WO2009123251A1 - カーボンの製造方法 - Google Patents

カーボンの製造方法 Download PDF

Info

Publication number
WO2009123251A1
WO2009123251A1 PCT/JP2009/056783 JP2009056783W WO2009123251A1 WO 2009123251 A1 WO2009123251 A1 WO 2009123251A1 JP 2009056783 W JP2009056783 W JP 2009056783W WO 2009123251 A1 WO2009123251 A1 WO 2009123251A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
production method
chain
alkylphenol
network polymer
Prior art date
Application number
PCT/JP2009/056783
Other languages
English (en)
French (fr)
Inventor
村上力
有瀬一郎
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to US12/935,514 priority Critical patent/US20110020209A1/en
Priority to EP09726689A priority patent/EP2261175A1/en
Priority to CN2009801108491A priority patent/CN101980958A/zh
Publication of WO2009123251A1 publication Critical patent/WO2009123251A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a method for producing carbon.
  • Rikiichi Bonn is used for electrode materials such as electric double layer capacitors, lithium ion capacitors, and lithium ion secondary batteries.
  • electrode materials such as electric double layer capacitors, lithium ion capacitors, and lithium ion secondary batteries.
  • carbon having a specific surface area of 2 86 to 1 100 m 2 Z g manufactured from pitch is used as an electrode material.
  • An electric double layer capacitor was disclosed. Disclosure of the invention
  • the present invention is a.
  • a method for producing carbon comprising a second step of heating at C to 98 ° C .;
  • alkylphenol is at least one selected from the group consisting of o-cresol, m-cresol monole and p-cresol;
  • ⁇ 4> The production method according to any one of ⁇ 1> to ⁇ 3>, further comprising a step of pulverizing the carbon obtained in the second step;
  • ⁇ 5> A method for polymerizing an alkyl group; n-nole and an aldehyde compound in the presence of a catalyst 1> to ⁇ 4>.
  • ⁇ 7> The production method according to any one of ⁇ 1> to ⁇ 6>, wherein the obtained chain or network polymer is washed and then used in the second step.
  • ⁇ 1 1> The production method according to any one of ⁇ 1> to ⁇ 10>, which is used in the second step after washing the obtained chain or network polymer, drying, and further pulverizing;
  • ⁇ 1 2> The production method according to any one of ⁇ 1> to ⁇ 11>, which is used in the second step after pulverizing, washing, and drying the obtained chain or network polymer;
  • the first step of the present invention is a step of polymerizing an alkylphenol and an aldehyde compound to obtain a chain or network polymer.
  • alkylphenol examples include linear, branched or cyclic alkyl groups having 1 to 1 2 alkyl groups having 1 to 12 carbon atoms.
  • alkynole group having 1 to 12 carbon atoms include a methyl group, an ethenyl group, an isopropyl group, a tert-butynole group, a hexyl group, a cyclohexyl group, an octyl group, and a decyl group.
  • a C 1-4 alkyl group is preferred, and a methyl group is more preferred.
  • the alkylphenol a phenol having one alkyl group having 1 to 12 carbon atoms is preferable, and cresol is more preferable.
  • An isomer exists in the alkylphenol, but in the present invention, only one of the isomers may be used or a mixture of isomers may be used.
  • cresol o-cresol
  • any isomer may be used, or a mixture of two or three isomers may be used.
  • the mixing ratio is not limited.
  • aldehyde compounds include formaldehyde, acetoaldehyde, propionaldehyde, n-butyl aldehyde, isoptyl aldehyde, n xyl aldehyde, n-dodecyl aldehyde, and 3-phenol propion aldehyde.
  • aliphatic aldehydes having 1 to 20 carbon atoms such as hydroxypentanal, benzaldehyde, 1-naphthaldehyde, 2-methylbenzaldehyde, 3-methylbenzaldehyde, 4-methylbenzaldehyde 2-Hydroxybenzaldehyde, 3-Hydroxybenzaldehyde, 4-Hydroxybenzaldehyde, 4 tert_Butylbenzaldehyde, 4-Fuelpenaldehyde, 2- Methoxybenzaldehyde, 3—methoxybenzaldehyde, 4-methoxybenzaldehyde, 2— Low-end Bensanorede, 3—Black-end Benzanoredehyde, 4-One Close-out Benzaldehyde, 2-One Bromobenzaldehyde, 3--Bromobenzaldehyde, 4-One Bromobenzaldehyde, 2_ Fluorobenzaldeh
  • Aromatic aldehydes with 7 20 carbon atoms are listed. Of these, aliphatic aldehydes having 1 to 20 carbon atoms are preferable, aliphatic aldehydes having 18 carbon atoms are more preferable, and aliphatic aldehydes having 15 carbon atoms are particularly preferable.
  • aldehyde compound an aqueous solution or an anhydride may be used.
  • paraformaldehyde, trioxane, or the like may be used as formaldehyde.
  • formaldehyde is particularly preferable.
  • the amount of the aldehyde compound used is usually about 0.53 mol, preferably about 0 ⁇ 82.5 mol, with respect to 1 mol of the alkylphenol.
  • the polymerization reaction of alkylphenol and aldehyde compound is usually carried out in the presence of a solvent.
  • a solvent water, a hydrophilic solvent and a mixed solvent thereof are preferable.
  • the “hydrophilic solvent” means an organic solvent that can be mixed with water at an arbitrary ratio. Examples of such a hydrophilic solvent include hydrophilic alcohol solvents such as methanol, ethanol and isopropanol, and hydrophilic ether solvents such as tetrahydrofuran.
  • a hydrophilic alcohol solvent having 3 or less carbon atoms or a mixed solvent of water and a hydrophilic alcohol having 3 or less carbon atoms is preferable, and a hydrophilic alcohol solvent having 3 or less carbon atoms is more preferable.
  • the amount of the solvent used is usually 0.2 to 10 parts by weight, preferably 1.25 to 5 parts by weight, based on 1 part by weight of the alkylphenol.
  • Catalysts include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium carbonate and potassium carbonate, alkali metal hydrogen carbonates such as sodium hydrogen carbonate, ammonia, etc.
  • alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide
  • alkali metal carbonates such as sodium carbonate and potassium carbonate
  • alkali metal hydrogen carbonates such as sodium hydrogen carbonate, ammonia, etc.
  • Examples include basic catalysts, inorganic acids such as hydrochloric acid, sulfuric acid, and phosphoric acid, carboxylic acids such as formic acid, acetic acid, and oxalic acid, and sulfonic acids such as p-toluenesulfonic acid.
  • the basic catalyst ammonia is preferable, and as the acidic catalyst, carboxylic acid is preferable. Of these, a basic catalyst is preferable, and ammonia is more preferable.
  • a network polymer is usually obtained, and by carrying out the polymerization reaction in the presence of an acidic catalyst, a chain polymer is usually obtained.
  • the amount of catalyst used is usually from 0.02 to 2 mol, preferably from 0.01 to 0.2 mol, more preferably from 0.02 to 0.1 mol, based on 1 mol of alkylphenol '. It is.
  • the first step is usually carried out by mixing an alkylphenol, an aldehyde compound, and a solvent and a catalyst.
  • the mixing order is not limited.
  • an alkylphenol, an aldehyde compound and a solvent catalyst are mixed, and the polymerization reaction may be carried out usually at 0 to 100 ° C, preferably 30 to 90 ° C, or an alkylphenol,
  • the polymerization reaction may be carried out by adding an aldehyde compound to the mixture of the solvent and the catalyst, usually at 0 to 100 ° C., preferably 30 to 90 ° C.
  • Aldehyde compounds, solvents an alkylphenol may be added to the mixture of the catalyst and the catalyst, usually at 0 to 100 ° C, preferably 30 to 90 ° C, to carry out the polymerization reaction, or the alkylphenol, the aldehyde compound and the solvent.
  • a polymerization reaction may be carried out by adding a catalyst to the mixture, usually at 0 to 100 ° C, preferably at 30 to 90 ° C.
  • aldehyde compounds are added to a mixture of alkylphenol, solvent and catalyst.
  • the polymerization reaction is preferably carried out at 30 to 90 ° C.
  • a poor solvent such as water may be added to the reaction mixture during the polymerization reaction.
  • the reaction temperature may be appropriately changed during the polymerization reaction.
  • the polymerization reaction may be performed with stirring or may be performed while standing.
  • the reaction time is usually 1 hour to 10 days.
  • a network or chain polymer is obtained.
  • the obtained polymer may be used as it is in the second step, but it is preferable to use it in the second step after washing the obtained polymer. Further, it is preferable to pulverize the obtained polymer before or after washing.
  • impact friction pulverizer For polymer pulverization, impact friction pulverizer, centrifugal pulverizer, pole mill (tube mill, compound mill, conical ball mill, rod mill, planetary mill), vibration mill, colloid mill, friction disk mill, jet mill, etc.
  • An ordinary fine grinding machine is used. Of these, a pole mill is preferred.
  • a non-metallic ball such as alumina or agate or a pulverization container in order to avoid mixing metal powder.
  • the washing of the polymer is usually performed using water or a hydrophilic solvent.
