WO2009116150A1 - 倍音生成装置、音響装置及び倍音生成方法 - Google Patents

倍音生成装置、音響装置及び倍音生成方法 Download PDF

Info

Publication number
WO2009116150A1
WO2009116150A1 PCT/JP2008/055067 JP2008055067W WO2009116150A1 WO 2009116150 A1 WO2009116150 A1 WO 2009116150A1 JP 2008055067 W JP2008055067 W JP 2008055067W WO 2009116150 A1 WO2009116150 A1 WO 2009116150A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
overtone
unit
clip
harmonic
Prior art date
Application number
PCT/JP2008/055067
Other languages
English (en)
French (fr)
Inventor
啓太郎 菅原
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to US12/933,579 priority Critical patent/US20110013783A1/en
Priority to EP08722454A priority patent/EP2256724A1/en
Priority to JP2010503703A priority patent/JPWO2009116150A1/ja
Priority to PCT/JP2008/055067 priority patent/WO2009116150A1/ja
Publication of WO2009116150A1 publication Critical patent/WO2009116150A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H1/00Details of electrophonic musical instruments
    • G10H1/0091Means for obtaining special acoustic effects
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2210/00Aspects or methods of musical processing having intrinsic musical character, i.e. involving musical theory or musical parameters or relying on musical knowledge, as applied in electrophonic musical tools or instruments
    • G10H2210/155Musical effects
    • G10H2210/311Distortion, i.e. desired non-linear audio processing to change the tone colour, e.g. by adding harmonics or deliberately distorting the amplitude of an audio waveform
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/90Pitch determination of speech signals

