WO2009119407A1 - ファン駆動制御装置および建設機械 - Google Patents

ファン駆動制御装置および建設機械 Download PDF

Info

Publication number
WO2009119407A1
WO2009119407A1 PCT/JP2009/055283 JP2009055283W WO2009119407A1 WO 2009119407 A1 WO2009119407 A1 WO 2009119407A1 JP 2009055283 W JP2009055283 W JP 2009055283W WO 2009119407 A1 WO2009119407 A1 WO 2009119407A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
target flow
fan
control device
drive control
Prior art date
Application number
PCT/JP2009/055283
Other languages
English (en)
French (fr)
Inventor
哲 田中
築 萩原
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to JP2010505570A priority Critical patent/JPWO2009119407A1/ja
Priority to EP09724970A priority patent/EP2270321A1/en
Priority to US12/934,016 priority patent/US20110011356A1/en
Priority to CN200980110056XA priority patent/CN101978145A/zh
Publication of WO2009119407A1 publication Critical patent/WO2009119407A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/022Units comprising pumps and their driving means comprising a yielding coupling, e.g. hydraulic
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • E02F9/2228Control of flow rate; Load sensing arrangements using pressure-compensating valves including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • E02F9/2235Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/226Safety arrangements, e.g. hydraulic driven fans, preventing cavitation, leakage, overheating
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/04Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio
    • F01P7/046Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio using mechanical drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/04Units comprising pumps and their driving means the pump being fluid-driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/004Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by varying driving speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/04Pressure
    • F01P2025/06Pressure for determining flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/315Directional control characterised by the connections of the valve or valves in the circuit
    • F15B2211/3157Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line
    • F15B2211/31576Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line having a single pressure source and a single output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/45Control of bleed-off flow, e.g. control of bypass flow to the return line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/515Pressure control characterised by the connections of the pressure control means in the circuit
    • F15B2211/5157Pressure control characterised by the connections of the pressure control means in the circuit being connected to a pressure source and a return line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/633Electronic controllers using input signals representing a state of the prime mover, e.g. torque or rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6343Electronic controllers using input signals representing a temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a fan drive control device and a construction machine.
  • the engine cooling water and the hydraulic fluid of the torque converter are circulated through the radiator or oil cooler, respectively, and the outside air is blown to the radiator etc. by the cooling fan. Cooling is in progress.
  • it is common to drive a cooling fan with a hydraulic motor, and in recent years, depending on the temperature of cooling water, the temperature of hydraulic oil used in torque converters, brakes, etc., and the engine speed, Is known that continuously and variably controls the number of rotations (see, for example, Patent Document 1).
  • the target rotational speed of the fan and the target flow rate to the hydraulic motor that drives the fan are set, so that the set target state is reached. Adjust the discharge rate of the hydraulic pump that supplies hydraulic oil to the hydraulic motor.
  • the road surface condition may be determined during traveling on soft ground or a slope, and stop driving the fan while traveling on a specific road surface, but it is difficult to determine the road surface condition with high accuracy. There is a possibility that the running performance may be deteriorated due to erroneous determination. Further, if the driving of the fan is stopped, the cooling performance is lowered, and efficient cooling cannot be performed.
  • An object of the present invention is to provide a fan drive control device that can prevent a decrease in running performance associated with driving of a fan and that can perform efficient cooling, and a construction machine equipped with the fan drive control device. is there.
  • a fan drive control device is a fan drive control device that controls the drive of a cooling fan of a construction machine, and a hydraulic motor that drives the cooling fan with hydraulic oil supplied from a hydraulic pump driven by an engine; , A flow rate adjusting means for adjusting the flow rate of the hydraulic oil flowing into the hydraulic motor, a temperature sensor for detecting the temperature of the cooled fluid cooled by the cooling fan, and an accelerator opening for operating the engine output On the basis of the detected value of the accelerator opening sensor, the target flow rate setting means for setting the target flow rate of the hydraulic oil flowing into the hydraulic motor based on the detected value of the temperature sensor, and the detected value of the accelerator opening sensor A target flow rate correcting means for correcting the target flow rate, and a control to the flow rate adjusting means according to the target flow rate corrected by the target flow rate correcting means. Characterized in that a control command generation means for generating a decree.
  • the fan drive control device includes the target flow rate correction unit that corrects the target flow rate of the hydraulic oil to the hydraulic motor that drives the cooling fan based on the detection value of the accelerator opening sensor. Yes.
  • the target flow rate of the hydraulic motor is corrected based on the detection value of the accelerator opening sensor, the rotation speed of the cooling fan changes according to the accelerator opening.
  • the accelerator opening is increased by the operator. That is, by considering the accelerator opening, it is possible to accurately determine whether acceleration is required and a large driving force should be transmitted to the road surface, or whether acceleration is not required.
  • the target flow rate correction means decreases the target flow rate when the accelerator opening is larger than a predetermined value, and increases the target flow rate when the accelerator opening is smaller than a predetermined value. It is desirable to do.
  • the fan drive control device decreases the target flow rate of the hydraulic motor when the accelerator opening is larger than the predetermined value, and increases the target flow rate when the accelerator opening is smaller than the predetermined value. For this reason, it is possible to reduce the consumption of the engine output by driving the fan by a simple method in which the target flow rate of the hydraulic motor is reduced or increased in accordance with the accelerator opening. Therefore, an increase in cost of the entire fan drive control device can be suppressed.
  • an engine speed sensor that detects an engine speed, and a target flow rate gradient that is constant for each temperature and that is a ratio of the target flow rate to the engine speed has a plurality of temperatures.
  • the target flow rate setting unit sets the target flow rate gradient based on the detected value of the temperature sensor and the stored value of the storage unit, and the target flow rate
  • the target flow rate is set based on a gradient and a detection value of the engine speed sensor, and the target flow rate correction means corrects the target flow rate by correcting the target flow rate gradient.
  • the fan drive control device has a plurality of target flow rate gradients that are constant for each temperature and that are ratios of the target flow rate of the hydraulic motor to the engine speed corresponding to a plurality of temperatures.
  • the fan drive control device stores the target flow rate of the hydraulic motor by correcting the target flow rate gradient.
  • the rotational speed of the hydraulic motor is determined by the flow rate of the hydraulic oil flowing into the hydraulic motor, the hydraulic motor is kept constant with respect to the engine rotational speed by making the ratio of the target flow rate to the engine rotational speed constant. It has a reduction ratio. Since the corrected target flow rate gradient is fixed regardless of the engine speed if the temperature is constant, it is not necessary to change the amount of hydraulic oil flowing into the hydraulic motor even if the engine speed changes. Accordingly, since it is not necessary to frequently operate the flow rate adjusting means for adjusting the flow rate of the hydraulic oil flowing into the hydraulic motor, the durability of the flow rate adjusting means can be improved.
  • a storage unit that stores a plurality of constant target flow rates corresponding to a plurality of temperatures regardless of the engine speed, and the target flow rate setting unit detects the temperature sensor.
  • the target flow rate is set based on the value and the stored value of the storage means, and the target flow rate correction means corrects the constant target flow rate for each temperature.
  • the fan drive control device stores a plurality of constant target flow rates corresponding to a plurality of temperatures regardless of the engine speed, and the fan drive control device is configured for each temperature. Correct a certain target flow rate. According to this, since it is not necessary to store the target flow rate gradient of the hydraulic motor in advance or to convert the target flow rate gradient into the target flow rate, the flow rate of the hydraulic oil flowing into the hydraulic motor can be adjusted with a simple configuration. Can do. Therefore, an increase in the cost of the entire fan drive control device can be effectively suppressed.
  • the fan drive control device preferably includes a vehicle speed sensor that detects a vehicle speed of the construction machine, and a correction prohibiting unit that prohibits the correction of the target flow rate when the vehicle speed is equal to or lower than a predetermined value. .
  • the fan drive control device prohibits the correction of the target flow rate when the vehicle speed is a predetermined value or less. According to this, since the target flow rate during low-speed traveling or stopping is not corrected, it is possible to prevent the number of rotations of the cooling fan from increasing. Therefore, an increase in engine output consumption associated with fan driving during idling can be prevented, and the fuel consumption rate of the engine can be maintained in a good state.
  • the hydraulic pump is a variable displacement pump
  • the flow rate adjusting means adjusts the flow rate of the hydraulic oil discharged from the hydraulic pump by changing the capacity of the hydraulic pump. It is desirable to do.
  • the fan drive control device adjusts the flow rate of the hydraulic oil discharged from the hydraulic pump by changing the capacity of the variable displacement hydraulic pump. For this reason, when a variable displacement hydraulic pump is used, the flow rate of the hydraulic oil flowing into the hydraulic motor can be adjusted only by changing the capacity of the hydraulic pump. Therefore, since it is not necessary to add a hydraulic device separately, it is possible to prevent the running performance from being lowered by driving the fan and to efficiently cool it with a simple configuration.
  • the hydraulic pump is a fixed displacement pump
  • the flow rate adjusting means includes a flow control valve that bypasses a suction side and a discharge side of the hydraulic motor, and the hydraulic motor is It is desirable to adjust the flow rate of the hydraulic fluid to be bypassed.
  • the fan drive control device includes the fixed displacement hydraulic pump
  • the flow rate adjusting means includes the flow control valve that bypasses the suction side and the discharge side of the hydraulic motor
  • the hydraulic motor Adjust the flow rate of hydraulic oil to bypass. For this reason, even when a fixed displacement hydraulic pump is used, the flow rate of the hydraulic oil flowing into the hydraulic motor can be adjusted only by providing a flow control valve that bypasses the hydraulic motor. Accordingly, since it is not necessary to replace the hydraulic pump with a variable displacement pump, it is possible to prevent the running performance from being lowered due to the fan drive while suppressing the cost of the entire fan drive control device.
  • the construction machine of the present invention includes a cooling fan and the above-described fan drive control device of the present invention.
  • the control block diagram of the controller which comprises the fan drive control apparatus which concerns on the said 1st Embodiment.
  • action of the controller which concerns on the said 1st Embodiment. 3 is a flowchart showing a control flow of the controller according to the first embodiment.
