WO2009116367A1 - 撮像モジュール - Google Patents

撮像モジュール Download PDF

Info

Publication number
WO2009116367A1
WO2009116367A1 PCT/JP2009/053390 JP2009053390W WO2009116367A1 WO 2009116367 A1 WO2009116367 A1 WO 2009116367A1 JP 2009053390 W JP2009053390 W JP 2009053390W WO 2009116367 A1 WO2009116367 A1 WO 2009116367A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
lens
support
holder
pin
Prior art date
Application number
PCT/JP2009/053390
Other languages
English (en)
French (fr)
Inventor
誠 鈴木
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2009116367A1 publication Critical patent/WO2009116367A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices

Definitions

  • the present invention relates to an imaging module such as a camera module.
  • a semiconductor image sensor such as a CCD image sensor is used as an image pickup device that converts subject light into an electrical signal as a small image pickup module, and an image pickup substrate on which the image pickup device is mounted and a subject are condensed.
  • a holder provided with a lens support cylinder for supporting the lens to be supported, and a part of the holder inserted into the holder for support, and a protruding portion protruding toward the imaging substrate passes through the imaging substrate and faces the imaging element to the lens
  • a camera module including a plurality of support pins that support the imaging substrate.
  • the holder is provided with a support pin and an outer portion located outside the imaging substrate, and an opening peripheral portion of a case having a separately prepared recess is applied to the outer portion.
  • the imaging board is housed and protected in a space formed by contact.
  • the camera module disclosed in Patent Document 1 fixes an imaging substrate to a holder with support pins. What is characteristic is that the position of the imaging board relative to the support pin can be freely adjusted with the support pin inserted in the imaging board before fixing, and the distance between the imaging element and the lens and the lens collect light.
  • the imaging substrate can be aligned by adjusting the angle between the direction and the imaging substrate. Therefore, the camera module described in Patent Document 1 is capable of finely adjusting the alignment between the lens and the image pickup device, so that a highly accurate image can be stably obtained, and supports the lens.
  • the lens support tube portion and the outer portion that protects the imaging substrate are integrated to reduce the size. Japanese Unexamined Patent Publication No. 2007-28430 (Fig. 4)
  • the present invention has been devised to solve the above-described problems in the prior art, and its purpose is to suppress a change in the position of the image sensor relative to the lens by buffering an externally applied impact.
  • An object of the present invention is to provide an imaging module capable of stably obtaining a high-precision image.
  • the image pickup module of the present invention includes an image pickup board on which an image pickup device that converts subject light into an electrical signal is mounted, and an outer portion that forms a space for housing the image pickup board, and a light source on the image pickup element at the center.
  • the plurality of pin support portions are provided apart from the lens support tube portion, and are integrated with the lens support tube portion by a connecting portion. It is characterized by this.
  • a lens supporting tube portion that supports a lens that collects subject light on the imaging element is provided at the center portion inside the outer portion that constitutes the space for housing the imaging substrate, and the lens supporting portion.
  • a holder in which a plurality of pin support portions are provided around the cylindrical portion is used, and the imaging substrate is supported by support pins inserted into the plurality of pin support portions.
  • the deformation of the outer part can be stopped in this space for a certain amount of impact, so the impact of the external impact on the pin support part and the support pin is reduced, and the lens is not affected. A change in the position of the image sensor is suppressed, and a highly accurate image can be stably obtained.
  • the length of the pin support portion can be increased while providing a space inside the holder, the length for inserting the support pin into the pin support portion is increased to provide sufficient fixing force to the holder. It is possible to reduce the weight of the holder and thus the imaging module.
  • the imaging module of the present invention when the plurality of pin support portions are provided apart from the lens supporting cylinder portion and are integrated with the lens supporting cylinder portion by the connecting portion, respectively, Even if vibration is applied, the change in the position of the pin support portion with respect to the lens is reduced, so that the positional accuracy of the imaging substrate can be ensured by suppressing the impact and stress transmission to the imaging substrate.
  • the imaging module of the present invention will be described in detail with reference to the accompanying drawings.
  • the side opposite to the subject side of the imaging module is referred to as the back side.
  • FIG. 1 is an external perspective view of a camera module as an example of an embodiment of an imaging module of the present invention as viewed from the subject side
  • FIG. 2 is an external perspective view of the camera module shown in FIG. 1 as viewed from the back side
  • 3 is a cross-sectional view taken along line AA of FIG.
  • the camera module 10 shown in the figure includes an imaging substrate 2, a holder 3, a support pin 4 and the like as a basic configuration.
  • Such a camera module 10 is a camera module 10 used for in-vehicle use, for example, and has a function of imaging a white line on a road or imaging a blind spot of a driver who drives a vehicle, and controls driving of an automobile
  • the operation is controlled by an unillustrated ECU (electronic control unit).
  • the electrical signal output from the camera module 10 is converted into an image signal by the ECU and displayed on a display (not shown) installed in front of the driver's seat, for example.
  • the imaging substrate 2 is a substrate on which an imaging element 8 that converts subject light into an electrical signal is mounted on one main surface (main surface on the subject side).
  • a print formed by adding a glass filler to an epoxy resin It consists of a wiring board or a printed wiring board formed by impregnating a glass cloth with an epoxy resin. Below, an example of the manufacturing method of a printed wiring board is shown.
  • a glass cloth is produced by weaving a glass fiber made of alkali-free glass, quartz glass or the like with a binder made of a resin such as a sizing agent or a sizing agent for protecting the glass fiber. .
  • the glass cloth from which the binder has been removed is dipped in a solution containing a silane coupling agent and dried to perform a coupling treatment to ensure wettability and adhesion with the resin on the surface of the glass cloth. Apply.
  • a glass cloth that has been subjected to a coupling treatment is impregnated with a thermosetting resin to produce a prepreg that becomes an insulating layer.
  • a copper foil is deposited on the surface of the prepreg serving as the insulating layer and etched to form a wiring conductor having a predetermined pattern.
  • thermosetting resin interposed therebetween to thermally cure the thermosetting resin
  • insulating layers and wiring conductors are alternately provided.
  • a laminated substrate is formed.
  • the printed wiring board is manufactured by depositing copper plating on the inner surface of the through hole to form a through-hole conductor that electrically connects the wiring conductors located above and below.
  • the image pickup device 8 mounted on the image pickup substrate 2 is obtained by housing a semiconductor image sensor device such as a CCD image sensor or a CMOS image sensor in a semiconductor package.
  • the semiconductor package is a highly airtight package member such as a ceramic wiring substrate mainly composed of alumina, and the semiconductor image sensor element is accommodated in a cavity (not shown) formed on the subject side. The cavity is sealed with a light-transmitting lid (not shown) such as glass.
  • a plurality of terminals 8b extend from the side surface or the lower surface of the semiconductor package, and the image pickup device 8 is electrically connected to the image pickup substrate 2 by a bonding material such as solder through the plurality of terminals 8b. It has a fixed configuration. Note that the amount of glass cloth or glass filler used for the imaging substrate 2 is such that the thermal expansion coefficient of the semiconductor package and the thermal expansion coefficient of the imaging substrate 2 are equal to reduce the thermal stress generated between them. It is preferable to set to.
  • a wiring conductor (not shown) in which electrical connection with the terminals 8 b of the semiconductor package and terminals of other components to be mounted is made or these terminals are fixed.
  • ground wiring (not shown) for earthing is formed.
  • Such wiring conductors and ground wirings are made of a conductive metal such as copper and gold, and are formed by a plating method, a method of bonding a metal foil previously formed in a wiring pattern shape, or a metal foil on the entire surface. Is formed on the surface of the printed wiring board constituting the imaging substrate 2 or inside thereof.
  • Such an imaging substrate 2 is prepared, for example, by preparing a commercially available copper-clad substrate having copper foils deposited on the entire front and back surfaces, cutting the substrate into a desired size, and using the copper foil deposited on the surface as dilute hydrochloric acid or the like It is manufactured by etching a desired wiring pattern with an acidic solution. If necessary, a through hole is formed using a laser or a drill, and the through hole is filled with a metal paste to embed the through conductor, thereby electrically connecting the wiring patterns on the front and back of the board. Is possible.
  • the IC 6 that processes an electrical signal from the imaging element 8 and the wiring conductor of the imaging substrate 2 are connected.
  • Components such as a connector 7 for connecting a wiring cable (not shown) for electrically connecting the ECU (not shown) are mounted.