Definitions

  • the present invention relates to a harmonic generation device, an acoustic device, a harmonic generation method, a harmonic generation program, and a recording medium on which the harmonic generation program is recorded.
  • audio apparatuses that play back audio content recorded in digital format have become widespread.
  • audio content data is compressed by a method such as MP3 (MPEG (Moving Picture Expert Group) Audio Group-3) or WMA (Windows Media Audio) to reduce the file size.
  • MP3 MPEG (Moving Picture Expert Group) Audio Group-3)
  • WMA Windows Media Audio
  • the amplification factor of the sound signal is calculated based on the signal level of the component in the predetermined frequency range of the sound signal so that the clip process is performed at the predetermined clip level. Subsequently, the acoustic signal and the amplification factor are multiplied, and the multiplication result signal is clipped at a predetermined clip level. As a result, a signal including harmonics of the acoustic signal is generated. Then, the signal of the clip result is divided by the amplification factor to return to the signal level before amplification. Thereafter, a harmonic component in a desired frequency range is extracted and added to the acoustic signal.
  • overtone generation is performed by digital signal processing, but the digital signal processing includes division by an amplification factor that is a value that can change with time.
  • Such digital signal processing is generally performed using a DSP (Digital Signal Processor), but has a configuration suitable for performing addition / subtraction and multiplication, not division by a predetermined constant value, but division by a variable value.
  • DSP Digital Signal Processor
  • the present invention has been made in view of the above circumstances, and it is possible to reliably generate appropriate overtones when reinforcing the high frequency range in a manner that is suitable for digital signal processing and less uncomfortable for the listener.
  • An object of the present invention is to provide a harmonic generation device and a harmonic generation method that can be used.
  • the present invention is a harmonic generation device that generates harmonics of a component in a predetermined frequency range included in an acoustic signal, and an extraction unit that extracts the component in the predetermined frequency range from the acoustic signal; Calculating means for calculating a clip level corresponding to the signal level of the extracted signal extracted by the extracting means; and a clip obtained by performing clip processing on the extracted signal based on the clip level calculated by the calculating means And a clipping means for generating a signal.
  • a harmonic overtone generating device of the present invention that generates overtones of components in a predetermined frequency range included in an acoustic signal; and a predetermined overtone component in a harmonic overtone signal generated by the overtone generator.
  • an extraction step of extracting a component in a predetermined frequency range from the acoustic signal a calculation step of calculating a clip level corresponding to the signal level of the extraction signal extracted in the extraction step; And a clipping step of performing clip processing on the extracted signal based on the clip level calculated in the calculation step.
  • the present invention is a harmonic generation program characterized by causing a calculation means to execute the harmonic generation method of the present invention.
  • the present invention is a recording medium in which the overtone generation program of the present invention is recorded so as to be readable by a calculation means.
  • FIG. 1 is a diagram schematically illustrating a configuration of an audio device according to an embodiment of the present invention. It is a block diagram which shows the structure of the treble reinforcement
  • FIG. 5 is a diagram for explaining an example of a waveform of a signal generated by an odd harmonic generation unit having the configuration of FIG. 4.
  • FIG. 5 is a diagram for explaining an example of a frequency distribution of a signal generated by an odd harmonic generation unit having the configuration of FIG. 4.
  • FIG. 1 is a block diagram illustrating a schematic configuration of an audio device 100 according to an embodiment.
  • the acoustic device 100 includes a sound source unit 110, a DIR (Digital Interface Receiver) 120, and a data decompression unit 130.
  • the acoustic device 100 includes a front-stage processing unit 140, a treble enhancement unit 150, an analog processing unit 160, and a speaker unit 170.
  • the acoustic device 100 includes an operation input unit 180 and a control unit 190.
  • a signal OAD corresponding to audio content data that is data-compressed so as to conform to MP3 or WMA is output.
  • Such audio content data is recorded on a recording medium such as a DVD (Digital Versatile Disk), a CD (Compact Disk), or a hard disk, and the read result from such a recording medium is output from the sound source unit 110 as a signal OAD. It has come to be.
  • the above DIR 120 receives the signal OAD from the sound source unit 110. Then, the DIR 120 converts the signal OAD into a signal CPD in a format that can be processed by a signal processing system in the subsequent stage. The signal CPD thus generated is sent to the data decompression unit 130.
  • the data decompression unit 130 receives the signal CPD from the DIR 120. Then, the data decompression unit 130 performs data decompression processing for canceling data compression on the signal CPD. The result of the data decompression is sent to the pre-processing unit 140 as a signal EPD.
  • the pre-processing unit 140 receives the signal EPD from the data decompression unit 130. Then, the preprocessing unit 140 performs preprocessing such as mixing processing on the signal EPD according to the preprocessing control designation PPC from the control unit 190. The result of this pre-processing is sent to the treble boost unit 150 as a signal PPD.
  • the treble enhancement unit 150 receives the signal PPD from the pre-processing unit 140. Then, the treble enhancement unit 150 generates harmonics of a predetermined frequency component in the signal PPD, and performs treble enhancement processing. As shown in FIG. 2, the treble enhancement unit 150 includes a delay unit 151 and a harmonic overtone generator 152. Further, the treble enhancement unit 150 includes a harmonic overtone extraction filter unit 153 as a harmonic overtone extraction unit and an addition unit 154 as a harmonic overtone addition unit.
  • D (T) S 0 (T ⁇ T DL ) (1)
  • the clip level calculation unit 221 When calculating the clip level W (T), the clip level calculation unit 221 first calculates an error E (T) by the following equation (2).
  • E (T) V ⁇
  • V is a predetermined constant less than 1.
  • the constant V is determined in advance based on experiments, simulations, experiences, and the like from the viewpoint of the amount of overtone generation.
  • the clip level calculation unit 221 calculates the clip level W (T + ⁇ ) used at time (T + ⁇ ) by the following equation (3).
  • W (T + ⁇ ) W (T) + W (T) ⁇
  • is a predetermined constant.
  • the constant ⁇ is determined in advance based on experiments, simulations, experiences, and the like from the viewpoint of preventing the divergence of the calculation result of the clip level and the viewpoint of the convergence strength.
  • the clip level calculation unit 221 sequentially calculates the clip level and updates the clip level so that the error gradually approaches “0”.
  • the current clip level W (T) calculated last time is sent to the comparison calculation unit 222 as the signal CLV.
  • the value close to 0 is adopted as the value of the signal OMD between the value X (T) and the value ( ⁇ W (T)).
  • the comparison operation unit 222 performs the clipping process on the signal X (T).
  • An example of the clipping process when the signal level changes while the signal X (T) has the constant frequency f 0 is shown in FIG.
  • FIG. 6 shows the frequency distribution of the signal Y O (T) when the change in the clip level W (T) is the frequency ⁇ f.
  • odd overtones both the odd-numbered frequency components and the frequency components that are exactly odd-numbered times are collectively referred to as “odd overtones”.
  • FIG. 8 An example of substantially even harmonics included in the signal Y E (T) is shown in FIG. 8 as a frequency distribution.
  • the weighting addition unit 240 weights and adds the signal Y O (T) and the signal Y E (T).
  • the weighted addition unit 240 includes an attenuation unit 241 O , an attenuation unit 241 E, and an addition unit 242.
  • the attenuation rate KO is determined in advance based on experiments, simulations, experiences, and the like from the viewpoint of appropriate enhancement of the odd harmonic frequency band.
  • the attenuation rate KE is determined in advance based on experiments, simulations, experiences, and the like from the viewpoint of appropriate enhancement of the even harmonic frequency band.
  • An example of frequency components included in the signal S (T) is shown in FIG. 11 as a frequency distribution.
  • the analog processing unit 160 receives the signal HID from the treble enhancement unit 150. Then, the analog processing unit 160 generates an output audio signal AOS under the control of the control unit 190 and sends it to the speaker unit 170. As shown in FIG. 12, the analog processing unit 160 having such a function includes a DA (Digital-to-Analogue) conversion unit 161, a volume adjustment unit 162, and a power amplification unit 163.
  • DA Digital-to-Analogue
  • the DA converter 161 receives the signal HID from the treble boost unit 150. Then, the DA conversion unit 161 converts the signal HID into an analog signal.
  • the DA converter 161 is configured to correspond to two DAs configured in the same manner corresponding to a left channel (hereinafter, “L channel”) signal and a right channel (hereinafter, “R channel”) signal included in the signal HID. (Digital to Analogue) equipped with a converter.
  • the analog signal ACS which is the conversion result by the DA conversion unit 161, is sent to the volume adjustment unit 162.
  • the above-described volume adjustment unit 162 receives the analog signal ACS from the DA conversion unit 161. Then, the volume adjustment unit 162 performs volume adjustment processing on the analog signal ACS in accordance with the volume adjustment command VLC from the control processing unit 190.
  • the volume adjusting unit 162 is configured to include two electronic volume elements that are configured in the same manner, corresponding to the L channel signal and the R channel signal included in the analog signal ACS. .
  • the analog signal VCS which is the adjustment result by the volume adjustment unit 162, is sent to the power amplification unit 163.
  • the power amplification unit 163 receives the analog signal VCS from the volume adjustment unit 162.
  • the power amplification unit 163 power-amplifies the analog signal VCS.
  • the power amplifying unit 163 includes two power amplifiers configured in the same manner corresponding to the L channel signal and the R channel signal included in the analog signal VCS.
  • An output audio signal AOS that is an amplification result by the power amplification unit 163 is sent to the speaker unit 170.
  • the speaker unit 170 includes an L channel speaker and an R channel speaker.
  • the speaker unit 170 reproduces and outputs audio in accordance with the output audio signal AOS from the analog processing unit 160.
  • the operation input unit 180 includes a key unit provided in the main body of the audio device 100 or a remote input device including the key unit.
  • a key part provided in the main body a touch panel provided in a display unit (not shown) can be used. Moreover, it can replace with the structure which has a key part, and the structure which inputs voice can also be employ
  • the result of operation input to the operation input unit 180 is sent to the control unit 190 as operation input data IPD.
  • the control unit 190 analyzes the operation input data IPD from the operation input unit 180.
  • the control unit 190 When the content of the operation input data IPD is the specification of the previous process content, the control unit 190 generates the previous process control designation PPC corresponding to the specified previous process content, and the previous process unit 140 Send to.
  • the control unit 190 When the content of the operation input data IPD is a volume adjustment designation including a volume adjustment mode, the control unit 190 generates a volume adjustment command VLC corresponding to the specified volume adjustment mode and performs analog processing. Send to unit 160.
  • the pre-stage processing designation has already been input to the operation input unit 180 by the user, and the pre-stage process control designation PPC corresponding to the designated pre-stage process has been sent to the pre-stage processing unit 140. Further, it is assumed that a volume adjustment designation has already been input to the operation input unit 170 by the user, and a volume adjustment command VLC corresponding to the designated volume adjustment mode has been sent to the analog processing unit 160 (see FIG. 1).
  • the DIR 120 converts it into a signal CPD of a predetermined format.
  • the data decompression unit 130 performs data decompression processing for releasing data compression on the signal CPD.
  • the pre-processing unit 140 performs pre-processing such as mixing processing on the signal EPD according to the pre-processing control designation PPC from the control unit 190, and sends the signal EPD to the treble enhancement unit 150 (see FIG. 1).
  • the clip level calculation unit 221 Upon receiving the signal X (T), the clip level calculation unit 221 first calculates the error E (T) using the above-described equation (2). Subsequently, the clip level calculation unit 221 calculates an update value of the clip level using the above-described equation (3). Note that the current clip level W (T) previously calculated by the clip level calculation unit 221 is sent to the comparison calculation unit 222 as a signal CLV (see FIG. 4).
  • the comparison operation unit 222 performs a clip process based on the clip level W (T) on the signal X (T).
  • the even harmonic generation unit 230 performs full-wave rectification processing on the signal Y O (T).
  • the attenuation unit 241 O attenuates.
  • the signal Y O (T) is attenuated by the rate K O to generate the signal AOD
  • the attenuator 241 E attenuates the signal Y E (T) by the attenuation factor K E to generate the signal AED.
  • the DA converter 161 converts the signal HID into the analog signal ACS.
  • the volume adjustment unit 162 performs volume adjustment processing on the analog signal ACS in accordance with the volume adjustment command VLC from the control unit 190, and sends the analog signal VCS to the power amplification unit 163 (see FIG. 12).
  • the power amplifier 163 Upon receiving the analog signal VCS, the power amplifier 163 power-amplifies the analog signal VCS to generate an output audio signal AOS and sends it to the speaker unit 170 (see FIG. 12). Then, the speaker unit 170 reproduces and outputs sound in accordance with the output sound signal AOS from the analog processing unit 160.
  • the fundamental tone component signal X (T) that is the harmonic generation target is extracted from the enhancement target signal S 0 (T) by the fundamental tone extraction filter unit 210. To do. Subsequently, the clip level calculation unit 221 calculates the clip level based on the signal X (T). Then, the comparison calculation unit 222 performs clip processing based on the clip level W (T) on the signal X (T) to generate a signal including a harmonic component. For this reason, in this embodiment, a harmonic can be produced
  • the clip level calculation unit 221 calculates the clip level based on the signal X (T), so that the clip level W (T) changes gradually. For this reason, it is possible to generate harmonics having a frequency that is a non-integer multiple of the fundamental component.
  • the harmonic extraction filter unit 153 is configured as a high-pass filter, but may be configured as a band-pass filter that passes only a desired harmonic component.
  • the values of various parameters that define the operation mode of the treble enhancement unit 150 are determined in advance.
  • the control unit 190 corresponds to the command input to the operation input unit 180.
  • at least some values of various parameters may be designated to the treble enhancement unit 150.
  • the constant V in the equation (2) and the constant ⁇ in the equation (3) used in the clip level calculation unit, the attenuation factors K O and K E used in the weighted addition unit 240, and the fundamental tone extraction filter For example, the filter characteristics of the unit 210 and the overtone extraction filter unit 153 are listed.
  • the clip level W (T) is updated using the equation (3) so that the error E (T) approaches 0, but the following equation (4) is used.
  • the clip level W (T) may be updated so that the square of the error E (T) approaches 0.
  • W (T + ⁇ ) W (T) + W (T) ⁇
  • is a predetermined constant
  • the clip level W (T) is updated using the equation (3) so that the error E (T) approaches.
  • the audio content is recorded on a recording medium.
  • the present invention can also be applied to the case where the broadcast audio content is received and reproduced.
  • the treble enhancement unit 150 in the above embodiment is configured as a computer as a calculation unit including a DSP (Digital Signal Processor) and the like, and a program prepared in advance is executed by the computer, thereby implementing the above embodiment. A part or all of the processing may be executed.
  • This program is recorded on a computer-readable recording medium such as a hard disk, CD-ROM, or DVD, and is read from the recording medium and executed by the computer.
  • the program may be acquired in a form recorded on a portable recording medium such as a CD-ROM or DVD, or may be acquired in a form of delivery via a network such as the Internet. Also good.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Tone Control, Compression And Expansion, Limiting Amplitude (AREA)