  • the schematic diagram which shows the structure of the construction machine which concerns on 2nd Embodiment of this invention.
  • FIG. 1 schematically showing the dump truck (construction machine) 1 according to the first embodiment of the present invention
  • the dump truck 1 is driven by an engine 2 (not shown). It is comprised by the means so that self-propelled, and is provided with the work machine drive part 3, the fan drive part 4, and the controller 5.
  • the work machine drive unit 3 is configured for work such as unloading earth and sand and includes a work machine 31, a work machine pump 32, and a hoist valve 33.
  • the work machine 31 may be referred to as a body (hoist or vessel). ) 311 and hoist cylinder 312.
  • the body 311 is a loading platform for loading earth and sand and the like, and is supported on the support shaft P so as to be able to move up and down with respect to a body frame (not shown) of the dump truck 1.
  • the body 311 and the body frame are connected by a hoist cylinder 312, and both end portions of the hoist cylinder 312 are rotatably supported by the body 311 and the body frame, respectively.
  • the hoist cylinder 312 is driven by hydraulic oil supplied from the work machine pump 32, and the hoist cylinder 312 expands and contracts according to the switching of the valve position of the hoist valve 33. As the hoist cylinder 312 expands and contracts, the body 311 performs a hoisting operation on the body frame.
  • the fan drive unit 4 is a part that drives a cooling fan (hereinafter simply referred to as a fan) 41, and includes a fan pump (hydraulic pump) 42, a fan motor (hydraulic motor) 43, and a fan reverse control valve 44. .
  • the fan pump 42 is a variable displacement hydraulic pump that is driven by the engine 2 as a power source, and supplies hydraulic oil to the fan motor 43.
  • the fan pump 42 includes a variable capacity section 421 such as a swash plate that changes the pump capacity, and a regulator section 422 such as an electromagnetic valve that drives the variable capacity section 421.
  • the regulator unit 422 drives the capacity variable unit 421 according to a control command from the controller 5, and the discharge amount of the fan pump 42 changes when the capacity variable unit 421 changes the pump capacity.
  • the capacity variable unit 421 and the regulator unit 422 constitute a flow rate adjusting unit in the present embodiment.
  • the fan motor 43 is a hydraulic motor that can rotate in both forward and reverse directions, and the flow rate of the hydraulic oil flowing into the fan motor 43 changes according to the discharge amount of the fan pump 42, thereby changing the rotational speed of the fan motor 43. To do.
  • a fan 41 is provided on the output shaft of the fan motor 43, and the fan 41 is driven to rotate by driving the fan motor 43.
  • the fan reverse rotation control valve 44 is provided between the fan motor 43 and the fan pump 42, and includes a fan reverse rotation solenoid 441 and a direction switching valve 442.
  • the fan reverse control valve 44 when the fan reverse solenoid 441 is driven in accordance with a control command from the controller 5, the valve position of the direction switching valve 442 is switched and the rotation direction of the fan motor 43 is switched.
  • the controller 5 includes a CPU (Central Processing Unit) and the like, and is configured as means for controlling driving of the fan 41.
  • a coolant temperature sensor 6, a steering hydraulic oil temperature sensor 7, a torque converter hydraulic oil temperature sensor 8, a brake hydraulic oil temperature sensor 9, an engine speed sensor 10, a vehicle speed sensor 11, and an accelerator opening sensor. 12 is electrically connected.
  • a fan reverse solenoid 441 and a regulator unit 422 of the fan pump 42 are electrically connected to the output side of the controller 5.
  • the controller 5 is based on the temperature signals from the temperature sensors 6 to 9, the engine speed signal from the engine speed sensor 10, the vehicle speed signal from the vehicle speed sensor 11, and the accelerator position signal from the accelerator position sensor 12.
  • the control commands for the fan pump 42 and the fan reverse solenoid 441 are generated and output.
  • the fan drive control device 100 of the present embodiment includes the controller 5, the temperature sensors 6 to 9, the engine speed sensor 10, the vehicle speed sensor 11, the accelerator opening sensor 12, the fan pump. 42 and a fan motor 43.
  • the controller 5 generates a control command based on the temperature of the coolant or hydraulic oil that is the fluid to be cooled, the engine speed, the vehicle speed of the dump truck 1, and the accelerator opening, and the fan pump 42 is controlled by the controller 5.
  • the discharge amount is changed according to the command. Since the rotation speed of the fan motor 43 changes according to the discharge amount from the fan pump 42, the rotation speed of the fan 41 can be controlled by the controller 5 changing the control command for the fan pump 42.
  • the controller 5 includes a storage unit 51, a reference temperature selection unit 52, a correction value setting unit 53, a target flow rate setting unit 54, a correction prohibition unit 55, a target flow rate correction unit 56, an upper limit flow rate setting unit 57, And a control command generation means 58.
  • the storage means 51 stores a target flow rate gradient map, an upper limit flow rate data table, a temperature conversion data table, and a correction value data table.
  • the target flow rate gradient map is a map in which the target flow rate gradient, which is the ratio of the flow rate to the fan motor 43 with respect to the engine speed, is associated with the temperature of the fluid to be cooled.
  • a low-temperature-side target flow rate gradient KL and a high-temperature-side target flow rate gradient KH having a constant gradient for each temperature of the fluid to be cooled are stored as a target flow rate gradient map.
  • the fan motor 43 has a constant reduction ratio with respect to the engine speed for each temperature of the fluid to be cooled. That is, the target flow rate gradient map corresponds to a map in which the reduction ratio of the fan motor 43 with respect to the engine speed is stored in association with the temperature of the fluid to be cooled.
  • the upper limit flow rate data table is a data table in which the upper limit flow rate with respect to the target flow rate of the fan motor 43 and the accelerator opening are associated with each other, and a plurality of upper limit flow rates including a reference upper limit flow rate N serving as a reference for the upper limit of the target flow rate are stored.
  • the temperature conversion data table is a conversion table in which water temperatures corresponding to the respective hydraulic oil temperatures are associated.
  • the correction value data table stores a plurality of correction values for the target flow rate gradient in association with each accelerator opening.
  • a correction ratio R1 that is used when the accelerator opening is larger than a predetermined value to correct the target flow gradient to be small, and a target flow gradient that is used when the accelerator opening is smaller than a predetermined value.
  • a plurality of correction ratios R2 for correction to be increased are provided for each accelerator opening, and stored as a correction value data table.
  • the reference temperature selection means 52 converts the hydraulic oil temperature obtained by each of the oil temperature sensors 7 to 9 into a water temperature according to the temperature conversion data table stored in the storage means 51, and the cooling water temperature sensor 6. Among the temperatures combined with the cooling water temperature obtained by the above, the highest temperature is selected as the reference temperature.
  • the correction value setting means 53 sets a correction value for the target flow rate based on the accelerator opening signal. In this embodiment, the correction value setting means 53 sets the correction ratio R for the target flow rate gradient as a correction value from the correction value data table stored in the storage means 51 and the accelerator opening.
  • the target flow rate setting means 54 includes a target flow rate gradient setting unit 541 and a target flow rate setting unit 542.
  • the target flow rate gradient setting unit 541 interpolates between the low-temperature and high-temperature target flow gradients KL and KH at the reference temperature selected by the reference temperature selection means 52, and the target flow gradient K at the reference temperature. (See FIG. 5) is set. Thereby, the reduction ratio of the fan motor 43 with respect to the engine speed is set.
  • the target flow rate setting unit 542 sets a target flow rate before correction based on the calculated target flow rate gradient K and the engine speed. That is, the target flow rate setting unit 542 multiplies the target flow rate gradient K and the engine speed, and uses the result as the target flow rate before correction.
  • the correction prohibition unit 55 determines whether or not the vehicle speed obtained by the vehicle speed sensor 11 is equal to or lower than a predetermined speed. When it is determined that the vehicle speed is equal to or lower than the predetermined speed, the correction prohibition unit 55 prohibits correction of the target flow rate.
  • the target flow rate correction unit 56 corrects the target flow rate before correction set by the target flow rate setting unit 54 with the correction value set by the correction value setting unit 53. That is, the target flow rate correction means 56 corrects the target flow rate by multiplying the target flow rate by the correction ratio R according to the accelerator opening.
  • the upper limit flow rate setting means 57 sets an upper limit value of the target flow rate based on the accelerator opening and the upper limit flow rate data table.
  • the control command generation unit 58 generates and outputs a control command for the fan pump 42 based on the target flow rate, the upper limit flow rate, the engine speed, and the determination result of the correction prohibition unit 55. Specifically, when the correction prohibition unit 55 determines that the correction is prohibited, the control command generation unit 58 selects and selects the smaller value of the target flow rate before correction and the reference upper limit flow rate N. A control command corresponding to the flow rate is generated and output to the fan pump 42. Otherwise, the control command generator 58 selects the smaller value of the corrected target flow rate and the upper limit flow rate set based on the accelerator opening and the upper limit flow rate data table, and the selected flow rate Is generated and output to the fan pump 42.
  • the reference temperature selection means 52 converts each hydraulic oil temperature to a water temperature according to the temperature conversion data table, and the temperature combined with the cooling water temperature. Of these, the highest temperature is selected as the reference temperature (step S1).
  • the correction value setting means 53 sets a target flow rate correction ratio R based on the accelerator opening signal (step S2).
  • the target flow rate setting means 54 interpolates between the low and high temperature target flow rate gradients KL and KH with the temperature value of the reference temperature to obtain the target flow rate gradient K of the fan motor 43 with respect to the engine speed at the reference temperature. Set (step S3). Further, the target flow rate setting means 54 multiplies the target flow rate gradient K and the engine speed, and sets the result as the target flow rate before correction (step S4).
  • the correction prohibition means 55 determines whether or not the vehicle speed is equal to or lower than a predetermined speed (step S5).
  • the target flow rate correcting means 56 multiplies the target flow rate by the correction ratio R in accordance with the accelerator opening to correct the target flow rate (step S6). ). That is, the target flow rate correcting means 56 corrects the target flow rate by the correction ratio R1 to reduce the target flow rate when the accelerator opening is larger than the predetermined value, and otherwise corrects the target flow rate by the correction ratio R2. To increase the target flow rate.
  • Such correction of the target flow rate is the same as correcting the target flow rate gradient K of the fan motor 43 with the correction ratios R1 and R2, and the target flow rate correction means 56 corrects the target flow rate gradient K. Thus, the target flow rate is corrected.
  • the upper limit flow rate setting means 57 sets a final upper limit flow rate by interpolating a plurality of upper limit flow rates stored in the upper limit flow rate data table with the accelerator opening (step S7). Thereby, as shown in FIG. 6, the upper limit flow rate setting means 57 makes the upper limit flow rate smaller than the reference upper limit flow rate N when the accelerator opening is larger than a predetermined value, and otherwise, the reference upper limit flow rate N. Increase against