  • the holder 3 is provided with an outer portion 3a that constitutes a space for housing the imaging substrate 2 described above.
  • the holder 3 is provided with a lens supporting cylinder portion 3b that supports the lens 1 at the center portion inside the outer shell portion 3a.
  • the lens 1 has a function of condensing subject light on the image sensor 8, and normally includes a first lens 1a and a first lens 1a having a convex shape on the subject side in order to collect the subject light at a wide angle. It is composed of a plurality of lenses including a second lens 1b, a third lens 1c, a fourth lens 1d, and a fifth lens 1e for bringing the passed light as a light beam close to parallel.
  • the lens 1 is composed of the above-described five lenses, for example, the first lens 1a, the second lens 1b, the third lens 1c, the fourth lens 1d, and the fifth lens 1e from the subject side toward the imaging device 8. Are arranged so as to overlap the optical axis in this order.
  • the lens 1 is fixed by being pressed against a step provided on the inner wall of the internal space of the lens supporting cylinder portion 3b from the subject side by a retainer 9 as a pressing jig. Yes.
  • the retainer 9 and the holder 3 are produced by the following method, for example.
  • the holder 3 has a predetermined shape by preparing a mold for injection molding having a cavity provided in accordance with the shape of the holder 3, pouring the raw material for the holder 3 into the cavity, solidifying and molding. It can be produced using a conventionally known injection molding method.
  • the retainer 9 is prepared by preparing a mold for injection molding having a cavity formed in a shape that matches the shape of the retainer 9, pouring the raw material for the retainer 9 into the cavity and solidifying it. By doing so, it can be formed in a predetermined shape.
  • Such a retainer 9 and the holder 3 are made of a non-conductive resin such as polycarbonate (PC) or polyphthalamide (PPA), for example, to reduce the weight.
  • PC polycarbonate
  • PPA polyphthalamide
  • a case 11 is attached to the back side of the camera module 10 of this example.
  • the case 11 is provided with a housing recess 11a that opens toward the subject side.
  • the imaging substrate 2 is placed in a space surrounded by the recess 11a and the outer portion 3a of the holder 3. It has been stored.
  • the case 11 is preferably made of the same material as that of the holder 3 so that the thermal expansion and thermal contraction with the holder 3 are combined.
  • a plurality of pin support portions 3 c arranged around the lens supporting tube portion 3 b are provided inside the outer portion 3 a of the holder 3, and the plurality of support pins 4 are provided.
  • the pin support portions 3c are inserted respectively.
  • 4 is an external perspective view of the holder 3 into which a plurality of support pins 4 are inserted as seen from the back side
  • FIG. 5 is a view of the holder 3 shown in FIG. 4 as seen from above.
  • cylindrical pin support portions 3c are provided at three locations on the holder 3, and the support pins 4 are provided on each of the pin support portions 3c. Are inserted from the back side in a one-to-one correspondence.
  • FIG. 6 is an external perspective view in which the imaging board 2 is supported by the support pins 4 of FIG. As shown in FIG. 6, in the camera module 10 of the present example, the plurality of support pins 4 are configured to support the imaging substrate 2 with the imaging element 8 facing the lens 1.
  • the support pins 4 support the imaging substrate 2 in a state where the protruding portion penetrates the imaging substrate 2. Specifically, as shown in FIG. 6, 4 of the imaging substrate 2 having a substantially rectangular shape. It is assumed that the imaging substrate 2 is fixed with the support pins 4 penetrating through the through holes 2b provided at three positions in the corners.
  • the support cylinder portion 3b uses the holder 3 provided with a plurality of pin support portions 3c around the lens support cylinder portion 3b, and is supported by the support pins 4 inserted into the plurality of pin support portions 3c.
  • the imaging substrate 2 is supported.
  • the support pin 4 may have a collar part in the middle of the protruding part.
  • the imaging substrate 2 can be supported by the collar part in the middle of the protruding part of the support pin 4.
  • the optical axis adjustment between the image sensor 8 and the lens 1 is facilitated.
  • the support pin 4 may be inserted through the tubular member at a portion between the pin support portion 3c of the protruding portion and the imaging substrate 2.
  • the imaging substrate 2 can be supported by the cylindrical member in the middle of the protruding portion of the support pin 4.
  • the optical axis adjustment between the image sensor 8 and the lens 1 is facilitated.
  • the support pin 4 may have a scale on its protruding portion. In this case, the optical axis adjustment between the image sensor 8 and the lens 1 can be easily performed by using the scale as a guide.
  • the plurality of pin support portions 3c are preferably arranged on concentric circles centered on the center of the lens 1 in plan view so as to surround the lens support tube portion 3b. In this case, when an impact is applied to the outer shell portion 3a from the outside, the impact can be effectively dispersed by the plurality of pin support portions 3c.
  • FIG. 5 which is a plan view of the holder 3 as viewed from above, two of the three pin support portions 3c are arranged in the vicinity of a pair of opposite corner portions of the corner portions of the outer shell portion 3a.
  • the remaining one pin support portion 3c is preferably disposed in the vicinity of one of the remaining corners of the outer shell portion 3a.
  • three of the four corners of the imaging substrate 2 can be supported by the support pins 4 inserted into the pin support portion 3c, so that the imaging substrate 2 can be fixed sufficiently stably.
  • the imaging substrate 2 can be supported with sufficient positional accuracy.
  • the energy of the impact from the outside is absorbed in the direction of the remaining corners of the outer shell portion 3a where the pin support portion 3c is not disposed in the vicinity. Therefore, it is possible to effectively mitigate the impact from the outside, and it is possible to provide the camera module 10 with high reliability.
  • the camera module 10 of this example it is preferable to use three or more support pins 4 from the viewpoint of positioning the image pickup device 8 and stably fixing the image pickup substrate 2.
  • the support pin 4 is formed into a substantially rod shape having a diameter of 0.4 to 1.5 mm using a highly conductive metal having excellent rust prevention properties such as an iron-chromium-nickel alloy. It can be obtained by cutting a metal bar made of the above material into a predetermined length.
  • a shield body (not shown) is embedded in the holder 3 for the purpose of blocking electromagnetic radiation noise from the subject side, and one side (tip side) of the support pin 4 is The shield body is electrically connected in a state of being inserted into the pin support portion 3 c of the holder 3.
  • connection electrodes are formed around the opening on the back side of the through hole 2b of the imaging substrate 2, and the support pins 4 are brazing materials such as solder. It is attached to the imaging substrate 2 by being connected to this connection electrode via
  • the support pins 4 are attached to the image pickup board 2 by inserting the support pins 4 into the through holes 2b of the image pickup board 2 and penetrating them, so that the inner surfaces of the through holes 2b of the image pickup board 2 and the side surfaces of the support pins 4 are inserted.
  • bonding may be performed by pouring a brazing material such as solder into a gap between the two.
  • a brazing material such as solder
  • connection of the holder 3, the support pins 4, and the imaging substrate 2 is performed by the following method in the camera module 10 of this example, for example.
  • one hole is formed in each of the three pin support portions 3c of the holder 3 so as to open to the back side and to the subject side, and the support pin 4 is inserted into each hole from one end. Insert and fix to attach.
  • an imaging board 2 provided with three through holes 2 b penetrating the support pins 4 is prepared, the imaging element 8 is arranged on the subject side of the imaging board 2, and the connector 7 is Each support pin 4 is inserted into the corresponding through hole 2b in a state of being arranged on the back side.
  • a ring-shaped solder member is inserted from one end (tip) of each support pin 4.
  • a subject for image adjustment is arranged on the subject side, a wiring cable is connected to the connector 7, and this wiring cable is connected to the image analysis device, and while confirming an electric signal obtained by the image sensor 8,
  • the alignment of the imaging substrate 2 and the support pins 4 is performed by adjusting each of the support pins 4 separately.
  • the imaging substrate 2 is fixed to the support pins 4 by irradiating each solder member with laser light.
  • the support pins 4 may be provided with a metal plating layer such as a gold plating layer or a tin plating layer having high wettability with solder on the surface.
  • a nickel plating layer may be applied as an intermediate plating layer to increase the resistance to solder.
  • the cross-sectional shape of the support pin 4 is not limited to a circle, and may be an ellipse, a triangle or a polygon more than a quadrangle, etc. What is necessary is just to select a shape.
  • the lens supporting tube 3b and the pin support 3c are enclosed inside the outer portion 3a of the holder 3, and the base side of the lens supporting tube 3b is moved to the imaging substrate 2 side.
  • An open space S is provided.
  • a space S opened from the base side of the lens supporting cylinder portion 3b to the imaging substrate 2 side is provided between the outer shell portion 3a and the pin support portion 3c. Therefore, when an impact is applied to the outer shell portion 3a from the outside, the deformation of the outer shell portion 3a can be stopped in the space S against a certain amount of impact. As a result, the impact of external impact on the pin support portion 3c and the support pin 4 is reduced, and the change in the position of the image sensor 8 with respect to the lens 1 is suppressed, and a highly accurate image can be stably obtained.