Abstract

 高音増強に際して、まず、増強対象の信号から、基音抽出フィルタ部210により、倍音生成対象となる基音成分の信号X(T)を抽出する。引き続き、クリップレベル算出部221が、信号X(T)に基づいてクリップレベルを算出する。そして、比較演算部222が、信号X(T)に対して、クリップレベルW(T)に基づくクリップ処理を施して、倍音成分を含む信号を生成する。このため、除算演算を行うことなく、デジタル信号処理に適した処理内容で倍音を生成することができるとともに、聴取者にとって違和感の少ない態様で、高音域を補強する際に適切な倍音を確実に生成することができる。

Description

倍音生成装置、音響装置及び倍音生成方法
 本発明は、倍音生成装置、音響装置、倍音生成方法、倍音生成プログラム、及び、当該倍音生成プログラムが記録された記録媒体に関する。
 近年、デジタル形式で記録された音響コンテンツを再生する音響装置が広く普及している。こうした音響コンテンツのデータは、多くの場合に、ファイルサイズを縮小するために、MP3(MPEG(Moving Picture Expert Group) Audio Layer-3)、WMA(Windows Media Audio)等の方式によって圧縮処理が施されている。こうした圧縮処理では、人間にとって聞こえにくいとされている高音域をカットすることが一般的に行われている。
 そこで、音響コンテンツデータから直接的に生成される音響信号における所定の周波数範囲の成分の倍音を生成し、聴取者にとって違和感の少ない態様で、高音域を補強する様々な技術が提案されている。こうした技術の中で、低信号レベルであっても、確実に倍音を生成することができる技術が提案されている(特許文献1参照:以下、「従来例」と呼ぶ)。
 この従来例の技術では、所定のクリップレベルによるクリップ処理が行われるように、音響信号における所定の周波数範囲の成分の信号レベルに基づいて、当該音響信号の増幅率を算出する。引き続き、当該音響信号と当該増幅率とを乗算し、乗算結果の信号を、所定のクリップレベルでクリップする。この結果、当該音響信号の倍音を含む信号が生成される。そして、クリップ結果の信号に当該増幅率で除算し、増幅前の信号レベルに戻す。この後、所望の周波数範囲の倍音成分を抽出し、当該音響信号に加算するようになっている。
WO 2007/116755 A1 号公報
 上述した従来例の技術では、倍音生成をデジタル信号処理により行っているが、そのデジタル信号処理には、時間とともに変化し得る値である増幅率による除算が含まれている。こうしたデジタル信号処理は、一般にDSP(Digital Signal Processor)を用いて行われるが、予め定められた一定値による除算ではなく、可変値による除算を、加減算や乗算の実行に適した構成を有しているDSPにより行う場合には、多くの処理を実行することが必要であり、DSPにとって大きな演算負荷となる。
 このため、DSPを用いたデジタル信号処理を行う場合であっても、DSPの演算負荷を抑制しつつ、聴取者にとって違和感の少ない態様で、高音域を補強する際に適切な倍音を確実に生成することができる技術が待望されている。かかる要請に応えることが、本発明が解決すべき課題の一つとして挙げられる。
 本発明は、上記の事情を鑑みてなされたものであり、デジタル信号処理に適し、かつ、聴取者にとって違和感の少ない態様で、高音域を補強する際に適切な倍音を確実に生成することができる倍音生成装置及び倍音生成方法を提供することを目的とする。
 また、本発明は、聴取者にとって違和感の少ない態様で、高音域を補強した音声を再生することができる音響装置を提供することを目的とする。
 本発明は、第1の観点からすると、音響信号に含まれる所定周波数範囲の成分の倍音を生成する倍音生成装置であって、前記音響信号から前記所定周波数範囲の成分を抽出する抽出手段と;前記抽出手段により抽出された抽出信号の信号レベルに対応したクリップレベルを算出する算出手段と;前記算出手段により算出されたクリップレベルに基づいて、前記抽出信号に対してクリップ処理が施されたクリップ信号を生成するクリッピング手段と;を備えることを特徴とする倍音生成装置である。
 本発明は、第2の観点からすると、音響信号に含まれる所定周波数範囲の成分の倍音を生成する本発明の倍音生成装置と;前記倍音生成装置によって生成された倍音信号における所定の倍音成分を抽出する倍音抽出手段と;前記音響信号と前記倍音抽出手段により抽出された信号とを加算する倍音加算手段と;を備えることを特徴とする音響装置である。
 本発明は、第3の観点からすると、音響信号から所定周波数範囲の成分を抽出する抽出工程と;前記抽出工程において抽出された抽出信号の信号レベルに対応したクリップレベルを算出する算出工程と;前記算出工程において算出されたクリップレベルに基づいて、前記抽出信号に対してクリップ処理を施すクリッピング工程と;を備えることを特徴とする倍音生成方法である。
 本発明は、第4の観点からすると、本発明の倍音生成方法を演算手段に実行させる、ことを特徴とする倍音生成プログラムである。
 本発明は、第5の観点からすると、本発明の倍音生成プログラムが、演算手段により読み取り可能に記録されている、ことを特徴とする記録媒体である。
本発明の一実施形態に係る音響装置の構成を概略的に示す図である。 図1の高音増強ユニットの構成を示すブロック図である。 図2の倍音生成装置の構成を説明するためのブロック図である。 図3の奇数倍音生成部の構成を説明するためのブロック図である。 図4の構成の奇数倍音生成部によって生成される信号の波形の例を説明するための図である。 図4の構成の奇数倍音生成部によって生成される信号の周波数分布の例を説明するための図である。 図3の偶数倍音生成部によって生成される信号の波形の例を説明するための図である。 図3の偶数倍音生成部によって生成される信号の周波数分布の例を説明するための図である。 図3の重み付け加算部の構成を説明するためのブロック図である。 図3の構成の倍音生成装置によって生成される信号の周波数分布の例を説明するための図である。 図2の構成の高音増強ユニットによって生成される信号の周波数分布の例を説明するための図である。 図1のアナログ処理ユニットの構成を説明するためのブロック図である。 図1の音響装置の動作に伴う信号の周波数分布の変遷を説明するための図である。
 以下、本発明の一実施形態を、図1~図13を参照して説明する。なお、図面においては、同一又は同等の要素には同一の符号を付し、重複する説明を省略する。
 [構成]
 図1には、一実施形態に係る音響装置100の概略的な構成が、ブロック図にて示されている。この図1に示されるように、音響装置100は、音源ユニット110と、DIR(Digital Interface Receiver)120と、データ伸長ユニット130とを備えている。また、音響装置100は、前段処理ユニット140と、高音増強ユニット150と、アナログ処理ユニット160と、スピーカユニット170とを備えている。さらに、音響装置100は、操作入力ユニット180と、制御ユニット190とを備えている。
 上記の音源ユニット110からは、MP3やWMAに適合するようにデータ圧縮された音声コンテンツデータに対応する信号OADが出力される。こうした音声コンテンツデータは、例えば、DVD(Digital Versatile Disk)、CD(Compact Disk)、ハードディスク等の記録媒体に記録されており、こうした記録媒体からの読み出し結果が、信号OADとして、音源ユニット110から出力されるようになっている。
