領域内のデータ群を選択抽出するフィルタ手段23(2Dフィルタ回路)と、前記選択抽出されたデータ群に対して2次元逆フーリエ変換を施して、キャリア周波数とシンボル時間に対応した2次元空間上の2次元逆フーリエ変換データを生成し、前記生成されたデータに基づいて前記受信信号伝達特性を生成する生成手段24(2D逆フーリエ変換回路)と、を備え、前記供給手段26は、前記2次元空間上の2次元フーリエ変換データに基づいて、前記2次元空間上の2次元フーリエ変換データ毎に電力を算出する電力算出手段26a(電力算出回路)と、前記電力算出手段26aから供される前記電力と予め設定された閾値雑音電力に基づいて2次元フィルタ窓{Wm,n}を算出する窓係数算出手段26c(雑音抑制/窓係数算出回路)と、前記2次元フィルタ窓{Wm,n}と前記OFDM信号の最大電力位置に基づいてエイリアシング成分の除去施して、窓係数決定情報を算出するエイリアシング分離手段26d(エイリアシング分離回路)と、を備えることを特徴とする。
 本実施形態における受信方法は、複数のキャリアを送信データに基づいて直交変調することにより生成した伝送シンボルを伝送単位として特定既知の複素振幅を持つパイロット信号が前記伝送シンボル内の所定のキャリアに重畳されたOFDM信号を受信し、連続する複数の前記伝送シンボルに含まれるキャリア群を検波して得た受信信号をキャリア周波数とシンボル時間に対応した2次元空間上の2次元データ領域内に配置する信号検波ステップと、前記2次元データ領域内に配置されたパイロット信号に基づいて前記受信信号の各々に対する受信信号伝達特性を推定する伝達特性推定ステップと、前記受信信号及び前記受信信号伝達特性に基づいて前記送信データを復号するデータ復号ステップと、を有する受信方法であって、前記伝達特性推定ステップは、前記2次元データ領域内に配置されたパイロット信号に対するパイロット信号伝達特性を算出する算出ステップと、前記パイロット信号伝達特性について2次元フーリエ変換を施して、伝送路遅延時間と伝送路変動周波数に対応した2次元空間上の2次元フーリエ変換データを生成する変換ステップと、前記2次元フーリエ変換データのうち特定領域内のデータ群を通過させるための窓係数決定情報を算出する供給ステップと、前記窓係数決定情報に基づいて確定された前記特定領域内のデータ群を選択抽出するフィルタステップと、前記選択抽出されたデータ群に対して2次元逆フーリエ変換を施して、キャリア周波数とシンボル時間に対応した2次元空間上の2次元逆フーリエ変換データを生成し、前記生成されたデータに基づいて前記受信信号伝達特性を生成する生成ステップと、を備え、前記供給ステップは、前記2次元空間上の2次元フーリエ変換データに基づいて、前記2次元空間上の2次元フーリエ変換データ毎に電力を算出する電力算出ステップと、前記電力算出ステップで算出された前記電力と予め設定された閾値雑音電力に基づいて2次元フィルタ窓を算出する窓係数算出ステップと、前記2次元フィルタ窓と前記OFDM信号の最大電力位置に基づいてエイリアシング成分の除去を施して、窓係数決定情報を算出するエイリアシング分離ステップと、を備えることを特徴とする。
 これらのようにすると、それぞれ、受信環境によりパワースペクトラム分布が大きく変化する場合でも、n軸(周波数)方向に連続的にパワースペクトラム分布が広がることを利用して適応的にエイリアシング成分の除去を行うことにより、精度の良い窓係数決定情報を算出することができる。またその結果として精度の良い推定伝達特性を算出することができる。
 上記実施形態における受信装置1は、上述した構成に加えてさらに、前記供給手段26は、前記2次元空間を小区画に分割し、前記2次元空間上の2次元フーリエ変換データに基づいて、各々の区画における平均電力を算出し、算出した前記平均電力で最小のものを平均雑音電力NPとする平均雑音電力算出手段26c(平均雑音電力算出部)を備え、前記窓係数算出手段26c(雑音抑制/窓係数算出回路)は、前記平均雑音電力NPに基づいて前記閾値雑音電力NPthを算出することを特徴とする。
