WO2009123186A1 - 合わせガラス用中間膜、合わせガラス、及び、酸化亜鉛微粒子分散液 - Google Patents

合わせガラス用中間膜、合わせガラス、及び、酸化亜鉛微粒子分散液 Download PDF

Info

Publication number
WO2009123186A1
WO2009123186A1 PCT/JP2009/056641 JP2009056641W WO2009123186A1 WO 2009123186 A1 WO2009123186 A1 WO 2009123186A1 JP 2009056641 W JP2009056641 W JP 2009056641W WO 2009123186 A1 WO2009123186 A1 WO 2009123186A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminated glass
zinc oxide
oxide fine
group
interlayer film
Prior art date
Application number
PCT/JP2009/056641
Other languages
English (en)
French (fr)
Inventor
伊井大三
深谷重一
北野紘史
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41135557&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2009123186(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2009514569A priority Critical patent/JP5317965B2/ja
Priority to EP09728932A priority patent/EP2269962B1/en
Priority to MX2010008990A priority patent/MX2010008990A/es
Priority to US12/934,741 priority patent/US20110059320A1/en
Priority to CN2009801097995A priority patent/CN101977865B/zh
Publication of WO2009123186A1 publication Critical patent/WO2009123186A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10614Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising particles for purposes other than dyeing
    • B32B17/10633Infrared radiation absorbing or reflecting agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/04Compounds of zinc
    • C09C1/043Zinc oxide