 上記のDIR120は、音源ユニット110からの信号OADを受ける。そして、DIR120は、信号OADを後段の信号処理系にて処理可能な形式の信号CPDに変換する。こうして生成された信号CPDは、データ伸長ユニット130へ送られる。
 上記のデータ伸長ユニット130は、DIR120からの信号CPDを受ける。そして、データ伸長ユニット130は、データ圧縮を解除するデータ伸長処理を信号CPDに対して施す。こうしてデータ伸長された結果が、信号EPDとして、前段処理ユニット140へ送られる。
 上記の前段処理ユニット140は、データ伸長ユニット130からの信号EPDを受ける。そして、前段処理ユニット140は、制御ユニット190からの前段処理制御指定PPCに従って、ミキシング処理等の前段処理を信号EPDに対して施す。この前段処理の結果が、信号PPDとして高音増強ユニット150へ送られる。
 上記の高音増強ユニット150は、前段処理ユニット140からの信号PPDを受ける。そして、高音増強ユニット150は、信号PPDにおける所定の周波数成分の倍音を生成して、高音増強処理を行う。この高音増強ユニット150は、図2に示されるように、遅延部151と、倍音生成装置152とを備えている。また、高音増強ユニット150は、倍音抽出手段としての倍音抽出フィルタ部153と、倍音加算手段としての加算部154とを備えている。
 上記の遅延部151は、前段処理ユニット140からの信号PPD(=S0(T))を受ける。ここで、時刻Tは、T=n・τ(n:サンプル回数、τ:サンプル周期)で与えられる。
 そして、遅延部151は、信号S0(T)を、倍音生成装置152及び倍音抽出フィルタ部153における処理時間TDLだけ遅延させた信号DLD(=D(T))を生成する。ここで、信号D(T)と信号S0(T)との関係は、次の(1)式で表される。
  D(T)=S0(T-TDL)       …(1)
 この結果、信号D(T)と、後述する倍音抽出フィルタ部153から出力される信号HPD(=M(T))との同期が図られるようになっている。こうして生成された信号DLD(=D(T))は、加算部154へ送られる。
 上記の倍音生成装置152は、前段処理ユニット140からの信号PPD(=S0(T))を受ける。そして、倍音生成装置152は、信号PPDの所定周波数範囲の成分の倍音を含む信号HGD(=Y(T))を生成する。この倍音生成装置152は、図3に示されるように、抽出手段としての基音抽出フィルタ部210と、奇数倍音生成部220とを備えている。また、倍音生成装置152は、偶数倍音生成手段としての偶数倍音生成部230と、加算手段としての重み付け加算部240とを備えている。
 上記の基音抽出フィルタ部210は、前段処理ユニット140からの信号PPD(=S0(T))を受ける。そして、基音抽出フィルタ部210は、信号PPDから、倍音の生成対象となる成分を抽出する。基音抽出フィルタ部210は、抽出結果を、信号BAD(=X(T))として奇数倍音生成部220へ送る。
 上記の奇数倍音生成部220は、基音抽出フィルタ部210からの信号BAD(=X(T))を受ける。そして、奇数倍音生成部220は、信号BAD(=X(T))の周波数の奇数倍に対して前後にずれた非整数倍の周波数成分を含んだ略奇数倍音を生成する。この奇数倍音生成部220は、図4に示されるように、算出手段としてのクリップレベル算出部221と、クリッピング手段としての比較演算部222とを備えている。
 上記のクリップレベル算出部221は、基音抽出フィルタ部210からの信号BAD(=X(T))を受ける。そして、クリップレベル算出部221は、前回に算出された現在のクリップレベルW(T)及び信号X(T)に基づいて、現在のクリップレベルW(T)に対する更新値であるクリップレベルW(T+τ)を算出する。
 このクリップレベルW(T)の算出に際して、クリップレベル算出部221は、まず、次の(2)式により、誤差E(T)を算出する。
  E(T)=V・|X(T)|-W(T)    …(2)
 ここで、Vは、1未満の予め定められた定数である。
 なお、定数Vは、倍音の生成量の観点から、実験、シミュレーション、経験等に基づいて予め定められる。
 引き続き、クリップレベル算出部221は、次の(3)式により、時刻(T+τ)で利用されるクリップレベルW(T+τ)を算出する。
  W(T+τ)=W(T)+W(T)・|X(T)|・μ・E(T)  …(3)
 ここで、μは、予め定められた定数である。
 なお、定数μは、クリップレベルの算出結果の発散を防止の観点及び収束強度の観点から、実験、シミュレーション、経験等に基づいて予め定められる。
 すなわち、クリップレベル算出部221は、誤差を徐々に「0」に近づけるべく、クリップレベルを順次算出し、クリップレベルを更新する。こうして前回に算出された現在のクリップレベルW(T)が信号CLVとして比較演算部222へ送られる。
 上記の比較演算部222は、基音抽出フィルタ部210からの信号BAD(=X(T))及びクリップレベル算出部221からの信号CLV(=W(T))を受ける。そして、比較演算部222は、信号X(T)に対して、クリップレベルW(T)に基づくクリップ処理を施す。
 すなわち、比較演算部222は、信号X(T)の値(以下、「値X(T)」とも記す)が0以上の場合には、値X(T)と信号W(T)の値(以下、「値W(T)」とも記す)とのうちで0に近い方を、信号OMD(=YO(T))の値として採用する。一方、値X(T)が負の場合には、値X(T)と値(-W(T))とのうちで0に近い方を、信号OMDの値として採用する。こうして、比較演算部222において、信号X(T)に対するクリップ処理が行われる。信号X(T)が一定周波数f0を有しつつ、信号レベルが変化する場合のクリップ処理の一例が、図5に示されている。
 ところで、上述したように、クリップレベルW(T)は、一般に、徐々にではあるが時間的に変化する。このクリップレベルW(T)の変化が周波数Δfである場合における信号YO(T)の周波数分布が図6に示されている。この場合には、図6に示されるように、信号YO(T)は、周波数[(2j-1)・f0-Δf],[(2j-1)・f0+Δf](j=1,2,…)の成分を含んでいる。すなわち、信号YO(T)は、信号X(T)の周波数の奇数倍の周波数に対して、クリップレベルW(T)の変化に応じた周波数分だけ前後にずれた非整数倍の周波数成分である略奇数倍音を含んでいる。なお、クリップレベルW(T)が一定の場合には、信号YO(T)は、信号X(T)の正確に奇数倍の周波数成分を含むことになる。
 なお、本明細書においては、略奇数倍及び正確に奇数倍の周波数成分の双方を総称して、「奇数倍音」と呼ぶものとする。
 こうして生成された信号OMD(=YO(T))は、偶数倍音生成部230及び重み付け加算部240へ送られる。
 図3に戻り、偶数倍音生成部230は、奇数倍音生成部220からの信号OMD(=YO(T))を受ける。そして、偶数倍音生成部230は、信号X(T)の周波数の偶数倍の周波数に対して前後にずれた非整数倍の周波数成分を含んだ略偶数倍音を含む信号EMD(=YE(T))を生成する。かかる信号EMDの生成に際して、偶数倍音生成部230は、信号YO(T)に対して全波整流処理を施すようになっている。こうして生成された信号YE(T)の波形例が、図7に示されている。
 また、この信号YE(T)に含まれる略偶数倍音の一例が周波数分布として図8に示されている。この図8に示されるように、信号YE(T)は、周波数[2j・f0-2・Δf],[2j・f0+2・Δf](j=1,2,…)の成分を含んでいる。すなわち、信号YE(T)は、信号X(T)の周波数の偶数倍の周波数に対して、クリップレベルW(T)の変化に応じた周波数分だけ前後にずれた非整数倍の周波数成分である略偶数倍音を含んでいる。なお、クリップレベルW(T)が一定の場合には、信号YE(T)は、信号X(T)の正確に偶数倍の周波数成分を含むことになる。