 このように平均雑音電力NPを算出すると、精度の良い2次元フィルタ窓{Wm,n}を算出することができる。
 上記実施形態における受信装置1は、上述した構成に加えてさらに、前記窓係数算出手段26c(窓係数算出回路)は、前記平均雑音電力に係数αを乗算して前記閾値雑音電力NPthを算出することを特徴とする。
 このようにすると、係数αの設定により、雑音成分を十分に抑圧することが可能となる。
 上記実施形態における受信装置1は、上述した構成に加えてさらに、前記エイリアシング分離回路26d(エイリアシング分離手段)は、前記2次元空間の各々にタグを割り付け、前記窓係数決定情報に、前記タグに関するタグ値を含めて前記フィルタ手段23(2Dフィルタ回路)に供し、前記フィルタ手段23は、前記窓係数決定情報に基づいて、前記特定領域内のデータ群を選択抽出することを特徴とする。
 このようにすると、フィルタ回路26に供されるSP信号伝達特性{hm,n}の(m,n)空間上で任意の1/4の領域に基づいて、精度良く窓係数決定情報を算出することができる。
 <実施形態の変形例>
 ところで、上記図14は、変換部22の出力であるSP信号伝達特性{hm,n}のパワースペクトラム分布{|hm,n}であり、後述する性質Aを示す図である。なお(m,n)空間はOFDMシンボル空間に相当する。
 変換部22において2Dフーリエ変換処理を施して算出したSP信号伝達特性{hm,n}は、SP信号の規則的な配置により以下の性質を有する。なおSP信号伝達特性{hm,n}はh(m,n)に相当する。
 h(m&(mX-1),n&(nY-1))
   =h(m&(kX-1),(n+k×nY/4)&(nY-1))
   ×exp(-j×2π/4×(k×co4)) ・・・(2)
 co4=(symco+(2<<mode))&3
 k=(4-floor(((m&(mX-1)+(kX/2))/kX))&3
 kX=mX/4
 変数modeは伝送モードを表しており、例えばモード1のときは0、モード2のときは1、モード3のときは2である。変数symcoは、変換部22に供されるシンボル群の内、q軸原点に配置、記憶されているシンボル、すなわち図13におけるq=k-255シンボルに付随するシンボルカウント値である。関数floor(x)はx以下の最大の整数値を計算する関数である。
 図14においては(m,n)空間は(-mX/2≦m<mX/2、-nY/2≦n<nY)の範囲で表現されているが、(2)式では(0≦m<mX、0≦n<nY)の範囲で定義されている。即ち、図14における(m,n)空間上でm=-1は(2)式ではm=mX-1として定義されている。
 即ち、(2)式の右辺第一項目h(m&(kX-1),(n+k×nY/4)&(nY-1))は図14の領域Hのみを示している。よって、(2)式は領域HのSP信号伝達特性から(m,n)空間上の任意のSP信号伝達特性{hm,n}を容易に算出することができることが示されている。よって、(2)式は(m,n)空間上でSP信号伝達特性{hm,n}は1つの独立変数群と3つの従属変数群から成立していることを意味している。この性質を呼称として性質Aと呼ぶこととする。
 要するに、図14の領域HにあたるSP信号伝達特性のみを算出するように工夫することで、さらに変換部22の演算処理量の削減を行うことが期待できる。以下に示す実施形態の変形例は、上記性質Aを利用することで変換部22の演算処理量をさらに削減することを目的としたものである。
 図34は、実施形態の変形例による受信装置1aの構成例を示すブロック図である。実施形態の変形例による受信装置1aは、本実施形態による受信装置1とほぼ同様の構成でありほぼ同様の動作を行う。このため実施形態の変形例では、同一の構成及び動作については本実施形態における図1乃至図33と同一の符号を用いるとともに、その説明を省略し、以下の説明では異なる点を中心として説明する。
 実施形態の変形例による受信装置1aは、本実施形態による伝達特性推定部20の代わりに、当該伝達特性推定部20とほぼ同様の機能を有する伝達特性推定部20aを有する。
