WO2009123009A1 - 流体分配装置、マイクロプラント、流体分配装置の設計方法及び流路閉塞検知方法 - Google Patents

流体分配装置、マイクロプラント、流体分配装置の設計方法及び流路閉塞検知方法 Download PDF

Info

Publication number
WO2009123009A1
WO2009123009A1 PCT/JP2009/056106 JP2009056106W WO2009123009A1 WO 2009123009 A1 WO2009123009 A1 WO 2009123009A1 JP 2009056106 W JP2009056106 W JP 2009056106W WO 2009123009 A1 WO2009123009 A1 WO 2009123009A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
flow
output
fluid
blockage
Prior art date
Application number
PCT/JP2009/056106
Other languages
English (en)
French (fr)
Inventor
修 殿村
聡士 永原
学 加納
伸治 長谷部
Original Assignee
国立大学法人京都大学
横河電機株式会社
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学, 横河電機株式会社, 富士フイルム株式会社 filed Critical 国立大学法人京都大学
Priority to US12/935,446 priority Critical patent/US8549907B2/en
Priority to EP20090727879 priority patent/EP2273180A1/en
Priority to JP2010505771A priority patent/JP5376602B2/ja
Publication of WO2009123009A1 publication Critical patent/WO2009123009A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/7182Feed mechanisms characterised by the means for feeding the components to the mixer with means for feeding the material with a fractal or tree-type distribution in a surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502746Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means for controlling flow resistance, e.g. flow controllers, baffles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/01Control of flow without auxiliary power
    • G05D7/0186Control of flow without auxiliary power without moving parts
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0694Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means or flow sources of very small size, e.g. microfluidics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00889Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00891Feeding or evacuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/0095Control aspects
    • B01J2219/00952Sensing operations
    • B01J2219/00954Measured properties
    • B01J2219/00959Flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/143Quality control, feedback systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/143Quality control, feedback systems
    • B01L2200/146Employing pressure sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8158With indicator, register, recorder, alarm or inspection means
    • Y10T137/8175Plural
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems

Definitions

  • the present invention relates to a fluid distribution device, a microplant, a fluid distribution device design method, and a flow path blockage detection method.
  • the microchemical process realizes a chemical process in a small space by connecting micron-order process equipment (micro-processing apparatus) via a micron-order channel (micro-channel).
  • a technique called numbering up is used as a technique for increasing the throughput, that is, a plurality of microprocessing devices are arranged in parallel, and a plurality of microchannels (parallelly arranged in parallel with each microprocessing device).
  • a structure is adopted in which a fluid to be processed is supplied via the flow path) and the processed fluid is recovered from each micro processing apparatus via the parallel flow path.
  • Patent Document 1 discloses a technique for adjusting the flow rate of each microchannel by providing a valve and a flow rate sensor in each microchannel as a fluid distribution technique for the microchannel in the numbering-up structure. ing.
  • Patent Document 2 as a fluid mixing device having a numbering-up structure, a plurality of fluids are rectified in an annular flow path provided for each fluid, and then each fluid is used using a plurality of distribution flow paths. It is disclosed that equal distribution of each fluid is realized by distributing a plurality of fluids and providing pressure loss means in each distribution channel.
  • each of the above conventional techniques has a complicated structure for realizing the uniform distribution of each fluid, and there is room for improvement. That is, in the micro chemical process, since the micro processing device and the micro flow path are provided in the minute space, the flow path shape is complicated, or a fluid such as the valve or the pressure loss means is provided in the middle of the flow path. When there is something that forms a staying part, the risk of the channel being blocked increases. In addition, since the micro measurement device such as the flow rate sensor forms a retention portion like the valve and the pressure loss means, it is a cause of blockage of the flow path and is expensive.
  • the present invention has been made in view of the above-described circumstances, and has the following objects.
  • Blockage of the flow path is prevented by realizing uniform distribution of the fluid with a simple configuration.
  • the blockage of the parallel flow path is detected using a smaller number of measuring devices than in the past.
  • the blockage state (blockage degree) of the block channel is detected.
  • a fluid distribution device that equally distributes the fluid supplied to an input flow path to three or more output flow paths and outputs the fluid.
  • it is formed by combining a plurality of branch flow paths, and includes at least three fluid branch portions and at least one fluid junction portion, and corresponds to a pressure loss compartment connection model including a fluid balance type and a pressure balance type. The method of being formed is adopted.
  • a monitoring device for monitoring the blockage of each output flow path, and any two output flow paths among three or more output flow paths, respectively.
  • Two flow meters provided, and the monitoring device acquires, as pre-processing, the measurement value of each flow meter in a state where all the output flow paths are not blocked as the reference flow rate, and each flow meter
  • the measured value of each flow meter when the output flow path not provided with is closed is obtained as the reference flow rate, and the difference between the reference flow rate of one flow meter and the reference flow rate, the standard flow rate of the other flow meter, and the reference flow rate
  • the ratio of the difference is stored as the reference flow rate change ratio.
  • the measured value of each flow meter is acquired as the initial flow rate at the start of operation, and the measured value of each flow meter in the subsequent operation is evaluated. Get as flow rate and one
  • the ratio of the difference between the initial flow rate and the evaluation flow rate of the meter and the difference between the initial flow rate and the evaluation flow rate of the other flow meter is calculated as the operating flow rate change ratio, and the difference between the operating flow rate change ratio and the reference flow rate change ratio is calculated.
  • a means of specifying the output flow path where the blockage has occurred based on the comparison is adopted.
  • the monitoring device has all the output flow paths in a state where flow meters are provided in all the output flow paths.
  • the measured value of each flow meter in the state where no blockage has occurred is acquired as the reference flow rate, and the measured value of each flow meter when the output flow path is closed sequentially is sequentially acquired as the reference flow rate.
  • the difference between the difference between the flow rate and the reference flow rate and the difference between the standard flow rate and the reference flow rate of the flow meter are stored as the standard flow rate change ratio, respectively.
  • each output flow path is based on the product of the flow rate change rate obtained from the initial flow rate and the evaluation flow rate and the reference flow rate change ratio.
  • the monitoring device determines the blockage degree of the output flow path where the blockage occurs.
  • the means of detecting is adopted.
  • a means is adopted in which any one of the first to fourth solving means is finely formed for a numbering-up structure microplant.
  • a means is adopted in which the processing target fluid is equally distributed to each microprocessing device via the fifth fluid distribution device to perform processing.
  • the fluid distribution device As a first solving means related to the design method of the fluid distribution device, there is a design method of the fluid distribution device that equally distributes and outputs the fluid input to the input flow path to three or more output flow paths. Then, the fluid distribution device has a shape including at least three fluid branch portions and at least one fluid junction portion by combining a plurality of branch channels, and is connected to a pressure loss compartment consisting of a fluid balance type and a pressure balance type. The means of applying the model to the fluid distribution device is adopted.
  • the output flow paths are blocked as a pre-process for the fluid distribution apparatus designed by the first fluid distribution apparatus design method.
  • the flow rates of any two output flow paths in a state where they are not generated are acquired as reference flow rates, and the flow rates of the two output flow paths when the output flow paths other than the two output flow paths are blocked are used as reference flow rates.
  • the ratio of the difference between the standard flow rate and the reference flow rate in one of the two output flow paths and the difference between the standard flow rate and the reference flow rate of the flow meter in the other are stored as a standard flow rate change ratio.
  • the flow rates of the two output flow paths are acquired as initial flow rates at the start of operation of the fluid distributor, the flow rates of the two output flow paths in the subsequent operation are acquired as evaluation flow rates, and the 2
  • the ratio of the difference between the initial flow rate and the evaluation flow rate of the flow meter in one of the output flow paths and the difference between the initial flow rate and the evaluation flow rate of the flow meter in the other is calculated as the flow rate change ratio during operation.
  • the means for specifying the output flow path where the blockage has occurred is adopted.
  • the fluid distribution apparatus designed by the first fluid distribution apparatus design method is in a state where all the output flow paths have not been blocked as pre-processing.
  • the flow rates of all output flow paths are acquired as reference flow rates, and the flow rates of all output flow paths when the output flow paths are sequentially closed are sequentially acquired as reference flow rates.
  • the ratio of the difference between the standard flow rate and the reference flow rate of the output flow path that is different from the difference between the flow rates is stored as the standard flow rate change ratio, and at the time of operation after this pre-processing, any two output flow paths at the start of operation of the fluid distributor Is obtained as the initial flow rate, the flow rates of the two output channels in the subsequent operation are obtained as the evaluation flow rate, and the product of the flow rate change rate obtained from the initial flow rate and the evaluation flow rate and the reference flow rate change ratio is obtained. Detecting the clogging degree of each output channel on the basis, to adopt a means of.
  • a means is adopted that is applied to a fluid distribution device that is finely formed for a microplant having a numbering-up structure.
  • a pressure loss compartment connection model is formed by combining a plurality of branch flow paths, and includes at least three fluid branch portions and at least one fluid junction portion, and includes a fluid balance type and a pressure balance type. Therefore, the fluid can be evenly distributed with a simpler configuration than in the prior art. Therefore, the fluid retention portion can be reduced as compared with the conventional case, and the blockage of the flow path can be prevented. Further, the cost can be reduced by simplifying the configuration.
  • the present invention since it is detected which of the three or more output flow paths is blocked based on the flow rate of any two output flow paths during operation, a smaller number of measurement devices than in the past are provided. Can be used to identify blockages in the output flow path. Furthermore, according to the present invention, since the degree of blockage of three or more output flow paths is detected based on the flow rates of any two output flow paths during operation, the blockage is performed using a smaller number of measuring devices than in the past. The blockage state (blockage degree) of the flow path can be detected.
  • FIG. 3 is a simplified flow path model for explaining a pressure loss compartment (PDC) connection model in an embodiment of the present invention.
  • FIG. 5 is a flow path model for applying a pressure compartment (PDC) connection model to the design of the present microfluidic distributor M in an embodiment of the present invention.
  • PDC pressure loss compartment
  • the relationship between the flow rate variation of the output microchannel Rc51 and the flow rate variation of the output microchannels Rc53 to Rc55 (parallel channels) when the output microchannel Rc52 is clogged is shown. It is a graph to show. In one embodiment of the present invention, it is a graph showing the relationship between the flow rate change amount of the output microchannel Rc51 and the flow rate change amount of the output microchannel Rc52 when the output microchannel Rc52 is blocked. 6 is a graph showing the relationship between the flow rate change amount of the output micro flow channel Rc51 and the flow rate change amount of the output micro flow channel Rc55 when the output micro flow channels Rc52 to Rc54 are clogged in one embodiment of the present invention. . It is a flowchart which shows the detail of the obstruction
  • M Microfluidic distributor
  • Rc11 Input microchannel, Rc21-Rc44, Rs11-Rs48 ... Branch microchannel, Rc51-Rc55 ... Output microchannel, B11-B44 ... Diverging section, G21-G43 ... Merging section, W ... Process target fluid, P ... Micro plant, 1 ... Micro supply tank, 2 ... Micro pump, RA1 to RA5 ... Micro processing device, 4 ... Micro fluid collection device, 5 ... Micro recovery tank, FM1, FM5 ... Micro flow meter , 6 ... Monitoring device
  • FIG. 1 is a plan view showing a two-dimensional configuration of a microfluidic distributor M according to this embodiment.
  • FIG. 2 is a configuration diagram of a microplant P using the microfluidic distributor M.
  • This microfluidic distributor M is for distributing five fluids to be processed W evenly in a microplant P having a numbering-up structure.
  • an input microchannel Rc11 input channel
  • a branch micro It is composed of channels Rc21 to Rc44, Rs11 to Rs48 (branch channels) and output microchannels Rc51 to Rc55 (output channels).
  • each microchannel indicates that the microchannel extends in the x-axis direction in the xy orthogonal coordinate system
  • the subscript “s” indicates x -Indicates that the micro channel extends in the y-axis direction in the y-orthogonal coordinate system.
  • the microchannels Rc21 to Rc44 extending in the x-axis direction have the same channel length Lc, and the microstreams extending in the y-axis direction.
  • the path lengths Ls of the paths Rs11 to Rs48 are all equal.
  • the input microchannel Rc11 located at the left end is a microchannel having a predetermined length Lc11, a predetermined cross-sectional area Ac11, a hydraulic equivalent diameter Dc11, and extending in the x-axis direction.
  • a processing target fluid W having a predetermined flow rate q11 is supplied from the outside to the left end of the input microchannel Rc11.
  • one branch microchannel Rs11 is a microchannel having a predetermined length Ls11, a predetermined cross-sectional area As11, a hydraulic equivalent diameter Ds11, and extending in the y-axis direction.
  • the processing target fluid W input from one end (lower end) is output from the other end (upper end) to the branch microchannel Rc21.
  • the other branch microchannel Rs12 has a predetermined length Ls12, a predetermined cross-sectional area As12,
  • the micro-fluidic channel has a hydraulic equivalent diameter Ds12 and extends in the y-axis direction, and the processing target fluid W input from one end (upper end) is output from the other end (lower end) to the branch micro-channel Rc22.
  • the branch microchannel Rc21 is a microchannel having a predetermined length Lc21, a predetermined cross-sectional area Ac21, a hydraulic equivalent diameter Dc21 and extending in the x-axis direction, and is a processing target fluid input from one end (left end) W is output from the other end (right end) to the pair of branch microchannels Rs21 and Rs22.
  • the branch microchannel Rc22 is a microchannel having a predetermined length Lc22, a predetermined cross-sectional area Ac22, a hydraulic equivalent diameter Dc22 and extending in the x-axis direction, and is a processing target input from one end (left end).
  • the fluid W is output from the other end (right end) to the pair of branch microchannels Rs23 and Rs24.
  • one branch microchannel Rs21 is a microchannel having a predetermined length Ls21, a predetermined cross-sectional area As21, a hydraulic equivalent diameter Ds21, and extending in the y-axis direction.
  • the processing target fluid W input from one end (lower end) is output to the branch microchannel Rc31 from the other end (upper end), and the other branch microchannel Rs22 has a predetermined length Ls22, a predetermined cross-sectional area As22,
  • the microfluidic channel has a hydraulic equivalent diameter Ds22 and extends in the y-axis direction, and the processing target fluid W input from one end (upper end) is output from the other end (lower end) to the branch microchannel Rc32.
  • one branch microchannel Rs23 has a predetermined length Ls23, a predetermined cross-sectional area As23, a hydraulic equivalent diameter Ds23, and extends in the y-axis direction.
  • the processing target fluid W input from one end (lower end) is output to the branch microchannel Rc32 from the other end (upper end), and the other branch microchannel Rs24 has a predetermined length Ls24 and a predetermined cross-sectional area.
  • a microchannel having As24 and a hydraulic equivalent diameter Ds24 and extending in the y-axis direction, and the processing target fluid W input from one end (upper end) is output to the branch microchannel Rc33 from the other end (lower end). .
  • the branch microchannel Rc31 is a microchannel that has a predetermined length Lc31, a predetermined cross-sectional area Ac31, a hydraulic equivalent diameter Dc31, and extends in the x-axis direction. W is output from the other end (right end) to the pair of branch microchannels Rs31 and Rs32.