 なお、本明細書においては、略偶数倍及び正確に偶数倍の周波数成分の双方を総称して、「偶数倍音」と呼ぶものとする。
 こうして生成された信号EMD(=YE(T))は、重み付け加算部240へ送られる。
 図3に戻り、重み付け加算部240は、奇数倍音生成部220からの信号OMD(=YO(T))及び偶数倍音生成部230からの信号EMD(=YE(T))を受ける。そして、重み付け加算部240は、信号YO(T)と信号YE(T)とを重み付け加算する。この重み付け加算部240は、図9に示されるように、減衰部241Oと、減衰部241Eと、加算部242とを備えている。
 上記の減衰部241Oは、奇数倍音生成部220からの信号OMD(=YO(T))を受ける。そして、減衰部241Oは、信号YO(T)を減衰率KOで減衰させる。この減衰結果が、信号AODとして、加算部242へ送られる。
 なお、減衰率KOは、奇数倍音周波数帯の適切な増強の観点から、実験、シミュレーション、経験等に基づいて予め定められる。
 上記の減衰部241Eは、偶数倍音生成部230からの信号EMD(=YE(T))を受ける。そして、減衰部241Eは、信号YE(T)を減衰率KEで減衰させる。この減衰結果が、信号AEDとして、加算部242へ送られる。
 なお、減衰率KEは、偶数倍音周波数帯の適切な増強の観点から、実験、シミュレーション、経験等に基づいて予め定められる。
 加算部242は、減衰部241Oからの信号AOD及び減衰部241Eからの信号AEDを受ける。そして、加算部242は、信号AODと信号AEDとを加算し、信号HGD(=Y(T))を生成する。
 加算部242による加算結果である信号HGD(=Y(T))は、倍音抽出フィルタ部153へ送られる。
 図2に戻り、上記の倍音抽出フィルタ部153は、倍音生成装置152からの信号HGD(=Y(T))を受ける。そして、倍音抽出フィルタ部153は、信号Y(T)における所望の倍音成分を抽出する。
 本実施形態では、倍音抽出フィルタ部153は、信号Y(T)における奇数倍音成分及び偶数倍音成分の全てを通過させるとともに、信号BAD(=X(T))の周波数帯である基音周波数帯の成分を遮断するハイパスフィルタとして構成されている。この倍音抽出フィルタ部153により抽出された信号HPD(=M(T))に含まれる奇数倍音及び偶数倍音の一例が周波数分布として、図10に示されている。
 倍音抽出フィルタ部153により抽出された信号HPD(=M(T))は、加算部154へ送られる。
 上記の加算部154は、遅延部151からの信号DLD(=D(T))及び倍音抽出フィルタ部153からの信号HPD(=M(T))を受ける。そして、加算部154は、信号D(T)と信号M(T)との和を算出し、信号HID(=S(T))を生成する。この信号S(T)に含まれる周波数成分の一例が周波数分布として、図11に示されている。
 加算部254による加算結果である信号HID(=S(T))は、アナログ処理ユニット160へ送られる。
 図1に戻り、上記のアナログ処理ユニット160は、高音増強ユニット150からの信号HIDを受ける。そして、アナログ処理ユニット160は、制御ユニット190による制御のもとで、出力音声信号AOSを生成し、スピーカユニット170へ送る。かかる機能を有するアナログ処理ユニット160は、図12に示されるように、DA(Digital to Analogue)変換部161と、音量調整部162と、パワー増幅部163とを備えている。
 上記のDA変換部161は、高音増強ユニット150からの信号HIDを受ける。そして、DA変換部161は、信号HIDをアナログ信号に変換する。このDA変換部161は、信号HIDに含まれるレフトチャンネル(以下、「Lチャンネル」)信号及びライトチャンネル(以下、「Rチャンネル」)信号に対応して、互いに同様に構成された2個のDA(Digital to Analogue)変換器を備えている。DA変換部161による変換結果であるアナログ信号ACSは、音量調整部162へ送られる。
 上記の音量調整部162は、DA変換部161からのアナログ信号ACSを受ける。そして、音量調整部162は、制御処理部190からの音量調整指令VLCに従って、アナログ信号ACSに対して音量調整処理を施す。この音量調整部162は、本実施形態では、アナログ信号ACSに含まれるLチャンネル信号及びRチャンネル信号に対応して、互いに同様に構成された2個の電子ボリューム素子等を備えて構成されている。音量調整部162による調整結果であるアナログ信号VCSは、パワー増幅部163へ送られる。
 上記のパワー増幅部163は、音量調整部162からのアナログ信号VCSを受ける。そして、パワー増幅部163は、アナログ信号VCSをパワー増幅する。このパワー増幅部163は、アナログ信号VCSに含まれるLチャンネル信号及びRチャンネル信号に対応して、互いに同様に構成された2個のパワー増幅器を備えている。パワー増幅部163による増幅結果である出力音声信号AOSは、スピーカユニット170へ送られる。
 図1に戻り、スピーカユニット170は、Lチャンネルスピーカ及びRチャンネルスピーカを備えている。このスピーカユニット170は、アナログ処理ユニット160からの出力音声信号AOSに従って、音声を再生出力する。
 操作入力ユニット180は、音響装置100の本体部に設けられたキー部、あるいはキー部を備えるリモート入力装置等により構成される。ここで、本体部に設けられたキー部としては、不図示の表示ユニットに設けられたタッチパネルを用いることができる。また、キー部を有する構成に代えて、音声入力する構成を採用することもできる。操作入力ユニット180への操作入力結果は、操作入力データIPDとして制御ユニット190へ送られる。
 制御ユニット190は、操作入力ユニット180からの操作入力データIPDを解析する。そして、操作入力データIPDの内容が、前段処理内容の指定であった場合には、制御ユニット190は、指定された前段処理内容に対応する前段処理制御指定PPCを生成して、前段処理ユニット140へ送る。また、操作入力データIPDの内容が、音量調整態様を含む音量調整指定であった場合には、制御ユニット190は、指定された音量調整態様に対応する音量調整指令VLCを生成して、アナログ処理ユニット160へ送る。
 [動作]
 次に、上記のように構成された音響装置100の動作を、高音増強ユニット150における信号処理に主に着目して説明する。
 前提として、操作入力ユニット180には既に利用者により前段処理指定が入力されており、指定された前段処理に対応する前段処理制御指定PPCが、前段処理ユニット140へ送られているものとする。また、操作入力ユニット170には既に利用者により音量調整指定が入力されており、指定された音量調整態様に対応する音量調整指令VLCが、アナログ処理ユニット160へ送られているものとする(図1参照)。
 こうした状態で、音源ユニット110から音声コンテンツに基づく信号OADが出力されると、DIR120が所定形式の信号CPDに変換する。引き続き、データ伸長ユニット130が、データ圧縮を解除するデータ伸長処理を信号CPDに対して施す。そして、前段処理ユニット140が、制御ユニット190からの前段処理制御指定PPCに従って、ミキシング処理等の前段処理を信号EPDに対して施し、信号PPDとして高音増強ユニット150へ送る(図1参照)。