Definitions

  • the present invention relates to an interlayer film for laminated glass excellent in dispersibility of zinc oxide fine particles, laminated glass, and a zinc oxide fine particle dispersion.
  • Laminated glass is safe because there is little scattering of glass fragments even if it is damaged by an external impact.
  • Laminated glass is widely used as a window glass for vehicles such as automobiles, aircraft, and buildings.
  • a laminated glass in which an interlayer film for laminated glass containing a plasticizer and a polyvinyl butyral resin is sandwiched between at least a pair of glasses can be used.
  • infrared rays cannot be sufficiently shielded.
  • the infrared wavelength region is longer than visible light and has a wavelength region of 780 nm or more.
  • the amount of infrared energy is about 10% of the amount of ultraviolet energy.
  • the ambient temperature rises. Therefore, for example, if the infrared rays transmitted through the windshield and side glass of the automobile are blocked, the temperature rise inside the automobile can be suppressed.
  • the area of the opening of an automobile or the like tends to increase, a reduction in the infrared transmittance of the laminated glass is required.
  • Patent Document 1 discloses an interlayer film for laminated glass containing heat shielding fine particles such as tin-doped indium oxide fine particles and antimony-doped tin oxide fine particles and a polyvinyl acetal resin. Laminated glass using an interlayer film for laminated glass in which heat shielding fine particles are dispersed has excellent heat shielding properties.
  • Patent Document 2 discloses a phosphate ester as a dispersant in order to improve dispersibility of heat shielding fine particles such as tin-doped indium oxide fine particles and antimony-doped tin oxide fine particles.
  • heat shielding fine particles such as tin-doped indium oxide fine particles and antimony-doped tin oxide fine particles.
  • the dispersibility of the zinc oxide fine particles is not improved even if the zinc oxide fine particles and the phosphate ester are combined.
  • An object of the present invention is to provide an interlayer film for laminated glass, laminated glass, and a zinc oxide fine particle dispersion liquid that are excellent in dispersibility of zinc oxide fine particles.
  • the present invention is an interlayer film for laminated glass containing zinc oxide fine particles containing a trivalent metal element, a thermoplastic resin, a dispersant, and a plasticizer, wherein the dispersant has the following general formula ( An interlayer film for laminated glass having the structure represented by 1) and having an HLB value of 8 to 12.
  • R 1 represents an alkyl group having 5 to 14 carbon atoms or an aryl group having 6 to 14 carbon atoms
  • R 2 represents an alkylene group having 2 to 5 carbon atoms
  • R 3 represents a hydrogen atom or R 4 (OR 5 ) n—
  • R 4 represents an alkyl group having 5 to 14 carbon atoms or an aryl group having 6 to 14 carbon atoms
  • R 5 represents an alkylene group having 2 to 5 carbon atoms.
  • n is an integer of 1 or more.
  • the interlayer film for laminated glass of the present invention contains zinc oxide fine particles containing a trivalent metal element, a thermoplastic resin, a dispersant, and a plasticizer.
  • the interlayer film for laminated glass of the present invention contains zinc oxide fine particles containing a trivalent metal element.
  • the interlayer film for laminated glass of the present invention can obtain an interlayer film for laminated glass having excellent dispersibility of the zinc oxide fine particles by combining the zinc oxide fine particles and a specific dispersant described later.
  • the zinc oxide fine particles containing the trivalent metal element are preferably zinc oxide fine particles doped with the trivalent metal element.
  • the trivalent metal element is not particularly limited, and examples thereof include gallium, aluminum, and indium. Among these, the trivalent metal element is preferably gallium. Further, two or more kinds of zinc oxide fine particles having different trivalent metal elements may be used in combination. Further, the zinc oxide fine particles containing the trivalent metal element and the zinc oxide fine particles containing an element other than the trivalent metal element may be used in combination, and the trivalent metal element and the trivalent metal element may be used in combination. Zinc oxide fine particles containing an element other than a metal element may be used.
  • the content of the trivalent metal element in the zinc oxide fine particles containing the trivalent metal element is not particularly limited, but the trivalent metal element accounts for the total number of moles of the zinc element and the trivalent metal element.
  • the preferable lower limit of the mole ratio is 1.0 mol%, and the preferable upper limit is 10 mol%. When the ratio of the number of moles of the trivalent metal element is less than 1.0 mol%, the infrared transmittance of the laminated glass may not be reduced, and it may be difficult to produce zinc oxide fine particles exceeding 10 mol%. There is.
  • the more preferable lower limit of the mole ratio is 1.5 mol%, the still more preferable lower limit is 2.0 mol%, the more preferable upper limit is 8.0 mol%, and the still more preferable lower limit is 6.0 mol%.
  • the method for producing the zinc oxide fine particles containing the trivalent metal element is not particularly limited, and a conventionally known method can be used.
  • examples of the method for producing zinc oxide fine particles containing the trivalent metal element include a coprecipitation method, a sintering method, an arc type discharge gas phase method, and a spray pyrolysis method.
  • an aqueous solution containing a water-soluble zinc compound such as zinc sulfate, zinc nitrate, zinc chloride, zinc carbonate, and zinc acetate and a water-soluble trivalent metal element salt is prepared.
  • a coprecipitate of the zinc compound is formed.
  • zinc oxide fine particles containing a trivalent metal element can be produced.
  • zinc oxide fine particles containing a trivalent metal element can be produced by reacting zinc vapor and trivalent metal element vapor with an oxidizing gas.
  • an aqueous solution containing a water-soluble zinc compound and a water-soluble trivalent metal element salt is finely sprayed into a flame, high-temperature combustion gas, or plasma using a nozzle.
  • the zinc oxide fine particles containing the trivalent metal element are obtained by thermally decomposing the water-soluble trivalent metal element salt or oxidizing the metal ion of the trivalent metal element with an oxidizing gas.
  • the salt of the water-soluble trivalent metal element is not particularly limited, and examples thereof include inorganic salts and organic salts of the metal elements.
  • the inorganic salt of the metal element is not particularly limited, and examples thereof include halides, carbonates, bicarbonates, nitrates, sulfates, phosphates, silicates, borates, and the like of the metal elements.
  • the organic salt of the metal element is not particularly limited, and examples thereof include organic acid salts such as acetate, oxalate, formate, glycolate, and citrate.
  • the metal element salt may be a double salt of an inorganic salt and an organic salt.
  • the volume average particle diameter of the zinc oxide fine particles containing the trivalent metal element is not particularly limited, but a preferable upper limit is 500 nm. When the said volume average particle diameter exceeds 500 nm, the visible light transmittance
  • a more preferable upper limit of the volume average particle diameter is 200 nm, a still more preferable upper limit is 100 nm, and a particularly preferable upper limit is 60 nm.
  • the content of the zinc oxide fine particles containing the trivalent metal element in the interlayer film for laminated glass of the present invention is not particularly limited, but a preferred lower limit is 0.01 parts by weight with respect to 100 parts by weight of the thermoplastic resin, A preferred upper limit is 5.0 parts by weight. If the content of the zinc oxide fine particles containing the trivalent metal element is less than 0.01 parts by weight, the infrared transmittance of the laminated glass may not be lowered. When the content of the zinc oxide fine particles containing the trivalent metal element exceeds 5.0 parts by weight, the visible light transmittance of the laminated glass may be lowered.
  • the minimum with more preferable content of the zinc oxide fine particle containing the said trivalent metal element is 0.03 weight part, and a more preferable upper limit is 3.0 weight part.
  • the interlayer film for laminated glass of the present invention contains a dispersant.
  • the dispersant has a structure represented by the following general formula (1) and has an HLB value of 8 to 12.
  • R 1 represents an alkyl group having 5 to 14 carbon atoms or an aryl group having 6 to 14 carbon atoms
  • R 2 represents an alkylene group having 2 to 5 carbon atoms
  • R 3 represents a hydrogen atom or R 4 (OR 5 ) n—
  • R 4 represents an alkyl group having 5 to 14 carbon atoms or an aryl group having 6 to 14 carbon atoms
  • R 5 represents an alkylene group having 2 to 5 carbon atoms.
  • n is an integer of 1 or more.
  • the interlayer film for laminated glass of the present invention can provide an interlayer film for laminated glass having excellent dispersibility of the zinc oxide fine particles by combining the dispersant and the zinc oxide fine particles.
  • R 1 and R 4 in the general formula (1) are alkyl groups
  • the lower limit of the carbon number of R 1 and R 4 in the general formula (1) is 5, and the upper limit is 14.
  • the carbon number of R 1 and R 4 is less than 5, the hydrophilicity of the alkyl group of the dispersant becomes strong, so the dispersant may not be compatible with the thermoplastic resin or the plasticizer. As a result, the visible light transmittance of the laminated glass is lowered.
  • the carbon number of R 1 and R 4 exceeds 14 the lipophilicity of the alkyl group of the dispersant becomes strong, so that the dispersant may not be compatible with the thermoplastic resin or the plasticizer. As a result, the visible light transmittance of the laminated glass is lowered.
  • R 1 and R 4 may be the same alkyl group or different alkyl groups, but are preferably the same alkyl group.
  • R 1 and R 4 in the general formula (1) are aryl groups
  • the lower limit of the carbon number of R 1 and R 4 in the general formula (1) is 6, and the upper limit is 14.
  • the carbon number of R 1 and R 4 exceeds 14, the lipophilicity of the aryl group of the dispersant becomes strong, so that the dispersant may not be compatible with the thermoplastic resin or the plasticizer. As a result, the visible light transmittance of the laminated glass is lowered.
  • the preferable lower limit of the carbon number of R 1 and R 4 is 7, a more preferable lower limit is 9, and a particularly preferable lower limit is 11.
  • R 1 and R 4 in the general formula (1) are a 2-ethylhexyl group or a tridecyl group.
  • R 1 and R 4 may be the same aryl group or different aryl groups, but are preferably the same aryl group.
  • R 2 and R 5 in the general formula (1) represent an alkylene group having 2 to 5 carbon atoms.
  • R 2 and R 5 are preferably an alkylene group having 2 to 4 carbon atoms, more preferably an ethylene group, a propylene group or a butylene group, still more preferably an ethylene group or a propylene group, Particularly preferred is a group.
  • R 2 and R 5 may be the same alkylene group or different alkylene groups, but are preferably the same alkylene group.
  • n is an integer of 1 or more.
  • N in the general formula (1) is related to the HLB value of the dispersant.
  • n in the general formula (1) increases, the molecular weight of the hydrophilic group of the dispersant increases. For this reason, the HLB value of the dispersant increases.
  • n in the said General formula (1) becomes small, the molecular weight of the hydrophilic group of the said dispersing agent will reduce. For this reason, the HLB value of the dispersant becomes small.
  • n is 0, the dispersant is less likely to adhere to the zinc oxide fine particles, and the zinc oxide fine particles aggregate.
  • the preferable upper limit of n in the general formula (1) is 50, and the more preferable upper limit is 20.
  • the dispersing agent adheres too much to the zinc oxide fine particles, and thus the zinc oxide fine particles may aggregate.
  • the HLB value can be adjusted by controlling the value of n in the general formula (1).
  • the said HLB value is controllable by adjusting the compounding ratio of the said dispersing agent.
  • the lower limit of the HLB value of the dispersant is 8 and the upper limit is 12.
  • the HLB value is less than 8
  • the lipophilicity of the dispersant becomes strong, so that the dispersant is hardly compatible with a thermoplastic resin or a plasticizer.
  • the visible light transmittance of the laminated glass is lowered.
  • the HLB value exceeds 12, since the hydrophilicity of the dispersant becomes strong, the dispersant is hardly compatible with a thermoplastic resin or a plasticizer.
  • the preferable lower limit of the HLB value is 8.5, the more preferable lower limit is 9, the preferable upper limit is 11, and the more preferable upper limit is 10.
  • the HLB value of this invention is defined by the following formula
  • HLB value 20 ⁇ (molecular weight of hydrophilic group of dispersant / molecular weight of dispersant)
  • the molecular weight of the hydrophilic group means the sum of atomic weights of the — (OR 2 ) n — moiety and the — (OR 5 ) n — moiety.
  • the HLB value of this invention is defined by the following formula
  • equation. HLB value 20 ⁇ (number average molecular weight of hydrophilic group of dispersant / number average molecular weight of dispersant)
  • R 1 is an isobutyl group having 5 carbon atoms (R 2 is an ethylene group, R 3 is a hydrogen atom, and R 4 (OR 5 ). a mixture with n ⁇ , R 4 is an isobutyl group, R 5 is an ethylene group, an HLB value is 11.0, and n is an integer of 1 or more.
  • R 1 is 2-ethylhexyl having 8 carbon atoms.
  • a dispersant (R 2 is an ethylene group, R 3 is a mixture of a hydrogen atom and R 4 (OR 5 ) n- , R 4 is a 2-ethylhexyl group, R 5 is an ethylene group, and the HLB value is 10.0.
  • R 1 is a lauryl group having 12 carbon atoms (R 2 is an ethylene group, R 3 is a hydrogen atom and R 4 (OR 5 ) n ⁇ mixture of, R 4 is a lauryl group, R 5 is ethylene group, the HLB value .0, n is an integer of 1 or more), the general formula (dispersing agent R 1 is tridecyl group of 13 carbon atoms in 1) (R 2 is an ethylene group, R 3 is a hydrogen atom and R 4 (OR 5) a mixture with n ⁇ , R 4 is a tridecyl group, R 5 is an ethylene group, an HLB value is 9.4, and n is an integer of 1 or more.
  • R 1 is an octylphenyl group having 14 carbon atoms.
  • R 2 is an ethylene group
  • R 3 is a mixture of a hydrogen atom and R 4 (OR 5 ) n-
  • R 4 is an octylphenyl group
  • R 5 is an ethylene group
  • an HLB value is 12.0
  • R 1 is a 2-ethylhexyl group having 8 carbon atoms
  • R 2 is a propylene group
  • R 3 is a hydrogen atom and R 4 (OR 5 ) n ⁇ mixture
  • R 4 is 2-ethylhexyl group
  • R 5 is a propylene group and HLB value is 9.4, n is an integer of 1 or more
  • dispersing agent R 1 is a 2-ethylhexyl group having 8 carbon atoms in the general formula (1)
  • R 2 is butylene group
  • R 3 are hydrogen atoms
  • R 3 are
  • the dispersant having the structure represented by the above general formula (1) is commercially available from, for example, Daiichi Kogyo Seiyaku Co., Ltd., Toho Chemical Co., Ltd. Most of the commercially available dispersants having the structure represented by the general formula (1) are a mixture of a dispersant in which R 3 is a hydrogen atom and a dispersant in which R 4 (OR 5 ) n —. Or a mixture of a plurality of dispersants having different R 1 and n.