  • step S5 when it is determined in step S5 that the vehicle speed is equal to or lower than the predetermined speed, the correction by the target flow rate correction means 56 is prohibited, and the target flow rate before correction is used as it is.
  • the upper limit flow rate setting means 57 does not set the upper limit flow rate according to the accelerator opening, and sets the reference upper limit flow rate N as the upper limit flow rate (step S8).
  • control command generation means 58 limits the target flow rate with the upper limit flow rate and sets it as the final target flow rate, generates a control command corresponding to this target flow rate, and sends it to the fan pump 42. Output (step S9).
  • the fan drive control device 100 corrects the target flow rate of the fan motor 43 that drives the fan 41 in consideration of the accelerator opening. As a result, the fan drive control device 100 reduces or increases the rotational speed of the fan motor 43 according to the accelerator opening, and thus actively cools while preventing a decrease in running performance associated with the rotation of the fan 41. It can be done.
  • variable capacity fan pump 42 is used, and the rotational speed of the fan 41 is adjusted by adjusting the flow rate of the hydraulic oil flowing into the fan motor 43 by changing the discharge amount of the fan pump 42.
  • the second embodiment as shown in FIG. 7, a fixed capacity type fan pump 45 is used, and the flow rate of the variable flow control valve 46 is used to adjust the inflow amount to the fan motor 43. The difference is that the number of rotations is controlled.
  • the flow control valve 46 is provided at a position that bypasses the suction side and the discharge side of the fan motor 43.
  • the pilot line for switching the flow control valve 46 is provided with a proportional solenoid valve 461.
  • the proportional solenoid valve 461 is linearly driven in accordance with a control command from the controller 5, whereby the flow rate of the flow control valve 46 changes.
  • the flow control valve 46 and the proportional electromagnetic valve 461 constitute the flow rate adjusting means in this embodiment.
  • a proportional electromagnetic valve 461 is electrically connected to the controller 5 on the output side instead of the regulator unit 422 that drives the capacity variable unit 421 of the fan pump 42. Then, the control command generation unit 58 limits the target flow rate with the upper limit flow rate according to the determination result of the correction prohibition unit 55, generates a control command corresponding to this flow rate, and outputs it to the proportional solenoid valve 461.
  • Other configurations of the controller 5 are basically the same as those in the first embodiment.
  • the fan drive control device 100 includes the controller 5, the temperature sensors 6 to 9, the engine speed sensor 10, the vehicle speed sensor 11, the accelerator opening sensor 12, the fan motor 43, the fan pump. 45 and a flow control valve 46. Also in the fan drive control device 100 of the present embodiment, the flow rate of the flow control valve 46 is adjusted by the controller 5 changing the control command for the proportional electromagnetic valve 461. Thereby, since the inflow amount of the hydraulic oil to the fan motor 43 can be changed, the rotation speed of the fan motor 43 can be controlled. Therefore, the fan drive control device 100 of the present embodiment can achieve the same effects as those of the first embodiment described above.
  • a target flow rate is set using a target flow rate gradient map having a constant target flow rate gradient for each temperature of the fluid to be cooled, and this target flow rate is corrected by the correction ratio R. It was.
  • a target flow rate is set using a target flow rate map having a constant target flow rate for each temperature of the fluid to be cooled, and the target flow rate is set at a correction ratio R. The point to correct is different.
  • the target flow rate gradient setting unit 541 provided in the first embodiment and the second embodiment is not necessary.
  • the controller 5 of this embodiment does not include the upper limit flow rate setting means 57. Therefore, as shown in FIG. 9, the controller 5 stores the storage means 51, the reference temperature selection means 52, the correction value setting means 53, the target flow rate setting means 54, the correction prohibition means 55, the target flow rate correction means 56, and the control command generation. Means 58 are provided.
  • the storage means 51 stores a temperature conversion data table and a correction value data table, as in the first embodiment and the second embodiment.
  • the storage unit 51 stores a target flow rate map instead of the target flow rate gradient map.
  • the target flow rate map is a map in which a constant target flow rate is stored for each temperature of the fluid to be cooled regardless of the engine speed.
  • the target flow rate is a target when the fluid to be cooled is at a low temperature.
  • a flow rate NL, a target flow rate NH at a high temperature, and a target flow rate NM at a medium temperature at a temperature between these are stored as a target flow rate map.
  • the target flow rate setting means 54 sets the target flow rate by interpolating between the target flow rates NL, NM, and NH at the reference temperature. Further, the control command generation unit 58 does not limit the target flow rate with the upper limit flow rate, but this target flow rate is determined based on the final target flow rate and the engine speed set according to the determination result of the correction prohibition unit 55.
  • command corresponding to a flow volume and outputs it to a flow volume adjustment means is the same as that of 1st Embodiment and 2nd Embodiment.
  • the upper limit flow rate data table is not stored. However, for example, only the reference upper limit flow rate N among the upper limit flow rates of the upper limit flow rate data table is stored.
  • the corrected target flow rate may be limited.
  • the target flow rate gradient map, the target flow rate gradient setting unit, and the upper limit flow rate setting unit are omitted as compared with the configurations of the first and second embodiments. Can do. For this reason, while being able to reduce the calculation load of the controller 5, the structure of the controller 5 can be simplified. Therefore, in addition to the same effects as those of the first embodiment and the second embodiment, the overall cost of the fan drive control device 100 can be suppressed. Note that this embodiment is suitable for a hydraulic excavator or a bulldozer that generally has a small fluctuation in engine speed during work and a small fluctuation in fan speed.
  • the present invention is not limited to the above-described embodiments, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.
  • the target flow rate of the hydraulic oil flowing into the fan motor 43 for rotating the fan is set based on the detection values of the temperature sensors 6 to 9, and the target is determined based on the detection value of the accelerator opening sensor 12.
  • the present invention is not limited to this, and the target rotational speed of the fan 41 is used instead of the target flow rate of the hydraulic oil flowing into the fan motor 43. May be controlled.
  • the target rotational speed of the fan 41 is set based on the detection values of the temperature sensors 6 to 9, the target rotational speed is corrected based on the detection value of the accelerator opening sensor 12, and a control command to the flow rate adjusting means is issued. It may be generated. Since the target rotational speed of the fan 41 is one method of replacing the target flow rate to the fan motor 43, the same effects as those of the above embodiments can be obtained even in such a case.
  • the target flow rate is reduced when the accelerator opening is larger than the predetermined value, and the target flow rate is increased when the accelerator opening is not, but not limited to this. You may make it implement.
  • the target flow rate gradient or the correction ratio for the target flow rate is stored.
  • the present invention is not limited to this, and for example, the correction amount for the target flow rate gradient or the target flow rate is stored and Thus, the correction amount may be adjusted to the target flow rate gradient or the target flow rate.
  • the low-temperature and high-temperature target flow rate gradients KL and KH are stored in the storage unit 51, and the target of the fan motor 43 is interpolated between the target flow rate gradients KL and KH.
  • the flow rate gradient K was calculated, it is not restricted to this.
  • the target flow rate gradients of low temperature, medium temperature, and high temperature are memorized and interpolated between the target flow rate gradients, or more target flow rate gradients are memorized and interpolated between the target flow rate gradients. Also good.
  • the target flow rates NL, NM, NH at low temperature, medium temperature, and high temperature are stored as a target flow map, and the fan is interpolated between the target flow rates NL, NM, NH.
  • the target flow rate of the motor 43 has been calculated, the present invention is not limited to this, and more target flow rates may be stored and interpolated between the target flow rates.
  • an upper limit flow rate data table in which a plurality of upper limit flow rates including the reference upper limit flow rate N and the accelerator opening degree are associated is stored and stored in the upper limit flow rate data table.
  • the upper limit flow rate is set by interpolating the upper limit flow rate based on the accelerator opening, but the upper limit flow rate is not limited to this.
  • a correction ratio for the reference upper limit flow rate N is stored for each accelerator opening, and this correction ratio is used as a reference.
  • the upper limit flow rate N may be multiplied to set the upper limit flow rate.
  • the target flow rate gradient K is corrected according to the accelerator opening, and the upper limit flow rate is set according to the accelerator opening.
  • the present invention is not limited to this.
  • the reference upper limit flow rate N may be set as the upper limit flow rate without setting the upper limit flow rate according to the accelerator opening, and the target flow rate may be limited by the reference upper limit flow rate N.
  • the upper limit flow rate setting means 57 is not provided.
  • Setting means 57 may be provided. That is, an upper limit flow rate data table may be stored, and the upper limit value of the target flow rate may be limited by the upper limit flow rate.
  • the target flow rate gradient K corresponding to the reference temperature is set and the target flow rate before correction is set after selecting the reference temperature.
  • the present invention is not limited to this.
  • the controller 5 does not need to include the reference temperature selection means 52, and the target flow rate setting means 54 includes the temperature sensors 6 to 9 in addition to the engine speed detected by the engine speed sensor 10. The temperature value detected at is input.
  • the storage means 51 does not need to store a temperature conversion data table, but the target flow rate gradient map includes a predetermined temperature of the hydraulic oil and cooling water in each of the target flow rate gradients KL and KH on the low temperature side and the high temperature side. It is necessary to store information in which a predetermined temperature is independently associated with each other.
  • the target flow rate setting means 54 interpolates between the target flow rate gradients KL and KH on the low temperature side and the high temperature side at the respective temperatures of the hydraulic oil and the cooling water, so A target flow rate gradient K is set for each water temperature.
  • the target flow rate setting means 54 multiplies each target flow rate gradient K and the engine rotational speed to calculate a target flow rate for each hydraulic oil temperature and cooling water temperature, and the highest rotational speed among these is the target before correction. Set as flow rate.
  • the same processing as step S5 and subsequent steps in FIG. 4 in the first embodiment is performed. Also in the fan drive control device 100 having such a configuration, the same effects as those of the first embodiment and the second embodiment can be obtained.
  • the correction prohibiting unit 55 determines whether or not the vehicle speed obtained by the vehicle speed sensor 11 is equal to or lower than a predetermined speed and prohibits the correction of the target flow rate.
  • a switch that can be operated may be provided, and the open / close state of the switch may be determined to prohibit the correction of the target flow rate.
  • the present invention is applied to the dump truck 1.
  • the present invention is not limited to this.
  • other construction machines such as a wheel loader, a bulldozer, and a hydraulic excavator may be used.
  • the present invention can be used not only for construction machines but also for any traveling vehicle equipped with a cooling fan driven by a hydraulic motor using an engine as a power source.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Component Parts Of Construction Machinery (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