  • the space S is set by the material of the holder 3, the amount of deformation estimated from the impact received during the process, and the like.
  • the distance between the outer shell portion 3a and the pin support portion 3c is set to be 0.5 mm or more at a minimum. Moreover, since the length of the pin support part 3c can be lengthened while providing the space S inside the holder 3, the length for inserting the support pin 4 into the pin support part 3c is lengthened and the fixing force to the holder 3 is increased. It is possible to reduce the weight of the holder 3 after sufficient, and thus to reduce the weight of the camera module 10.
  • the shield plate that is overlapped with the imaging substrate 2 while being electrically connected to the ground wiring of the imaging substrate 2 on the support pin 4 on the back side of the imaging substrate 2. 5 is arranged.
  • the shield plate 5 is electrically connected to the ground wiring of the imaging board 2 on the back side of the imaging board 2, thereby blocking electromagnetic radiation noise entering from the back side, that is, the side opposite to the subject of the imaging board 2. In addition, it has a function of preventing electromagnetic radiation noise radiated from the imaging substrate 2 from leaking to the back side.
  • the camera module 10 of this example when used in a communication device such as a mobile phone or a vehicle, the back side of the electromagnetic radiation noise from the imaging board 2 of the camera module 10 of this example to the outside of the camera module 10 It is possible to prevent leakage due to induced current caused by changes in electromagnetic radiation noise generated in the imaging substrate 2 in these communication devices and other electronic devices used in the vehicle. become able to. As a result, the communication device or vehicle using the camera module 10 of the present example has a high reliability because the problem of malfunction due to electromagnetic radiation noise generated on the imaging board 2 of the camera module 10 of the present example does not occur. It will be a thing.
  • the shield plate 5 can be formed by cutting a plate material made of a highly conductive metal material such as a copper-nickel-zinc alloy or aluminum into a predetermined shape.
  • the shield plate 5 is overlaid so as to cover the imaging substrate 2 while maintaining a predetermined distance from the imaging substrate 2 in order to prevent contact with components mounted on the imaging substrate 2.
  • the predetermined interval is determined in consideration of the magnitude of vibration and shock applied to the camera module 10 and the amount of deformation during heating and cooling of the imaging substrate 2, the shield plate 5, and the like.
  • a through hole is provided at a position corresponding to the support pin 4 of the shield plate 5, and the support pin 4 is inserted into the through hole of the shield plate 5 on the back side of the imaging substrate 2.
  • the shield plate 5 is attached to the support pins 4.
  • the plurality of support pins 4 can simultaneously fix and electrically connect the imaging substrate 2 and the shield plate 5 using a brazing material such as solder. Accordingly, it is possible to reduce the size of the shield plate 5 while stabilizing the fixing of the shield plate 5 so that the electromagnetic radiation noise is satisfactorily blocked. In addition, productivity can be increased in manufacturing.
  • the plurality of pin support portions 3c are provided apart from the lens support tube portion 3b and integrated with the lens support tube portion 3b by the connecting portion 3e. . Because of such a configuration, even if vibration is applied to the camera module 10, the change in the position of the pin support portion 3c with respect to the lens 1 is reduced. The positional accuracy of the substrate 2 can be ensured. Since the supporting lens 1 serves as a beam in the lens supporting tube portion 3b and is a portion that is particularly difficult to deform, the pin supporting portion 3c is integrated with the lens supporting tube portion 3b by the connecting portion 3e. By doing so, the position of the pin support portion 3c can be effectively and stably fixed. In the camera module 10 of this example, a connecting portion 3e that is a plate-like wall-like body extending from the pin support portion 3c toward the center of the lens 1 is provided.
  • the wall-shaped body (connecting portion 3e) has both side surfaces of the side portion with respect to the length direction of the wall-shaped body, the side surface of the lens supporting cylinder portion 3b and the pin support portion 3c, respectively.
  • the end surface of one of the wall-like bodies (the lower side in the cross-sectional view of FIG. 3) is attached to the bottom of the space S.
  • the dimension of the wall-like body that becomes the connecting portion 3e is vertical when the vertical direction in FIG. 3 is vertical, the horizontal direction in FIG. 3 is horizontal, and the depth direction (direction perpendicular to the paper surface) in FIG.
  • the length is 4 to 10 mm
  • the width is 2 to 6 mm
  • the depth is 0.5 to 3 mm
  • the overall shape is a plate-like cuboid.
  • the shield plate 5 has an opening 5c that exposes a part of the connector 7 mounted on the surface of the image pickup substrate 2 on the shield plate 5 side. If the shield plate 5 is provided with an opening 5c that exposes a part of the connector 7 mounted on the back side of the imaging board 2, the imaging board 2 is assumed to have the connector 7 attached thereto. In addition, it is possible to attach a wiring cable to the connector 7 after attaching the shield plate 5 to the support pin 4, so that the camera module 10 with high productivity can be obtained.
  • the case 11 it is preferable to attach the case 11 with the shield plate 5 maintained at a predetermined distance, and even if an impact is applied to the case 11, the shield plate 5 is difficult to transmit the impact.
  • the stability of the image accuracy of the camera module 10 can be further increased.
  • a flexible wiring board formed with a thickness of 0.1 to 0.5 mm using polyimide resin is used as a wiring cable, the flexible board can be sufficiently curved even in a narrow space. This is preferable in that the gap between the shield plate 5 and the case 11 can be reduced.
  • the lens 1 is composed of five lenses has been described as an example.
  • the lenses 1 are 2 to 4 in number. It may be a case of a single lens, and can also be applied to a case where the lens 1 is six or more lenses.
  • a flexible substrate is used as a wiring cable connected to the connector 7 as means for electrically connecting the wiring conductor of the imaging substrate 2 and the outside of the case 11.
  • a copper wire covered with a resin tube may be used instead of the wiring cable for connection.
  • the resin tube since the resin tube is deformed in any direction, the wiring cable is connected to the connector 7. It is possible to facilitate the attachment of the case 11 to the holder 3 performed after the connection.
  • the following imaging module of the present invention was produced.
  • a plate-shaped connecting portion having a minimum distance of 0.8 mm between the outer shell portion 3a and the pin support portion 3c and a thickness of 1 mm between the lens supporting tube portion 3b and the pin support portion 3c.
  • a holder 3 provided with 3e was manufactured, and a retainer 9 was manufactured using the same material as the holder 3.
  • the imaging device 8 is attached to the subject side, the IC 6 and the connector 7 are attached to the back side, and through holes 2b are provided at three of the four corners.
  • the vertical length is 12 mm
  • the horizontal length is 12 mm
  • the thickness is 0.8 mm.
  • a substantially rectangular imaging substrate 2 made of a glass cloth base epoxy resin was prepared.
  • support pins 4 made of an iron-chromium-nickel alloy having a diameter of 0.8 mm are inserted into each of the three pin support portions 3c of the holder 3, fixed, and attached. Each was inserted into the through hole 2 b of the imaging substrate 2.
  • each support pin 4 penetrating the imaging substrate 2 is inserted with a ring-shaped solder member on the back side of the imaging substrate 2, and an electric signal obtained by the imaging element 8 is confirmed, and the lens 1 is The alignment between the imaging substrate 2 and the support pins 4 was adjusted separately for each support pin 4 so that the collected image became clear.
  • each solder member is irradiated with a laser beam and attached to the periphery of the through hole 2b of the imaging substrate 2 via the solder.
  • the imaging substrate 2 was fixed to the support pins 4 by soldering the connecting electrodes and the support pins 4.
  • a plate material made of a copper-nickel-zinc alloy having a thickness of 0.3 mm is processed to form a rectangular shape in which through holes having a diameter of 1.6 mm are provided at three locations and openings 5 c are provided in regions facing the connector 7.
  • the shield plate 5 was prepared. With the shield plate 5 overlapped so that the connector 7 can be seen from the opening 5c, the protruding portion of the support pin 4 is inserted into the through hole of the shield plate 5, and the support pin 4 and the through hole of the shield plate 5 are Solder was poured into the gap, and the shield plate 5 was supported by the support pins 4.
  • the imaging module of the present invention since the space opened from the base side of the lens supporting cylinder part to the imaging board side is provided between the outer shell part and the pin support part, When an impact is applied to the outer shell, deformation of the outer shell tends to stop in this space, and the impact of external impact on the pin support and support pins is reduced, suppressing changes in the position of the image sensor relative to the lens. As a result, it was confirmed that the imaging module can stably obtain a high-precision image.
  • FIG. 3 is a sectional view taken along line AA in FIG. 2. It is the external appearance perspective view which looked at the holder in which the some support pin was inserted from the back side. It is the top view which looked at the holder shown in FIG. 4 from upper direction.
  • FIG. 5 is an external perspective view of a holder in a state where an imaging substrate is supported on a support pin of FIG. 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)