  • the branch microchannel Rc32 is a microchannel that has a predetermined length Lc32, a predetermined cross-sectional area Ac32, a hydraulic equivalent diameter Dc32, and extends in the x-axis direction. W is output from the other end (right end) to the pair of branch microchannels Rs33 and Rs34.
  • the branch microchannel Rc33 is a microchannel having a predetermined length Lc33, a predetermined cross-sectional area Ac33, a hydraulic equivalent diameter Dc33 and extending in the x-axis direction, and is a processing target fluid input from one end (left end) W is output from the other end (right end) to the pair of branch microchannels Rs35 and Rs36.
  • one branch microchannel Rs31 is a microchannel having a predetermined length Ls31, a predetermined cross-sectional area As31, and a hydraulic equivalent diameter Ds31 and extending in the y-axis direction.
  • the processing target fluid W input from one end (lower end) is output from the other end (upper end) to the branch microchannel Rc41.
  • the other branch microchannel Rs32 has a predetermined length Ls32, a predetermined cross-sectional area As32
  • the microfluidic channel has a hydraulic equivalent diameter Ds32 and extends in the y-axis direction, and the processing target fluid W input from one end (upper end) is output from the other end (lower end) to the branch microchannel Rc42.
  • one branch microchannel Rs33 has a predetermined length Ls33, a predetermined cross-sectional area As33, a hydraulic equivalent diameter Ds33, and a micro flow extending in the y-axis direction.
  • the processing target fluid W input from one end (lower end) is output to the branch microchannel Rc42 from the other end (upper end), and the other branch microchannel Rs34 has a predetermined length Ls34 and a predetermined cross-sectional area.
  • a microchannel having As34 and a hydraulic equivalent diameter Ds34 and extending in the y-axis direction, and the processing target fluid W input from one end (upper end) is output from the other end (lower end) to the branch microchannel Rc43. .
  • one branch microchannel Rs35 has a predetermined length Ls35, a predetermined cross-sectional area As35, a hydraulic equivalent diameter Ds35, and extends in the y-axis direction.
  • the processing target fluid W input from one end (lower end) is output to the branch microchannel Rc43 from the other end (upper end), and the other branch microchannel Rs36 has a predetermined length Ls36 and a predetermined cross-sectional area.
  • a microchannel having As36 and a hydraulic equivalent diameter Ds36 and extending in the y-axis direction, and the processing target fluid W input from one end (upper end) is output from the other end (lower end) to the branch microchannel Rc44. .
  • the branch microchannel Rc41 is a microchannel having a predetermined length Lc41, a predetermined cross-sectional area Ac41, a hydraulic equivalent diameter Dc41, and extending in the x-axis direction. W is output from the other end (right end) to the pair of branch microchannels Rs41 and Rs42.
  • the branch microchannel Rc42 is a microchannel that has a predetermined length Lc42, a predetermined cross-sectional area Ac42, a hydraulic equivalent diameter Dc42, and extends in the x-axis direction. W is output from the other end (right end) to the pair of branch microchannels Rs43 and Rs44.
  • the branch microchannel Rc43 is a microchannel having a predetermined length Lc43, a predetermined cross-sectional area Ac43, a hydraulic equivalent diameter Dc43 and extending in the x-axis direction, and is a processing target fluid input from one end (left end) W is output from the other end (right end) to the pair of branch microchannels Rs45 and Rs46.
  • the branch microchannel Rc44 is a microchannel that has a predetermined length Lc44, a predetermined cross-sectional area Ac44, a hydraulic equivalent diameter Dc44, and extends in the x-axis direction. W is output from the other end (right end) to the pair of branch microchannels Rs47 and Rs48.
  • one branch microchannel Rs41 is a microchannel having a predetermined length Ls41, a predetermined cross-sectional area As41, a hydraulic equivalent diameter Ds41 and extending in the y-axis direction.
  • the processing target fluid W input from one end (lower end) is output from the other end (upper end) to the output microchannel Rc51
  • the other branch microchannel Rs42 has a predetermined length Ls42, a predetermined cross-sectional area As42
  • one branch microchannel Rs43 has a predetermined length Ls43, a predetermined cross-sectional area As43, a hydraulic equivalent diameter Ds43, and extends in the y-axis direction.
  • the processing target fluid W input from one end (lower end) is output to the output microchannel Rc52 from the other end (upper end), and the other branch microchannel Rs44 has a predetermined length Ls44 and a predetermined cross-sectional area.
  • a microchannel having As44 and a hydraulic equivalent diameter Ds44 and extending in the y-axis direction, and the processing target fluid W input from one end (upper end) is output to the output microchannel Rc53 from the other end (lower end). .
  • one branch microchannel Rs45 has a predetermined length Ls45, a predetermined cross-sectional area As45, a hydraulic equivalent diameter Ds45, and extends in the y-axis direction.
  • the processing target fluid W input from one end (lower end) is output from the other end (upper end) to the output microchannel Rc53
  • the other branch microchannel Rs46 has a predetermined length Ls46 and a predetermined cross-sectional area As46.
  • the micro-fluidic channel has a hydraulic equivalent diameter Ds46 and extends in the y-axis direction, and the processing target fluid W input from one end (upper end) is output from the other end (lower end) to the output micro-channel Rc54.
  • one branch microchannel Rs47 has a predetermined length Ls47, a predetermined cross-sectional area As47, and a hydraulic equivalent diameter Ds47 and extends in the y-axis direction.
  • the processing target fluid W input from one end (lower end) is output from the other end (upper end) to the output microchannel Rc54
  • the other branch microchannel Rs48 has a predetermined length Ls48 and a predetermined cross-sectional area As48.
  • the micro-fluidic channel has a hydraulic equivalent diameter Ds48 and extends in the y-axis direction, and the processing target fluid W input from one end (upper end) is output from the other end (lower end) to the output micro-channel Rc55.
  • the output micro-channel Rc51 is a micro-channel having a predetermined length Lc51, a predetermined cross-sectional area Ac51, a hydraulic equivalent diameter Dc51 and extending in the x-axis direction, and is a processing target fluid input from one end (left end) W is output from the other end (right end).
  • the output microchannel Rc52 is a microchannel having a predetermined length Lc52, a predetermined cross-sectional area Ac52, a hydraulic equivalent diameter Dc52 and extending in the x-axis direction, and is a processing target fluid input from one end (left end) W is output from the other end (right end).
  • the output microchannel Rc53 is a microchannel having a predetermined length Lc53, a predetermined cross-sectional area Ac53, a hydraulic equivalent diameter Dc53 and extending in the x-axis direction, and is a processing target fluid input from one end (left end) W is output from the other end (right end).
  • the output microchannel Rc54 is a microchannel having a predetermined length Lc54, a predetermined cross-sectional area Ac54, a hydraulic equivalent diameter Dc54 and extending in the x-axis direction, and is a processing target fluid input from one end (left end). W is output from the other end (right end).
  • the output microchannel Rc55 is a microchannel having a predetermined length Lc55, a predetermined cross-sectional area Ac55, a hydraulic equivalent diameter Dc55 and extending in the x-axis direction, and is a processing target fluid input from one end (left end). W is output from the other end (right end).
  • the present microfluidic distributor M having such a flow path shape (structure) has ten flow dividing portions B11 to B44 for diverting the processing target fluid W and six confluence portions G21 to G43 for merging the processing target fluid W. And eight connection portions J11 to J42, and the processing target fluid W supplied to one input microchannel Rc11 is finally divided / joined by the respective branching portions B11 to B44 and the respective joining portions G21 to G43. Output from the five output microchannels Rc51 to Rc55 to the outside.
  • the present microfluidic distributor M combines a total of 29 branch microchannels Rc21 to Rc44, Rs11 to Rs48, so that 10 branching portions B11 to B44 and 6 joining portions G21 related to the processing target fluid W are combined. To G43 and eight connecting portions J11 to J42.
  • the cross-sectional areas Ac11 to Ac55 for all the microchannels that is, the input microchannels Rc11, the branch microchannels Rc21 to Rc44, Rs11 to Rs48, and the output microchannels Rc51 to Rc55, As11 to As48 are all equal, and hydraulic equivalent diameters Dc11 to Dc55 and Ds11 to Ds48 are all set equal.
  • the present microfluidic distributor M outputs the processing target fluid W inputted from the outside to the input microchannel Rc11 equally to each of the output microchannels Rc51 to Rc55, that is, outputs to the outside.
  • the flow rate q51 to q55 of the processing target fluid W to be processed is designed based on the pressure loss compartment connection model.
  • the micro plant P includes such a micro fluid distribution device M, a micro supply tank 1, a micro pump 2, micro processing devices RA1 to RA5, a micro fluid collection device 4, a micro recovery tank 5, and two micro flow meters FM1 and FM5. And a monitoring device 6.
  • the micro supply tank 1 stores the processing target fluid W, which is a process raw material, and the micropump 2 discharges the processing target fluid W from the micro supply tank 1 to input micro flow path of the micro fluid distribution apparatus M. Supplied to Rc11.
  • the microfluidic distributor M equally distributes the processing target fluid W into five and supplies it from the output microchannels Rc51 to Rc55 (parallel channels) to the microprocessors RA1 to RA5.
  • Each of the micro-processing devices RA1 to RA5 performs a predetermined process on the processing target fluid W supplied through the output micro-channels Rc51 to Rc55 (parallel channels), and the micro-fluid collecting device as a processed fluid Xa 4 to the input micro flow paths Rc61 to Rc65 (parallel flow paths).
  • the microfluidic collecting device 4 is provided with a flow channel shape in which the present microfluidic distributing device M is reversed left and right, and collects the processed fluid Wa input from each of the microprocessing devices RA1 to RA5. Output from one output microchannel Rc101 to the microrecovery tank 5.
  • the micro collection tank 5 collects and stores the processed fluid Wa supplied from the micro fluid collection device 4.
  • one micro flow meter FM1 is provided in the output micro flow channel Rc51, and measures and monitors the flow rate q51 of the processing target fluid W flowing through the output micro flow channel Rc51.
  • the other micro flow meter FM5 is provided in the output micro flow channel Rc55, measures the flow rate q55 of the processing target fluid W flowing through the output micro flow channel Rc55, and outputs it to the monitoring device 6.
  • the micro flow meter FM1 is provided in the output micro flow channel Rc51 and the micro flow meter FM5 is provided in the output micro flow channel Rc55, but the micro flow meter has five output micro flow channels Rc51 to Any two of Rc55 may be provided. The reason for this will be described later.
  • the monitoring device 6 is a kind of computer that monitors the blockage of the microfluidic distributor M based on a predetermined monitoring program. This monitoring device 6 performs calculation processing on the flow rates q51 and q55 of the two micro flow meters FM1 and FM5 provided in the two output microchannels Rc51 and Rc55, respectively, based on the above monitoring program, so that each output microflow The blockage of the paths Rc51 to Rc55 (parallel flow paths) is monitored. The details of the monitoring process of the monitoring device 6 will be described later as a blockage detection method for the output micro flow paths Rc51 to Rc55 (parallel flow paths).
  • the design purpose of the microfluidic distributor M is to optimize the channel lengths of the output microchannels Rc51 to Rc55 so that the flow rates of the processing target fluids W flowing through the output microchannels Rc51 to Rc55 are equal. is there.
  • the flow rate of the processing target fluid W can be handled equivalent to the average flow velocity (linear velocity) of the processing target fluid W.
  • the output microchannels Rc51 to Rc55 that satisfy the constraint that the linear velocities u C 51 to u C 55 of the processing target fluid W in the output microchannels Rc51 to Rc55 (parallel channels) are equal.
  • the optimum flow path length of the parallel flow path is obtained.
  • a pressure loss compartment (PDC) connection model is adopted as a design method for obtaining the optimum flow path length of the output micro flow paths Rc51 to Rc55 (parallel flow paths) that satisfy the above constraints.
  • FIG. 3 is a channel model for explaining the PDC connection model.
  • a single flow path a is branched into two flow paths b and c (divided flow paths) and merged into a single flow path d.
  • the cross-sectional areas A in d are all the same.
  • the linear velocity of the fluid in each of the flow paths a to d is u a , u b , u c , u d
  • the length of each straight line portion in the two diversion flow paths b and c is L.
  • the fluid balance equations (1) and (2) and the pressure balance equation (3) are expressed by the following fluid balance equations ( 4), (5) and pressure balance equation (6) can be simplified.
  • the PDC connection model obtains the shapes and linear velocities of the channels a to d by solving simultaneous equations composed of these three equations (4) to (6).
  • FIG. 4 is a flow channel model (design model) for applying such a PDC connection model to the design of the microfluidic distributor M.
  • This design model has the same flow path shape as the micro plant P shown in FIG. 2, that is, the flow path shape in which the present microfluidic distributor M and the microfluidic collector 4 are connected.
  • the difference between the number of variables and the number of expressions is “8”, and other variables can be easily obtained by designating 8 variables.
  • Commercially available numerical analysis software can be used as means for solving such simultaneous equations, and enormous calculation processing based on computational fluid dynamics (CFD) is unnecessary. Therefore, the design method of the microfluidic distributor M using the PDC connection model is more convenient than the conventional design method using numerical fluid dynamics.
  • the design model is symmetrical, it is possible to complete the design of the entire design model by setting an appropriate boundary condition, for example, by establishing a fluid balance equation and a pressure balance equation for only the left half of the design model. it can.
  • the channel length L1 of the corresponding output microchannel Rc51 is equal to the channel length L5 of the output microchannel Rc55
  • the output micro-channel Rc54 are equal in length L4
  • the channel of the output micro-channel Rc51 The length L1 and the channel length L5 of the output microchannel Rc55 are set to 0.5 m.
  • Table 2 shows the results of obtaining the design variables based on the simultaneous equations consisting of the above formulas (7) to (17).
  • the optimum flow path lengths of the output micro flow paths Rc51 to Rc55 (parallel flow paths) shown in Table 2 satisfy the above-mentioned restrictions, and therefore the processing targets in the output micro flow paths Rc51 to Rc55 (parallel flow paths).
  • the linear velocities u C 51 to u C 55 of the fluid W that is, the flow rates q 51 to q 55 of the processing target fluid W in the output microchannels Rc51 to Rc55 (parallel channels) can all be made equal.
  • the pressure balance type In this case, a nonlinear term due to the product of the channel length and the linear velocity occurs.