 ファン駆動制御装置は、エンジンで駆動される油圧ポンプから供給される作動油により冷却ファンを駆動する油圧モータと、油圧モータに流入する作動油の流量を調節する流量調節手段と、冷却ファンにより冷却される被冷却流体の温度を検出する温度センサと、温度センサの検出値に基づいて、エンジンの出力を操作するためのアクセル開度を検出するアクセル開度センサと、油圧モータに流入する作動油の目標流量を設定する目標流量設定手段と、アクセル開度センサの検出値に基づいて、目標流量を補正する目標流量補正手段と、目標流量補正手段により補正された目標流量に応じて流量調節手段への制御指令を生成する制御指令生成手段とを備えている。

Description

ファン駆動制御装置および建設機械
 本発明は、ファン駆動制御装置および建設機械に関する。
 ダンプトラック、ホイールローダ、ブルドーザ等の建設機械では、エンジンの冷却水やトルクコンバータの作動油等をそれぞれラジエータまたはオイルクーラを通して循環し、冷却ファンでラジエータ等に外気を送風することにより、エンジン等の冷却を行っている。建設機械の場合、冷却ファンを油圧モータで駆動することが一般的であり、近年では、冷却水の温度、トルクコンバータやブレーキ等に用いられる作動油の温度、およびエンジン回転数に応じて、ファンの回転数を連続的に可変制御するものが知られている(例えば、特許文献1参照)。
 具体的には、被冷却流体である冷却水や作動油の温度に基づいて、ファンの目標回転数やファンを駆動する油圧モータへの目標流量を設定し、設定した目標状態となるように、油圧モータへ作動油を供給する油圧ポンプの吐出量を調節する。このように、被冷却流体の温度が適切となるようにファンの回転数を連続に変化させることで、被冷却流体が適切な温度となるようにし、エンジン等のオーバーヒートを防止している。
特開2000-110779号公報
 しかし、特許文献1のファンの制御では、被冷却流体の温度に応じた回転数制御を基本的な制御としており、エンジンの負荷を考慮した制御を行っていない。ここで、特許文献1では、作業機を動作させるための操作レバーの操作量を考慮することにより、ファンの回転数を強制的かつ短時間のみ低下させる制御を行うが、あくまで作業機での作業効率の低下を防止するためのものである。このため、走行に対するオペレータの意図や走行時の路面の状態とは関係なく、被冷却流体の温度によっては、油圧モータを高回転で駆動することとなり、その分エンジンの出力が消費されてしまう。従って、例えば、地盤の軟弱な場所での走行時のように、エンジンの駆動力を出来る限り多く路面に伝達する必要がある場合でも、エンジン出力がファン駆動に消費されてしまうため、その分走行性能が低下するという問題がある。
 一方、坂道を下っている場合のようにアクセルペダルがオフとなっている状況下では、そもそも加速は要求されておらず、場合によっては減速が要求されているので、加速性が低下してもオペレータの意図には反しない。そこで、ファンの回転数を上げて、積極的に冷却を行うことが考えられる、しながら、特許文献1では、被冷却流体の温度に応じてファンの回転を制御しているため、このような場合であっても積極的にファンの回転数を上げることができない。従って、効率的な冷却を行うことができないという問題がある。
 ここで、例えば、軟弱地や坂道などの走行中の路面状況を判定し、特定の路面を走行中にファンの駆動を停止させることも考えられるが、路面状況を高精度に判定することは難しく、誤判定によりかえって走行性能を低下させてしまうおそれがある。また、ファンの駆動を停止してしまうと、冷却性能が低下し、効率的な冷却を行うことができなくなってしまう。
 本発明の目的は、ファンの駆動に伴う走行性能の低下を防止でき、かつ効率的な冷却を行うことができるファン駆動制御装置、およびこのファン駆動制御装置を備えた建設機械を提供することである。
 本発明のファン駆動制御装置は、建設機械の冷却ファンの駆動を制御するファン駆動制御装置であって、エンジンで駆動される油圧ポンプから供給される作動油により前記冷却ファンを駆動する油圧モータと、前記油圧モータに流入する作動油の流量を調節する流量調節手段と、前記冷却ファンにより冷却される被冷却流体の温度を検出する温度センサと、前記エンジンの出力を操作するためのアクセル開度を検出するアクセル開度センサと、前記温度センサの検出値に基づいて、前記油圧モータに流入する作動油の目標流量を設定する目標流量設定手段と、前記アクセル開度センサの検出値に基づいて、前記目標流量を補正する目標流量補正手段と、前記目標流量補正手段により補正された目標流量に応じて、前記流量調節手段への制御指令を生成する制御指令生成手段とを備えたことを特徴とする。
 このような本発明によれば、ファン駆動制御装置は、アクセル開度センサの検出値に基づいて、冷却ファンを駆動する油圧モータへの作動油の目標流量を補正する目標流量補正手段を備えている。このような構成によれば、アクセル開度センサの検出値に基づいて、油圧モータの目標流量が補正されるため、アクセル開度に応じて冷却ファンの回転数が変化する。ここで、エンジンの駆動力を出来る限り多く路面に伝達する必要がある状況下では、オペレータによってアクセル開度が大きくされる。つまり、アクセル開度を考慮することで、加速が要求され大きな駆動力を路面に伝達すべき状況にあるのか、または加速が要求されていない状況にあるのかを的確に判定することができる。このため、アクセル開度を検出し、アクセル開度に応じて油圧モータの目標流量を変化させることにより、ファン駆動によるエンジン出力の消費量を低減したり、逆に目標流量を上げることで積極的に冷却を行ったりすることができる。従って、ファンの駆動に伴う走行性能の低下を防止しつつ、ファンによる効率的な冷却を行うことができる。
 本発明のファン駆動制御装置において、前記目標流量補正手段は、前記アクセル開度が所定値より大きい場合は前記目標流量を小さくし、前記アクセル開度が所定値より小さい場合は前記目標流量を大きくすることが望ましい。
 このような本発明によれば、ファン駆動制御装置は、アクセル開度が所定値より大きい場合は油圧モータの目標流量を小さくし、アクセル開度が所定値より小さい場合は目標流量を大きくする。このため、アクセル開度に応じて油圧モータの目標流量を小さくまたは大きくするだけの簡単な方法で、ファン駆動によるエンジン出力の消費量を低下させることができる。従って、ファン駆動制御装置全体のコスト上昇を抑制することができる。
 本発明のファン駆動制御装置において、エンジン回転数を検出するエンジン回転数センサと、前記温度ごとに一定であり、かつ前記エンジン回転数に対する前記目標流量の比率である目標流量勾配が、複数の温度に対応して複数記憶された記憶手段とを備え、前記目標流量設定手段は、前記温度センサの検出値と前記記憶手段の記憶値とに基づいて前記目標流量勾配を設定するとともに、前記目標流量勾配と前記エンジン回転数センサの検出値とに基づいて前記目標流量を設定し、前記目標流量補正手段は、前記目標流量勾配の補正により前記目標流量を補正することが望ましい。
 このような本発明によれば、ファン駆動制御装置は、前記温度ごとに一定であり、かつエンジン回転数に対する油圧モータの目標流量の比率である目標流量勾配を、複数の温度に対応して複数記憶しており、ファン駆動制御装置は、この目標流量勾配の補正により油圧モータの目標流量を補正する。ここで、油圧モータの回転数は、油圧モータに流入する作動油の流量により定まることから、エンジン回転数に対する目標流量の比率を一定にすることで、油圧モータがエンジン回転数に対して一定の減速比を有するようになる。補正後の目標流量勾配は、温度が一定であればエンジン回転数にかかわらず固定されるため、エンジン回転数が変化しても、油圧モータへの作動油の流入量を変化させる必要がない。従って、油圧モータに流入する作動油の流量を調節する流量調節手段を頻繁に動作させる必要がないので、流量調節手段の耐久性を向上させることができる。
 本発明のファン駆動制御装置においては、エンジン回転数にかかわらず一定の目標流量が、複数の温度に対応して複数記憶された記憶手段を備え、前記目標流量設定手段は、前記温度センサの検出値と前記記憶手段の記憶値とに基づいて前記目標流量を設定し、前記目標流量補正手段は、前記温度ごとに一定の前記目標流量を補正することが望ましい。
 このような本発明によれば、ファン駆動制御装置は、エンジン回転数にかかわらず一定の目標流量を、複数の温度に対応して複数記憶しており、ファン駆動制御装置は、この温度ごとに一定の目標流量を補正する。これによれば、予め油圧モータの目標流量勾配を記憶させたり、目標流量勾配を目標流量に変換したりする必要がないため、簡易な構成で油圧モータに流入する作動油の流量を調節することができる。従って、ファン駆動制御装置全体のコスト上昇を効果的に抑制することができる。
 本発明のファン駆動制御装置においては、前記建設機械の車速を検出する車速センサと、前記車速が所定値以下の場合に前記目標流量の補正を禁止する補正禁止手段とを備えていることが望ましい。
