WO2009116551A1 - ナノ粒子の集積結合体およびその製造方法 - Google Patents

ナノ粒子の集積結合体およびその製造方法 Download PDF

Info

Publication number
WO2009116551A1
WO2009116551A1 PCT/JP2009/055225 JP2009055225W WO2009116551A1 WO 2009116551 A1 WO2009116551 A1 WO 2009116551A1 JP 2009055225 W JP2009055225 W JP 2009055225W WO 2009116551 A1 WO2009116551 A1 WO 2009116551A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
types
nanocubes
kinds
binders
Prior art date
Application number
PCT/JP2009/055225
Other languages
English (en)
French (fr)
Inventor
智志 和田
あい 野澤
Original Assignee
国立大学法人山梨大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人山梨大学 filed Critical 国立大学法人山梨大学
Priority to JP2010503892A priority Critical patent/JP4769928B2/ja
Publication of WO2009116551A1 publication Critical patent/WO2009116551A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/32Titanates; Germanates; Molybdates; Tungstates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/14Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/38Particle morphology extending in three dimensions cube-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Definitions

  • the present invention relates to a nanoparticle integrated conjugate and a method for producing the same.
  • Nanoparticles are thought to have the potential to achieve dramatically superior properties as dielectric materials, magnetic materials, piezoelectric materials, metal materials, semiconductor materials, organic materials, and so on. In order to realize these materials, it is necessary to integrate nanoparticles. In particular, it is expected that unexpected characteristics can be obtained by integrating two or more types of nanoparticles with different chemical compositions.
  • the shape of the nanoparticles is limited to a spherical shape, and two types of spherical nanoparticles are used to place other types of nanoparticles in the gap between one type of adjacent nanoparticles.
  • the ratio of the particle diameters is limited and that the binding force does not work between different kinds of nanoparticles, or that even if it works, it is about a weak van der Luska level.
  • the shape of the nano particles used is not limited to a spherical shape, and most preferably, cubic nano particles can be used. For this purpose.
  • the present invention also allows the nanoparticle size to be arranged in a structure of at least two types of nanoparticles, and the size of the nanoparticles is not limited to a specific ratio.
  • the purpose is to do.
  • Another object of the present invention is to increase the bonding force between different kinds of nanoparticles in a structure of at least two types of nanoparticles.
  • the method for producing an integrated assembly of nanoparticles according to the present invention involves the chemical bonding of at least two types of binders having excellent selective binding properties to at least two types of nanoparticles having different chemical compositions. (Including adsorption due to covalent bonds, coordination bonds, ionic bonds, metal bonds, intermolecular bonds, etc., including hydrogen bonds), and then at least these By mixing the two types of nanoparticles in a solvent, the two types of nanoparticles are selectively attracted and integrated and bonded together by at least the above-mentioned binder.
  • At least two types of nanoparticles with different chemical compositions can be used, or they can be produced separately.
  • Nanoparticles include oxide nanoparticles (ceramics), metal nanoparticles, semiconductor nanoparticles, polymer nanoparticles, and so on. It is only necessary to select and combine two or more different types of nanoparticles from among these for the integrated conjugate. Nanoparticles are most preferably cube-shaped nanoparticles (nanocube particles), but they may be rectangular parallelepipeds, cubes or cube-like (similar) shapes, or other shapes. The size of the nanoparticles should be about 100 nanometers or less on the length of one side (longest side) or the diameter, but it may be larger.
  • An integrated conjugate consists of a number of nanoparticles that are two-dimensionally arranged (assembled) and bonded to each other, and a number of nanoparticles that are three-dimensionally arranged (assembled) and bonded to each other Including.
  • the integrated conjugate is desirably arranged with two or more kinds of nanoparticles with periodicity.
  • the integrated conjugate has a strong periodicity.
  • the periodicity is not only that two types of nanoparticles are alternately arranged one by one, but also the same type.
  • Two or more nanoparticles may be arranged in succession, and another type of nanoparticles may exist next to them. It is preferable that two or more kinds of nanoparticles have the same size (for example, ideally, the variation is within 5%).
  • the length of one side may be an integral multiple (or a fraction) of the length of one side of another nanoparticle.
  • variations in the size (length of one side) of the nanoparticles will be allowed depending on the tolerance of the bonding strength of the nanoparticles.
  • Binders with excellent selective binding properties include substances with molecular recognition, for example, four bases of DNA (deoxyribonucleic acid) (adenine (A), thymine (T), It includes guanine (G), cytosine (C)), amino group derivatives and halogen derivatives.
  • the solvent is preferably an organic solvent, but it can be water or an aqueous solution, depending on the type of nanoparticles and binder.
  • a separate binder is adsorbed (chemically adsorbed) to each of at least two types of nanoparticles by chemical bonds. These binders are selectively attracted by utilizing the selective binding property, and the nanoparticles are integrated and bound.
  • Nanoparticles are particularly shaped because they bind to different types of nanoparticles using the selective binding of selective binders to selective binders (selective binders). It does not have to be limited. In addition, it is preferable to have a shape that facilitates the accumulation of different types of nanoparticles, especially a cube, a rectangular parallelepiped, or similar shapes. Also, the size and ratio of different types of nanoparticles need not be specifically limited. Of course, it is preferable that the different types of nanoparticles are easy to integrate, for example, about the same size, and an integer multiple (a fraction of an integer). Since the binding strength of different kinds of nanoparticles depends on the binding strength of the binding agent, a binding agent with strong binding strength (for example, hydrogen bonding) Can be realized by using a strong binding force.
  • a binding agent with strong binding strength for example, hydrogen bonding
  • a dispersing / crosslinking agent should be used. That is, before the step of adsorbing the binder to the nanoparticles by chemical bonding, a dispersion Z cross-linking agent is added to the solvent so that the dispersion of the nanoparticles in the solvent and the adsorption of the corresponding binder by chemical bonding can be performed. To promote.