  • the fluid distribution device is characterized in that it comprises three or more branching portions for branching the processing target fluid by combining a plurality of branch flow paths and one or more joining portions for joining the processing target fluid.
  • Examples of the shape of the flow path including such a diverting part and a merging part include those shown in FIGS. 5A, 5B, 6A, and 6B.
  • the fluid distribution device Ma shown in FIG. 5A is composed of nine branch portions Ba1 to Ba10 and three junction portions Ga1 to Ga3, and distributes the fluid to five output channels (parallel channels). is there.
  • the fluid distribution device Mb shown in FIG. 5B is composed of seven branch portions Bb1 to Bb7 and five junction portions Gb1 to Gb5, and in the same manner as the fluid distributor Ma, the fluid is distributed to five output channels (in parallel). Distribution to the flow path).
  • the fluid distributor Mc shown in FIG. 6A is the simplest, and includes three flow dividing portions Bc1 to Bc3 and one confluence portion Gc1, and the fluid is supplied to three output flow paths (parallel flow paths).
  • the fluid distribution device Md shown in FIG. 6B is composed of six branch portions Bd1 to Bd6 and three junction portions Gd1 to Gd3, and distributes the fluid to four output channels (parallel channels).
  • FIG. 5A, FIG. 5B, FIG. 6A, and FIG. 6B are a part of the modified examples, and further include a plurality of branching portions and a merging portion and a plurality of output flow paths (parallel flow paths). Conceivable.
  • the number of output flow paths (parallel flow paths) may be either odd or even, and the fluid is distributed to any number of output flow paths (parallel flow paths) by combining the flow dividing section and the merge section. can do.
  • FIG. 7 is a flowchart showing the blockage monitoring process executed by the monitoring device 6 based on the monitoring program and the flow rates q51 and q55 input from the micro flowmeters FM1 and FM5.
  • this blockage monitoring process is composed of two steps S1 and S2.
  • step S1 a preliminary process is performed before the flow path blockage determination process.
  • step S1 the standard flow rate (q01 to q05) and the reference flow rate (q1 to q5) of the output microchannels Rc51 to Rc55 are acquired and substituted into the equation (18) to obtain all the reference flow rate change ratios r i, j (n) is calculated and stored in the monitoring device 6.
  • step S2 the microplant is operated and a flow path blockage determination process is performed.
  • the initial flow rates (Q01, Q05) and evaluation flow rates (Q1, Q5) of the output microchannels Rc51, Rc55 are acquired and substituted into the equation (18-1) to substitute the flow rate change ratio (R 1,5 ) is calculated and compared with the reference flow rate change ratio to identify the flow path where the blockage occurred.
  • occlusion degree B (n) is performed as needed.
  • the reference flow rate is a flow rate of each output micro flow channel when the output micro flow channels Rc51 to Rc55 are not closed at step S1, and the reference flow rate is the output micro flow rate at step S1.
  • This is the flow rate of each output microchannel in a state where any of the channels Rc51 to Rc55 is forcibly blocked.
  • the initial flow rate is the flow rate of each output microchannel immediately after the start of operation of the microplant in step S2, that is, in a state where no blockage has occurred in each output microchannel. Is the flow rate of each output microchannel during operation of the microplant in step S2.
  • FIG. 8 is a flowchart showing details of step S1
  • FIG. 9 is a plan view of a reference flow rate change ratio acquisition flow path used in step S1.
  • step S1 a flow path that is designed in exactly the same way as the micro plant P (actual machine) shown in FIG. 2 and to which micro flow meters FM2 to FM4 and flow control valves V1 to V5 are added is used.
  • step S1 the monitoring device 6 forcibly and sequentially closes the output micro flow paths Rc51 to Rc55 (parallel flow paths) by controlling the flow control valves V1 to V5, and the micros obtained at this time.
  • a reference flow rate change ratio is acquired based on the measured values (flow rates q1 to q5) of the flow meters FM1 to FM5.
  • FIG. 9 the same components as those of the micro plant shown in FIG.
  • step S1 the monitoring device 6 first measures the flow rate of the output microchannels Rc51 to Rc55 when the output microchannels Rc51 to Rc55 are not blocked at all using the micro flowmeters FM1 to FM5, and the reference flow rate.
  • q01 to q05 are set (step S11).
  • the number is assigned to the flow path Rc55. This correspondence is stored in the monitoring device 6 in advance. Further, the number of each output microchannel Rc51 to Rc55 is represented by a variable n, and the initial value of n is set to “1” (step S12).
  • the monitoring device 6 forcibly closes the output micro flow path Rc51 set to “1” as the variable n (step S13), and the flow rates q51 to q55 of the micro flowmeters FM1 to FM5 in this state. Are taken in as reference flow rates q1 to q5 (step S14). Then, the monitoring device 6 calculates the reference flow rate change ratio r i, j (1) by substituting the reference flow rates q01 to q05 and the reference flow rates q1 to q5 into the following evaluation formula (18) (step S15). ).
  • the monitoring device 6 subsequently executes the variable n determination process in step S16 and the variable n increment process in step S17, thereby all the variables n (that is, the output microchannels Rc51 to Nc1).
  • the reference flow rate change ratio r i, j (n) is acquired and stored internally in the case where Rc55 is forcibly completely closed.
  • i and j are output microchannel numbers, i is 1, j is an integer from 2 to 5, and n is a closed output microchannel number.
  • the reference flow rate change ratios r i, j (1) to r i, j (5) obtained by forcibly sequentially closing the output micro flow paths Rc51 to Rc55 (parallel flow paths) are as follows. Different values. Table 4 below shows the flow rate change ratios r 1,5 (1) to r 1,5 (5) of the output microchannels Rc51 and Rc55 as an example. As Table 4 shows, the flow rate change ratio r 1,5 (n) of the output microchannels Rc51 and Rc55 varies depending on which of the output microchannels Rc51 to Rc55 (parallel channels) is blocked. Value.
  • Table 5 shows the flow rate measurement values measured for the reference flow rate change ratio acquisition flow path that is simply manufactured by joining stainless steel tubes having an inner diameter of 1 mm. That is, this Table 5 shows that the degree of opening of the valve is changed (stepwise) when pure water is supplied to the input microchannel Rc11 at a constant flow rate of 20 ml / min, that is, a linear velocity of 0.42 m / s ( State 1 to 10) shows the experimental results of measuring the flow rates q51 to q55 of pure water flowing through the output microchannels Rc51 to Rc55 (parallel channels).
  • the state 1 is a state immediately after the start of the supply of pure water, that is, a state where no blockage of the flow path has occurred, and theoretically the flow rate of each flow path is completely equal.
  • the actual measurement values are not completely equal due to an error or the like, and a deviation of about 2% occurs.
  • the flow rate is larger as the flow path is closer to the closed flow path Rc52.
  • FIG. 10A shows the relationship between the flow rate variation (horizontal axis) of the output microchannel Rc51 and the flow rate variation (vertical axis) of the output microchannels Rc53 to Rc55 when the output microchannel Rc52 is clogged. It is a graph to show.
  • FIG. 10B is a graph showing the relationship between the flow rate change amount of the output microchannel Rc51 and the flow rate change amount of the output microchannel Rc52 when the output microchannel Rc52 is blocked.
  • Table 5 is used in FIGS. 10A and 10B. As shown in FIG.
  • Table 6 also shows that the output microchannel Rc51 when the opening degree of each of the flow control valves V2 to V4 is changed stepwise, that is, when the degree of blockage of the output microchannels Rc52 to Rc54 is changed stepwise.
  • Rc55 shows the flow rate change amount.
  • the state 10 indicates that the flow control valves V2 and V3 are fully closed, that is, the output microchannels Rc52 and Rc53 are completely closed.
  • FIG. 11 shows the relationship between the flow rate change amount of the output microchannel Rc51 and the flow rate change amount of the output microchannel Rc55 when the degree of blockage of the output microchannels Rc52, Rc53, and Rc54 is changed stepwise. It is a graph. In FIG. 11, the data of Table 6 is used. As shown in FIG. 11, when the degree of blockage of the output microchannels Rc52, Rc53, and Rc54 changes stepwise, the flow rate variation of the output microchannel Rc55 is relative to the flow rate variation of the output microchannel Rc51. It has a linear change.
  • the ratio of the flow rate change amount of the output microchannel Rc55 and the flow rate change amount of the output microchannel Rc51 that is, the reference flow rate change ratios r 1,5 (2), r 1,5 (3) and r 1,5 ( 4) was constant regardless of the degree of blockage of each output microchannel. Also, the values of r 1,5 (2), r 1,5 (3) and r 1,5 (4) are different from each other, and therefore the reference flow rate change ratio r 1,5 (n) is blocked. It was found that the output microchannels differed.
  • FIG. 12 is a flowchart showing details of the blockage determination process (step S2).
  • the monitoring device 6 acquires the flow rates q51 and q55 of the micro flow meters FM1 and FM5 as the initial flow rates Q01 and Q05 at the start of operation of the microplant (step S21).
  • the flow rates q51 and q55 of the micro flow meters FM1 and FM5 are taken in as evaluation flow rates Q1 and Q5 (step S22).
  • the monitoring device 6 blocks one of the output microchannels Rc51 to Rc55 by substituting the initial flow rates Q01 and Q05 and the evaluation flow rates Q1 and Q5 into the following judgment formulas (19) and (20). Whether or not has occurred is determined (step S23).
  • the monitoring device 6 initial flow rate Q05 when the absolute value of the difference between the initial flow rate Q01 and evaluation flow Q1 is larger than the predetermined threshold epsilon 1 or / and output microchannel Rc55 at the output micro flow channel Rc51 When the absolute value of the difference between the flow rate Q5 and the evaluation flow rate Q5 is larger than the predetermined threshold value ⁇ 5 , it is determined that any one of the output microchannels Rc51 to Rc55 is blocked.
  • the monitoring device 6 calculates the operating flow rate change ratio R 1 , 5 based on the following evaluation formula (18-1) (step S24). By comparing the flow rate change ratios R 1 and 5 with the reference flow rate change ratios r 1 and 5 (n) stored in the monitoring device 6 in advance, the actually closed output micro flow path (blocked flow path), that is, The variable n of the closed channel is specified (step S25).
  • the monitoring device 6 calculates the degree of blockage in the blocked channel (step S26). That is, the monitoring device 6 uses the following flow rate change equation (21) to calculate the reference flow rate change ratio r 1, n (n) between the closed flow channel and the output micro flow channel Rc51, the initial flow rate Q01 obtained in steps S21 and S22, and the evaluation. By substituting the flow rate Q1, the flow rate change ⁇ Q (n) of the closed channel is calculated.
  • the monitoring device 6 adds the reference flow rate change ratio r 1, n (n) between the closed flow channel and the output micro flow channel Rc51 to the closed flow rate calculation formula (22) below, and the initial flow rate Q01 obtained in steps S21 and S22, and By substituting the evaluation flow rate Q1, the blockage degree of the block passage is calculated.
  • This blockage degree calculation formula (22) is blocked by the product of the flow rate change rate obtained from the initial flow rate and the evaluation flow rate and the reference flow rate change ratio r 1, n (n) of the closed flow channel and the output micro flow channel Rc51.
  • Degree B (n) is the product of the flow rate change rate obtained from the initial flow rate and the evaluation flow rate and the reference flow rate change ratio r 1, n (n) of the closed flow channel and the output micro flow channel Rc51.
  • Table 7 shows a reference flow rate change ratio r i, j (n) obtained by substituting the calculation result of Table 6 described above into the above equation (18).
  • Table 8 substitutes the calculation result of Table 5 into the above formula (18-1), the above flow rate change formula (21), and the blockage degree calculation formula (22), thereby changing the operating flow rate change ratio R 1,5 , It is the result of calculating the flow rate change ⁇ Q (n) and the blockage degree B (n) of the road.
  • the initial flow rate Q01 of the output micro flow channel Rc51, the evaluation flow rate Q1 of the output micro flow channel Rc51, and the reference flow rate change ratio r 1,2 (2) of the blockage flow rate are expressed by equations (21) and ( 22)
  • the flow rate change amount ⁇ Q (n) and the blockage degree B (n) of the closed flow path Rc52 obtained by substituting in 22) are substantially smaller than the flow rate change amount and the blockage degree obtained from the actual measurement value of the micro flow meter FM2. Since they agree with each other, the blockage state of the microplant P that is the monitoring target is sufficiently shown.
  • the monitoring device 6 determines whether or not the operation of the microplant is continued (step S27). If the operation is continued, the above-described steps S22 to S26 are performed. By repeating the process, the blockage channel is specified, the flow rate change amount ⁇ Q (n) and the blockage degree B (n) are periodically calculated, and the monitoring process is terminated when the operation is completed.
  • the blockage determination process (step S2) shown in FIG. 12 is to obtain the flow rate change amount ⁇ Q (n) and the blockage degree B (n) in addition to specifying the blockage flow path.
  • step S26 When it is not necessary to acquire (n), the process of step S26 is omitted, and the initial flow rate changes of the two output microchannels Rc51 and Rc55 in the initial flow rate data acquisition process (step S1) shown in FIG. Only the ratios r 1,5 (1) to r 1,5 (5) have to be obtained. Therefore, in this case, as the initial flow rate data acquisition flow path, only the two output micro flow paths Rc51 and Rc55 are provided with the micro flow meters FM1 and FM5, that is, provided in the output microflow paths Rc52 to Rc54. Those obtained by omitting the obtained micro flow meters FM2 to FM4 can be used.
  • the blockage determination process (step S2) shown in FIG. 12 calculates the flow rate change amount ⁇ Q (n) and the blockage degree B (n) only when the occurrence of blockage is detected in step S23.
  • the degree of blockage of each of the output microchannels Rc51 to Rc55 may be calculated periodically regardless of the presence or absence of blockage. In this case, since any sign of blockage can be detected before any of the output microchannels Rc51 to Rc55 is completely blocked, it is preferable for stable operation of the microplant P.
  • the flow dividing types (1) to (14) and the pressure balance type (15) to (15) are combined with the diverting portions B11 to B44 and the merging portions G21 to G43. Since it is designed based on the pressure loss compartment connection model consisting of (17), the equal distribution of the processing target fluid W supplied to the input microchannel Rc11 to each of the output microchannels Rc51 to Rc55 can be achieved with a simple configuration. Can be realized. In addition, since the uniform distribution has robustness, the uniform distribution is maintained even if the flow rate of the processing target fluid W supplied to the input microchannel Rc11 varies.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Hematology (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Micromachines (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Pipeline Systems (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Flow Control (AREA)
  • Measuring Volume Flow (AREA)

Abstract

 本発明は、入力流路に供給された流体を3以上の出力流路に均等分配して出力する流体分配装置であって、複数の枝流路を組み合わせて形成され、少なくとも3つの流体の分流部と少なくとも1つの流体の合流部とを備え、流体収支式と圧力バランス式からなる圧力損失コンパートメント連結モデルに対応するように形成されることを特徴とする流体分配装置を提供する。また、この流体分配装置を用いたマイクロプラント、この流体分配装置の設計方法及びこの流体分配装置の流路閉塞検知方法を提供する。

Description

流体分配装置、マイクロプラント、流体分配装置の設計方法及び流路閉塞検知方法
 本発明は、流体分配装置、マイクロプラント、流体分配装置の設計方法及び流路閉塞検知方法に関する。
 本願は、2008年3月31日に、日本に出願された特願2008-093480号に基づき優先権を主張し、その内容をここに援用する。
 マイクロ化学プロセスは、ミクロンオーダーのプロセス器機(マイクロ処理装置)を同じくミクロンオーダーの流路(マイクロ流路)を介して接続することにより、小スペース内で化学プロセスを実現するものである。このマイクロ化学プロセスでは、処理量を増大させるための手法としてナンバリングアップと称する手法、つまり複数のマイクロ処理装置を並列に配置し、各マイクロ処理装置に並列に配置された複数のマイクロ流路(並列流路)を介して処理対象となる流体を供給すると共に、各マイクロ処理装置から並列流路を介して処理後の流体を回収する構造が採用される。
 例えば下記特許文献1には、上記ナンバリングアップ構造におけるマイクロ流路の流体分配技術として、各々のマイクロ流路にバルブと流量センサとを設けることにより各マイクロ流路の流量を調節することが開示されている。
 また、下記特許文献2には、ナンバリングアップ構造の流体混合装置として、複数の流体を当該流体毎に設けられた環状流路で流体を整流化した後、複数の分配流路を用いて各流体を複数に分配すると共に、各分配流路に圧力損出手段を設けることにより、各流体の均等分配を実現することが開示されている。
特開2006-227853号公報 特開2007-260569号公報
 ところで、上記各従来技術は、各流体の均等分配を実現するための構成が複雑であり、改善の余地がある。すなわち、マイクロ化学プロセスでは、微小空間内にマイクロ処理装置及びマイクロ流路が設けられるので、流路形状が複雑であったり、また流路の途中に上記バルブや圧力損出手段のような流体に滞留部を形成するようなものが存在した場合に、流路が閉塞する虞が増大する。また、上記流量センサ等のマイクロ計測装置は、上記バルブや圧力損出手段と同様に滞留部を形成するものなので流路の閉塞要因であると共に、高コストである。
 本発明は、上述した事情に鑑みてなされたものであり、以下の点を目的とするものである。
(1)流体の均等分配を簡単な構成で実現することにより流路の閉塞を防止する。
(2)従来よりも少ない数の計測装置を用いて並列流路の閉塞を検知する。
(3)閉塞流路を特定する。
(4)閉塞流路の閉塞状態(閉塞度)を検知する。
 上記目的を達成するために、本発明では、流体分配装置に係る第1の解決手段として、入力流路に供給された流体を3以上の出力流路に均等分配して出力する流体分配装置であって、複数の枝流路を組み合わせて形成され、少なくとも3つの流体の分流部と少なくとも1つの流体の合流部とを備え、流体収支式と圧力バランス式からなる圧力損失コンパートメント連結モデルに対応するように形成される、という手段を採用する。
 流体分配装置に係る第2の解決手段として、上記第1の解決手段において、各出力流路の閉塞を監視する監視装置と、3以上の出力流路のうち任意の2つの出力流路に各々設けられた2つの流量計とをさらに備え、監視装置は、事前処理として、全ての出力流路が閉塞を発生していない状態における各流量計の計測値を基準流量として取得し、各流量計が設けられていない出力流路が閉塞した場合における各流量計の計測値を参照流量として取得し、一方の流量計の基準流量と参照流量との差と他方の流量計の基準流量と参照流量との差の割合を基準流量変化比として記憶し、この事前処理後の運転時には、運転開始時に各流量計の計測値を初期流量として取得し、その後の運転における各流量計の計測値を評価流量として取得し、一方の流量計の初期流量と評価流量との差と他方の流量計の初期流量と評価流量との差の割合を運転時流量変化比として計算し、当該運転時流量変化比と基準流量変化比との比較に基づいて閉塞が発生した出力流路を特定する、という手段を採用する。
 流体分配装置に係る第3の解決手段として、上記第1または第2の解決手段において、監視装置は、事前処理として、全ての出力流路に流量計を設けた状態において全ての出力流路が閉塞を発生していない状態における各流量計の計測値を基準流量として取得し、出力流路を順次閉塞させた場合における各流量計の計測値を参照流量として順次取得し、各流量計における基準流量と参照流量との差と異なる流量計の基準流量と参照流量との差の割合を基準流量変化比としてそれぞれ記憶し、この事前処理後の運転時には、運転開始時に各流量計の計測値を初期流量として取得し、その後の運転における各流量計の計測値を評価流量として取得し、初期流量と評価流量とから得られる流量変化率と基準流量変化比との積に基づいて各出力流路の閉塞度を検知する、という手段を採用する。
 流体分配装置に係る第4の解決手段として、上記第3の解決手段において、監視装置は、閉塞が発生した出力流路が特定された場合に、当該閉塞が発生した出力流路の閉塞度を検知する、という手段を採用する。
 流体分配装置に係る第5の解決手段として、上記第1~第4の何れか一つの解決手段において、ナンバリングアップ構造のマイクロプラント用に微細に形成される、という手段を採用する。
 また、本発明では、マイクロプラントに係る第1の解決手段として、上記第5の流体分配装置を介して処理対象流体を各マイクロ処理装置に均等分配して処理を施す、という手段を採用する。
 また、本発明では、流体分配装置の設計方法に係る第1の解決手段として、入力流路に入力された流体を3以上の出力流路に均等に分配出力する流体分配装置の設計方法であって、流体分配装置を、複数の枝流路を組み合わせることにより少なくとも3つの流体の分流部と少なくとも1つの流体の合流部とを備える形状とし、流体収支式と圧力バランス式からなる圧力損失コンパートメント連結モデルを流体分配装置に適用する、という手段を採用する。
 さらに、本発明では、流路閉塞検知方法に係る第1の解決手段として、上記第1の流体分配装置の設計方法で設計された流体分配装置について事前処理として、全ての出力流路が閉塞を発生していない状態における任意の2つの出力流路の流量を基準流量として取得し、上記2つの出力流路以外の出力流路が閉塞した場合における上記2つの出力流路の流量を参照流量として取得し、上記2つの出力流路の一方における基準流量と参照流量との差と他方における流量計の基準流量と参照流量との差の割合を基準流量変化比として記憶し、この事前処理後における運転時には、流体分配装置の運転開始時に上記2つの出力流路の流量を初期流量として取得し、その後の運転における上記2つの出力流路の流量を評価流量として取得し、上記2つの出力流路の一方における流量計の初期流量と評価流量との差と他方における流量計の初期流量と評価流量との差の割合を運転時流量変化比として計算し、当該運転時流量変化比と基準流量変化比との比較に基づいて閉塞が発生した出力流路を特定する、という手段を採用する。
 流路閉塞検知方法に係る第2の解決手段として、上記第1の流体分配装置の設計方法で設計された流体分配装置について、事前処理として、全ての出力流路が閉塞を発生していない状態において全ての出力流路の流量を基準流量として取得し、出力流路が順次閉塞した場合における全ての出力流路の流量を参照流量として順次取得し、各出力流路における基準流量と参照流量との差と異なる出力流路の基準流量と参照流量との差の割合を基準流量変化比としてそれぞれ記憶し、この事前処理後の運転時には、流体分配装置の運転開始時に任意の2つの出力流路の流量を初期流量として取得し、その後の運転における上記2つの出力流路の流量を評価流量として取得し、初期流量と評価流量とから得られる流量変化率と基準流量変化比との積に基づいて各出力流路の閉塞度を検知する、という手段を採用する。
 流路閉塞検知方法に係る第3の解決手段として、ナンバリングアップ構造のマイクロプラント用に微細に形成された流体分配装置に適用する、という手段を採用する。
 本発明によれば、複数の枝流路を組み合わせて形成され、少なくとも3つの流体の分流部と少なくとも1つの流体の合流部とを備え、流体収支式と圧力バランス式からなる圧力損失コンパートメント連結モデルに対応するように形成されるので、従来よりも簡単な構成で流体の均等分配を実現することができる。したがって、流体の滞留部を従来よりも減少させることができるので、流路の閉塞を防止することができる。また、構成が単純化することによりコストを低減することが可能である。
 また、本発明によれば、運転時において任意の2つの出力流路の流量に基づいて3つ以上の出力流路の何れが閉塞したかを検知するので、従来よりも少ない数の計測装置を用いて出力流路の閉塞を特定することができる。
 さらに、本発明によれば、運転時において任意の2つの出力流路の流量に基づいて3つ以上の出力流路の閉塞度を検知するので、従来よりも少ない数の計測装置を用いて閉塞流路の閉塞状態(閉塞度)を検知することができる。
本発明の一実施形態に係わるマイクロ流体分配装置Mの2次元構成を示す平面図である。 本発明の一実施形態に係わるマイクロ流体分配装置Mを用いたマイクロプラントPの構成図である。 本発明の一実施形態において圧力損失コンパートメント(PDC)連結モデルを説明するための最も簡略化した流路モデルである。 本発明の一実施形態において圧力コンパートメント(PDC)連結モデルを本マイクロ流体分配装置Mの設計に適用するための流路モデルである。 本発明の一実施形態に係わるマイクロ流体分配装置Mの変形例を示す平面図である。 本発明の一実施形態に係わるマイクロ流体分配装置Mの変形例を示す平面図である。 本発明の一実施形態に係わるマイクロ流体分配装置Mの変形例を示す平面図である。 本発明の一実施形態に係わるマイクロ流体分配装置Mの変形例を示す平面図である。 本発明の一実施形態における閉塞監視処理を示すフローチャートである。 本発明の一実施形態における事前処理(基準流量変化比取得処理)の詳細を示すフローチャートである。 本発明の一実施形態における事前処理に用いる、基準流量変化比取得用流路の構成を示す平面図である。 本発明の一実施形態において、出力マイクロ流路Rc52に閉塞が発生した時の出力マイクロ流路Rc51の流量変化量と出力マイクロ流路Rc53~Rc55(並列流路)の流量変化量との関係を示すグラフである。 本発明の一実施形態において、出力マイクロ流路Rc52に閉塞が発生した時の出力マイクロ流路Rc51の流量変化量と出力マイクロ流路Rc52の流量変化量との関係を示すグラフである。 本発明の一実施形態において、出力マイクロ流路Rc52~Rc54にそれぞれ閉塞が発生した時の出力マイクロ流路Rc51の流量変化量と出力マイクロ流路Rc55の流量変化量との関係を示すグラフである。 本発明の一実施形態における閉塞判定処理の詳細を示すフローチャートである。
符号の説明
 M…マイクロ流体分配装置、Rc11…入力マイクロ流路、Rc21~Rc44,Rs11~Rs48…枝マイクロ流路、Rc51~Rc55…出力マイクロ流路、B11~B44…分流部、G21~G43…合流部、W…処理対象流体、P…マイクロプラント、1…マイクロ供給タンク、2…マイクロポンプ、RA1~RA5…マイクロ処理装置、4…マイクロ流体収集装置、5…マイクロ回収タンク、FM1,FM5…マイクロ流量計、6…監視装置
 以下、図面を参照して、本発明の実施形態について説明する。
 図1は、本実施形態に係るマイクロ流体分配装置Mの2次元構成を示す平面図である。また、図2は、本マイクロ流体分配装置Mを用いたマイクロプラントPの構成図である。本マイクロ流体分配装置Mは、ナンバリングアップ構造を有するマイクロプラントPにおいて処理対象流体Wを均等に5分配するためのものであり、図示するように入力マイクロ流路Rc11(入力流路)、枝マイクロ流路Rc21~Rc44,Rs11~Rs48(枝流路)及び出力マイクロ流路Rc51~Rc55(出力流路)から構成されている。
 なお、これら各マイクロ流路における下付き添え字「c」は、x-y直交座標系においてx軸方向に延在するマイクロ流路であることを示し、下付き添え字「s」は、x-y直交座標系におけるy軸方向に延在するマイクロ流路であることを示している。このような各枝マイクロ流路Rc21~Rc44,Rs11~Rs48のうち、x軸方向に延在するマイクロ流路Rc21~Rc44の流路長Lcは全て等しく、またy軸方向に延在するマイクロ流路Rs11~Rs48の流路長Lsは全て等しい。
 個別に説明すると、左端に位置する入力マイクロ流路Rc11は、所定長さLc11、所定断面積Ac11、水力相当直径Dc11を有すると共にx軸方向に延在するマイクロ流路であって、一端(左端)から入力された処理対象流体Wを他端(右端)から一対の枝マイクロ流路Rs11,Rs12に出力する。この入力マイクロ流路Rc11の左端には、所定流量q11の処理対象流体Wが外部から供給される。
 この一対の枝マイクロ流路Rs11,Rs12のうち、一方の枝マイクロ流路Rs11は、所定長さLs11、所定断面積As11、水力相当直径Ds11を有すると共にy軸方向に延在するマイクロ流路であって、一端(下端)から入力された処理対象流体Wを他端(上端)から枝マイクロ流路Rc21に出力し、他方の枝マイクロ流路Rs12は、所定長さLs12、所定断面積As12、水力相当直径Ds12を有すると共にy軸方向に延在するマイクロ流路であって、一端(上端)から入力された処理対象流体Wを他端(下端)から枝マイクロ流路Rc22に出力する。
 上記枝マイクロ流路Rc21は、所定長さLc21、所定断面積Ac21、水力相当直径Dc21を有すると共にx軸方向に延在するマイクロ流路であって、一端(左端)から入力された処理対象流体Wを他端(右端)から一対の枝マイクロ流路Rs21,Rs22に出力する。また上記枝マイクロ流路Rc22は、所定長さLc22、所定断面積Ac22、水力相当直径Dc22を有すると共にx軸方向に延在するマイクロ流路であって、一端(左端)から入力された処理対象流体Wを他端(右端)から一対の枝マイクロ流路Rs23,Rs24に出力する。
 上記一対の枝マイクロ流路Rs21,Rs22のうち、一方の枝マイクロ流路Rs21は、所定長さLs21、所定断面積As21、水力相当直径Ds21を有すると共にy軸方向に延在するマイクロ流路であって、一端(下端)から入力された処理対象流体Wを他端(上端)から枝マイクロ流路Rc31に出力し、他方の枝マイクロ流路Rs22は、所定長さLs22、所定断面積As22、水力相当直径Ds22を有すると共にy軸方向に延在するマイクロ流路であって、一端(上端)から入力された処理対象流体Wを他端(下端)から枝マイクロ流路Rc32に出力する。
 また、上記一対の枝マイクロ流路Rs23,Rs24のうち、一方の枝マイクロ流路Rs23は、所定長さLs23、所定断面積As23、水力相当直径Ds23を有すると共にy軸方向に延在するマイクロ流路であって、一端(下端)から入力された処理対象流体Wを他端(上端)から枝マイクロ流路Rc32に出力し、他方の枝マイクロ流路Rs24は、所定長さLs24、所定断面積As24、水力相当直径Ds24を有すると共にy軸方向に延在するマイクロ流路であって、一端(上端)から入力された処理対象流体Wを他端(下端)から枝マイクロ流路Rc33に出力する。
 上記枝マイクロ流路Rc31は、所定長さLc31、所定断面積Ac31、水力相当直径Dc31を有すると共にx軸方向に延在するマイクロ流路であって、一端(左端)から入力された処理対象流体Wを他端(右端)から一対の枝マイクロ流路Rs31,Rs32に出力する。上記枝マイクロ流路Rc32は、所定長さLc32、所定断面積Ac32、水力相当直径Dc32を有すると共にx軸方向に延在するマイクロ流路であって、一端(左端)から入力された処理対象流体Wを他端(右端)から一対の枝マイクロ流路Rs33,Rs34に出力する。上記枝マイクロ流路Rc33は、所定長さLc33、所定断面積Ac33、水力相当直径Dc33を有すると共にx軸方向に延在するマイクロ流路であって、一端(左端)から入力された処理対象流体Wを他端(右端)から一対の枝マイクロ流路Rs35,Rs36に出力する。
 上記一対の枝マイクロ流路Rs31,Rs32のうち、一方の枝マイクロ流路Rs31は、所定長さLs31、所定断面積As31、水力相当直径Ds31を有すると共にy軸方向に延在するマイクロ流路であって、一端(下端)から入力された処理対象流体Wを他端(上端)から枝マイクロ流路Rc41に出力し、他方の枝マイクロ流路Rs32は、所定長さLs32、所定断面積As32、水力相当直径Ds32を有すると共にy軸方向に延在するマイクロ流路であって、一端(上端)から入力された処理対象流体Wを他端(下端)から枝マイクロ流路Rc42に出力する。
 また、上記一対の枝マイクロ流路Rs33,Rs34のうち、一方の枝マイクロ流路Rs33は、所定長さLs33、所定断面積As33、水力相当直径Ds33を有すると共にy軸方向に延在するマイクロ流路であって、一端(下端)から入力された処理対象流体Wを他端(上端)から枝マイクロ流路Rc42に出力し、他方の枝マイクロ流路Rs34は、所定長さLs34、所定断面積As34、水力相当直径Ds34を有すると共にy軸方向に延在するマイクロ流路であって、一端(上端)から入力された処理対象流体Wを他端(下端)から枝マイクロ流路Rc43に出力する。
 また、上記一対の枝マイクロ流路Rs35,Rs36のうち、一方の枝マイクロ流路Rs35は、所定長さLs35、所定断面積As35、水力相当直径Ds35を有すると共にy軸方向に延在するマイクロ流路であって、一端(下端)から入力された処理対象流体Wを他端(上端)から枝マイクロ流路Rc43に出力し、他方の枝マイクロ流路Rs36は、所定長さLs36、所定断面積As36、水力相当直径Ds36を有すると共にy軸方向に延在するマイクロ流路であって、一端(上端)から入力された処理対象流体Wを他端(下端)から枝マイクロ流路Rc44に出力する。
 上記枝マイクロ流路Rc41は、所定長さLc41、所定断面積Ac41、水力相当直径Dc41を有すると共にx軸方向に延在するマイクロ流路であって、一端(左端)から入力された処理対象流体Wを他端(右端)から一対の枝マイクロ流路Rs41,Rs42に出力する。上記枝マイクロ流路Rc42は、所定長さLc42、所定断面積Ac42、水力相当直径Dc42を有すると共にx軸方向に延在するマイクロ流路であって、一端(左端)から入力された処理対象流体Wを他端(右端)から一対の枝マイクロ流路Rs43,Rs44に出力する。
 上記枝マイクロ流路Rc43は、所定長さLc43、所定断面積Ac43、水力相当直径Dc43を有すると共にx軸方向に延在するマイクロ流路であって、一端(左端)から入力された処理対象流体Wを他端(右端)から一対の枝マイクロ流路Rs45,Rs46に出力する。上記枝マイクロ流路Rc44は、所定長さLc44、所定断面積Ac44、水力相当直径Dc44を有すると共にx軸方向に延在するマイクロ流路であって、一端(左端)から入力された処理対象流体Wを他端(右端)から一対の枝マイクロ流路Rs47,Rs48に出力する。
 上記一対の枝マイクロ流路Rs41,Rs42のうち、一方の枝マイクロ流路Rs41は、所定長さLs41、所定断面積As41、水力相当直径Ds41を有すると共にy軸方向に延在するマイクロ流路であって、一端(下端)から入力された処理対象流体Wを他端(上端)から出力マイクロ流路Rc51に出力し、他方の枝マイクロ流路Rs42は、所定長さLs42、所定断面積As42、水力相当直径Ds42を有すると共にy軸方向に延在するマイクロ流路であって、一端(上端)から入力された処理対象流体Wを他端(下端)から出力マイクロ流路Rc52に出力する。
 また、上記一対の枝マイクロ流路Rs43,Rs44のうち、一方の枝マイクロ流路Rs43は、所定長さLs43、所定断面積As43、水力相当直径Ds43を有すると共にy軸方向に延在するマイクロ流路であって、一端(下端)から入力された処理対象流体Wを他端(上端)から出力マイクロ流路Rc52に出力し、他方の枝マイクロ流路Rs44は、所定長さLs44、所定断面積As44、水力相当直径Ds44を有すると共にy軸方向に延在するマイクロ流路であって、一端(上端)から入力された処理対象流体Wを他端(下端)から出力マイクロ流路Rc53に出力する。
 また、一対の枝マイクロ流路Rs45,Rs46のうち、一方の枝マイクロ流路Rs45は、所定長さLs45、所定断面積As45、水力相当直径Ds45を有すると共にy軸方向に延在するマイクロ流路であって、一端(下端)から入力された処理対象流体Wを他端(上端)から出力マイクロ流路Rc53に出力し、他方の枝マイクロ流路Rs46は、所定長さLs46、所定断面積As46、水力相当直径Ds46を有すると共にy軸方向に延在するマイクロ流路であって、一端(上端)から入力された処理対象流体Wを他端(下端)から出力マイクロ流路Rc54に出力する。
 また、一対の枝マイクロ流路Rs47,Rs48のうち、一方の枝マイクロ流路Rs47は、所定長さLs47、所定断面積As47、水力相当直径Ds47を有すると共にy軸方向に延在するマイクロ流路であって、一端(下端)から入力された処理対象流体Wを他端(上端)から出力マイクロ流路Rc54に出力し、他方の枝マイクロ流路Rs48は、所定長さLs48、所定断面積As48、水力相当直径Ds48を有すると共にy軸方向に延在するマイクロ流路であって、一端(上端)から入力された処理対象流体Wを他端(下端)から出力マイクロ流路Rc55に出力する。
 上記出力マイクロ流路Rc51は、所定長さLc51、所定断面積Ac51、水力相当直径Dc51を有すると共にx軸方向に延在するマイクロ流路であって、一端(左端)から入力された処理対象流体Wを他端(右端)から出力する。上記出力マイクロ流路Rc52は、所定長さLc52、所定断面積Ac52、水力相当直径Dc52を有すると共にx軸方向に延在するマイクロ流路であって、一端(左端)から入力された処理対象流体Wを他端(右端)から出力する。上記出力マイクロ流路Rc53は、所定長さLc53、所定断面積Ac53、水力相当直径Dc53を有すると共にx軸方向に延在するマイクロ流路であって、一端(左端)から入力された処理対象流体Wを他端(右端)から出力する。
 上記出力マイクロ流路Rc54は、所定長さLc54、所定断面積Ac54、水力相当直径Dc54を有すると共にx軸方向に延在するマイクロ流路であって、一端(左端)から入力された処理対象流体Wを他端(右端)から出力する。上記出力マイクロ流路Rc55は、所定長さLc55、所定断面積Ac55、水力相当直径Dc55を有すると共にx軸方向に延在するマイクロ流路であって、一端(左端)から入力された処理対象流体Wを他端(右端)から出力する。
 このような流路形状(構造)を備える本マイクロ流体分配装置Mは、処理対象流体Wを分流させる10個の分流部B11~B44と処理対象流体Wを合流させる6個の合流部G21~G43と8個の接続部J11~J42を備え、1つの入力マイクロ流路Rc11に供給された処理対象流体Wを各分流部B11~B44及び各合流部G21~G43で分流/合流させて最終的に5つの出力マイクロ流路Rc51~Rc55から外部に出力する。すなわち、本マイクロ流体分配装置Mは、合計29個の枝マイクロ流路Rc21~Rc44,Rs11~Rs48を組み合わせることによって、処理対象流体Wに関する10個の分流部B11~B44と6個の合流部G21~G43と8個の接続部J11~J42を形成するものである。
 また、本マイクロ流体分配装置Mでは、全てのマイクロ流路、つまり入力マイクロ流路Rc11、枝マイクロ流路Rc21~Rc44,Rs11~Rs48及び出力マイクロ流路Rc51~Rc55について、断面積Ac11~Ac55,As11~As48が全て等しく、また水力相当直径Dc11~Dc55,Ds11~Ds48も全て等しく設定されている。詳細については後述するが、本マイクロ流体分配装置Mは、入力マイクロ流路Rc11に外部から入力された処理対象流体Wを各出力マイクロ流路Rc51~Rc55に均等分配するために、つまり外部に出力する処理対象流体Wの流量q51~q55が全て等しくなるように圧力損失コンパートメント連結モデルに基づいて設計されている。
 マイクロプラントPは、このような本マイクロ流体分配装置M、マイクロ供給タンク1、マイクロポンプ2、マイクロ処理装置RA1~RA5、マイクロ流体収集装置4、マイクロ回収タンク5、2つのマイクロ流量計FM1,FM5及び監視装置6を備えている。
 マイクロ供給タンク1は、プロセス原料である処理対象流体Wを貯留するものであり、マイクロポンプ2は、上記マイクロ供給タンク1から処理対象流体Wを払い出して本マイクロ流体分配装置Mの入力マイクロ流路Rc11に供給する。本マイクロ流体分配装置Mは、処理対象流体Wを5つに均等分配して出力マイクロ流路Rc51~Rc55(並列流路)からマイクロ処理装置RA1~RA5に供給する。
 各マイクロ処理装置RA1~RA5は、上記出力マイクロ流路Rc51~Rc55(並列流路)を介して各々供給される処理対象流体Wに所定のプロセス処理を施し、処理済流体Xaとしてマイクロ流体収集装置4の入力マイクロ流路Rc61~Rc65(並列流路)に出力する。マイクロ流体収集装置4は、図示するように本マイクロ流体分配装置Mを左右反転させた流路形状を備えるものであり、各マイクロ処理装置RA1~RA5からそれぞれ入力された処理済流体Waを収集して1つの出力マイクロ流路Rc101からマイクロ回収タンク5に出力する。
 マイクロ回収タンク5は、マイクロ流体収集装置4から供給された処理済流体Waを回収・貯留する。2つのマイクロ流量計FM1,FM5のうち、一方のマイクロ流量計FM1は、出力マイクロ流路Rc51に備えられており、当該出力マイクロ流路Rc51を流れる処理対象流体Wの流量q51を計測して監視装置6に出力する。また、他方のマイクロ流量計FM5は、出力マイクロ流路Rc55に備えられており、当該出力マイクロ流路Rc55を流れる処理対象流体Wの流量q55を計測して監視装置6に出力する。
 なお、このマイクロプラントPでは、マイクロ流量計FM1を出力マイクロ流路Rc51に、またマイクロ流量計FM5を出力マイクロ流路Rc55に設けているが、マイクロ流量計は、5つの出力マイクロ流路Rc51~Rc55のうち任意の2つに設ければ良い。この理由については後で説明する。
 監視装置6は、所定の監視プログラムに基づいて本マイクロ流体分配装置Mの閉塞を監視する一種のコンピュータである。この監視装置6は、2つの出力マイクロ流路Rc51,Rc55に各々設けられた2つのマイクロ流量計FM1,FM5の流量q51,q55を上記監視プログラムに基づいて演算処理することによって、各出力マイクロ流路Rc51~Rc55(並列流路)の閉塞を監視する。なお、監視装置6の監視処理の詳細については、出力マイクロ流路Rc51~Rc55(並列流路)の閉塞検知方法として後述する。
 次に、本マイクロ流体分配装置Mの設計方法について、図3及び図4を参照して詳しく説明する。
 本マイクロ流体分配装置Mの設計目的は、各出力マイクロ流路Rc51~Rc55を流れる処理対象流体Wの流量が等しくなるように各出力マイクロ流路Rc51~Rc55の流路長を最適化することである。ここで、処理対象流体Wに流体としての圧縮/伸長が発生しないという条件の下では、処理対象流体Wの流量を処理対象流体Wの平均流速(線速)と同等に取り扱うことができる。
 したがって、本設計では、各出力マイクロ流路Rc51~Rc55(並列流路)における処理対象流体Wの線速u51~u55が等しいという制約条件を満足する出力マイクロ流路Rc51~Rc55(並列流路)の最適流路長を求める。そして、上記制約条件を満足する出力マイクロ流路Rc51~Rc55(並列流路)の最適流路長を求めるための設計手法として、圧力損失コンパートメント(PDC)連結モデルを採用する。このPDC連結モデルについては、2005年に発表された論文「Osamu Tomomura, Manabu Kano, Shinji Hasebe and Masaru Noda: “Optimal shape design and operation of microreactors” Proceedings of the 7th World Congress of Chemical Engineering (WCCE), CD-ROM, O35-003, Glasgow, Scotland, Jul. 10-14(2005)」に詳細が記載されている。
 図3は、上記PDC連結モデルを説明するための流路モデルである。この流路モデルは、1本の流路aが2本の流路b,c(分流流路)に分岐した後に併合して1本の流路dとなるものであり、各流路a~dにおける断面積Aは全て同一である。
 このような流路モデルについて、各流路a~dにおける流体の線速をu,u,u,u、また2つの分流流路b,cにおける各直線部の長さをLb1~Lb3,Lc1~Lc3、水力相当直径をD、流体の粘性係数をμ、また上記水力相当直径Dによって一義的に決定されるパラメータをλとすると、流路aと2つの分流流路b、cとの分岐部(流体の分流部)における流体収支は式(1)によって、また2つの分流流路b、cと流路dとの併合部(流体の合流部)における流体収支は式(2)によって、さらに2つの分流流路b、c間の圧力バランスは式(3)によって表される。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 ここで、流体の物性は各流路a~dにおいて一定であると仮定することができるので、上記流体収支式(1)、(2)及び圧力バランス式(3)は、下記流体収支式(4)、(5)及び圧力バランス式(6)のように簡略化することができる。
 PDC連結モデルは、これら3つの式(4)~(6)からなる連立方程式を解くことにより各流路a~dの形状や線速を求めるものである。例えば各流路a~dにおける長さLb1~Lb3,Lc1~Lc3と流体の入口に該当する流路aの線速u(入口線速)とを定数として与えることにより、3つの変数、つまり流路b~dにおける線速u,u,uを求めることができる。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 図4は、このようなPDC連結モデルを本マイクロ流体分配装置Mの設計に適用するための流路モデル(設計モデル)である。この設計モデルは、上記図2に示したマイクロプラントPと同一の流路形状、つまり本マイクロ流体分配装置Mとマイクロ流体収集装置4とを接続した流路形状を備えている。
 この設計モデルにおいて、各枝マイクロ流路Rc21~Rc44,Rs11~Rs48のx軸方向の位置を「i」とすると、iは1~9の間の整数であり、またy軸方向の位置を「j」とすると、jは1~5の間の整数となる。この「j」の取り得る最大値である「5」は、本マイクロ流体分配装置Mにおける出力マイクロ流路Rc51~Rc55の本数に相当する。
 このような「i」及び「j」を用いて各枝マイクロ流路Rc21~Rc44,Rs11~Rs48の平均線速をuij,uijとして示すと、この流路モデルの分流部B11~B44,B51~B71における流体収支は下記式(7)、(8)のように、合流部G21~G43,G51~G81における流体収支は下記式(9)、(10)のように、接続部J11~J44,J51~J82における流体収支は下記式(11)~(14)のように、また流路間の圧力バランスは式(15)~(17)のように表される。なお、これら各式(7)~(17)では、出力マイクロ流路Rc51~Rc55の本数に相当するjの最大値を「N」として一般化している。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 これら11個の式(7)~(17)のよる連立方程式を解く場合、分流部B11~B44,B51~B71の個数が合計16個、合流部G21~G43,G51~G81の個数も合計16個、また接続部J11~J44,J51~J82の個数も合計16個あるので、変数と式の数は下記表1に示すようになる。
 この表1に示すように、変数の数と式の数の差は「8」であり、8個の変数を指定することにより他の変数を容易に求めることができる。このような連立方程式を解く手段として市販の数値解析ソフトウェアを用いることができ、数値流体力学(CFD:Computational Fluid Dynamics)に基づく膨大な演算処理が不要である。したがって、PDC連結モデルを用いる本マイクロ流体分配装置Mの設計方法は、従来の数値流体力学を用いた設計手法に比べて利便性が高い。また、設計モデルが左右対称形状のため、適当な境界条件を設定することにより、設計モデルの例えば左半分のみについて流体収支式及び圧力バランス式を立てることにより設計モデル全体の設計を完了させることもできる。
Figure JPOXMLDOC01-appb-T000009
 このような各式(7)~(17)からなる連立方程式において、上述した制約条件、つまり出力マイクロ流路Rc51~Rc55(並列流路)における処理対象流体Wの線速u51~u55が全て等しいという条件を満足する出力マイクロ流路Rc51~Rc55(並列流路)の最適流路長を求める。
 なお、上記制約条件に加え、枝マイクロ流路Rc11~Rc44、Rs11~Rs48におけるy方向流路長Lc=0.05m及びx方向流路長Ls=0.10m、入力の平均流速u11=5m/sプロセスの上下対称性を考慮して上下の対応する出力マイクロ流路Rc51の流路長L1と出力マイクロ流路Rc55の流路長L5とが等しく、また出力マイクロ流路Rc52の流路長L2と出力マイクロ流路Rc54の流路長L4とが等しいとすると共に、出力マイクロ流路Rc51~Rc55(並列流路)の圧力損失が支配的になることを防ぐために出力マイクロ流路Rc51の流路長L1と出力マイクロ流路Rc55の流路長L5とを0.5mとする。
 このような追加条件によって変数が6個減り、出力マイクロ流路Rc52の流路長L2と出力マイクロ流路Rc53の流路長L3とが設計変数となる。表2は、当該設計変数を上記式(7)~(17)からなる連立方程式に基づいて求めた結果である。この表2に示す各出力マイクロ流路Rc51~Rc55(並列流路)の最適流路長は、上記制約条件を満足するものなので、各出力マイクロ流路Rc51~Rc55(並列流路)における処理対象流体Wの線速u51~u55、つまり各出力マイクロ流路Rc51~Rc55(並列流路)における処理対象流体Wの流量q51~q55を全て等しくすることができる。
Figure JPOXMLDOC01-appb-T000010
 ここで、式(7)~(17)からなる連立方程式において、出力マイクロ流路Rc51~Rc55(並列流路)の流路長を同一の流路長L(j=1~5)=0.5mとし、また枝マイクロ流路Rc11~Rc44,Rs11~Rs48におけるy方向流路長L=0.05m及びx方向流路長L=0.10m、入力の平均流速u51=5m/sとして出力マイクロ流路Rc51~Rc55(並列流路)における処理対象流体Wの線速u N,j(N=5かつj=1~5)を求めると、当該線速u N,j(N=5かつj=1~5)は下記表3のように求められる。この表3から分るように、出力マイクロ流路Rc51~Rc55(並列流路)の流路長を同一とした場合には、出力マイクロ流路Rc51~Rc55(並列流路)における処理対象流体Wの線速u N,j(N=5かつj=1~5)は同一とならず、よって処理対象流体Wを各出力マイクロ流路Rc51~Rc55(並列流路)に均等分配することができない。
Figure JPOXMLDOC01-appb-T000011
 なお、出力マイクロ流路Rc51~Rc55(並列流路)以外の流路、つまり枝マイクロ流路Rc21~Rc44,Rs11~Rs48の流路長L,Lを設計変数とした場合、圧力バランス式において流路長と線速の積による非線形項が生じるが、出力マイクロ流路Rc51~Rc55(並列流路)の流路長L(j=1~5)を設計変数とした場合には、出力マイクロ流路Rc51~Rc55(並列流路)の線速u N,j(N=5かつj=1~5)は、入力マイクロ流路Rc11の線速u11(入口流速)と並列流路数の比とで示される定数として扱うことができるので、線形の式を解けばよく解の探索が容易である。