  • the hydrophilic solvent include the above-mentioned hydrophilic alcohol solvents, hydrophilic nitrile solvents such as acetonitrile, hydrophilic ketone solvents such as aceton, hydrophilic sulfoxide solvents such as dimethyl sulfoxide, and hydrophilic carboxylic acid solvents such as acetic acid. Can be mentioned. Its usage is not limited.
  • the washed polymer is preferably used in the second step after drying.
  • a method of drying the polymer a method of drying the polymer at about 10 to 100 ° C. under ventilation or under reduced pressure, a method of drying the polymer at 70 to 10 ° C. under ventilation or under reduced pressure. Examples include a method of drying, a method of drying under supercritical conditions using carbon dioxide and the like.
  • the polymer obtained by drying may be pulverized.
  • the polymer obtained by the polymerization reaction is preferably washed, dried and further pulverized. It is also preferable to pulverize, wash and further dry the polymer obtained by the polymerization reaction.
  • the second step of the present invention is a step of heating the polymer obtained in the first step at 80 ° C. to 98 ° C. in an inert gas atmosphere. Examples of the inert gas include nitrogen and argon. The heating time is usually about 1 minute to 24 hours.
  • the heating is preferably performed using a firing furnace such as a rotary kiln, roller hearth kiln, pusher kiln, multi-stage furnace, fluidized furnace, high-temperature firing furnace or the like.
  • a firing furnace such as a rotary kiln, roller hearth kiln, pusher kiln, multi-stage furnace, fluidized furnace, high-temperature firing furnace or the like.
  • a single tally kiln is more preferable because a large amount of polymer can be easily heated.
  • a firing furnace for example, a method in which a polymer is placed in a firing furnace, the interior of the firing furnace is replaced with inert gas, and then heated to 800 ° C. to 98 ° C. and heated. Etc.
  • the polymer obtained in the first step may be used in the second step after being heated at 100 to 400 ° C. in an oxidizing gas atmosphere.
  • the oxidizing gas include air, H 2 0, C 0 2 and 0 2 .
  • the heating time is usually about 1 minute to 24 hours.
  • the heating furnace is usually used for such heating.
  • the polymer obtained in the first step is charged and heated in the range of 100 to 400 ° C.
  • the carbon obtained in the second step may be pulverized.
  • Examples of the pulverization method include the same method as the pulverization step exemplified in the first step.
  • the carbon of the present invention includes, for example, a dry battery, a piezoelectric element sensor, an electric double layer capacitor, a lithium ion capacitor, a lithium ion secondary battery, and a fuel cell. It can be used for electrode materials; carriers for supporting catalysts; chromatographic carriers; adsorbents and the like.
  • Example 1 EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.
  • Example 1 EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.
  • the obtained reaction mixture was extracted into a stainless steel container and further 8'0 °.
  • the mixture was incubated for 24 hours and reacted to obtain a network polymer.
  • the obtained polymer was roughly crushed with a pulverizer, and t tert -butyl alcohol was added.
  • the obtained mixture was kept at 60 ° C. for 1 hour with stirring, and then filtered to obtain a pulverized polymer.
  • the polymer was washed 3 times with tert-butyl alcohol and then dried at 60 ° C, 1.0 0 ⁇ ? & For 24 hours to obtain 86.3 parts by weight of a network polymer. .
  • the obtained net-like polymer was heated in a rotary kiln (manufactured by Advantech) in an argon atmosphere at a heating temperature of 975 ° C. for 1 hour to obtain carbon.
  • the obtained carbon was pulverized with a ball mill (agate pole, 28 rpm, 5 minutes) to obtain carbon fine particles.
  • the specific surface area of the obtained carbon fine particles was 16 m 2 / g.
  • Example 3 Carry out in the same way as in Example 1 except that the heating temperature in the second step was 900 ° C. Bonn fine particles were obtained. The specific surface area of the obtained carbon fine particles was 33 mg.
  • Example 3
  • Carbon microparticles were obtained in the same manner as in Example 1 except that the heating temperature in the second step was 825 ° C.
  • the specific surface area of the obtained carbon fine particles was 40 m 2 Z g.
  • carbon having a smaller specific surface area can be obtained, and can be used for electrode materials such as electric double layer capacitors, lithium ion capacitors and lithium ion secondary batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

アルキルフェノールとアルデヒド化合物とを重合させて、鎖状または網目状の重合物を得る第一工程と、得られた重合物を、不活性ガス雰囲気下、800℃~980℃で加熱する第二工程とを含むことを特徴とするカーボンの製造方法。

Description

明 細 書 カーボンの製造方法 技術分野
本発明は、 カーボンの製造方法に関する。 背景技術
力一ボンは、 電気二重層キャパシタ、 リチウムイオンキャパシタ、 リチウムィ オン二次電池等の電極用材料に使用される。 例えば、 特開 2 0 0 4— 2 7 3 9 4 2号には、 ピッチから製造された、 比表面積が 2 8 6〜 1 1 0 0 m 2Z gである カーボンを、 電極用材料として用いた電気二重層キャパシタが開示されている。 発明の開示
本発明は、
< 1 > アルキルフヱノールとアルデヒ ド化合物とを重合させて、 鎖状または網 目状の重合物を得る第一工程と、 得られた重合物を、 不活性ガス雰囲気下、 8 0 0 °C〜 9 8 0 °Cで加熱する第二工程とを含むことを特徴とするカーボンの製造方 法;
< 2 > アルキルフエノールが、 o—ク レゾール、 m—クレゾ一ノレおよび p —ク レゾールからなる群から選ばれる少なく とも 1種である < 1〉に記載の製造方 法;
< 3 > アルデヒ ド化合物がホルムアルデヒ ドであるく 1 >またはく 2〉に記載 の製造方法;
< 4 > 第二工程で得られたカーボンを粉砕する工程をさらに含む < 1 >〜く 3 〉のいずれかに記載の製造方法;
< 5 > 触媒の存在下に、 アルキルフ; nノールとアルデヒ ド化合物とを重合させ るく 1 >〜< 4〉のいずれかに記載の製造方法;
< 6 > 重合反応を、 静置しながら実施する < 1 >〜< 5〉のいずれかに記載の 製造方法;
< 7 > 得られた鎖状または網目状の重合物を洗浄した後、 第二工程.に用いるく 1 >〜< 6 >のいずれかに記載の製造方法;
< 8 > 得られた鎖状または網目状の重合物を乾燥した後、 第二工程に用いるく 1 >〜< 7〉のいずれかに記載の製造方法;
< 9 > 得られた鎖状または網目状の重合物を粉砕した後、 第二工程に用いる < 1 >〜< 8〉のいずれかに記載の製造方法;
< 1 0 > 得られた鎖状または網目状の重合物を洗浄し、 乾燥した後、 第二 工程に用いる < 1 >〜く 9 >のいずれかに記載の製造方法;
< 1 1 > 得られた鎖状または網目状の重合物を洗浄し、 乾燥し、 さらに粉 碎した後、 第二工程に用いる < 1 >〜< 1 0 >のいずれかに記載の製造方法; < 1 2 >得られた鎖状または網目状の重合物を粉砕し、 洗浄し、 さらに乾燥した 後、 第二工程に用いる < 1 >〜< 1 1〉のいずれかに記載の製造方法;
< 1 3 > 第一工程と第二工程の間に、第一工程で得られた鎖状または網目 状の重合物を、 酸化性ガス雰囲気下、 1 0 0〜4 0 0 °Cで加熱する工程を、 さら に含むく 1 >〜< 1 2〉のいずれかに記載の製造方法; を提供するものである。 発明を実施するための最良の形態
本発明の第一工程は、アルキルフヱノールとアルデヒ ド化合物とを重合させて、 鎖状または網目状の重合物を得る工程である。
アルキルフ ノールとしては、 直鎖状、 分岐状または環状の炭素数 1〜 1 2の アルキル基を 1〜 2個有するフエノールが挙げられる。 炭素数 1〜 1 2のアルキ ノレ基としては、 メチル基、 ェチ 7レ基、 イソプロピル基、 t e r t—ブチノレ基、 へ キシル基、 シクロへキシル基、 ォクチル基、 デシル基等が挙げられ、 炭素数 1〜 4のアルキル基が好ましく、 メチル基がより好ましい。
アルキルフエノールとしては、 炭素数 1〜 1 2のアルキル基を 1個有するフエ ノールが好ましく、 クレゾールがより好ましレ、。 アルキルフエノールの中には、 異性体が存在するが、 本発明には、 いずれかの異性体のみを用いてもよいし、 異 性体の混合物を用いてもよい。 例えば、 クレゾールには、 o —クレゾール、 in— クレゾールおよび p—クレゾールの 3つの異性体があるが、 いずれの異性体を用 いてもよいし、 2つまたは 3つの異性体の混合物を用いてもよい。 異性体の混合 物を用いる場合、 その混合比は限定されない。
アルデヒ ド化合物と しては、 ホルムアルデヒ ド、 ァセ トアルデヒ ド、 プロピオ ンアルデヒ ド、 n—ブチルアルデヒ ド、 ィソプチルアルデヒ ド、 n キシルァ ルデヒ ド、 n— ドデシルアルデヒ ド、 3—フエ-ルプロピオンアルデヒ ド、 5— ヒ ドロキシペンタナール等の炭素数 1 2 0の脂肪族アルデヒ ド、 ベンズアルデ ヒ ド、 1—ナフ トアルデヒ ド、 2—メチルベンズアルデヒ ド、 3—メチルベンズ アルデヒ ド、 4一メチルベンズアルデヒ ド、 2—ヒ ドロキシベンズアルデヒ ド、 3—ヒ ドロキシベンズアルデヒ ド、 4ーヒ ドロキシベンズァノレデヒ ド、 4一 t e r t _ブチルベンズアルデヒ ド、 4—フエ-ルペンズアルデヒ ド、 2—メ トキシ ベンズアルデヒ ド、 3—メ トキシベンズアルデヒ ド、 4ーメ トキシベンズァノレデ ヒ ド、 2—クロ口べンズァノレデヒ ド、 3—クロ口ベンズァノレデヒ ド、 4一クロ口 べンズアルデヒ ド、 2一ブロモベンズァノレデヒ ド、 3—ブロモベンズアル 'デヒ ド、 4一ブロモベンズアルデヒ ド、 2 _フルォロベンズアルデヒ ド、 3—フルォ口べ ンズアルデヒ ド、 4一フルォロベンズアルデヒ ド、 2—メチルチオべンズァノレデ ヒ ド、 3—メチルチオべンズァノレデヒ ド、 4ーメチルチオべンズアルデヒ ド、 2 —カルボキシベンズアルデヒ ド、 3—カルボキシベンズアルデヒ ド、 4 _カルボ キシベンズアルデヒ ド、 3—二 ト口べンズァノレデヒ ド、 4—ァミノべンズァノレデ ヒ ド、 4—ァセチルァミノべンズアルデヒ ド、 4一シァノベンズアルデヒ ド等の 炭素数 7 2 0の芳香族アルデヒ ドが挙げられる。 なかでも、 炭素数 1 2 0の 脂肪族アルデヒ ドが好ましく、炭素数 1 8の脂肪族アルデヒ ドがより好ましく、 炭素数 1 5の脂肪族アルデヒ ドが特に好ましい。
アルデヒ ド化合物として、 その水溶液を用いてもよいし、 無水物を用いてもよ レ、。 具体的には、 ホルムアルデヒ ドと して、 パラホルムアルデヒ ドやト リオキサ ン等を用いてもよい。
アルデヒ ド化合物と しては、 ホルムアルデヒ ドが特に好ましい。
アルデヒ ド化合物の使用量は、 アルキルフエノール 1モルに対して、 通常 0 . 5 3モル程度であり、 好ましくは 0 · 8 2 . 5モル程度である。 アルキルフエノールとアルデヒ ド化合物の重合反応は、 通常溶媒の存在下に実 施される。 溶媒としては、 水、 親水性溶媒およびこれらの混合溶媒が好ましい。 ここで、" 親水性溶媒" とは、 水と任意の割合で混合し得る有機溶媒を意味する。 かかる親水性溶媒としては、 メタノール、 エタノール、 イソプロパノール等の親 水性アルコール溶媒、 テトラヒ ドロフラン等の親水性エーテル溶媒等が挙げられ る。 溶媒としては、 炭素数 3以下の親水性アルコール溶媒または水と炭素数 3以 下の親水性アルコールとの混合溶媒が好ましく、 炭素数 3以下の親水性アルコー ル溶媒がより好ましい。
溶媒の使用量は、 アルキルフエノール 1重量部に対して、 通常 0 . 2〜 1 0重 量部、 好ましくは 1 . 2 5〜 5重量部である。
アルキルフエノールとアルデヒ ド化合物の重合反応は、 通常触媒の存在下に実 施される。 触媒としては、 水酸化リチウム、 水酸化ナトリウム、 水酸化カリウム 等のアルカリ金属水酸化物、 炭酸ナトリウム、 炭酸カリウム等のアルカリ金属炭 酸塩、 炭酸水素ナトリウム等のアルカリ金属炭酸水素塩、 アンモニア等の塩基性 触媒、 塩酸、 硫酸、 燐酸等の無機酸、 ギ酸、 酢酸、 シユウ酸等のカルボン酸、 p 一 トルエンスルホン酸等のスルホン酸等の酸性触媒が挙げられる。 塩基性触媒と しては、 アンモニアが好ましく、 酸性触媒としては、 カルボン酸が好ましい。 な かでも、 塩基性触媒が好ましく、 アンモニアがより好ましい。 塩基性触媒の存在 下に重合反応を行うことにより、 通常網目状の重合物が得られ、 酸性触媒の存在 下に重合反応を行うことにより、 通常鎖状の重合物が得られる。
触媒の使用量は、 アルキルフエノール' 1モルに対して、 通常 0 . 0 0 2〜 2モ ル、 好ましくは 0 . 0 1〜0 . 2モル、 より好ましくは 0 . 0 2〜 0 . 1モルで ある。
第一工程は、 通常、 アルキルフエノール、 アルデヒ ド化合物、 溶媒おょぴ触媒 を混合することにより実施される。 その混合順序は制限されない。 例えば、 アル キルフエノール、アルデヒ ド化合物、溶媒おょぴ触媒を混合し、通常 0〜 1 0 0 °C、 好ましくは 3 0〜 9 0 °Cで重合反応を行ってもよいし、 アルキルフエノール、 溶 媒および触媒の混合物に、 アルデヒ ド化合物を、 通常 0〜 1 0 0 °C、 好ましくは 3 0〜 9 0 °Cで加え、 重合反応を行ってもよい。 また、 アルデヒ ド化合物、 溶媒 および触媒の混合物に、 アルキルフエノールを、 通常 0〜 1 0 0 °C、 好ましくは 3 0〜 9 0 °Cで加え、 重合反応を行ってもよいし、 アルキルフエノール、 アルデ ヒ ド化合物および溶媒の混合物に、 触媒を、 通常 0〜 1 0 0 °C、 好ましくは' 3 0 〜 9 0 °Cで加え、 重合反応を行ってもよい。
特に、 アルキルフエノール、 溶媒および触媒の混合物に、 アルデヒ ド化合物を
3 0〜 9 0 °Cで加え、 重合反応を行うことが好ましい。
重合反応中に、 水等の貧溶媒を反応混合物中に加えてもよい。
重合反応中に、 反応温度を適宜変化させてもよい。 重合反応は、 攪拌しながら 実施してもよいし、 静置しながら実施してもよい。
反応時間は、 通常 1時間〜 1 0日間である。
かく して、 網目状または鎖状の重合物が得られる。 得られた重合物をそのまま 第二工程に用いてもよいが、 得られた重合物を洗浄した後、 第二工程に用いるこ とが好ましい。 また、得られた重合物を洗浄する前に、 あるいは、洗浄した後に、 粉砕することが好ましい。
重合物の粉砕は、衝撃摩擦粉砕機、遠心力粉砕機、ポールミル(チューブミル、 コンパウンドミル、 円錐形ボールミル、 ロッ ドミル、 遊星ミル)、 振動ミル、 コロ イ ドミル、 摩擦円盤ミル、 ジェットミル等の通常の微粉砕用の粉碎機が用いられ る。 なかでも、 ポールミルが好適である。 ボールミルを用いる場合、 金属粉の混 入を避けるために、 アルミナ、 メノウ等の非金属製のボールや粉砕容器を用いる ことが好ましい。
重合物の洗浄は、 通常水または親水性溶媒を用いて実施される。 親水性溶媒と しては、 上記親水性アルコール溶媒、 ァセトニトリル等の親水性二トリル溶媒、 ァセトン等の親水性ケトン溶媒、 ジメチルスルホキシド等の親水性スルホキシド 溶媒、 酢酸等の親水性カルボン酸溶媒等が挙げられる。 その使用量は制限されな い。
洗浄された重合物は、 乾燥した後、 第二工程に用いることが好ましい。 重合物 を乾燥する方法としては、 重合物を 1 0〜 1 0 0 °C程度で通風下または減圧下で 乾燥する方法、 重合物を一 7 0〜 1 0 °Cで通風下または減圧下で乾燥する方法、 二酸化炭素等を用いて、 超臨界状態下で乾燥する方法等が挙げられる。 乾燥して得られた重合物を、 粉砕してもよい。
重合反応により得られた重合物を、 洗浄し、 乾燥し、 さらに粉砕することが好 ましい。 また、 重合反応により得られた重合物を粉砕し、 洗浄し、 さらに乾燥す ることも好ましい。 本発明の第二工程は、前記第一工程で得られた重合物を、不活性ガス雰囲気下、 8 0 0 °C〜 9 8 0 °Cで加熱する工程である。 不活性ガスとしては、 窒素、 ァルゴ ン等が挙げられる。 加熱時間は、 通常 1分間〜 2 4時間程度である。
加熱は、 ロータ リ一キルン、 ローラーハースキルン、 プッシヤーキルン、 多段 炉、 流動炉、 高温焼成炉等の焼成炉を用いて行われることが好ましい。 特に、 口 一タリーキルンは、 大量の重合物を容易に加熱することができる点で、 より好ま しい。
焼成炉を用いる場合、 例えば、 焼成炉内に重合物を納め、 焼成炉内を不活性ガ スで置換した後、 . 8 0 0 °C〜 9 8 0 °Cに昇温し、 加熱する方法等により実施され る。 前記第一工程で得られた重合物を、 酸化性ガス雰囲気下、 1 0 0〜4 0 0 °Cで 加熱した後、 第二工程に用いてもよい。 酸化性ガスとしては、 空気、 H 2 0、 C 〇2、 〇2等が挙げられる。 加熱時間は、 通常 1分間〜 2 4時間程度である。 かか る加熱も、 通常上記した焼成炉が用いられる。 通常、 焼成炉内を酸化性ガスで置 換した後、 第一工程で得られた重合物を仕込み、 1 0 0〜4 0 0 °Cの範囲で加熱 される。引き続き、第二工程を行う場合は、焼成炉内を不活性ガスで置換した後、 8 0 0〜9 8 0 °Cに昇温し、 加熱すればよい。 第二工程で得られたカーボンを粉砕してもよい。 粉砕方法としては、 第一工程 において例示きれた粉砕工程と同様な方法が挙げられる。 本発明のカーボンは、 例えば、 乾電池、 圧電素子用センサー、 電気二重層キヤ パシタ、 リチウムイオンキャパシタ、 リチウムイオン二次電池及び燃料電池等の 電極用材料;触媒を担持するための担体; クロマトグラフ用担体;吸着剤等に使 用することができる。 実施例
以下、 実施例により本発明をさらに詳細に説明するが、 本発明はこれら実施例 に限定されるものではない。 実施例 1
(第一工程)
容器に、 m—タレゾールおよび p—タレゾールを 6 Z 4の比率で含むクレゾ一 ノレ (半井化学製) 7 2. 1重量部、 2 9重量%アンモニア水 1 · 5 3重量部およ び 3 7重量0 /0ホルムアルデヒ ド水溶液を、 クレゾ一ル 1モルに対して、 ホルムァ ルデヒ ド 2モルとなるように混合した。 得られた混合物を水 1 0 6重量部で希釈 した。 得られた混合物を 6 0°Cで 3 0分間保温し、 反応させた。
得られた反応混合物を、 ステンレス製容器に抜出し、 さらに、 8'0°。で24時 間保温し、 反応させ、 網目状の重合物を得た。 得られた重合物を粉砕機で粗砕し た後、 t e r t一ブチルアルコールを加えた。得られた混合物を、攪拌しながら、 6 0°Cで 1時間保温した後、 濾過し、 粉砕された重合物を得た。 該重合物を t e r t—プチルアルコールで 3回洗浄した後、 6 0°C、 1. 0 1^ ? &で2 4時間減 圧乾燥し、 網目状の重合物 8 6. 3重量部を得た。
(第二工程)
得られた網目状の重合物を、 アルゴン雰囲気下、 ロータリーキルン (アドバン テック製) 中で、 加熱温度 9 7 5°Cで 1時間加熱し、 カーボンを得た。 得られた カーボンをボールミル (メノウ製ポール、 2 8 r p m、 5分間) で粉砕し、 カー ボンの微粒子を得た。 得られたカーボンの微粒子の比表面積は、 1 6 m2 /gで あった。 実施例 2
第二工程の加熱温度を 9 0 0°Cとした以外は実施例 1と同様に実施して、 カー ボンの微粒子を得た。 得られたカーボンの微粒子の比表面積は、 3 3 mッ gで あった。 実施例 3
第二工程の加熱温度を 8 2 5 °Cとした以外は実施例 1と同様に実施して、 カー ボンの微粒子を得た。 得られたカーボンの微粒子の比表面積は、 4 0 m 2 Z gで あった。 産業上の利用可能性
本発明 よれば、より小さい値の比表面積を有するカーボンを得ることができ、 電気二重層キャパシタ、 リチウムイオンキャパシタ及びリチウムイオン二次電池 などの電極用材料に使用することができる。

Claims

請 求 の 範 囲
I . アルキルフエノールとアルデヒ ド化合物とを重合させて、鎖状ま たは網目状の重合物を得る第一工程と、得られた重合物を、不活性ガス雰囲気下、
8 0 0 °C〜 9 8 0 °Cで加熱する第二工程とを含むことを特徴とするカーボンの製 造方法。
2 . アルキルフエノールが、 o _ク レゾール、 m _タ レゾールおよび p—ク レゾールからなる群から選ばれる少なく とも 1種である請求項 1に記載の 製造方法。
3 . アルデヒ ド化合物がホルムアルデヒ ドである請求項 1または 2 に記載の製造方法。
4 . 第二工程で得られたカーボンを粉砕する工程をさらに含む請求 項 1に記載の製造方法。
5 . 触媒の存在下に、 アルキルフ; ノールとアルデヒ ド化合物とを重 合させる請求項 1に記載の製造方法。
6 . 重合反応を、 静置しながら実施する請求項 1に記載の製造方法。
7 . 得られた鎖状または網目状の重合物を洗浄した後、第二工程に用 いる請求項 1に記載の製造方法。
8 . 得られた鎖状または網目状の重合物を乾燥した後、第二工程に用 いる請求項 1に記載の製造方法。
9 . 得られた鎖状または網目状の重合物を粉砕した後、第二工程に用 いる請求項 1に記載の製造方法。
1 0 . 得られた鎖状または網目状の重合物を洗浄し、 乾燥した後、 第二 工程に用いる請求項 1に記載の製造方法。
I I . 得られた鎖状または網目状の重合物を洗浄し、 乾燥し、 さらに粉 砕した後、 第二工程に用いる請求項 1に記載の製造方法。
1 2 . 得られた鎖状または網目状の重合物を粉砕し、 洗浄し、 さらに乾 燥した後、 第二工程に用いる請求項 1に記載の製造方法。
1 3 . 第一工程と第二工程の間に、 第一工程で得られた鎖状または網目 状の重合物を、 酸化性ガス雰囲気下、 1 0 0〜4 0 0 °Cで加熱する工程を、 さら に含む請求項 1に記載の製造方法。
PCT/JP2009/056783 2008-04-02 2009-03-25 カーボンの製造方法 WO2009123251A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/935,514 US20110020209A1 (en) 2008-04-02 2009-03-25 Process for producing carbon
EP09726689A EP2261175A1 (en) 2008-04-02 2009-03-25 Carbon manufacturing method
CN2009801108491A CN101980958A (zh) 2008-04-02 2009-03-25 碳的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008095872 2008-04-02
JP2008-095872 2008-04-02

Publications (1)

Publication Number Publication Date
WO2009123251A1 true WO2009123251A1 (ja) 2009-10-08

Family

ID=41135618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056783 WO2009123251A1 (ja) 2008-04-02 2009-03-25 カーボンの製造方法

Country Status (7)

Country Link
US (1) US20110020209A1 (ja)
EP (1) EP2261175A1 (ja)
JP (1) JP2009263223A (ja)
KR (1) KR20100135832A (ja)
CN (1) CN101980958A (ja)
TW (1) TW200948712A (ja)
WO (1) WO2009123251A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7617005B2 (en) 2002-04-08 2009-11-10 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
CN106082165B (zh) * 2016-06-12 2018-06-01 太原理工大学 微介孔复合碳材料的制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63201008A (ja) * 1987-02-12 1988-08-19 Kanebo Ltd 分子ふるい炭素の製造法
JPH01258409A (ja) * 1988-04-08 1989-10-16 Asahi Glass Co Ltd 非水電解液を用いたエネルギー貯蔵装置
JPH04196069A (ja) * 1990-11-28 1992-07-15 Toshiba Battery Co Ltd 二次電池
JPH0616404A (ja) * 1992-06-26 1994-01-25 Bridgestone Corp 高純度炭素粉末、高純度炭化物粉末、高純度窒化物粉末及びこれらの成形焼結体の製造方法
JPH11116217A (ja) * 1997-10-16 1999-04-27 Sumitomo Durez Kk 粒状炭素材の製造方法
JP2001179101A (ja) * 1999-10-14 2001-07-03 Toda Kogyo Corp 多孔性機能粉体及びその製造法
JP2001288238A (ja) * 2000-04-05 2001-10-16 Sumitomo Durez Co Ltd フェノール樹脂硬化物及びそれを用いた活性炭
JP2004273942A (ja) 2003-03-11 2004-09-30 Honda Motor Co Ltd 電気二重キャパシタ
JP2007066669A (ja) * 2005-08-30 2007-03-15 Lignyte Co Ltd 電極材料、二次電池用電極、電気二重層キャパシタ分極性電極用炭素材料、電気二重層キャパシタ分極性電極
JP2007266158A (ja) * 2006-03-28 2007-10-11 Sumitomo Bakelite Co Ltd 電気二重層キャパシタ用炭素材及びその製造方法、これを含有する電気二重層キャパシタ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2322733A1 (en) * 1999-10-14 2001-04-14 Toda Kogyo Corporation Porous composite particles and process for producing the same
CN1830769A (zh) * 2006-03-15 2006-09-13 大连理工大学 一种高比表面积多孔炭材料的制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63201008A (ja) * 1987-02-12 1988-08-19 Kanebo Ltd 分子ふるい炭素の製造法
JPH01258409A (ja) * 1988-04-08 1989-10-16 Asahi Glass Co Ltd 非水電解液を用いたエネルギー貯蔵装置
JPH04196069A (ja) * 1990-11-28 1992-07-15 Toshiba Battery Co Ltd 二次電池
JPH0616404A (ja) * 1992-06-26 1994-01-25 Bridgestone Corp 高純度炭素粉末、高純度炭化物粉末、高純度窒化物粉末及びこれらの成形焼結体の製造方法
JPH11116217A (ja) * 1997-10-16 1999-04-27 Sumitomo Durez Kk 粒状炭素材の製造方法
JP2001179101A (ja) * 1999-10-14 2001-07-03 Toda Kogyo Corp 多孔性機能粉体及びその製造法
JP2001288238A (ja) * 2000-04-05 2001-10-16 Sumitomo Durez Co Ltd フェノール樹脂硬化物及びそれを用いた活性炭
JP2004273942A (ja) 2003-03-11 2004-09-30 Honda Motor Co Ltd 電気二重キャパシタ
JP2007066669A (ja) * 2005-08-30 2007-03-15 Lignyte Co Ltd 電極材料、二次電池用電極、電気二重層キャパシタ分極性電極用炭素材料、電気二重層キャパシタ分極性電極
JP2007266158A (ja) * 2006-03-28 2007-10-11 Sumitomo Bakelite Co Ltd 電気二重層キャパシタ用炭素材及びその製造方法、これを含有する電気二重層キャパシタ

Also Published As

Publication number Publication date
KR20100135832A (ko) 2010-12-27
US20110020209A1 (en) 2011-01-27
EP2261175A1 (en) 2010-12-15
JP2009263223A (ja) 2009-11-12
CN101980958A (zh) 2011-02-23
TW200948712A (en) 2009-12-01

Similar Documents

Publication Publication Date Title
Liu et al. Development of the applications of palladium on charcoal in organic synthesis
Lv et al. Direct synthesis of 2, 5-diformylfuran from fructose with graphene oxide as a bifunctional and metal-free catalyst
Yadav et al. Claisen‐Schmidt Condensation using Green Catalytic Processes: A Critical Review
US10407376B2 (en) Method to prepare phenolics from biomass
Hronec et al. Highly selective rearrangement of furfuryl alcohol to cyclopentanone
WO2010074177A1 (ja) アクリル酸の製造方法
EP2892867B1 (en) Cleavage of a beta-o-4 bond in ethers
US20190367470A1 (en) Method for preparing epsilon-caprolactone
WO2009044081A1 (fr) Procede de fabrication d&#39;acroleine a partir de glycerol
Nomura et al. Rapid base-catalyzed decarboxylation and amide-forming reaction of substituted cinnamic acids via microwave heating
Rekha et al. Synthesis of 2-substituted benzimidazoles and 1, 5-disubstituted benzodiazepines on alumina and zirconia catalysts
WO2008123530A1 (ja) スルホン酸基含有炭素質材料からなる固体酸触媒の製造方法およびその用途
Molleti et al. Green synthesis of veratraldehyde using potassium promoted lanthanum–magnesium mixed oxide catalyst
Pan et al. Rh (III)-Catalyzed regioselective C4 alkylation of indoles with allylic alcohols: direct access to β-indolyl ketones
Wang et al. Molecular oxygen-promoted synthesis of methyl levulinate from 5-hydroxymethylfurfural
Sobhani et al. Ionic liquids grafted onto graphene oxide as a new multifunctional heterogeneous catalyst and its application in the one-pot multi-component synthesis of hexahydroquinolines
JP2007137785A (ja) 多価アルコールの脱水方法
WO2009123251A1 (ja) カーボンの製造方法
Chen et al. Facile and Selective Synthesis of 2‐Substituted Benzimidazoles Catalyzed by FeCl3/Al2O3
Kantam et al. Catalysis in Water: Aldol‐Type Reaction of Aldehydes and Imines with Ethyl Diazoacetate Catalyzed by Highly Basic Magnesium/Lanthanum Mixed Oxide
US20190023678A1 (en) Aromatic compounds from furanics
Nadkarni et al. Synthesis of bis (indolyl) methanes catalyzed by surface modified zirconia
CN101831042B (zh) 一种高固体含量热塑性酚醛树脂的制备方法
CN109956889B (zh) 一种催化羟基醛选择氨氧化制备羟基腈的方法
JP2010215473A (ja) スルホン酸基含有炭素質材料成型体の製造方法およびその用途

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980110849.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09726689

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12935514

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009726689

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107023482

Country of ref document: KR

Kind code of ref document: A