 図35は、図34に示される伝達特性推定部20aの構成例を示すブロック図である。実施形態の変形例による伝達特性推定部20aは、本実施形態における伝達特性推定部20とは、主として、算出部21の一部の機能が異なるとともに、変換部22の構成及び機能が異なっている。
 本実施形態では、算出部21のSP伝達特性算出回路21aが、例えば3キャリアインデックス毎にSP信号の伝達特性{Hp,q}を抽出していたが、これに対して実施形態の変形例では、SP伝達特性抽出回路21aが、例えば12キャリアインデックス毎にSP信号のみの伝達特性{Hp,q}を抽出する。
 算出部21は、上記図9に示されるSP伝達特性算出回路21aが、シンボル記憶部12から供給されるキャリア振幅の中からSP信号に関するキャリア振幅のみを抽出して、これを既知の送信複素振幅値で除算する。
 SP伝達特性算出回路21aは、図6に示される領域Z2D内の全ての要素(p,q)について、Sp,qがSP信号に相当する場合は、
 Hp,q=Sp,q/Rp,q
として、当該SP信号に関する伝達特性{Hp,q}を求める。ここで、{Rp,q}は、既知であるSP信号の送出複素振幅値である。
 一方、SP伝達特性算出回路21aは、SP信号以外のデータキャリア信号に対しては、
 Hp,q=0
として、その伝達関数{Hp,q}を定める。
 これによってSP伝達特性算出回路21aは、(p,q)空間上に点在するSP信号に関し、その伝達特性{Hp,q:(p,q)∈Z2D}を求めることができる。
 抽出回路21bは、SP信号位置のSP信号伝達特性{Hp,q}のみを抽出し変換部22xに供する。具体的には、抽出回路21bは、図37に示されるSP信号位置のみのSP信号伝達特性を抽出し、図38に示されているようにキャリア方向に詰める形にして変換部22xに供する。
 このように、変換部22xに供するSP信号伝達特性をSP信号位置のキャリアに限定することにより、変換部22xの演算処理量をさらに削減することができる。
 上述のように変換部22xに供されるSP信号伝達特性{H”p,q}は、図36に示すようにOFDM空間内に配置されている。実施形態の変形例における2Dフーリエ変換領域の範囲Z”2Dは、
 -kX/2≦p<kX/2 ; k-nY<q≦k
と定義される。また推定領域Z”ESTは、
 -uX/2≦p<uX/2 ; k-nY/2-wY/2<q≦k-nY/2+wY/2
と定義される。
 変換部22xは、SP伝達特性算出部21から供された(p,q)空間上のSP信号伝達特性{H”p,q}について、2次元フーリエ変換を施して、これを(m,n)空間上のSP信号伝達特性{hm,n:(m,n)∈Z’TRA}に変換する。変換部22xはこれをフィルタ回路23と決定回路26に出力する。
 つまり変換部22xは、図39に示される逆フーリエ変換回路22a及び乗算回路22bがキャリアインデックス方向に処理を施し、フーリエ変換回路22cがシンボルインデックス方向に処理を施す。
 即ち、変換部22xに供されるSP信号伝達特性は図38に示されるようにキャリア方向に縮退され、本来図37に示されるような(p、q)空間上の重畳位置とは異なり、シンボル毎にキャリア方向にSP信号の重畳位置がずれていない。そこで、変換部22xでは前述した周波数移動定理を用いて、シンボル毎にキャリア方向に逆フーリエ変換回路22aにて逆フーリエ変換処理を施した後に、乗算回路22bにて所定の複素回転因子係数を乗算することで、逆フーリエ変換処理前の時間軸において所望の位置だけ相対的にずれた結果を算出する。
 具体的に複素回転因子係数は、シンボル記憶部12より供されるシンボル毎に付随したシンボルカウント値と伝送モードに基づいて決定される。よって、複素因子係数はシンボル毎に更新され、本実施形態の場合において、その周期は4シンボルとなる。
 次に、フーリエ変換回路22cにおいて、シンボル方向にフーリエ変換処理を施すことで、(m,n)空間上のSP信号伝達特性{h’m,n}を算出する。