  • the content of the dispersant in the interlayer film for laminated glass of the present invention is not particularly limited, but a preferable lower limit is 1.0 part by weight and a preferable upper limit is 50 parts by weight with respect to 100 parts by weight of the zinc oxide fine particles. .
  • a preferable lower limit is 1.0 part by weight and a preferable upper limit is 50 parts by weight with respect to 100 parts by weight of the zinc oxide fine particles.
  • the content of the dispersant is less than 1.0 part by weight, the dispersibility of the zinc oxide fine particles is lowered, and the visible light transmittance of the laminated glass may be lowered.
  • the content of the dispersant exceeds 50 parts by weight, the haze of the laminated glass may increase, or the adhesive force between the interlayer film for laminated glass and the glass may decrease.
  • the more preferable lower limit of the content of the dispersant is 2.0 parts by weight, the still more preferable lower limit is 3.0 parts by weight, the more preferable upper limit is 40 parts by weight, and the still more
  • the interlayer film for laminated glass of the present invention contains a thermoplastic resin.
  • the thermoplastic resin is not particularly limited, and examples thereof include polyvinyl acetal resin, ethylene-vinyl acetate copolymer resin, ethylene-acrylic copolymer resin, polyurethane resin, polyurethane resin containing sulfur element, and polyvinyl alcohol resin. It is done. Especially, since the adhesive force with respect to glass is excellent, polyvinyl acetal resin is preferable.
  • the polyvinyl acetal resin can be produced by acetalizing polyvinyl alcohol with an aldehyde.
  • the said polyvinyl acetal resin may use 2 or more types together as needed.
  • the preferable lower limit of the degree of acetalization of the polyvinyl acetal resin is 40 mol%, the preferable upper limit is 85 mol%, the more preferable lower limit is 60 mol%, and the more preferable upper limit is 75 mol%.
  • the polyvinyl alcohol can be produced by saponifying polyvinyl acetate.
  • the saponification degree of the polyvinyl alcohol is preferably 80 to 99.8 mol%.
  • the preferable lower limit of the polymerization degree of the polyvinyl alcohol is 200, and the preferable upper limit is 3000.
  • the polymerization degree is less than 200, the penetration resistance of the laminated glass may be lowered.
  • the more preferable lower limit of the degree of polymerization is 500, and the more preferable upper limit is 2000.
  • the aldehyde is not particularly limited, but an aldehyde having 1 to 10 carbon atoms is preferable.
  • the aldehyde having 1 to 10 carbon atoms is not particularly limited.
  • n-butyraldehyde, n-hexylaldehyde, and n-valeraldehyde are preferable, and n-butyraldehyde having 4 carbon atoms is more preferable.
  • These aldehydes may be used alone or in combination of two or more.
  • the interlayer film for laminated glass of the present invention contains a plasticizer.
  • the plasticizer is not particularly limited, and examples thereof include organic ester plasticizers such as monobasic organic acid esters and polybasic organic acid esters, phosphoric acid plasticizers such as organic phosphoric acid plasticizers and organic phosphorous acid plasticizers, and the like. Is mentioned.
  • the monobasic organic acid ester is not particularly limited.
  • glycol such as triethylene glycol, tetraethylene glycol, tripropylene glycol, butyric acid, isobutyric acid, caproic acid, 2-ethylbutyric acid, heptylic acid, n-octyl
  • glycol esters obtained by reaction with monobasic organic acids such as acid, 2-ethylhexyl acid, pelargonic acid (n-nonyl acid), and decyl acid.
  • triethylene glycol dicaproic acid ester triethylene glycol di-2-ethylbutyric acid ester, triethylene glycol di-n-octylic acid ester, triethylene glycol di-2-ethylhexyl acid ester, etc. Esters are preferred.
  • the polybasic organic acid ester is not particularly limited.
  • an ester compound of a polybasic organic acid such as adipic acid, sebacic acid or azelaic acid and an alcohol having a linear or branched structure having 4 to 8 carbon atoms.
  • dibutyl sebacic acid ester, dioctyl azelaic acid ester, dibutyl carbitol adipic acid ester and the like are preferable.
  • the organic ester plasticizer is not particularly limited, and triethylene glycol di-2-ethylbutyrate, triethylene glycol di-2-ethylhexanoate, triethylene glycol dicaprylate, triethylene glycol di-n-octanoate, Triethylene glycol di-n-heptanoate, tetraethylene glycol di-n-heptanoate, dibutyl sebacate, dioctyl azelate, dibutyl carbitol adipate, ethylene glycol di-2-ethylbutyrate, 1,3-propylene glycol di-2 -Ethyl butyrate, 1,4-butylene glycol di-2-ethyl butyrate, 1,2-butylene glycol di-2-ethylene butyrate, diethylene glycol di-2-ethyl butyrate, diethylene glycol di- -Ethylhexanoate, dipropylene glycol di-2-ethylbutyrate, triethylene glycol
  • the organophosphate plasticizer is not particularly limited, and examples thereof include tributoxyethyl phosphate, isodecylphenyl phosphate, triisopropyl phosphate, and the like.
  • the plasticizers are dihexyl adipate (DHA), triethylene glycol di-2-ethylhexanoate (3GO), tetraethylene glycol di-2-ethylhexanoate (4GO), triethylene glycol di-2-ethylbutyrate.
  • DHA dihexyl adipate
  • 3GO triethylene glycol di-2-ethylhexanoate
  • 4GO tetraethylene glycol di-2-ethylhexanoate
  • triethylene glycol di-2-ethylbutyrate triethylene glycol di-2-ethylbutyrate
  • rate (3GH) tetraethylene glycol di-2-ethylbutyrate
  • 4GH tetraethylene glycol diheptanoate
  • G7 triethylene glycol diheptanoate
  • triethylene glycol di-2-ethylbutyrate (3GH) triethylene glycol di-2-ethylhexa Diester compounds such as noate (4GO) and tetraethylene glycol diheptanoate (4G7) are preferred, and tetraethylene glycol di-2-ethylhexanoate (4GO), tetraethylene glycol diheptanoate (4G7), tri Ethylene glycol di-2-ethy
  • the content of the plasticizer in the interlayer film for laminated glass of the present invention is not particularly limited, but a preferable lower limit is 25 parts by weight and a preferable upper limit is 60 parts by weight with respect to 100 parts by weight of the thermoplastic resin.
  • a preferable lower limit is 25 parts by weight
  • a preferable upper limit is 60 parts by weight with respect to 100 parts by weight of the thermoplastic resin.
  • the content of the plasticizer is less than 25 parts by weight, the penetration resistance of the laminated glass may be lowered.
  • the content of the plasticizer exceeds 60 parts by weight, the plasticizer may bleed out.
  • the minimum with more preferable content of the said plasticizer is 30 weight part, and a more preferable upper limit is 50 weight part.
  • the interlayer film for laminated glass of the present invention may contain a heat ray absorbent other than the zinc oxide fine particles containing the trivalent metal element.
  • the heat ray absorbent is not particularly limited, and examples thereof include tin-doped indium oxide fine particles, antimony-doped tin oxide fine particles, tungsten oxide fine particles doped with metal elements, lanthanum hexaboride fine particles, and phthalocyanine compounds.
  • the said heat ray absorber is a tin dope indium oxide fine particle.
  • the interlayer film for laminated glass of the present invention comprises a dispersion aid, an antioxidant, a light stabilizer, a flame retardant, an antistatic agent, an adhesive strength modifier, a moisture-resistant agent, a heat ray reflective agent, a fluorescent whitening agent, a blue pigment, and the like.
  • An additive may be contained.
  • the interlayer film for laminated glass of the present invention may contain the above dispersion aid.
  • the said dispersion auxiliary agent is not specifically limited, Alcohol etc. are mentioned.
  • the alcohol is not particularly limited.
  • Examples include hexanol, nonanol, n-decanol, undecanol, trimethylnonyl
  • the interlayer film for laminated glass of the present invention may be a single layer structure consisting of only one layer or a multilayer structure in which a plurality of layers are laminated.
  • the interlayer film for laminated glass of the present invention contains zinc oxide fine particles containing a trivalent metal element, a thermoplastic resin, a dispersant having a structure represented by the general formula (1), and a plasticizer.
  • a multilayer structure in which two or more resin layers including a heat ray shielding layer are laminated may be used.
  • the multilayer structure may be formed by laminating two or more resin layers including at least a heat ray shielding layer.
  • the multilayer structure preferably has at least three resin layers.
  • any one of the outermost layer, the intermediate layer, and the outermost layer may be a heat ray shielding layer.
  • it is a polyvinyl acetal resin having a hydroxyl group content of 15 to 25 mol%, an acetylation degree of 8 to 18 mol%, and an acetalization degree of 60 to 71 mol%, and the above plasticizer is contained in 100 parts by weight of the polyvinyl acetal resin.
  • the intermediate layer has an amount of 50 to 70 parts by weight, the sound insulation of the laminated glass can be improved.
  • the method for producing the interlayer film for laminated glass of the present invention is not particularly limited.
  • a zinc oxide fine particle dispersion containing the zinc oxide fine particles containing the trivalent metal element, the dispersant, and the plasticizer is prepared.
  • the zinc oxide fine particle dispersion, the plasticizer, and the thermoplastic resin are kneaded to form an interlayer film for laminated glass.
  • the kneading method is not particularly limited, and examples thereof include a method using an extruder, a plastograph, a kneader, a Banbury mixer, a calender roll, and the like. Of these, a method using an extruder is preferred.
  • molding the intermediate film for laminated glasses is not specifically limited, For example, an extrusion method, a calendar method, a press method etc. are mentioned.
  • the zinc oxide fine particles are uniformly dispersed. Therefore, the laminated glass using the interlayer film for laminated glass of the present invention has extremely high visible light transmittance. Laminated glass using the interlayer film for laminated glass of the present invention is also one aspect of the present invention.
  • the laminated glass of the present invention is a laminated glass in which the interlayer film for laminated glass of the present invention is sandwiched between at least a pair of glasses.
  • the glass plate used for the laminated glass of the present invention is not particularly limited. For example, float plate glass, polished plate glass, template glass, netted glass, lined plate glass, colored plate glass, heat ray absorbing glass, heat ray reflecting glass, green glass. Inorganic glass such as, and plastics plates such as polycarbonate and polyacrylate.
  • the method for producing the laminated glass of the present invention is not particularly limited, and a conventionally known method can be used.
  • the laminated glass of the present invention uses the interlayer film for laminated glass of the present invention, it can be suitably used for a windshield of a vehicle such as an automobile.
  • a zinc oxide fine particle dispersion in which the zinc oxide fine particles are dispersed that is, a zinc oxide fine particle dispersion containing a zinc oxide fine particle containing a trivalent metal element, a dispersant, and a plasticizer.
  • the dispersion of zinc oxide fine particles having the structure represented by the general formula (1) and having an HLB value of 8 to 12 is also one aspect of the present invention.
  • the intermediate film for laminated glasses excellent in the dispersibility of a zinc oxide fine particle, a laminated glass, and a zinc oxide fine particle dispersion can be provided.
  • Example 1 Preparation of zinc oxide fine particle dispersion 30 parts by weight of zinc oxide fine particles (volume average particle diameter 20 nm) containing 4 mol% of gallium as a trivalent metal element and triethylene glycol di-2-ethylhexa as a plasticizer 267 parts by weight of noate, and polyoxyethylene alkyl ether phosphate ester as a dispersant (in formula (1), R 1 is a 2-ethylhexyl group having 8 carbon atoms, R 2 is an ethylene group, R 3 is a hydrogen atom and R 4 (OR 5 ) n -mixture, 3 parts by weight of R 4 is 2-ethylhexyl group, R 5 is ethylene group, HLB value is 10 and n is an integer of 1 or more) and 1125 parts by weight of zirconia beads To obtain a mixture. The obtained mixture was dispersed with a batch type bead mill for 4 hours to prepare a zinc oxide fine particle dispersion.
  • a dispersant in
  • thermoplastic resin composition is obtained by mixing.
  • the obtained thermoplastic resin composition was molded using a biaxial anisotropic extruder to produce an interlayer film for laminated glass having a film thickness of 760 ⁇ m.
  • Example 2 As a dispersant, polyoxyethylene alkyl ether phosphate (in formula (1), R 1 is a tridecyl group having 13 carbon atoms, R 2 is an ethylene group, R 3 is a hydrogen atom and R 4 (OR 5 ) n- Zinc oxide fine particle dispersion, for laminated glass, in the same manner as in Example 1 except that the mixture, R 4 is a tridecyl group, R 5 is an ethylene group, HLB value is 9.4, and n is an integer of 1 or more) An interlayer film and a laminated glass were produced.
  • R 1 is a tridecyl group having 13 carbon atoms
  • R 2 is an ethylene group
  • R 3 is a hydrogen atom
  • R 4 OR 5
  • n- Zinc oxide fine particle dispersion for laminated glass, in the same manner as in Example 1 except that the mixture, R 4 is a tridecyl group, R 5 is an ethylene group, HLB value is 9.4, and n is an integer
  • Example 3 As a dispersant, polyoxyethylene alkyl ether phosphate ester (in the general formula (1), R 1 is a lauryl group having 12 carbon atoms, R 2 is an ethylene group, R 3 is a hydrogen atom and R 4 (OR 5 ) n- Zinc oxide fine particle dispersion and laminated glass in the same manner as in Example 1 except that the mixture, R 4 is lauryl group, R 5 is ethylene group, HLB value is 8.0, and n is an integer of 1 or more) An interlayer film and a laminated glass were produced.
  • R 1 is a lauryl group having 12 carbon atoms
  • R 2 is an ethylene group
  • R 3 is a hydrogen atom
  • R 4 OR 5 ) n- Zinc oxide fine particle dispersion and laminated glass in the same manner as in Example 1 except that the mixture, R 4 is lauryl group, R 5 is ethylene group, HLB value is 8.0, and n is an integer of 1 or more
  • Example 4 As a dispersant, polyoxyethylene alkyl ether phosphate ester (in the general formula (1), R 1 is an isobutyl group having 5 carbon atoms, R 2 is an ethylene group, R 3 is a hydrogen atom and R 4 (OR 5 ) n- Zinc oxide fine particle dispersion, for laminated glass, in the same manner as in Example 1 except that the mixture, R 4 is an isobutyl group, R 5 is an ethylene group, HLB value is 11.0, and n is an integer of 1 or more) An interlayer film and a laminated glass were produced.
  • R 1 is an isobutyl group having 5 carbon atoms
  • R 2 is an ethylene group
  • R 3 is a hydrogen atom
  • Example 5 As a dispersant, polyoxyethylene alkyl ether phosphate ester (in the general formula (1), R 1 is an octylphenyl group having 14 carbon atoms, R 2 is an ethylene group, R 3 is a hydrogen atom, R 4 (OR 5 ) n -and In the same manner as in Example 1 except that R 4 is an octylphenyl group, R 5 is an ethylene group, HLB value is 12.0, and n is an integer of 1 or more. An interlayer film for glass and a laminated glass were produced.
  • thermoplastic resin composition was obtained by mixing 100 parts by weight of polyvinyl butyral resin and 40 parts by weight of triethylene glycol di-2-ethylhexanoate. An interlayer film for laminated glass and a laminated glass were produced.
  • Example 6 The zinc oxide fine particles containing 4 mol% of gallium as a trivalent metal element are changed to zinc oxide fine particles (volume average particle diameter of 20 nm) containing 4 mol% of aluminum as a trivalent metal element.
  • a zinc oxide fine particle dispersion, an interlayer film for laminated glass, and a laminated glass were produced in the same manner as in Example 1 except that the adjustment was performed as described above.
  • Example 7 The zinc oxide fine particles containing 4 mol% of gallium as a trivalent metal element are changed to zinc oxide fine particles (volume average particle diameter of 20 nm) containing 4 mol% of aluminum as a trivalent metal element.
  • a zinc oxide fine particle dispersion, an interlayer film for laminated glass, and a laminated glass were produced in the same manner as in Example 2 except that the adjustment was performed as described above.
  • Example 8 The zinc oxide fine particles containing 4 mol% of gallium as a trivalent metal element are changed to zinc oxide fine particles (volume average particle diameter of 20 nm) containing 4 mol% of aluminum as a trivalent metal element.
  • a zinc oxide fine particle dispersion, an interlayer film for laminated glass, and a laminated glass were produced in the same manner as in Example 3 except that the adjustment was performed as described above.
  • Example 9 The zinc oxide fine particles containing 4 mol% of gallium as a trivalent metal element are changed to zinc oxide fine particles (volume average particle diameter of 20 nm) containing 4 mol% of aluminum as a trivalent metal element.
  • a zinc oxide fine particle dispersion, an interlayer film for laminated glass, and a laminated glass were produced in the same manner as in Example 4 except that the adjustment was performed as described above.
  • Example 10 The zinc oxide fine particles containing 4 mol% of gallium as a trivalent metal element are changed to zinc oxide fine particles (volume average particle diameter of 20 nm) containing 4 mol% of aluminum as a trivalent metal element.
  • a zinc oxide fine particle dispersion, an interlayer film for laminated glass, and a laminated glass were produced in the same manner as in Example 5 except that the adjustment was performed as described above.
  • Example 2 The same evaluation as in Example 1 was performed on the zinc oxide fine particle dispersions and laminated glass obtained in Examples 6 to 10. The results are shown in Table 2.
  • Example 11 The zinc oxide fine particles containing 4 mol% of gallium as a trivalent metal element are changed to zinc oxide fine particles (volume average particle diameter 20 nm) containing 4 mol% of indium as a trivalent metal element, and the composition ratios shown in Table 3 are obtained.
  • a zinc oxide fine particle dispersion, an interlayer film for laminated glass, and a laminated glass were produced in the same manner as in Example 1 except that the adjustment was performed as described above.
  • Example 12 The zinc oxide fine particles containing 4 mol% of gallium as a trivalent metal element are changed to zinc oxide fine particles (volume average particle diameter 20 nm) containing 4 mol% of indium as a trivalent metal element, and the composition ratios shown in Table 3 are obtained.
  • a zinc oxide fine particle dispersion, an interlayer film for laminated glass, and a laminated glass were produced in the same manner as in Example 2 except that the adjustment was performed as described above.
  • Example 13 The zinc oxide fine particles containing 4 mol% of gallium as a trivalent metal element are changed to zinc oxide fine particles (volume average particle diameter 20 nm) containing 4 mol% of indium as a trivalent metal element, and the composition ratios shown in Table 3 are obtained.
  • a zinc oxide fine particle dispersion, an interlayer film for laminated glass, and a laminated glass were produced in the same manner as in Example 3 except that the adjustment was performed as described above.
  • Example 14 The zinc oxide fine particles containing 4 mol% of gallium as a trivalent metal element are changed to zinc oxide fine particles (volume average particle diameter 20 nm) containing 4 mol% of indium as a trivalent metal element, and the composition ratios shown in Table 3 are obtained.
  • a zinc oxide fine particle dispersion, an interlayer film for laminated glass, and a laminated glass were produced in the same manner as in Example 4 except that the adjustment was performed as described above.
  • Example 15 The zinc oxide fine particles containing 4 mol% of gallium as a trivalent metal element are changed to zinc oxide fine particles (volume average particle diameter 20 nm) containing 4 mol% of indium as a trivalent metal element, and the composition ratios shown in Table 3 are obtained.
  • a zinc oxide fine particle dispersion, an interlayer film for laminated glass, and a laminated glass were produced in the same manner as in Example 5 except that the adjustment was performed as described above.
  • Example 3 The same evaluation as in Example 1 was performed on the zinc oxide fine particle dispersions and laminated glass obtained in Examples 11 to 15. The results are shown in Table 3.
  • Example 16 As a dispersant, polyoxyethylene alkyl ether phosphate ester (in the general formula (1), R 1 is a 2-ethylhexyl group having 8 carbon atoms, R 2 is an ethylene group, R 3 is a hydrogen atom and R 4 (OR 5 ) n ⁇ And R 4 is a 2-ethylhexyl group, R 5 is an ethylene group, an HLB value is 10, and n is an integer of 1 or more, and a polyoxypropylene alkyl ether phosphate ester (in the general formula (1), R 1 is A 2-ethylhexyl group having 8 carbon atoms, R 2 is a propylene group, R 3 is a mixture of a hydrogen atom and R 4 (OR 5 ) n- , R 4 is a 2-ethylhexyl group, R 5 is a propylene group, and the HLB value is 9.4, zinc oxide fine particle dispersion, laminated glass interlayer film,
  • Example 17 As a dispersant, polyoxybutylene alkyl ether phosphate ester (in the general formula (1), R 1 is a 2-ethylhexyl group having 8 carbon atoms, R 2 is a butylene group, R 3 is a hydrogen atom and R 4 (OR 5 ) n ⁇
  • R 4 is a 2-ethylhexyl group
  • R 5 is a butylene group
  • an HLB value is 8.8
  • n is an integer of 1 or more.
  • Example 4 The same evaluation as in Example 1 was performed on the zinc oxide fine particle dispersions and laminated glass obtained in Examples 16 to 17. The results are shown in Table 4.
  • Example 18 A zinc oxide fine particle dispersion, a laminated glass intermediate film, and a laminated glass were produced in the same manner as in Example 1 except that the amount of the zinc oxide fine particle dispersion was changed to 16.8 parts by weight in the production of the interlayer film for laminated glass. was made.
  • Example 19 A zinc oxide fine particle dispersion, a laminated glass intermediate film, and a laminated glass were produced in the same manner as in Example 18 except that the blending amount of the zinc oxide fine particle dispersion was changed to 19.3 parts by weight in the production of the interlayer film for laminated glass. Was made.
  • Example 20 The same as in Example 18 except that the amount of the dispersant was 1 part by weight in the preparation of the zinc oxide fine particle dispersion and the amount of the zinc oxide fine particle dispersion was 12.6 parts in the preparation of the interlayer film for laminated glass. Thus, a zinc oxide fine particle dispersion, an interlayer film for laminated glass, and a laminated glass were produced.
  • Example 21 The same as in Example 18 except that the amount of the dispersant was 10 parts by weight in the preparation of the zinc oxide fine particle dispersion and the amount of the zinc oxide fine particle dispersion was 12.6 parts in the preparation of the interlayer film for laminated glass. Thus, a zinc oxide fine particle dispersion, an interlayer film for laminated glass, and a laminated glass were produced.
  • Example 22 In preparing the zinc oxide fine particle dispersion, 67 parts by weight of ethanol was added instead of 200 parts by weight of the plasticizer, and in the preparation of the interlayer film for laminated glass, the compounding amount of the zinc oxide fine particle dispersion was 12.6 wt.
  • a zinc oxide fine particle dispersion, an interlayer film for laminated glass, and a laminated glass were produced in the same manner as in Example 18 except that the above parts were used.
  • Example 23 As a dispersant, polyoxyethylene alkyl ether phosphate (in formula (1), R 1 is a tridecyl group having 13 carbon atoms, R 2 is an ethylene group, R 3 is a hydrogen atom and R 4 (OR 5 ) n- Zinc oxide fine particle dispersion, for laminated glass in the same manner as in Example 22 except that the mixture, R 4 is a tridecyl group, R 5 is an ethylene group, HLB value is 9.4, and n is an integer of 1 or more) An interlayer film and a laminated glass were produced.
  • R 1 is a tridecyl group having 13 carbon atoms
  • R 2 is an ethylene group
  • R 3 is a hydrogen atom
  • R 4 OR 5
  • n- Zinc oxide fine particle dispersion for laminated glass in the same manner as in Example 22 except that the mixture, R 4 is a tridecyl group, R 5 is an ethylene group, HLB value is 9.4, and n is an integer of 1
  • Example 24 As a dispersant, polyoxyethylene alkyl ether phosphate ester (in the general formula (1), R 1 is a 2-ethylhexyl group having 8 carbon atoms, R 2 is an ethylene group, R 3 is a hydrogen atom and R 4 (OR 5 ) n ⁇ mixtures, R 4 is 2-ethylhexyl group, R 5 is ethylene group, HLB value of 10.0, n used is integer of 1 or more), trivalent zinc oxide containing 2 mol% of gallium as the metal element with A zinc oxide fine particle dispersion was prepared in the same manner as in Example 18 except that fine particles (volume average particle diameter 20 nm) were used and the blending amount of the zinc oxide fine particle dispersion was 14.0 parts by weight in the production of the interlayer film for laminated glass. An interlayer film for laminated glass and a laminated glass were produced.
  • R 1 is a 2-ethylhexyl group having 8 carbon atoms
  • R 2 is an ethylene group
  • Example 25 Similar to Example 24, except that zinc oxide fine particles containing 6 mol% of gallium as a trivalent metal element were used, and the blending amount of the zinc oxide fine particle dispersion was 15.4 parts by weight in the production of the interlayer film for laminated glass. Thus, a zinc oxide fine particle dispersion, an interlayer film for laminated glass, and a laminated glass were produced.
  • Example 26 As a dispersant, polyoxyethylene alkyl ether phosphate ester (in the general formula (1), R 1 is a 2-ethylhexyl group having 8 carbon atoms, R 2 is an ethylene group, R 3 is a hydrogen atom and R 4 (OR 5 ) n ⁇ mixture of zinc oxide R 4 is 2-ethylhexyl group, R 5 is ethylene group, the HLB value 9.2, n is used an integer of 1 or more), containing 4 mol% of gallium as a trivalent metallic element and A zinc oxide fine particle dispersion was prepared in the same manner as in Example 24, except that fine particles (volume average particle diameter 20 nm) were used, and the amount of the zinc oxide fine particle dispersion was changed to 12.6 parts by weight in the production of the interlayer film for laminated glass. An interlayer film for laminated glass and a laminated glass were produced.
  • R 1 is a 2-ethylhexyl group having 8 carbon atoms
  • R 2 is an ethylene
  • Example 27 Using zinc oxide fine particles (volume average particle diameter 20 nm) containing 4 mol% of gallium as a trivalent metal element, a plasticizer was used as a plasticizer in the preparation of a zinc oxide fine particle dispersion.
  • Example 28 Using zinc oxide fine particles (volume average particle diameter of 20 nm) containing 4 mol% of gallium as a trivalent metal element, the plasticizer is tetraethylene glycol diheptanoate (4G7) in the preparation of the zinc oxide fine particle dispersion.
  • a zinc oxide fine particle dispersion, a laminated glass intermediate film, and a laminated glass were prepared in the same manner as in Example 24 except that the blending amount of the zinc oxide fine particle dispersion was 12.6 parts by weight in the production of the intermediate film for glass. Produced.
  • Example 2 The same evaluation as in Example 1 was performed on the zinc oxide fine particle dispersions obtained in Examples 18 to 28 and the laminated glass. The results are shown in Table 5.
  • Example 29 (1) Preparation of zinc oxide fine particle dispersion 30 parts by weight of zinc oxide fine particles containing 4 mol% of gallium as a trivalent metal element, 267 parts by weight of triethylene glycol di-2-ethylhexanoate as a plasticizer, As a dispersant, polyoxyethylene alkyl ether phosphate ester (in the general formula (1), R 1 is a 2-ethylhexyl group having 8 carbon atoms, R 2 is an ethylene group, R 3 is a hydrogen atom and R 4 (OR 5 ) n ⁇ And 3 parts by weight of R 4 is a 2-ethylhexyl group, R 5 is an ethylene group, HLB value is 10.0, and n is an integer of 1 or more) and 1125 parts by weight of zirconia beads are obtained to obtain a mixture It was. The obtained mixture was dispersed with a batch type bead mill for 4 hours to prepare a zinc oxide fine particle dispersion.
  • thermoplastic resin composition obtained by mixing.
  • the obtained thermoplastic resin composition was molded using a biaxial anisotropic extruder to produce an interlayer film for laminated glass having a film thickness of 760 ⁇ m.
  • Example 30 In the production of the interlayer film for laminated glass, the same as Example 29, except that the blending amount of the zinc oxide fine particle dispersion was 7.00 parts by weight and the blending amount of the tin-doped indium oxide fine particle dispersion was 1.40 parts by weight. Thus, an interlayer film for laminated glass and a laminated glass were produced.
  • Example 31 In the production of the interlayer film for laminated glass, the same as Example 29 except that the blending amount of the zinc oxide fine particle dispersion was 0.70 parts by weight and the blending amount of the tin-doped indium oxide fine particle dispersion was 2.80 parts by weight. Thus, an interlayer film for laminated glass and a laminated glass were produced.
  • Example 32 Preparation of zinc oxide fine particle dispersion 30 parts by weight of zinc oxide fine particles containing 4 mol% of gallium as a trivalent metal element, 267 parts by weight of triethylene glycol di-2-ethylhexanoate as a plasticizer, As a dispersant, polyoxyethylene alkyl ether phosphate ester (in the general formula (1), R 1 is a 2-ethylhexyl group having 8 carbon atoms, R 2 is an ethylene group, R 3 is a hydrogen atom and R 4 (OR 5 ) n ⁇ And 3 parts by weight of R 4 is a 2-ethylhexyl group, R 5 is an ethylene group, HLB value is 10.0, and n is an integer of 1 or more) and 1125 parts by weight of zirconia beads are obtained to obtain a mixture It was. The obtained mixture was dispersed with a batch type bead mill for 4 hours to prepare a zinc oxide fine particle dispersion.
  • triethylene glycol di-2-ethylhexanoate as a plasticizer is polyvinyl butyral resin (PVB: average polymerization degree 2450, butyralization degree 65.5 mol%, hydroxyl group amount 20.1 mol%, acetyl group amount 13.4 mol%).
  • PVB polyvinyl butyral resin
  • a thermoplastic resin composition was prepared by adding and mixing the total amount of plasticizer to 60 parts by weight with respect to 100 parts by weight.
  • thermoplastic resin composition skin layer
  • thermoplastic resin composition intermediate layer
  • the skin layer film thickness 330 ⁇ m
  • intermediate layer film thickness 100 ⁇ m
  • Interlayer film for laminated glass having a skin layer (film thickness: 330 ⁇ m).
  • Example 33 As a dispersant, polyoxyethylene alkyl ether phosphate (in formula (1), R 1 is a tridecyl group having 13 carbon atoms, R 2 is an ethylene group, R 3 is a hydrogen atom and R 4 (OR 5 ) n- Zinc oxide fine particle dispersion and laminated glass in the same manner as in Example 32 except that the mixture, R 4 is a tridecyl group, R 5 is an ethylene group, HLB value is 9.4, and n is an integer of 1 or more) An interlayer film and a laminated glass were produced.
  • R 1 is a tridecyl group having 13 carbon atoms
  • R 2 is an ethylene group
  • R 3 is a hydrogen atom
  • R 4 OR 5
  • the intermediate film for laminated glasses excellent in the dispersibility of a zinc oxide fine particle, a laminated glass, and a zinc oxide fine particle dispersion can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

 本発明は、酸化亜鉛微粒子の分散性に優れる合わせガラス用中間膜、合わせガラス、及び、酸化亜鉛微粒子分散液を提供することを目的とする。  本発明は、3価の金属元素を含有する酸化亜鉛微粒子と、熱可塑性樹脂と、分散剤と、可塑剤とを含有する合わせガラス用中間膜であって、前記分散剤は、下記一般式(1)で表される構造を有し、かつ、HLB値が8~12である合わせガラス用中間膜である。 [化1] Rは炭素数が5~14のアルキル基又は炭素数が6~14のアリール基を表し、Rは炭素数が2~5のアルキレン基を表し、Rは水素原子又はR(OR-を表し、Rは炭素数が5~14のアルキル基又は炭素数が6~14のアリール基を表し、Rは炭素数が2~5のアルキレン基を表す。nは1以上の整数である。

Description

合わせガラス用中間膜、合わせガラス、及び、酸化亜鉛微粒子分散液
本発明は、酸化亜鉛微粒子の分散性に優れる合わせガラス用中間膜、合わせガラス、及び、酸化亜鉛微粒子分散液に関する。
合わせガラスは、外部衝撃を受けて破損してもガラスの破片の飛散が少ないため、安全である。合わせガラスは、自動車等の車両、航空機、建築物等の窓ガラスとして広く使用されている。例えば、可塑剤とポリビニルブチラール樹脂を含有する合わせガラス用中間膜を、少なくとも一対のガラス間に挟み込んだ合わせガラス等が挙げられる。
しかし、合わせガラスは優れた安全性を持つが、充分に赤外線を遮蔽できないという問題があった。赤外線の波長域は、可視光線より長く、780nm以上の波長域を有する。また、赤外線のエネルギー量は、紫外線のエネルギー量の約10%である。しかし、赤外線は、物質に吸収されると熱として放出されるため、周囲の温度が上昇する。従って、例えば、自動車のフロントガラスやサイドガラスを透過する赤外線を遮断すれば、自動車内部の温度の上昇が抑えられる。特に、近年では、自動車等の開口部の面積が増加する傾向があるため、合わせガラスの赤外線透過率の低下が要求されている。
特許文献1には、錫ドープ酸化インジウム微粒子やアンチモンドープ酸化錫微粒子等の遮熱微粒子と、ポリビニルアセタール樹脂とを含有する合わせガラス用中間膜が開示されている。遮熱微粒子が分散している合わせガラス用中間膜を用いた合わせガラスは、遮熱性に優れる。
錫ドープ酸化インジウム微粒子やアンチモンドープ酸化錫微粒子等の遮熱微粒子の価格が高騰しているため、遮熱微粒子として、酸化亜鉛微粒子を用いることが検討されている。
しかし、酸化亜鉛微粒子を、ポリビニルアセタール樹脂等の熱可塑性樹脂に均一に分散させることが困難なため、酸化亜鉛微粒子を含有する合わせガラス用中間膜を用いた合わせガラスはヘーズが高くなり、可視光線透過率が低下するという問題があった。
特許文献2には、錫ドープ酸化インジウム微粒子やアンチモンドープ酸化錫微粒子等の遮熱微粒子の分散性を高めるために、分散剤としてリン酸エステルが開示されている。しかしながら、酸化亜鉛微粒子とリン酸エステルとを組み合わせても、酸化亜鉛微粒子の分散性が向上しないという問題があった。
WO01/25162号公報 特開2001-302288号公報
本発明は、酸化亜鉛微粒子の分散性に優れる合わせガラス用中間膜、合わせガラス、及び、酸化亜鉛微粒子分散液を提供することを目的とする。
本発明は、3価の金属元素を含有する酸化亜鉛微粒子と、熱可塑性樹脂と、分散剤と、可塑剤とを含有する合わせガラス用中間膜であって、上記分散剤は、下記一般式(1)で表される構造を有し、かつ、HLB値が8~12である合わせガラス用中間膜である。
Figure JPOXMLDOC01-appb-C000003
は炭素数が5~14のアルキル基又は炭素数が6~14のアリール基を表し、Rは炭素数が2~5のアルキレン基を表し、Rは水素原子又はR(OR-を表し、Rは炭素数が5~14のアルキル基又は炭素数が6~14のアリール基を表し、Rは炭素数が2~5のアルキレン基を表す。nは1以上の整数である。
以下に本発明を詳述する。
本発明の合わせガラス用中間膜は、3価の金属元素を含有する酸化亜鉛微粒子と、熱可塑性樹脂と、分散剤と、可塑剤とを含有する。
本発明の合わせガラス用中間膜は、3価の金属元素を含有する酸化亜鉛微粒子を含有する。本発明の合わせガラス用中間膜は、上記酸化亜鉛微粒子と、後述する特定の分散剤とを組み合わせることにより、酸化亜鉛微粒子の分散性に優れる合わせガラス用中間膜を得ることができる。
なお、上記3価の金属元素を含有する酸化亜鉛微粒子は、上記3価の金属元素がドープされた酸化亜鉛微粒子であることが好ましい。
上記3価の金属元素は特に限定されないが、ガリウム、アルミニウム、インジウム等が挙げられる。なかでも、上記3価の金属元素はガリウムであることが好ましい。また、上記3価の金属元素の異なる2種以上の酸化亜鉛微粒子を併用してもよい。
更に、上記3価の金属元素を含有する酸化亜鉛微粒子と、上記3価の金属元素以外の元素を含有する酸化亜鉛微粒子とを併用してもよく、上記3価の金属元素と上記3価の金属元素以外の元素を含有する酸化亜鉛微粒子を用いてもよい。
上記3価の金属元素を含有する酸化亜鉛微粒子における上記3価の金属元素の含有量は特に限定されないが、亜鉛元素と3価の金属元素とのモル数の合計に占める3価の金属元素のモル数の割合の好ましい下限は1.0モル%、好ましい上限は10モル%である。上記3価の金属元素のモル数の割合が1.0モル%未満であると、合わせガラスの赤外線透過率が低下しないことがあり、10モル%を超える酸化亜鉛微粒子の製造が困難になることがある。上記モル数の割合のより好ましい下限は1.5モル%、更に好ましい下限は2.0モル%であり、より好ましい上限は8.0モル%、更に好ましい下限は6.0モル%である。
上記3価の金属元素を含有する酸化亜鉛微粒子の製造方法は特に限定されず、従来公知の方法を用いることができる。例えば、上記3価の金属元素を含有する酸化亜鉛微粒子の製造方法は、共沈法、焼結法、アーク式放電気相法、噴霧熱分解法等が挙げられる。
上記共沈法では、例えば、硫酸亜鉛、硝酸亜鉛、塩化亜鉛、炭酸亜鉛、酢酸亜鉛等の水溶性の亜鉛化合物と、水溶性の3価の金属元素の塩とを含有する水溶液を作製する。水溶液を中和することにより、亜鉛化合物の共沈殿物を生成する。得られた共沈殿物を還元雰囲気にて焼成することにより、3価の金属元素を含有する酸化亜鉛微粒子が製造できる。
上記アーク式放電気相法では、例えば、亜鉛蒸気と、3価の金属元素の蒸気とを酸化性ガスで反応させることにより、3価の金属元素を含有する酸化亜鉛微粒子が製造できる。
上記噴霧熱分解法では、例えば、水溶性の亜鉛化合物と、水溶性の3価の金属元素の塩とを含む水溶液を、火炎、高温燃焼ガス又はプラズマ中にノズルを用いて微細に噴霧する。次いで、水溶性の3価の金属元素の塩を熱分解するか、又は、3価の金属元素の金属イオンを酸化性ガスにより酸化させることにより、3価の金属元素を含有する酸化亜鉛微粒子が製造できる。
上記水溶性の3価の金属元素の塩は特に限定されず、上記金属元素の無機塩、有機塩等が挙げられる。上記金属元素の無機塩は特に限定されず、例えば、上記金属元素のハロゲン化物、炭酸塩、重炭酸塩、硝酸塩、硫酸塩、リン酸塩、ケイ酸塩、ホウ酸塩等が挙げられる。上記金属元素の有機塩は特に限定されず、例えば、酢酸塩、シュウ酸塩、ギ酸塩、グリコール酸塩、クエン酸塩等の有機酸塩等が挙げられる。また、上記金属元素の塩は、無機塩と有機塩との複塩であってもよい。
上記3価の金属元素を含有する酸化亜鉛微粒子の体積平均粒子径は特に限定されないが、好ましい上限は500nmである。上記体積平均粒子径が500nmを超えると、合わせガラスの可視光線透過率が低下することがある。上記体積平均粒子径のより好ましい上限は200nm、更に好ましい上限は100nm、特に好ましい上限は60nmである。
本発明の合わせガラス用中間膜の上記3価の金属元素を含有する酸化亜鉛微粒子の含有量は特に限定されないが、上記熱可塑性樹脂100重量部に対して、好ましい下限は0.01重量部、好ましい上限は5.0重量部である。上記3価の金属元素を含有する酸化亜鉛微粒子の含有量が0.01重量部未満であると、合わせガラスの赤外線透過率が低下しないことがある。上記3価の金属元素を含有する酸化亜鉛微粒子の含有量が5.0重量部を超えると、合わせガラスの可視光線透過率が低下することがある。上記3価の金属元素を含有する酸化亜鉛微粒子の含有量のより好ましい下限は0.03重量部、より好ましい上限は3.0重量部である。
本発明の合わせガラス用中間膜は、分散剤を含有する。
上記分散剤は、下記一般式(1)で表される構造を有し、かつ、HLB値が8~12である。
Figure JPOXMLDOC01-appb-C000004
は炭素数が5~14のアルキル基又は炭素数が6~14のアリール基を表し、Rは炭素数が2~5のアルキレン基を表し、Rは水素原子又はR(OR-を表し、Rは炭素数が5~14のアルキル基又は炭素数が6~14のアリール基を表し、Rは炭素数が2~5のアルキレン基を表す。nは1以上の整数である。
本発明の合わせガラス用中間膜は、上記分散剤と、上記酸化亜鉛微粒子とを組み合わせることにより、酸化亜鉛微粒子の分散性に優れる合わせガラス用中間膜を得ることができる。
上記一般式(1)におけるR及びRがアルキル基である場合、上記一般式(1)におけるR及びRの炭素数の下限は5、上限は14である。R及びRの炭素数が5未満であると、上記分散剤のアルキル基の親水性が強くなるため、上記分散剤が熱可塑性樹脂や可塑剤と相溶しないことがある。その結果、合わせガラスの可視光線透過率が低下する。R及びRの炭素数が14を超えると、上記分散剤のアルキル基の親油性が強くなるため、上記分散剤が熱可塑性樹脂や可塑剤と相溶しないことがある。その結果、合わせガラスの可視光線透過率が低下する。R及びRの炭素数の好ましい下限は6、より好ましい下限は8、好ましい上限は13である。なお、RとRとは同一のアルキル基であってもよく、異なるアルキル基であってもよいが、同一のアルキル基であることが好ましい。
上記一般式(1)におけるR及びRがアリール基である場合、上記一般式(1)におけるR及びRの炭素数の下限は6、上限は14である。R及びRの炭素数が14を超えると、上記分散剤のアリール基の親油性が強くなるため、上記分散剤が熱可塑性樹脂や可塑剤と相溶しないことがある。その結果、合わせガラスの可視光線透過率が低下する。R及びRの炭素数の好ましい下限は7、より好ましい下限は9、特に好ましい下限は11である。なかでも、熱可塑性樹脂や可塑剤との相溶性が優れるため、上記一般式(1)におけるRとRとは、2-エチルヘキシル基又はトリデシル基であることが好ましい。
なお、RとRとは同一のアリール基であってもよく、異なるアリール基であってもよいが、同一のアリール基であることが好ましい。
上記一般式(1)のR及びRは、炭素数が2~5のアルキレン基を表す。R及びRは、炭素数が2~4のアルキレン基であることが好ましく、エチレン基、プロピレン基又はブチレン基であることがより好ましく、エチレン基又はプロピレン基であることが更に好ましく、エチレン基であることが特に好ましい。
とRとは同一のアルキレン基であってもよく、異なるアルキレン基であってもよいが、同一のアルキレン基であることが好ましい。
上記一般式(1)におけるnは1以上の整数である。上記一般式(1)におけるnは、上記分散剤のHLB値と関係がある。上記一般式(1)におけるnが大きくなると、上記分散剤の親水基の分子量が増加する。そのため、上記分散剤のHLB値が大きくなる。また、上記一般式(1)におけるnが小さくなると、上記分散剤の親水基の分子量が減少する。そのため、上記分散剤のHLB値が小さくなる。
nが0であると、上記分散剤が上記酸化亜鉛微粒子に付着しにくくなるため、上記酸化亜鉛微粒子が凝集する。上記一般式(1)におけるnの好ましい上限は50であり、より好ましい上限は20である。nが50を超えると、上記分散剤が上記酸化亜鉛微粒子に付着しすぎるため、上記酸化亜鉛微粒子が凝集することがある。
なお、上記HLB値は、上記一般式(1)におけるnの値を制御することにより調整できる。また、上記一般式(1)で表される構造を有する分散剤を併用する場合、上記分散剤の配合割合を調整することにより、上記HLB値を制御することができる。
上記分散剤のHLB値の下限は8、上限は12である。HLB値が8未満であると、上記分散剤の親油性が強くなるため、上記分散剤が熱可塑性樹脂や可塑剤に相溶しにくくなる。その結果、合わせガラスの可視光線透過率が低下する。HLB値が12を超えると、上記分散剤の親水性が強くなるため、上記分散剤が熱可塑性樹脂や可塑剤に相溶しにくくなる。その結果、合わせガラスの可視光線透過率が低下する。HLB値の好ましい下限は8.5、より好ましい下限は9、好ましい上限は11、より好ましい上限は10である。
なお、本発明のHLB値は、グリフィン法により、以下の式で定義される。
 HLB値=20×(分散剤の親水基の分子量/分散剤の分子量)
なお、親水基の分子量とは、-(OR-部分と-(OR-部分との原子量の和を意味する。また、上記一般式(1)で表される構造を有する分散剤を併用する場合、本発明のHLB値は、以下の式で定義される。
 HLB値=20×(分散剤の親水基の数平均分子量/分散剤の数平均分子量)
上記分散剤は特に限定されず、例えば、上記一般式(1)においてRが炭素数5のイソブチル基である分散剤(Rがエチレン基、Rが水素原子とR(OR-との混合物、Rがイソブチル基、Rがエチレン基、HLB値が11.0、nが1以上の整数)、上記一般式(1)においてRが炭素数8の2-エチルヘキシル基である分散剤(Rがエチレン基、Rが水素原子とR(OR-との混合物、Rが2-エチルヘキシル基、Rがエチレン基、HLB値が10.0、nが1以上の整数)、上記一般式(1)においてRが炭素数12のラウリル基である分散剤(Rがエチレン基、Rが水素原子とR(OR-との混合物、Rがラウリル基、Rがエチレン基、HLB値が8.0、nが1以上の整数)、上記一般式(1)においてRが炭素数13のトリデシル基である分散剤(Rがエチレン基、Rが水素原子とR(OR-との混合物、Rがトリデシル基、Rがエチレン基、HLB値が9.4、nが1以上の整数)、上記一般式(1)においてRが炭素数14のオクチルフェニル基である分散剤(Rがエチレン基、Rが水素原子とR(OR-との混合物、Rがオクチルフェニル基、Rがエチレン基、HLB値が12.0、nが1以上の整数)、上記一般式(1)においてRが炭素数8の2-エチルヘキシル基である分散剤(Rがプロピレン基、Rが水素原子とR(OR-との混合物、Rが2-エチルヘキシル基、Rがプロピレン基、HLB値が9.4、nが1以上の整数)、上記一般式(1)においてRが炭素数8の2-エチルヘキシル基である分散剤(Rがブチレン基、Rが水素原子とR(OR-との混合物、Rが2-エチルヘキシル基、Rがブチレン基、HLB値が8.8、nが1以上の整数)等が挙げられる。
これらの上記一般式(1)で表される構造を有する分散剤は、例えば、第一工業製薬社や東邦化学社等から市販されている。なお、市販の上記一般式(1)で表される構造を有する分散剤の多くは、Rが水素原子である分散剤とR(OR-である分散剤との混合物であったり、Rやnが異なる複数の分散剤の混合物であったりする。
本発明の合わせガラス用中間膜における上記分散剤の含有量は特に限定されないが、上記酸化亜鉛微粒子100重量部に対して好ましい下限が1.0重量部であり、好ましい上限が50重量部である。上記分散剤の含有量が1.0重量部未満であると、上記酸化亜鉛微粒子の分散性が低下するため、合わせガラスの可視光線透過率が低下することがある。上記分散剤の含有量が50重量部を超えると、合わせガラスのヘーズが高くなったり、合わせガラス用中間膜とガラスとの接着力が低下したりすることがある。上記分散剤の含有量のより好ましい下限は2.0重量部、更に好ましい下限は3.0重量部、より好ましい上限は40重量部、更に好ましい上限は35重量部である。
本発明の合わせガラス用中間膜は、熱可塑性樹脂を含有する。
上記熱可塑性樹脂は特に限定されず、例えば、ポリビニルアセタール樹脂、エチレン-酢酸ビニル共重合体樹脂、エチレン-アクリル共重合体樹脂、ポリウレタン樹脂、硫黄元素を含有するポリウレタン樹脂、ポリビニルアルコール樹脂等が挙げられる。なかでも、ガラスに対する接着力が優れるため、ポリビニルアセタール樹脂が好ましい。
上記ポリビニルアセタール樹脂は、ポリビニルアルコールをアルデヒドでアセタール化することにより製造できる。なお、上記ポリビニルアセタール樹脂は、必要に応じて、2種以上を併用してもよい。
上記ポリビニルアセタール樹脂のアセタール化度の好ましい下限は40モル%、好ましい上限は85モル%であり、より好ましい下限は60モル%、より好ましい上限は75モル%である。
上記ポリビニルアルコールは、ポリ酢酸ビニルを鹸化することにより製造できる。
上記ポリビニルアルコールの鹸化度は、80~99.8モル%が好ましい。
上記ポリビニルアルコールの重合度の好ましい下限は200、好ましい上限は3000である。上記重合度が200未満であると、合わせガラスの耐貫通性が低下することがある。上記重合度が3000を超えると、合わせガラス用中間膜の成形が困難となることがある。上記重合度のより好ましい下限は500、より好ましい上限は2000である。
上記アルデヒドは特に限定されないが、炭素数が1~10のアルデヒドが好適である。上記炭素数が1~10のアルデヒドは特に限定されず、例えば、n-ブチルアルデヒド、イソブチルアルデヒド、n-バレルアルデヒド、2-エチルブチルアルデヒド、n-ヘキシルアルデヒド、n-オクチルアルデヒド、n-ノニルアルデヒド、n-デシルアルデヒド、ホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド等が挙げられる。なかでも、n-ブチルアルデヒド、n-ヘキシルアルデヒド、n-バレルアルデヒドが好ましく、炭素数が4のn-ブチルアルデヒドがより好ましい。これらのアルデヒドは単独で用いてもよく、2種以上を併用してもよい。
本発明の合わせガラス用中間膜は、可塑剤を含有する。
上記可塑剤は特に限定されず、例えば、一塩基性有機酸エステル、多塩基性有機酸エステル等の有機エステル可塑剤、有機リン酸可塑剤、有機亜リン酸可塑剤等のリン酸可塑剤等が挙げられる。
上記一塩基性有機酸エステルは特に限定されないが、例えば、トリエチレングリコール、テトラエチレングリコール、トリプロピレングリコール等のグリコールと、酪酸、イソ酪酸、カプロン酸、2-エチル酪酸、ヘプチル酸、n-オクチル酸、2-エチルヘキシル酸、ペラルゴン酸(n-ノニル酸)、デシル酸等の一塩基性有機酸との反応によって得られたグリコールエステル等が挙げられる。なかでも、トリエチレングリコールジカプロン酸エステル、トリエチレングリコールジ-2-エチル酪酸エステル、トリエチレングリコールジ-n-オクチル酸エステル、トリエチレングリコールジ-2-エチルヘキシル酸エステル等のトリエチレングリコールジアルキル酸エステルが好ましい。
上記多塩基性有機酸エステルは特に限定されないが、例えば、アジピン酸、セバシン酸、アゼライン酸等の多塩基性有機酸と、炭素数4~8の直鎖又は分岐構造を有するアルコールとのエステル化合物が挙げられる。なかでも、ジブチルセバシン酸エステル、ジオクチルアゼライン酸エステル、ジブチルカルビトールアジピン酸エステル等が好ましい。
上記有機エステル可塑剤は特に限定されず、トリエチレングリコールジ-2-エチルブチレート、トリエチレングリコールジ-2-エチルヘキサノエート、トリエチレングリコールジカプリレート、トリエチレングリコールジ-n-オクタノエート、トリエチレングリコールジ-n-ヘプタノエート、テトラエチレングリコールジ-n-ヘプタノエート、ジブチルセバケート、ジオクチルアゼレート、ジブチルカルビトールアジペート、エチレングリコールジ-2-エチルブチレート、1,3-プロピレングリコールジ-2-エチルブチレート、1,4-ブチレングリコールジ-2-エチルブチレート、1,2-ブチレングリコールジ-2-エチレンブチレート、ジエチレングリコールジ-2-エチルブチレート、ジエチレングリコールジ-2-エチルヘキサノエート、ジプロピレングリコールジ-2-エチルブチレート、トリエチレングリコールジ-2-エチルペンタノエート、テトラエチレングリコールジ-2-エチルブチレート、ジエチレングリコールジカプリエート、トリエチレングリコールジ-n-ヘプタノエート、テトラエチレングリコールジ-n-ヘプタノエート、トリエチレングリコールジ-2-エチルブチレート、トリエチレングリコールビス(2-エチルブチレート)、トリエチレングリコールジ(2-エチルヘキサノエート)、トリエチレングリコールジヘプタノエート、テトラエチレングリコールジヘプタノエート、ジヘキシルアジペート、アジピン酸ジオクチル、アジピン酸ヘキシルシクロヘキシル、アジピン酸ヘプチルとアジピン酸ノニルとの混合物、アジピン酸ジイソノニル、アジピン酸ヘプチルノニル、セバシン酸ジブチル等が挙げられる。
上記有機リン酸可塑剤は特に限定されず、例えば、トリブトキシエチルホスフェート、イソデシルフェニルホスフェート、トリイソプロピルホスフェート等が挙げられる。
上記可塑剤は、ジヘキシルアジペート(DHA)、トリエチレングリコールジ-2-エチルヘキサノエート(3GO)、テトラエチレングリコールジ-2-エチルヘキサノエート(4GO)、トリエチレングリコールジ-2-エチルブチレート(3GH)、テトラエチレングリコールジ-2-エチルブチレート(4GH)、テトラエチレングリコールジヘプタノエート(4G7)及びトリエチレングリコールジヘプタノエート(3G7)からなる群より選択される少なくとも1種であることが好ましい。
更に、上記可塑剤は加水分解しにくいため、トリエチレングリコールジ-2-エチルヘキサノエート(3GO)、トリエチレングリコールジ-2-エチルブチレート(3GH)、テトラエチレングリコールジ-2-エチルヘキサノエート(4GO)、テトラエチレングリコールジヘプタノエート(4G7)等のジエステル化合物が好ましく、テトラエチレングリコールジ-2-エチルヘキサノエート(4GO)、テトラエチレングリコールジヘプタノエート(4G7)、トリエチレングリコールジ-2-エチルヘキサノエート(3GO)がより好ましく、トリエチレングリコールジ-2-エチルヘキサノエートが更に好ましい。
本発明の合わせガラス用中間膜における上記可塑剤の含有量は特に限定されないが、上記熱可塑性樹脂100重量部に対して好ましい下限が25重量部、好ましい上限が60重量部である。上記可塑剤の含有量が25重量部未満であると、合わせガラスの耐貫通性が低下することがある。上記可塑剤の含有量が60重量部を超えると、上記可塑剤がブリードアウトすることがある。上記可塑剤の含有量のより好ましい下限は30重量部、より好ましい上限は50重量部である。
本発明の合わせガラス用中間膜は、上記3価の金属元素を含有する酸化亜鉛微粒子以外の熱線吸収剤を含有してもよい。上記熱線吸収剤は特に限定されないが、錫ドープ酸化インジウム微粒子、アンチモンドープ酸化錫微粒子、金属元素がドープされた酸化タングステン微粒子、6ホウ化ランタン微粒子、フタロシアニン化合物等が挙げられる。なかでも、上記熱線吸収剤は錫ドープ酸化インジウム微粒子であることが好ましい。
本発明の合わせガラス用中間膜は、分散助剤、酸化防止剤、光安定剤、難燃剤、帯電防止剤、接着力調整剤、耐湿剤、熱線反射剤、蛍光増白剤、青色顔料等の添加剤を含有してもよい。
本発明の合わせガラス用中間膜は、上記分散助剤を含有してもよい。上記分散助剤は特に限定されないが、アルコール等が挙げられる。上記アルコールは特に限定されず、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、t-ブチルアルコール、1-ペンタノール、イソアミルアルコール、s-アミルアルコール、3-ペンタノール、tert-アミルアルコール、n-ヘキサノール、メチルアミルアルコール、2-エチルブタノール、n-ヘプタノール、2-ヘプタノール、3-ヘプタノール、n-オクタノール、2-オクタノール、2-エチルヘキサノール、3,5,5-トリメチルヘキサノール、ノナノール、n-デカノール、ウンデカノール、トリメチルノニルアルコール、テトラデカノール、ヘプタデカノール、シクロヘキサノール、2-メチルシクロヘキサノール、ベンジルアルコール等が挙げられる。
本発明の合わせガラス用中間膜は、1層のみからなる単層構造体であってもよく、複数の層を積層した多層構造体であってもよい。
本発明の合わせガラス用中間膜は、3価の金属元素を含有する酸化亜鉛微粒子と、熱可塑性樹脂と、一般式(1)で表される構造を有する分散剤と、可塑剤とを含有する熱線遮蔽層を含む、2以上の樹脂層を積層した多層構造体であってもよい。上記多層構造体とは、少なくとも熱線遮蔽層を含む、2以上の樹脂層が積層されていればよい。上記多層構造体は少なくとも3層の樹脂層を有することが好ましく、例えば、最外層と中間層と最外層との内の、いずれか1層が熱線遮蔽層であればよい。
更に、水酸基量が15~25モル%、アセチル化度が8~18モル%、アセタール化度が60~71モル%のポリビニルアセタール樹脂であり、該ポリビニルアセタール樹脂100重量部に対する上記可塑剤の含有量が50~70重量部である中間層を有する場合、合わせガラスの遮音性を向上できる。
本発明の合わせガラス用中間膜を製造する方法は特に限定されない。例えば、上記3価の金属元素を含有する酸化亜鉛微粒子と、上記分散剤と、上記可塑剤とを含有する酸化亜鉛微粒子分散液を作製する。上記酸化亜鉛微粒子分散液と、上記可塑剤と、上記熱可塑性樹脂とを混練し、合わせガラス用中間膜を成形する。
上記混練の方法は特に限定されず、例えば、押出機、プラストグラフ、ニーダー、バンバリーミキサー、カレンダーロール等を用いる方法が挙げられる。なかでも、押出機を用いる方法が好ましい。
また、合わせガラス用中間膜を成形する方法は特に限定されず、例えば、押出法、カレンダー法、プレス法等が挙げられる。
本発明の合わせガラス用中間膜は、上記酸化亜鉛微粒子が均一に分散している。そのため、本発明の合わせガラス用中間膜を用いてなる合わせガラスは可視光線透過率が極めて高くなる。
本発明の合わせガラス用中間膜を用いてなる合わせガラスもまた、本発明の1つである。
本発明の合わせガラスは、少なくとも一対のガラス間に本発明の合わせガラス用中間膜が挟持された合わせガラスである。
本発明の合わせガラスに用いられるガラス板は特に限定されず、例えば、フロート板ガラス、磨き板ガラス、型板ガラス、網入りガラス、線入り板ガラス、着色された板ガラス、熱線吸収ガラス、熱線反射ガラス、グリーンガラス等の無機ガラスや、ポリカーボネートやポリアクリレート等のプラスチックス板等が挙げられる。
本発明の合わせガラスを製造する方法は特に限定されず、従来公知の方法を用いることができる。
本発明の合わせガラスは、本発明の合わせガラス用中間膜を用いてなることから、自動車等の車両のフロントガラス等に好適に用いることができる。
また、上記酸化亜鉛微粒子が分散している酸化亜鉛微粒子分散液、すなわち、3価の金属元素を含有する酸化亜鉛微粒子と、分散剤と、可塑剤とを含有する酸化亜鉛微粒子分散液であって、上記分散剤は、上記一般式(1)で表される構造を有し、かつ、HLB値が8~12である酸化亜鉛微粒子分散液もまた、本発明の1つである。
本発明によれば、酸化亜鉛微粒子の分散性に優れる合わせガラス用中間膜、合わせガラス、及び、酸化亜鉛微粒子分散液を提供することができる。
以下に実施例を挙げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例にのみ限定されるものではない。
(実施例1)
(1)酸化亜鉛微粒子分散液の作製
3価の金属元素としてガリウムを4モル%含有する酸化亜鉛微粒子(体積平均粒子径20nm)30重量部と、可塑剤としてトリエチレングリコールジ-2-エチルヘキサノエート267重量部と、分散剤としてポリオキシエチレンアルキルエーテルリン酸エステル(一般式(1)においてRが炭素数8の2-エチルヘキシル基、Rがエチレン基、Rが水素原子とR(OR-との混合物、Rが2-エチルヘキシル基、Rがエチレン基、HLB値が10、nが1以上の整数)3重量部と、ジルコニアビーズ1125重量部とを混合し、混合物を得た。得られた混合物をバッチ式ビーズミルで4時間分散させることにより、酸化亜鉛微粒子分散液を作製した。
(2)合わせガラス用中間膜の作製
得られた酸化亜鉛微粒子分散液12.6重量部と、熱可塑性樹脂としてポリビニルブチラール樹脂(PVB:平均重合度1700、ブチラール化度68.5mol%、水酸基量30.6mol%、アセチル基量0.9mol%)100重量部とを混合した。更に、可塑剤としてトリエチレングリコールジ-2-エチルヘキサノエートを熱可塑性樹脂100重量部に対して可塑剤全量が40重量部となるように添加し、混合することにより熱可塑性樹脂組成物を作製した。
得られた熱可塑性樹脂組成物を、二軸異方押出機を用いて成形し、膜厚が760μmの合わせガラス用中間膜を作製した。
(3)合わせガラスの作製
得られた合わせガラス用中間膜を2枚の透明なフロートガラス(縦5cm×横5cm×厚さ2.5mm)の間に挟み、真空バッグに入れ、933.2hPaまで真空バッグ内を脱気した。次いで、真空バッグを加熱し、真空バッグの内部が100℃に達した後20分間その温度を保持した。真空バッグを自然冷却させ、仮圧着された合わせガラスを取り出した。仮圧着された合わせガラスを、135℃、圧力1.2MPaで20分間オートクレーブを行うことにより合わせガラスを作製した。
(実施例2)
分散剤としてポリオキシエチレンアルキルエーテルリン酸エステル(一般式(1)においてRが炭素数13のトリデシル基、Rがエチレン基、Rが水素原子とR(OR-との混合物、Rがトリデシル基、Rがエチレン基、HLB値が9.4、nが1以上の整数)を用いた以外は実施例1と同様にして、酸化亜鉛微粒子分散液、合わせガラス用中間膜、及び、合わせガラスを作製した。
(実施例3)
分散剤としてポリオキシエチレンアルキルエーテルリン酸エステル(一般式(1)においてRが炭素数12のラウリル基、Rがエチレン基、Rが水素原子とR(OR-との混合物、Rがラウリル基、Rがエチレン基、HLB値が8.0、nが1以上の整数)を用いた以外は実施例1と同様にして、酸化亜鉛微粒子分散液、合わせガラス用中間膜、及び、合わせガラスを作製した。
(実施例4)
分散剤としてポリオキシエチレンアルキルエーテルリン酸エステル(一般式(1)においてRが炭素数5のイソブチル基、Rがエチレン基、Rが水素原子とR(OR-との混合物、Rがイソブチル基、Rがエチレン基、HLB値が11.0、nが1以上の整数)を用いた以外は実施例1と同様にして、酸化亜鉛微粒子分散液、合わせガラス用中間膜、及び、合わせガラスを作製した。
(実施例5)
分散剤としてポリオキシエチレンアルキルエーテルリン酸エステル(一般式(1)においてRが炭素数14のオクチルフェニル基、Rがエチレン基、Rが水素原子とR(OR-との混合物、Rがオクチルフェニル基、Rがエチレン基、HLB値が12.0、nが1以上の整数)を用いた以外は実施例1と同様にして、酸化亜鉛微粒子分散液、合わせガラス用中間膜、及び、合わせガラスを作製した。
(比較例1)
ポリビニルブチラール樹脂100重量部とトリエチレングリコールジ-2-エチルヘキサノエート40重量部とを混合することにより熱可塑性樹脂組成物を得た以外は実施例1と同様にして、酸化亜鉛微粒子分散液、合わせガラス用中間膜、及び、合わせガラスを作製した。
(比較例2)
分散剤としてポリオキシエチレンアルキルエーテルリン酸エステル(一般式(1)においてRが炭素数15のノニルフェニル基、Rがエチレン基、Rが水素原子とR(OR-との混合物、Rがノニルフェニル基、Rがエチレン基、HLB値が11.0、nが1以上の整数)を用い、表1の組成比となるように調整した以外は実施例1と同様にして、酸化亜鉛微粒子分散液、合わせガラス用中間膜、及び、合わせガラスを作製した。
(比較例3)
分散剤としてポリオキシエチレンアルキルエーテルリン酸エステル(一般式(1)においてRが炭素数12のラウリル基、Rがエチレン基、Rが水素原子とR(OR-との混合物、Rがラウリル基、Rがエチレン基、HLB値が12.3、nが1以上の整数)を用い、表1の組成比となるように調整した以外は実施例1と同様にして、酸化亜鉛微粒子分散液、合わせガラス用中間膜、及び、合わせガラスを作製した。
(比較例4)
分散剤としてポリオキシエチレンアルキルエーテルリン酸エステル(一般式(1)においてRが炭素数4のブチル基、Rがエチレン基、Rが水素原子とR(OR-との混合物、Rがブチル基、Rがエチレン基、HLB値が10.0、nが1以上の整数)を用い、表1の組成比となるように調整した以外は実施例1と同様にして、酸化亜鉛微粒子分散液、合わせガラス用中間膜、及び、合わせガラスを作製した。
<評価>
実施例1~5及び比較例2~4で得られた酸化亜鉛微粒子分散液、及び、実施例1~5及び比較例1~4で得られた合わせガラスについて以下の評価を行った。
結果を表1に示した。
(1)酸化亜鉛微粒子分散液の可視光線透過率(Tv)、及び、赤外線透過率(Tir)
酸化亜鉛微粒子分散液を、用いた可塑剤で、表1の粒子濃度となるように希釈した。希釈された酸化亜鉛微粒子分散液の可視光線透過率(Tv)、及び、赤外線透過率(Tir)を、分光光度計(日立ハイテク社製「U-4100」)を用いて、JIS R 3106(1998)に準拠した方法により、測定した。なお、光路長1mmの石英セルを用いた。
(2)合わせガラスの可視光線透過率(Tv)、及び、赤外線透過率(Tir)
合わせガラスの可視光線透過率(Tv)、及び、赤外線透過率(Tir)を、分光光度計(日立ハイテク社製「U-4100」)を用いて、JIS R 3106(1998)に準拠した方法により、測定した。
Figure JPOXMLDOC01-appb-T000005
(実施例6)
3価の金属元素としてガリウムを4モル%含有する酸化亜鉛微粒子を、3価の金属元素としてアルミニウムを4モル%含有する酸化亜鉛微粒子(体積平均粒子径20nm)とし、表2の組成比となるように調整した以外は実施例1と同様に、酸化亜鉛微粒子分散液、合わせガラス用中間膜、及び、合わせガラスを作製した。
(実施例7)
3価の金属元素としてガリウムを4モル%含有する酸化亜鉛微粒子を、3価の金属元素としてアルミニウムを4モル%含有する酸化亜鉛微粒子(体積平均粒子径20nm)とし、表2の組成比となるように調整した以外は実施例2と同様に、酸化亜鉛微粒子分散液、合わせガラス用中間膜、及び、合わせガラスを作製した。
(実施例8)
3価の金属元素としてガリウムを4モル%含有する酸化亜鉛微粒子を、3価の金属元素としてアルミニウムを4モル%含有する酸化亜鉛微粒子(体積平均粒子径20nm)とし、表2の組成比となるように調整した以外は実施例3と同様に、酸化亜鉛微粒子分散液、合わせガラス用中間膜、及び、合わせガラスを作製した。
(実施例9)
3価の金属元素としてガリウムを4モル%含有する酸化亜鉛微粒子を、3価の金属元素としてアルミニウムを4モル%含有する酸化亜鉛微粒子(体積平均粒子径20nm)とし、表2の組成比となるように調整した以外は実施例4と同様に、酸化亜鉛微粒子分散液、合わせガラス用中間膜、及び、合わせガラスを作製した。
(実施例10)
3価の金属元素としてガリウムを4モル%含有する酸化亜鉛微粒子を、3価の金属元素としてアルミニウムを4モル%含有する酸化亜鉛微粒子(体積平均粒子径20nm)とし、表2の組成比となるように調整した以外は実施例5と同様に、酸化亜鉛微粒子分散液、合わせガラス用中間膜、及び、合わせガラスを作製した。
<評価>
実施例6~10で得られた酸化亜鉛微粒子分散液、及び、合わせガラスについて実施例1と同様の評価を行った。
結果を表2に示した。
Figure JPOXMLDOC01-appb-T000006
(実施例11)
3価の金属元素としてガリウムを4モル%含有する酸化亜鉛微粒子を、3価の金属元素としてインジウムを4モル%含有する酸化亜鉛微粒子(体積平均粒子径20nm)とし、表3の組成比となるように調整した以外は実施例1と同様に、酸化亜鉛微粒子分散液、合わせガラス用中間膜、及び、合わせガラスを作製した。
(実施例12)
3価の金属元素としてガリウムを4モル%含有する酸化亜鉛微粒子を、3価の金属元素としてインジウムを4モル%含有する酸化亜鉛微粒子(体積平均粒子径20nm)とし、表3の組成比となるように調整した以外は実施例2と同様に、酸化亜鉛微粒子分散液、合わせガラス用中間膜、及び、合わせガラスを作製した。
(実施例13)
3価の金属元素としてガリウムを4モル%含有する酸化亜鉛微粒子を、3価の金属元素としてインジウムを4モル%含有する酸化亜鉛微粒子(体積平均粒子径20nm)とし、表3の組成比となるように調整した以外は実施例3と同様に、酸化亜鉛微粒子分散液、合わせガラス用中間膜、及び、合わせガラスを作製した。
(実施例14)
3価の金属元素としてガリウムを4モル%含有する酸化亜鉛微粒子を、3価の金属元素としてインジウムを4モル%含有する酸化亜鉛微粒子(体積平均粒子径20nm)とし、表3の組成比となるように調整した以外は実施例4と同様に、酸化亜鉛微粒子分散液、合わせガラス用中間膜、及び、合わせガラスを作製した。
(実施例15)
3価の金属元素としてガリウムを4モル%含有する酸化亜鉛微粒子を、3価の金属元素としてインジウムを4モル%含有する酸化亜鉛微粒子(体積平均粒子径20nm)とし、表3の組成比となるように調整した以外は実施例5と同様に、酸化亜鉛微粒子分散液、合わせガラス用中間膜、及び、合わせガラスを作製した。
<評価>
実施例11~15で得られた酸化亜鉛微粒子分散液、及び、合わせガラスについて実施例1と同様の評価を行った。
結果を表3に示した。
Figure JPOXMLDOC01-appb-T000007
(実施例16)
分散剤としてポリオキシエチレンアルキルエーテルリン酸エステル(一般式(1)においてRが炭素数8の2-エチルヘキシル基、Rがエチレン基、Rが水素原子とR(OR-との混合物、Rが2-エチルヘキシル基、Rがエチレン基、HLB値が10、nが1以上の整数)を、ポリオキシプロピレンアルキルエーテルリン酸エステル(一般式(1)においてRが炭素数8の2-エチルヘキシル基、Rがプロピレン基、Rが水素原子とR(OR-との混合物、Rが2-エチルヘキシル基、Rがプロピレン基、HLB値が9.4、nが1以上の整数)とした以外は実施例1と同様に、酸化亜鉛微粒子分散液、合わせガラス用中間膜、及び、合わせガラスを作製した。
(実施例17)
分散剤としてポリオキシブチレンアルキルエーテルリン酸エステル(一般式(1)においてRが炭素数8の2-エチルヘキシル基、Rがブチレン基、Rが水素原子とR(OR-との混合物、Rが2-エチルヘキシル基、Rがブチレン基、HLB値が8.8、nが1以上の整数)を用いた以外は実施例16と同様にして、酸化亜鉛微粒子分散液、合わせガラス用中間膜、及び、合わせガラスを作製した。
<評価>
実施例16~17で得られた酸化亜鉛微粒子分散液、及び、合わせガラスについて実施例1と同様の評価を行った。
結果を表4に示した。
Figure JPOXMLDOC01-appb-T000008
(実施例18)
合わせガラス用中間膜の作製において酸化亜鉛微粒子分散液の配合量を16.8重量部とした以外は実施例1と同様にして、酸化亜鉛微粒子分散液、合わせガラス用中間膜、及び、合わせガラスを作製した。
(実施例19)
合わせガラス用中間膜の作製において酸化亜鉛微粒子分散液の配合量を19.3重量部とした以外は実施例18と同様にして、酸化亜鉛微粒子分散液、合わせガラス用中間膜、及び、合わせガラスを作製した。
(実施例20)
酸化亜鉛微粒子分散液の作製において分散剤の配合量を1重量部とし、合わせガラス用中間膜の作製において酸化亜鉛微粒子分散液の配合量を12.6重量部とした以外は実施例18と同様にして、酸化亜鉛微粒子分散液、合わせガラス用中間膜、及び、合わせガラスを作製した。
(実施例21)
酸化亜鉛微粒子分散液の作製において分散剤の配合量を10重量部とし、合わせガラス用中間膜の作製において酸化亜鉛微粒子分散液の配合量を12.6重量部とした以外は実施例18と同様にして、酸化亜鉛微粒子分散液、合わせガラス用中間膜、及び、合わせガラスを作製した。
(実施例22)
酸化亜鉛微粒子分散液の作製において可塑剤の配合量を200重量部とした代わりにエタノールを67重量部配合し、合わせガラス用中間膜の作製において酸化亜鉛微粒子分散液の配合量を12.6重量部とした以外は実施例18と同様にして、酸化亜鉛微粒子分散液、合わせガラス用中間膜、及び、合わせガラスを作製した。
(実施例23)
分散剤としてポリオキシエチレンアルキルエーテルリン酸エステル(一般式(1)においてRが炭素数13のトリデシル基、Rがエチレン基、Rが水素原子とR(OR-との混合物、Rがトリデシル基、Rがエチレン基、HLB値が9.4、nが1以上の整数)を用いた以外は実施例22と同様にして、酸化亜鉛微粒子分散液、合わせガラス用中間膜、及び、合わせガラスを作製した。
(実施例24)
分散剤としてポリオキシエチレンアルキルエーテルリン酸エステル(一般式(1)においてRが炭素数8の2-エチルヘキシル基、Rがエチレン基、Rが水素原子とR(OR-との混合物、Rが2-エチルヘキシル基、Rがエチレン基、HLB値が10.0、nが1以上の整数)を用い、3価の金属元素としてガリウムを2モル%含有する酸化亜鉛微粒子(体積平均粒子径20nm)を用い、合わせガラス用中間膜の作製において酸化亜鉛微粒子分散液の配合量を14.0重量部とした以外は実施例18と同様にして、酸化亜鉛微粒子分散液、合わせガラス用中間膜、及び、合わせガラスを作製した。
(実施例25)
3価の金属元素としてガリウムを6モル%含有する酸化亜鉛微粒子を用い、合わせガラス用中間膜の作製において酸化亜鉛微粒子分散液の配合量を15.4重量部とした以外は実施例24と同様にして、酸化亜鉛微粒子分散液、合わせガラス用中間膜、及び、合わせガラスを作製した。
(実施例26)
分散剤としてポリオキシエチレンアルキルエーテルリン酸エステル(一般式(1)においてRが炭素数8の2-エチルヘキシル基、Rがエチレン基、Rが水素原子とR(OR-との混合物、Rが2-エチルヘキシル基、Rがエチレン基、HLB値が9.2、nが1以上の整数)を用い、3価の金属元素としてガリウムを4モル%含有する酸化亜鉛微粒子(体積平均粒子径20nm)を用い、合わせガラス用中間膜の作製において酸化亜鉛微粒子分散液の配合量を12.6重量部とした以外は実施例24と同様にして、酸化亜鉛微粒子分散液、合わせガラス用中間膜、及び、合わせガラスを作製した。
(実施例27)
3価の金属元素としてガリウムを4モル%含有する酸化亜鉛微粒子(体積平均粒子径20nm)を用い、酸化亜鉛微粒子分散液の作製において可塑剤をテトラエチレングリコールジ-2-エチルヘキサノエート(4GO)とし、合わせガラス用中間膜の作製において酸化亜鉛微粒子分散液の配合量を12.6重量部とした以外は実施例24と同様にして、酸化亜鉛微粒子分散液、合わせガラス用中間膜、及び、合わせガラスを作製した。
(実施例28)
3価の金属元素としてガリウムを4モル%含有する酸化亜鉛微粒子(体積平均粒子径20nm)を用い、酸化亜鉛微粒子分散液の作製において可塑剤をテトラエチレングリコールジヘプタノエート(4G7)とし、合わせガラス用中間膜の作製において酸化亜鉛微粒子分散液の配合量を12.6重量部とした以外は実施例24と同様にして、酸化亜鉛微粒子分散液、合わせガラス用中間膜、及び、合わせガラスを作製した。
<評価>
実施例18~28で得られた酸化亜鉛微粒子分散液、及び、合わせガラスについて実施例1と同様の評価を行った。
結果を表5に示した。
Figure JPOXMLDOC01-appb-T000009
(実施例29)
(1)酸化亜鉛微粒子分散液の作製
3価の金属元素としてガリウムを4モル%含有する酸化亜鉛微粒子30重量部と、可塑剤としてトリエチレングリコールジ-2-エチルヘキサノエート267重量部と、分散剤としてポリオキシエチレンアルキルエーテルリン酸エステル(一般式(1)においてRが炭素数8の2-エチルヘキシル基、Rがエチレン基、Rが水素原子とR(OR-との混合物、Rが2-エチルヘキシル基、Rがエチレン基、HLB値が10.0、nが1以上の整数)3重量部と、ジルコニアビーズ1125重量部とを混合し、混合物を得た。得られた混合物をバッチ式ビーズミルで4時間分散させることにより、酸化亜鉛微粒子分散液を作製した。
(2)錫ドープ酸化インジウム微粒子分散液の作製
錫ドープ酸化インジウム微粒子30重量部と、可塑剤としてトリエチレングリコールジ-2-エチルヘキサノエート267重量部と、分散剤としてポリリン酸エステル塩3重量部と、ジルコニアビーズ1125重量部とを混合し、混合物を得た。得られた混合物をバッチ式ビーズミルで4時間分散させることにより、錫ドープ酸化インジウム微粒子分散液を作製した。
(3)合わせガラス用中間膜の作製
得られた酸化亜鉛微粒子分散液8.82重量部と、錫ドープ酸化インジウム微粒子分散液0.70重量部と、熱可塑性樹脂としてポリビニルブチラール樹脂100重量部とを混合した。更に、可塑剤としてトリエチレングリコールジ-2-エチルヘキサノエートを熱可塑性樹脂100重量部に対して可塑剤全量が40重量部となるように添加し、混合することにより熱可塑性樹脂組成物を作製した。
得られた熱可塑性樹脂組成物を、二軸異方押出機を用いて成形し、膜厚が760μmの合わせガラス用中間膜を作製した。
(4)合わせガラスの作製
得られた合わせガラス用中間膜を2枚の透明なフロートガラス(縦5cm×横5cm×厚さ2.5mm)の間に挟み、真空バッグに入れ、933.2hPaまで真空バッグ内を脱気した。次いで、真空バッグを加熱し、真空バッグの内部が100℃に達した後20分間その温度を保持した。真空バッグを自然冷却させ、仮圧着された合わせガラスを取り出した。仮圧着された合わせガラスを、135℃、圧力1.2MPaで20分間オートクレーブを行うことにより合わせガラスを作製した。
(実施例30)
合わせガラス用中間膜の作製において、酸化亜鉛微粒子分散液の配合量を7.00重量部と、錫ドープ酸化インジウム微粒子分散液の配合量を1.40重量部とした以外は実施例29と同様にして、合わせガラス用中間膜、及び、合わせガラスを作製した。
(実施例31)
合わせガラス用中間膜の作製において、酸化亜鉛微粒子分散液の配合量を0.70重量部と、錫ドープ酸化インジウム微粒子分散液の配合量を2.80重量部とした以外は実施例29と同様にして、合わせガラス用中間膜、及び、合わせガラスを作製した。
<評価>
実施例29~31で得られた合わせガラスについて実施例1と同様の評価を行った。
結果を表6に示した。
Figure JPOXMLDOC01-appb-T000010
(実施例32)
(1)酸化亜鉛微粒子分散液の作製
3価の金属元素としてガリウムを4モル%含有する酸化亜鉛微粒子30重量部と、可塑剤としてトリエチレングリコールジ-2-エチルヘキサノエート267重量部と、分散剤としてポリオキシエチレンアルキルエーテルリン酸エステル(一般式(1)においてRが炭素数8の2-エチルヘキシル基、Rがエチレン基、Rが水素原子とR(OR-との混合物、Rが2-エチルヘキシル基、Rがエチレン基、HLB値が10.0、nが1以上の整数)3重量部と、ジルコニアビーズ1125重量部とを混合し、混合物を得た。得られた混合物をバッチ式ビーズミルで4時間分散させることにより、酸化亜鉛微粒子分散液を作製した。
(2)合わせガラス用中間膜の作製
得られた酸化亜鉛微粒子分散液16.0重量部と、熱可塑性樹脂としてポリビニルブチラール樹脂(PVB:平均重合度1700、ブチラール化度68.5mol%、水酸基量30.6mol%、アセチル基量0.9mol%)100重量部とを混合した。更に、可塑剤としてトリエチレングリコールジ-2-エチルヘキサノエートを熱可塑性樹脂100重量部に対して可塑剤全量が40重量部となるように添加し、混合することにより熱可塑性樹脂組成物(スキン層)を作製した。
一方、可塑剤としてトリエチレングリコールジ-2-エチルヘキサノエートをポリビニルブチラール樹脂(PVB:平均重合度2450、ブチラール化度65.5mol%、水酸基量20.1mol%、アセチル基量13.4mol%)100重量部に対して可塑剤全量が60重量部となるように添加し、混合することにより熱可塑性樹脂組成物(中間層)を作製した。
得られた熱可塑性樹脂組成物(スキン層)及び熱可塑性樹脂組成物(中間層)を、二軸異方押出機を用いて成形し、スキン層(膜厚330μm)/中間層(膜厚100μm)/スキン層(膜厚330μm)の合わせガラス用中間膜を作製した。
(3)合わせガラスの作製
得られた合わせガラス用中間膜を2枚の透明なフロートガラス(縦5cm×横5cm×厚さ2.5mm)の間に挟み、真空バッグに入れ、933.2hPaまで真空バッグ内を脱気した。次いで、真空バッグを加熱し、真空バッグの内部が100℃に達した後20分間その温度を保持した。真空バッグを自然冷却させ、仮圧着された合わせガラスを取り出した。仮圧着された合わせガラスを、135℃、圧力1.2MPaで20分間オートクレーブを行うことにより合わせガラスを作製した。
(実施例33)
分散剤としてポリオキシエチレンアルキルエーテルリン酸エステル(一般式(1)においてRが炭素数13のトリデシル基、Rがエチレン基、Rが水素原子とR(OR-との混合物、Rがトリデシル基、Rがエチレン基、HLB値が9.4、nが1以上の整数)を用いた以外は実施例32と同様にして、酸化亜鉛微粒子分散液、合わせガラス用中間膜、及び、合わせガラスを作製した。
<評価>
実施例32~33で得られた合わせガラスについて実施例1と同様の評価を行った。
結果を表7に示した。
Figure JPOXMLDOC01-appb-T000011
本発明によれば、酸化亜鉛微粒子の分散性に優れる合わせガラス用中間膜、合わせガラス、及び、酸化亜鉛微粒子分散液を提供することができる。

Claims (12)

  1. 3価の金属元素を含有する酸化亜鉛微粒子と、熱可塑性樹脂と、分散剤と、可塑剤とを含有する合わせガラス用中間膜であって、
    前記分散剤は、下記一般式(1)で表される構造を有し、かつ、HLB値が8~12である
    ことを特徴とする合わせガラス用中間膜。
    Figure JPOXMLDOC01-appb-C000001
    は炭素数が5~14のアルキル基又は炭素数が6~14のアリール基を表し、Rは炭素数が2~5のアルキレン基を表し、Rは水素原子又はR(OR-を表し、Rは炭素数が5~14のアルキル基又は炭素数が6~14のアリール基を表し、Rは炭素数が2~5のアルキレン基を表す。nは1以上の整数である。
  2. は、2-エチルヘキシル基又はトリデシル基であることを特徴とする請求項1記載の合わせガラス用中間膜。
  3. 3価の金属元素は、ガリウム、アルミニウム又はインジウムであることを特徴とする請求項1又は2記載の合わせガラス用中間膜。
  4. 3価の金属元素を含有する酸化亜鉛微粒子100重量部に対して、分散剤を1~50重量部含有することを特徴とする請求項1又は2記載の合わせガラス用中間膜。
  5. 更に、熱線吸収剤を含有することを特徴とする請求項1又は2記載の合わせガラス用中間膜。
  6. 熱線吸収剤は錫ドープ酸化インジウム微粒子であることを特徴とする請求項5記載の合わせガラス用中間膜。
  7. 3価の金属元素を含有する酸化亜鉛微粒子と、熱可塑性樹脂と、一般式(1)で表される構造を有する分散剤と、可塑剤とを含有する熱線遮蔽層を含む、2以上の樹脂層を積層した多層構造体であることを特徴とする請求項1又は2記載の合わせガラス用中間膜。
  8. 請求項1又は2記載の合わせガラス用中間膜を用いてなることを特徴とする合わせガラス。
  9. 3価の金属元素を含有する酸化亜鉛微粒子と、分散剤と、可塑剤とを含有する酸化亜鉛微粒子分散液であって、
    前記分散剤は、下記一般式(1)で表される構造を有し、かつ、HLB値が8~12である
    ことを特徴とする酸化亜鉛微粒子分散液。
    Figure JPOXMLDOC01-appb-C000002
    は炭素数が5~14のアルキル基又は炭素数が6~14のアリール基を表し、Rは炭素数が2~5のアルキレン基を表し、Rは水素原子又はR(OR-を表し、Rは炭素数が5~14のアルキル基又は炭素数が6~14のアリール基を表し、Rは炭素数が2~5のアルキレン基を表す。nは1以上の整数である。
  10. は、2-エチルヘキシル基又はトリデシル基であることを特徴とする請求項9記載の酸化亜鉛微粒子分散液。
  11. 3価の金属元素は、ガリウム、アルミニウム又はインジウムであることを特徴とする請求項9又は10記載の酸化亜鉛微粒子分散液。
  12. 3価の金属元素を含有する酸化亜鉛微粒子100重量部に対して、分散剤を1~50重量部含有することを特徴とする請求項9又は10記載の酸化亜鉛微粒子分散液。
PCT/JP2009/056641 2008-03-31 2009-03-31 合わせガラス用中間膜、合わせガラス、及び、酸化亜鉛微粒子分散液 WO2009123186A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009514569A JP5317965B2 (ja) 2008-03-31 2009-03-31 合わせガラス用中間膜、合わせガラス、及び、酸化亜鉛微粒子分散液
EP09728932A EP2269962B1 (en) 2008-03-31 2009-03-31 Intermediate film for laminated glass, laminated glass, and zinc oxide microparticle dispersion
MX2010008990A MX2010008990A (es) 2008-03-31 2009-03-31 Pelicula intercalada para vidrio laminado, y dispersion de micro-particulas de oxido de zinc.
US12/934,741 US20110059320A1 (en) 2008-03-31 2009-03-31 Interlayer film for laminated glass, laminated glass, and zinc oxide fine particle dispersion
CN2009801097995A CN101977865B (zh) 2008-03-31 2009-03-31 夹层玻璃用中间膜、夹层玻璃及氧化锌微粒分散液

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008092994 2008-03-31
JP2008-092994 2008-03-31

Publications (1)

Publication Number Publication Date
WO2009123186A1 true WO2009123186A1 (ja) 2009-10-08

Family

ID=41135557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056641 WO2009123186A1 (ja) 2008-03-31 2009-03-31 合わせガラス用中間膜、合わせガラス、及び、酸化亜鉛微粒子分散液

Country Status (6)

Country Link
US (1) US20110059320A1 (ja)
EP (1) EP2269962B1 (ja)
JP (1) JP5317965B2 (ja)
CN (1) CN101977865B (ja)
MX (1) MX2010008990A (ja)
WO (1) WO2009123186A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011207762A (ja) * 2009-12-25 2011-10-20 Sekisui Chem Co Ltd 合わせガラス用中間膜、合わせガラス用多層中間膜及び合わせガラス
JP2013107821A (ja) * 2010-09-30 2013-06-06 Sekisui Chem Co Ltd 合わせガラス用中間膜及び合わせガラス
CN103282323A (zh) * 2010-12-28 2013-09-04 积水化学工业株式会社 夹层玻璃用中间膜及夹层玻璃
WO2017057499A1 (ja) * 2015-09-28 2017-04-06 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2330089B1 (en) * 2008-09-29 2013-12-18 Sekisui Chemical Co., Ltd. Interlayer film for laminated glass and laminated glass
CN103642163A (zh) * 2013-12-03 2014-03-19 广州市奥吉斯新材料有限公司 一种光致变色性pvb薄膜及其制备方法与应用
US9822236B2 (en) * 2014-08-21 2017-11-21 Solutia Inc. Polymer interlayers comprising special effect metal pigments
JP6445824B2 (ja) * 2014-09-30 2018-12-26 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
KR102418761B1 (ko) * 2021-03-08 2022-07-07 에스케이씨 주식회사 접합유리용 중간막, 광투과적층체 및 이동수단

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09291298A (ja) * 1996-03-01 1997-11-11 Taiho Ind Co Ltd 安定化磁性流体、磁性流体安定化用添加剤および磁性流体の安定化方法
JP2005146174A (ja) 2003-11-18 2005-06-09 Nitto Denko Corp 無機粉体含有樹脂組成物、転写シート、誘電体層形成基板の製造方法、および誘電体層形成基板
JP2005528454A (ja) * 2002-06-06 2005-09-22 デグサ アクチエンゲゼルシャフト 熱分解法で製造された金属酸化物粒子及び分散剤を含有する水性分散液
WO2006025484A1 (ja) * 2004-09-02 2006-03-09 Sekisui Chemical Co., Ltd. 合わせガラス用中間膜及び合わせガラス
EP1666559A1 (en) 2003-07-31 2006-06-07 Kureha Corporation Infrared absorbing composition, resin composition, interlayer film for laminated glass, laminate, laminated glass, and building material
JP2006188705A (ja) * 2005-01-03 2006-07-20 Samsung Electronics Co Ltd リン酸系分散剤を含む蛍光体ペースト組成物およびこれを用いてなる表示装置
JP2007039512A (ja) * 2005-08-01 2007-02-15 Pilot Corporation 水性ボールペン用インキ組成物
JP2007045636A (ja) * 2005-08-05 2007-02-22 Sekisui Chem Co Ltd 合わせガラス用中間膜および合わせガラス
EP1785404A1 (en) 2004-07-06 2007-05-16 Sekisui fine Chemical Co., Ltd. Intermediate film for laminated glass and laminated glass

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0678771B1 (en) * 1994-04-18 2001-11-21 Eastman Kodak Company Stable aqueous solid particle dispersions
US5827444A (en) * 1996-03-01 1998-10-27 Taiho Industries Co., Ltd. Stabilized magnetic fluid and method for stabilizing magnetic fluid
DE69825809T3 (de) * 1997-04-22 2009-04-16 Mitsubishi Chemical Corp. Stark wasserabsorbierendes Polymer und Verfahren zu seiner Herstellung
DE19959916A1 (de) * 1998-12-30 2000-07-20 Henkel Chile Sa Füllstoffhaltige Polymerdispersion, Verfahren zu deren Herstellung und deren Verwendung
US6545819B1 (en) * 1999-08-31 2003-04-08 Canon Kabushiki Kaisha Zoom lens and optical apparatus having the same
KR100491571B1 (ko) * 1999-10-01 2005-05-27 세키스이가가쿠 고교가부시키가이샤 합판 유리용 중간층 필름 및 합판 유리
DE10022037A1 (de) * 2000-05-05 2001-11-08 Bayer Ag IR-absorbierende Zusammensetzungen
JP4512940B2 (ja) * 2003-12-24 2010-07-28 三菱マテリアル株式会社 錫ドープ酸化インジウム微粒子分散液とその製造方法、および該分散液を用いた熱線遮蔽性を有する合わせガラス用中間膜、ならびにその合わせガラス
JP4664001B2 (ja) * 2004-04-07 2011-04-06 出光興産株式会社 ポリカーボネート樹脂組成物およびその成形体
JP4759512B2 (ja) * 2004-06-01 2011-08-31 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09291298A (ja) * 1996-03-01 1997-11-11 Taiho Ind Co Ltd 安定化磁性流体、磁性流体安定化用添加剤および磁性流体の安定化方法
JP2005528454A (ja) * 2002-06-06 2005-09-22 デグサ アクチエンゲゼルシャフト 熱分解法で製造された金属酸化物粒子及び分散剤を含有する水性分散液
EP1666559A1 (en) 2003-07-31 2006-06-07 Kureha Corporation Infrared absorbing composition, resin composition, interlayer film for laminated glass, laminate, laminated glass, and building material
JP2005146174A (ja) 2003-11-18 2005-06-09 Nitto Denko Corp 無機粉体含有樹脂組成物、転写シート、誘電体層形成基板の製造方法、および誘電体層形成基板
EP1785404A1 (en) 2004-07-06 2007-05-16 Sekisui fine Chemical Co., Ltd. Intermediate film for laminated glass and laminated glass
WO2006025484A1 (ja) * 2004-09-02 2006-03-09 Sekisui Chemical Co., Ltd. 合わせガラス用中間膜及び合わせガラス
JP2006188705A (ja) * 2005-01-03 2006-07-20 Samsung Electronics Co Ltd リン酸系分散剤を含む蛍光体ペースト組成物およびこれを用いてなる表示装置
JP2007039512A (ja) * 2005-08-01 2007-02-15 Pilot Corporation 水性ボールペン用インキ組成物
JP2007045636A (ja) * 2005-08-05 2007-02-22 Sekisui Chem Co Ltd 合わせガラス用中間膜および合わせガラス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2269962A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011207762A (ja) * 2009-12-25 2011-10-20 Sekisui Chem Co Ltd 合わせガラス用中間膜、合わせガラス用多層中間膜及び合わせガラス
US9238354B2 (en) 2009-12-25 2016-01-19 Sekisui Chemical Co., Ltd. Intermediate film for laminated glass, multilayer intermediate film for laminated glass, and laminated glass
US10525676B2 (en) 2009-12-25 2020-01-07 Sekisui Chemical Co., Ltd. Intermediate film for laminated glass, multilayer intermediate film for laminated glass, and laminated glass
JP2013107821A (ja) * 2010-09-30 2013-06-06 Sekisui Chem Co Ltd 合わせガラス用中間膜及び合わせガラス
JP2016084273A (ja) * 2010-09-30 2016-05-19 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
JP2018058765A (ja) * 2010-09-30 2018-04-12 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
CN103282323A (zh) * 2010-12-28 2013-09-04 积水化学工业株式会社 夹层玻璃用中间膜及夹层玻璃
CN103282323B (zh) * 2010-12-28 2016-08-10 积水化学工业株式会社 夹层玻璃用中间膜及夹层玻璃
WO2017057499A1 (ja) * 2015-09-28 2017-04-06 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
JPWO2017057499A1 (ja) * 2015-09-28 2018-07-12 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス

Also Published As

Publication number Publication date
JP5317965B2 (ja) 2013-10-16
US20110059320A1 (en) 2011-03-10
MX2010008990A (es) 2010-09-10
CN101977865A (zh) 2011-02-16
CN101977865B (zh) 2013-03-27
EP2269962A1 (en) 2011-01-05
JPWO2009123186A1 (ja) 2011-07-28
EP2269962A4 (en) 2011-05-11
EP2269962B1 (en) 2013-01-02

Similar Documents

Publication Publication Date Title
JP5317965B2 (ja) 合わせガラス用中間膜、合わせガラス、及び、酸化亜鉛微粒子分散液
EP1785404B1 (en) Intermediate film for laminated glass and laminated glass
US8475927B2 (en) Tin-doped indium oxide fine particle dispersion, method for manufacturing the same, interlayer film for laminated glass with heat ray blocking properties formed by using said dispersion, and laminated glass therewith
KR100811855B1 (ko) 적외선 흡수 폴리비닐 부티랄 조성물과 이의 시트 및 이를포함하는 박층
JP5913102B2 (ja) 合わせガラス用中間膜及び合わせガラス
JP5317966B2 (ja) 合わせガラス用中間膜、合わせガラス、及び、酸化亜鉛微粒子分散液
US20120162752A1 (en) Intermediate film for laminated glass, and laminated glass
JP5899874B2 (ja) 赤外線遮蔽材料微粒子分散液とその製造方法および熱線遮蔽膜と熱線遮蔽合わせ透明基材
WO2009093655A1 (ja) 合わせガラス用中間膜、及び、合わせガラス
AU2012203314A1 (en) Interlayers comprising stabilized infrared absorbing agents
JP5520052B2 (ja) 合わせガラス用中間膜、合わせガラス及び合わせガラス用中間膜の製造方法
JP2011011932A (ja) 合わせガラス用中間膜、合わせガラス、及び、酸化亜鉛微粒子分散液
JP5438642B2 (ja) 分散液、合わせガラス用中間膜及び合わせガラス
JP2010070436A (ja) 金属酸化物微粒子分散液、合わせガラス用中間膜、及び、合わせガラス
JP4960898B2 (ja) 合わせガラス用中間膜、及び、合わせガラス
JP5232354B2 (ja) 中間膜及び合わせガラス
WO2019065837A1 (ja) 合わせガラス
JP2009203152A (ja) 合わせガラス用中間膜

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2009514569

Country of ref document: JP

Ref document number: 200980109799.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09728932

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2010/008990

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009728932

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12934741

Country of ref document: US