  • Dispersed Z-crosslinkers are also called dispersants, binding aids, surface modifiers, bonding agents, etc., and disperse nanoparticles in a solvent in a solvent before integration, and chemically bind the binder into nanoparticles. It acts to adsorb by binding, and it can be selected according to the type of solvent, nanoparticles, and binder.
  • examples of the dispersion cross-linking agent include trioctylphosphine oxide (T0P0), alkyl phosphate derivatives, and the like.
  • the surface of the nanoparticles is modified with a dispersion-crosslinking agent, the same type of nanoparticles are dispersed without agglomeration, and the binder is easily adsorbed to the nanoparticles by chemical bonding.
  • the invention further provides an integrated conjugate of nanoparticles.
  • the nanoparticle integrated conjugate according to the present invention has at least two types of binding agents with excellent selective binding on the surface of at least two types of nanoparticles with different chemical compositions. It is more adsorbed, and at least two kinds of nanoparticles are integrated and bound by selective binding with these binders.
  • the nanoparticles are surface-modified with a dispersion crosslinking agent, and the binding agent is adsorbed to the nanoparticles by chemical binding with the dispersion crosslinking agent.
  • oxide nanoparticle integrated conjugate Preference for nanoparticle integrated conjugate and method for producing the same according to the present invention
  • two kinds of oxide nanoparticles with different nanoparticles more preferably oxide nanocube particles (for example, BT nanocube and ST nanocube described later).
  • Oxide nanoparticles can be produced, for example, using the solvothermal method, but using high-temperature and high-pressure solvents, cubic or near-shaped naphthic particles (these can be referred to as nanocube particles or simply nanocubes). You can get
  • binders Two of the DNA bases with molecular recognition properties are used as binders.
  • the pair of adenine (A) and thymine (T) are bonded by hydrogen bonds.
  • adenine and chimin do not have a bond.
  • guanine (G) and cytosine (C) pairs are also bonded by hydrogen bonds.
  • a dispersion cross-linking agent (for example, T0P0 described above) is added to a solution of one type of nano-cube particles (for example, BT nano-cube) to modify the surface of the nano-cube particles with the dispersion / cross-linking agent.
  • Adenine (A) is added to this solution, and adenine (A) is adsorbed to the nanocube particles by chemical bonds.
  • a dispersion / crosslinking agent (for example, T0P0) is added to the solution of the other type of nanocube particles (for example, ST nanocube) to modify the surface of the nanocube particles with the dispersion crosslinking agent.
  • T is added to adsorb the thymine (T) to the nanocube particles by chemical bonds.
  • the solvent for these solutions is preferably an organic solvent, for example hexane.
  • Figure 1 is a transmission electron micrograph showing how the BT nanocube and ST nanocube are integrated and bonded.
  • Fig. 2 is a photograph that is easy to understand by adding the symbols BT and ST to the photograph of Fig. 1.
  • Oxide nanoparticles in particular as a representative of the nanoparticles cubic (nanocube particles), Serra mission-barium titanate (BaTi0 3) is a click material Nanoki Yubu particles (hereinafter, simply referred to as "BT nanocube” ) And the manufacturing (synthesis) method of strontium titanate (SrTiO 3 ) nanocube particles (hereinafter simply referred to as “ST nanocubes”). The solvothermal method is used here.
  • the reaction temperature is 200 ° C to 260 ° C, and the reaction time is about 0.5 to 50 hours.
  • the Ba / Ti feed ratio should be about 0.5 to 50.0, and the Ti concentration should be 0.002 molZ 1 to 1. Omol / 1.
  • the reaction temperature is 240 ° C
  • the Ba / Ti charge ratio is 1.1
  • the Ti concentration is 0.04 mol / 1.
  • the above reaction product is separated into a precipitate and a filtrate with a centrifuge, and the precipitate is dried with a dryer (for example, dried at 50 ° C for 24 hours).
  • a dryer for example, dried at 50 ° C for 24 hours.
  • Nanocubes can be integrated and bonded to two types of BT nanocubes and ST nanocubes with binding agents that have molecular recognition properties (DNA bases adenine (A) and thymine (T) or guanine). This can be realized by adsorbing (G) and cytosine (C)) through chemical bonds and attracting different types of nanocubes together in the solvent using these binders. Since the BT nanocube and ST nanocube are aggregated, it is necessary to disperse the particles separately before integration.
  • T0P0 Trioctylphosphine oxide
  • a dispersing agent also called a dispersed Z-crosslinking agent because it has the effect of promoting adsorption of the binding agent to the nanocube by chemical bonding.
  • hexane is used as the solvent because DNA tends to attract 0H groups and T0P0-modified microparticles at T0P0 exhibit strong dispersibility in nonpolar solvents.
  • TOPO fulfills the dispersion function, we conducted experiments using the following method using BT nanocubes as nanocubes.
  • T0P0 the melting point was about 50 ° C, and an experiment was conducted in which 1, 2, 4, and 6 mol times T0P0 was added to the BT nanocube solution at room temperature and 60 ° C, respectively. In addition, an experiment was conducted at 70 ° C to add 6, 30 and 60 mol times T0P0.
  • the 6 mol-fold product slightly changed immediately after the operation and became cloudy after standing for 24 hours. It was found that the 6 mol-fold one was different from the one without T0P0, and the Tyndall phenomenon could be clearly seen when the laser light was applied to the 4 mol-fold and 6 mol-fold ones.
  • the 6 mol-fold one shows a difference in appearance compared to the one without T0P0, and the Tyndall phenomenon was observed at 2 raol-fold, 4 mol-fold, and 6 mol-fold. did it.
  • the appearance was cloudy even after standing for 24 hours, and the one at 30mo 1 times showed almost no change compared to that immediately after operation. When the laser beam was applied, the Tyndall phenomenon could be observed in all of them. From these results, it was found that T0P0 can be used as a dispersant.
  • TO P0 was used as the dispersive Z-crosslinker
  • DNA bases adenine (A) and thymine (T) were used as the selective binders.
  • BT nanocube and ST nanocube are dispersed in hexane solvent. For this reason (to eliminate aggregation), 30 mol times of T0P0 was added at 70 ° C and the same operation as above was performed. After the final 3 minutes of ultrasonic dispersion, lOmol-fold adenine (A) was added to the BT nanocube solution, and lOraol-fold thymine (T) was added to the ST nanocube solution. The separation operation was repeated twice and then left for 24 hours. Then, 5 ml of each supernatant solution was scraped and placed in the same vial, and the procedure of ultrasonic dispersion for 3 minutes and standing for 1 minute was repeated twice. Whether or not they were integrated was confirmed by observation with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • Fig. 1 clearly shows BT and ST in the photo of Fig. 1. It can be seen that they are integrated and connected with regularity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Powder Metallurgy (AREA)