 高音増強ユニット150では、信号PPD(=S0(T):周波数分布の例が図13(A)で示される)を、遅延部151及び倍音生成装置152で受ける。信号PPD(=S0(T)を受けた遅延部151は、信号S0(T)を、倍音生成装置152及び倍音抽出フィルタ部153における処理時間TDLだけ遅延させた信号DLD(=D(T))を生成し、加算部154へ送る(図2参照)。
 一方、倍音生成装置152では、信号PPD(=S0(T))を基音抽出フィルタ部210で受ける(図3参照)。信号S0(T)を受けた基音抽出フィルタ部210は、信号S0(T)から倍音の生成対象となる基音成分の信号BAD(=X(T))を抽出する(図13(A),(B)参照)。こうして抽出された信号BAD(=X(T))は、奇数倍音生成部220へ送られる(図3参照)。
 奇数倍音生成部220では、信号BAD(=X(T))をクリップレベル算出部221及び比較演算部222で受ける。信号X(T)を受けたクリップレベル算出部221は、まず、上述した(2)式により誤差E(T)を算出する。引き続き、クリップレベル算出部221は、上述した(3)式によりクリップレベルの更新値を算出する。なお、クリップレベル算出部221により前回に算出された現在のクリップレベルW(T)が、信号CLVとして比較演算部222へ送られる(図4参照)。
 信号BAD(=X(T))及び信号CLV(=W(T))を受けた比較演算部222は、信号X(T)に対して、クリップレベルW(T)に基づくクリップ処理を施す。このクリップ処理の結果として生成された信号X(T)の奇数倍音を含む信号OMD(=YO(T))は、偶数倍音生成部230及び重み付け加算部240へ送られる(図4参照)。
 信号OMD(=YO(T))を受けた偶数倍音生成部230は、信号YO(T)に対して全波整流処理を施す。この全波整流処理により生成された信号X(T)の偶数倍音を含む信号EMD(=YE(T))は、重み付け加算部240へ送られる(図3参照)。
 奇数倍音生成部220からの信号OMD(=YO(T))及び偶数倍音生成部230からの信号EMD(=YE(T))を受けた重み付け加算部240では、減衰部241Oが減衰率KOで信号YO(T)を減衰させて信号AODを生成するとともに、減衰部241Eが減衰率KEで信号YE(T)を減衰させて信号AEDを生成する。そして、加算部242が、信号YO(T)と信号YE(T)とを重み付け加算し、信号HGD(=Y(T))を生成する(図13(C)参照)。こうして生成された信号HGD(=Y(T))は、倍音抽出フィルタ部153へ送られる(図9参照)。
 信号HGD(=Y(T))を受けた倍音抽出フィルタ部153は、信号Y(T)における倍音成分を抽出し、信号HPD(=M(T))を生成する(図13(C),(D))。こうして生成された信号HPD(=M(T))は、加算部154へ送られる(図2参照)。
 遅延部151からの信号DLD(T)(=D(T))及び倍音抽出フィルタ部153からの信号HPD(=M(T))を受けた加算部154は、信号D(T)と信号M(T)との和を算出し、信号HID(=S(T))を生成する。この信号S(T)は、図13(E)に示されるように、音声コンテンツに対応する信号S0(T)と比べて、高音が増強されたものとなっている。こうして生成された信号HIDは、アナログ処理ユニット160へ送られる(図1参照)。
 高音増強ユニット150からの信号HIDを受けたアナログ処理ユニット160では、まず、DA変換部161が、信号HIDをアナログ信号ACSに変換する。引き続き、音量調整部162が、制御ユニット190からの音量調整指令VLCに従って、アナログ信号ACSに対して音量調整処理を施し、アナログ信号VCSとして、パワー増幅部163へ送る(図12参照)。
 アナログ信号VCSを受けたパワー増幅部163は、アナログ信号VCSをパワー増幅して、出力音声信号AOSを生成し、スピーカユニット170へ送る(図12参照)。そして、スピーカユニット170が、アナログ処理ユニット160からの出力音声信号AOSに従って、音声を再生出力する。
 以上説明したように、本実施形態では、高音増強に際して、まず、増強対象の信号S0(T)から、基音抽出フィルタ部210により、倍音生成対象となる基音成分の信号X(T)を抽出する。引き続き、クリップレベル算出部221が、信号X(T)に基づいてクリップレベルを算出する。そして、比較演算部222が、信号X(T)に対して、クリップレベルW(T)に基づくクリップ処理を施して、倍音成分を含む信号を生成する。このため、本実施形態では、除算演算を行うことなく、倍音を生成することができる。
 したがって、本実施形態によれば、デジタル信号処理に適し、かつ、聴取者にとって違和感の少ない態様で、高音域を補強する際に適切な倍音を確実に生成することができる。
 また、本実施形態では、クリップレベル算出部221が、信号X(T)に基づいてクリップレベルを算出するので、クリップレベルW(T)が緩やかに変化する。このため、基音成分の非整数倍の周波数を有する倍音を生成することができる。
 [実施形態の変形]
 本発明は、上記の実施形態に限定されるものではなく、様々な変形が可能である。
 例えば、上記の実施形態では、倍音抽出フィルタ部153をハイパスフィルタとして構成したが、所望の倍音成分のみを通過させるバンドパスフィルタとして構成することもできる。
 また、上記の実施形態では、高音増強ユニット150の動作態様を規定する各種パラメータの値は、予め定められているものとしたが、操作入力ユニット180への指令入力に対応して、制御ユニット190が、各種パラメータの少なくとも一部の値を、高音増強ユニット150に対して指定できるようにしてもよい。こうした各種パラメータとしては、クリップレベル算出部で利用される(2)式における定数V及び(3)式における定数μ、重み付け加算部240で利用される減衰率KO,KE、並びに基音抽出フィルタ部210及び倍音抽出フィルタ部153のフィルタ特性等が挙げられる。
 また、上記の実施形態では、誤差E(T)を0に近づけるように、(3)式を用いてクリップレベルW(T)を更新していくようにしたが、次の(4)式により、誤差E(T)の二乗を0に近づけるように、クリップレベルW(T)を更新するようにしてもよい。
  W(T+τ)=W(T)+W(T)・|X(T)|・λ・[E(T)]2   …(4)
  ここで、λは、予め定められた定数
 また、上記の実施形態では、誤差E(T)を近づけるように、(3)式を用いてクリップレベルW(T)を更新していくようにした。これに対し、次の(5)式により、直近の信号BAD(=X(T))の所定サンプル数N(>2)の平均値をクリップレベルW(T)として採用することにして、クリップレベルW(T)を更新していくようにしてもよい。
  W(T)=[X(T)+X(T-τ)+…+X(T-(N-1)・τ)]/N …(5)
 また、上記の実施形態では、音声コンテンツは記録媒体に記録されていることを想定したが、放送された音声コンテンツを受信して再生する場合にも、本発明を適用することができる。
 なお、上記の実施形態における高音増強ユニット150を、DSP(Digital Signal Processor)等を備えた演算手段としてのコンピュータとして構成し、予め用意されたプログラムを当該コンピュータで実行することにより、上記の実施形態における処理の一部又は全部を実行するようにしてもよい。このプログラムはハードディスク、CD-ROM、DVD等のコンピュータで読み取り可能な記録媒体に記録され、当該コンピュータによって記録媒体から読み出されて実行される。また、このプログラムは、CD-ROM、DVD等の可搬型記録媒体に記録された形態で取得されるようにしてもよいし、インターネットなどのネットワークを介した配送の形態で取得されるようにしてもよい。

Claims (10)

  1.  音響信号に含まれる所定周波数範囲の成分の倍音を生成する倍音生成装置であって、
     前記音響信号から前記所定周波数範囲の成分を抽出する抽出手段と;
     前記抽出手段により抽出された抽出信号の信号レベルに対応したクリップレベルを算出する算出手段と;
     前記算出手段により算出されたクリップレベルに基づいて、前記抽出信号に対してクリップ処理が施されたクリップ信号を生成するクリッピング手段と;
     を備えることを特徴とする倍音生成装置。
  2.  前記算出手段は、前記抽出信号の信号レベルの現在値に所定の基準値を乗じた結果と、前記クリップレベルの現在値との誤差の値に基づいて、新たなクリップレベルの値を算出する、ことを特徴とする請求項1に記載の倍音生成装置。
  3.  前記算出手段は、前記抽出信号の信号レベルの所定期間における平均値に基づいて、新たなクリップレベルの値を算出する、ことを特徴とする請求項1に記載の倍音生成装置。
  4.  前記クリップ信号に基づいて、前記抽出信号の偶数倍音信号を生成する偶数倍音生成手段を更に備える、ことを特徴とする請求項1~3のいずれか一項に記載の倍音生成装置。
  5.  前記偶数倍音生成手段は、前記クリップ信号を全波整流する、ことを特徴とする請求項4に記載の倍音生成装置。
  6.  前記クリップ信号と前記偶数倍音信号とを重み付け加算する加算手段を更に備える、ことを特徴とする請求項4又は5に記載の倍音生成装置。
  7.  音響信号に含まれる所定周波数範囲の成分の倍音を生成する請求項1~6のいずれか一項に記載の倍音生成装置と;
     前記倍音生成装置によって生成された倍音信号における所定の倍音成分を抽出する倍音抽出手段と;
     前記音響信号と前記倍音抽出手段により抽出された信号とを加算する倍音加算手段と;
     を備えることを特徴とする音響装置。
  8.  音響信号から所定周波数範囲の成分を抽出する抽出工程と;
     前記抽出工程において抽出された抽出信号の信号レベルに対応したクリップレベルを算出する算出工程と;
     前記算出工程において算出されたクリップレベルに基づいて、前記抽出信号に対してクリップ処理を施すクリッピング工程と;
     を備えることを特徴とする倍音生成方法。
  9.  請求項8に記載の倍音生成方法を演算手段に実行させる、ことを特徴とする倍音生成プログラム。
  10.  請求項9に記載の倍音生成プログラムが、演算手段により読み取り可能に記録されている、ことを特徴とする記録媒体。
PCT/JP2008/055067 2008-03-19 2008-03-19 倍音生成装置、音響装置及び倍音生成方法 WO2009116150A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/933,579 US20110013783A1 (en) 2008-03-19 2008-03-19 Overtone production device, acoustic device, and overtone production method
EP08722454A EP2256724A1 (en) 2008-03-19 2008-03-19 Overtone production device, acoustic device, and overtone production method
JP2010503703A JPWO2009116150A1 (ja) 2008-03-19 2008-03-19 倍音生成装置、音響装置及び倍音生成方法
PCT/JP2008/055067 WO2009116150A1 (ja) 2008-03-19 2008-03-19 倍音生成装置、音響装置及び倍音生成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/055067 WO2009116150A1 (ja) 2008-03-19 2008-03-19 倍音生成装置、音響装置及び倍音生成方法