 このような本発明によれば、ファン駆動制御装置は、車速が所定値以下の場合に目標流量の補正を禁止する。これによれば、低速走行中や停車中の目標流量が補正されなくなるので、冷却ファンの回転数が高くなることを防ぐことができる。従って、アイドリング時のファン駆動に伴うエンジン出力の消費量の増加を防止できるので、エンジンの燃料消費率を良好な状態に維持することができる。
 本発明のファン駆動制御装置において、前記油圧ポンプは可変容量型のポンプであり、前記流量調節手段は、前記油圧ポンプの容量を変化させて、前記油圧ポンプから吐出される作動油の流量を調節することが望ましい。
 このような本発明によれば、ファン駆動制御装置は、可変容量型の油圧ポンプの容量を変化させて、油圧ポンプから吐出される作動油の流量を調節する。このため、可変容量型の油圧ポンプが用いられている場合は、油圧ポンプの容量を変化させるだけで、油圧モータに流入する作動油の流量を調節することができる。従って、油圧機器を別途追加する必要がないため、ファン駆動に伴う走行性能の低下の防止と効率的な冷却とを、簡易な構成により実現することができる。
 本発明のファン駆動制御装置において、前記油圧ポンプは固定容量型のポンプであり、前記流量調節手段は、前記油圧モータの吸込側と排出側とをバイパスするフローコントロールバルブを備え、前記油圧モータをバイパスする作動油の流量を調節することが望ましい。
 このような本発明によれば、ファン駆動制御装置は、固定容量型の油圧ポンプを備え、流量調節手段は、油圧モータの吸込側と排出側とをバイパスするフローコントロールバルブを備え、油圧モータをバイパスする作動油の流量を調節する。このため、固定容量型の油圧ポンプが用いられている場合でも、油圧モータをバイパスするフローコントロールバルブを設けるだけで、油圧モータに流入する作動油の流量を調節することができる。従って、油圧ポンプを可変容量型のポンプに交換する必要がないため、ファン駆動制御装置全体のコストを抑制しつつ、ファン駆動に伴う走行性能の低下を防止することができる。
 本発明建設機械は、冷却ファンと、前述した本発明のファン駆動制御装置とを備えていることを特徴とする。
 このような本発明によれば、上述した効果を奏し得る建設機械を得ることができる。
本発明の第1実施形態に係る建設機械の構成を示す模式図。 前記第1実施形態に係るファン駆動制御装置を構成するコントローラの制御ブロック図。 前記第1実施形態に係るコントローラの作用を説明するためのグラフ。 前記第1実施形態に係るコントローラの制御フローを示すフローチャート。 前記第1実施形態に係るコントローラの作用を説明するためのグラフ。 前記第1実施形態に係るコントローラの作用を説明するためのグラフ。 本発明の第2実施形態に係る建設機械の構成を示す模式図。 本発明の第3実施形態に係るコントローラの作用を説明するためのグラフ。 前記第3実施形態に係るコントローラの制御ブロック図。
符号の説明
 1…ダンプトラック(建設機械)、6…冷却水温センサ(温度センサ)、7…ステアリング作動油温センサ(温度センサ)、8…トルクコンバータ作動油温センサ(温度センサ)、9…ブレーキ作動油温センサ(温度センサ)、10…エンジン回転数センサ、11…車速センサ、12…アクセル開度センサ、42…ファンポンプ(油圧ポンプ)、43…ファンモータ(油圧モータ)、46…フローコントロールバルブ(流量調節手段)、51…記憶手段、54…目標流量設定手段、55…補正禁止手段、56…目標流量補正手段、421…容量可変部(流量調節手段)、422…レギュレータ部(流量調節手段)。
 以下に本発明の各実施形態を、図面に基づいて説明する。なお、後述する第2実施形態以降において、次説する第1実施形態と同一の構成部分には同じ符合を付すとともに、その説明を省略する。
〔第1実施形態〕
〔1-1〕ダンプトラック1の全体構成
 本発明の第1実施形態に係るダンプトラック(建設機械)1を模式的に示す図1において、ダンプトラック1は、エンジン2により駆動される図示しない走行手段によって自走可能に構成され、作業機駆動部3、ファン駆動部4、およびコントローラ5を備えている。
 作業機駆動部3は、土砂の荷降ろし等の作業用に構成され、作業機31、作業機ポンプ32、およびホイストバルブ33を備え、作業機31は、ボディ(ホイストまたはベッセルと称することもある)311およびホイストシリンダ312を備えている。ボディ311は、土砂等を積み込むための荷台であり、ダンプトラック1の図示しない車体フレームに対して起伏自在に支承軸Pに支承されている。ボディ311および車体フレーム間はホイストシリンダ312で連結され、ホイストシリンダ312の両端部分がボディ311および車体フレームにそれぞれ回動自在に支持されている。ホイストシリンダ312は、作業機ポンプ32から供給される作動油で駆動され、ホイストバルブ33の弁位置の切り換えに応じて、ホイストシリンダ312が伸縮する。このホイストシリンダ312の伸縮に伴って、ボディ311は車体フレームに対して起伏動作を行う。
 ファン駆動部4は、冷却ファン(以下、単にファンと称する)41を駆動する部分であり、ファンポンプ(油圧ポンプ)42、ファンモータ(油圧モータ)43、およびファン逆転制御弁44を備えている。
 ファンポンプ42は、エンジン2を動力源として駆動される可変容量型の油圧ポンプであり、ファンモータ43に作動油を供給する。このファンポンプ42は、ポンプ容量を変化させる斜板等の容量可変部421と、容量可変部421を駆動する電磁弁等のレギュレータ部422とを備えている。レギュレータ部422は、コントローラ5からの制御指令により容量可変部421を駆動し、容量可変部421がポンプ容量を変えることでファンポンプ42の吐出量が変化する。これら容量可変部421およびレギュレータ部422により、本実施形態における流量調節手段が構成される。
 ファンモータ43は、正逆両方向に回転可能な油圧モータであり、ファンポンプ42の吐出量に応じてファンモータ43へ流入する作動油の流量が変化し、これによりファンモータ43の回転数が変化する。ファンモータ43の出力軸にはファン41が設けられ、ファンモータ43の駆動によりファン41が回転駆動される。
 ファン逆転制御弁44は、ファンモータ43とファンポンプ42との間に設けられ、ファン逆転ソレノイド441および方向切換弁442を備えている。ファン逆転制御弁44において、ファン逆転ソレノイド441がコントローラ5からの制御指令に従って駆動すると、方向切換弁442の弁位置が切り換わり、ファンモータ43の回転方向が切り換わる。
 コントローラ5は、CPU(Central Processing Unit)等を備え、ファン41の駆動を制御する手段として構成されている。コントローラ5の入力側には、冷却水温センサ6、ステアリング作動油温センサ7、トルクコンバータ作動油温センサ8、ブレーキ作動油温センサ9、エンジン回転数センサ10、車速センサ11、およびアクセル開度センサ12が電気的に接続されている。また、コントローラ5の出力側には、ファン逆転ソレノイド441、ファンポンプ42のレギュレータ部422が電気的に接続されている。コントローラ5は、各温度センサ6~9からの温度信号、エンジン回転数センサ10からのエンジン回転数信号、車速センサ11からの車速信号、およびアクセル開度センサ12からのアクセル開度信号に基づいて、ファンポンプ42、ファン逆転ソレノイド441に対する制御指令の生成および出力を行う。
 以上のような構成のダンプトラック1において、本実施形態のファン駆動制御装置100は、コントローラ5、各温度センサ6~9、エンジン回転数センサ10、車速センサ11、アクセル開度センサ12、ファンポンプ42、およびファンモータ43を備えて構成される。コントローラ5は、被冷却流体である冷却水や作動油の温度、エンジン回転数、ダンプトラック1の車速、およびアクセル開度に基づいて制御指令を生成し、ファンポンプ42は、コントローラ5からの制御指令に従って吐出量を変化させる。ファンモータ43の回転数は、ファンポンプ42からの吐出量に応じて変化するため、コントローラ5がファンポンプ42に対する制御指令を変更することで、ファン41の回転数を制御することができる。
〔1-2〕ファン駆動制御装置100におけるコントローラ5の制御構造
 次に、図2を参照して、ファン駆動制御装置100におけるコントローラ5の制御構造について説明する。
 コントローラ5は、図2に示すように、記憶手段51、基準温度選択手段52、補正値設定手段53、目標流量設定手段54、補正禁止手段55、目標流量補正手段56、上限流量設定手段57、および制御指令生成手段58を備えている。
