WO2009117911A1 - 无机固相组合粉体、母粒及制造方法、纤维及制造方法 - Google Patents

无机固相组合粉体、母粒及制造方法、纤维及制造方法 Download PDF

Info

Publication number
WO2009117911A1
WO2009117911A1 PCT/CN2009/070551 CN2009070551W WO2009117911A1 WO 2009117911 A1 WO2009117911 A1 WO 2009117911A1 CN 2009070551 W CN2009070551 W CN 2009070551W WO 2009117911 A1 WO2009117911 A1 WO 2009117911A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
solid phase
inorganic solid
temperature
slice
Prior art date
Application number
PCT/CN2009/070551
Other languages
English (en)
French (fr)
Inventor
郝俊博
刘燕平
Original Assignee
Hao Junbo
Liu Yanping
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hao Junbo, Liu Yanping filed Critical Hao Junbo
Publication of WO2009117911A1 publication Critical patent/WO2009117911A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/098Melt spinning methods with simultaneous stretching
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • D01F1/103Agents inhibiting growth of microorganisms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2927Rod, strand, filament or fiber including structurally defined particulate matter

Definitions

  • the present invention relates to an inorganic solid phase composite powder, a masterbatch, a method for producing the same, a fiber, and a method for producing the same, and more particularly to an inorganic solid phase composite powder, and a masterbatch for using the inorganic solid phase combination powder And a method for producing the same, a fiber for using the mother particle, and a method for producing the same. Background technique
  • Silver ions have a bactericidal effect. Since the fiber does not contain silver ions or the content of silver ions is low, the fiber has a low sterilization rate and has no significant effect on fungi represented by Candida albicans; ultraviolet rays having a wavelength of 200 - 400 nm The blocking rate is not high, and exposure to the human body for a long time can still cause harm to the skin;
  • the object of the present invention is to provide an inorganic solid phase composite powder, a masterbatch, a manufacturing method, a fiber and a manufacturing method, which can effectively overcome the technical defects of the prior art fiber ineffectiveness and shortness of efficacy.
  • the present invention provides an inorganic solid phase composite powder comprising the following composition by weight: titanium compound 13-16%, silicon compound 16-18%, zinc compound 15-22% and 4 ⁇ compound 49 - 51%.
  • the titanium compound is titanium dioxide and the weight percentage is 15%; the silicon compound is silica, and the weight percentage is 17%; the zinc compound is zinc oxide, and the weight percentage is 18%; Silver nitrate, 50% by weight.
  • the present invention also provides a masterbatch using the inorganic solid phase composite powder, comprising the following weight percentage components: the inorganic solid phase composite powder 20 - 35 % and the polymer carrier slice 64 - 79 %.
  • the high polymer carrier slice is a nylon dry slice, a polypropylene slice or a polyester dry slice.
  • the invention also provides a method for manufacturing a masterbatch for manufacturing the master batch, comprising:
  • the inorganic solid phase composite powder is deactivated by water
  • An interfacial reactant, a polymer carrier slice, an antioxidant, a dispersant, and a mixture are sequentially added to form a mixture;
  • the mixture is cooled.
  • the activating the inorganic solid phase composite powder by water is specifically: drying the inorganic solid phase composite powder in the air at a temperature of 110-120 ° C for 50 - 70 minutes, at a temperature of 120 - 130 Exhaust air at °C for 50 - 70 minutes and air at 110 - 140 °C for 110-130 minutes.
  • the heating and stirring of the inorganic solid phase combined powder after water removal activation is specifically as follows:
  • the heating was stopped after stirring for 4 - 6 minutes at a temperature of 130 - 150 ° C and a rotation speed of 1300 rpm; stirring was continued until the temperature of the inorganic solid phase composite powder was lowered to 115 - 125 °C.
  • the interfacial reactant, the polymer carrier slice, the antioxidant heat-resistant agent, and the dispersant are sequentially added to the stirring, and specifically:
  • the interfacial surfactant was added at a temperature of 115 - 125 ° C and a rotation speed of 200 rpm, and stirred at 1300 rpm for 2.5 - 3.5 minutes;
  • the polymer carrier slice was added at a temperature of 115 - 125 ° C and a rotation speed of 200 rpm, and stirred at 1300 rpm for 5 - 7 minutes;
  • the dispersant was added at a temperature of 115 - 125 ° C and a rotation speed of 200 rpm, and stirred at a rotational speed of 1300 rpm for 2.5 - 3.5 minutes.
  • the interfacial surfactant is a silane-based coupling agent, and the weight percentage of the masterbatch is 0.4-2.0%;
  • the high-polymer carrier slice is a nylon dry slice, a polypropylene slice or a polyester dry slice.
  • the weight percentage of the masterbatch is 64 - 79%;
  • the antioxidant is a phosphite triester, and the weight percentage of the masterbatch is 0.236 - 0.474%, and the dispersant is a polymer wax.
  • the weight percentage of the masterbatch is 1.18 - 4.74%.
  • the cooling of the mixture is specifically:
  • the cooled mixture was staked at a temperature of 220 - 265 ° C and cooled in a water bath at a temperature of 30 - 38 ° C to obtain a master batch.
  • the step of cooling the mixture further comprises the steps of: drying the masterbatch at a temperature of from 110 to 130 ° C, and vacuum balancing for 2-3 hours such that the proportion of water content of the master batch is less than or equal to five tenths.
  • the present invention also provides a fiber comprising the masterbatch, comprising the following weight percent components: 10-20% of the masterbatch and 80-90% of the polymer carrier slice.
  • the weight percentage of the masterbatch is 10%
  • the weight percentage of the high polymer carrier slice is 90%.
  • the high polymer carrier slice is a nylon dry slice, a polypropylene slice or a polyester dry slice.
  • the present invention also provides a method of producing a fiber for manufacturing the fiber, comprising:
  • the masterbatch is mixed with a polymer carrier slice and melted, and after spinning, cooled to a high-speed spinning pre-Oriented Yarn (P0Y fiber) and oiled;
  • the high-speed spinning pre-oriented primary fiber after oiling is made into Draw Textured Yarn (DTY fiber) by internal drawing and heating false twisting method.
  • the masterbatch is mixed with a polymer carrier slice and melted, and after spinning, cooled to a high-speed spinning pre-oriented primary fiber, and the oiling is specifically:
  • the masterbatch is mixed with the polymer carrier slice in a ratio of 1:9 - 2:8 by weight, and melted at a temperature of 255 - 265 ° C to form a melt;
  • the filaments having a humidity of more than 70% and a temperature of 18 -22 ° C are cooled into high-speed spinning pre-oriented primary fibers;
  • the oil is oiled in an amount of 7 to 9% by weight based on the weight of the high-speed spun pre-oriented primary fibers.
  • the high polymer carrier slice is a nylon dry slice, a polypropylene slice or a polyester dry slice.
  • the high-speed spinning pre-oriented preliminary fiber enthalpy after oiling is formed into a stretch-deformed silk fiber by an internal drafting heating false twisting method, and the oiling is specifically: drawing high-speed spinning pre-oriented preliminary fiber after oiling, drafting multiple 1.5 to 1.6 times, the twisted textured fiber is made by the heating false twisting method, and the ratio of the linear speed of the friction disk to the spinning speed when the fiber is processed into the stretched textured fiber is 14 - 16, that is, D/ The Y ratio is 14-16, and the oil is oiled in an amount of 2.5-3.5% by weight of the tensile textured yarn, and the spinning speed is 650 - 750 m/min.
  • the invention provides an inorganic solid phase composite powder, a masterbatch, a manufacturing method, a fiber and a manufacturing method, and has the following advantages:
  • the inorganic solid phase combination powder can have a silver content of up to 3 - 10%, so the sterilization rate is high, and the yin and positive bacteria are 5 ⁇
  • the bacterium has a bactericidal rate of up to 99. 5 % or more;
  • the inorganic solid phase composite powder having antibacterial and anti-ultraviolet composite functions is melted into the fiber according to the ratio, the powder has good thermal stability and chemical stability, and does not decompose during high-temperature spinning. It does not react with fiber macromolecules and related auxiliaries, so it can be retained in the fiber evenly and for a long time. It has long-lasting, safe and non-toxic side effects.
  • the invention firstly activates the inorganic solid phase combined powder after high temperature dehydration activation, and immediately stirs at a high temperature and high speed; then selects an appropriate interfacial reactant to coat the surface of the inorganic solid phase composite powder particles, so that the polymer and the particles are interposed.
  • the wrap angle is extremely small, which promotes the dispersibility of the inorganic solid phase composite powder particles in the organic polymer; and then the high-melting pressure multi-directional split mixing is added by using the forward twin-screw and the screw die before the multi-layer composite mixing facility Kneading, cutting and multiple shunting of inorganic solid-phase nanopowders in high polymer melts to achieve high dispersion; finally, further dispersing with high quality organic dispersant, and strengthening dispersion through multiple extractions
  • the measure enables the inorganic solid phase composite powder to be sufficiently dispersed in the organic polymer, and the obtained masterbatch is continuously added to the spinning of the spinning section to eliminate the generation of the melted rubber particles in the melt, so that the high speed of the functional fiber Spinning can proceed smoothly.
  • the fiber in the invention has good spinnability, and the indexes such as fiber fineness, relative fiber strength, fiber elongation, fiber elastic elongation and fiber elastic stability rate are all in compliance with the national first-class fiber standards.
  • the fiber of the present invention has a large improvement in water absorption, gas permeability, dyeing property and conductivity due to the incorporation of the inorganic solid phase composite powder, thereby increasing the water absorption, the gas permeability, the dyeing property and the electrical conductivity of the fiber of the present invention.
  • the comfort and drape of the fabric are worn; in addition, the fiber of the present invention can be used as a fiber material for woven (including shuttle and shuttleless woven) and warp knitted fabrics, and can be used alone or in a certain ratio. Cotton, hemp, rayon and other yarns are interwoven.
  • FIG. 2 is a flow chart of heating and stirring the inorganic solid phase combined powder after water activation in the present invention
  • FIG. 3 is a sequential addition of an interfacial reactant, a polymer carrier slice, an antioxidant heat-resistant agent, and a dispersion in the stirring of the present invention
  • Agent forming a mixture flow chart
  • FIG. 4 is a flow chart of the cooling mixture of the present invention.
  • Figure 5 is a flow chart of a method for manufacturing a fiber in the present invention.
  • Fig. 6 is a flow chart showing the process of mixing and melting the masterbatch with the high polymer carrier, and cooling the mixture into a high-speed spinning pre-oriented primary fiber after spinning. detailed description
  • the inorganic solid phase composite powder comprises the following weight percentage components: titanium compound 15%, silicon compound 17%, zinc compound 18%, and silver compound 50%.
  • the inorganic solid phase composite powder comprises the following weight percentage components: titanium compound 1 3 %, silicon compound 16%, zinc compound 22%, and silver compound 49%.
  • the inorganic solid phase composite powder comprises the following weight percentage components: titanium compound 16%, silicon compound 18%, zinc compound 15%, and silver compound 51%.
  • the titanium compound is preferably titanium dioxide
  • the silicon compound is preferably silicon dioxide
  • the zinc compound is preferably zinc oxide
  • the silver compound is preferably. It is silver nitrate.
  • the present invention is contained in the inorganic solid phase composite powder as compared with the prior art.
  • the amount of silver can be as high as 3 - 10%, so the bactericidal rate is high.
  • the sterilization rate can reach 99.5% or more; The breaking rate is over 99.8 %.
  • the inorganic solid phase composite powder has good thermal stability and chemical stability, it does not decompose during high-temperature spinning, and does not react with fiber macromolecules and related auxiliary agents, so that it can be uniformly and for a long time in the fiber. Retention, long-lasting, safe, non-toxic side effects.
  • FIG. 1 is a flow chart of a method for manufacturing a masterbatch according to the present invention, specifically:
  • Step Al the inorganic solid phase combined powder is deactivated by water
  • Step A3 adding an interfacial surfactant, a polymer carrier slice, an antioxidant, a dispersant to the mixture in sequence to form a mixture;
  • Step A4 cooling the above mixture.
  • step A2 is specifically:
  • Step A21 putting the inorganic solid phase combined powder activated by water removal into a blender
  • Step A22 heating the inorganic solid phase combined powder to a temperature of 1 30-150 ° C;
  • Step A23 stirring at a temperature of 1 30 - 150 ° C and a rotation speed of 1 300 rpm for 4 - 6 minutes, then stopping the heating;
  • Step A24 stirring is continued until the temperature of the inorganic solid phase composite powder is lowered to 1 15 - 125 °C.
  • 3 is a flow chart of sequentially adding an interfacial reactant, a polymer carrier slice, an antioxidant heat-resistant agent, and a dispersant to form a mixture in the stirring of the present invention.
  • step A3 is specifically: Step A31, adding an interfacial surfactant at a temperature of 115-125 ° C, 200 rpm, stirring at 1300 rpm for 2.5-3.5 minutes;
  • Step A32 adding a polymer carrier slice at a temperature of 115-125 ° C, 200 rpm, and stirring at 1300 rpm for 5-7 minutes;
  • Step A33 adding an antioxidant heat-resistant agent at a temperature of 115 - 125 ° C and a rotation speed of 200 rpm, and stirring at a rotation speed of 1300 rpm for 2.5 - 3.5 minutes;
  • Step A34 the dispersant is added at a temperature of 115-125 ° C and a rotation speed of 200 rpm, and stirred at a rotation speed of 1300 rpm for 2.5 - 3.5 minutes.
  • step A4 is specifically:
  • the masterbatch was prepared by cooling in a water bath at °C.
  • Step A101 taking 6000 g of inorganic solid phase combined powder into a drying box, in turn at a temperature of 110
  • Step A102 the above-mentioned inorganic solid phase combined powder activated by water is directly placed in a blender;
  • Step A103 the inorganic solid phase combined powder is heated to a temperature of 130 ° C;
  • Step A104 stirring at a temperature of 130 ° C, a rotation speed of 1300 rpm for 6 minutes, then stopping heating;
  • Step A105 continue to stir until the temperature of the inorganic solid phase composite powder drops to 115 ° C;
  • Step A106 adding 120 g of an interfacial surfactant to the inorganic solid phase composite powder at a temperature of 115 ° C and a rotation speed of 200 rpm, and stirring at a rotation speed of 1300 rpm for 2.5 minutes;
  • Step A107 adding 23700 g of a polymer carrier slice to the above mixture at a temperature of 115 ° C and a rotation speed of 200 rpm, and stirring at a rotation speed of 1300 rpm for 5 minutes;
  • Step A108 adding 95 g of an antioxidant heat-resistant agent at a temperature of 115 ° C and a rotation speed of 200 rpm, and stirring at a rotation speed of 1300 rpm for 2.5 minutes;
  • Step A109 adding 474 g of a dispersing agent at a temperature of 115 ° C and a rotation speed of 200 rpm, and stirring at a rotation speed of 1300 rpm for 2.5 minutes;
  • Step A110 the above mixture enters a water-cooled mixer, and is cooled by indirect cooling water at a temperature of 28 ° C, and the cooling water volume is 3 tons per hour, and the mixture is cooled to 30 ° C;
  • Step A 111 the cooled mixture enters a twin-screw extruder, and is sprayed at a temperature of 220 ° C, and cooled in a water bath at a temperature of 30 ° C to obtain a master batch;
  • Step A112 the masterbatch enters the drying drum, and is dried at a temperature of 110 ° C, and the vacuum is equilibrated for 3 hours, and the degree of vacuum is 0.8 kg, so that the water content of the master batch is 5 parts per million, and the bag sealing is used.
  • Step A201 taking 8000 g of the inorganic solid phase combined powder into a drying box, sequentially drying at a temperature of 115 ° C for 60 minutes, exhausting at a temperature of 125 ° C for 60 minutes, and at a temperature of 135 ° C. Dry in the lower row for 120 minutes;
  • Step A202 the above-mentioned inorganic solid phase combined powder activated by water is directly placed in a mixer;
  • Step A203 the inorganic solid phase combined powder is heated to a temperature of 140 ° C;
  • Step A204 stirring at a temperature of 140 ° C, a rotation speed of 1300 rpm for 5 minutes, and then stopping heating;
  • Step A205 continue to stir until the temperature of the inorganic solid phase composite powder is lowered to 120 ° C;
  • Step A206 adding 320 g of an interfacial surfactant to the inorganic solid phase composite powder at a temperature of 120 ° C and a rotation speed of 200 rpm, and stirring at a rotation speed of 1300 rpm for 3 minutes;
  • Step A207 further adding 20700 g of a polymer carrier slice to the above mixture at a temperature of 120 ° C and a rotation speed of 200 rpm, and stirring at 1300 rpm for 6 minutes;
  • Step A208 adding 103 g of an antioxidant heat-resistant agent at a temperature of 120 ° C and a rotation speed of 200 rpm, and stirring at a rotation speed of 1300 rpm for 3 minutes;
  • Step A209 adding 828 g of a dispersing agent at a temperature of 120 ° C and a rotation speed of 200 rpm, and stirring at a rotation speed of 1300 rpm for 3 minutes;
  • Step A210 the above mixture enters a water-cooled mixer, and is cooled by indirect cooling water at a temperature of 29 ° C, and the cooling water volume is 3 tons per hour, and the mixture is cooled to 32 ° C;
  • Step A211 the cooled mixture enters a twin-screw extruder, and is sprayed at a temperature of 240 ° C, and cooled in a water bath at a temperature of 34 ° C to obtain a master batch;
  • Step A212 the masterbatch enters the drying drum, is dried at a temperature of 120 ° C, and the vacuum is equilibrated for 2.5 hours.
  • the degree of vacuum is 0.8 kg, so that the water content of the master batch is three ten thousandths, and the bag is sealed and used.
  • Step A301 taking 10500 g of the inorganic solid phase combined powder into a drying box, sequentially drying at a temperature of 120 ° C for 50 minutes, exhausting at a temperature of 130 ° C for 50 minutes, and at a temperature of 140 ° C. Drying in the lower exhaust air for 110 minutes;
  • Step A302 the inorganic solid phase combined powder after the above water removal activation is directly placed in the mixer;
  • Step A303 the inorganic solid phase combined powder is heated to a temperature of 150 ° C;
  • Step A304 stirring at a temperature of 150 ° C, a rotation speed of 1300 rpm for 4 minutes, and then stopping heating;
  • Step A305 continue to stir until the temperature of the inorganic solid phase combined powder is lowered to 125 ° C;
  • Step A308 adding 106 g of an antioxidant heat-resistant agent at a temperature of 125 ° C and a rotation speed of 200 rpm, and stirring at a rotation speed of 1300 rpm for 3.5 minutes;
  • Step A309 adding 1062 g of a dispersing agent at a temperature of 125 ° C and a rotation speed of 200 rpm, and stirring at a rotation speed of 1300 rpm for 3.5 minutes;
  • Step A310 the above mixture enters a water-cooled mixer, and is cooled by indirect cooling water at a temperature of 30 ° C, and the cooling water volume is 3 tons per hour, and the mixture is cooled to 34 ° C;
  • Step A311 the cooled mixture enters a twin-screw extruder, and is sprayed at a temperature of 265 ° C, and cooled in a water bath at a temperature of 38 ° C to obtain a master batch;
  • Step A312 the masterbatch enters the drying drum, and is dried at a temperature of 130 ° C.
  • the vacuum is equilibrated for 2 hours, and the degree of vacuum is 0.8 kg, so that the water content of the master batch is one ten thousandth, and the bag sealing is used.
  • the inorganic solid phase composite powder is one of the first embodiment, the second embodiment, and the third embodiment.
  • the inorganic solid phase combination powder, the interfacial reactant is preferably a silane-based coupling agent
  • the high-molecular carrier slice may be a dry nylon slice, a polypropylene slice or a polyester dry slice
  • the antioxidant may be a phosphorous acid.
  • the triester and the dispersing agent are preferably polymer waxes.
  • the masterbatch comprises the following weight percentage components: inorganic solid phase combined powder 20% and high polymer carrier slicing 79%.
  • the masterbatch comprises the following weight percentage components: inorganic solid phase combined powder 27% and high polymer The vector slice was 73%.
  • the masterbatch comprises the following weight percentage components: inorganic solid phase combined powder 35% and high polymer carrier slice 64%.
  • the master batch is the first embodiment, the second embodiment and the third embodiment of the above-described masterbatch manufacturing method of the present invention. Masterbatch produced by the masterbatch manufacturing method of an embodiment.
  • the present invention enables the inorganic solid phase composite powder to be stirred at a high temperature and high speed immediately after high temperature deactivation, and then selects a suitable interfacial reactant to coat the surface of the inorganic solid phase composite powder particles.
  • the inclusion angle between the polymer and the particles is extremely small, which promotes the dispersibility of the inorganic solid phase composite powder particles in the organic polymer; and then uses the forward twin-screw and the screw die before the multi-layer composite mixing facility to have a high melt pressure.
  • Mixing by splitting, increasing the kneading, cutting, and mixing of the inorganic solid phase nanopowder in the polymer melt Multiple splitting action to achieve high dispersion; Finally, further dispersing with high-quality organic dispersant, and strengthening the dispersion by multiple extractions, so that the inorganic solid phase composite powder can be fully dispersed in the organic polymer.
  • the obtained masterbatch When the obtained masterbatch is continuously added to the spinning of the spinning section, the generation of the melted particles in the melt is eliminated, so that the high-speed spinning of the functional fiber can be smoothly performed; the antioxidant is added to prevent the molecular weight of the polymer from being lowered. , the relative viscosity of the masterbatch is only reduced by 0. 2 - 0. 3, so added to the spinning melt, and then take a special spinning process, the total viscosity does not affect the optimal fluidity of the spinning, to ensure The spinning speed was smoothly spun under conditions of 4,300 m/min.
  • FIG. 5 is a flow chart of a method for manufacturing a fiber according to the present invention, specifically:
  • Step Bl mixing and melting the masterbatch with the polymer carrier slice, spinning and cooling to a high-speed spinning pre-oriented primary fiber, and oiling;
  • Step B2 High-speed spinning pre-oriented initial fiber enthalpy after oiling is formed into a stretch-deformed silk fiber by an internal drafting heating false twisting method, and is oiled.
  • Figure 6 is a flow chart of mixing and melting of a masterbatch and a polymer carrier in the present invention, and cooling to a high-speed spinning pre-oriented primary fiber after spinning, in the technical scheme shown in Fig. 5, the step B1 is specifically: Step B11, mixing the masterbatch with the polymer carrier slice in a ratio of 1: 9 - 2: 8 by weight, and melting at a temperature of 255 - 265 ° C to form a melt;
  • Step B12 after melt spinning at a speed of 3900 ⁇ 4300 m / min, the filaments are cooled to a high-speed spinning pre-oriented primary fiber by a yarn having a humidity of more than 70% and a temperature of 18 - 22 °C;
  • Step B1 Oiling up by 7-9 % by weight of the high-speed spinning pre-oriented primary fibers.
  • Step B101 mixing the masterbatch and the polymer carrier slice in a ratio of 1:9 by weight, and melting at a temperature of 260 ° C to form a melt;
  • Step B103 oiling up by 8% by weight of the high-speed spinning pre-oriented primary fibers
  • Step B104 drafting the high-speed spinning pre-oriented primary fiber after oiling, the drawing ratio is 1.55 times, and forming a tensile-deformed silk fiber by using a heated false twisting method, and the D/Y ratio is 15 to occupy the stretching.
  • the weight percentage of the textured yarn was 3% of the oil amount, and the spinning speed was 700 m/min.
  • Step B201 mixing the masterbatch and the polymer carrier slice in a ratio of 1.5: 8.5 by weight, and melting at a temperature of 255 ° C to form a melt;
  • Step B202 after melt spinning at a speed of 3900 m / min, the filaments having a humidity of 71 % and a temperature of 18 ° C are cooled into high-speed spinning pre-oriented primary fibers;
  • Step B203 oiling up by 7 % by weight of the high-speed spinning pre-oriented primary fiber
  • Step B204 drawing the high-speed spinning pre-oriented primary fiber after oiling, the draw ratio is 1.5 times
  • the twisted textured fiber was prepared by heating false twisting, and the D/Y ratio was 14, and the oil was added in an amount of 2.5% by weight of the stretched textured yarn, and the spinning speed was 650 m/min.
  • Step B301 mixing the masterbatch with the polymer carrier slice in a ratio of 2:8 by weight, and melting at a temperature of 265 ° C to form a melt;
  • Step B302 after melt spinning at a speed of 4100 m / min, the filaments having a humidity of 80% and a temperature of 22 ° C are cooled into high-speed spinning pre-oriented primary fibers;
  • Step B303 oiling up by 9% by weight of the high-speed spinning pre-oriented primary fiber
  • Step B304 drawing the high-speed spinning pre-oriented primary fiber after oiling, the draw ratio is 1.6 times
  • the twisted textured fiber was prepared by heating false twisting, and the D/Y ratio was 16, and the oil was added in an amount of 3.5% by weight of the stretched textured yarn, and the spinning speed was 750 m/min.
  • the polymer carrier slice may be a dry nylon slice, a polypropylene slice or a dry slice of polyester.
  • the fibers include the following weight percent components: Masterbatch 10% and Polymer Carrier Slice 90 %.
  • the fibers include the following weight percent components: Masterbatch 15% and polymer carrier chips 85
  • the fibers include the following weight percent components: Masterbatch 20% and polymer carrier chips 80
  • the fiber is the first embodiment, the second embodiment and the third embodiment of the fiber manufacturing method of the present invention. Fiber made by the fiber manufacturing method.
  • the first embodiment, the second embodiment, and the third embodiment of the fiber manufacturing method of the present invention described above and the first embodiment, the second embodiment, and the third embodiment of the fiber of the present invention can be seen as Compared with the technology, the fiber of the invention has good spinnability, and the indexes such as fiber fineness, relative fiber strength, fiber elongation, fiber elastic elongation and fiber elasticity stability rate are all in compliance with the national first-class fiber standards;
  • the fiber of the invention has great improvement in water absorption, gas permeability, dyeing property and electrical conductivity, thereby increasing the comfort and drape of the fiber fabric; in addition, the fiber of the invention can be used as a woven fabric (including a shuttle)
  • the fiber raw materials of the fabrics such as shuttleless woven fabrics and warp knitting fabrics may be used singly or in a certain proportion with yarns and fibers such as cotton, hemp, and rayon.
  • the sterilizing rate of the fiber of the present invention is as high as 3 - 10%, so that the bactericidal rate is high, and the bactericidal rate is up to 99. 5 % or more for the negative and positive bacteria, especially the fungus represented by Candida albicans;
  • the ultraviolet blocking rate of the wavelength is more than 99.8 %; the antibacterial and anti-ultraviolet effects of the fiber are durable, safe, and have no toxic and side effects; the fiber has good spinnability, the fiber fineness, the relative strength of the fiber, the fiber elongation, and the fiber elastic elongation.
  • the indicators such as the long rate and the fiber elasticity stability rate are in compliance with the national first-class fiber standards; the water absorption, gas permeability, dyeing properties and conductivity of the fiber are greatly improved, thereby increasing the comfort of the fiber fabric.
  • the fiber of the present invention can be used as a fiber raw material for woven (including shuttle and shuttleless woven) and warp knitted fabrics, and can be used alone or as a single. Proportioned with cotton, hemp, rayon and other yarns and fibers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Artificial Filaments (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Description

无机固相组合粉体、 母粒及制造方法、 纤维及制造方法 技术领域
本发明涉及一种无机固相组合粉体、母粒及制造方法、纤维及制造方法, 特别是涉及一种无机固相组合粉体、 一种釆用所述无机固相组合粉体的母粒 及其制造方法、 一种釆用所述母粒的纤维及其制造方法。 背景技术
随着人们生活水平的不断提高, 穿衣不再只是单纯的遮体和保暖, 人们 对服装服饰健康功能的需求愈来愈迫切, 市场空间也越来越大。 尤其在夏季, 人体除了容易滋生以金黄色葡萄球菌和大肠杆菌为代表的阴、 阳性细菌外, 个别部位还会滋生和污染一些顽固真菌, 难以克服。 另外, 200 - 400nm波长 的紫外线长时间照射到人体上会导致皮炎、 皮癌和白内障等疾病的发生。 因 此, 能穿着有效防止细菌侵害和防止紫外线伤害的衣服, 一直是人们梦寐以 求的。
由于纤维是构成布料的基本单元, 因此不少研究者将目光聚集在如何制 造抗菌、 抗紫外线复合功能的纤维上。 现有技术釆用的方法是将具有抗菌、 抗紫外线复合功能的物质简单涂附在纤维表面, 这种方法制造出的功能纤维 存在如下缺点:
( 1 )功效不明显。 银离子具有杀菌的功效, 由于纤维中不含有银离子或 者银离子的含量很低, 因此纤维的杀菌率低, 且对以白色念珠菌为代表的真 菌无显著效果; 对 200 - 400nm波长的紫外线阻断率不高, 长时间照射在人体 上对皮肤仍能构成危害;
( 2 )效力短暂。 由于具有抗菌、抗紫外线复合功能的物质仅仅简单涂附 在纤维的表面, 而没有熔于纤维中, 因而功能物质易挥发或脱落, 最终导致 其活性降低, 甚至失效。 发明内容
本发明的目的是提供一种无机固相组合粉体、 母粒及制造方法、 纤维及 制造方法, 有效克服现有技术纤维功效不明显、 效力短暂等技术缺陷。
为实现上述目的, 本发明提供了一种无机固相组合粉体, 包括以下重量 百分比的组成成分: 钛化合物 13- 16%、 硅化合物 16- 18%、 锌化合物 15 - 22%和 4艮化合物 49 - 51 %。
优选地, 所述钛化合物为二氧化钛, 重量百分比为 15%; 所述硅化合物 为二氧化硅, 重量百分比为 17%; 所述锌化合物为氧化锌, 重量百分比为 18 %; 所述银化合物为硝酸银, 重量百分比为 50%。
本发明还提供了一种釆用所述无机固相组合粉体的母粒, 包括以下重量 百分比的组成成分: 所述无机固相组合粉体 20 - 35 %和高聚物载体切片 64 - 79%。
所述高聚物载体切片为尼龙干切片、 聚丙烯切片或聚酯干切片。
本发明还提供了一种制造所述母粒的母粒制造方法, 包括:
将所述无机固相组合粉体除水活化;
将除水活化后的无机固相组合粉体加热并搅拌;
搅拌中依次加入界面反应活性剂、 高聚物载体切片、 抗氧耐热剂、 分散 剂, 形成混合物;
冷却所述混合物。
所述将所述的无机固相组合粉体除水活化具体为: 将所述无机固相组合 粉体依次在温度 110- 120°C下排风烘干 50 - 70分钟、 在温度 120 - 130°C下 排风烘干 50 - 70分钟和在温度 130 - 140°C下排风烘干 110- 130分钟。
所述将除水活化后的无机固相组合粉体加热并搅拌具体为:
将所述除水活化后的无机固相组合粉体放入搅拌机中; 将所述无机固相组合粉体加热至温度 130 - 150°C;
在温度 130 - 150°C、转速 1300转 /分条件下搅拌 4 - 6分钟后停止加热; 继续搅拌直到所述无机固相组合粉体的温度降至 115 - 125°C。
所述搅拌中依次加入界面反应活性剂、 高聚物载体切片、 抗氧耐热剂、 分散剂具体为:
在 115 - 125°C的温度、 200转 /分的转速下加入界面反应活性剂,以 1300 转 /分的转速搅拌 2.5 - 3.5分钟;
在 115 - 125°C的温度、 200转 /分的转速下加入高聚物载体切片, 以 1300 转 /分的转速搅拌 5 - 7分钟;
在 115 - 125°C的温度、 200转 /分的转速下加入抗氧耐热剂,以转速 1300 转 /分的转速搅拌 2.5 - 3.5分钟;
在 115 - 125°C的温度、 200转 /分的转速下加入分散剂, 以转速 1300转 / 分的转速搅拌 2.5 - 3.5分钟。
优选地, 所述界面反应活性剂为硅烷基偶联剂, 占所述母粒的重量百分 比为 0.4 - 2.0%; 所述高聚物载体切片为尼龙干切片、 聚丙烯切片或聚酯干 切片, 占所述母粒的重量百分比为 64 - 79 %;所述抗氧耐热剂为亚磷酸三酯, 占所述母粒的重量百分比为 0.236 - 0.474 %, 所述分散剂为高分子蜡, 占所 述母粒的重量百分比为 1.18 - 4.74%。
所述冷却所述混合物具体为:
在水冷搅拌机中冷却所述混合物至温度 35°C以下;
将冷却后的混合物在 220 - 265 °C的温度下注条、 在温度 30- 38 °C下水浴 冷却, 制得母粒。
所述冷却所述混合物之后还包括步骤: 将所述母粒在 110 - 130°C的温度 下干燥,真空平衡 2 - 3小时,使得母粒的含水重量比例小于或等于万分之五。
本发明还提供了一种釆用所述母粒的纤维, 包括以下重量百分比的组成 成分: 所述母粒 10- 20%和高聚物载体切片 80 - 90%。 优选地, 所述母粒的重量百分比为 10%, 所述高聚物载体切片的重量百 分比为 90%。
所述高聚物载体切片为尼龙干切片、 聚丙烯切片或聚酯干切片。
本发明还提供了一种制造所述纤维的纤维制造方法, 包括:
将所述母粒与高聚物载体切片混合并熔融, 经纺丝后冷却成高速纺预取 向初纤维 ( Pre-Oriented Yarn, 简称 P0Y纤维) , 上油;
上油后的高速纺预取向初纤维釆用内牵伸加热假捻法制成拉伸变形丝纤 维 ( Draw Textured Yarn, 简称 DTY纤维) , 上油。
所述将所述母粒与高聚物载体切片混合并熔融, 经纺丝后冷却成高速纺 预取向初纤维, 上油具体为:
将所述母粒与高聚物载体切片按重量百分比为 1: 9 - 2: 8的比例混合,并 在温度 255 - 265 °C下熔融, 制成熔体;
在 3900 ~ 4300米 /分的速度下所述熔体纺丝后, 经湿度大于 70%、 温度 为 18 -22°C的丝条冷却成高速纺预取向初纤维;
以占所述高速纺预取向初纤维的重量百分比为 7 -9%的上油量上油。 所述高聚物载体切片为尼龙干切片、 聚丙烯切片或聚酯干切片。
所述上油后的高速纺预取向初纤维釆用内牵伸加热假捻法制成拉伸变形 丝纤维, 上油具体为: 将上油后的高速纺预取向初纤维牵伸, 牵伸倍数为 1.5 - 1.6 倍, 釆用加热假捻加弹法制成拉伸变形丝纤维, 纤维在加工成拉伸变 形丝纤维时摩擦盘的线速度与纺速度之比为 14 - 16,也就是 D/Y比为 14- 16, 以占所述拉伸变形丝的重量百分比为 2.5- 3.5%的上油量上油, 纺速为 650 - 750米 /分。
本发明提供了一种无机固相组合粉体、 母粒及制造方法、 纤维及制造方 法, 具有以下优点:
1、 功效明显。 由于纤维中的银离子逐渐释放后, 与细菌、 病毒等微生物 通过库仑引力接触反应, 穿透微生物呼吸系统和物质传输系统使菌体失去活 性, 随后银离子又会从菌体中游离出来, 重复进行杀菌活动, 本发明中无机 固相组合粉体的含银量可高达 3 - 1 0 % , 因此杀菌率高, 对阴、 阳性细菌, 特别是以白色念珠菌为代表的真菌, 杀菌率可达 99. 5 %以上; 对 200 - 400讓 波长的紫外线阻断率达到 99. 8 %以上。
2、 效力持久。 由于本发明将具有抗菌、 抗紫外线复合功能的无机固相组 合粉体按照配比熔于纤维中, 且该粉体的热稳定性和化学稳定性较好, 在高 温纺丝过程中不分解, 也不与纤维大分子及有关助剂发生反应, 因而能均匀 并长时间在纤维中保留, 效力持久、 安全, 无毒副作用。
3、 分散充分。 本发明首先使无机固相组合粉体高温除水活化后, 立即高 温、 高速搅拌; 然后选择合适的界面反应剂, 使无机固相组合粉体粒子表面 得以包覆, 使高聚物与粒子间包角极小, 促进无机固相组合粉体粒子在有机 高分子中的分散性; 接着釆用顺向双螺杆及螺杆模头前多层复合混炼设施以 高熔压多向分流混合, 增加含无机固相纳米粉体在高聚物熔体中的捏合、 切 割、 多次分流作用, 以达到高度分散的目的; 最后釆用高质量的有机分散剂 进一步分散, 通过多次釆取加强分散措施, 使无机固相组合粉体在有机高分 子中得以充分分散, 制得的母粒定量连续加入纺丝切片中纺丝时, 杜绝了熔 体中熔胶粒子的产生, 使得功能纤维的高速纺丝能够顺利进行。
4、 在制造母粒过程中, 加入抗氧耐热剂, 防止高聚物分子量降低, 使母 粒的相对粘度只降低 0. 2 - 0. 3 , 这样加入到纺丝熔体中, 再釆取特殊的纺丝 工艺, 其总粘度不会影响纺丝的最佳流动性, 保证了纺速在 4300米 /分钟的 条件下顺利纺丝。
5、 本发明中的纤维可纺性好, 纤维纤度、 纤维相对强度、 纤维伸长率、 纤维弹性伸长率和纤维弹性稳定率等指标经检测均符合国家行业纤维一等品 标准。
6、 由于掺入的无机固相组合粉体使纤维在其粒子周围产生裂缝, 因此本 发明纤维的吸水性、 透气性、 染色均勾性和导电性均有较大改善, 从而增加 了纤维织物穿着的舒适性和悬垂性; 此外, 本发明的纤维可作为机织 (包括 有梭和无梭机织)及经编等织物的纤维原料, 可以单独使用, 也可以按一定 比例与棉、 麻、 人造棉等纱及纤维交织使用。
下面通过附图和实施例, 对本发明的技术方案做进一步的详细描述。 附图说明
图 1为本发明母粒制造方法流程图;
图 2为本发明将除水活化后的无机固相组合粉体加热并搅拌流程图; 图 3为本发明搅拌中依次加入界面反应活性剂、 高聚物载体切片、 抗氧 耐热剂、 分散剂, 形成混合物流程图;
图 4为本发明冷却混合物流程图;
图 5为本发明中纤维制造方法流程图;
图 6为本发明将母粒与高聚物载体切片混合并熔融, 经纺丝后冷却成高 速纺预取向初纤维, 上油流程图。 具体实施方式
下面通过具体实施例进一步说明本发明无机固相组合粉体的技术方案。 本发明无机固相组合粉体第一实施例
无机固相组合粉体包括以下重量百分比的组成成分: 钛化合物 15 %、硅 化合物 17 %、 锌化合物 18 %和银化合物 50 %。
本发明无机固相组合粉体第二实施例
无机固相组合粉体包括以下重量百分比的组成成分: 钛化合物 1 3 %、硅 化合物 16 %、 锌化合物 22 %和银化合物 49 %。
本发明无机固相组合粉体第三实施例
无机固相组合粉体包括以下重量百分比的组成成分: 钛化合物 16 %、硅 化合物 18 %、 锌化合物 15 %和银化合物 51 %。 在上述本发明无机固相组合粉体第一实施例、 第二实施例和第三实施例 中, 钛化合物优选为二氧化钛, 硅化合物优选为二氧化硅, 锌化合物优选为 氧化锌, 银化合物优选为硝酸银。
通过本发明上述无机固相组合粉体第一实施例、 第二实施例和第三实施 例的技术方案可以看出, 与现有技术相比, 本发明由于无机固相组合粉体中 的含银量可高达 3 - 10 % , 因此杀菌率高, 对阴、 阳性细菌, 特别是以白色 念珠菌为代表的真菌, 杀菌率可达 99. 5 %以上; 对 200 - 400謹 波长的紫外 线阻断率达到 99. 8 %以上。 又由于无机固相组合粉体的热稳定性和化学稳定 性较好, 在高温纺丝过程中不分解, 也不与纤维大分子及有关助剂发生反应, 因而能均匀并长时间在纤维中保留, 效力持久、 安全, 无毒副作用。
图 1为本发明母粒制造方法流程图, 具体为:
步骤 Al、 将无机固相组合粉体除水活化;
步骤 A2、 将除水活化后的无机固相组合粉体加热并搅拌;
步骤 A3、 搅拌中依次加入界面反应活性剂、 高聚物载体切片、 抗氧耐热 剂、 分散剂, 形成混合物;
步骤 A4、 冷却上述混合物。
图 2为本发明将除水活化后的无机固相组合粉体加热并搅拌流程图, 在 图 1所示技术方案中, 步骤 A2具体为:
步骤 A21、 将除水活化后的无机固相组合粉体放入搅拌机中;
步骤 A22、 将无机固相组合粉体加热至温度 1 30 - 150 °C ;
步骤 A23、 在温度 1 30 - 150 °C、 转速 1 300转 /分条件下搅拌 4 - 6分钟 后停止加热;
步骤 A24、 继续搅拌直到无机固相组合粉体的温度降至 1 15 - 125 °C。 图 3为本发明搅拌中依次加入界面反应活性剂、 高聚物载体切片、 抗氧 耐热剂、 分散剂, 形成混合物流程图, 在图 1所示技术方案中, 步骤 A3具体 为: 步骤 A31、在 115- 125°C的温度、 200转 /分的转速下加入界面反应活性 剂, 以 1300转 /分的转速搅拌 2.5- 3.5分钟;
步骤 A32、在 115- 125°C的温度、 200转 /分的转速下加入高聚物载体切 片, 以 1300转 /分的转速搅拌 5 - 7分钟;
步骤 A33、 在 115 - 125°C的温度、 200转 /分的转速下加入抗氧耐热剂, 以转速 1300转 /分的转速搅拌 2.5 - 3.5分钟;
步骤 A34、 在 115- 125°C的温度、 200转 /分的转速下加入分散剂, 以转 速 1300转 /分的转速搅拌 2.5 - 3.5分钟。
图 4为本发明冷却混合物流程图, 在图 1所示技术方案中, 步骤 A4具 体为:
步骤 A41、 在水冷搅拌机中冷却混合物至温度 35 °C以下;
步骤 A42、将冷却后的混合物在 220 - 265 °C的温度下注条、在温度 30-38
°C下水浴冷却, 制得母粒。
本发明母粒制造方法第一实施例
步骤 A101、 取无机固相组合粉体 6000克放入烘干箱, 依次在温度 110
°C下排风烘干 70分钟、在温度 120°C下排风烘干 70分钟和在温度 130°C下排 风烘干 130分钟;
步骤 A102、 将上述除水活化后的无机固相组合粉体直接放入搅拌机中; 步骤 A103、 将无机固相组合粉体加热至温度 130 °C;
步骤 A104、 在温度 130°C、 转速 1300转 /分条件下搅拌 6分钟后停止加 热;
步骤 A105、 继续搅拌直到无机固相组合粉体的温度降至 115°C;
步骤 A106、在 115°C的温度、 200转 /分的转速下向上述无机固相组合粉 体中加入界面反应活性剂 120克, 以 1300转 /分的转速搅拌 2.5分钟;
步骤 A107、在 115°C的温度、 200转 /分的转速下向上述混合物中加入高 聚物载体切片 23700克, 以 1300转 /分的转速搅拌 5分钟; 步骤 A108、在 115°C的温度、 200转 /分的转速下加入抗氧耐热剂 95克, 以 1300转 /分的转速搅拌 2.5分钟;
步骤 A109、 在 115°C的温度、 200转 /分的转速下加入分散剂 474克, 以 1300转 /分的转速搅拌 2.5分钟;
步骤 A110、 上述混合物进入水冷搅拌机, 用温度 28 °C的间接冷却水冷 却, 冷却水量每小时 3吨, 使混合物冷却至 30°C;
步骤 A 111、冷却后的混合物进入双螺杆挤压机,在 220°C的温度下注条、 在温度 30°C下水浴冷却, 制得母粒;
步骤 A112、 母粒进入干燥转鼓, 在 110°C的温度下干燥, 真空平衡 3小 时, 真空度为 0.8千克, 使得母粒的含水重量比例为万分之五, 装袋密封备 用。
本发明母粒制造方法第二实施例
步骤 A201、 取无机固相组合粉体 8000克放入烘干箱, 依次在温度 115 °C下排风烘干 60分钟、在温度 125°C下排风烘干 60分钟和在温度 135°C下排 风烘干 120分钟;
步骤 A202、 将上述除水活化后的无机固相组合粉体直接放入搅拌机中; 步骤 A203、 将无机固相组合粉体加热至温度 140 °C;
步骤 A204、 在温度 140°C、 转速 1300转 /分条件下搅拌 5分钟后停止加 热;
步骤 A205、 继续搅拌直到无机固相组合粉体的温度降至 120°C;
步骤 A206、在 120°C的温度、 200转 /分的转速下向上述无机固相组合粉 体中加入界面反应活性剂 320克, 以 1300转 /分的转速搅拌 3分钟;
步骤 A207、在 120°C的温度、 200转 /分的转速下向上述混合物中再加入 高聚物载体切片 20700克, 以 1300转 /分的转速搅拌 6分钟;
步骤 A208、 在 120°C的温度、 200转 /分的转速下加入抗氧耐热剂 103 克, 以 1300转 /分的转速搅拌 3分钟; 步骤 A209、 在 120°C的温度、 200转 /分的转速下加入分散剂 828克, 以 1300转 /分的转速搅拌 3分钟;
步骤 A210、 上述混合物进入水冷搅拌机, 用温度 29 °C的间接冷却水冷 却, 冷却水量每小时 3吨, 使混合物冷却至 32 °C;
步骤 A211、冷却后的混合物进入双螺杆挤压机,在 240°C的温度下注条、 在温度 34°C下水浴冷却, 制得母粒;
步骤 A212、 母粒进入干燥转鼓, 在 120°C的温度下干燥, 真空平衡 2.5 小时, 真空度为 0.8千克, 使得母粒的含水重量比例为万分之三, 装袋密封 备用。
本发明母粒制造方法第三实施例
步骤 A301、 取无机固相组合粉体 10500克放入烘干箱, 依次在温度 120 °C下排风烘干 50分钟、在温度 130°C下排风烘干 50分钟和在温度 140°C下排 风烘干 110分钟;
步骤 A302、 将上述除水活化后的无机固相组合粉体直接放入搅拌机中; 步骤 A303、 将无机固相组合粉体加热至温度 150°C;
步骤 A304、 在温度 150°C、 转速 1300转 /分条件下搅拌 4分钟后停止加 热;
步骤 A305、 继续搅拌直到无机固相组合粉体的温度降至 125°C;
步骤 A306、在 125°C的温度、 200转 /分的转速下向上述无机固相组合粉 体中加入界面反应活性剂 630克, 以 1300转 /分的转速搅拌 3.5分钟;
步骤 A307、在 125°C的温度、 200转 /分的转速下向上述混合物中再加入 高聚物载体切片 17700克, 以 1300转 /分的转速搅拌 7分钟;
步骤 A308、 在 125°C的温度、 200转 /分的转速下加入抗氧耐热剂 106 克, 以 1300转 /分的转速搅拌 3.5分钟; 步骤 A309、 在 125°C的温度、 200转 /分的转速下加入分散剂 1062克, 以 1300转 /分的转速搅拌 3.5分钟;
步骤 A310、 上述混合物进入水冷搅拌机, 用温度 30°C的间接冷却水冷 却, 冷却水量每小时 3吨, 使混合物冷却至 34 °C;
步骤 A311、冷却后的混合物进入双螺杆挤压机,在 265°C的温度下注条、 在温度 38°C下水浴冷却, 制得母粒;
步骤 A312、 母粒进入干燥转鼓, 在 130°C的温度下干燥, 真空平衡 2小 时, 真空度为 0.8千克, 使得母粒的含水重量比例为万分之一, 装袋密封备 用。
在上述本发明母粒制造方法第一实施例、 第二实施例和第三实施例中, 无机固相组合粉体为上述第一实施例、 第二实施例和第三实施例中任一实施 例的无机固相组合粉体, 界面反应活性剂优选为硅烷基偶联剂, 高聚物载体 切片可以为尼龙干切片、 聚丙烯切片或聚酯干切片, 抗氧耐热剂可以为亚磷 酸三酯, 分散剂优选为高分子蜡。
本发明母粒第一实施例
母粒包括以下重量百分比的组成成分:无机固相组合粉体 20%和高聚物 载体切片 79%。
釆用上述第一实施例中的母粒制造的纤维状况如表 1所示:
表 1. 釆用上述第一实施例中的母粒制造的纤维状况
Figure imgf000013_0001
本发明母粒第二实施例
母粒包括以下重量百分比的组成成分:无机固相组合粉体 27%和高聚物 载体切片 73 %。
釆用上述第二实施例中的母粒制造的纤维状况如表 2所示:
表 2. 釆用上述第二实施例中的母粒制造的纤维状况
Figure imgf000014_0001
本发明母粒第三实施例
母粒包括以下重量百分比的组成成分:无机固相组合粉体 35 %和高聚物 载体切片 64 %。
釆用上述第三实施例中的母粒制造的纤维状况如表 3所示:
表 3. 釆用上述第三实施例中的母粒制造的纤维状况
Figure imgf000014_0002
在上述本发明母粒第一实施例、 第二实施例和第三实施例中, 母粒为釆 用上述本发明母粒制造方法第一实施例、 第二实施例和第三实施例中任一实 施例的母粒制造方法制造的母粒。
通过上述本发明母粒制造方法第一实施例、 第二实施例和第三实施例与 上述本发明母粒第一实施例、第二实施例和第三实施例的技术方案可以看出, 与现有技术相比, 本发明使无机固相组合粉体高温除水活化后, 立即高温、 高速搅拌; 然后选择合适的界面反应剂, 使无机固相组合粉体粒子表面得以 包覆, 使高聚物与粒子间包角极小, 促进无机固相组合粉体粒子在有机高分 子中的分散性; 接着釆用顺向双螺杆及螺杆模头前多层复合混炼设施以高熔 压多向分流混合, 增加含无机固相纳米粉体在高聚物熔体中的捏合、 切割、 多次分流作用, 以达到高度分散的目的; 最后釆用高质量的有机分散剂进一 步分散, 通过多次釆取加强分散措施, 使无机固相组合粉体在有机高分子中 得以充分分散, 制得的母粒定量连续加入纺丝切片中纺丝时, 杜绝了熔体中 熔胶粒子的产生, 使得功能纤维的高速纺丝能够顺利进行; 加入抗氧耐热剂, 防止高聚物分子量降低, 使母粒的相对粘度只降低 0. 2 - 0. 3 , 这样加入到纺 丝熔体中, 再釆取特殊的纺丝工艺, 其总粘度不会影响纺丝的最佳流动性, 保证了纺速在 4300米 /分钟的条件下顺利纺丝。
图 5为本发明中纤维制造方法流程图, 具体为:
步骤 Bl、将母粒与高聚物载体切片混合并熔融, 经纺丝后冷却成高速纺 预取向初纤维, 上油;
步骤 B2、上油后的高速纺预取向初纤维釆用内牵伸加热假捻法制成拉伸 变形丝纤维, 上油。
图 6为本发明将母粒与高聚物载体切片混合并熔融, 经纺丝后冷却成高 速纺预取向初纤维, 上油流程图, 在图 5所示技术方案中, 步骤 B1具体为: 步骤 B11、将母粒与高聚物载体切片按重量百分比为 1 : 9 - 2: 8的比例混 合, 并在温度 255 - 265 °C下熔融, 制成熔体;
步骤 B12、在 3900 ~ 4300米 /分的速度下熔体纺丝后,经湿度大于 70 %、 温度为 18 - 22 °C的丝条冷却成高速纺预取向初纤维;
步骤 B1 3、 以占高速纺预取向初纤维的重量百分比为 7 - 9 %的上油量上 油。
本发明纤维制造方法第一实施例
步骤 B101、将母粒与高聚物载体切片按重量百分比为 1 : 9的比例混合, 并在温度 260 °C下熔融, 制成熔体;
步骤 B102、 在 4300米 /分的速度下熔体纺丝后, 经湿度为 75 %、 温度 为 20 °C的丝条冷却成高速纺预取向初纤维;
步骤 B103、以占高速纺预取向初纤维的重量百分比为 8 %的上油量上油; 步骤 B104、将上油后的高速纺预取向初纤维牵伸, 牵伸倍数为 1.55倍, 釆用加热假捻加弹法制成拉伸变形丝纤维, D/Y比为 15, 以占拉伸变形丝的 重量百分比为 3%的上油量上油, 纺速为 700米 /分。
本发明纤维制造方法第二实施例
步骤 B201、 将母粒与高聚物载体切片按重量百分比为 1.5: 8.5的比例 混合, 并在温度 255°C下熔融, 制成熔体;
步骤 B202、 在 3900米 /分的速度下熔体纺丝后, 经湿度为 71 %、 温度 为 18°C的丝条冷却成高速纺预取向初纤维;
步骤 B203、以占高速纺预取向初纤维的重量百分比为 7 %的上油量上油; 步骤 B204、 将上油后的高速纺预取向初纤维牵伸, 牵伸倍数为 1.5倍, 釆用加热假捻加弹法制成拉伸变形丝纤维, D/Y比为 14, 以占拉伸变形丝的 重量百分比为 2.5%的上油量上油, 纺速为 650米 /分。
本发明纤维制造方法第三实施例
步骤 B301、将母粒与高聚物载体切片按重量百分比为 2: 8的比例混合, 并在温度 265°C下熔融, 制成熔体;
步骤 B302、 在 4100米 /分的速度下熔体纺丝后, 经湿度为 80%、 温度 为 22°C的丝条冷却成高速纺预取向初纤维;
步骤 B303、以占高速纺预取向初纤维的重量百分比为 9 %的上油量上油; 步骤 B304、 将上油后的高速纺预取向初纤维牵伸, 牵伸倍数为 1.6倍, 釆用加热假捻加弹法制成拉伸变形丝纤维, D/Y比为 16, 以占拉伸变形丝的 重量百分比为 3.5%的上油量上油, 纺速为 750米 /分。
在上述本发明纤维制造方法第一实施例、 第二实施例和第三实施例中, 釆用的是上述本发明母粒第一实施例、 第二实施例和第三实施例中任一实施 例的母粒, 高聚物载体切片可以为尼龙干切片、 聚丙烯切片或聚酯干切片。
本发明纤维第一实施例
纤维包括以下重量百分比的组成成分: 母粒 10%和高聚物载体切片 90 %。
本发明纤维第二实施例
纤维包括以下重量百分比的组成成分: 母粒 15 %和高聚物载体切片 85
%。
本发明纤维第三实施例
纤维包括以下重量百分比的组成成分: 母粒 20 %和高聚物载体切片 80
%。
在上述本发明纤维第一实施例、 第二实施例和第三实施例中, 纤维为釆 用上述本发明纤维制造方法第一实施例、 第二实施例和第三实施例中任一实 施例的纤维制造方法制造的纤维。
通过上述本发明纤维制造方法第一实施例、 第二实施例和第三实施例与 上述本发明纤维第一实施例、第二实施例和第三实施例的技术方案可以看出, 与现有技术相比, 本发明纤维的可纺性好, 纤维纤度、 纤维相对强度、 纤维 伸长率、 纤维弹性伸长率和纤维弹性稳定率等指标经检测均符合国家行业纤 维一等品标准; 且本发明纤维的吸水性、 透气性、 染色均勾性和导电性均有 较大改善, 从而增加了纤维织物穿着的舒适性和悬垂性; 此外, 本发明的纤 维可作为机织 (包括有梭和无梭机织)及经编等织物的纤维原料, 可以单独 使用, 也可以按一定比例与棉、 麻、 人造棉等纱及纤维交织使用。
本发明纤维含 >量可高达 3 - 1 0 % , 因此杀菌率高, 对阴、 阳性细菌, 特别是以白色念珠菌为代表的真菌, 杀菌率可达 99. 5 %以上; 对 200 - 400讓 波长的紫外线阻断率达到 99. 8 %以上; 纤维抗菌、 抗紫外线的效力持久、 安 全, 无毒副作用; 纤维可纺性好, 纤维纤度、 纤维相对强度、 纤维伸长率、 纤维弹性伸长率和纤维弹性稳定率等指标经检测均符合国家行业纤维一等品 标准; 纤维的吸水性、 透气性、 染色均勾性和导电性均有较大改善, 从而增 加了纤维织物穿着的舒适性和悬垂性; 此外, 本发明的纤维可作为机织 (包 括有梭和无梭机织)及经编等织物的纤维原料, 可以单独使用, 也可以按一 定比例与棉、 麻、 人造棉等纱及纤维交织使用。
最后所应说明的是, 以上实施例仅用以说明本发明的技术方案而非限 制, 尽管参照较佳实施例对本发明进行了详细说明, 本领域的普通技术人员 应当理解, 可以对本发明的技术方案进行修改或者等同替换, 而不脱离本发 明技术方案的精神和范围。

Claims

权 利 要 求
1、 一种无机固相组合粉体, 其特征在于, 包括以下重量百分比的组成 成分: 钛化合物 13 - 16 %、 硅化合物 16 - 18 %、 锌化合物 15 - 22 %和银化 合物 49 - 51 %。
2、 根据权利要求 1 所述的无机固相组合粉体, 其特征在于, 所述钛化 合物为二氧化钛, 重量百分比为 15%; 所述硅化合物为二氧化硅, 重量百分 比为 17%; 所述锌化合物为氧化锌, 重量百分比为 18%; 所述银化合物为硝 酸银, 重量百分比为 50%。
3、 一种釆用权利要求 1或 2所述无机固相组合粉体的母粒, 其特征在 于, 包括以下重量百分比的组成成分: 所述无机固相组合粉体 20 - 35 %和高 聚物载体切片 64 - 79 %。
4、 根据权利要求 3所述的母粒, 其特征在于, 所述高聚物载体切片为 尼龙干切片、 聚丙烯切片或聚酯干切片。
5、 一种制造权利要求 3或 4所述母粒的母粒制造方法, 其特征在于, 包括:
将所述无机固相组合粉体除水活化;
将除水活化后的无机固相组合粉体加热并搅拌;
搅拌中依次加入界面反应活性剂、 高聚物载体切片、 抗氧耐热剂、 分散 剂, 形成混合物;
冷却所述混合物。
6、 根据权利要求 5所述的母粒制造方法, 其特征在于, 所述将所述无机 固相组合粉体除水活化具体为: 将所述无机固相组合粉体依次在温度 110- 120°C下排风烘干 50 - 70分钟、 在温度 120 - 130°C下排风烘干 50 - 70分钟 和在温度 130 - 140°C下排风烘干 110- 130分钟。
7、 根据权利要求 5所述的母粒制造方法, 其特征在于, 所述将除水活化 后的无机固相组合粉体加热并搅拌具体为: 将所述除水活化后的无机固相组合粉体放入搅拌机中;
将所述无机固相组合粉体加热至温度 130 - 150°C;
在温度 130 - 150°C、 转速 1300转 /分条件下搅拌 4 - 6分钟后停止加热; 继续搅拌直到所述无机固相组合粉体的温度降至 115 - 125°C。
8、 根据权利要求 5所述的母粒制造方法, 其特征在于, 所述搅拌中依次 加入界面反应活性剂、 高聚物载体切片、 抗氧耐热剂、 分散剂具体为:
在 115 - 125°C的温度、 200转 /分的转速下加入界面反应活性剂,以 1300 转 /分的转速搅拌 2.5 - 3.5分钟;
在 115 - 125°C的温度、 200转 /分的转速下加入高聚物载体切片, 以 1300 转 /分的转速搅拌 5 - 7分钟;
在 115 - 125°C的温度、 200转 /分的转速下加入抗氧耐热剂,以转速 1300 转 /分的转速搅拌 2.5 - 3.5分钟;
在 115 - 125°C的温度、 200转 /分的转速下加入分散剂, 以转速 1300转 / 分的转速搅拌 2.5 - 3.5分钟。
9、 根据权利要求 5或 8所述的母粒制造方法, 其特征在于, 所述界面反 应活性剂为硅烷基偶联剂, 占所述母粒的重量百分比为 0.4 - 2.0 %。
10、 根据权利要求 5或 8所述的母粒制造方法, 其特征在于, 所述高聚 物载体切片为尼龙干切片、 聚丙烯切片或聚酯干切片, 占所述母粒的重量百 分比为 64 - 79 %。
11、 根据权利要求 5或 8所述的母粒制造方法, 其特征在于, 所述抗氧 耐热剂为亚碑酸三酯, 占所述母粒的重量百分比为 0.236 - 0.474 %。
12、 根据权利要求 5或 8所述的母粒制造方法, 其特征在于, 所述分散 剂为高分子蜡, 占所述母粒的重量百分比为 1.18 - 4.74%。
13、 根据权利要求 5所述的母粒制造方法, 其特征在于, 所述冷却所述 混合物具体为:
在水冷搅拌机中冷却所述混合物至温度 35 °C以下; 将冷却后的混合物在 220 - 265 °C的温度下注条、 在温度 30- 38 °C下水浴 冷却, 制得母粒。
14、 根据权利要求 5或 13所述的母粒制造方法, 其特征在于, 所述冷却 所述混合物之后还包括步骤: 将所述母粒在 110- 130°C的温度下干燥, 真空 平衡 2 - 3小时, 使得母粒的含水重量比例小于或等于万分之五。
15、 一种釆用权利要求 3或 4所述母粒的纤维, 其特征在于, 包括以下 重量百分比的组成成分: 所述母粒 10 - 20%和高聚物载体切片 80 - 90%。
16、 根据权利要求 15所述的纤维, 其特征在于, 所述母粒的重量百分比 为 10% , 所述高聚物载体切片的重量百分比为 90%。
17、 根据权利要求 15或 16所述的纤维, 其特征在于, 所述高聚物载体 切片为尼龙干切片、 聚丙烯切片或聚酯干切片。
18、 一种制造权利要求 15、 16或 17所述纤维的纤维制造方法, 其特征 在于, 包括:
将所述母粒与高聚物载体切片混合并熔融, 经纺丝后冷却成高速纺预取 向初纤维, 上油;
上油后的高速纺预取向初纤维釆用内牵伸加热假捻法制成拉伸变形丝纤 维, 上油。
19、 根据权利要求 18所述的纤维制造方法, 其特征在于, 所述将所述母 粒与高聚物载体切片混合并熔融, 经纺丝后冷却成高速纺预取向初纤维, 上 油具体为:
将所述母粒与高聚物载体切片按重量百分比为 1: 9 - 2: 8的比例混合,并 在温度 255 - 265 °C下熔融, 制成熔体;
在 3900 ~ 4300米 /分的速度下所述熔体纺丝后, 经湿度大于 70%、 温 度为 18 - 22°C的丝条冷却成高速纺预取向初纤维;
以占所述高速纺预取向初纤维的重量百分比为 7 - 9 %的上油量上油。
20、 根据权利要求 18或 19所述的纤维制造方法, 其特征在于, 所述高 聚物载体切片为尼龙干切片、 聚丙烯切片或聚酯干切片。
21、 根据权利要求 18所述的纤维制造方法, 其特征在于, 所述上油后的 高速纺预取向初纤维釆用内牵伸加热假捻法制成拉伸变形丝纤维, 上油具体 为: 将上油后的高速纺预取向初纤维牵伸, 牵伸倍数为 1.5 - 1.6倍, 釆用内 牵伸加热假捻法制成拉伸变形丝纤维, 0 比为 14- 16, 以占所述拉伸变形 丝的重量百分比为 2.5 - 3.5%的上油量上油, 纺速为 650 - 750米 /分。
PCT/CN2009/070551 2008-03-28 2009-02-26 无机固相组合粉体、母粒及制造方法、纤维及制造方法 WO2009117911A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810103008.5 2008-03-28
CN2008101030085A CN101255614B (zh) 2008-03-28 2008-03-28 无机固相组合粉体、母粒及制造方法、纤维及制造方法

Publications (1)

Publication Number Publication Date
WO2009117911A1 true WO2009117911A1 (zh) 2009-10-01

Family

ID=39890701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/070551 WO2009117911A1 (zh) 2008-03-28 2009-02-26 无机固相组合粉体、母粒及制造方法、纤维及制造方法

Country Status (3)

Country Link
US (1) US8105688B2 (zh)
CN (1) CN101255614B (zh)
WO (1) WO2009117911A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103741242A (zh) * 2013-12-04 2014-04-23 太仓荣文合成纤维有限公司 一种氧化亚铜基抗菌纤维及其制备方法
CN104746172A (zh) * 2015-04-09 2015-07-01 苏州金辉纤维新材料有限公司 一种具有高效吸附和吸湿性能的咖啡炭聚酯纤维的制备方法
CN104746171A (zh) * 2015-04-09 2015-07-01 苏州金辉纤维新材料有限公司 一种具有高效吸附和吸湿性能的汉麻炭聚酯纤维的制备方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101255614B (zh) * 2008-03-28 2010-10-06 刘燕平 无机固相组合粉体、母粒及制造方法、纤维及制造方法
CN102465393A (zh) * 2010-11-08 2012-05-23 慧濠光电科技股份有限公司 一种软性基板的制作方法以及太阳能电池及其制作方法
CN102534850A (zh) * 2010-12-31 2012-07-04 上海德福伦化纤有限公司 无机纳米光响应型自清洁聚酯纤维植绒绒毛的制造方法
CN102241882B (zh) * 2011-06-17 2012-11-14 广东新会美达锦纶股份有限公司 一种负离子聚酰胺母粒及纤维的制备方法
CN102586937A (zh) * 2012-02-26 2012-07-18 昆山华阳复合材料科技有限公司 抗菌纤维及其加工工艺
CA2926945A1 (en) 2013-06-25 2014-12-31 Ricardo Benavides Perez Bacteriostatic and fungistatic additive in masterbatch for application in plastics, and method for producing same
CN103665842A (zh) * 2013-11-18 2014-03-26 安徽宜万丰电器有限公司 一种汽车塑料件用防紫外线改性尼龙6材料
CN103924317B (zh) * 2014-04-23 2016-05-25 北京高科迈科技开发有限公司 一种抗菌聚丙烯的生成方法
CN104674371B (zh) * 2015-03-18 2016-10-05 苏州大学 一种纳米碳化锆感应蓄热保温聚酯假捻变形丝及其制备方法
CN104746173B (zh) * 2015-04-09 2017-01-25 苏州金辉纤维新材料有限公司 一种具有高效吸附和吸湿性能的麻秆炭聚酯纤维的制备方法
CN105040142A (zh) * 2015-08-17 2015-11-11 俞尧芳 一种抗菌涤纶纤维及其制备方法
CN105839218A (zh) * 2016-04-05 2016-08-10 南京众力盛强新材料科技有限公司 一种新型复合材料纤维、其制备方法及熔喷纺丝方法
US10501587B2 (en) * 2016-07-19 2019-12-10 Cupron, Inc. Processes for producing an antimicrobial masterbatch and products thereof
CN110055643A (zh) * 2019-05-23 2019-07-26 佳莱科技有限公司 一种氧化锌纱线及其制备方法以及应用
CN110552080A (zh) * 2019-09-04 2019-12-10 浙江迈实科技有限公司 一种光触媒化纤的切片纺丝方法
CN112647146B (zh) * 2020-12-17 2022-10-18 厦门翔鹭化纤股份有限公司 一种防水涤纶纤维的制备方法及其应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1147963A (zh) * 1995-10-13 1997-04-23 珠海经济特区天年高科技国际企业公司 一种能显著改善人体微循环的多元复合粉体及其制品
JPH09176914A (ja) * 1995-12-21 1997-07-08 Yoshiyuki Tokuda 消臭性並びに抗菌性を保持する合成繊維
CN1202293C (zh) * 2000-12-07 2005-05-18 天津市尼卡特种纤维科技发展有限公司 锦纶-6抗紫外线纤维及其制作方法
CN1888159A (zh) * 2006-07-24 2007-01-03 刘燕平 多功能纳米安全高效抑菌纤维
CN101063235A (zh) * 2006-04-26 2007-10-31 上海展扬纳米科技有限公司 一种抗菌多功能纤维材料及其制备方法
CN101187079A (zh) * 2007-12-10 2008-05-28 刘燕平 抗菌抗紫外线复合功能健康纤维
CN101238817A (zh) * 2008-03-06 2008-08-13 刘燕平 抑菌剂、远红外线发射剂、母粒和纤维及其制造方法
CN101255614A (zh) * 2008-03-28 2008-09-03 刘燕平 无机固相组合粉体、母粒及制造方法、纤维及制造方法
CN101255329A (zh) * 2006-07-24 2008-09-03 刘燕平 母粒和纤维及其制造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE88324T1 (de) * 1984-12-28 1993-05-15 Johnson Matthey Plc Antimikrobielle zusammensetzungen.
FR2612520A1 (fr) * 1987-03-17 1988-09-23 Atochem Procede de preparation en emulsion suspendue de polymeres et copolymeres insolubles dans leurs compositions monomeres ou comonomeres
TW224494B (zh) * 1991-07-25 1994-06-01 Kuraray Co
US5180585A (en) * 1991-08-09 1993-01-19 E. I. Du Pont De Nemours And Company Antimicrobial compositions, process for preparing the same and use
JP3095960B2 (ja) * 1994-10-05 2000-10-10 触媒化成工業株式会社 抗菌剤
CN1294144A (zh) * 2000-11-14 2001-05-09 上海博纳科技发展有限公司 一种抗菌塑料母粒及其在制备抗菌塑料制品中的应用
KR100554057B1 (ko) * 2001-05-24 2006-02-22 쇼와 덴코 가부시키가이샤 복합 산화물 및 그의 제조 방법 및 용도
CN100497771C (zh) * 2007-06-15 2009-06-10 吴进前 纳米陶瓷复合细旦丙纶多功能纤维及其制造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1147963A (zh) * 1995-10-13 1997-04-23 珠海经济特区天年高科技国际企业公司 一种能显著改善人体微循环的多元复合粉体及其制品
JPH09176914A (ja) * 1995-12-21 1997-07-08 Yoshiyuki Tokuda 消臭性並びに抗菌性を保持する合成繊維
CN1202293C (zh) * 2000-12-07 2005-05-18 天津市尼卡特种纤维科技发展有限公司 锦纶-6抗紫外线纤维及其制作方法
CN101063235A (zh) * 2006-04-26 2007-10-31 上海展扬纳米科技有限公司 一种抗菌多功能纤维材料及其制备方法
CN1888159A (zh) * 2006-07-24 2007-01-03 刘燕平 多功能纳米安全高效抑菌纤维
CN101255329A (zh) * 2006-07-24 2008-09-03 刘燕平 母粒和纤维及其制造方法
CN101187079A (zh) * 2007-12-10 2008-05-28 刘燕平 抗菌抗紫外线复合功能健康纤维
CN101238817A (zh) * 2008-03-06 2008-08-13 刘燕平 抑菌剂、远红外线发射剂、母粒和纤维及其制造方法
CN101255614A (zh) * 2008-03-28 2008-09-03 刘燕平 无机固相组合粉体、母粒及制造方法、纤维及制造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103741242A (zh) * 2013-12-04 2014-04-23 太仓荣文合成纤维有限公司 一种氧化亚铜基抗菌纤维及其制备方法
CN104746172A (zh) * 2015-04-09 2015-07-01 苏州金辉纤维新材料有限公司 一种具有高效吸附和吸湿性能的咖啡炭聚酯纤维的制备方法
CN104746171A (zh) * 2015-04-09 2015-07-01 苏州金辉纤维新材料有限公司 一种具有高效吸附和吸湿性能的汉麻炭聚酯纤维的制备方法

Also Published As

Publication number Publication date
US20090241504A1 (en) 2009-10-01
CN101255614B (zh) 2010-10-06
US8105688B2 (en) 2012-01-31
CN101255614A (zh) 2008-09-03

Similar Documents

Publication Publication Date Title
WO2009117911A1 (zh) 无机固相组合粉体、母粒及制造方法、纤维及制造方法
EP2878715B1 (en) Method for preparing antibacterial thermal storage fiber, fiber prepared thereby, and fabrics using same
CN110528097B (zh) 一种光热转换、蓄热调温纤维素纤维及其制备方法
CN105420835A (zh) 一种抗菌远红外保健聚酯纤维的制造方法
KR101623268B1 (ko) 축열 보온성 폴리에스터 섬유 및 그 제조방법
CN109576808B (zh) 一种无机阻燃智能调温纤维素纤维及其制备方法
CN106319669A (zh) 一种聚酰胺6纤维及其制备方法
CN111235681A (zh) 一种大黄素改性涤纶长丝及其制备方法
CN107587207A (zh) 一种发热相变皮芯纤维及其制备方法
CN104389100A (zh) 一种荧光防晒面料的生产方法
CN107385597A (zh) 一种用于网布生产的铜离子抗菌尼龙纱线
CN101314873A (zh) 一种聚丙烯纳米磁性纤维的制备方法
CN112779629A (zh) 抗菌微米丝复合超细纤维及其制备方法
CN109267168A (zh) 一种复合抗菌聚酯短纤维及其制备方法
CN115161802A (zh) 一种抗菌抗紫外线皮芯再生聚酯纤维的制备方法
CN105671664B (zh) 一种调温抗菌珍珠再生纤维素纤维及其制备方法
CN114635208A (zh) 涤纶/海岛纤维非弹力包芯纱及其面料
CN110257947A (zh) 一种抗菌聚酯工业丝及其制备方法
CN103526416B (zh) 远红外派丝特纤维家纺面料
CN101314870B (zh) 纤维的制造方法
CN107254100A (zh) 一种高耐热耐候性的丙纶纤维母粒及其制备方法
CN112981588A (zh) 一种改性锦纶丝的生产工艺
CN111155199A (zh) 一种石墨烯复合纤维制备方法
KR101157513B1 (ko) 은 나노입자가 증착된 마스터배치을 이용하여 제조된다기능사 및 이의 제조방법
CN104342777B (zh) 一种具有远红外功能的涤纶单丝及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09725857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09725857

Country of ref document: EP

Kind code of ref document: A1