Publications (1)

Publication Number Publication Date
WO2009116150A1 true WO2009116150A1 (ja) 2009-09-24

Family

ID=41090572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/055067 WO2009116150A1 (ja) 2008-03-19 2008-03-19 倍音生成装置、音響装置及び倍音生成方法

Country Status (4)

Country Link
US (1) US20110013783A1 (ja)
EP (1) EP2256724A1 (ja)
JP (1) JPWO2009116150A1 (ja)
WO (1) WO2009116150A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2963744T3 (es) * 2008-10-29 2024-04-01 Dolby Int Ab Protección de recorte de señal usando metadatos de ganancia de audio preexistentes
CN103686539B (zh) * 2013-12-13 2017-02-15 宁波中荣声学科技有限公司 模拟低频音频泛音产生电路
JP6705142B2 (ja) * 2015-09-17 2020-06-03 ヤマハ株式会社 音質判定装置及びプログラム
FR3076389B1 (fr) * 2018-01-03 2021-03-19 Coadou Christian Le Dispositif de traitement d'un son

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5327020A (en) * 1976-08-25 1978-03-13 Matsushita Electric Ind Co Ltd Fuzz effect circuit
JPS57104997A (en) * 1980-12-22 1982-06-30 Nippon Hamondo Kk Strained wave generator
JPS57173215A (en) * 1981-04-18 1982-10-25 Pioneer Electronic Corp Amplitude control circuit
JPH01186008A (ja) * 1988-01-20 1989-07-25 Matsushita Electric Ind Co Ltd 低音強調回路
JPH056178A (ja) * 1991-06-27 1993-01-14 Roland Corp デイストーシヨン回路
JPH05266582A (ja) * 1992-03-23 1993-10-15 Hitachi Ltd 音響装置
JPH0895567A (ja) * 1994-09-21 1996-04-12 Nippon Columbia Co Ltd 倍音付加装置
WO2007116755A1 (ja) 2006-03-30 2007-10-18 Pioneer Corporation 倍音生成装置、デジタル信号処理装置及び倍音生成方法
WO2008020515A1 (fr) * 2006-08-14 2008-02-21 Pioneer Corporation Appareil et procédé de génération d'harmoniques supérieurs

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05150779A (ja) * 1991-11-29 1993-06-18 Casio Comput Co Ltd 効果付加装置
JPH0736447A (ja) * 1993-07-19 1995-02-07 Casio Comput Co Ltd 効果付加装置
JP3642013B2 (ja) * 2000-08-08 2005-04-27 ヤマハ株式会社 非線形歪付加装置
US8036394B1 (en) * 2005-02-28 2011-10-11 Texas Instruments Incorporated Audio bandwidth expansion
JP4905241B2 (ja) * 2007-04-27 2012-03-28 ヤマハ株式会社 高調波生成装置、低音増強装置、およびコンピュータプログラム
US20090016563A1 (en) * 2007-07-14 2009-01-15 Aurasound, Inc. Micro-speaker

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5327020A (en) * 1976-08-25 1978-03-13 Matsushita Electric Ind Co Ltd Fuzz effect circuit
JPS57104997A (en) * 1980-12-22 1982-06-30 Nippon Hamondo Kk Strained wave generator
JPS57173215A (en) * 1981-04-18 1982-10-25 Pioneer Electronic Corp Amplitude control circuit
JPH01186008A (ja) * 1988-01-20 1989-07-25 Matsushita Electric Ind Co Ltd 低音強調回路
JPH056178A (ja) * 1991-06-27 1993-01-14 Roland Corp デイストーシヨン回路
JPH05266582A (ja) * 1992-03-23 1993-10-15 Hitachi Ltd 音響装置
JPH0895567A (ja) * 1994-09-21 1996-04-12 Nippon Columbia Co Ltd 倍音付加装置
WO2007116755A1 (ja) 2006-03-30 2007-10-18 Pioneer Corporation 倍音生成装置、デジタル信号処理装置及び倍音生成方法
WO2008020515A1 (fr) * 2006-08-14 2008-02-21 Pioneer Corporation Appareil et procédé de génération d'harmoniques supérieurs

Also Published As

Publication number Publication date
US20110013783A1 (en) 2011-01-20
JPWO2009116150A1 (ja) 2011-07-21
EP2256724A1 (en) 2010-12-01

Similar Documents

Publication Publication Date Title
CN106658284B (zh) 频域中的虚拟低音的相加
TWI459828B (zh) 在多頻道音訊中決定語音相關頻道的音量降低比例的方法及系統
CN1274184C (zh) 在电声变换器中控制音频信号的低音放音的方法和装置
US8625813B2 (en) Asymmetric polynomial psychoacoustic bass enhancement
EP3591993B1 (en) Addition of virtual bass
US10128809B2 (en) Intelligent method and apparatus for spectral expansion of an input signal
JP2007178675A (ja) オーディオ再生の効果付加方法およびその装置
WO2009116150A1 (ja) 倍音生成装置、音響装置及び倍音生成方法
JP2009244650A (ja) 音声再生装置
JP4787316B2 (ja) デジタル信号処理装置及び倍音生成方法
JP5046786B2 (ja) 擬似重低音生成装置
JP5430263B2 (ja) オーディオ装置
JP2008072600A (ja) 音響信号処理装置、音響信号処理プログラム、音響信号処理方法
JP2009086481A (ja) 音響装置、残響音付加方法、残響音付加プログラム及びその記録媒体
JP6078358B2 (ja) ノイズ低減装置、放送受信装置及びノイズ低減方法
JP5611029B2 (ja) 音響装置及び出力音制御方法
JP2006217210A (ja) オーディオ装置
JP6205758B2 (ja) 音響装置、音響装置の制御方法およびプログラム
JP2014158103A (ja) 音声信号処理装置、音声信号処理装置の制御方法およびプログラム
JP5556673B2 (ja) 音声信号補正装置、音声信号補正方法及びプログラム
JP6126390B2 (ja) ノイズ低減装置、放送受信装置及びノイズ低減方法
JP5241373B2 (ja) 高調波生成装置
JP4900062B2 (ja) 音声信号処理装置、音声再生装置および音声信号処理方法
JP4852612B2 (ja) 倍音生成装置及び倍音生成方法
JP2006324786A (ja) 音響信号処理装置およびその方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08722454

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010503703

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2008722454

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12933579

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE