WO2009119014A1 - 改質装置 - Google Patents

改質装置 Download PDF

Info

Publication number
WO2009119014A1
WO2009119014A1 PCT/JP2009/001015 JP2009001015W WO2009119014A1 WO 2009119014 A1 WO2009119014 A1 WO 2009119014A1 JP 2009001015 W JP2009001015 W JP 2009001015W WO 2009119014 A1 WO2009119014 A1 WO 2009119014A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
gas
water
reforming
raw fuel
Prior art date
Application number
PCT/JP2009/001015
Other languages
English (en)
French (fr)
Inventor
門脇正天
梶田琢也
西村佳展
佐藤康司
佐村健
Original Assignee
三洋電機株式会社
新日本石油株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社, 新日本石油株式会社 filed Critical 三洋電機株式会社
Priority to US12/934,548 priority Critical patent/US8795397B2/en
Publication of WO2009119014A1 publication Critical patent/WO2009119014A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • B01J8/0257Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical in a cylindrical annular shaped bed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00265Part of all of the reactants being heated or cooled outside the reactor while recycling
    • B01J2208/00274Part of all of the reactants being heated or cooled outside the reactor while recycling involving reactant vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00265Part of all of the reactants being heated or cooled outside the reactor while recycling
    • B01J2208/00283Part of all of the reactants being heated or cooled outside the reactor while recycling involving reactant liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00309Controlling the temperature by indirect heat exchange with two or more reactions in heat exchange with each other, such as an endothermic reaction in heat exchange with an exothermic reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00504Controlling the temperature by means of a burner
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/044Selective oxidation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0816Heating by flames
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0822Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel the fuel containing hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0827Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel at least part of the fuel being a recycle stream
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0888Methods of cooling by evaporation of a fluid
    • C01B2203/0894Generation of steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1288Evaporation of one or more of the different feed components
    • C01B2203/1294Evaporation by heat exchange with hot process stream
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/148Details of the flowsheet involving a recycle stream to the feed of the process for making hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/84Energy production
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present invention relates to a reformer that reforms raw fuel into reformed gas used in a fuel cell system.
  • the polymer electrolyte fuel cell generates electric power by converting chemical energy of hydrogen into electric energy.
  • hydrogen used as a fuel for a polymer electrolyte fuel cell is a natural gas, a hydrocarbon gas such as naphtha, or a raw fuel gas of alcohols such as methanol and water vapor, which can be obtained relatively easily and inexpensively.
  • Hydrogen gas obtained by reforming is supplied to the fuel electrode of the fuel cell and used for power generation.
  • the steam necessary for reforming in the reformer can be obtained by heat exchange with the combustion exhaust gas and fuel gas discharged from the reformer.
  • the flow rate of water vapor may fluctuate greatly due to pulsation that occurs when some of the water boils.
  • S / C steam carbon
  • the supply water throttling means is provided between the carbon monoxide remover and the steam generator in the supply water residual heat line for introducing the supply water to the steam generator.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a reforming apparatus in which steam is stably supplied to the reforming section.
  • a reformer is a reformer that reforms raw fuel into a hydrogen-rich reformed gas, and generates reformed gas from the raw fuel.
  • a water vapor supply means for supplying water vapor to the reforming unit.
  • the steam supply means has a dry-out heat exchanger that dries out water by heat exchange with at least one of the combustion exhaust gas and the reformed gas generated when the reforming section is heated.
  • the dryout heat exchanger has a cross-sectional area larger than the cross-sectional area of the pipe connected to the upstream side.
  • the cross-sectional area in the dry-out heat exchanger is larger than that of the upstream pipe, generation of slag flow in the dry-out heat exchanger is suppressed and pressure fluctuation is suppressed.
  • the steam supply means may further include a gas-liquid mixed phase heat exchanger that increases the vaporization rate of water to a gas-liquid mixed phase state by heat exchange, upstream of the dryout heat exchanger. Thereby, rapid generation of water vapor is suppressed in the dry-out heat exchanger, and pressure fluctuation is suppressed.
  • the steam supply means has an upstream having a smaller diameter than the flow path of the gas-liquid mixed phase heat exchanger between the water sending means for sending water by pressure toward the gas-liquid mixed phase heat exchanger and the gas-liquid mixed phase heat exchanger.
  • You may have a side aperture mechanism. Thereby, for example, even if the pressure fluctuation accompanying the vaporization of water in the dry-out heat exchanger or the gas-liquid mixed phase heat exchanger occurs, the influence of the pressure fluctuation on the delivery pressure of the water delivery means is suppressed.
  • It may be configured so that nucleate boiling of water due to heat exchange does not occur upstream from the upstream throttle mechanism. Thereby, since nucleate boiling of water does not occur on the water delivery means side from the upstream side throttle mechanism, the delivery pressure of the water delivery means is prevented from becoming unstable. For this reason, it is possible to generate stable water vapor, and thus to generate reformed gas.
  • the steam supply means is downstream of the dryout heat exchanger and downstream of the raw fuel supply path for supplying raw fuel to the reforming section and having a smaller diameter than the flow path of the dryout heat exchanger. You may have an aperture mechanism. As a result, even if bumping occurs in the dry-out heat exchanger, the influence of the accompanying pressure fluctuation on the raw fuel pressure in the downstream raw fuel supply passage is suppressed. For this reason, it is possible to stably supply raw fuel and generate reformed gas.
  • a foreign matter capturing means for capturing foreign matter so that it does not flow downstream.
  • foreign substances contained in water are prevented from clogging the downstream side throttling mechanism, and stable supply of water vapor to the reforming unit is enabled.
  • steam is stably supplied to the reforming section.
  • FIG. 2 is an enlarged cross-sectional view in the vicinity of a reforming part in FIG. 1. It is a schematic diagram which shows schematic structure from a heat exchanger to a reforming part. It is a schematic sectional drawing of a mist trap. It is a schematic block diagram of the reformer for fuel cells which concerns on a comparative example.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a fuel cell reforming apparatus 10 according to the present embodiment.
  • FIG. 2 is an enlarged cross-sectional view in the vicinity of the reforming portion in FIG. 1 and shows a state in which heat exchangers 106 and 108 to be described later are omitted.
  • the fuel cell reformer 10 generates a hydrogen-rich reformed gas by steam reforming methane, propane, butane, or the like, which is a raw fuel.
  • the fuel cell reformer 10 includes a reforming unit 12 that generates reformed gas from raw fuel, a shift shifter 14 that reduces carbon monoxide contained in the reformed gas by a shift reaction, and a shift shifter 14.
  • the selective oxidation unit 16 that selectively oxidizes and reduces carbon monoxide contained in the reformed gas that has passed through, the reforming reaction cylinder 18 that houses the reforming unit 12, and the fuel electrode of the fuel cell are not consumed.
  • a burner 20 as combustion means for burning the fuel off-gas to generate combustion gas, and an outer cylinder 22 that is coaxially disposed on the outer periphery of the reforming reaction cylinder 18 and has a diameter larger than that of the reforming reaction cylinder 18.
  • the periphery of the outer cylinder 22 is covered with a heat insulating material 24 except for a place where a plurality of pipes communicate with the outside.
  • the reforming reaction cylinder 18 includes a reforming pipe outer cylinder 18a, a catalyst pipe outer cylinder 18b, and a reforming pipe inner cylinder 18c, which are arranged concentrically from the outside in this order.
  • An annular catalyst layer 18d is provided in a region between the catalyst tube outer cylinder 18b and the reforming tube inner cylinder 18c.
  • the catalyst layer 18d includes a reforming catalyst in which metal particles such as nickel and ruthenium are supported on alumina.
  • the reforming tube outer cylinder 18a is provided with a reforming gas outlet 18e at the top. Further, the lower part of the reforming pipe outer cylinder 18a and the reforming pipe inner cylinder 18c are connected by an annular lower plate member 18f, and a gap is provided between the catalyst pipe outer cylinder 18b and the lower plate member 18f. Yes. Thereby, the flow of the reformed gas that has passed through the catalyst layer 18d is folded by passing through the gap, and flows toward the upper outlet 18e.
  • the burner 20 mixes and burns the air taken in from the air intake 26 and the fuel off-gas taken in from the fuel intake 28.
  • the raw fuel gas may be supplied directly to the burner.
  • a high-temperature combustion gas of 1200 to 1300 ° C. is generated.
  • the burner 20 is disposed at the lower part of the combustion chamber 30 formed in a cylindrical shape at the center of the reforming pipe inner cylinder 18 c and is fixed to the lower part of the outer cylinder 22.
  • a heating flow path 32 through which the above-described combustion gas passes is formed in order to heat the reforming reaction cylinder 18.