Abstract

同じ大きさの異種のナノ粒子(ナノキューブ)の集積結合体構造を作製する。2種類の化学組成の異なるナノ粒子(BaTiO3ナノキューブ(BT),SrTiO3ナノキューブ(ST)を別個に製造する。これらの2種類のナノキューブBT,STを別個に加えた有機溶媒(ヘキサン)内に,それぞれナノキューブの分散と対応する結合剤(DNA塩基のAとT)の化学結合による吸着とを促進させる分散/架橋剤(トリオクチルホスフィン・オキサイド)を加え,さらに,2種類のナノキューブBT,STに選択的結合性に優れた少なくとも2種類の結合剤をそれぞれ別個に化学結合により吸着させる。その後これらの2種類のナノキューブの溶液を混合することにより,上記結合剤により2種類のナノキューブBTとSTを選択的に引き合わせて集積化しかつ結合させる。

Description

明 細 書 ナノ粒子の集積結合体およびその製造方法 技術分野
この発明はナノ粒子の集積結合体およびその製造方法に関する。 背景技術
ナノ粒子は誘電体材料, 磁性材料, 圧電材料, 金属材料, 半導体材料, 有機材料等と して飛躍的にすぐれた特性を実現できる可能性がある と考 えられている。 これらの材料を実現するためには, ナノ粒子を集積化す るこ とが必要である。 特に化学組成の異なる 2種類またはそれ以上の種 類のナノ粒子を集積化するこ とによ り予期せぬ特性が得られるこ とが期 待されている。
2種類の異種ナノ粒子からなる構造体の作製に関する次のよ う な報 告がある。
Elena V. ihevchenko, Dmi tr ι V. Talapin, Nicholas A. Kotov, Ste phen O'Brien, し hristopher B. Murray, "Structural diversity in bi nary nanoparticle superlatt ices" Nature, Vol.439, No.5, p.55(20 06)
Elena V. Shevchenko, Dmitri V. Talapin, Stephen O'Brien, and Christopher B. Murray, "Polymorphism in AB13 Nanoparticle Super 1 attices: An Example of Semiconductor -Metal Metamater ials" J. Am. Chera. Soc. Vol.127, p.8741-8747 (2005)
これらの論文では, 粒子径が数 nmの金属粒子 (Au, Ag, Pd) と, それ とは異なる大き さの半導体 (PbSe) または金属酸化物 (Fe 203 ) の混合 超微粒子サスペンショ ンを用いて, 異種球状粒子からなるナノ粒子構造 体を作製するこ とが報告されている。 ここでは, 一種類の球形状ナノ粒 子の配列の間に生じる隙間内に他の種類の球形状ナノ粒子を挿入する構 造が開示されている。
これらの報告による異種ナノ粒子構造体では, ナノ粒子の形状が球形 状に限られるこ と, 一種類の隣接するナノ粒子の間隙に他の種類のナノ 粒子を収めるために 2種類の球状ナノ粒子の粒子径の比が限られている こ と, 異種ナノ粒子間には結合力が働かないか, または働いている と し ても弱いファンデルヮ一ルスカ程度である とレ、う問題がある。
上記と同様な報告は次の文献にも記載されている。
Aaron E. Saunders, Brian A. Korgel, "Observation or an AB Pha se in Bidisperse Nanocrystal Super latt ices" Chem. Phys. Chem. , Vo 1.6, p.61 (2005)
A. B. Schof ield, P. N. Pusey, and P. Radcliffe "Stability of the binary colloidal crystals AB2 and AB13" Phys. Rev. E, Vol.72, 031407 (2005) 発明の開示
この発明は少なく と も 2種類のナノ粒子の構造体において, 用いるナ ノ粒子の形状が球形状に限られず, 最も望ま しく は立方体形状のナノ粒 子を使用するこ とができるよ う にする こ と を目的とする。
この発明はまた, 少なく と も 2種類のナノ粒子の構造体において, ナ ノ粒子の大き さが特定の比率に限られず, 最も望ま しく は同じ大き さの 異種のナノ粒子を配列できるよ う にするこ とを目的とする。
この発明はさ らに, 少なく と も 2種類のナノ粒子の構造体において, 異種のナノ粒子間の結合力を高めるこ とができるよ う にするこ と を目的 とする。
この発明によるナノ粒子の集積結合体の製造方法は, 少なく と も 2種 類の化学組成の異なるナノ粒子に, 選択的結合性に優れた少なく と も 2 種類の結合剤をそれぞれ別個に化学結合によ り 吸着させ (化学的に吸着 させ) (水素結合をはじめと して共有結合, 配位結合, イオン結合, 金 属結合, 分子間結合等による吸着を含む) , その後これらの少なく と も 2種類のナノ粒子を溶媒内において混合するこ とによ り , 上記結合剤に よ り少なく と も上記 2種類のナノ粒子を選択的に引き合わせて集積化し かつ結合させるものである。
少なく と も 2種類の化学組成の異なるナノ粒子は既に存在する もの を用いるこ と もできる し, これらを別個に製造してもよい。
ナノ粒子には, 酸化物ナノ粒子 (セラ ミ ックス) , 金属ナノ粒子, 半 導体ナノ粒子, ポリ マー · ナノ粒子等が含まれる。 集積結合体にはこれ らの中から異なる 2種類以上のナノ粒子を選んで組み合わせればよい。 ナノ粒子は最も好ま しく は立方体形状ナノ粒子 (ナノキューブ粒子) であるが, 直方体, 立方体や直方体に近い (類似の) 形状, その他の形 状のものでもよレ、。 ナノ粒子の大きさは, 一辺 (最も長い辺) の長さま たは径が概略 100ナノメ一トル以下であるこ とが望ま しいが,これよ り も 大き く てもよい。
集積結合体は多数のナノ粒子が二次元的に配列 (集積) されかつ相互 に結合しているもの, および多数のナノ粒子が三次元的に配列 (集積) され相互に結合しているものを含む。
集積結合体は望ま しく は 2種類以上のナノ粒子が周期性をもって配 列している。 特にナノ粒子が立方体形状の場合には集積結合体は強い周 期性を持つ。 2種類のナノ粒子の集積結合体の場合に, 周期性は 2種類 のナノ粒子が 1 個ずつ交互に配列されている こ とのみならず, 同じ種類 の 2個以上のナノ粒子が連続して並び, その隣り に他の種類のナノ粒子 が存在するよ う な形態でもよい。 2種類以上のナノ粒子の大き さは揃つ ている (たとえば理想的にはばらつきが 5 %以内) こ とが好ま しいが, 立方体, 直方体形状のよ う な場合には, 一のナノ粒子の一辺の長さが他 のナノ粒子の一辺の長さの整数倍(または整数分の一)であってもよレ、。 この場合に, ナノ粒子の大き さ (一辺の長さ) のばらつきは, ナノ粒子 の結合の強さの許容度に応じて許容されよ う。
選択的結合性に優れた結合剤 (選択的結合剤) には, 分子認識性をも つ物質, たと えば D N A (デォキシリ ボ核酸) の 4つの塩基 (アデニン ( A ) , チミ ン ( T ) , グァニン ( G ) , シ ト シン ( C ) ) や, ァミ ノ 基誘導体とハロゲン誘導体等が含まれる。
溶媒は好ま しく は有機溶媒であるが, ナノ粒子や結合剤の種類によつ ては水または水溶液でもよレ、。
この発明による と, 少なく と も 2種類のナノ粒子に, それぞれ別個の 結合剤を化学結合によ り吸着 (化学的に吸着) させている。 そして, こ れらの結合剤が選択的結合性を有するこ とを利用して選択的に引き合わ せてナノ粒子を集積化しかつ結合させている。
選択的結合性に優れた結合剤 (選択的結合剤) が特定の結合剤と選択 的に結合するこ とを利用 して異種のナノ粒子を結合させているから, ナ ノ粒子の形状が特に限定されなければならないという こ とはない。 もつ と も異種のナノ粒子が集積化しやすい形状, 特に立方体, 直方体, これ に類する形状が好ま しい。 また, 異種のナノ粒子の大き さやその比も特 に限定されなければならないという こ とはない。 もちろん, 異種のナノ 粒子が集積化しやすい大き さ, たと えば同程度の大き さ, 整数倍 (整数 分の一) の大き さであるこ とが好ま しい。 異種のナノ粒子の結合力は結 合剤の結合力に依存するから, 結合力の強い結合剤 (たと えば水素結合 する結合剤) を用いることにより強い力による結合を実現することがで きる。
結合剤が直接的にナノ粒子に化学結合により吸着 (化学的吸着) され ない場合には, 分散/架橋剤を用いるとよい。 すなわち, 上記結合剤を ナノ粒子に化学結合により吸着させる工程の前に, 溶媒內に分散 Z架橋 剤を加え, 溶媒内におけるナノ粒子の分散と, 対応する上記結合剤の化 学結合による吸着とを促進させる。
分散 Z架橋剤は, 分散剤, 結合補助剤, 表面修飾剤, 接合剤などとも 呼ばれ, 集積化の前にナノ粒子を溶媒中でばらばらに分散させると とも に, 結合剤をナノ粒子に化学結合によ り吸着させる働きをするもので, 溶媒, ナノ粒子, 結合剤の種類に応じて選択すればよい。 一例を挙げれ ば分散 架橋剤にはト リオクチルホス フィ ン ' ォキサイ ド (Tr i oc t y lph o sph i ne ox i de) ( T0P0) , アルキルリ ン酸誘導体等がある。
ナノ粒子の表面を分散ノ架橋剤で修飾するので, 同じ種類のナノ類が 凝集せずに分散し, かつ結合剤がナノ粒子に化学結合により吸着しやす くなる。
この発明はさらにナノ粒子の集積結合体を提供している。 この発明に よるナノ粒子の集積結合体は, 少なく とも 2種類の化学組成の異なるナ ノ粒子の表面にそれぞれ, 選択的結合性に優れた少なく とも 2種類の対 応する結合剤が化学結合によ り吸着し, これらの結合剤による選択的結 合によって少なく とも 2種類のナノ粒子が集積化されかつ結合している ものである。
一実施態様では, 上記集積結合体は, ナノ粒子が分散 架橋剤によつ て表面修飾され, 上記分散 架橋剤によつて結合剤がナノ粒子に化学結 合により吸着している。
この発明によるナノ粒子の集積結合体およびその製造方法の好まし い実施態様においては, ナノ粒子が異なる 2種類の酸化物ナノ粒子, よ り好ま しく は酸化物ナノキューブ粒子 (たと えば後述する BTナノキュー ブ, STナノキューブ) である。
酸化物ナノ粒子はたと えばソルボサーマル法を使用 して製造する こ とができるが, 高温高圧の溶媒を用いる と立方体形状またはそれに近い 形状のナフ粒子 (これらを, ナノ キューブ粒子または単にナノ キューブ とレ、う) を得るこ とができる。
結合剤と しては分子認識性をもつ D N Aの塩基の う ちの 2つを用い る。 アデニン (A) とチミ ン (T) の対は水素結合によ り結合する。 し かしアデニン同志, チミ ン同志では結合は起こ らない。 同じよ う にグァ ニン (G) と シ ト シン (C ) の対も水素結合によ り結合する。
一方の種類のナノ キューブ粒子 (たとえば BTナノ キューブ) の溶液に 分散 架橋剤 (たと えば上述の T0P0) を加えてナノ キューブ粒子の表面 を分散/架橋剤によ り修飾する。 この溶液にアデニン (A) を加えてナ ノ キューブ粒子にアデニン (A) を化学結合によ り吸着させる。 他方の 種類のナノキューブ粒子 (たとえば STナノ キューブ) の溶液にも分散/ 架橋剤 (例と して T0P0) を加えてナノ キューブ粒子の表面を分散 架橋 剤によ り修飾し, さ らにチミ ン (T) を加えてナノキュ一ブ粒子にチミ ン (T) を化学結合によ り吸着させる。 これらの溶液の溶媒と しては, 有機溶媒が好ま しく , たとえばへキサンを用いる。
これらのアデニン (A) , チミ ン (T) が吸着した (アデニン (A) , チミ ン (T) によって表面修飾された) 2種類のナノ キューブ粒子の溶 液を混合する と, アデニン (A) とチミ ン (T) が結合する こ とによ り, 異種のナノキューブ粒子が規則性をもって三次元的に集積しかつ結合す る。 図面の簡単な説明
第 1 図は BTナノ キューブと STナノ キュ一ブが集積結合した様子を示 す透過形電子顕微鏡写真である。
第 2図は第 1 図の写真に BT, STの符号を付けて分りやすく した写真で ある。 発明を実施するための最良の形態
1 . ナノ粒子の製造
酸化物ナノ粒子, 特に立方体形状のナノ粒子 (ナノ キューブ粒子) の 代表と して, セラ ミ ック材料であるチタン酸バリ ウム (BaTi03) ナノキ ユーブ粒子 (以下, 単に 「BTナノ キューブ」 という) と, チタン酸ス ト ロンチウム (SrTi03) ナノキューブ粒子 (以下, 単に 「STナノキューブ」 という) の製造 (合成) 方法について述べる。 こ こではソルボサーマル 法を用いる。
(1) BTナノキューブ
バリ ウム源と して水酸化バリ ウム無水和物 (Ba(0H) 2) を, チタン源 と して酸化チタン (TiO 2) を使用し, それぞれを適切な溶媒 (たと えば, Ba(OH) 2についてはエタノール (C2H50H) , Ti02については 2 —メ トキ シエタノール (CH30C2H40H) ) に溶かした上で混合し, 高温で撹拌しな がら反応させる。 反応温度は 200°C〜260°C, 反応時間は 0.5時間〜 50時間 程度である。 Ba/Ti仕込み比は 0.5〜50.0程度, T i濃度 0.002molZ 1 〜1. Omol/ 1 がよい。最も好ま しく は, 反応温度 240°C, Ba/Ti仕込み比 1.1, Ti濃度 0.04mol/ 1 である。
上記の反応物を遠心分離機で沈殿物と濾液に分け, 沈殿物を乾燥機で 乾燥させる (たと えば 50°Cで 24時間乾燥) 。 これによ り一辺が 5〜50ナノ メー トル程度の BTナノ キューブが得られる。 (2) STナノ キューブ
ス ト ロ ンチウム源と して水酸化ス ト ロ ンチウム (Sr(0H) 2) を, チタ ン源と して酸化チタン (Ti02) を使用し, それぞれを適切な溶媒 (たと えば, Sr(OH) 2につレ、てはエタノール (C2H50H) , Ti02については 2— メ トキシエタノール (CH30C2H40H) ) に溶かした上で混合し, 高温で撹 拌しながら反応させる。 反応温度は 200°C〜260°C, 反応時間は 0.5時間〜 50時間程度である。 SrZTi仕込み比は 0.5〜50.0程度, Sr濃度 0.002mol 1 〜1. Omol/ 1 がよい。 最も好ま しく は, 反応温度 260°C, Sr/Ti仕込 み比 1.5, Sr濃度 0.04mol/ 1 である。
上記の反応物を遠心分離機で沈殿物と濾液に分け, 沈殿物を乾燥機で 乾燥させる (たとえば 50°Cで 24時間乾燥) 。 これによ り一辺が 5〜50ナノ メ一 トル程度の STナノキューブが得られる。
2. ナノキューブの集積化と結合
ナノ キユーブの集積化と結合は, 2種類の BTナノ キューブと STナノキ ユーブの表面に分子認識の性質をもつ結合剤 (D NAの塩基であるアデ ニン (A) とチミ ン (T) またはグァニン (G) とシ トシン (C) ) を それぞれ化学結合によ り吸着させ, 溶媒中においてこれらの結合剤によ り種類の異なるナノキューブ同志を引き合わせるこ とによ り実現できる。 BTナノ キューブと STナノ キューブはそれぞれ凝集しているので, 集積化 の前に粒子同志をばらばらに分散させる必要がある。 分散剤 (結合剤の ナノ キューブへの化学結合による吸着を促進させる作用もあるので, 分 散 Z架橋剤という)と しては T0P0(Trioctylphosphine oxide)を用レ、る。 また, D N Aが 0H基を引き寄せやすいこ と, T0P0において T0P0修飾した 微粒子が非極性溶媒中で強い分散性を示すこ とから, 溶媒と してへキサ ンを用いる。 TOPOが分散機能を果たすかどうかをみるために, ナノ キューブと して BTナノ キューブを用いて次の方法によ り実験した。
初めにへキサン 20mlが入つたバイ アル瓶に BaTi030.03 g を加え 3分 間超音波分散させる。 その後 1分静置させた後, 分散剤となる T0P0を加 えさ らに 3分間超音波分散させ 1分間静置, 最後に 3分間超音波分散を 行う。 静置の時間を入れているのは超音波分散による温度上昇を防ぐた めである。 分散しているかどうかについては, 24時間静置後の外観とチ ンダル現象の有無によ り判断した。
T0P0は融点が約 50°Cである力ゝら, 室温および 60°Cにおいてそれぞれ BT ナノキューブの溶液に対して 1, 2 , 4 , 6 mol倍の T0P0を加える実験を 行った。 さ らに 70°Cにおいても 6 , 30, 60mol倍の T0P0を加える実験を行 つた。
室温においては, 6 mol倍のものは操作直後からは若干変化し, 24時 間静置後も白濁していた。 6 mol倍のものは T0P0無しのものと比べても違 いが分かり, レーザー光を当てる と 4 mol倍, 6 mol倍のものではっき り とチンダル現象を見るこ とができた。 60°Cにおいては, 室温の場合と同 様, 6 mol倍のものは T0P0無しのものと比べて外観の違いが分かり, 2ra ol倍, 4 mol倍, 6 mol倍のものでチンダル現象が観察できた。 70でにお けるものは, 24時間静置後においても外観はどれも白濁しており , 30mo 1倍のものは操作直後と比べてほとんど変化がなかった。レーザ一光を当 てる と, すべてのものにおいてチンダル現象が観察できた。 これらの結 果から T0P0は分散剤と して使用できる こ とが分かった。
BT, STナノキューブの集積化と結合のために, 分散 Z架橋剤と して TO P0を, 選択的結合剤と して D NA塩基のアデニン (A) とチミ ン (T) を用いた。
初めに BTナノ キューブ, STナノキューブをへキサン溶媒内で分散させ るため (凝集をと く ために) , 70°Cにおいて 30mol倍の T0P0を加えて上記 と同様の操作を行った。 最後の 3分間の超音波分散終了後, BTナノ キュ ーブ溶液に lOmol倍のアデニン (A) を, STナノ キューブ溶液に lOraol倍 のチミ ン (T) を加え, 3分超音波分散, 1 分静置の操作を 2回繰り返 し, その後 24時間静置した。 その後, それぞれの上澄み溶液を 5 mlはか り取り 両者を同じバイアル瓶に入れ, 更に 3分間超音波分散, 1分静置 の操作を 2回繰り返した。 集積化しているかどうかは透過形電子顕微鏡 (TEM) によ り観察し, 確認した。
BT, STナノ キューブ同志の規則的な結合を確認する事ができた。 その TEM像を第 1 図に示す。第 2図は第 1 図の写真における BTと STを分りやす く 明示したものである。 規則性をもって集積結合しているこ とが分る。

Claims

請求の範囲
1 . 少なく と も 2種類の化学組成の異なるナノ粒子を別個に製造し, これらの少なく と も 2種類のナノ粒子に, 選択的結合性に優れた少な く と も 2種類の結合剤をそれぞれ別個に化学結合によ り吸着させ, その 後これらの少なく と も 2種類のナノ粒子を溶媒内において混合するこ と によ り , 上記結合剤によ り少なく と も上記 2種類のナノ粒子を選択的に 引き合わせて集積化しかつ結合させる,
ナノ粒子の集積結合体の製造方法。
2 . 少なく と も 2種類の化学組成の異なるナノ粒子に, 選択的結合性に 優れた少なく と も 2種類の結合剤をそれぞれ別個に化学結合によ り 吸着 させ,
その後これらの少なく と も 2種類のナノ粒子を溶媒内において混合す るこ とによ り , 上記結合剤によ り少なく と も上記 2種類のナノ粒子を選 択的に引き合わせて集積化しかつ結合させる,
ナノ粒子の集積結合体の製造方法。
3 . 上記結合剤をナノ粒子に化学結合によ り 吸着させる工程の前に, 溶 媒内におけるナノ粒子の分散と, 対応する上記結合剤の化学結合による 吸着とを促進させる分散 架橋剤を加える, 請求の範囲第 1 項または第 2項に記載の製造方法。
4 . 少なく と も 2種類の化学組成の異なるナノ粒子の表面にそれぞれ, 選択的結合性に優れた少なく と も 2種類の対応する結合剤が化学結合に よ り 吸着し, これらの結合剤による選択的結合によって少なく と も 2種 類のナノ粒子が集積化されかつ結合している, ナノ粒子の集積結合体。
5 . ナノ粒子が分散 Z架橋剤によって表面修飾され, 上記分散 架橋剤 によって結合剤がナノ粒子に化学結合によ り吸着している, 請求の範囲 第 4項に記載の集積結合体。
6 . 上記ナノ粒子がナノキューブ粒子である, 請求の範囲第 4項に記載 の集積結合体。
PCT/JP2009/055225 2008-03-17 2009-03-11 ナノ粒子の集積結合体およびその製造方法 WO2009116551A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010503892A JP4769928B2 (ja) 2008-03-17 2009-03-11 ナノ粒子の集積結合体およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-067761 2008-03-17
JP2008067761 2008-03-17

Publications (1)

Publication Number Publication Date
WO2009116551A1 true WO2009116551A1 (ja) 2009-09-24

Family

ID=41090951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055225 WO2009116551A1 (ja) 2008-03-17 2009-03-11 ナノ粒子の集積結合体およびその製造方法

Country Status (2)

Country Link
JP (1) JP4769928B2 (ja)
WO (1) WO2009116551A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012188335A (ja) * 2011-03-14 2012-10-04 National Institute Of Advanced Industrial Science & Technology ナノ結晶の配列方法、ナノ結晶膜の作製方法、ナノ結晶膜被覆基板及びその製造方法
JP2016155700A (ja) * 2015-02-24 2016-09-01 神島化学工業株式会社 ナノ複合酸化物及びその製造方法
KR101954082B1 (ko) 2017-09-14 2019-03-05 한국세라믹기술원 플라스미드 dna의 정제 방법

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180208456A1 (en) * 2015-07-21 2018-07-26 Dnp123 Company Programmable, self assembling patched nanoparticles, and associated devices, systems and methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0760109A (ja) * 1993-08-30 1995-03-07 Mitsui Toatsu Chem Inc 超微粒子を有する分子及びその構造体
JP2001506931A (ja) * 1996-12-06 2001-05-29 ナノトロニクス・インコーポレイテッド アフィニティー型自己集合システムならびにフォトニクスおよびエレクトロニクス用素子
JP2005507488A (ja) * 2000-10-12 2005-03-17 イサム・リサーチ・デベロツプメント・カンパニー・オブ・ザ・ヘブルー・ユニバーシテイ・オブ・エルサレム 樹状増幅検査方法
JP2006517674A (ja) * 2002-12-20 2006-07-27 ミネルバ バイオテクノロジーズ コーポレーション ナノ粒子を含む光学デバイスおよび方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0760109A (ja) * 1993-08-30 1995-03-07 Mitsui Toatsu Chem Inc 超微粒子を有する分子及びその構造体
JP2001506931A (ja) * 1996-12-06 2001-05-29 ナノトロニクス・インコーポレイテッド アフィニティー型自己集合システムならびにフォトニクスおよびエレクトロニクス用素子
JP2005507488A (ja) * 2000-10-12 2005-03-17 イサム・リサーチ・デベロツプメント・カンパニー・オブ・ザ・ヘブルー・ユニバーシテイ・オブ・エルサレム 樹状増幅検査方法
JP2006517674A (ja) * 2002-12-20 2006-07-27 ミネルバ バイオテクノロジーズ コーポレーション ナノ粒子を含む光学デバイスおよび方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Proceedings of Fall Meeting of the Ceramic Society of Japan", vol. 21, 17 September 2008, article AI NOZAWA ET AL.: "Titan-san Barium Oyobi Titan-san Strontium Nano Cube no Gosei to sono Shusekika", pages: 372 *
BO HOU ET AL.: "Solvothermal Synthesis of Single- crystalline BaTi03 Nanocubes in a Mixed Solution", CHEMISTRY LETTERS, vol. 34, no. 7, 2005, pages 1040 - 1041 *
TAO YAN ET AL.: "Synthesis of monodispersed barium titanate nanocrytals-hydrothermal recrystallization of BaTi03 nanospheres", JOURNAL OF CRYSTAL GROWTH, vol. 281, no. 2-4, 9 June 2005 (2005-06-09), pages 669 - 677, XP004979321 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012188335A (ja) * 2011-03-14 2012-10-04 National Institute Of Advanced Industrial Science & Technology ナノ結晶の配列方法、ナノ結晶膜の作製方法、ナノ結晶膜被覆基板及びその製造方法
JP2016155700A (ja) * 2015-02-24 2016-09-01 神島化学工業株式会社 ナノ複合酸化物及びその製造方法
KR101954082B1 (ko) 2017-09-14 2019-03-05 한국세라믹기술원 플라스미드 dna의 정제 방법

Also Published As

Publication number Publication date
JPWO2009116551A1 (ja) 2011-07-21
JP4769928B2 (ja) 2011-09-07

Similar Documents

Publication Publication Date Title
TWI697542B (zh) 發光晶體及其製造
Yuan et al. One-dimensional organic–inorganic hybrid nanomaterials
US9446953B2 (en) Fabrication of metallic hollow nanoparticles
KR101276693B1 (ko) 양쪽성 이온을 가진 나노입자 표면 개질용 표면 분자체의 합성과 그 응용
US7754329B2 (en) Water-stable semiconductor nanocrystal complexes and methods of making same
US20060204754A1 (en) Metal nano-particles coated with silicon oxide and manufacturing method thereof
US8303922B2 (en) Method for exfoliation of hexagonal boron nitride
KR100993389B1 (ko) 나노입자가 표면에 부착된 유기-무기 혼성 재료 및 그제조방법
WO2009116551A1 (ja) ナノ粒子の集積結合体およびその製造方法
KR101210548B1 (ko) 나노입자 어셈블리 기반의 스위칭 소자 및 이의 제조 방법
US20050036939A1 (en) Hydrothermal synthesis of perovskite nanotubes
WO2006087950A1 (ja) プルシアンブルー型金属錯体超微粒子、その分散液、及びそれらの製造方法
CN1559656A (zh) 磁性微粒与量子点的核-壳式纳米复合粒子的制备方法
WO2008127396A2 (en) A solution synthesis of carbon nanotube/metal-containing nanoparticle conjugated assemblies
JP6414818B2 (ja) ナノ複合酸化物及びその製造方法
Li et al. Silver-nanoparticle-embedded hybrid nanopaper with significant thermal conductivity enhancement
Li et al. Facile preparation of silver nanocluster self-assemblies with aggregation-induced emission by equilibrium shifting
Baptista et al. Self-assembly of Boc-p-nitro-l-phenylalanyl-p-nitro-l-phenylalanine and Boc-l-phenylalanyl-l-tyrosine in solution and into piezoelectric electrospun fibers
KR101092639B1 (ko) 금속-고분자 하이브리드 나노입자, 이의 제조방법 및 이를 이용한 발광소자와 태양전지
JP2022509855A (ja) 製造中のナノセルロースの疎水変性のためのプロセス
Hu et al. Rapid synthesis of cesium lead halide perovskite nanocrystals by l-lysine assisted solid-phase reaction at room temperature
Ramaswami Sachidanandan et al. A comparative study on dielectric, structure, and thermal behavior of micro‐and nano‐sized CCTO in nylon 6, 9 matrix
EP3500520A1 (en) Method for storing and releasing nanoparticles
KR102151390B1 (ko) 나노 입자-그래핀 복합체의 제조방법 및 이에 따라 제조되는 나노 입자-그래핀 복합체
JP4953224B2 (ja) 複合体粒子含有スラリー及び複合体粒子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09721501

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010503892

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09721501

Country of ref document: EP

Kind code of ref document: A1