Abstract

 【課題】 外部から加えられた衝撃を緩衝してレンズに対する撮像素子の位置の変化を抑えた高精度の画像が安定して得られる撮像モジュールを提供する。  【解決手段】 外郭部3aの内側に、中央部に撮像素子8に被写体光を集光するレンズ1を支持するレンズ支持用筒部3bが、およびレンズ支持用筒部3bの周囲に複数のピン支持部3cが設けられたホルダ3と、複数のピン支持部3cにそれぞれ挿入され、突出部が撮像基板2を貫通して、撮像素子8をレンズ1に対向させて撮像基板2を支持する複数の支持ピン4とを具備し、ホルダ3の外郭部3aの内側にレンズ支持用筒部3bおよびピン支持部3cを囲んで、レンズ支持用筒部3bの根元側から撮像基板2側に開放した空間が設けられている撮像モジュール10である。外郭部3aの変形がこの空間内で止まり、レンズ1に対する撮像素子8の位置の変化が少なくなり、高精度の画像が安定して得られる。

Description

撮像モジュール
 本発明は、カメラモジュール等の撮像モジュールに関する。
 例えば、特許文献1には、小型の撮像モジュールとして、被写体光を電気信号に変換する撮像素子としてCCDイメージセンサ等の半導体イメージセンサを用い、撮像素子が搭載された撮像基板と、被写体を集光するレンズを支持するレンズ支持用筒部が設けられたホルダと、一部がホルダに挿入されて支持されるとともに撮像基板側に突出した突出部が撮像基板を貫通して撮像素子をレンズに対向させて撮像基板を支持する複数の支持ピンとを具備したカメラモジュールが開示されている。また、特許文献1に記載されたカメラモジュールは、ホルダには支持ピンおよび撮像基板の外側に位置する外郭部が設けられており、別途用意した凹部を有するケースの開口周縁部を外郭部に当接することにより構成された空間内に撮像基板が収納されて保護されている。
 特許文献1に開示されたカメラモジュールは、支持ピンにより撮像基板をホルダに固定するものである。特徴的なことは、固定する前の撮像基板は、支持ピンが挿入された状態で支持ピンに対する撮像基板の位置が自在に調整可能であり、撮像素子とレンズとの距離およびレンズが集光する方向と撮像基板との角度を調整して撮像基板を位置合わせすることが可能な構成となっている。従って、特許文献1に記載されたカメラモジュールは、レンズと撮像素子との位置合わせの微調整が可能であることにより高精度の画像が安定して得られるものであり、また、レンズを支持するレンズ支持用筒部と撮像基板を保護する外郭部とが一体化されることにより小型化が図られたものである。
特開2007-28430号公報(第4図)
 しかしながら、従来から、撮像モジュールを製造する工程での搬送時等において外部から衝撃が加えられることが多くあるという問題点があった。従来の撮像モジュールに外部から衝撃が加えられたとき、特に、ホルダの外郭部に外部から衝撃が加えられたときには、撮像基板に対しては保護されたとしても、ホルダの変形にともなって支持ピンを支持している部分が変形することになる。これにより、支持ピンの位置が移動して撮像基板の位置が移動するので、撮像基板に搭載された撮像素子とレンズとの距離およびレンズが集光する方向と撮像基板との角度が変化してしまうという問題点があった。
 本発明は以上のような従来の技術における問題点を解決すべく案出されたものであり、その目的は、外部から加えられた衝撃を緩衝してレンズに対する撮像素子の位置の変化を抑えた高精度の画像が安定して得られる撮像モジュールを提供することにある。
 本発明の撮像モジュールは、被写体光を電気信号に変換する撮像素子が搭載された撮像基板と、該撮像基板を収納する空間を構成する外郭部の内側に、中央部に前記撮像素子に被写体光を集光するレンズを支持するレンズ支持用筒部が、および該レンズ支持用筒部の周囲に複数のピン支持部が設けられたホルダと、複数の前記ピン支持部にそれぞれ挿入され、突出部が前記撮像基板を貫通して、前記撮像素子を前記レンズに対向させて前記撮像基板を支持する複数の支持ピンとを具備し、前記ホルダの前記外郭部の内側に前記レンズ支持用筒部および前記ピン支持部を囲んで、前記レンズ支持用筒部の根元側から前記撮像基板側に開放した空間が設けられていることを特徴とするものである。
 また、本発明の撮像モジュールは、上記構成において、複数の前記ピン支持部は、前記レンズ支持用筒部から離して設けられて、連結部により前記レンズ支持用筒部とそれぞれ一体化されていることを特徴とするものである。
 本発明の撮像モジュールは、撮像基板を収納する空間を構成する外郭部の内側に、中央部に撮像素子に被写体光を集光するレンズを支持するレンズ支持用筒部が、およびこのレンズ支持用筒部の周囲に複数のピン支持部が設けられたホルダを用いるものであり、複数のピン支持部に挿入された支持ピンにより撮像基板を支持する構成となっている。そして、本発明の撮像モジュールによれば、外郭部とピン支持部との間に、レンズ支持用筒部の根元側から前記撮像基板側に開放した空間が設けられていることから、外部から外郭部に衝撃が加えられたときには、ある程度の衝撃に対しては外郭部の変形をこの空間内で止めることができるので、ピン支持部および支持ピンへ外部からの衝撃の影響が少なくなり、レンズに対する撮像素子の位置の変化が抑えられ、高精度の画像が安定して得られるようになる。また、ホルダの内部に空間を設けつつピン支持部の長さを長くすることができるので、支持ピンをピン支持部に挿入する長さを長くしてホルダへの固定力を十分にした上でホルダの軽量化、ひいては撮像モジュールの軽量化を図ることができる。
 また、本発明の撮像モジュールによれば、複数のピン支持部が、レンズ支持用筒部から離して設けられて、連結部によりレンズ支持用筒部とそれぞれ一体化されているときには、撮像モジュールに振動が加えられても、レンズに対するピン支持部の位置の変化が少なくなるので、撮像基板への衝撃や応力の伝達を抑えて撮像基板の位置精度を確保することができる。
 以下に、本発明の撮像モジュールについて添付図面を参照しつつ詳細に説明する。なお、以下の説明においては、撮像モジュールの被写体側に対する反対側を背面側と呼ぶ。
 図1は本発明の撮像モジュールの実施の形態の一例であるカメラモジュールを被写体側から見た外観斜視図であり、図2は図1に示すカメラモジュールを背面側から見た外観斜視図であり、図3は図2のA-A線断面図である。同図に示すカメラモジュール10は、基本的な構成として、撮像基板2、ホルダ3、支持ピン4等を具備するものである。
 このようなカメラモジュール10は、例えば車載用として用いられるカメラモジュール10であり、道路上の白線を撮像する、あるいは車両を運転する運転手の死角を撮像する機能を有し、自動車の走行の制御を行なう不図示のECU(エレクトロニック・コントロール・ユニット)により動作が制御される。なお、カメラモジュール10から出力された電気信号は、ECUによって画像信号に変換され、例えば運転席の前方に設置されたディスプレイ(不図示)に表示されることとなる。
 撮像基板2は、被写体光を電気信号に変換する撮像素子8が一方の主面(被写体側の主面)に搭載された基板であり、例えば、エポキシ樹脂にガラスフィラーを添加して形成したプリント配線基板、あるいはガラスクロスにエポキシ樹脂を含浸させて形成したプリント配線基板などから成る。以下に、プリント配線基板の作製方法の一例を示す。
 まず、無アルカリガラス,石英ガラス等からなるガラス繊維を、このガラス繊維を保護するためのサイジング剤,収束剤等の樹脂から成るバインダーが付与されたものを用いて製織し、ガラスクロスを作製する。
 次に、ガラスクロスからバインダーを除去するために、水洗処理または加熱処理を施す。
 次に、シランカップリング剤等を含む溶液に、バインダーが除去されたガラスクロスを浸漬し乾燥することによって、ガラスクロス表面の樹脂との濡れ性や密着性等を確保するためのカップリング処理を施す。
 次に、カップリング処理を施したガラスクロスに熱硬化性樹脂を含浸させて、絶縁層となるプリプレグを作製する。