  • the raw fuel gas is supplied from the upper part of the reforming reaction cylinder 18, is dispersed toward the outside by the upper plate 18g of the reforming pipe inner cylinder 18c, and is then supplied to the catalyst layer 18d. At this time, the raw fuel gas is heated by the combustion gas and raised in temperature. It is also possible to heat the raw fuel with the fuel exhaust gas flowing through the heating flow path 32 or the reformed gas inside the reforming reaction cylinder 18 by devising the layout of the flow path through which each gas flows.
  • the steam necessary for the reforming reaction in the reforming unit 12 is vaporized by the steam supplying means 100 having a plurality of heat exchangers, which will be described later, the reforming water supplied from the outside of the fuel cell reforming apparatus 10. Can be obtained.
  • a pump 36 that sends water by pressure is used in order to send water from the outside to the fuel cell reformer 10.
  • the reformed water is vaporized as described above, and is sent as steam to the reforming unit 12 via the steam supply path 42. At that time, the water vapor is mixed with the raw fuel gas by the mixer 34 provided at the upper part of the reforming unit 12 and sent to the reforming unit 12.
  • the temperature rise of the raw fuel gas by heating the combustion exhaust gas and the vaporization of water are separately performed and then merged in the mixer 34. Therefore, it is possible to easily control the supply of water vapor by raising the temperature of the raw fuel gas and vaporizing water in each supply path.
  • Shift shift portion 14 is formed in a ring shape, and has a catalyst layer made of pellets of copper oxide or zinc oxide, for example.
  • the shift shifter 14 can reduce carbon monoxide by a shift reaction using water vapor contained in the reformed gas by the action of the catalyst layer.
  • the selective oxidation unit 16 has a catalyst layer made of, for example, a carbon monoxide selective oxidation catalyst supported by alumina.
  • the concentration of carbon monoxide is further reduced by oxidizing the carbon monoxide with oxygen to carbon dioxide by the action of the catalyst layer.
  • An air supply path 54 communicating with the outside of the fuel cell reformer 10 is supplied to the pipe between the shift shift converter 14 and the selective oxidation section 16 in order to supply oxygen consumed by the selective oxidation section 16. Is arranged.
  • Hydrogen as the reformed gas in which carbon monoxide is sufficiently reduced in the selective oxidation unit 16 is sent to the fuel electrode 202 of the fuel cell 200.
  • the fuel cell 200 is a device that generates electric power by causing an electrochemical reaction between the hydrogen supplied to the fuel electrode 202 and the oxygen supplied to the air electrode 204 in the electrolyte membrane 206.
  • the hydrogen that has not contributed to the reaction at the fuel electrode 202 is supplied to the burner 20 via the fuel intake port 28 as a fuel off gas.
  • the water vapor supply means 100 vaporizes the water sent out by the pump 36 by heat exchange and supplies it to the reforming unit 12 as water vapor.
  • the steam supply unit 100 includes heat exchangers 102, 104, 106, and 108.
  • the heat exchanger 102 performs heat exchange between the reformed gas flowing from the shift shift unit 14 toward the selective oxidation unit 16 and the reformed water sent from the pump 36. As a result, the reformed water is heated and the reformed gas is cooled.
  • the heat exchanger 104 is composed of coiled piping.
  • the heat exchanger 104 performs heat exchange between the reformed water heated by the heat exchanger 102 and the reformed gas sent from the shift shift unit 14. As a result, the reformed water is further heated and the reformed gas is cooled.
  • the heat exchanger 106 is composed of a coiled pipe disposed between the reforming reaction cylinder 18 and the outer cylinder 22.
  • the heat exchanger 106 performs heat exchange between the reformed water heated by the heat exchanger 104 and the combustion exhaust gas generated by the burner 20. Thereby, the reforming water is further heated and the combustion exhaust gas is cooled.
  • the heat exchanger 108 has a plurality of cylindrical members concentrically stacked to form a flow path, and is disposed above the reforming reaction cylinder 18.
  • the heat exchanger 108 performs heat exchange between the reformed water heated by the heat exchanger 106 and the reformed gas sent from the reforming unit 12. Thereby, the reforming water is further heated and sent to the reforming unit 12 as water vapor.
  • the combustion gas generated by the burner 20 heats the lower surface of the upper plate 18g and then heats the reforming tube inner cylinder 18c from the inside while descending the inner surface of the reforming tube inner cylinder 18c.
  • the catalyst layer 18d of the reforming unit 12 is heated to a temperature necessary for the reforming reaction, for example, in the range of 600 to 700 ° C.
  • the reformed water passing through the steam supply means 100 is heated and vaporized by the reformed gas or combustion exhaust gas in the heat exchangers 102, 104, 106, and 108 as shown in FIG.
  • the fuel exhaust gas rises in the heating channel 32 and is cooled by the heat exchanger 108, and the temperature gradually decreases.
  • the combustion exhaust gas that has passed through the heating flow path 32 is discharged to the outside from a discharge port 62 formed in the upper portion of the outer cylinder 22.
  • the steam vaporized by the steam supply means 100 and the raw fuel gas heated by the heat exchanger 108 are mixed by the mixer 34 and sent out downward in the reforming section 12.
  • the raw fuel gas containing water vapor is gradually heated by the heat of the combustion gas when passing through the inside of the catalyst layer 18d of the reforming section 12, and is changed into a hydrogen-rich reformed gas by the reforming reaction.
  • the reformed gas obtained by reforming the raw fuel gas rises inside the reforming tube outer cylinder 18a by the flow of the supplied raw fuel gas, and after heat exchange with the heat exchanger 108 shown in FIG.
  • the shift metamorphosis unit 14 is reached.
  • the shift reaction in the shift shift unit 14 is performed, for example, in the range of 200 to 300 ° C., and heat balance is achieved by heat recovery of the heat exchanger 108.
  • the thickness of the heat insulating material 24 is set so that the shift metamorphic portion 14 falls within an appropriate temperature range. As a result, the reformed gas is reduced in carbon monoxide at the shift shift section 14.
  • the reformed gas whose carbon monoxide has been reduced in the shift shift unit 14 further reaches the selective oxidation unit 16 by the flow of the supplied raw fuel gas. At that time, the air supplied from the air supply path 54 also reaches the selective oxidation unit 16.
  • the reformed gas that reaches the selective oxidation unit 16 is cooled by heat exchange with the reformed water in the heat exchanger 104 and the heat exchanger 102, so that the temperature becomes lower than the temperature of the reformed gas in the shift shift unit 14. Yes.
  • the selective oxidation reaction in the selective oxidation unit 16 is performed at a lower temperature than the shift reaction in the shift shift unit 14, for example, in the range of 70 to 200 ° C., and in order to maintain an appropriate catalyst temperature, the heat exchanger 104 and the heat exchanger The heat balance of the heat recovery of 102 is taken. As a result, the reformed gas is further reduced in carbon monoxide in the selective oxidation unit 16.
  • steam is obtained by heat exchange with combustion exhaust gas and reformed gas using a plurality of heat exchangers.
  • the occurrence of nucleate boiling is not always constant, and the volume expands abruptly. Therefore, vibration is likely to occur at a location where water vapor is generated. For example, vibration is likely to occur in a region where a slag flow is generated by nucleate boiling or a so-called dry-out region where water is completely vaporized.
  • the water vapor supply means 100 is configured to suppress the generation of these vibrations and to suppress the transmission of the vibrations to the upstream side and the downstream side.
  • the heat exchanger 108 according to the present embodiment dries out the reformed water by heat exchange with the reformed gas, and is larger than the cross-sectional area of the pipe connected to the upstream side. It has a cross-sectional area.
  • the heat exchanger 108 is comprised by the cylindrical member with a larger diameter than the piping until then.
  • the cross-sectional area of the heat exchanger 108 is made larger than that of the upstream pipe, the generation of slag flow in the heat exchanger 108 is suppressed, and the flow velocity is reduced. As a result, pressure fluctuation is suppressed. Further, since the heat exchanger 108 also serves as a pressure buffering mechanism for buffering pressure fluctuations, the configuration is simplified as compared with the case where they are provided separately. Note that heat exchange with the heat exchanger 108 is not necessarily limited to the reformed gas, and the heat exchange with the combustion exhaust gas may be performed by devising the layout.
  • the steam supply means 100 has a heat exchanger 106 that can increase the vaporization rate of the reformed water to the gas-liquid mixed phase state by heat exchange, upstream of the heat exchanger 108. Therefore, the reforming water is supplied to the heat exchanger 108 in a gas-liquid mixed phase state in which the vaporization rate is increased by the heat exchanger 106 and the gas phase and the liquid phase are mixed. Specifically, the reforming water is about 100 to 125 ° C. Therefore, compared with the case where low-temperature reforming water with a low vaporization rate is supplied to the heat exchanger 108, the rapid generation of water vapor is suppressed in the heat exchanger 108, and the pressure fluctuation is suppressed.
  • the water vapor supply means 100 has a heat exchanger 104 having a diameter smaller than the flow path of the heat exchanger 106 between the heat exchanger 106 and the pump 36. Therefore, the heat exchanger 104 also functions as an upstream throttle mechanism of the water vapor supply unit 100. Thereby, for example, even if the pressure fluctuation accompanying the vaporization of water in the heat exchanger 108 or the heat exchanger 106 occurs, the influence of the pressure fluctuation on the delivery pressure of the pump 36 is suppressed.
  • the heat exchanger 104 is configured to start generation of nucleate water by heat exchange with the reformed gas.
  • the configuration of the heat exchanger 102 may be adjusted so that the vaporization rate of the reformed water flowing into the heat exchanger 104 is 5% or less, and more preferably 100 ° C. or less.
  • no nucleate boiling occurs on the upstream side of the heat exchanger 104 that functions as a throttle mechanism, and even if a slag flow due to nucleate boiling occurs on the heat exchanger 104 and its downstream side, the vibration is on the upstream side. Transmission is suppressed.
  • heat exchange with the heat exchanger 104 is not necessarily limited to the reformed gas, and the heat exchange with the combustion exhaust gas and the catalyst packed bed may be performed by devising the layout.
  • the cross-sectional area S1 of the heat exchanger 108, the cross-sectional area S2 of the heat exchanger 106, and the cross-sectional area S3 of the heat exchanger 104 satisfy the relationship of S1> S2> S3, and vibration is generated in each heat exchanger. Is transmitted to the upstream side.
  • the volume V1 of the region acting as heat exchange in the heat exchanger 108, the volume V2 of the region acting as heat exchange in the heat exchanger 106, and the volume V3 of the region acting as heat exchange in the heat exchanger 104 are V1>.
  • the relationship of V2> V3 is satisfied, and the reformed water can be surely dried out in the heat exchanger 108 having a large volume. For example, even if bumping occurs, the occurrence of vibration can be reduced.
  • the fuel cell reforming apparatus 10 is configured to suppress the generation of vibration associated with the generation of water vapor and to suppress the generation of vibration from being transmitted to the upstream side. It is possible to prevent the delivery pressure of 36 from becoming unstable, and it is possible to generate stable water vapor, and consequently, reformed gas.
  • FIG. 3 is a schematic diagram showing a schematic configuration from the heat exchanger 108 to the reforming unit 12.
  • the water vapor supply means 100 is a downstream side throttle mechanism between the raw fuel supply passage 40 that supplies the raw fuel to the reforming unit 12 on the downstream side of the heat exchanger 108.
  • a capillary 112 is connected.
  • the capillary 112 has a diameter that is at least smaller than the flow path of the heat exchanger 108.
  • FIG. 4 is a schematic sectional view of the mist trap.
  • the mist trap 110 is provided with a mesh 114 inside. For example, even if foreign matters such as silica contained in water are deposited and separated from the wall surface of the pipe, they can be captured. As a result, the downstream capillary 112 is prevented from being clogged, and stable supply of water vapor to the reforming unit 12 becomes possible. Further, the load on the pump that supplies water by pressure is reduced.
  • the mesh 114 according to the present embodiment is made of a material having a mesh size of 60 mesh and a density of 230 kg / m 3 .
  • the raw fuel supply pressure and the reforming water are reduced by reducing the vibration associated with the generation of water vapor and suppressing the transmission of the vibration.
  • the fluctuation range of the supply pressure and the pressure itself can be reduced.
  • FIG. 5 is a schematic configuration diagram of a fuel cell reforming apparatus 210 according to a comparative example.
  • the fuel cell reformer 210 includes a reformer 212 that generates reformed gas from raw fuel, a shift shifter 214 that reduces carbon monoxide contained in the reformed gas by a shift reaction, and a shift shifter 214.
  • a selective oxidation unit 216 that selectively oxidizes and reduces carbon monoxide contained in the reformed gas that has passed through the selective oxidation reaction.
  • a burner 218 is attached below the reforming unit 212, and the reforming catalyst stored in the reforming unit 212 is heated by combustion of the burner 218 to heat a predetermined catalyst reaction temperature (eg, 600 to 700 ° C.). It is supposed to hold on.
  • a predetermined catalyst reaction temperature eg, 600 to 700 ° C.
  • a steam generator 220 is disposed above the reforming unit 212.
  • the steam generator 220 is configured to be able to dry out the reformed water.
  • the water vapor generated by the water vapor generator 220 is supplied to the inlet side of the reforming section 212 via the water vapor supply path 222.
  • hydrocarbon-based raw fuel gas is mixed in the water vapor supply path 222. Is done.
  • a gas mixture of water vapor and raw fuel gas is supplied to the reforming unit 212.
  • the supply of the mixed gas is performed after the temperature of the reforming catalyst is raised to the catalytic reaction temperature.
  • the mixed gas supplied to the reforming unit 212 is steam reformed while passing through the reforming catalyst layer housed therein, and becomes a reformed gas mainly composed of hydrogen. Thereafter, the reformed gas is discharged from the outlet side of the reforming unit 212 and is introduced to the inlet side of the shift shift unit 214 via the steam generator 220. In this case, the hot reformed gas exchanges heat with water supplied to the steam generator 220 when passing through the steam generator 220.
  • the reformed gas introduced into the shift shift unit 214 is converted while passing through the shift catalyst layer housed therein, so that the CO concentration in the reformed gas is reduced and discharged from the outlet side of the shift shift unit 214. At the same time, it is introduced to the inlet side of the selective oxidation unit 216.
  • the modified reformed gas introduced into the selective oxidation unit 216 is selectively oxidized while passing through the oxidation catalyst accommodated therein, and the CO concentration in the modified reformed gas is reduced to about 10 ppm. And is supplied to a fuel electrode of a fuel cell (not shown).
  • the water supply path 224 is provided for supplying water to the steam generator 220.
  • the water supply path 224 can gradually raise the temperature of the cold water by passing water through the heat exchanger 226, the heat exchange unit 216a of the selective oxidation unit 216, and the heat exchange unit 214a of the shift shift unit 214 in this order. It is formed as a feed water preheating line.
  • the above-described heat exchanger 226 is configured such that combustion exhaust gas generated by the combustion of the burner 218 passes, and heat exchange is performed between this combustion exhaust gas and cold water supplied to the water supply path 224. Thereby, the exhaust heat of combustion exhaust gas can be used effectively.
  • the water heated by passing through the heat exchanger 226 undergoes heat exchange with the internal oxidation catalyst when passing through the selective oxidation unit 216.
  • the catalytic reaction temperature of the oxidation catalyst is, for example, 100 to 180 ° C. Since this catalytic reaction is an exothermic reaction, it is necessary to maintain the catalytic reaction temperature by cooling during power generation of the fuel cell.
  • the water of the water supply path 224 is used as this cold heat source, and the temperature of the water is raised by heat exchange.
  • the water heated at the selective oxidation unit 216 undergoes heat exchange with the internal shift catalyst when passing through the shift shift unit 214.
  • the catalytic reaction temperature of the shift catalyst is, for example, 180 to 250 ° C. Since this catalytic reaction is also an exothermic reaction, it is necessary to maintain the catalytic reaction temperature by cooling during power generation of the fuel cell.
  • the water of the water supply path 224 is used as this cold heat source, and the temperature of the water is raised by heat exchange.
  • the cold water supplied to the water supply path 224 is gradually preheated in three stages on the way to the steam generator 220 and then introduced into the steam generator 220. At this time, if water exceeds 100 ° C. in the middle of the water supply path 224 due to preheating, a part of the water boils, and pressure fluctuation occurs in the water supply path 224, thereby disturbing the flow of water.
  • the buffer means 228 is provided on the inlet side of the water vapor generator 220 in the water supply path 224.
  • the reforming water is supplied from the heat exchanger 226 in the water supply path 224, the heat exchange unit 216a of the selective oxidation unit 216, and the heat exchange unit 214a of the shift shift unit 214. Is preheated when passing through each of them, and further passes through the buffer means 228 and flows into the steam generator 220. Since the water flowing into the steam generator 220 is in a gas-liquid mixed phase near 100 ° C., it is vaporized in a short time and supplied to the steam supply path 222. Since the raw fuel gas is supplied in the middle of the steam supply path 222 as described above, the raw fuel gas is supplied to the inlet side of the reforming unit 212 in a state where the steam and the raw fuel gas are mixed.
  • the heat exchanger 108 that functions as a dry-out heat exchanger has a cross-sectional area of a pipe connected to the upstream side (inlet side). Has a larger cross-sectional area.
  • the above-described reformer for a fuel cell increases heat conductivity by diffusion of alumina balls, McMahon packing, etc. in the gas side passage in order to promote heat transfer on the gas side in the heat exchange section between gas and water. It may be filled.
  • the raw fuel used in the above-described fuel cell reformer is not limited to the exemplified methane, propane, butane and the like.
  • natural gas hydrocarbons such as LPG mainly composed of propane / butane, naphtha and kerosene, alcohols such as methanol and ethanol, ethers such as dimethyl ether, and the like may be used as the raw fuel.
  • the fuel cell reforming apparatus described above includes the shift shift conversion unit 14 and the selective oxidation unit 16 as the carbon monoxide reduction unit, but the concentration of carbon monoxide is not practically problematic only by the shift shift conversion unit 14. If it can be reduced, the selective oxidation unit 16 may be omitted.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Energy (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

 原燃料を水素リッチな改質ガスに改質する燃料電池用改質装置10において、原燃料から改質ガスを生成する改質部12と、改質部12に水蒸気を供給するための水蒸気供給手段100と、を備える。水蒸気供給手段100は、原燃料の燃焼の際に生成された改質ガスとの熱交換により水をドライアウトさせる熱交換器108を有する。熱交換器108は、上流側に接続されている配管の断面積よりも大きな断面積を有している。

Description

改質装置
 本発明は、原燃料を、燃料電池システムにおいて使用される改質ガスに改質する改質装置に関する。
 固体高分子形燃料電池は、水素が有する化学エネルギーを電気エネルギーに変換して電力を発生する。実用的には、固体高分子形燃料電池の燃料となる水素は、比較的容易かつ安価に入手可能な天然ガス、ナフサ等の炭化水素系ガスまたはメタノール等のアルコール類の原燃料ガスと水蒸気とを混合して、改質器で改質することで得ている。改質により得られた水素ガスは燃料電池の燃料極に供給され、発電に用いられる。
 一般に、改質器における改質に必要な水蒸気は、改質器から排出された燃焼排ガスや燃料ガスとの熱交換によって得ることができる。しかしながら、低温の水が熱交換により急激に加熱されると、一部の水が沸騰することで発生する脈動により、水蒸気の流量が大きく変動することがある。このような状態が生じると、水蒸気と原燃料ガスとの混合比(S/C(スチーム・カーボン)比)が変動し、改質器における安定した水素ガスの生成を妨げ、ひいては、燃料電池スタックへの安定した水素ガスの供給を妨げる一因となる。
 そこで、水の沸騰に起因する水蒸気の流量変動を抑えるために、供給水を水蒸気発生器に導入する供給水余熱ラインにおいて、一酸化炭素除去器と水蒸気発生器との間に供給水の絞り手段を設けた燃料改質装置が考案されている(特許文献1参照)。
特開2002-241108号公報
 本発明はこうした状況に鑑みてなされたものであり、その目的とするところは、改質部に安定して水蒸気が供給される改質装置を提供することにある。
 上記課題を解決するために、本発明のある態様の改質装置は、原燃料を水素リッチな改質ガスに改質する改質装置であって、原燃料から改質ガスを生成する改質部と、改質部に水蒸気を供給するための水蒸気供給手段と、を備える。水蒸気供給手段は、改質部を加熱する際に生成された燃焼排ガスおよび改質ガスの少なくともいずれかとの熱交換により水をドライアウトさせるドライアウト熱交換器を有する。ドライアウト熱交換器は、上流側に接続されている配管の断面積よりも大きな断面積を有している。
 この態様によると、ドライアウト熱交換器における断面積が上流側の配管よりも大きいため、ドライアウト熱交換器におけるスラグ流の発生が抑制されるとともに、圧力変動が抑制される。
 水蒸気供給手段は、ドライアウト熱交換器よりも上流側に、熱交換により気液混相状態まで水の気化率を高める気液混相熱交換器を更に有してもよい。これにより、ドライアウト熱交換器において急激な水蒸気の発生が抑制され、圧力変動が抑制される。
 水蒸気供給手段は、気液混相熱交換器に向けて圧力により水を送出する水送出手段と気液混相熱交換器との間に、気液混相熱交換器の流路より小さな径を有する上流側絞り機構を有してもよい。これにより、例えば、ドライアウト熱交換器や気液混相熱交換器における水の気化に伴う圧力変動が生じても、その圧力変動が水送出手段の送出圧力に与える影響が抑制される。
 上流側絞り機構より上流側で熱交換による水の核沸騰の発生がないように構成されていてもよい。これにより、上流側絞り機構より水送出手段側で水の核沸騰は発生しないため、水送出手段の送出圧力が不安定になることが防止される。そのため、安定した水蒸気の生成、ひいては、改質ガスの生成が可能となる。
 水蒸気供給手段は、ドライアウト熱交換器よりも下流側であって改質部に原燃料を供給する原燃料供給路との間に、ドライアウト熱交換器の流路より小さな径を有する下流側絞り機構を有してもよい。これにより、仮に、ドライアウト熱交換器において突沸が生じても、それに伴う圧力変動が下流側の原燃料供給路における原燃料圧力に与える影響が抑制される。そのため、安定した原燃料の供給および改質ガスの生成が可能となる。
 ドライアウト熱交換器と下流側絞り機構との間に、異物が下流側に流れないように捕獲する異物捕獲手段を有してもよい。これにより、例えば、水に含まれている異物が下流側絞り機構に詰まることが防止され、改質部への安定した水蒸気の供給が可能となる。
 本発明によれば、改質部に安定して水蒸気が供給される。
本実施の形態に係る燃料電池用改質装置の構成を示す断面図である。 図1における改質部近傍の拡大断面図である。 熱交換器から改質部に至るまでの概略構成を示す模式図である。 ミストトラップの概略断面図である。 比較例に係る燃料電池用改質装置の概略構成図である。
符号の説明
 10 燃料電池用改質装置、 12 改質部、 14 シフト変成部、 16 選択酸化部、 18 改質反応筒、 20 バーナ、 22 外筒、 24 断熱材、 26 空気取入口、 28 燃料取入口、 30 燃焼室、 32 加熱流路、 34 混合器、 36 ポンプ、 40 原燃料供給路、 42 水蒸気供給路、 54 空気供給路、 62 排出口、 100 水蒸気供給手段、 102 熱交換器、 104 熱交換器、 106 熱交換器、 108 熱交換器、 110 ミストトラップ、 112 キャピラリ、 114 メッシュ
 以下、図面を参照しながら、本発明を実施するための最良の形態について詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を適宜省略する。
 図1は、本実施の形態に係る燃料電池用改質装置10の概略構成を示す断面図である。図2は、図1における改質部近傍の拡大断面図であり、後述する熱交換器106,108が省略されている状態を示している。燃料電池用改質装置10は、原燃料であるメタンやプロパン、ブタン等を水蒸気改質により水素リッチな改質ガスを生成する。
 燃料電池用改質装置10は、原燃料から改質ガスを生成する改質部12と、改質ガスに含まれる一酸化炭素をシフト反応により低減するシフト変成部14と、シフト変成部14を通過した改質ガスに含まれる一酸化炭素を選択酸化反応により選択酸化し低減する選択酸化部16と、改質部12を収納する改質反応筒18と、燃料電池の燃料極で消費されなかった燃料オフガスを燃焼して燃焼ガスを生成する燃焼手段としてのバーナ20と、改質反応筒18の外周に同軸に配置され、改質反応筒18より径が大きい外筒22と、を備える。外筒22の周囲は、複数の配管が外部と連通している箇所を除いて断熱材24で覆われている。
 次に、改質部近傍の構成を図2を参照して説明する。改質反応筒18は、改質管外筒18aと触媒管外筒18bと改質管内筒18cとを有し、この順番で外側から同心状に配列されている。また、触媒管外筒18bと改質管内筒18cとの間の領域には環状の触媒層18dが設けられている。触媒層18dは、ニッケルやルテニウム等の金属粒子をアルミナに担持した改質触媒を含む。
 改質管外筒18aは、上部に改質ガスの排出口18eが設けられている。また、改質管外筒18aと改質管内筒18cとは下部が環状の下板部材18fで連結されているとともに、触媒管外筒18bと下板部材18fとの間に隙間が設けられている。これにより、触媒層18dを通過した改質ガスの流れが隙間を通過することで折り返され、上方の排出口18eに向かって流れることになる。
 また、バーナ20は、空気取入口26から取り入れた空気と燃料取入口28から取り入れた燃料オフガスとを混合して燃焼させる。なお、場合によっては原燃料ガスを直接バーナに供給してもよい。バーナ20で燃料オフガスが燃焼することによって、1200~1300℃の高温の燃焼ガスが発生する。バーナ20は、改質管内筒18cの中心部に筒状に形成された燃焼室30の下部に配置されているとともに、外筒22の下部に固定されている。これにより、バーナ20で生成された燃焼ガスの熱をすぐに改質部12における改質反応に用いることができるので、熱効率を向上することができる。
 改質反応筒18と外筒22との間には、改質反応筒18を加熱するために前述の燃焼ガスが通過する加熱流路32が形成されている。
 原燃料ガスは、図2に示すように、改質反応筒18の上部から供給され、改質管内筒18cの上板18gで外側に向かって分散された後、触媒層18dに供給される。この際、原燃料ガスは、燃焼ガスにより加熱され昇温する。なお、各ガスが流れる流路のレイアウトを工夫することで、加熱流路32を流れる燃料排ガスや改質反応筒18の内部の改質ガスにより原燃料を加熱することも可能である。
 また、改質部12における改質反応に必要な水蒸気は、燃料電池用改質装置10の外部から供給された改質水が後述する複数の熱交換器を有する水蒸気供給手段100により気化されることで得られる。外部から燃料電池用改質装置10へ水を送出するためには、例えば、圧力により水を送出するポンプ36が用いられる。改質水は、前述のように気化され、水蒸気として水蒸気供給路42を経由して改質部12に送られる。その際、水蒸気は、改質部12の上部に備えられている混合器34により原燃料ガスと混合され、改質部12に送られる。
 なお、本実施の形態に係る燃料電池用改質装置10とは異なるが、燃焼排ガスの加熱による原燃料ガスの昇温と水の気化とが別々で行われた後に混合器34で合流することで、各供給路における原燃料ガスの昇温や水の気化による水蒸気の供給の制御を容易にすることも可能である。
 シフト変成部14は、環状に形成されており、例えば、酸化銅や酸化亜鉛のペレットからなる触媒層を有する。シフト変成部14は、触媒層の働きにより改質ガスに含まれる水蒸気を用いたシフト反応により一酸化炭素を低減することができる。
 選択酸化部16は、例えば、アルミナで担持した一酸化炭素選択酸化触媒からなる触媒層を有する。選択酸化部16では、触媒層の働きにより酸素で一酸化炭素を酸化し二酸化炭素にすることで、一酸化炭素の濃度が更に低減される。
 シフト変成部14と選択酸化部16との間の配管には、選択酸化部16で消費される酸素を供給するために、燃料電池用改質装置10の外部と連通している空気供給路54が配置されている。
 選択酸化部16において一酸化炭素が十分低減された改質ガスとしての水素は、燃料電池200の燃料極202へ送出される。燃料電池200は、燃料極202に供給された水素と空気極204に供給された酸素とが電解質膜206において電気化学反応を起こすことで、発電する装置である。なお、燃料極202において反応に寄与しなかった水素は、燃料オフガスとして燃料取入口28を経由してバーナ20に供給される。
 水蒸気供給手段100は、ポンプ36により送出された水を熱交換により気化させ、水蒸気として改質部12に供給する。水蒸気供給手段100は、熱交換器102,104,106,108を有する。熱交換器102は、シフト変成部14から選択酸化部16に向かって流れる改質ガスとポンプ36から送出された改質水との間で熱交換を行う。これにより、改質水が加熱されるとともに改質ガスが冷却される。
 熱交換器104は、コイル状の配管で構成されている。熱交換器104は、熱交換器102により加熱された改質水とシフト変成部14から送出された改質ガスとの間で熱交換を行う。これにより、更に改質水が加熱されるとともに改質ガスが冷却される。
 熱交換器106は、改質反応筒18と外筒22との間に配置されているコイル状の配管で構成されている。熱交換器106は、熱交換器104により加熱された改質水とバーナ20で生成された燃焼排ガスとの間で熱交換を行う。これにより、更に改質水が加熱されるとともに燃焼排ガスが冷却される。
 熱交換器108は、複数の筒状の部材が同心に重ねられて流路が形成されており、改質反応筒18の上方に配置されている。熱交換器108は、熱交換器106により加熱された改質水と改質部12から送出された改質ガスとの間で熱交換を行う。これにより、改質水は更に加熱され改質部12に水蒸気として送出される。
 次に、本実施の形態に係る燃料電池用改質装置10の動作について説明する。バーナ20で生成された燃焼ガスは、図2に示すように、上板18gの下面を加熱した後、改質管内筒18cの内面を下降しながら改質管内筒18cを内側から加熱する。この際、改質部12の触媒層18dは、改質反応に必要な温度、例えば、600~700℃の範囲に加熱される。また、水蒸気供給手段100を通過する改質水は、図1に示すように、各熱交換器102,104,106,108において改質ガスまたは燃焼排ガスにより加熱され気化される。一方、燃料排ガスは、加熱流路32を上昇し熱交換器108により冷却され徐々に温度が低下する。なお、加熱流路32を通過した燃焼排ガスは、外筒22の上部に形成された排出口62から外部へ排出される。
 水蒸気供給手段100で気化された水蒸気と熱交換器108で昇温された原燃料ガスとは混合器34で混合され、改質部12の内部を下方に送り出される。水蒸気を含む原燃料ガスは、改質部12の触媒層18dの内部を通過する際に燃焼ガスの熱により徐々に加熱され、改質反応により水素リッチな改質ガスに変化する。
 原燃料ガスを改質することにより得られた改質ガスは、供給される原燃料ガスの流れによって改質管外筒18aの内部を上昇し、図1に示す熱交換器108と熱交換後、シフト変成部14に到達する。シフト変成部14におけるシフト反応は、例えば、200~300℃の範囲で行われ、熱交換器108の熱回収で熱バランスをとっている。本実施の形態では、シフト変成部14が適当な温度範囲に収まるように断熱材24の厚みが設定されている。これにより、改質ガスはシフト変成部14において一酸化炭素が低減される。
 シフト変成部14で一酸化炭素が低減された改質ガスは更に、供給される原燃料ガスの流れによって選択酸化部16に到達する。その際、空気供給路54から供給された空気も選択酸化部16に到達する。
 選択酸化部16に到達する改質ガスは、熱交換器104および熱交換器102において改質水との熱交換により冷却されるため、シフト変成部14における改質ガスの温度より低温となっている。選択酸化部16における選択酸化反応は、シフト変成部14におけるシフト反応より低温な、例えば、70~200℃の範囲で行われ、適切な触媒温度を維持するために熱交換器104および熱交換器102の熱回収で熱バランスをとっている。これにより、改質ガスは選択酸化部16において更に一酸化炭素が低減される。
 上述のように、本実施の形態に係る燃料電池用改質装置10においては、複数の熱交換器を用いて燃焼排ガスや改質ガスとの熱交換により水蒸気を得ている。水が気化し水蒸気となる際には、核沸騰の発生が常に一定となるわけではなく容積も急激に膨張するため、水蒸気が発生する箇所で振動が発生しやすい。例えば、核沸騰によりスラグ流が発生する領域や、水が完全に気化されるいわゆるドライアウトされる領域の近傍では、振動が生じやすい。
 そこで、本実施の形態に係る水蒸気供給手段100は、これらの振動の発生を抑制するとともに、振動の発生が上流側、下流側に伝達されることを抑制するように構成されている。具体的には、本実施の形態に係る熱交換器108は、改質ガスとの熱交換により改質水をドライアウトさせるものであり、上流側に接続されている配管の断面積よりも大きな断面積を有している。また、熱交換器108は、それまでの配管より径の大きな筒状の部材で構成されている。
 このように熱交換器108における断面積を上流側の配管よりも大きくすることで、熱交換器108におけるスラグ流の発生が抑制され、また、流速が低減される。その結果、圧力変動が抑制される。また、熱交換器108が圧力変動を緩衝する圧力緩衝機構を兼ねることで、別々に設けるよりも構成が簡素化される。なお、熱交換器108との熱交換は必ずしも改質ガスに限られるものではなく、レイアウトを工夫することで燃焼排ガスとの熱交換が行われるように配置してもよい。
 水蒸気供給手段100は、熱交換器108よりも上流側に、熱交換により気液混相状態まで改質水の気化率を高めることができる熱交換器106を有している。そのため、熱交換器108には、熱交換器106により気化率が高められ、気相と液相とが混在している気液混相状態で改質水が供給される。具体的には、改質水は、100~125℃程度になっている。そのため、気化率が低く低温の改質水が熱交換器108に供給される場合と比較して、熱交換器108において急激な水蒸気の発生が抑制され、圧力変動が抑制される。
 水蒸気供給手段100は、熱交換器106とポンプ36との間に熱交換器106の流路より小さな径を有する熱交換器104を有している。したがって、熱交換器104は、水蒸気供給手段100の上流側絞り機構としても機能することになる。これにより、例えば、熱交換器108や熱交換器106における水の気化に伴う圧力変動が生じても、その圧力変動がポンプ36の送出圧力に与える影響が抑制される。
 また、熱交換器104は、改質ガスとの熱交換により水の核沸騰の発生が開始するように構成されている。換言すると、改質水は、熱交換器104に流入する前では、水の核沸騰が発生していない。具体的には、熱交換器104に流入する改質水の気化率は5%以下であり、より好ましくは100℃以下となるように熱交換器102の構成を調整するとよい。その結果、絞り機構として機能する熱交換器104の上流側では核沸騰が発生しておらず、熱交換器104およびその下流側で核沸騰によるスラグ流が発生しても、振動が上流側に伝達されることが抑制される。なお、熱交換器104との熱交換は必ずしも改質ガスに限られるものではなく、レイアウトを工夫することで燃焼排ガスや触媒充填層との熱交換が行われるように配置してもよい。
 また、熱交換器108の断面積S1、熱交換器106の断面積S2、熱交換器104の断面積S3は、S1>S2>S3の関係を満たしており、各熱交換器における振動の発生が上流側に伝達されることが抑制される。また、熱交換器108において熱交換として作用する領域の体積V1、熱交換器106において熱交換として作用する領域の体積V2、熱交換器104において熱交換として作用する領域の体積V3は、V1>V2>V3の関係を満たしており、体積の大きな熱交換器108において確実に改質水をドライアウトできるとともに、例えば、突沸が生じても振動の発生を緩和することができる。
 上述のように、燃料電池用改質装置10は、水蒸気の発生に伴う振動の発生を抑制するとともに、振動の発生が上流側に伝達されることを抑制するように構成されているため、ポンプ36の送出圧力が不安定になることが防止され、安定した水蒸気の生成、ひいては、改質ガスの生成が可能となる。
 (第2の実施の形態)
 第2の実施の形態では、図1に示す水蒸気供給手段100において、熱交換器108の下流側であって改質部12に原燃料を供給する原燃料供給路40との間に熱交換器よりも小さな径を有する下流側絞り機構を備えている点が大きく異なる。以下では、第1の実施の形態と同様の構成については説明を適宜省略する。
 図3は、熱交換器108から改質部12に至るまでの概略構成を示す模式図である。図3に示すように、水蒸気供給手段100は、熱交換器108よりも下流側であって改質部12に原燃料を供給する原燃料供給路40との間に、下流側絞り機構であるキャピラリ112が接続されている。キャピラリ112は、少なくとも熱交換器108の流路より小さな径を有しいてる。これにより、仮に、熱交換器108において突沸が生じても、それに伴う圧力変動が下流側の原燃料供給路40における原燃料圧力に与える影響が抑制される。そのため、安定した原燃料の供給および改質ガスの生成が可能となる。
 また、本実施の形態では、熱交換器108とキャピラリ112との間に異物が下流側に流れないようにトラップするミストトラップが接続されている。図4は、ミストトラップの概略断面図である。ミストトラップ110は、内部にメッシュ114が設けられており、例えば、水に含まれているシリカ等の異物が析出し配管の壁面から剥離してもそれを捕獲することができる。これにより、下流側のキャピラリ112が詰まることが防止され、改質部12への安定した水蒸気の供給が可能となる。また、圧力により水を供給するポンプへの負荷が軽減される。なお、本実施の形態に係るメッシュ114には、目の粗さが60メッシュ、密度が230kg/mである材質のものが用いられている。
 上述のように、各実施の形態に係る燃料電池用改質装置によれば、水蒸気の発生に伴う振動を低減し、また、振動の伝達を抑制することで、原燃料供給圧力や改質水供給圧力の変動幅や圧力自体の低減が図られる。
 また、例えば、起動時、熱交換器108に液相の水が滞留していても、改質ガスにより気化されるため、起動時に効率よく水蒸気を発生させることができる。
 (比較例)
 図5は、比較例に係る燃料電池用改質装置210の概略構成図である。燃料電池用改質装置210は、原燃料から改質ガスを生成する改質部212と、改質ガスに含まれる一酸化炭素をシフト反応により低減するシフト変成部214と、シフト変成部214を通過した改質ガスに含まれる一酸化炭素を選択酸化反応により選択酸化し低減する選択酸化部216と、を備える。改質部212の下方にはバーナ218が取り付けられ、バーナ218の燃焼により改質部212の内部に収納されている改質触媒を加熱して所定の触媒反応温度(例えば、600~700℃)に保持するようにしてある。
 改質部212の上方には、水蒸気発生器220が配設されている。水蒸気発生器220は、改質水をドライアウト可能なように構成されている。水蒸気発生器220で発生した水蒸気は、水蒸気供給路222を経由して改質部212の入口側に供給されるが、その際、水蒸気供給路222の途中に炭化水素系の原燃料ガスが混入される。これにより、改質部212には、水蒸気と原燃料ガスとが混合した混合ガスが供給される。この混合ガスの供給は、改質触媒が触媒反応温度まで昇温された後に行われる。
 改質部212に供給された混合ガスは、内部に収納されている改質触媒層を通過する間に水蒸気改質され、水素を主体とした改質ガスとなる。その後、改質ガスは、改質部212の出口側から排出されるとともに、水蒸気発生器220を経由してシフト変成部214の入口側に導入される。この場合、高温の改質ガスは、水蒸気発生器220内を通過する際に水蒸気発生器220に供給される水との間で熱交換が行われる。
 シフト変成部214に導入された改質ガスは、内部に収納されている変成触媒層を通過する間に変成されて改質ガス中のCO濃度が低減され、シフト変成部214の出口側から排出されるとともに、選択酸化部216の入口側に導入される。選択酸化部216に導入された変成改質ガスは、内部に収納されている酸化触媒を通過する間に選択酸化され、変成改質ガス中のCO濃度が10ppm程度に低減され、選択酸化部216の出口側から排出されるとともに、燃料電池(不図示)の燃料極に供給される。
 給水経路224は、水蒸気発生器220に水を供給するために設けられている。給水経路224は、途中で熱交換器226、選択酸化部216の熱交換部216a、シフト変成部214の熱交換部214aに、この順で水を経由させることで、冷水を徐々に昇温できるようにした給水予熱ラインとして形成されている。
 前述の熱交換器226は、バーナ218の燃焼により生じた燃焼排ガスが通過するように構成され、この燃焼排ガスと給水経路224に供給された冷水との間で熱交換が行われる。これにより、燃焼排ガスの排熱を有効利用することができる。この熱交換器226を通過して昇温された水は、選択酸化部216を通過する際に内部の酸化触媒との間で熱交換が行われる。酸化触媒の触媒反応温度は、例えば、100~180℃である。この触媒反応は発熱反応であるため、燃料電池の発電中においては冷却して触媒反応温度を保持する必要がある。この冷熱源として給水経路224の水を使用し、その水は熱交換により昇温する。
 選択酸化部216で昇温された水は、シフト変成部214を通過する際に内部の変成触媒との間で熱交換が行われる。変成触媒の触媒反応温度は、例えば、180~250℃である。この触媒反応も発熱反応であるため、燃料電池の発電中においては冷却して触媒反応温度を保持する必要がある。この冷熱源として給水経路224の水を使用し、その水は熱交換により昇温する。
 このようにして、給水経路224に供給された冷水は、水蒸気発生器220に至るまでの途中で3段階に渡って徐々に予熱された後、水蒸気発生器220に導入される。この際、予熱により給水経路224の途中で水が100℃を超えると一部沸騰し、給水経路224内で圧力変動が生じて水の流れが乱れることになる。
 そのため、比較例では、給水経路224における水蒸気発生器220の入口側にバッファ手段228が設けられている。バッファ手段228としては、例えば、バッファ機能を有するタンクを用いることができる。
 このように構成された比較例の燃料電池用改質装置210において、改質用水は給水経路224における熱交換器226、選択酸化部216の熱交換部216a、シフト変成部214の熱交換部214aをそれぞれ通過する際に予熱され、更にバッファ手段228を通過して水蒸気発生器220に流入する。この水蒸気発生器220に流入した水は、100℃近くの気液混合相になっているため、短時間で気化されるとともに、水蒸気供給路222に供給される。そして、前述のように水蒸気供給路222の途中で原燃料ガスが供給されるため、水蒸気と原燃料ガスとが混入した状態で改質部212の入口側に供給される。
 水蒸気発生器220で水蒸気が発生すると圧力が変動し、この圧力変動によって給水経路224内に脈動が発生し、水蒸気発生器220に流入する給水量が変化する。本比較例では、水蒸気発生器220の入口側にはバッファ手段228が設けられているため、このバッファ手段228の緩衝機構によって脈動エネルギーを吸収することができる。しかしながら、本比較例では水蒸気発生器220とは別にバッファ手段228を設ける必要があり、構成が複雑となっている。
 これに対して、上述の各実施の形態に係る燃料電池用改質装置では、ドライアウト熱交換器として機能する熱交換器108が、上流側(入口側)に接続されている配管の断面積よりも大きな断面積を有している。これにより、熱交換器108自体で蒸発振動を抑えることができるので、比較例と比べてバッファ手段を省略することができ、コストの低減や装置の小型化が図られる。
 以上、本発明を上述の各実施の形態を参照して説明したが、これは例示であり、本発明は上述の各実施の形態に限定されるものではなく、各実施の形態の構成を適宜組み合わせたものや置換したものについても本発明に含まれるものである。また、当業者の知識に基づいて各種の設計変更等の変形を各実施の形態に対して加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうる。
 上述の燃料電池用改質装置は、ガスと水との熱交換部において、ガス側の伝熱を促進させるために、ガス側通路にアルミナボールやマクマホンパッキン等の拡散により伝熱性を上げるものを充填してもよい。
 また、上述の燃料電池用改質装置に用いられる原燃料としては、例示されているメタンやプロパン、ブタン等に限られるものではない。例えば、天然ガス、プロパン・ブタンを主成分とするLPG、ナフサ、灯油等の炭化水素や、メタノール、エタノール等のアルコール類や、ジメチルエーテル等のエーテル類、等を、原燃料として用いてもよい。
 また、上述の燃料電池用改質装置は、一酸化炭素低減部としてシフト変成部14および選択酸化部16を備えているが、シフト変成部14のみで一酸化炭素の濃度を実用上問題ない範囲に低減できれば、選択酸化部16を省略してもよい。

Claims (6)

  1.  原燃料を水素リッチな改質ガスに改質する改質装置であって、
     原燃料から改質ガスを生成する改質部と、
     前記改質部に水蒸気を供給するための水蒸気供給手段と、を備え、
     前記水蒸気供給手段は、改質部を加熱する際に生成された燃焼排ガスおよび前記改質ガスの少なくともいずれかとの熱交換により水をドライアウトさせるドライアウト熱交換器を有し、
     前記ドライアウト熱交換器は、上流側に接続されている配管の断面積よりも大きな断面積を有していることを特徴とする改質装置。
  2.  前記水蒸気供給手段は、前記ドライアウト熱交換器よりも上流側に、熱交換により気液混相状態まで水の気化率を高める気液混相熱交換器を更に有することを特徴とする請求項1に記載の改質装置。
  3.  前記水蒸気供給手段は、前記気液混相熱交換器に向けて圧力により水を送出する水送出手段と前記気液混相熱交換器との間に、前記気液混相熱交換器の流路より小さな径を有する上流側絞り機構を有することを特徴とする請求項2に記載の改質装置。
  4.  前記上流側絞り機構より上流側で熱交換による水の核沸騰の発生がないように構成されていることを特徴とする請求項3に記載の改質装置。
  5.  前記水蒸気供給手段は、前記ドライアウト熱交換器よりも下流側であって前記改質部に原燃料を供給する原燃料供給路との間に、前記ドライアウト熱交換器の流路より小さな径を有する下流側絞り機構を有することを特徴とする請求項1乃至4のいずれかに記載の改質装置。
  6.  前記ドライアウト熱交換器と前記下流側絞り機構との間に、異物が下流側に流れないように捕獲する異物捕獲手段を有することを特徴とする請求項5に記載の改質装置。
PCT/JP2009/001015 2008-03-24 2009-03-06 改質装置 WO2009119014A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/934,548 US8795397B2 (en) 2008-03-24 2009-03-06 Reforming device with series-connected gas-liquid multiphase and dry-out heat exchangers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008076827A JP5103236B2 (ja) 2008-03-24 2008-03-24 改質装置
JP2008-076827 2008-03-24

Publications (1)

Publication Number Publication Date
WO2009119014A1 true WO2009119014A1 (ja) 2009-10-01

Family

ID=41113227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001015 WO2009119014A1 (ja) 2008-03-24 2009-03-06 改質装置

Country Status (3)

Country Link
US (1) US8795397B2 (ja)
JP (1) JP5103236B2 (ja)
WO (1) WO2009119014A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112831350A (zh) * 2021-01-08 2021-05-25 清华大学 一种由生活垃圾制备富氢合成气的装置及方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104203397A (zh) * 2011-12-06 2014-12-10 Hy9公司 催化剂容纳反应器系统以及相关方法
US8992850B2 (en) 2012-05-31 2015-03-31 Dana Canada Corporation Floating catalyst/regenerator
AT513931B1 (de) * 2013-02-04 2017-03-15 Avl List Gmbh Reformereinheit für Brennstoffzellensystem
JP6205581B2 (ja) * 2014-02-17 2017-10-04 パナソニックIpマネジメント株式会社 水素生成装置及びそれを用いた燃料電池システム
JP6446910B2 (ja) * 2014-08-25 2019-01-09 三浦工業株式会社 燃料電池システム及び気体流量制限器
KR101898788B1 (ko) * 2016-12-30 2018-09-13 주식회사 두산 연료처리장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002187703A (ja) * 2000-12-19 2002-07-05 Toyota Motor Corp 燃料改質装置および燃料改質方法
JP2002276926A (ja) * 2001-03-15 2002-09-25 Aisin Seiki Co Ltd 燃料改質装置
JP2002326802A (ja) * 2001-05-02 2002-11-12 Toyota Motor Corp 燃料改質装置
JP2003068346A (ja) * 2001-08-24 2003-03-07 Nissan Motor Co Ltd 燃料電池の改質装置
JP2004115320A (ja) * 2002-09-26 2004-04-15 Aisin Seiki Co Ltd 改質装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4350133A (en) * 1980-05-19 1982-09-21 Leonard Greiner Cold start characteristics of ethanol as an automobile fuel
US4573435A (en) * 1985-03-12 1986-03-04 Shelton Glenn F Apparatus and method for generating hydrogen gas for use as a fuel additive in diesel engines
IT1211957B (it) * 1987-12-07 1989-11-08 Kinetics Technology Procedimento,apparato e relativo metodo di funzionamento per la generazione di vapore ed il recupero dicalore in impianti di produzione di idrogeno e gas di sintesi
US6776809B2 (en) * 2000-06-08 2004-08-17 Toyota Jidosha Kabushiki Kaisha Fuel reforming apparatus
JP2002241108A (ja) 2001-02-09 2002-08-28 Fuji Electric Co Ltd 燃料改質装置および燃料電池発電装置
JP4189212B2 (ja) * 2001-12-25 2008-12-03 パナソニック株式会社 水素生成装置とそれを備える燃料電池システム
JP4233903B2 (ja) * 2003-03-24 2009-03-04 パナソニック株式会社 水素生成装置、それを用いた燃料電池システム、及び水素を生成する方法
JP2005090830A (ja) * 2003-09-16 2005-04-07 Nissan Motor Co Ltd マイクロチャネル型蒸発器
JP2005093179A (ja) * 2003-09-16 2005-04-07 Nissan Motor Co Ltd マイクロチャネル型蒸発器
JP2005233477A (ja) * 2004-02-18 2005-09-02 Nissan Motor Co Ltd 蒸発器
FR2876500B1 (fr) * 2004-10-08 2007-08-10 Renault Sas Generateur d'electricite pour vehicule automobile

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002187703A (ja) * 2000-12-19 2002-07-05 Toyota Motor Corp 燃料改質装置および燃料改質方法
JP2002276926A (ja) * 2001-03-15 2002-09-25 Aisin Seiki Co Ltd 燃料改質装置
JP2002326802A (ja) * 2001-05-02 2002-11-12 Toyota Motor Corp 燃料改質装置
JP2003068346A (ja) * 2001-08-24 2003-03-07 Nissan Motor Co Ltd 燃料電池の改質装置
JP2004115320A (ja) * 2002-09-26 2004-04-15 Aisin Seiki Co Ltd 改質装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112831350A (zh) * 2021-01-08 2021-05-25 清华大学 一种由生活垃圾制备富氢合成气的装置及方法

Also Published As

Publication number Publication date
US8795397B2 (en) 2014-08-05
JP5103236B2 (ja) 2012-12-19
JP2009227526A (ja) 2009-10-08
US20110067303A1 (en) 2011-03-24

Similar Documents

Publication Publication Date Title
US7235217B2 (en) Method and apparatus for rapid heating of fuel reforming reactants
JP5154272B2 (ja) 燃料電池用改質装置
JP5103236B2 (ja) 改質装置
WO2011122372A1 (ja) 水素製造装置及び燃料電池システム
JP5272183B2 (ja) 燃料電池用改質装置
JP4928198B2 (ja) 改質器の停止方法、改質器及び燃料電池システム
JP4464230B2 (ja) 改質装置および方法ならびに燃料電池システム
JP4902165B2 (ja) 燃料電池用改質装置およびこの燃料電池用改質装置を備える燃料電池システム
JP5161621B2 (ja) 燃料電池用改質装置
JP4990045B2 (ja) 水素製造装置及び燃料電池システム
JP4486832B2 (ja) 水蒸気改質システム
WO2011081094A1 (ja) 改質ユニットおよび燃料電池システム
JP2004299939A (ja) 燃料改質器および燃料電池発電装置
JP2019099443A (ja) 水素生成装置
JP4278393B2 (ja) 水素製造装置および燃料電池システム
JP5584022B2 (ja) 燃料電池システム及びその起動方法
JP5140361B2 (ja) 燃料電池用改質装置
JP2006248863A (ja) 水素製造装置および燃料電池システム
JP5111040B2 (ja) 燃料電池用改質装置
JP2009067645A (ja) 水素製造装置及びこれを用いた燃料電池システム
JP2003303610A (ja) 燃料電池システム及びその運転方法並びにオートサーマルリフォーミング装置
JP2009084077A (ja) 燃料電池用改質装置
JP5086743B2 (ja) 燃料電池システム
JP5266122B2 (ja) 酸化自己熱型改質装置および燃料電池システム
KR20070040249A (ko) 냉각 장치를 갖는 연료 전지 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09724757

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12934548

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09724757

Country of ref document: EP

Kind code of ref document: A1