 また、本マイクロ流体分配装置Mにおける枝マイクロ流路Rc21~Rc44,Rs11~Rs48の全ての流路長を固定値とした場合には、入力マイクロ流路Rc11の線速u11(入口流速)と各出力マイクロ流路Rc51~Rc55(並列流路)の線速u N,j(N=5かつj=1~5)とは線形関係となるので、入力マイクロ流路Rc11の線速u11(入口流速)が変動しても処理対象流体Wの均等分配が維持される。
 また、本設計方法では、上記各流体収支式(1),(2)は各流路の全ての箇所で流路断面積Aが一定であり、また圧力バランス式(3)は水力相当直径DHが各流路の全ての箇所で一定であることを前提としているが、出力マイクロ流路Rc51~Rc55(並列流路)の流路断面積AN,j(j=1~N)を調整し、当該流路断面積AN,j(j=1~N)と線速u N,j(N=5かつj=1~5)の積として与えられる出力マイクロ流路Rc51~Rc55(並列流路)の平均流量FN,j(j=1~N)を一定にするという制約条件の下で連立方程式を解いても良い。
 次に、本マイクロ流体分配装置Mのいくつかの変形例について、図5A、図5B、図6A及び図6Bを参照して説明する。本発明に係る流体分配装置は、複数の枝流路を組み合わせることにより処理対象流体を分流させる3つ以上の分流部と処理対象流体を合流させる1つ以上の合流部とを備える点を特徴とするものであり、このような分流部と合流部とを備える流路形状には、例えば図5A、図5B、図6A及び図6Bに示すようなものがある。
 図5Aに示す流体分配装置Maは、9個の分流部Ba1~Ba10と3個の合流部Ga1~Ga3からなるものであり、流体を5つの出力流路(並列流路)に分配するものである。図5Bに示す流体分配装置Mbは、7個の分流部Bb1~Bb7と5個の合流部Gb1~Gb5からなるものであり、上記流体分配装置Maと同様に流体を5つの出力流路(並列流路)に分配するものである。
 図6Aに示す流体分配装置Mcは、最も単純なものであり、3個の分流部Bc1~Bc3と1個の合流部Gc1からなるものであり、流体を3つの出力流路(並列流路)に分配するものである。図6Bに示す流体分配装置Mdは、6個の分流部Bd1~Bd6と3個の合流部Gd1~Gd3からなるものであり、流体を4つの出力流路(並列流路)に分配するものである。
 なお、図5A、図5B、図6A及び図6Bは変形例の一部であって、さらに多数の分流部と合流部とを備えると共にさらに多数の出力流路(並列流路)を備えるものが考えられる。また、出力流路(並列流路)の個数は奇数あるいは偶数の何れであっても良く、分流部と合流部とを組み合わせることにより任意の個数の出力流路(並列流路)に流体を分配することができる。
 次に、本マイクロ流体分配装置Mにおける各出力マイクロ流路Rc51~Rc55(並列流路)の閉塞検知方法について、図7~図12を参照して説明する。
 図7は、上記監視装置6が監視プログラム及び各マイクロ流量計FM1,FM5から入力される流量q51、q55に基づいて実行する閉塞監視処理を示すフローチャートである。このフローチャートに示すように、この閉塞監視処理は2つのステップS1,S2から構成されている。
 ステップS1では、流路閉塞判定処理を行う前の事前処理を行う。ステップS1では、出力マイクロ流路Rc51~Rc55の基準流量(q01~q05)及び参照流量(q1~q5)を取得し、それを式(18)に代入して全ての基準流量変化比ri,j(n)を計算し、監視装置6に記憶する。ステップS2では、マイクロプラントを運転させ、流路閉塞判定処理を行う。ステップS2では、出力マイクロ流路Rc51、Rc55の初期流量(Q01、Q05)及び評価流量(Q1、Q5)を取得し、それを式(18-1)に代入して運転時流量変化比(R1,5)を計算し、前記基準流量変化比と比較することにより、閉塞が発生した流路を特定する処理を行う。また、必要に応じて、特定された閉塞流路の流量変化量ΔQ(n)及び閉塞度B(n)を計算する処理を行う。
 ここで、基準流量とは、ステップS1において、出力マイクロ流路Rc51~Rc55が全く閉塞していない状態での各出力マイクロ流路の流量であり、参照流量とは、ステップS1において、出力マイクロ流路Rc51~Rc55の何れかを強制的に閉塞させた状態での各出力マイクロ流路の流量である。また、初期流量とは、ステップS2において、マイクロプラントの運転開始直後、つまり各出力マイクロ流路に全く閉塞が発生していないと想定する状態での各出力マイクロ流路の流量であり、評価流量とは、ステップS2において、マイクロプラントの運転中における各出力マイクロ流路の流量である。
 図8は、ステップS1の詳細を示すフローチャート、また図9は、ステップS1に使用される基準流量変化比取得用流路の平面図である。ステップS1では、図2に示したマイクロプラントP(実機)と全く同一に設計され、かつマイクロ流量計FM2~FM4及び流量制御弁V1~V5が追加された流路を用いる。
 監視装置6は、ステップS1において、上記各流量制御弁V1~V5を制御することにより各出力マイクロ流路Rc51~Rc55(並列流路)を強制的に順次閉塞させ、この際に得られる各マイクロ流量計FM1~FM5の計測値(流量q1~q5)に基づいて基準流量変化比を取得する。なお、図9では、図2に示したマイクロプラントと同一の構成要素には同一符号を付している。
 監視装置6は、ステップS1において、まず出力マイクロ流路Rc51~Rc55が全く閉塞していない状態における出力マイクロ流路Rc51~Rc55の流量を、マイクロ流量計FM1~FM5を用いて計測し、基準流量q01~q05とする(ステップS11)。また、各出力マイクロ流路Rc51~Rc55は、1~N(Nは、出力マイクロ流路の本数を表し、本実施形態ではN=5である)の整数で番号付けられており、例えば、「1」は出力マイクロ流路Rc51に、「2」は出力マイクロ流路Rc52に、「3」は出力マイクロ流路Rc53に、「4」は出力マイクロ流路Rc54に、また「5」は出力マイクロ流路Rc55に番号付けられている。この対応関係は予め監視装置6に記憶される。また、各出力マイクロ流路Rc51~Rc55の番号を変数nで表し、nの初期値を「1」に設定する(ステップS12)。
 続いて、監視装置6は、変数nとして「1」に設定された出力マイクロ流路Rc51を強制的に閉塞状態とし(ステップS13)、この状態における各マイクロ流量計FM1~FM5の流量q51~q55を参照流量q1~q5として取り込む(ステップS14)。そして、監視装置6は、上記基準流量q01~q05と参照流量q1~q5とを以下の評価式(18)に代入することにより基準流量変化比ri,j(1)を計算する(ステップS15)。そして、監視装置6は、引き続いてステップS16における変数nの大小判断処理及びステップS17における変数nのインクリメント処理を実行することにより、1~Nに亘る全ての変数n(つまり出力マイクロ流路Rc51~Rc55を強制的に完全閉塞させた場合)について基準流量変化比ri,j(n)を取得して内部に記憶する。
Figure JPOXMLDOC01-appb-M000012
(式中、iとjは出力マイクロ流路の番号で、iは1、jは2~5の整数、nは閉塞させた出力マイクロ流路の番号である。)
 ここで、各出力マイクロ流路Rc51~Rc55(並列流路)を強制的に順次閉塞させて得られる上記基準流量変化比ri,j(1)~ri,j(5)は、各々に異なる値となる。下表4は、出力マイクロ流路Rc51とRc55の流量変化比r1,5(1)~r1,5(5)を一例として示している。この表4が示すように、出力マイクロ流路Rc51とRc55の流量変化比r1,5(n)は、出力マイクロ流路Rc51~Rc55(並列流路)の何れが閉塞するかに応じて異なる値となる。
Figure JPOXMLDOC01-appb-T000013
 さらに、表5は、内径1mmのステンレス管を接合することにより簡易的に製造された基準流量変化比取得用流路について計測された流量計測値を示している。すなわち、この表5は、入力マイクロ流路Rc11に一定流量20ml/min、つまり0.42m/sの線速で純水を供給した際に、バルブの開口度を(段階的に)変えながら(状態1~10)、各出力マイクロ流路Rc51~Rc55(並列流路)に流れる純水の流量q51~q55を計測した実験結果を示している。ここで、状態1は、純水の供給開始直後、つまり流路の閉塞が全く発生していないと想定した状態であり、理論的には各流路の流量が完全に均等であるが、製作誤差等の影響で実測値は完全に均等とはなっておらず、2%程度の偏差が生じている。本実験では、閉塞流路Rc52に近い流路ほど流量が大きいことがわかる。
 図10Aは、出力マイクロ流路Rc52に閉塞が発生した時の、出力マイクロ流路Rc51の流量変化量(横軸)と出力マイクロ流路Rc53~Rc55の流量変化量(縦軸)との関係を示すグラフである。また、図10Bは、出力マイクロ流路Rc52に閉塞が発生した時の、出力マイクロ流路Rc51の流量変化量と出力マイクロ流路Rc52の流量変化量との関係を示すグラフである。図10A及び図10Bには、表5のデータが用いられている。図10Aに示すように、出力マイクロ流路Rc52に閉塞が発生した時、出力マイクロ流路Rc53、Rc54、Rc55の流量変化量は、出力マイクロ流路Rc51の流量変化量に対して線形変化をしている。また、図10Bに示すように、出力マイクロ流路Rc52に閉塞が発生した時、出力マイクロ流路Rc52の流量変化量も、出力マイクロ流路Rc51の流量変化量に対して線形変化をしている。従って、任意の2つの出力マイクロ流路の流量変化比は、出力マイクロ流路Rc52の閉塞度に依らず一定であることが分かる。また、閉塞される出力マイクロ流路が変わることによって、任意の2つの出力マイクロ流路の流量変化比は異なる。したがって、マイクロプラント運転中、2つの出力流路の流量変化比を取得し、それを基準流量変化比と比較することにより、閉塞流路を特定することが可能である。
Figure JPOXMLDOC01-appb-T000014
 また、表6は、各流量制御弁V2~V4の開口度を段階的に変化させた場合、つまり出力マイクロ流路Rc52~Rc54の閉塞度を段階的に変化させた場合における出力マイクロ流路Rc51,Rc55の流量変化量を示している。なお、この表6において、状態10は流量制御弁V2,V3が全閉状態、つまり出力マイクロ流路Rc52,Rc53が完全閉塞状態を示している。
 図11は、出力マイクロ流路Rc52、Rc53及びRc54の閉塞度を段階的に変化させた時の、出力マイクロ流路Rc51の流量変化量と出力マイクロ流路Rc55の流量変化量との関係を示すグラフである。図11には、表6のデータが用いられている。図11に示すように、出力マイクロ流路Rc52、Rc53及びRc54の閉塞度が段階的に変化する場合、出力マイクロ流路Rc55の流量変化量は、出力マイクロ流路Rc51の流量変化量に対して線形変化をしている。つまり、出力マイクロ流路Rc55の流量変化量と出力マイクロ流路Rc51の流量変化量の比、つまり基準流量変化比r1,5(2)、r1,5(3)及びr1,5(4)は、各出力マイクロ流路の閉塞度に関係なく、一定であった。また、r1,5(2)、r1,5(3)及びr1,5(4)の値は、それぞれ異なっており、従って基準流量変化比r1,5(n)は、閉塞した出力マイクロ流路によって、異なることが分かった。
Figure JPOXMLDOC01-appb-T000015
 図12は、上記閉塞判定処理(ステップS2)の詳細を示すフローチャートである。閉塞判定処理では、監視装置6は、マイクロプラントの運転開始時に各マイクロ流量計FM1,FM5の流量q51,q55を初期流量Q01、Q05として取得し(ステップS21)、これ以降所定時間が経過すると各マイクロ流量計FM1,FM5の流量q51,q55を評価流量Q1、Q5として取り込む(ステップS22)。そして、監視装置6は、以下の判定式(19),(20)に上記初期流量Q01、Q05及び評価流量Q1、Q5を代入することにより、各出力マイクロ流路Rc51~Rc55の何れかに閉塞が発生しているか否かを判定する(ステップS23)。
Figure JPOXMLDOC01-appb-M000016
 すなわち、監視装置6は、出力マイクロ流路Rc51における初期流量Q01と評価流量Q1との差の絶対値が所定のしきい値ε1よりも大きい場合あるいは/及び出力マイクロ流路Rc55における初期流量Q05と評価流量Q5との差の絶対値が所定のしきい値ε5よりも大きい場合には、各出力マイクロ流路Rc51~Rc55の何れかに閉塞が発生していると判定する。
 そして、監視装置6は、閉塞が発生していると判定した場合は、下記評価式(18-1)に基づいて運転時流量変化比R1,5を計算し(ステップS24)、この運転時流量変化比R1,5を、監視装置6に予め記憶されている基準流量変化比r1,5(n)と比較することによって、実際に閉塞した出力マイクロ流路(閉塞流路)、つまり当該閉塞流路の変数nを特定する(ステップS25)。
Figure JPOXMLDOC01-appb-M000017
 監視装置6は、このようにして閉塞流路の変数nを特定すると、当該閉塞流路における閉塞度を計算する(ステップS26)。すなわち、監視装置6は、下記流量変化式(21)に閉塞流路と出力マイクロ流路Rc51の基準流量変化比r1,n(n)並びに上記ステップS21,S22で取得した初期流量Q01及び評価流量Q1を代入することにより、閉塞流路の流量変化ΔQ(n)を計算する。さらに、監視装置6は、下記閉塞度算出式(22)に閉塞流路と出力マイクロ流路Rc51の基準流量変化比r1,n(n)並びに上記ステップS21,S22で取得した初期流量Q01及び評価流量Q1を代入することにより、閉塞流路の閉塞度を計算する。この閉塞度算出式(22)は、初期流量と評価流量とから得られる流量変化率と、閉塞流路と出力マイクロ流路Rc51の基準流量変化比r1,n(n)との積によって閉塞度B(n)を示すものである。
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
 表7は、上述した表6の計算結果を上記式(18)に代入して得られた基準流量変化比ri,j(n)を示している。表8は、表5の計算結果を上記式(18-1)、上記流量変化式(21)及び閉塞度算出式(22)に代入することにより運転時流量変化比R1,5、閉塞流路の流量変化ΔQ(n)及び閉塞度B(n)を計算した結果である。運転時流量変化比R1,5は状態1を初期流量Q01及びQ05として計算した。
表8の運転時流量変化比R1,5は表7のr1,5(2)に略一致しているので、本実施形態での閉塞流路はn=2と判断できる。閉塞流路の流量変化ΔQ(n)及び閉塞度B(n)はr1,2(2)=-2.011を用いて計算した。
 表8に示すように、出力マイクロ流路Rc51の初期流量Q01、出力マイクロ流路Rc51の評価流量Q1及び閉塞流量の基準流量変化比r1,2(2)を、式(21)及び式(22)に代入して得られる閉塞流路Rc52の流量変化量ΔQ(n)及び閉塞度B(n)は、マイクロ流量計FM2の実測値により得られる流量変化量及び閉塞度に比べて、略一致しているので、監視対象であるマイクロプラントPの閉塞状態を十分に示している。
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
 監視装置6は、このようにして閉塞度を算出すると、マイクロプラントの運転が継続されているか否かを判断し(ステップS27)、運転が継続している場合は、上述したステップS22~S26の処理を繰り返すことにより、閉塞流路の特定とその流量変化量ΔQ(n)及び閉塞度B(n)を定期的に計算し、運転が終了した場合には監視処理を終了する。
 なお、上記図12に示した閉塞判定処理(ステップS2)は、閉塞流路の特定に加えてその流量変化量ΔQ(n)及び閉塞度B(n)を求めるものであるが、閉塞度B(n)を取得する必要がない場合には、ステップS26の処理を省略すると共に、図9に示した初期流量データ取得処理(ステップS1)において2つの出力マイクロ流路Rc51、Rc55の初期流量変化比r1,5(1)~r1,5(5)のみを求めれば良い。したがって、この場合には、初期流量データ取得用流路として、2つの出力マイクロ流路Rc51、Rc55のみにマイクロ流量計FM1,FM5が設けられているもの、つまり出力マイクロ流路Rc52~Rc54に設けられたマイクロ流量計FM2~FM4を省略したものを用いることができる。
 また、上記図12に示した閉塞判定処理(ステップS2)は、ステップS23において閉塞の発生を検知した場合にのみ流量変化量ΔQ(n)及び閉塞度B(n)の計算を行うものであるが、閉塞の有無に関わらず各出力マイクロ流路Rc51~Rc55の閉塞度を定期的に計算するようにしても良い。この場合には、各出力マイクロ流路Rc51~Rc55の何れかが完全閉塞になる前段階で閉塞の兆候を検知することができるので、マイクロプラントPの安定運転上好ましい。
 このような本実施形態によれば、以下のような効果を奏する。
(1)本マイクロ流体分配装置Mによれば、分流部B11~B44と合流部G21~G43とを組み合わせて構成されると共に流体収支式(1)~(14)及び圧力バランス式(15)~(17)からなる圧力損失コンパートメント連結モデルに基づいて設計されているので、入力マイクロ流路Rc11に供給された処理対象流体Wの各出力マイクロ流路Rc51~Rc55への均等分配を簡単な構成で実現することができる。また、この均等分配がロバスト性を有するので、入力マイクロ流路Rc11に供給された処理対象流体Wの流量が変動しても均等分配が維持される。
(2)本実施形態における各出力マイクロ流路Rc51~Rc55(並列流路)の閉塞検知方法によれば、実機としてのマイクロプラントPの各出力マイクロ流路Rc51~Rc55(並列流路)のうち、何れか2つの出力マイクロ流路Rc51,Rc55にマイクロ流量計FM1,FM5を設けることによって、各出力マイクロ流路Rc51~Rc55の何れに閉塞が発生したかを特定することができるので、従来よりも少ない数のマイクロ流量計を用いて閉塞流路を特定することができる。
(3)本実施形態における各出力マイクロ流路Rc51~Rc55(並列流路)の閉塞検知方法によれば、実機としてのマイクロプラントPの各出力マイクロ流路Rc51~Rc55(並列流路)のうち、何れか2つの出力マイクロ流路Rc51,Rc55にマイクロ流量計FM1,FM5を設けることによって、従来よりも少ない数のマイクロ流量計を用いて閉塞流路の閉塞度を把握することができ、産業上有用である。

Claims (10)

  1.  入力流路に供給された流体を3以上の出力流路に均等分配して出力する流体分配装置であって、
     複数の枝流路を組み合わせて形成され、少なくとも3つの流体の分流部と少なくとも1つの流体の合流部とを備え、流体収支式と圧力バランス式からなる圧力損失コンパートメント連結モデルに対応するように形成されることを特徴とする流体分配装置。
  2.  各出力流路の閉塞を監視する監視装置と、3以上の出力流路のうち任意の2つの出力流路に各々設けられた2つの流量計とをさらに備え、
     前記監視装置は、
     事前処理として、全ての出力流路が閉塞を発生していない状態における前記各流量計の計測値を基準流量として取得し、前記各流量計が設けられていない出力流路が閉塞した場合における前記各流量計の計測値を参照流量として取得し、一方の流量計の基準流量と参照流量との差と他方の流量計の基準流量と参照流量との差の割合を基準流量変化比として記憶し、
     この事前処理後の運転時には、運転開始時に前記各流量計の計測値を初期流量として取得し、その後の運転における前記各流量計の計測値を評価流量として取得し、一方の流量計の初期流量と評価流量との差と他方の流量計の初期流量と評価流量との差の割合を運転時流量変化比として計算し、
     当該運転時流量変化比と前記基準流量変化比との比較に基づいて閉塞が発生した出力流路を特定する
     ことを特徴とする請求項1記載の流体分配装置。
  3.  前記監視装置は、
     事前処理として、全ての出力流路に流量計を設けた状態において全ての出力流路が閉塞を発生していない状態における前記各流量計の計測値を基準流量として取得し、出力流路を順次閉塞させた場合における前記各流量計の計測値を参照流量として順次取得し、各流量計における基準流量と参照流量との差と異なる流量計の基準流量と参照流量との差の割合を基準流量変化比としてそれぞれ記憶し、
     この事前処理後の運転時には、運転開始時に前記各流量計の計測値を初期流量として取得し、その後の運転における前記各流量計の計測値を評価流量として取得し、初期流量と評価流量とから得られる流量変化率と前記基準流量変化比との積に基づいて各出力流路の閉塞度を検知する
     ことを特徴とする請求項1または2記載の流体分配装置。
  4.  前記監視装置は、閉塞が発生した出力流路が特定された場合に、当該閉塞が発生した出力流路の閉塞度を検知することを特徴とする請求項3記載の流体分配装置。
  5.  ナンバリングアップ構造のマイクロプラント用に微細に形成されることを特徴とする請求項1に記載の流体分配装置。
  6.  請求項5記載の流体分配装置を介して処理対象流体を各マイクロ処理装置に均等分配して処理を施すことを特徴とするマイクロプラント。
  7.  入力流路に入力された流体を3以上の出力流路に均等に分配出力する流体分配装置の設計方法であって、
     前記流体分配装置を、複数の枝流路を組み合わせることにより少なくとも3つの流体の分流部と少なくとも1つの流体の合流部とを備える形状とし、
     流体収支式と圧力バランス式からなる圧力損失コンパートメント連結モデルを前記流体分配装置に適用する
     ことを特徴とする流体分配装置の設計方法。
  8.  請求項7に記載の流体分配装置の設計方法で設計された流体分配装置について、
     事前処理として、全ての出力流路が閉塞を発生していない状態における任意の2つの出力流路の流量を基準流量として取得し、前記2つの出力流路以外の出力流路が閉塞した場合における前記2つの出力流路の流量を参照流量として取得し、前記2つの出力流路の一方における基準流量と参照流量との差と他方における流量計の基準流量と参照流量との差の割合を基準流量変化比として記憶し、
     この事前処理後における運転時には、流体分配装置の運転開始時に前記2つの出力流路の流量を初期流量として取得し、その後の運転における前記2つの出力流路の流量を評価流量として取得し、前記2つの出力流路の一方における流量計の初期流量と評価流量との差と他方における流量計の初期流量と評価流量との差の割合を運転時流量変化比として計算し、
     当該運転時流量変化比と前記基準流量変化比との比較に基づいて閉塞が発生した出力流路を特定する
     ことを特徴とする流路閉塞検知方法。
  9.  請求項7に記載の流体分配装置の設計方法で設計された流体分配装置について、
     事前処理として、全ての出力流路が閉塞を発生していない状態において全ての出力流路の流量を基準流量として取得し、出力流路が順次閉塞した場合における全ての出力流路の流量を参照流量として順次取得し、各出力流路における基準流量と参照流量との差と異なる出力流路の基準流量と参照流量との差の割合を基準流量変化比としてそれぞれ記憶し、
     この事前処理後の運転時には、流体分配装置の運転開始時に任意の2つの出力流路の流量を初期流量として取得し、その後の運転における前記2つの出力流路の流量を評価流量として取得し、初期流量と評価流量とから得られる流量変化率と前記基準流量変化比との積に基づいて各出力流路の閉塞度を検知する
     ことを特徴とする流路閉塞検知方法。
  10.  ナンバリングアップ構造のマイクロプラント用に微細に形成された流体分配装置に適用することを特徴とする請求項8または9記載の流路閉塞検知方法。
PCT/JP2009/056106 2008-03-31 2009-03-26 流体分配装置、マイクロプラント、流体分配装置の設計方法及び流路閉塞検知方法 WO2009123009A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/935,446 US8549907B2 (en) 2008-03-31 2009-03-26 Fluid distribution device, micro plant, method of designing fluid distribution device, and method of detecting blockage of flow channel
EP20090727879 EP2273180A1 (en) 2008-03-31 2009-03-26 Fluid distribution device, micro plant, method of designing fluid distribution device, and method of detecting clogging of flow passage
JP2010505771A JP5376602B2 (ja) 2008-03-31 2009-03-26 流体分配装置、マイクロプラント及び流路閉塞検知方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008093480 2008-03-31
JP2008-093480 2008-03-31

Publications (1)

Publication Number Publication Date
WO2009123009A1 true WO2009123009A1 (ja) 2009-10-08

Family

ID=41135388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056106 WO2009123009A1 (ja) 2008-03-31 2009-03-26 流体分配装置、マイクロプラント、流体分配装置の設計方法及び流路閉塞検知方法

Country Status (4)

Country Link
US (1) US8549907B2 (ja)
EP (1) EP2273180A1 (ja)
JP (1) JP5376602B2 (ja)
WO (1) WO2009123009A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011180992A (ja) * 2010-03-03 2011-09-15 Yokogawa Electric Corp 流体分配装置及びマイクロプラント
JP2012184938A (ja) * 2011-03-03 2012-09-27 Sekisui Chem Co Ltd マイクロポンプ
JP2013534859A (ja) * 2010-06-09 2013-09-09 エンパイア テクノロジー ディベロップメント エルエルシー 調整可能圧力マイクロリアクタ
US9188990B2 (en) 2011-10-05 2015-11-17 Horiba Stec, Co., Ltd. Fluid mechanism, support member constituting fluid mechanism and fluid control system
JP2020515392A (ja) * 2017-03-31 2020-05-28 ファルマフルイディクス・ナムローゼ・フェンノートシャップPharmaFluidics NV 流れ分配器

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR082130A1 (es) * 2011-07-07 2012-11-14 Consejo Nac Invest Cient Tec Microviscosimetro capilar
JP5794884B2 (ja) * 2011-10-05 2015-10-14 株式会社堀場エステック 流体制御システム
DE102013009347A1 (de) 2013-06-04 2014-12-04 Hydrometer Gmbh Durchflussmesser
WO2019168970A1 (en) * 2018-02-28 2019-09-06 Reolab Modular microchannel systems
CN110008546B (zh) * 2019-03-22 2022-07-19 西南交通大学 环形过道设施布置方法
CN115824528B (zh) * 2022-12-07 2023-09-29 斯莱达医疗用品(惠州)有限公司 一种呼吸治疗仪的堵塞检测方法以及呼吸治疗仪的管路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006223967A (ja) * 2005-02-16 2006-08-31 Hitachi Ltd 反応システム
JP2006227853A (ja) 2005-02-17 2006-08-31 Yokogawa Electric Corp マイクロ流量分配コントロール装置
JP2007050340A (ja) * 2005-08-18 2007-03-01 National Institute Of Advanced Industrial & Technology マイクロミキサー
JP2007260569A (ja) 2006-03-28 2007-10-11 Fujifilm Corp 流体混合装置及び流体混合方法
JP2008093480A (ja) 2000-10-20 2008-04-24 Tyco Healthcare Group Lp 特定方向に偏倚されるステープルおよびこのステープルを成形するためのアンビルアセンブリ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5564723B2 (ja) * 2010-03-03 2014-08-06 横河電機株式会社 流体分配装置及びマイクロプラント

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008093480A (ja) 2000-10-20 2008-04-24 Tyco Healthcare Group Lp 特定方向に偏倚されるステープルおよびこのステープルを成形するためのアンビルアセンブリ
JP2006223967A (ja) * 2005-02-16 2006-08-31 Hitachi Ltd 反応システム
JP2006227853A (ja) 2005-02-17 2006-08-31 Yokogawa Electric Corp マイクロ流量分配コントロール装置
JP2007050340A (ja) * 2005-08-18 2007-03-01 National Institute Of Advanced Industrial & Technology マイクロミキサー
JP2007260569A (ja) 2006-03-28 2007-10-11 Fujifilm Corp 流体混合装置及び流体混合方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OSAMU TOMOMURA ET AL.: "Optimal shape design and operation of microreactors", PROCEEDINGS OF THE 7TH WORLD CONGRESS OF CHEMICAL ENGINEERING (WCCE), 14 July 2005 (2005-07-14), XP008143363 *
OSAMU TONOMURA; MANABU KANO; SHINJI HASEBE; MASARU NODA: "Optimal shape design and operation of microreactors", PROCEEDINGS OF THE 7TH WORLD CONGRESS OF CHEMICAL ENGINEERING, 10 July 2005 (2005-07-10)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011180992A (ja) * 2010-03-03 2011-09-15 Yokogawa Electric Corp 流体分配装置及びマイクロプラント
JP2013534859A (ja) * 2010-06-09 2013-09-09 エンパイア テクノロジー ディベロップメント エルエルシー 調整可能圧力マイクロリアクタ
JP2012184938A (ja) * 2011-03-03 2012-09-27 Sekisui Chem Co Ltd マイクロポンプ
US9188990B2 (en) 2011-10-05 2015-11-17 Horiba Stec, Co., Ltd. Fluid mechanism, support member constituting fluid mechanism and fluid control system
US9766634B2 (en) 2011-10-05 2017-09-19 Horiba Stec, Co., Ltd. Fluid mechanism, support member constituting fluid mechanism and fluid control system
JP2020515392A (ja) * 2017-03-31 2020-05-28 ファルマフルイディクス・ナムローゼ・フェンノートシャップPharmaFluidics NV 流れ分配器
US11207682B2 (en) 2017-03-31 2021-12-28 Pharmafluidics Nv Flow distributor
JP7126512B2 (ja) 2017-03-31 2022-08-26 ファルマフルイディクス・ナムローゼ・フェンノートシャップ 流れ分配器

Also Published As

Publication number Publication date
EP2273180A1 (en) 2011-01-12
US8549907B2 (en) 2013-10-08
JPWO2009123009A1 (ja) 2011-07-28
US20110016967A1 (en) 2011-01-27
JP5376602B2 (ja) 2013-12-25

Similar Documents

Publication Publication Date Title
JP5376602B2 (ja) 流体分配装置、マイクロプラント及び流路閉塞検知方法
CN102959394B (zh) 液体混合装置以及液相色谱仪
CN101187660B (zh) 双槽式孔板型混输计量装置
WO2018011371A4 (de) Durchflussmesser mit messkanal
Ghidossi et al. Simplified CFD approach of a hollow fiber ultrafiltration system
DE102007023840A1 (de) Thermischer Massendurchflussmesser und Verfahren zu dessen Betrieb
DE102007037669A1 (de) Vorrichtung zur chemischen Synthese
CN109803758A (zh) 用于微流体装置的流体控制器的改进或与之相关的改进
CN102203568A (zh) 压差计量装置
US20050054111A1 (en) Micro-fluidic system with sensors respectively assigned to plural fluid paths
EP3864131A1 (en) A novel continuous flow reactor for low ph viral inactivation
CN104220861B (zh) 微流过滤系统和集成微流体元件
KR101024936B1 (ko) 용액을 연속적으로 희석하는 미세채널 칩 및 희석 방법
WO2013014216A1 (en) Device and method for high-throughput, on-demand generation and merging of droplets
Tanaka et al. Detection and diagnosis of blockage in parallelized microreactors
Mao et al. Micromixing enhanced by pulsating flows
FI88343B (fi) Foerfarande och anordning foer beaktande av varierande volym och floede vid reglering av genomstroemningsprocesser
US7024313B2 (en) Method of estimating the properties of a polymer product
JP4313768B2 (ja) 反応システム
KR100760309B1 (ko) 미소필터를 이용한 미소입자 변형성 분석기
Karst et al. Laminar flow of two miscible fluids in a simple network
JP5564723B2 (ja) 流体分配装置及びマイクロプラント
CN105114044A (zh) 一种丛式井站天然气开采工艺
CN105214746B (zh) 通道侧壁面指定位置可动的微流控芯片
Coblyn et al. Characterization of microchannel hemodialyzers using residence time distribution analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09727879

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010505771

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12935446

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 6869/CHENP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009727879

Country of ref document: EP