 次に、この絶縁層となるプリプレグの表面に銅箔を被着させてエッチングして、所定パターンの配線導体を形成する。
 次に、配線導体が形成されたプリプレグを熱硬化性樹脂から成る接着材を間に挟んで複数枚積層圧着して熱硬化性樹脂を熱硬化させて、絶縁層と配線導体とが交互に複数積層された積層基板を形成する。
 次に、ドリルで、この積層基板の表裏を貫通する貫通孔を形成する。
 しかる後、この貫通孔の内面に銅めっきを被着して上下に位置する配線導体間を電気的に接続するスルーホール導体を形成することによって、プリント配線基板が作製される。
 撮像基板2に搭載されている撮像素子8は、CCDイメージセンサやCMOSイメージセンサ等の半導体イメージセンサ素子が半導体パッケージに収納されたものである。半導体パッケージは、例えばアルミナを主成分としたセラミック配線基板等の気密性が高いパッケージ部材であり、被写体側に形成されたキャビティ(不図示)に半導体イメージセンサ素子を収納したものである。なお、このキャビティはガラス等の透光性のリッド(不図示)により封止されている。また、半導体パッケージの側面あるいは下面からは複数の端子8bが延出しており、撮像素子8は、この複数の端子8bを介して、半田等の接合材により撮像基板2に電気的に接続されるとともに固定された構成となっている。なお、撮像基板2に用いるガラスクロスやガラスフィラーの量は、両者の間で発生する熱応力を低減するために、半導体パッケージの熱膨張率と撮像基板2の熱膨張率とが同等になるように設定されることが好ましい。
 また、撮像基板2の表面や内部には、半導体パッケージの端子8bや搭載される他の部品の端子との電気的接続を行なうかあるいはこれらの端子が固定されている、配線導体(不図示)およびアース用のグランド配線(不図示)が形成されている。このような配線導体およびグランド配線は、銅・金等の導電性金属からなるものとして、めっき法により形成する方法、あるいは予め配線パターン形状に形成した金属箔を接着する方法、あるいは全面に金属箔を被着した基板からエッチングにより不要な部分をエッチング除去して形成する方法等を用いることにより、撮像基板2を構成するプリント配線基板の表面や内部に形成される。
 このような撮像基板2は、例えば表裏全面に銅箔を被着した市販の銅貼基板を準備し、この基板を所望の大きさに切断するとともに、表面に被着した銅箔を希塩酸等の酸性溶液で所望の配線パターンにエッチングすることにより製作される。なお、必要に応じてレーザやドリルを用いて貫通孔を形成し、この貫通孔に金属ペーストを充填することによって貫通導体を埋設して、基板表裏の配線パターン間を電気的に接続することも可能である。
 撮像基板2の背面側、すなわち撮像基板2の撮像素子8が配置された側とは反対側の主面には、撮像素子8からの電気信号を処理するIC6や、撮像基板2の配線導体とECU(不図示)とを電気的に接続する配線ケーブル(不図示)を接続するためのコネクタ7等の部品が搭載されている。
 ホルダ3は、前述した撮像基板2を収納する空間を構成する外郭部3aが設けられたものである。また、ホルダ3は、外郭部3aの内側に、中央部にレンズ1を支持するレンズ支持用筒部3bが設けられている。
 レンズ1は、撮像素子8に被写体光を集光する機能を有し、通常は、被写体光を広角度で集光するために被写体側を凸形状とした第1レンズ1a、第1レンズ1aを通過した光を光線として平行に近づけるための第2レンズ1b、第3レンズ1c、第4レンズ1dおよび第5レンズ1eからなる複数のレンズにより構成されている。レンズ1が上述の5枚のレンズからなる場合は、例えば、被写体側から撮像素子8に向かって、第1レンズ1a、第2レンズ1b、第3レンズ1c、第4レンズ1d、第5レンズ1eの順で光軸上に重なるように配置される。なお、本例のカメラモジュール10においては、レンズ1は、押え治具としてのリテーナ9により被写体側からレンズ支持用筒部3bの内部空間の内壁に設けられた段差に押し当てられて固定されている。
 これらリテーナ9およびホルダ3は、例えば次に述べる方法により作製される。
 ホルダ3は、ホルダ3の形状に合わせて設けられているキャビティを有する射出成形用の型を準備して、このキャビティ内にホルダ3用の原材料を流し込んで固化させて成形することにより所定の形状に形成する、従来周知の射出成形法を用いて作製することができる。また同様に、リテーナ9は、リテーナ9の形状に合わせた形状に形成されているキャビティを有する射出成形用の型を準備して、このキャビティ内にリテーナ9用の原材料を流し込んで固化させて成形することにより、所定の形状に形成して作製することができる。このようなリテーナ9およびホルダ3は、例えばポリカーボネイト(PC)やポリフタルアミド(PPA)等の非導電性の樹脂により構成されて軽量化が図られている。なお通常は、リテーナ9およびホルダ3の熱膨張および熱収縮を合わせて両者の間での熱応力の発生を抑えるために、両者に同一の材料を用いることが好ましい。
 また、本例のカメラモジュール10の背面側にはケース11が取り付けられている。ケース11は、被写体側に向けて開口した収納用の凹部11aが設けられたものであり、カメラモジュール10は、この凹部11aとホルダ3の外郭部3aとで囲まれる空間内に撮像基板2が収納されたものとなっている。また、ケース11は、ホルダ3と同一の材料を用いて構成することにより、ホルダ3との熱膨張および熱収縮を合わせたものとすることが好ましい。
 また、本例のカメラモジュール10においては、ホルダ3の外郭部3aの内側に、レンズ支持用筒部3bの周囲に配置した複数のピン支持部3cが設けられており、複数の支持ピン4が、この複数のピン支持部3cにそれぞれ挿入されている。図4は複数の支持ピン4が挿入されたホルダ3を背面側から見た外観斜視図であり、図5は図4に示すホルダ3を上方から見た図である。図4および図5に示すように、本例のカメラモジュール10においては、ホルダ3の3箇所に円柱状のピン支持部3cが設けられており、これらピン支持部3cのそれぞれに、支持ピン4が1対1に対応して背面側から挿入された構成となっている。
 そして、図6は図4の支持ピン4に撮像基板2を支持させた外観斜視図である。図6に示すように、本例のカメラモジュール10においては、複数の支持ピン4が、撮像素子8をレンズ1に対向させて撮像基板2を支持する構成となっている。
 また、支持ピン4は、突出部が撮像基板2を貫通した状態で撮像基板2を支持するものであり、具体的には、図6に示すように、略四角形状とした撮像基板2の4隅のうちの3箇所に設けられている貫通孔2bを支持ピン4がそれぞれ貫通した状態で撮像基板2が固定されたものとしている。
 このように、本例のカメラモジュール10によれば、撮像基板2を収納する空間を構成する外郭部3aの内側に、中央部に撮像素子8に被写体光を集光するレンズ1を支持するレンズ支持用筒部3bが、およびこのレンズ支持用筒部3bの周囲に複数のピン支持部3cが設けられたホルダ3を用いるものであり、複数のピン支持部3cに挿入された支持ピン4により撮像基板2を支持する構成となっている。
 支持ピン4は、その突出部の途中に鍔部を有していてもよい。この場合には、支持ピン4の突出部の途中の鍔部において撮像基板2を支持することができる。また、撮像素子8とレンズ1との光軸調整も容易となる。また、支持ピン4は、その突出部のピン支持部3cと撮像基板2との間の部位が筒状部材に挿通されていてもよい。この場合にも、支持ピン4の突出部の途中において、撮像基板2を筒状部材によって支持することができる。また、撮像素子8とレンズ1との光軸調整も容易となる。
 また、支持ピン4は、その突出部に目盛が付けられていてもよい。この場合は、撮像素子8とレンズ1との光軸調整を、目盛を目安にすることによって容易に行なうことができる。
 さらに、複数のピン支持部3cは、レンズ支持用筒部3bを囲むように、平面視でレンズ1の中心を中心とする同心円上に配置されていることが好ましい。この場合は、外部から外郭部3aに衝撃が加えられたときに、複数のピン支持部3cによって衝撃を効果的に分散させることができる。
 また、ホルダ3を上方から見た平面図である図5に示すように、3つのピン支持部3cのうち2つが外郭部3aの角部のうち対向する一対の角部付近に配置されており、3つのピン支持部3cのうち残りの1つのピン支持部3cが外郭部3aの残りのどちらかの角部付近に配置されていることが好ましい。この場合には、ピン支持部3cに挿入されている支持ピン4によって、撮像基板2の四隅のうち3箇所を支持することができることから、撮像基板2を十分に安定して固定することができ、撮像基板2を十分な位置精度で支持することが可能となる。また、カメラモジュール10に外部から衝撃が加えられた際に、ピン支持部3cが付近に配置されていない、外郭部3aの残りの角部の方向に、外部からの衝撃のエネルギーが吸収されることから、外部からの衝撃を効果的に緩和することができ、信頼性の高いカメラモジュール10を提供することが可能となる。
 本例のカメラモジュール10において、支持ピン4は、撮像素子8を位置決めして撮像基板2を安定に固定するという観点からは3本以上用いることが好ましい。
 支持ピン4は、例えば、鉄-クロム-ニッケル合金等の防錆性に優れた良導電性の金属を用いて、直径が0.4~1.5mmの略棒状に成形されたものであり、例えば、前述した材料からなる金属製の棒材を所定の長さに切断することによって得ることができる。また、本例のカメラモジュール10においては、ホルダ3には被写体側からの電磁輻射ノイズを遮断する目的でシールド体(不図示)が埋設されており、支持ピン4の一方側(先端側)はホルダ3のピン支持部3cに差し込まれた状態でこのシールド体と電気的に接続されている。また、本例のカメラモジュール10においては、撮像基板2の貫通孔2bの背面側の開口の周囲には接続用電極(不図示)が形成されており、支持ピン4は、半田等のロウ材を介してこの接続用電極と接続されることによって撮像基板2に取り付けられている。
 また、この支持ピン4の撮像基板2への取付けは、支持ピン4を撮像基板2の貫通孔2bに挿入して貫通させ、撮像基板2の貫通孔2bの内面と支持ピン4の側面とを例えば半田等のロウ材を両者の間の隙間に流し込むことにより接合することによって行なってもよい。なお、このようにロウ材によって接合する場合には、半田等のロウ材が撮像基板2の貫通孔2bと支持ピン4の間の隙間に流れ込みやすくするために、予め撮像基板2の貫通孔2bの内面と支持ピン4の側面とに金属を主成分とした薄膜をめっき法により金属めっき層として形成しておくことが好ましい。
 ホルダ3、支持ピン4および撮像基板2の接続は、本例のカメラモジュール10においては、例えば次のような方法で行なう。
 まず最初に、ホルダ3の3箇所のピン支持部3cのそれぞれに、背面側に開口して被写体側に向かう穴を1箇所ずつ形成しておいて、それぞれの穴に支持ピン4を一方端から差し込んで固定して取着する。そして、図6に示すような、支持ピン4を貫通する貫通孔2bが3箇所設けられている撮像基板2を準備し、撮像基板2の被写体側に撮像素子8を配置するとともに、コネクタ7が背面側に配置された状態でそれぞれの支持ピン4をそれぞれが対応する貫通孔2bに挿入する。
 次に、それぞれの支持ピン4の一方端(先端)からリング状の半田部材をそれぞれ挿入する。そして、被写体側に画像調整用の被写体を配置してコネクタ7に配線ケーブルを接続し、この配線ケーブルを画像分析装置に接続しておいて、撮像素子8により得られる電気信号を確認しながら、撮像基板2と支持ピン4との位置合わせをそれぞれの支持ピン4毎に別個に調整して行なう。次に、それぞれの半田部材にレーザ光を照射することによって、撮像基板2を支持ピン4に固定する。なお、支持ピン4は、表面に半田との濡れ性が高い金めっき層または錫めっき層等の金属めっき層を施してもよい。また、中間めっき層としてニッケルめっき層を施して、半田への耐性を高めるようにしてもよい。また、支持ピン4の断面形状は円形に限られず、楕円形や、三角形や四角形状以上の多角形等であっても構わず、支持ピン4を撮像基板2へ取着する方法等によって最適な形状を選択すればよい。
 このように、撮像基板2と支持ピン4との位置合わせをそれぞれの支持ピン4毎に別個に調整して行なうことにより、撮像素子8とレンズ1との間隙の距離の調整に加えて、レンズ1が集光する方向と撮像素子8との角度を調整することも可能となる。
 そして、本例のカメラモジュール10においては、ホルダ3の外郭部3aの内側にレンズ支持用筒部3bおよびピン支持部3cを囲んで、レンズ支持用筒部3bの根元側から撮像基板2側に開放した空間Sが設けられている。
 このような本例のカメラモジュール10によれば、外郭部3aとピン支持部3cとの間に、レンズ支持用筒部3bの根元側から撮像基板2側に開放した空間Sが設けられていることから、外部から外郭部3aに衝撃が加えられたときには、ある程度の衝撃に対しては、外郭部3aの変形をこの空間S内で止めることができる。その結果、ピン支持部3cおよび支持ピン4へ外部からの衝撃の影響が少なくなり、レンズ1に対する撮像素子8の位置の変化が抑えられ、高精度の画像が安定して得られるようになる。空間Sは、ホルダ3の材料、および工程中に受ける衝撃等から推定される変形量などにより設定される。本例のカメラモジュール10においては、例えば、外郭部3aとピン支持部3cとの間隔が最小でも0.5mm以上となるように設定されている。また、ホルダ3の内部に空間Sを設けつつピン支持部3cの長さを長くすることができるので、支持ピン4をピン支持部3cに挿入する長さを長くしてホルダ3への固定力を十分にした上でホルダ3の軽量化を図ることができ、ひいてはカメラモジュール10の軽量化を図ることができる。
 また、本例のカメラモジュール10においては、撮像基板2の背面側の支持ピン4に、撮像基板2のグランド配線と電気的に接続されつつ撮像基板2と間隔をとって重ね合わされているシールド板5が配置されている。
 シールド板5は、撮像基板2の背面側で、撮像基板2のグランド配線と電気的に接続されることにより、背面側すなわち撮像基板2の被写体とは反対側から侵入する電磁輻射ノイズを遮断するとともに、撮像基板2が放射する電磁輻射ノイズが背面側へ漏れるのを防止する機能を有するものである。
 従って、例えば、本例のカメラモジュール10が携帯電話等の通信機器や車両に用いられた場合に、本例のカメラモジュール10の撮像基板2からカメラモジュール10の外部への電磁輻射ノイズの背面側への漏れを防ぐことができるので、これらの通信機器や車両に使用される他の電子機器に、撮像基板2で生じた電磁輻射ノイズの変化による誘導電流によるノイズを生じさせないようにすることができるようになる。その結果として、本例のカメラモジュール10が用いられた通信機器や車両は、本例のカメラモジュール10の撮像基板2で生じた電磁輻射ノイズによる誤作動の問題が生じなくなるので、信頼性の高いものとなる。
 また、このシールド板5は、銅-ニッケル-亜鉛合金あるいはアルミニウム等の良導電性の金属材料からなる板材を所定の形状に切断することにより形成することができる。
 また、シールド板5は、撮像基板2に搭載される部品との接触を防止するために、撮像基板2と所定の間隔を維持して撮像基板2を覆うように重ね合わされる。なお、この所定の間隔は、カメラモジュール10に加えられる振動やショックの大きさを考慮し、撮像基板2やシールド板5等の加熱および冷却の際の変形量を考慮して決められる。
 本例のカメラモジュール10においては、シールド板5の支持ピン4と対応する位置に貫通孔が設けられており、撮像基板2の背面側において、シールド板5の貫通孔に支持ピン4が挿入されて、シールド板5を支持ピン4に取着している。この構成により、複数の支持ピン4が撮像基板2およびシールド板5の固定と電気的な接続とを、半田等のロウ材を用いて同時に行なうことができる。従って、シールド板5の固定を安定させて電磁輻射ノイズの遮断が良好なものとしながら小型化を図ることが可能となる。しかも製造するに当たって生産性を高くすることが可能となる。
 また、本例のカメラモジュール10によれば、複数のピン支持部3cが、レンズ支持用筒部3bから離して設けられて、連結部3eによりレンズ支持用筒部3bとそれぞれ一体化されている。このような構成であることから、カメラモジュール10に振動が加えられても、レンズ1に対するピン支持部3cの位置の変化が少なくなるので、撮像基板2への衝撃や応力の伝達を抑えて撮像基板2の位置精度を確保することができる。レンズ支持用筒部3bは、支持しているレンズ1が梁の役割となり、特に変形しにくい部分となっているので、このレンズ支持用筒部3bにピン支持部3cを連結部3eで一体化することにより、ピン支持部3cの位置を効果的に安定して固定することができる。本例のカメラモジュール10においては、ピン支持部3cからレンズ1の中心に向かって延びるような板状の壁状体である連結部3eが設けられている。
 この壁状体(連結部3e)は、図3および図5に示すように、壁状体の長さ方向に対する側部の両端面が、それぞれレンズ支持用筒部3bの側面およびピン支持部3cの側面に取り付けられており、壁状体の一方(図3の断面図における下側)の端面は、空間Sの底部に取り付けられている。
 この連結部3eとなる壁状体の寸法は、図3における上下方向を縦とし、図3における左右方向を横とし、図3における奥行方向(紙面に垂直な方向)を奥行としたときに、例えば縦が4~10mmで、横が2~6mmで、奥行が0.5~3mmであり、全体として板状の直方体形状である。
 また、本例のカメラモジュール10においては、シールド板5が、撮像基板2のシールド板5側の面に搭載されたコネクタ7の一部を露出させる開口部5cを有している。シールド板5に、撮像基板2の背面側に搭載されたコネクタ7の一部を露出させる開口部5cが設けられている場合には、撮像基板2を、コネクタ7を取着し搭載したものとしておき、支持ピン4にシールド板5を取着した後にコネクタ7に配線ケーブルを取り付けることが可能となり、生産性の高いカメラモジュール10とすることができる。
 なお、ケース11は、シールド板5と所定の間隔を維持した状態で取り付けておくことが好ましく、これにより、ケース11に衝撃が加わったとしてもシールド板5にはその衝撃が伝わりにくくなるので、カメラモジュール10の画像の精度の安定性をより高くすることができる。また、このような場合は、配線ケーブルとしてポリイミド樹脂を用いて0.1~0.5mmの厚みに形成したフレキシブル基板内に導体配線を形成したものを用いれば、フレキシブル基板が狭い空間内でも十分に湾曲して配置可能であることから、シールド板5とケース11との間隙を小さくすることができる点で好ましい。
 なお、本発明は上述した実施の形態の例に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更,改良等が可能である。
 例えば、上述したカメラモジュール10の例では、レンズ1が5枚のレンズで構成された場合を例にして説明したが、レンズ1が1枚からなる場合であっても、レンズ1が2~4枚からなる場合であってもよく、さらに、レンズ1が6枚以上のレンズの場合に適用することも可能である。
 また、上述したカメラモジュール10の例では、撮像基板2の配線導体とケース11の外部とを電気的に接続する手段として、コネクタ7に接続される配線ケーブルとしてフレキシブル基板を用いたものとしているが、例えば、接続に配線ケーブルに代えて、銅線を樹脂チューブで被覆したものを用いてもよく、この場合は、樹脂チューブがどの方向に対しても変形であることから、コネクタ7に配線ケーブルを接続した後に行なう、ホルダ3へのケース11の取付けを容易にすることができる。
 次のような本発明の撮像モジュールを作製した。
 まず、ポリフタルアミドを用いて、外郭部3aとピン支持部3cとの間隔が最小で0.8mm、レンズ支持用筒部3bとピン支持部3cとの間に厚さ1mmの板状の連結部3eが設けられているホルダ3を作製し、さらに、ホルダ3と同じ材料を用いてリテーナ9を作製した。
 次に、被写体側に撮像素子8、背面側にIC6およびコネクタ7が取り付けられ、4隅のうちの3箇所に貫通孔2bが設けられている、縦が12mm,横が12mm,厚みが0.8mmのガラス布基材エポキシ樹脂からなる略四角形状の撮像基板2を準備した。
 次に、ホルダ3の3箇所のピン支持部3cのそれぞれに、直径が0.8mmの鉄-クロム-ニッケル合金からなる支持ピン4をそれぞれ差し込んで固定して取着し、それぞれの支持ピン4を撮像基板2の貫通孔2bにそれぞれ挿入した。
 次いで、撮像基板2を貫通しているそれぞれの支持ピン4の、撮像基板2の背面側にリング状の半田部材をそれぞれ挿入して、撮像素子8により得られる電気信号を確認してレンズ1が集光した画像が鮮明になるように撮像基板2と支持ピン4との位置合わせをそれぞれの支持ピン4毎に別個に調整して行なった。次に、撮像基板2と支持ピン4との位置合わせが調整された状態で、それぞれの半田部材にレーザ光を照射して半田を介して撮像基板2の貫通孔2bの周囲に被着されている接続用電極と支持ピン4とを半田付けすることにより、撮像基板2を支持ピン4に固定した。
 次に、厚みが0.3mmの銅-ニッケル-亜鉛合金からなる板材を加工して、3箇所に直径が1.6mmの貫通孔、およびコネクタ7と対向する領域に開口部5cが設けられた四角形状のシールド板5を作製した。このシールド板5を、コネクタ7が開口部5cから見えるように重ねた状態で、支持ピン4の突出した部分をシールド板5の貫通孔に差し込み、支持ピン4とシールド板5の貫通孔との間隙に半田を流し込み、シールド板5を支持ピン4に支持させた。
 そして、ホルダ3と同じ材料を用いて、被写体側に凹部11aが設けられるとともに凹部11aの内部から外部へ通じる配線部材が取り付けられたケース11を作製し、配線ケーブルの一端をコネクタ7に接続するとともに他端をケース11の配線部材に接続しておいて、凹部11aの開口周縁部をホルダ3の外郭部3aの開口周縁部に接合することにより、本発明の撮像モジュールとしてのカメラモジュール10を作製した。そして、このようにして得られたカメラモジュール10は、その後の搬送時や検査工程および梱包工程等により複数回外部から衝撃が加わっているにもかかわらず、車載用のカメラモジュール10として用いたときには得られる画像が鮮明な状態が維持されていた。
 以上のことから、本発明の撮像モジュールによれば、外郭部とピン支持部との間に、レンズ支持用筒部の根元側から撮像基板側に開放した空間が設けられていることから、外部から外郭部に衝撃が加えられたときには、外郭部の変形がこの空間内で止まりやすく、ピン支持部および支持ピンへ外部からの衝撃の影響が少なくなり、レンズに対する撮像素子の位置の変化が抑えられ、高精度の画像が安定して得られる撮像モジュールであることが確認できた。
本発明の撮像モジュールの実施の形態の一例であるカメラモジュールを被写体側から見た外観斜視図である。 図1に示すカメラモジュールを背面側から見た外観斜視図である。 図2のA-A線断面図である。 複数の支持ピンが挿入されたホルダを背面側から見た外観斜視図である。 図4に示すホルダを上方から見た平面図である。 図4の支持ピンに撮像基板を支持させた状態のホルダの外観斜視図である。
符号の説明
 1・・・レンズ
 1a・・・第1レンズ
 1b・・・第2レンズ
 1c・・・第3レンズ
 1d・・・第4レンズ
 1e・・・第5レンズ
 2・・・撮像基板
 2b・・・貫通孔
 3・・・ホルダ
 3a・・・外郭部
 3b・・・レンズ支持用筒部
 3c・・・ピン支持部
 4・・・支持ピン
 5・・・シールド板
 5c・・・開口部
 6・・・IC
 7・・・コネクタ
 8・・・撮像素子
 8b・・・端子
 9・・・リテーナ
 10・・・カメラモジュール(撮像モジュール)
 11・・・ケース
 11a・・・凹部