 記憶手段51は、目標流量勾配マップ、上限流量データテーブル、温度変換データテーブル、および補正値データテーブルを記憶している。目標流量勾配マップは、図3に示すように、エンジン回転数に対するファンモータ43への流量の比率である目標流量勾配と、被冷却流体の温度とが関連付けられたマップである。本実施形態では、被冷却流体の温度ごとに一定の勾配を有する低温側の目標流量勾配KLおよび高温側の目標流量勾配KHが目標流量勾配マップとして記憶されている。そして、これら目標流量勾配KL,KHに基づいて目標流量を設定することで、被冷却流体の温度ごとにファンモータ43がエンジン回転数に対して一定の減速比を有するようになっている。すなわち、目標流量勾配マップは、エンジン回転数に対するファンモータ43の減速比を被冷却流体の温度に関連付けて記憶したマップに相当する。
 上限流量データテーブルは、ファンモータ43の目標流量に対する上限流量とアクセル開度とが関連付けられたデータテーブルであり、目標流量の上限の基準となる基準上限流量Nを含む複数の上限流量が記憶されている。
 また、温度変換データテーブルは、各作動油温に対応する水温が関連付けられた変換テーブルである。
 補正値データテーブルは、目標流量勾配に対する複数の補正値がアクセル開度ごとに関連付けて記憶されたものである。本実施形態では、アクセル開度が所定値より大きい場合に用いられて目標流量勾配を小さくなるように補正する補正比率R1と、アクセル開度が所定値より小さい場合に用いられて目標流量勾配を大きくなるように補正する補正比率R2とが、それぞれアクセル開度ごとに複数設けられ、補正値データテーブルとして記憶されている。
 図2に戻り、基準温度選択手段52は、各油温センサ7~9により得られる作動油温を、記憶手段51に記憶されている温度変換データテーブルに従ってそれぞれ水温に換算し、冷却水温センサ6により得られる冷却水温と合わせた温度のうち、最も高い温度を基準温度として選択する。
 補正値設定手段53は、アクセル開度信号に基づいて、目標流量の補正値を設定する。本実施形態において、補正値設定手段53は、記憶手段51に記憶されている補正値データテーブルとアクセル開度とから、目標流量勾配に対する補正比率Rを補正値として設定する。
 目標流量設定手段54は、目標流量勾配設定部541および目標流量設定部542を備えている。このうち、目標流量勾配設定部541は、基準温度選択手段52で選択された基準温度で低温側および高温側の各目標流量勾配KL,KH間を補間して、基準温度での目標流量勾配K(図5参照)を設定する。これにより、エンジン回転数に対するファンモータ43の減速比が設定されることになる。また、目標流量設定部542は、算出された目標流量勾配Kとエンジン回転数とに基づいて、補正前の目標流量を設定する。すなわち、目標流量設定部542は、目標流量勾配Kとエンジン回転数とを乗算し、その結果を補正前の目標流量とする。
 補正禁止手段55は、車速センサ11により得られる車速が所定速度以下であるか否かを判定し、車速が所定速度以下であると判定した場合は、目標流量の補正を禁止する。
 目標流量補正手段56は、目標流量設定手段54で設定された補正前の目標流量を、補正値設定手段53で設定された補正値で補正する。つまり、目標流量補正手段56は、アクセル開度に応じて目標流量を補正比率Rで乗算し、目標流量を補正する。
 上限流量設定手段57は、アクセル開度と上限流量データテーブルとに基づいて、目標流量の上限値を設定する。
 制御指令生成手段58は、目標流量、上限流量、エンジン回転数、および補正禁止手段55の判定結果に基づいて、ファンポンプ42に対する制御指令の生成および出力を行う。具体的に、制御指令生成手段58は、補正禁止手段55が補正を禁止する判定を行った場合は、補正前の目標流量および基準上限流量Nのうちの小さい方の値を選択し、選択された流量に対応する制御指令を生成してファンポンプ42へ出力する。そうでない場合、制御指令生成手段58は、補正後の目標流量と、アクセル開度および上限流量データテーブルに基づいて設定された上限流量とのうちの小さい方の値を選択し、選択された流量に対応する制御指令を生成してファンポンプ42へ出力する。
〔1-3〕コントローラ5の作用
 次に、図4に示されるフローチャートに基づき、コントローラ5の作用について説明する。
 先ず、コントローラ5は、各センサ6~12からの信号を読み込んだ後、基準温度選択手段52が、温度変換データテーブルに従って各作動油温をそれぞれ水温に換算し、冷却水の温度と合わせた温度のうち、最も高い温度を基準温度として選択する(ステップS1)。
 次に、補正値設定手段53は、アクセル開度信号に基づいて、目標流量の補正比率Rを設定する(ステップS2)。
 目標流量設定手段54は、基準温度の温度値で低温側およびおよび高温側の目標流量勾配KL,KH間を補間して、基準温度での、エンジン回転数に対するファンモータ43の目標流量勾配Kを設定する(ステップS3)。また、目標流量設定手段54は、目標流量勾配Kとエンジン回転数とを乗算し、その結果を補正前の目標流量とする(ステップS4)。
 その後、補正禁止手段55は、車速が所定速度以下であるか否かを判定する(ステップS5)。補正禁止手段55により車速が所定速度以下ではないと判定された場合、目標流量補正手段56は、アクセル開度に応じて目標流量を補正比率Rで乗算して、目標流量を補正する(ステップS6)。すなわち、目標流量補正手段56は、アクセル開度が所定値より大きい場合は、目標流量を補正比率R1で補正して目標流量を小さくし、そうでない場合は、目標流量を補正比率R2で補正して目標流量を大きくする。なお、このような目標流量の補正は、ファンモータ43の目標流量勾配Kを各補正比率R1,R2で補正することと同じであり、目標流量補正手段56は、目標流量勾配Kを補正することにより目標流量を補正することになる。
 また、上限流量設定手段57は、上限流量データテーブルに記憶されている複数の上限流量をアクセル開度で補間して、最終的な上限流量を設定する(ステップS7)。これにより、上限流量設定手段57は、図6に示すように、アクセル開度が所定値より大きい場合は、上限流量を基準上限流量Nに対して小さくし、そうでない場合は、基準上限流量Nに対して大きくする。
 一方、ステップS5で車速が所定速度以下であると判定された場合、目標流量補正手段56による補正は禁止され、補正前の目標流量がそのまま用いられる。また、上限流量設定手段57は、アクセル開度に応じた上限流量の設定を行わず、基準上限流量Nを上限流量として設定する(ステップS8)。
 そして、制御指令生成手段58は、図3に示すように、目標流量を上限流量で制限して最終的な目標流量として設定し、この目標流量に対応する制御指令を生成してファンポンプ42へ出力する(ステップS9)。
 以上のような構成のダンプトラック1において、ファン駆動制御装置100は、アクセル開度を考慮して、ファン41のを駆動するファンモータ43の目標流量を補正している。これにより、ファン駆動制御装置100は、ファンモータ43の回転数をアクセル開度に応じて減少または増加させるので、ファン41の回転に伴う走行性能の低下を防止しつつ、積極的な冷却を行うことができるのである。
〔第2実施形態〕
 次に、図7に基づき、本発明の第2実施形態について説明する。
 前述した第1実施形態では、可変容量型のファンポンプ42が用いられ、ファンポンプ42の吐出量を変化させてファンモータ43に流入する作動油の流量を調節することで、ファン41の回転数を制御していた。
 これに対し、第2実施形態では、図7に示すように、固定容量型のファンポンプ45が用いられ、流量可変式のフローコントロールバルブ46でファンモータ43への流入量を調節してファン41の回転数を制御する点が相違する。
 フローコントロールバルブ46は、ファンモータ43の吸込側と排出側とをバイパスする位置に設けられている。フローコントロールバルブ46を切り換えるためのパイロットラインには比例電磁弁461が設けられており、比例電磁弁461がコントローラ5からの制御指令に従ってリニア駆動することで、フローコントロールバルブ46の流量が変化する。このフローコントロールバルブ46および比例電磁弁461により、本実施形態における流量調節手段が構成される。
 コントローラ5には、図7に示すように、ファンポンプ42の容量可変部421を駆動するレギュレータ部422のかわりに、出力側に比例電磁弁461が電気的に接続されている。そして、制御指令生成手段58は、補正禁止手段55の判定結果に応じ、目標流量を上限流量で制限し、この流量に対応する制御指令を生成して比例電磁弁461へ出力する。コントローラ5のその他の構成は、基本的に第1実施形態と同様である。
 以上のような構成のダンプトラック1において、ファン駆動制御装置100は、コントローラ5、各温度センサ6~9、エンジン回転数センサ10、車速センサ11、アクセル開度センサ12、ファンモータ43、ファンポンプ45、およびフローコントロールバルブ46を備えて構成される。本実施形態のファン駆動制御装置100においても、コントローラ5が比例電磁弁461に対する制御指令を変更することで、フローコントロールバルブ46の流量が調節される。これにより、ファンモータ43への作動油の流入量が変化させることができるので、ファンモータ43の回転数を制御することができる。従って、本実施形態のファン駆動制御装置100によっても、前述した第1実施形態と同様の効果が得られる。
〔第3実施形態〕
 次に、図8および図9に基づき、本発明の第3実施形態について説明する。
 前述した第1実施形態および第2実施形態では、被冷却流体の温度ごとに一定の目標流量勾配を有する目標流量勾配マップを用いて目標流量を設定し、この目標流量を補正比率Rで補正していた。
 これに対し、第3実施形態では、図8に示すように、被冷却流体の温度ごとに一定の目標流量を有する目標流量マップを用いて目標流量を設定し、この目標流量を補正比率Rで補正する点が相違する。
 これに伴い、第1実施形態および第2実施形態で設けられていた目標流量勾配設定部541は不要となる。また、上限流量設定手段57が必ずしも必要でなくなることから、本実施形態のコントローラ5は、上限流量設定手段57も備えていない。従って、コントローラ5は、図9に示すように、記憶手段51、基準温度選択手段52、補正値設定手段53、目標流量設定手段54、補正禁止手段55、目標流量補正手段56、および制御指令生成手段58を備えて構成されている。
 本実施形態において、記憶手段51は、第1実施形態および第2実施形態と同様に、温度変換データテーブルおよび補正値データテーブルを記憶している。また、記憶手段51は、目標流量勾配マップのかわりに目標流量マップを記憶している。目標流量マップは、図8に示すように、エンジン回転数にかかわらず一定の目標流量が被冷却流体の温度ごとに記憶されたマップであり、本実施形態では、被冷却流体が低温時の目標流量NL、高温時の目標流量NH、およびこれらの間の温度における中温時の目標流量NMが、目標流量マップとして記憶されている。
 目標流量設定手段54は、基準温度で各目標流量NL,NM,NH間を補間して、目標流量を設定する。
 また、制御指令生成手段58は、目標流量を上限流量で制限することは行わないが、補正禁止手段55の判定結果に応じて設定された最終的な目標流量とエンジン回転数とから、この目標流量に対応する制御指令を生成して、流量調節手段へ出力する点は、第1実施形態および第2実施形態と同様である。
 なお、本実施形態では、第1実施形態および第2実施形態とは異なり上限流量データテーブルは記憶されていないが、例えば、上限流量データテーブルの上限流量のうち基準上限流量Nのみ記憶させておき、補正後の目標流量を制限するようにしてもよい。
 以上のように、本実施形態のファン駆動制御装置100では、第1実施形態および第2実施形態の構成と比べ、目標流量勾配マップ、目標流量勾配設定部、および上限流量設定手段を省略することができる。このため、コントローラ5の演算負荷を低減できるとともに、コントローラ5の構成を簡略化できる。従って、第1実施形態および第2実施形態と同様の効果に加え、ファン駆動制御装置100全体のコストを抑制できる。なお、本実施形態は、一般的に作業中のエンジン回転数の変動が小さく、そもそもファン回転数の変動も小さい油圧ショベルやブルドーザに適している。
 なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
 例えば、前記各実施形態では、温度センサ6~9の検出値に基づいてファン回転用のファンモータ43に流入する作動油の目標流量を設定し、アクセル開度センサ12の検出値に基づいて目標流量を補正して、流量調節手段への制御指令を生成する実施形態にて説明したがこれに限られず、ファンモータ43に流入する作動油の目標流量のかわりにファン41の目標回転数を用いて制御しても良い。すなわち、温度センサ6~9の検出値に基づいてファン41の目標回転数を設定し、アクセル開度センサ12の検出値に基づいて目標回転数を補正して、流量調節手段への制御指令を生成しても良い。ファン41の目標回転数は、ファンモータ43への目標流量の置き換えの1つの方法であるため、このような場合でも、前記各実施形態と同様の効果を奏することができる。
 前記各実施形態では、アクセル開度が所定値より大きい場合は目標流量を小さくし、そうでない場合は目標流量を大きくしていたがこれに限られず、例えば、必要に応じて何れか一方のみを実施するようにしてもよい。
 また、前記各実施形態では、目標流量勾配または目標流量に対する補正比率を記憶していたがこれに限られず、例えば、目標流量勾配または目標流量に対する補正量を記憶しておき、アクセル開度に応じて、補正量を目標流量勾配または目標流量に加減するようにしてもよい。
 前記第1実施形態および第2実施形態では、記憶手段51に低温側および高温側の各目標流量勾配KL,KHが記憶され、各目標流量勾配KL,KH間を補間してファンモータ43の目標流量勾配Kを算出していたがこれに限られない。例えば、低温、中温、高温の目標流量勾配を記憶させて各目標流量勾配間で補間するようにしたり、さらに多くの目標流量勾配を記憶させて各目標流量勾配間で補間するようにしたりしてもよい。
 同様に、前記第3実施形態では、低温時、中温時、および高温時の各目標流量NL,NM,NHが目標流量マップとして記憶され、各目標流量NL,NM,NH間を補間してファンモータ43の目標流量を算出していたがこれに限られず、さらに多くの目標流量を記憶させて各目標流量間で補間するようにしてもよい。
 前記第1実施形態および第2実施形態では、基準上限流量Nを含む複数の上限流量とアクセル開度とが関連付けられた上限流量データテーブルを記憶しておき、上限流量データテーブルに記憶されている上限流量をアクセル開度に基づいて補間して上限流量を設定していたがこれに限られず、例えば、基準上限流量Nに対する補正比率をアクセル開度ごとに記憶しておき、この補正比率を基準上限流量Nに乗算して上限流量を設定するようにしてもよい。
 前記第1実施形態および第2実施形態では、目標流量勾配Kをアクセル開度に応じて補正するとともに、上限流量をアクセル開度に応じて設定していたがこれに限られずない。例えば、アクセル開度に応じて上限流量を設定することは行わずに、基準上限流量Nを上限流量として設定して基準上限流量Nで目標流量を制限するようにしてもよい。
 前記第3実施形態では、被冷却流体の温度ごとに一定の目標流量を有する目標流量マップを用いて目標流量を設定していたことから、上限流量設定手段57を備えていなかったが、上限流量設定手段57を設けてもよい。すなわち、上限流量データテーブルを記憶しておき、目標流量の上限値を上限流量で制限するようにしてもよい。
 前記第1実施形態および第2実施形態では、基準温度を選択した上で、基準温度に対応する目標流量勾配Kを設定し補正前の目標流量を設定していたがこれに限られない。例えば、各油温センサ7~9により得られる作動油温や冷却水温センサ6により得られる冷却水温ごとに目標流量勾配Kおよび目標流量を設定した上で、これらのうちの1つを選択して補正前の目標流量とするようにしてもよい。この場合、コントローラ5は、基準温度選択手段52を備えている必要はなく、目標流量設定手段54には、エンジン回転数センサ10で検出されるエンジン回転数の他に、各温度センサ6~9で検出された温度値が入力されることになる。また、記憶手段51は、温度変換データテーブルを記憶しておく必要はないが、目標流量勾配マップとして低温側および高温側の各目標流量勾配KL,KHに作動油の所定の温度と冷却水の所定の温度とがそれぞれ独立して関連付けられたものを記憶しておく必要がある。
 このような構成のコントローラ5において、先ず目標流量設定手段54は、作動油および冷却水のそれぞれの温度で低温側および高温側の目標流量勾配KL,KH間を補間して、作動油温および冷却水温ごとに目標流量勾配Kを設定する。次に、目標流量設定手段54は、各目標流量勾配Kとエンジン回転数とを乗算して作動油温および冷却水温ごとに目標流量を算出し、このうちの最も高い回転数を補正前の目標流量として設定する。その後は、第1実施形態における図4のステップS5以降と同様の処理が行われる。このような構成のファン駆動制御装置100においても、第1実施形態および第2実施形態と同様の効果を得ることができる。
 前記各実施形態では、補正禁止手段55は、車速センサ11により得られる車速が所定速度以下であるか否かを判定して目標流量の補正を禁止していたがこれに限られず、例えば、オペレータにより操作可能なスイッチを設け、このスイッチの開閉状態を判定して目標流量の補正を禁止するようにしてもよい。
 前記各実施形態では、ダンプトラック1に対して本発明が適用されていたがこれに限られず、例えば、ホイールローダ、ブルドーザ、油圧ショベル等の他の建設機械であってもよい。
 本発明は、建設機械に利用できる他、エンジンを動力源として油圧モータで駆動される冷却ファンを備えたあらゆる走行車両に利用することができる。

Claims (10)

  1.  建設機械の冷却ファンの駆動を制御するファン駆動制御装置であって、
     エンジンで駆動される油圧ポンプから供給される作動油により前記冷却ファンを駆動する油圧モータと、
     前記油圧モータに流入する作動油の流量を調節する流量調節手段と、
     前記冷却ファンにより冷却される被冷却流体の温度を検出する温度センサと、
     前記エンジンの出力を操作するためのアクセル開度を検出するアクセル開度センサと、
     前記温度センサの検出値に基づいて、前記油圧モータに流入する作動油の目標流量を設定する目標流量設定手段と、
     前記アクセル開度センサの検出値に基づいて、前記目標流量を補正する目標流量補正手段と、
     前記目標流量補正手段により補正された目標流量に応じて、前記流量調節手段への制御指令を生成する制御指令生成手段とを備えた
     ことを特徴とするファン駆動制御装置。
  2.  請求項1に記載のファン駆動制御装置において、
     前記目標流量補正手段は、前記アクセル開度が所定値より大きい場合は前記目標流量を小さくし、前記アクセル開度が所定値より小さい場合は前記目標流量を大きくする
     ことを特徴とするファン駆動制御装置。
  3.  請求項1に記載のファン駆動制御装置において、
     エンジン回転数を検出するエンジン回転数センサと、
     前記温度ごとに一定であり、かつ前記エンジン回転数に対する前記目標流量の比率である目標流量勾配が、複数の温度に対応して複数記憶された記憶手段とを備え、
     前記目標流量設定手段は、前記温度センサの検出値と前記記憶手段の記憶値とに基づいて前記目標流量勾配を設定するとともに、前記目標流量勾配と前記エンジン回転数センサの検出値とに基づいて前記目標流量を設定し、
     前記目標流量補正手段は、前記目標流量勾配の補正により前記目標流量を補正する
     ことを特徴とするファン駆動制御装置。
  4.  請求項1に記載のファン駆動制御装置において、
     エンジン回転数にかかわらず一定の目標流量が、複数の温度に対応して複数記憶された記憶手段を備え、
     前記目標流量設定手段は、前記温度センサの検出値と前記記憶手段の記憶値とに基づいて前記目標流量を設定し、
     前記目標流量補正手段は、前記温度ごとに一定の前記目標流量を補正する
     ことを特徴とするファン駆動制御装置。
  5.  請求項1に記載のファン駆動制御装置において、
     前記建設機械の車速を検出する車速センサと、
     前記車速が所定値以下の場合に前記目標流量の補正を禁止する補正禁止手段とを備えた
     ことを特徴とするファン駆動制御装置。
  6.  請求項1ないし請求項5の何れかに記載のファン駆動制御装置において、
     前記油圧ポンプは可変容量型のポンプであり、
     前記流量調節手段は、前記油圧ポンプの容量を変化させて、前記油圧ポンプから吐出される作動油の流量を調節する
     ことを特徴とするファン駆動制御装置。
  7.  請求項1ないし請求項5の何れかに記載のファン駆動制御装置において、
     前記油圧ポンプは固定容量型のポンプであり、
     前記流量調節手段は、前記油圧モータの吸込側と排出側とをバイパスするフローコントロールバルブを備え、前記油圧モータをバイパスする作動油の流量を調節する
     ことを特徴とするファン駆動制御装置。
  8.  建設機械であって、
     冷却ファンと、
     請求項1ないし請求項5の何れかに記載のファン駆動制御装置とを備えている
     ことを特徴とする建設機械。
  9.  建設機械であって、
     冷却ファンと、
     請求項6に記載のファン駆動制御装置とを備えている
     ことを特徴とする建設機械。
  10.  建設機械であって、
     冷却ファンと、
     請求項7に記載のファン駆動制御装置とを備えている
     ことを特徴とする建設機械。
PCT/JP2009/055283 2008-03-25 2009-03-18 ファン駆動制御装置および建設機械 WO2009119407A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010505570A JPWO2009119407A1 (ja) 2008-03-25 2009-03-18 ファン駆動制御装置および建設機械
EP09724970A EP2270321A1 (en) 2008-03-25 2009-03-18 Fan drive controlling device and construction machine
US12/934,016 US20110011356A1 (en) 2008-03-25 2009-03-18 Fan Drive Controlling Device and Construction Machine
CN200980110056XA CN101978145A (zh) 2008-03-25 2009-03-18 风扇驱动控制装置及建筑机械

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-078237 2008-03-25
JP2008078237 2008-03-25

Publications (1)

Publication Number Publication Date
WO2009119407A1 true WO2009119407A1 (ja) 2009-10-01

Family

ID=41113604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055283 WO2009119407A1 (ja) 2008-03-25 2009-03-18 ファン駆動制御装置および建設機械

Country Status (5)

Country Link
US (1) US20110011356A1 (ja)
EP (1) EP2270321A1 (ja)
JP (1) JPWO2009119407A1 (ja)
CN (1) CN101978145A (ja)
WO (1) WO2009119407A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105339562A (zh) * 2013-06-26 2016-02-17 沃尔沃建造设备有限公司 用于控制工程机械的控制阀的设备及其控制方法以及用于控制液压泵的排放流量的方法
CN107905881A (zh) * 2017-11-22 2018-04-13 徐工集团工程机械有限公司 一种工程机械液压独立散热系统
JP2018189040A (ja) * 2017-05-09 2018-11-29 いすゞ自動車株式会社 ファン制御装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2412948B1 (en) * 2009-03-24 2018-08-22 Komatsu, Ltd. Cooling fan driving device and fan rotation number control method
KR101752503B1 (ko) * 2011-01-12 2017-06-30 두산인프라코어 주식회사 휠로더의 유압 펌프 제어 방법
US20120230843A1 (en) * 2011-03-07 2012-09-13 Caterpillar Inc. Cooling system for an electric drive machine and method
US20120304944A1 (en) * 2011-05-31 2012-12-06 Nelson Bryan E Engine system with reversible fan
CN102322329B (zh) * 2011-08-17 2013-04-03 上海三一重机有限公司 一种工程机械用发动机冷却风扇的智能控制方法
US8973536B2 (en) 2013-01-25 2015-03-10 Caterpillar Inc. Engine compensation for fan power
CN103628517B (zh) * 2013-11-15 2016-03-30 中外合资沃得重工(中国)有限公司 挖掘机安全控制系统及方法
CN103790686A (zh) * 2014-01-25 2014-05-14 中国北方车辆研究所 一种负载敏感式车用冷却风扇传动装置
JP6009480B2 (ja) * 2014-03-06 2016-10-19 日立建機株式会社 建設機械の冷却ファン制御装置
CN111120070B (zh) * 2019-12-13 2021-07-20 潍柴动力股份有限公司 一种电控风扇控制的修正方法、装置、存储介质及电子设备
CN113147365A (zh) * 2020-08-07 2021-07-23 长城汽车股份有限公司 用于车辆的冷却控制方法、装置、存储介质及电子设备
US11353048B2 (en) * 2020-08-15 2022-06-07 Kubota Corporation Working machine
DE102020216601B4 (de) 2020-12-30 2023-03-02 Danfoss Power Solutions Inc. Ventilatorantriebssystem
CN113530910B (zh) * 2021-09-16 2022-02-08 山东省高速养护集团有限公司 一种边坡修剪机的液压系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10196364A (ja) * 1997-01-07 1998-07-28 Toyota Motor Corp 冷却ファン制御装置
JP2000110779A (ja) 1998-10-08 2000-04-18 Shin Caterpillar Mitsubishi Ltd ポンプ制御方法およびその装置
JP2005146878A (ja) * 2003-11-11 2005-06-09 Kawasaki Heavy Ind Ltd 冷却ファン制御システム
JP2006161606A (ja) * 2004-12-03 2006-06-22 Shin Caterpillar Mitsubishi Ltd 冷却ファン回路

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4425766A (en) * 1982-05-17 1984-01-17 General Motors Corporation Motor vehicle cooling fan power management system
JP4204137B2 (ja) * 1999-04-22 2009-01-07 株式会社小松製作所 冷却用ファンの駆動制御装置
JP4285866B2 (ja) * 1999-12-22 2009-06-24 株式会社小松製作所 油圧駆動冷却ファン
JP4573751B2 (ja) * 2005-11-02 2010-11-04 日立建機株式会社 走行式作業機械の冷却ファン駆動装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10196364A (ja) * 1997-01-07 1998-07-28 Toyota Motor Corp 冷却ファン制御装置
JP2000110779A (ja) 1998-10-08 2000-04-18 Shin Caterpillar Mitsubishi Ltd ポンプ制御方法およびその装置
JP2005146878A (ja) * 2003-11-11 2005-06-09 Kawasaki Heavy Ind Ltd 冷却ファン制御システム
JP2006161606A (ja) * 2004-12-03 2006-06-22 Shin Caterpillar Mitsubishi Ltd 冷却ファン回路

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105339562A (zh) * 2013-06-26 2016-02-17 沃尔沃建造设备有限公司 用于控制工程机械的控制阀的设备及其控制方法以及用于控制液压泵的排放流量的方法
JP2018189040A (ja) * 2017-05-09 2018-11-29 いすゞ自動車株式会社 ファン制御装置
CN107905881A (zh) * 2017-11-22 2018-04-13 徐工集团工程机械有限公司 一种工程机械液压独立散热系统

Also Published As

Publication number Publication date
EP2270321A1 (en) 2011-01-05
CN101978145A (zh) 2011-02-16
JPWO2009119407A1 (ja) 2011-07-21
US20110011356A1 (en) 2011-01-20

Similar Documents

Publication Publication Date Title
WO2009119407A1 (ja) ファン駆動制御装置および建設機械
JP4573751B2 (ja) 走行式作業機械の冷却ファン駆動装置
JP4331151B2 (ja) 建設機械の作動流体冷却制御システム
JP5027705B2 (ja) 作動油供給装置および建設機械
US8955472B2 (en) Work vehicle and control method for work vehicle
US7281370B2 (en) Fan revolution speed control method
JP4664246B2 (ja) 作業車両のエンジン制御装置
US20070016355A1 (en) Engine control device of work vehicle
JP5074571B2 (ja) 作業車両および作業車両の制御方法
JP2006052673A (ja) 作業車両のエンジンの負荷制御装置
JP5707538B1 (ja) フォークリフト及びフォークリフトの制御方法
JP6153441B2 (ja) 作業車両
JP4115994B2 (ja) 建設機械の制御装置および入力トルク演算方法
JP4922795B2 (ja) 作業車両の走行制御装置
JP5261509B2 (ja) 建設機械
JP5596583B2 (ja) 作業機械の駆動制御装置
JP4945299B2 (ja) 油圧アクチュエータ駆動制御装置および建設機械
JP5124656B2 (ja) エンジン出力制御装置
US20210310214A1 (en) Working machine
JP4282871B2 (ja) 油圧走行車両
JP6077365B2 (ja) エンジン制御装置及びこれを備えたハイブリッド建設機械
JP4242038B2 (ja) ホイール走行式油圧建設機械
JP2009133493A (ja) 建設機械の作動流体冷却制御システム
JP6162367B2 (ja) 油圧駆動作業機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980110056.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09724970

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010505570

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 6639/DELNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12934016

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009724970

Country of ref document: EP