 変換部22xで算出したSP信号伝達特性{h’m,n}のパワースペクトラム分布{|h’m,n}は図40に示されるように、m軸方向については有効シンボル長Teの1/12までの遅延時間となり、n軸方向についてはシンボル送出周波数Fa分の周波数となる。また、変換部22xで算出されたSP信号伝達特性{h’m,n}は上述した性質Aの説明で用いた図14の領域Hの部分に相当する。上述した性質Aを利用すれば、変換部22xで算出したSP信号伝達特性{h’m,n}から本実施形態における変換部22で算出したSP信号伝達特性{hm,n}に容易に変換が可能である。即ち、変換部22xはSP信号伝達特性{hm,n}をフィルタ回路23、決定回路26に出力する。
 よって、決定回路26、フィルタ回路23、逆変換部24、出力回路26については上記実施形態と同様の処理を行えばよい。これら決定回路26、フィルタ回路23、逆変換部24、出力回路25については、上記実施形態と同様であるので説明を省略する。
 図41は、2Dフーリエ変換処理の手順例を示すフローチャートである。この2Dフ-リエ変換処理は変換部22xによって実施される処理を表している。2Dフ-リエ変換処理は、キャリア方向逆フーリエ変換処理(ステップS1500に相当)及びシンボル方向フーリエ変換処理(ステップS1600に相当)を有する。キャリア方向逆フーリエ変換処理は、図42に示されるようにシンボル方向に沿って繰り返しフーリエ変換処理(ステップS1501)が実施される(ステップS1502,S1503)。
 図43は、図41に示されるキャリア方向逆フーリエ変換処理の手順例を示すフローチャートである。ステップS1602では、伝送モードmodeとシンボルカウント値symcoに基づいてシンボル毎のキャリア方向のずれ量sを算出する。伝送モードmodeは、例えばモード1のときは0、モード2のときは1、モード3のときは2である変数である。シンボルカウント値symcoは、変換部22xに供されるシンボル群の内、q軸原点に配置、記憶されているシンボル、すなわち図38におけるq=k-255シンボルに付随するシンボルカウント値である。ステップS1603ではキャリア方向のフーリエ変換処理を施す。
 ステップS1605では、ステップS1602で算出したずれ量sとキャリアインデックスmに基づいて、回転因子係数の複素指数phを算出する。ステップS1607ではフーリエ変換処理された{H”z,q}(H”(z,q)に相当)に回転因子係数exp(ph)を乗算する。上記処理をキャリア方向にkX回繰り返し、シンボル方向にnY回繰り返し施す。
 したがって、実施形態の変形例によれば、算出部21において変換部22xに供するSP信号伝達特性{Hp,q}を限定し、変換部22xにおいて演算を工夫することにより、本実施形態に比べ、推定伝達特性の精度を低下させることなく、さらに演算量を削減することができる。
 なお、本実施形態は、上記に限られず、種々の変形が可能である。以下、そのような変形例を順を追って説明する。
 上記実施形態においては、フィルタ係数決定回路26が上述のように平均雑音電力NPを算出しているが、これに限られず、予め設定した値の平均雑音電力NPを用いても良い。この場合、フィルタ係数決定回路26から平均雑音電力算出回路26bを省略することができる。
 また、以上既に述べた以外にも、上記実施形態や各変形例による手法を適宜組み合わせて利用しても良い。
ISDB-T規格によるOFDMシンボルの構成を示す図である。 ISDB-T規格による伝送モード1による各変調パラメータの処置を示す図である。 本実施形態で用いられる各定数パラメータの処置を示す図である。 本実施形態による受信装置の構成例を示すブロック図である。 セグメントとキャリアインデックスとの関係を示す説明図である。 OFDMシンボル空間の構成例を示す説明図である。 OFDMシンボル空間に配置されたキャリアの属性を示す説明図である。 図1に示す伝達特性推定部の構成例を示すブロック図である。 図8に示す算出回路の構成例を示すブロック図である。 図8に示すフィルタ係数決定回路の構成例を示すブロック図である。 図8に示す逆変換部の具体的な構成例を示すブロック図である。 OFDMシンボル空間の構成を示す説明図である。 OFDMシンボル空間に配置されたキャリアの属性を示す説明図である。 2Dフーリエ変換部から出力されるSP信号伝達特性のパワースペクトラム分布を示す図である。 2Dフーリエ変換部の出力であるSP信号伝達特性のパワースペクトラム分布を示す図である。 OFDMシンボル空間の一部を小区画に分けた様子の一例を示す図である。 静止受信における短遅延マルチパス環境下のパワースペクトラム分布の一例を示す図である。 移動受信環境下でのパワースペクトラムの分布例を示す分布図である。 エイリアシング分離処理の手順例を示すフローチャートである。 図19に示すタグの初期化処理の手順例を示すフローチャートである。 図36に示す特定領域にタグ値を割り当てた様子の一例を示す図である。 図21に示すタグ値に基づきm軸上にデータを展開してエイリアシング成分を除去する様子を示す図である。 図19に示す第1ステップ処理の処理例を示すフローチャートである。 第2ステップ処理の処理例を示すフローチャートである。 2Dフィルタ回路処理の処理例を示すフローチャートである。 図25に示す回転係数初期化処理の処理例を示すフローチャートである。 図27に示す推定伝達特性初期化処理における処理のフローチャートである。 図25に示す2Dフィルタ演算処理の処理例を示すフローチャートである。 2D逆フーリエ変換処理の手順例を示すフローチャートである。 図29に示すシンボル方向逆フーリエ変換処理の手順例を示すフローチャートである。 図29に示すキャリア方向フーリエ変換処理の手順例を示すフローチャートである。 図31に示す回転因子乗算処理の具体的な手順例を示すフローチャートである。 図31に示す推定領域抽出処理の具体的な手順例を示すフローチャートである。 実施形態の変形例による受信装置の構成例を示すブロック図である。 図34に示される伝達特性推定部の構成例を示すブロック図である。 OFDMシンボル空間の構成を示す説明図である。 OFDMシンボル空間に配置されたキャリアの属性を示す説明図である。 OFDMシンボル空間に配置されたキャリアの属性を示す説明図である。 2Dフーリエ変換部を示すブロック図である。 実施形態の変形例における変換部から出力されるSP信号伝達特性のパワースペクトラム分布を示す図である。 2Dフーリエ変換処理の手順例を示すフローチャートである。 図41に示されるシンボル方向フーリエ変換処理の手順例を示すフローチャートである。 図41に示されるキャリア方向逆フーリエ変換処理の手順例を示すフローチャートである。
符号の説明
 1        受信装置
 1a       受信装置
 11       シンボル検波部(信号検波部)
 12       シンボル記憶部
 20       伝達特性推定部
 20a      伝達特性推定部
 21       SP信号伝達特性算出部(算出手段)
 21a      SP信号伝達特性算出回路(伝達特性算出手段)
 21b      SP信号伝達特性抽出回路(伝達特性抽出手段)
 22       2次元フーリエ変換部(変換手段)
 22x      2次元フーリエ変換部(変換手段)
 23       2次元フィルタ回路(フィルタ手段)
 24       2次元逆フーリエ変換回路(生成手段)
 24a      逆フーリエ変換回路
 24b      乗算回路
 24c      フーリエ変換回路
 25       推定伝達特性出力回路
 26       フィルタ係数決定回路(供給手段)
 26a      電力算出回路(電力算出手段)
 26b      平均雑音電力算出部(平均雑音電力算出手段)
 26c      雑音抑制/窓係数算出回路(窓係数算出手段)
 26d      エイリアシング分離回路(エイリアシング分離手段)
 30       データ復号部

Claims (5)

  1.  複数のキャリアを送信データに基づいて直交変調することにより生成した伝送シンボルを伝送単位として特定既知の複素振幅を持つパイロット信号が前記伝送シンボル内の所定のキャリアに重畳されたOFDM信号を受信し、連続する複数の前記伝送シンボルに含まれるキャリア群を検波して得た受信信号をキャリア周波数とシンボル時間に対応した2次元空間上の2次元データ領域内に配置する信号検波部と、
     前記2次元データ領域内に配置されたパイロット信号に基づいて前記受信信号の各々に対する受信信号伝達特性を推定する伝達特性推定部と、
     前記受信信号及び前記受信信号伝達特性に基づいて前記送信データを復号するデータ復号部と、を有する受信装置であって、
     前記伝達特性推定部は、
     前記2次元データ領域内に配置されたパイロット信号に対するパイロット信号伝達特性を算出する算出手段と、
     前記パイロット信号伝達特性について2次元フーリエ変換を施して、伝送路遅延時間と伝送路変動周波数に対応した2次元空間上の2次元フーリエ変換データを生成する変換手段と、
     前記2次元フーリエ変換データのうち特定領域内のデータ群を通過させるための窓係数決定情報を算出する供給手段と、
     前記窓係数決定情報に基づいて確定された前記特定領域内のデータ群を選択抽出するフィルタ手段と、
     前記選択抽出されたデータ群に対して2次元逆フーリエ変換を施して、キャリア周波数とシンボル時間に対応した2次元空間上の2次元逆フーリエ変換データを生成し、前記生成されたデータに基づいて前記受信信号伝達特性を生成する生成手段と、
    を備え、
     前記供給手段は、
     前記2次元空間上の2次元フーリエ変換データに基づいて、前記2次元空間上の2次元フーリエ変換データ毎に電力を算出する電力算出手段と、
     前記電力算出手段から供される前記電力と予め設定された閾値雑音電力に基づいて2次元フィルタ窓を算出する窓係数算出手段と、
     前記2次元フィルタ窓と前記OFDM信号の最大電力位置に基づいてエイリアシング成分の除去を施して、窓係数決定情報を算出するエイリアシング分離手段と、
    を備えることを特徴とする受信装置。
  2.  請求項1記載の受信装置において、
     前記供給手段は、
     前記2次元空間を小区画に分割し、前記2次元空間上の2次元フーリエ変換データに基づいて、各々の区画における平均電力を算出し、算出した前記平均電力で最小のものを平均雑音電力とする平均雑音電力算出手段
    を備え、
     前記窓係数算出手段は、
     前記平均雑音電力に基づいて前記閾値雑音電力(NPth)を算出する
    ことを特徴とする受信装置。
  3.  請求項2記載の受信装置において、
     前記窓係数算出手段は、
     前記平均雑音電力に予め設定された係数を乗算して前記閾値雑音電力を算出する
    ことを特徴とする受信装置。
  4.  請求項2記載の受信装置において、
     前記エイリアシング分離手段は、
     前記2次元空間の各々にタグを割り付け、前記窓係数決定情報に、前記タグに関するタグ値を含めて前記フィルタ手段に供し、
     前記フィルタ手段は、
     前記窓係数決定情報に基づいて、前記特定領域内のデータ群を選択抽出する
    ことを特徴とする受信装置。
  5.  複数のキャリアを送信データに基づいて直交変調することにより生成した伝送シンボルを伝送単位として特定既知の複素振幅を持つパイロット信号が前記伝送シンボル内の所定のキャリアに重畳されたOFDM信号を受信し、連続する複数の前記伝送シンボルに含まれるキャリア群を検波して得た受信信号をキャリア周波数とシンボル時間に対応した2次元空間上の2次元データ領域内に配置する信号検波ステップと、
     前記2次元データ領域内に配置されたパイロット信号に基づいて前記受信信号の各々に対する受信信号伝達特性を推定する伝達特性推定ステップと、
     前記受信信号及び前記受信信号伝達特性に基づいて前記送信データを復号するデータ復号ステップと、を有する受信方法であって、
     前記伝達特性推定ステップは、
     前記2次元データ領域内に配置されたパイロット信号に対するパイロット信号伝達特性を算出する算出ステップと、
     前記パイロット信号伝達特性について2次元フーリエ変換を施して、伝送路遅延時間と伝送路変動周波数に対応した2次元空間上の2次元フーリエ変換データを生成する変換ステップと、
     前記2次元フーリエ変換データのうち特定領域内のデータ群を通過させるための窓係数決定情報を算出する供給ステップと、
     前記窓係数決定情報に基づいて確定された前記特定領域内のデータ群を選択抽出するフィルタステップと、
     前記選択抽出されたデータ群に対して2次元逆フーリエ変換を施して、キャリア周波数とシンボル時間に対応した2次元空間上の2次元逆フーリエ変換データを生成し、前記生成されたデータに基づいて前記受信信号伝達特性を生成する生成ステップと、
    を備え、
     前記供給ステップは、
     前記2次元空間上の2次元フーリエ変換データに基づいて、前記2次元空間上の2次元フーリエ変換データ毎に電力を算出する電力算出ステップと、
     前記電力算出ステップで算出された前記電力と予め設定された閾値雑音電力に基づいて2次元フィルタ窓を算出する窓係数算出ステップと、
     前記2次元フィルタ窓と前記OFDM信号の最大電力位置に基づいてエイリアシング成分の除去を施して、窓係数決定情報を算出するエイリアシング分離ステップと、
    を備えることを特徴とする受信方法。
PCT/JP2008/057215 2008-04-12 2008-04-12 受信装置及び受信方法 WO2009125500A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2008/057215 WO2009125500A1 (ja) 2008-04-12 2008-04-12 受信装置及び受信方法
JP2010507107A JPWO2009125500A1 (ja) 2008-04-12 2008-04-12 受信装置及び受信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/057215 WO2009125500A1 (ja) 2008-04-12 2008-04-12 受信装置及び受信方法

Publications (1)

Publication Number Publication Date
WO2009125500A1 true WO2009125500A1 (ja) 2009-10-15

Family

ID=41161643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/057215 WO2009125500A1 (ja) 2008-04-12 2008-04-12 受信装置及び受信方法

Country Status (2)

Country Link
JP (1) JPWO2009125500A1 (ja)
WO (1) WO2009125500A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014132744A (ja) * 2012-12-03 2014-07-17 Mitsubishi Electric Corp 等化装置及び等化方法
JP2014150469A (ja) * 2013-02-04 2014-08-21 Mitsubishi Electric Corp 等化装置及び等化方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261729A (ja) * 2001-03-06 2002-09-13 Hitachi Ltd Ofdm受信装置
US20040086055A1 (en) * 1998-12-31 2004-05-06 Ye Li Pilot-aided channel estimation for OFDM in wireless systems
JP2005229466A (ja) * 2004-02-16 2005-08-25 Pioneer Electronic Corp 受信装置及び受信方法
WO2005122717A2 (en) * 2004-06-10 2005-12-29 Hasan Sehitoglu Matrix-valued methods and apparatus for signal processing
JP2006148387A (ja) * 2004-11-18 2006-06-08 Pioneer Electronic Corp Ofdm信号受信機及び受信方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040086055A1 (en) * 1998-12-31 2004-05-06 Ye Li Pilot-aided channel estimation for OFDM in wireless systems
JP2002261729A (ja) * 2001-03-06 2002-09-13 Hitachi Ltd Ofdm受信装置
JP2005229466A (ja) * 2004-02-16 2005-08-25 Pioneer Electronic Corp 受信装置及び受信方法
WO2005122717A2 (en) * 2004-06-10 2005-12-29 Hasan Sehitoglu Matrix-valued methods and apparatus for signal processing
JP2006148387A (ja) * 2004-11-18 2006-06-08 Pioneer Electronic Corp Ofdm信号受信機及び受信方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014132744A (ja) * 2012-12-03 2014-07-17 Mitsubishi Electric Corp 等化装置及び等化方法
JP2014150469A (ja) * 2013-02-04 2014-08-21 Mitsubishi Electric Corp 等化装置及び等化方法

Also Published As

Publication number Publication date
JPWO2009125500A1 (ja) 2011-07-28

Similar Documents

Publication Publication Date Title
US8842750B2 (en) Channel estimation for DVB-T2 demodulation using an adaptive prediction technique
JP4751733B2 (ja) Ofdm無線通信システム
US8345782B2 (en) Method and apparatus for channel estimation
JP2008118411A (ja) 無線受信装置
JP2013535883A5 (ja)
JP4903026B2 (ja) 遅延プロファイル解析回路及びそれを用いた装置
TWI427957B (zh) 一種通道估測方法及裝置
WO2009125500A1 (ja) 受信装置及び受信方法
EP1821407B1 (en) OFDM channel estimation systems
JP5172952B2 (ja) 受信装置及び受信方法
JP4524704B2 (ja) 復調回路、復調方法、プログラム、および受信装置
US7929595B2 (en) Estimating frequency offset at a subscriber station receiver
JP2006203613A (ja) 等化器
US9036724B2 (en) Data signal correction circuit, receiver, and data signal correction method
JP6028572B2 (ja) 受信装置
WO2009107347A1 (ja) 受信装置、集積回路及び受信方法
JP6005008B2 (ja) 等化装置及び等化方法
JP5172951B2 (ja) 受信装置及び受信方法
Gonzalez et al. Uplink CFO compensation for FBMC multiple access and OFDMA in a high mobility scenario
JP3942943B2 (ja) 遅延波キャンセラ
JP4891893B2 (ja) 回り込みキャンセラ
JP2010246024A (ja) 復調装置
TWI513227B (zh) 用於估計頻道響應之裝置及方法
JP6410747B2 (ja) 受信装置及び受信方法
JP5172950B2 (ja) 受信装置及び受信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08751841

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010507107

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08751841

Country of ref document: EP

Kind code of ref document: A1