Claims (7)

  1.  被写体光を電気信号に変換する撮像素子が搭載された撮像基板と、
    該撮像基板を収納する空間を構成する外郭部の内側に、中央部に前記撮像素子に被写体光を集光するレンズを支持するレンズ支持用筒部が、および該レンズ支持用筒部の周囲に複数のピン支持部が設けられたホルダと、
    複数の前記ピン支持部にそれぞれ挿入され、突出部が前記撮像基板を貫通して、前記撮像素子を前記レンズに対向させて前記撮像基板を支持する複数の支持ピンと
    を具備し、
    前記ホルダの前記外郭部の内側に前記レンズ支持用筒部および前記ピン支持部を囲んで、前記レンズ支持用筒部の根元側から前記撮像基板側に開放した空間が設けられていることを特徴とする撮像モジュール。
  2.  前記ホルダの前記外郭部と複数の前記ピン支持部との間隔が0.5mm以上であることを特徴とする請求項1に記載の撮像モジュール。
  3.  前記ホルダにシールド体が埋設されており、複数の前記支持ピンの一方側が前記ホルダの複数の前記ピン支持部に挿入された状態で前記シールド体と電気的に接続されていることを特徴とする請求項1または請求項2に記載の撮像モジュール。
  4.  前記撮像基板を貫通している複数の前記支持ピンの前記突出部は、前記撮像基板とシールド板とが間隔を有している状態で、前記シールド板と電気的に接続されていることを特徴とする請求項1乃至請求項3のいずれかに記載の撮像モジュール。
  5.  前記シールド板は、前記撮像基板の前記シールド板側の面に搭載されたコネクタの一部を露出させる開口部を有していることを特徴とする請求項1乃至請求項4のいずれかに記載の撮像モジュール。
  6.  複数の前記ピン支持部は、前記レンズ支持用筒部から離して設けられて、連結部により前記レンズ支持用筒部とそれぞれ一体化されていることを特徴とする請求項1乃至請求項5のいずれかに記載の撮像モジュール。
  7.  前記連結部は、0.5~3mmの厚みの壁状体からなることを特徴とする請求項1乃至請求項6のいずれかに記載の撮像モジュール。
PCT/JP2009/053390 2008-03-18 2009-02-25 撮像モジュール WO2009116367A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-069014 2008-03-18
JP2008069014 2008-03-18

Publications (1)

Publication Number Publication Date
WO2009116367A1 true WO2009116367A1 (ja) 2009-09-24

Family

ID=41090775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053390 WO2009116367A1 (ja) 2008-03-18 2009-02-25 撮像モジュール

Country Status (1)

Country Link
WO (1) WO2009116367A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2540875A (en) * 2015-06-30 2017-02-01 Bosch Gmbh Robert Camera housing for aligning an optical train

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06252579A (ja) * 1993-03-01 1994-09-09 Funai Electric Co Ltd シールド板とプリント基板との固定構造
JP2007004068A (ja) * 2005-06-27 2007-01-11 Kyocera Corp カメラモジュールの製造方法及びカメラモジュール
JP2007028430A (ja) * 2005-07-20 2007-02-01 Kyocera Corp カメラモジュール
JP2007110578A (ja) * 2005-10-17 2007-04-26 Sharp Corp 樹脂製キャビネット、及び薄型表示装置用キャビネット

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06252579A (ja) * 1993-03-01 1994-09-09 Funai Electric Co Ltd シールド板とプリント基板との固定構造
JP2007004068A (ja) * 2005-06-27 2007-01-11 Kyocera Corp カメラモジュールの製造方法及びカメラモジュール
JP2007028430A (ja) * 2005-07-20 2007-02-01 Kyocera Corp カメラモジュール
JP2007110578A (ja) * 2005-10-17 2007-04-26 Sharp Corp 樹脂製キャビネット、及び薄型表示装置用キャビネット

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2540875A (en) * 2015-06-30 2017-02-01 Bosch Gmbh Robert Camera housing for aligning an optical train
US9973667B2 (en) 2015-06-30 2018-05-15 Robert Bosch Gmbh Camera housing for adjusting an optical system

Similar Documents

Publication Publication Date Title
JP5094965B2 (ja) 撮像モジュール
JP6597729B2 (ja) 撮像ユニットおよび撮像装置
JP2010050771A (ja) 撮像装置モジュール
JP5020375B2 (ja) 撮像モジュール
KR101244047B1 (ko) 전자부품 실장 장치 및 그 제조방법
CN108292081B (zh) 摄像模组
JP4889660B2 (ja) 撮像モジュール
KR20040093360A (ko) 고체 촬상 장치 및 그 제조 방법
CN109863601A (zh) 摄像元件安装用基体、摄像装置以及摄像模块
US9576877B2 (en) Electronic component, electronic device, method of manufacturing mounted member, and method of manufacturing electronic component
KR101074927B1 (ko) 공동부를 갖는 회로 기판 및 그 제조 방법
CN110365871A (zh) 电子模块和成像系统
JP6097644B2 (ja) 撮像モジュール、測距モジュール、絶縁チューブ付き撮像モジュール、レンズ付き撮像モジュール、および内視鏡
KR20100031775A (ko) 전자 부품
JP2009200987A (ja) 撮像モジュール
WO2009116367A1 (ja) 撮像モジュール
JP2010109550A (ja) 撮像モジュールおよびその製造方法
WO2009119261A1 (ja) 撮像モジュール
JP5392243B2 (ja) 電子装置およびその製造方法
JP2009182381A (ja) 撮像モジュール
JP6549821B2 (ja) 半導体装置
JP2012129305A (ja) 電子装置
JP4893705B2 (ja) 電子装置
JP2009253131A (ja) 半導体装置の製造方法
JP6606008B2 (ja) 撮像素子実装用基板、撮像装置および撮像モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09721547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09721547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP