WO2009113677A1 - 低腐食性イオン液体及びそれを含む潤滑油組成物 - Google Patents

低腐食性イオン液体及びそれを含む潤滑油組成物 Download PDF

Info

Publication number
WO2009113677A1
WO2009113677A1 PCT/JP2009/054912 JP2009054912W WO2009113677A1 WO 2009113677 A1 WO2009113677 A1 WO 2009113677A1 JP 2009054912 W JP2009054912 W JP 2009054912W WO 2009113677 A1 WO2009113677 A1 WO 2009113677A1
Authority
WO
WIPO (PCT)
Prior art keywords
ionic liquid
group
imide
carbon atoms
bis
Prior art date
Application number
PCT/JP2009/054912
Other languages
English (en)
French (fr)
Inventor
哲郎 西田
恵 富崎
秀紀 中嶌
秀人 上村
修吉 下田
善隆 白神
Original Assignee
ステラケミファ株式会社
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ステラケミファ株式会社, 出光興産株式会社 filed Critical ステラケミファ株式会社
Publication of WO2009113677A1 publication Critical patent/WO2009113677A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/74Amino or imino radicals substituted by hydrocarbon or substituted hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/62Quaternary ammonium compounds
    • C07C211/63Quaternary ammonium compounds having quaternised nitrogen atoms bound to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/04Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D233/06Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/02Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings
    • C07D241/04Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/04Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
    • C07D295/12Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly or doubly bound nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/56Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing nitrogen
    • C10M105/70Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing nitrogen as ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M109/00Lubricating compositions characterised by the base-material being a compound of unknown or incompletely defined constitution
    • C10M109/02Reaction products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/003Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/023Amines, e.g. polyalkylene polyamines; Quaternary amines used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2215/041Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/2203Heterocyclic nitrogen compounds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/223Five-membered rings containing nitrogen and carbon only
    • C10M2215/224Imidazoles
    • C10M2215/2245Imidazoles used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/081Thiols; Sulfides; Polysulfides; Mercaptals used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/077Ionic Liquids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/12Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives

Definitions

  • the present invention relates to a low corrosive ionic liquid and a lubricating oil composition containing the same. More specifically, the present invention includes a low corrosive ionic liquid excellent in corrosion resistance to metals, and the low corrosive ionic liquid as a base oil, and has low risk of ignition, high heat resistance and good low temperature fluidity. The present invention relates to a lubricating oil composition having excellent corrosion resistance.
  • Non-Patent Document 1 In recent years, ionic liquids composed of cations and anions have reported that a series of ethylmethylimidazolium salts with different anions have excellent thermal stability and high ionic conductivity, and become stable liquids even in air. Since then (see, for example, Non-Patent Document 1), it has attracted attention, taking advantage of its features such as thermal stability (refractory and flame retardant), high ion density (high ionic conductivity), large heat capacity, and low viscosity. In various applications, for example, electrolytes for solar cells (see, for example, Patent Document 1), extraction / separation solvents, reaction solvents, lubricating oils, etc., active research has been actively conducted.
  • An ionic liquid is composed of a cation and an anion, and each attracting force is weaker than that of a solid salt, so that it exhibits a liquid state even at room temperature.
  • an ionic liquid can be obtained by designing the structure of the cation and the anion so that the attractive force is slightly weakened.
  • the physical properties and chemical characteristics of the ionic liquid can be intentionally controlled by changing the combination of the cation and the anion or introducing a substituent into each ion.
  • the ionic liquid is composed only of ions, when moisture is mixed, the constituent ions are dissociated, and the dissociated ions act on the metal surface, which may cause corrosion depending on the material. there were.
  • hydrocarbon-based synthetic oils are advantageous in that the viscosity is intentionally controlled. However, attempts to lower the viscosity do not eliminate the problem of volatilization and ignition.
  • synthetic oils having low volatility and excellent high temperature characteristics ester oils, silicone oils, and fluorine oils have been proposed. Since ester oil is hydrolyzable, there is a problem in terms of life.
  • fluorine oils such as silicone oil and fluorine-containing polyether are superior in terms of heat resistance and volatility, but the lubrication performance is inferior to hydrocarbon mineral oils and synthetic oils. There's a problem.
  • Non-Patent Document 2 Non-Patent Document 3 and Non-Patent Document 4 propose using an ionic liquid as a lubricating oil, which has a lubricating performance comparable to that of a conventional lubricating oil and has excellent heat resistance.
  • Patent Document 2 discloses a lubricating oil composition comprising a lubricating base oil and an ionic liquid.
  • the lubricating oil composition is said to be excellent in antistatic property and thermal stability, and excellent in stability without corroding metals.
  • volatility and ignition may occur if the lubricating oil base oil has low thermal stability.
  • the ionic liquid has a problem in that, when moisture is mixed as described above, constituent ions are dissociated, and the dissociated ions act on the metal surface to cause corrosion depending on the material.
  • an ionic liquid is used for lubricating oil, depending on a friction environment or the material of a sliding part, corrosion may arise, Therefore Development of the low corrosive ionic liquid was desired.
  • the present invention has been made under such circumstances, and includes a low corrosive ionic liquid excellent in corrosion resistance to metals, and the low corrosive ionic liquid as a base oil, and has low risk of ignition and high heat resistance.
  • An object of the present invention is to provide a lubricating oil composition having good low-temperature fluidity and excellent corrosion resistance.
  • the ionic liquid contains a nitrogen-containing compound other than the ionic liquid, preferably an aliphatic compound having two or more nitrogen atoms and one or more nitrogen atoms. It has been found that a low-corrosive ionic liquid can be obtained by blending at least one selected from heterocyclic compounds containing as a heteroatom, and the object can be achieved. The present invention has been completed based on such findings.
  • a low corrosive ionic liquid characterized by comprising (A) an ionic liquid and (B) a nitrogen-containing compound other than the ionic liquid, (2)
  • the nitrogen-containing compound is at least one selected from an aliphatic compound having two or more nitrogen atoms and a heterocyclic compound containing one or more nitrogen atoms as a hetero atom.
  • the ionic liquid is represented by the following general formula (1) (Z p + ) k (A q ⁇ ) m (1) ( Wherein Z p + is a cation and A q ⁇ is an anion.
  • the low corrosive ionic liquid according to the above (1) represented by: (4) The low corrosive ionic liquid according to (1) above, wherein (A) the ionic liquid has a pour point of ⁇ 10 ° C.
  • R 1 to R 12 each independently represent a hydrogen atom, an ether bond and / or a hydroxy group, an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 3 to 18 carbon atoms, carbon Represents an aryl group having 6 to 18 carbon atoms, an aralkyl group having 7 to 18 carbon atoms, or a trialkylsilylmethyl group.
  • the low corrosive ionic liquid according to (3) which is any one selected from cations having a structure represented by: (7)
  • a q ⁇ is A ⁇ , and BF 4 ⁇ , PF 6 ⁇ , C n H (2n + 1) OSO 3 ⁇ , (C n F (2n + 1-x) H x) SO 3 -, [C n F (2n + 1-x) H x) SO 2] 2 n -, (C n F (2n + 1-x) H x) COO ⁇
  • R 13 to R 20 each independently represents a hydrogen atom or an alkyl group having 1 to 18 carbon atoms which may have an ether bond and / or a hydroxy group.
  • the low corrosive ionic liquid according to (3) which is any one selected from a phenylsulfonic acid anion, a tetrazole anion, and a triazole anion having a structure represented by: (8)
  • the nitrogen-containing compound (B) has the following general formulas (15) to (21)
  • R 21 to R 25 bonded to a carbon atom or a nitrogen atom are each independently a hydrogen atom, an amino group, an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 3 to 18 carbon atoms, or 6 to 6 carbon atoms
  • An aryl group having 18 carbon atoms, an aralkyl group having 7 to 18 carbon atoms, an aminoalkyl group having 1 to 18 carbon atoms, an alkylamino group having 1 to 18 carbon atoms, or a hydroxyalkyl group having 1 to 18 carbon atoms, R 21 to R 25 to be bonded may further be a halogen atom, and n is an integer of 1 to 18.
  • the low corrosive ionic liquid according to the above (1) which is at least one selected from the compounds represented by: (9)
  • the low corrosiveness according to the above (1), wherein the nitrogen-containing compound (B) is at least one selected from aminoalkylimidazole, aminopyridine, amino
  • Ionic liquid (10) The low corrosive ionic liquid according to (1) above, wherein the content of (B) the nitrogen-containing compound is 0.001 to 10% by mass, and (11) any one of (1) to (10) above
  • a lubricating oil composition comprising the low corrosive ionic liquid according to claim 1 as a base oil, Is to provide.
  • the low corrosive ionic liquid having excellent anticorrosion properties against metals, and the low corrosive ionic liquid as a base oil have low risk of ignition, high heat resistance and good low-temperature fluidity.
  • a lubricating oil composition having excellent corrosion resistance can be provided.
  • the low corrosive ionic liquid of the present invention comprises (A) an ionic liquid and (B) a nitrogen-containing compound other than the ionic liquid.
  • ((A) ionic liquid) in the low corrosive ionic liquid of the present invention, examples of the (A) ionic liquid used as the component (A) include the following general formula (1): (Z p + ) k (A q ⁇ ) m (1) ( Wherein Z p + is a cation and A q ⁇ is an anion.
  • the compound represented by these can be mentioned.
  • p, q, k and m are preferably 2 or less, and p, q, k and m are 1, and the general formula (1-a) Z + A - ⁇ (1- a) (In the formula, Z + is a cation, and A ⁇ is an anion.) Is preferred.
  • R 1 to R 12 are each independently a hydrogen atom, an ether bond and / or a hydroxy group, an alkyl group having 1 to 18 carbon atoms and a carbon number
  • the alkyl group having 1 to 18 carbon atoms which may have an ether bond and / or a hydroxy group may be linear, branched or cyclic, for example, methyl group, ethyl group, n- Propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, various pentyl groups, various hexyl groups, various heptyl groups, various oc
  • the alkenyl group having 3 to 18 carbon atoms may be linear, branched or cyclic.
  • the aryl group having 6 to 18 carbon atoms may have an appropriate substituent such as an alkyl group on the ring, and examples thereof include a phenyl group, a tolyl group, a xylyl group, a naphthyl group, and a methylnaphthyl group.
  • the aralkyl group having 7 to 18 carbon atoms may have an appropriate substituent such as an alkyl group on the ring, for example, a benzyl group, a methylbenzyl group, a phenethyl group, a methylphenethyl group, a phenylpropyl group, a methyl group.
  • a phenylpropyl group, a naphthylmethyl group, a methylnaphthylmethyl group, etc. are mentioned.
  • the three alkyl groups bonded to the silicon atom preferably have 1 to 8 carbon atoms, and they may be the same or different.
  • examples of the imidazolium cation represented by the general formula (2) include 1-methylimidazolium, 1,3-dimethylimidazolium, 1-ethyl-3-methylimidazolium, and 1-propyl-3.
  • -Methylimidazolium 1-butyl-3-methylimidazolium, 1-hexyl-3-methylimidazolium, 1-octyl-3-methylimidazolium, 1-trimethylsilylmethyl-3-methylimidazolium, 1-methyl- Examples include 3-isopropylimidazolium, 1-sec-butyl-3-methylimidazolium, 1-methoxyethyl-3-methylimidazolium, 1-methoxymethyl-3-methylimidazolium, and the like.
  • Examples of the pyrrolinium cation represented by the general formula (3) include N, N-propylmethylpyrrolium, N, N-butylmethylpyrrolium, N, N-methoxyethyl (methyl) pyrrolium, N, N-methoxymethyl. (Methyl) pyrrolinium, N, N-isopropylmethylpyrrolium and the like can be mentioned.
  • Examples of the 2H-pyrrolinium cation represented by the general formula (4) include 1,2-dimethyl-2H-pyrrolium, 1-ethyl-2-methyl-2H-pyrrolium, 1-propyl-2-methyl-2H-pyrrolium.
  • Examples of the pyrrolidinium cation represented by the general formula (5) include N, N-propylmethylpyrrolidinium, N, N-butylmethylpyrrolidinium, N, N-methoxyethyl (methyl) pyrrolidinium, N, N -Methoxymethyl (methyl) pyrrolidinium, N, N-isopropylmethylpyrrolidinium and the like.
  • Examples of the pyridinium cation represented by the general formula (6) include 1-ethylpyridinium, 1-propylpyridinium, and 1-butylpyridinium.
  • Piperidinium cation represented by the general formula (7) examples include N, N-propylmethylpiperidinium, N, N-butylmethylpiperidinium, N, N-methoxyethyl (methyl) piperidinium, N, N -Methoxymethyl (methyl) piperidinium, N, N-isopropylmethylpiperidinium and the like.
  • ammonium cation represented by the general formula (8) examples include N, N-diethyl-N, N-methyl (2-methoxyethyl) ammonium, tetraethylammonium, triethylmethylammonium, trimethylpropylammonium, trimethylhexylammonium, triethoxy ( 2-methoxyethyl) ammonium and the like.
  • Examples of the phosphonium cation represented by the general formula (9) include N, N-diethyl-N, N-methyl (2-methoxyethyl) phosphonium, tetraethylphosphonium, and triethylmethylphosphonium.
  • Examples of the sulfonium cation represented by the general formula (10) include For example triethyl sulfonium, diethyl (2-methoxyethyl) sulfonium, tripropylamine sulfonium, dimethyl hexyl sulfonium and the like.
  • Examples of the isoxazolium cation represented by the general formula (11) include 2-ethyl-5-methylisoxazolium, 2-propyl-5-methylisoxazolium, 2-hexyl-5-methylisoxa Examples thereof include zolium and 2-methoxymethyl-5-methylisoxazolium.
  • R 13 to R 20 each independently represent a hydrogen atom or an alkyl group having 1 to 18 carbon atoms which may have an ether bond and / or a hydroxy group.
  • the alkyl group having 1 to 18 carbon atoms which may have an ether bond and / or a hydroxy group is as described in the description of R 1 to R 12 above.
  • anion represented by A ⁇ include (trifluoromethane) trifluoroborate, (pentafluoroethane) trifluoroborate, bis (fluorosulfonyl) imide, bis (trifluoromethanesulfonyl) imide, and bis (pentafluoroethane).
  • examples of the Z + A ⁇ compound represented by the general formula (1-a) suitable as the ionic liquid of the component (A) include tetraethylammonium bis (fluorosulfonyl) imide and triethyl.
  • Tetraethylammonium bis (trifluoromethanesulfonyl) imide triethylmethylammonium bis (trifluoromethanesulfonyl) imide, diethyldimethylammonium bis (trifluoromethanesulfonyl) imide, trimethylpropylammonium bis (trifluoromethanesulfonyl) imide, trimethylhexylammonium bis (trifluoromethane) Sulfonyl) imide, triethyl (methoxymethyl) ammonium bis (trifluoromethanesulfonyl) imide, triethyl (methoxyethyl) ammonium bis (trifluoromethanesulfonyl) imide, diethyl (dimethoxyethyl) ammonium bis (trifluoromethanesulfonyl) imide, triethylisopropylammonium bis (Triflu
  • Tetraethylammonium trifluoromethanesulfonate triethylmethylammonium trifluoromethanesulfonate, diethyldimethylammonium trifluoromethanesulfonate, trimethylpropylammonium trifluoromethanesulfonate, trimethylhexylammonium trifluoromethanesulfonate, triethyl (methoxymethyl) ammonium trifluoromethanesulfonate, triethyl (methoxyethyl) ammonium Trifluoromethanesulfonate, diethyldi (methoxyethyl) ammonium trifluoromethanesulfonate, triethylisopropylammonium trifluoromethanesulfonate, 1-ethyl-3-methylimidazolium trifluoromethanesulfonate, 1-propyl- -Methylimidazol
  • Tetraethylammonium perfluorobutanesulfonate triethylmethylammonium perfluorobutanesulfonate, diethyldimethylammonium perfluorobutanesulfonate, trimethylpropylammonium perfluorobutanesulfonate, trimethylhexylammonium perfluorobutanesulfonate, triethyl (methoxymethyl) ammonium perfluorobutanesulfonate, Triethyl (methoxyethyl) ammonium perfluorobutanesulfonate, diethyldi (methoxyethyl) ammonium perfluorobutanesulfonate, triethylisopropylammonium perfluorobutanesulfonate, 1-ethyl-3-methylimidazolium perfluorobutanesulfonate, 1-propyl- -Methylimidazol
  • Z + cation is imidazolium.
  • n is an integer from 1 to 8
  • x is an integer from 0 to 17
  • y is an integer from 1 to 6
  • z is an integer from 0 to 4.
  • 1-ethyl-3-methylimidazolium bis (fluorosulfonyl) imide tetraethylammonium bis (trifluoromethanesulfonyl) imide, trimethylpropylammonium bis (trifluoromethanesulfonyl) imide, Trimethylhexylammonium bis (trifluoromethanesulfonyl) imide, 1,3-dimethylimidazolium bis (trifluoromethanesulfonyl) imide, 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide, 1-propyl-3-methyl Imidazolium bis (trifluoromethanesulfonyl) imide, 1-butyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide, 1-hexyl-3-methylimidazolium bis (trifluoromethanesulfulf
  • Particularly preferred ionic liquids include tetraethylammonium bis (trifluoromethanesulfonyl) imide, 1-ethyl-3-methylimidazolium bis (fluorosulfonyl) imide, 1,3-dimethylimidazolium bis (trifluoromethanesulfonyl) imide, Ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide, 1-propyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide, 1-butyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide, 1 -Hexyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide, 1-octyl-3-methylimidazolium (trifluoromethanesulfonyl) imide, 1-ethylpyr
  • the ionic liquid of the component (A) preferably has a pour point of ⁇ 10 ° C. or lower, more preferably ⁇ 20 ° C. or lower, still more preferably ⁇ 30 ° C. or lower.
  • the pour point is a value measured according to JIS K 2269.
  • the low corrosive ionic liquid of the present invention using an ionic liquid having such a pour point is suitably used as a base oil for lubricating oil.
  • a mixture of two or more ionic liquids can be used as the ionic liquid of the component (A).
  • the fluidity of the ionic liquid that is component (A) can be improved.
  • the low corrosive ionic liquid of the present invention using such a mixture of two or more ionic liquids having high fluidity as the ionic liquid of the component (A) is particularly suitable as a base oil for lubricating oil.
  • the blending ratio of the first ionic liquid as the main component with respect to the entire ionic liquid mixture is preferably more than 50% by mass, and the second ionic liquid as the subcomponent is 50% by mass. % Or less is preferable.
  • a nitrogen-containing compound is contained as the component (B) in order to improve the corrosion resistance.
  • the nitrogen-containing compound (B) used as the anticorrosion improver is selected from an aliphatic compound having 2 or more nitrogen atoms and a heterocyclic compound having 1 or more nitrogen atoms as heteroatoms. At least one kind, specifically the following general formulas (15) to (21)
  • R 21 to R 25 bonded to a carbon atom or a nitrogen atom are each independently a hydrogen atom, an amino group, an alkyl group having 1 to 18 carbon atoms, or 3 to 18 carbon atoms.
  • R 21 to R 25 bonded to a carbon atom may be a halogen atom.
  • n is an integer of 1 to 18.
  • the alkyl group having 1 to 18 carbon atoms may be linear, branched, or cyclic, such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, Isobutyl group, sec-butyl group, tert-butyl group, various pentyl groups, various hexyl groups, various heptyl groups, various octyl groups, various decyl groups, various dodecyl groups, various tetradecyl groups, various hexadecyl groups, various octadecyl groups, cyclopentyl Group, cyclohexyl group, cyclooctyl group and the like.
  • the alkenyl group having 3 to 18 carbon atoms, the aryl group having 6 to 18 carbon atoms, and the aralkyl group having 7 to 18 carbon atoms are as described above in
  • Examples of the halogen atom include a fluorine atom, a chlorine atom, and a bromine atom.
  • Examples of the aminoalkyl group include — (CH 2 ) n —NH 2 (n is an integer of 1 to 18).
  • Examples of the alkylamino group include —NR 2 .
  • the two Rs represent a hydrogen atom or a linear, branched, or cyclic alkyl group having 1 to 18 carbon atoms, and may be the same or different, but two Rs may be a hydrogen atom at the same time. Absent.
  • Examples of the hydroxyalkyl group include — (CH 2 ) n —OH (n is an integer of 1 to 18).
  • R 21 to R 25 are particularly preferably an amino group, an alkylamino group, or an aminoalkyl group.
  • Particularly preferred nitrogen-containing compounds include aminoalkylimidazole, aminopyridine, aminoalkylpyridine, N-aminoalkylpiperazine and aminoalkylamine.
  • the nitrogen-containing compound used as the component (B) preferably has a boiling point of 200 ° C. or higher. Although there is no restriction
  • Specific examples of the nitrogen-containing compound include bis (aminopropylmethyl) amine, 3-dibutylaminopropylamine, 2-hydroxyethylaminopropylamine, N, N, N ′, N′-tetraallyl-1,4-diamino.
  • the above nitrogen-containing compounds may be used singly or in combination of two or more.
  • the blending amount is preferably in the range of 0.001 to 10% by mass based on the total amount of the component (A) with the ionic liquid. If this blending amount is in the above range, the effect of improving the anticorrosion property of the ionic liquid can be exhibited, and other performance such as lubrication performance and heat resistance can be suppressed from being impaired.
  • a more preferable amount is 0.005 to 5% by mass, and a further preferable amount is 0.01 to 1.0% by mass.
  • the low corrosive ionic liquid of the present invention containing the above-mentioned (A) ionic liquid and (B) a nitrogen-containing compound has a feature excellent in anticorrosive properties against metals, and has thermal stability (non-volatile, flame retardant). ), High ion density (high ionic conductivity), large heat capacity, low viscosity, etc., and various uses in which ionic liquids are conventionally used, for example, electrolytes such as solar cells, extraction separation solvents, reaction solvents, It is suitably used for antistatic materials, lubricating oils and the like. Among these, it is particularly suitable for lubricating oil applications. Next, the lubricating oil composition of the present invention will be described.
  • the lubricating oil composition of the present invention is a concept including a grease composition, and is characterized by including the above-described low corrosive ionic liquid of the present invention as a base oil.
  • Base oil the low corrosive ionic liquid used for the base oil has a low viscosity and is excellent in high temperature heat resistance and low temperature fluidity.
  • the kinematic viscosity is preferably less than 1000 mm 2 / s at 40 ° C., more preferably 1 to 360 mm 2 / s, and particularly preferably 1 to 100 mm 2 / s.
  • the thermal decomposition temperature of a lubricating oil composition is higher than 200 degreeC, More preferably, it is higher than 250 degreeC.
  • the thermal decomposition temperature is lower than 200 ° C., no merit can be obtained as compared with conventionally used fluorine-based oils such as perfluoropolyether.
  • the pour point is preferably ⁇ 10 ° C. or less, preferably ⁇ 20 ° C. or less, and more preferably ⁇ 30 ° C. or less.
  • the content of the low corrosive ionic liquid in the base oil is preferably 30 to 100% by mass, more preferably 50 to 100% by mass, and further preferably 70 to 100% by mass, It is even more preferable that the amount is ⁇ 100% by mass, and it is particularly preferable that no other base oil component is contained.
  • the other base oil component can be appropriately selected from, for example, mineral oil and synthetic oil.
  • mineral oil for example, distillate obtained by atmospheric distillation of paraffinic crude oil, intermediate crude oil or naphthenic crude oil, or distillation under reduced pressure of atmospheric distillation residue oil, these distillate oils are obtained according to a conventional method. Refined oils obtained by refining, specifically solvent refined oils, hydrogenated refined oils, dewaxed oils, clay-treated oils, and the like.
  • Synthetic oils include, for example, low molecular weight polybutene, low molecular weight polypropylene, ⁇ -olefin oligomers having 8 to 14 carbon atoms and their hydrides, polyol esters (for example, trimethylolpropane fatty acid ester, pentaerythritol fatty acid ester). Etc.), dibasic acid esters, aromatic polycarboxylic acid esters (eg, trimellitic acid ester, pyromellitic acid ester, etc.), ester compounds such as phosphoric acid ester, alkylbenzene, alkylnaphthalene, alkylphenyl ether, terphenyl, etc. Examples thereof include alkyl aroma compounds, silicone oils, fluorine oils (for example, fluorocarbons, perfluoropolyethers, etc.). These other base oils can be used singly or in combination of two or more.
  • lubricating oil composition of the present invention for example, an antioxidant, an oily agent, an extreme pressure agent, a cleaning dispersant, a viscosity index improver, a rust inhibitor, a metal deactivator, and an antifoaming agent, depending on the application. From the above, one or more kinds can be selected and blended as appropriate.
  • a thickener is usually added.
  • a lubricant base oil may be used as it is as a lubricant without adding an additive.
  • antioxidants As the antioxidant, amine-based antioxidants, phenol-based antioxidants, phosphorus-based antioxidants, sulfur-based antioxidants and the like used in conventional hydrocarbon-based lubricating oils can be used. These antioxidants can be used singly or in combination of two or more.
  • amine antioxidant examples include monoalkyl diphenylamine compounds such as monooctyl diphenylamine and monononyl diphenylamine, 4,4′-dibutyldiphenylamine, 4,4′-dipentyldiphenylamine, 4,4′-dihexyldiphenylamine, 4 , 4'-diheptyldiphenylamine, 4,4'-dioctyldiphenylamine, dialkyldiphenylamine compounds such as 4,4'-dinonyldiphenylamine, polyalkyl such as tetrabutyldiphenylamine, tetrahexyldiphenylamine, tetraoctyldiphenylamine, tetranonyldiphenylamine Diphenylamine compounds, ⁇ -naphthylamine, phenyl- ⁇ -naphthylamine, butylphenyl- ⁇ -naph
  • phenolic antioxidant examples include monophenolic compounds such as 2,6-di-tert-butyl-4-methylphenol and 2,6-di-tert-butyl-4-ethylphenol, 4,4 ′ And diphenol compounds such as -methylenebis (2,6-di-tert-butylphenol) and 2,2'-methylenebis (4-ethyl-6-tert-butylphenol).
  • sulfur-based antioxidants examples include 2,6-di-tert-butyl-4- (4,6-bis (octylthio) -1,3,5-triazin-2-ylamino) phenol, phosphorus pentasulfide, and the like.
  • Examples thereof include thioterpene compounds such as a reaction product with pinene, and dialkylthiodipropionates such as dilauryl thiodipropionate and distearyl thiodipropionate.
  • Examples of phosphorus antioxidants include triphenyl phosphite and diethyl [3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl] methyl] phosphonate. The blending amount of these antioxidants is usually about 0.01 to 10% by mass, preferably 0.03 to 5% by mass, based on the total amount of the lubricating oil.
  • oily agent examples include fatty alcohols, fatty acid compounds such as fatty acids and fatty acid metal salts, ester compounds such as polyol esters, sorbitan esters, and glycerides, and amine compounds such as aliphatic amines.
  • the blending amount of these oily agents is usually about 0.1 to 30% by mass, preferably 0.5 to 10% by mass, based on the total amount of the lubricating oil composition, from the viewpoint of the blending effect.
  • the extreme pressure agent include a sulfur extreme pressure agent, a phosphorus extreme pressure agent, an extreme pressure agent containing sulfur and a metal, and an extreme pressure agent containing phosphorus and a metal.
  • extreme pressure agents can be used singly or in combination of two or more. Any extreme pressure agent may be used as long as it contains a sulfur atom and / or a phosphorus atom in the molecule and can exhibit load resistance and wear resistance.
  • extreme pressure agents containing sulfur in the molecule include sulfurized fats and oils, sulfurized fatty acids, sulfurized esters, sulfurized olefins, dihydrocarbyl polysulfides, thiadiazole compounds, alkylthiocarbamoyl compounds, triazine compounds, thioterpene compounds, dialkylthiodipropionate compounds, etc. Can be mentioned.
  • Extreme pressure agents containing sulfur, phosphorus and metals include zinc dialkylthiocarbamate (Zn-DTC), molybdenum dialkylthiocarbamate (Mo-DTC), lead dialkylthiocarbamate, tin dialkylthiocarbamate, dialkyldithiophosphate Examples include zinc (Zn-DTP), molybdenum dialkyldithiophosphate (Mo-DTP), sodium sulfonate, calcium sulfonate, and the like.
  • extreme pressure agents containing phosphorus in the molecule are tricresyl phosphate, dimethyl acid phosphate, diethyl acid phosphate, dipropyl acid phosphate, dibutyl acid phosphate, di-2-ethylhexyl acid phosphate. , Phosphate esters such as dioleyl acid phosphate, dibutyl hydrogen phosphite, dioleyl hydrogen phosphite and amine salts thereof.
  • the blending amount of these extreme pressure agents is usually about 0.01 to 30% by mass, more preferably 0.01 to 10% by mass, based on the total amount of the lubricating oil composition, from the viewpoint of blending effect and economy. .
  • the cleaning dispersant include metal sulfonate, metal salicylate, metal finate, and succinimide.
  • the blending amount of these detergent dispersants is usually about 0.1 to 30% by mass, preferably 0.5 to 10% by mass, based on the total amount of the lubricating oil composition, from the viewpoint of the blending effect.
  • viscosity index improver examples include polymethacrylate, dispersed polymethacrylate, olefin copolymer (for example, ethylene-propylene copolymer), dispersed olefin copolymer, styrene copolymer (for example, Styrene-diene hydrogenated copolymer, etc.).
  • the blending amount of these viscosity index improvers is usually about 0.5 to 35% by weight, preferably 1 to 15% by weight, based on the total amount of the lubricating oil composition, from the viewpoint of blending effects.
  • rust inhibitor examples include metal sulfonates and succinates.
  • the blending amount of these rust preventives is usually about 0.01 to 10% by weight, preferably 0.05 to 5% by weight, based on the total amount of the lubricating oil composition, from the viewpoint of blending effects.
  • metal deactivator examples include benzotriazole and thiadiazole.
  • the preferred blending amount of these metal deactivators is usually about 0.01 to 10% by weight, preferably 0.01 to 1% by weight, based on the total amount of the lubricating oil composition, from the viewpoint of blending effects.
  • the antifoaming agent examples include methyl silicone oil, fluorosilicone oil, and polyacrylate.
  • the blending amount of these antifoaming agents is usually about 0.0005 to 0.01% by mass based on the total amount of the lubricating oil composition from the viewpoint of blending effect.
  • the thickener examples include metal soaps such as lithium, calcium and sodium, particles such as bentonite, silica and Teflon (registered trademark), and non-soap thickeners such as urea resin.
  • the blending amount of these thickeners varies depending on the desired consistency, but is usually about 5 to 40% by mass, more preferably 10 to 30% by mass based on the total amount of the grease composition.
  • the lubricating oil composition of the present invention is excellent in anticorrosion properties, has a low vapor pressure even at low viscosity, has no danger of ignition, has excellent heat resistance, and has nothing compared with conventional hydrocarbon-based lubricating oils. It has inferior friction characteristics and can be used for a long time even under extremely severe conditions such as high temperature and vacuum.
  • the lubricating oil composition of the present invention can be used for a sliding part whose metallic part or non-metallic material is generally used as a mechanical material such as iron, copper, aluminum, and zinc.
  • Ceramic material eg, silicon nitride (Si 3 N 4 ), silicon carbide (SiC)], alumina (Al 2 O 3 ), aluminum nitride (AlN), boron carbide (B 4 C), titanium boride (TiB 2 ), boron nitride (BN), titanium carbide (TiC), titanium nitride (TiN), zirconia (ZrO 2 ), DLC (diamond-like carbon), and the like, and the surface thereof It can use suitably for what is a coated material.
  • ceramic material eg, silicon nitride (Si 3 N 4 ), silicon carbide (SiC)
  • Al 2 O 3 aluminum nitride
  • AlN aluminum nitride
  • B 4 C boron carbide
  • TiB 2 titanium boride
  • BN titanium carbide
  • TiN titanium nitride
  • ZrO 2 zirconia
  • DLC diamond-like carbon
  • Synthesis Example 2 Synthesis of 1-propyl-3-methylimidazolium bromide 30 g of 1-methylimidazole (reagent: manufactured by Tokyo Chemical Industry Co., Ltd.) was dissolved in 110 g of toluene and purged with nitrogen. At 25 ° C., 54 g of propyl bromide (reagent: manufactured by Tokyo Chemical Industry Co., Ltd.) was added dropwise over 1 hour. While stirring, the temperature was gradually raised and refluxed for 37 hours to complete the reaction. After cooling to room temperature, the resulting solid was filtered off. After washing with 70 g of toluene, it was dried under reduced pressure to obtain 70 g of 1-propyl-3-methylimidazolium bromide as a white solid.
  • 1-methylimidazole (reagent: manufactured by Tokyo Chemical Industry Co., Ltd.) was dissolved in 110 g of toluene and purged with nitrogen. At 25 ° C., 54 g of propyl bromide (reagent: manufactured by
  • Synthesis Example 5 Synthesis of 1-octyl-3-methylimidazolium bromide 30 g of 1-methylimidazole (reagent: manufactured by Tokyo Chemical Industry) was dissolved in 110 g of toluene and purged with nitrogen. At 25 ° C., 85 g of octyl bromide (reagent: manufactured by Tokyo Chemical Industry Co., Ltd.) was added dropwise over 1 hour. While stirring, the temperature was gradually raised and refluxed for 37 hours to complete the reaction. After cooling to room temperature, the resulting solid was filtered off. After washing with 70 g of toluene, it was dried under reduced pressure to obtain 91 g of 1-octyl-3-methylimidazolium bromide as a white solid.
  • Synthesis example 7 Synthesis of 1-propyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide 50 g of 1-propyl-3-methylimidazolium bromide obtained in Synthesis Example 2 was dissolved in 50 g of water, and lithium bistrifluoromethanesulfonyl was obtained at room temperature. 70 g of imide (reagent: Aldrich) was added. After stirring for 30 minutes, 50 g of chloroform was added and extracted. The organic layer was washed 15 times with 10 g of water, concentrated under reduced pressure, and dried. 84 g of the target product was obtained as a colorless liquid.
  • Synthesis example 8 Synthesis of 1-butyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide 50 g of 1-butyl-3-methylimidazolium bromide obtained in Synthesis Example 3 was dissolved in 50 g of water, and lithium bistrifluoromethanesulfonyl was obtained at room temperature. 66 g of imide (reagent: manufactured by Aldrich) was added. After stirring for 30 minutes, chloroform was added and extracted. The organic layer was washed 15 times with 10 g of water, concentrated under reduced pressure, and dried. 80 g of the target product was obtained as a colorless liquid.
  • Synthesis Example 9 Synthesis of 1-hexyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide 50 g of 1-hexyl-3-methylimidazolium bromide obtained in Synthesis Example 4 was dissolved in 50 g of water, and lithium bistrifluoromethanesulfonyl was obtained at room temperature. 58 g of imide (reagent: made by Aldrich) was added. After stirring for 30 minutes, chloroform was added and extracted. The organic layer was washed 15 times with 10 g of water, concentrated under reduced pressure, and dried. 77 g of the desired product was obtained as a colorless liquid.
  • Synthesis Example 10 Synthesis of 1-octyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide 50 g of 1-octyl-3-methylimidazolium bromide obtained in Synthesis Example 5 was dissolved in 50 g of water, and lithium bistrifluoromethanesulfonyl was obtained at room temperature. 52 g of imide (reagent: made by Aldrich) was added. After stirring for 30 minutes, chloroform was added and extracted. The organic layer was washed 15 times with 10 g of water, concentrated under reduced pressure, and dried. 74 g of the desired product was obtained as a colorless liquid.
  • Synthesis Example 11 Synthesis of tetraethylammonium bis (trifluoromethanesulfonyl) imide 50 g of tetraethylammonium chloride (reagent: manufactured by Kanto Chemical) was dissolved in 50 g of water, and 87 g of lithium bistrifluoromethanesulfonylimide (reagent: manufactured by Aldrich) was added at room temperature. After stirring for 30 minutes, chloroform was added and extracted. The organic layer was washed 15 times with 10 g of water, concentrated under reduced pressure, and dried. 105 g of the target product was obtained as a white solid.
  • tetraethylammonium bis (trifluoromethanesulfonyl) imide 50 g of tetraethylammonium chloride (reagent: manufactured by Kanto Chemical) was dissolved in 50 g of water, and 87 g of lithium bistrifluoromethanesulfonylimide (reagent
  • the ionic liquids 1 to 6 and additives A to F used in each example are as follows.
  • Ionic liquid 1 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide
  • Ionic liquid 2 1-propyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide
  • Ionic liquid 3 1-butyl-3- Methylimidazolium bis (trifluoromethanesulfonyl) imide
  • ionic liquid 4 1-hexyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide
  • 5 1-octyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide
  • Ionic liquid 6 tetraethylammonium bis (trifluoromethanesulfonyl)
  • the performance evaluation method of the lubricating oil composition obtained in each example is shown below.
  • Heat resistance test (5% mass loss temperature) Heat resistance was measured using a thermogravimetric analyzer (manufactured by Rigaku Corporation, model TG8110). The temperature was raised at a rate of 10 ° C./min, and the temperature at which the mass loss was 5% of the initial mass was measured. It can be said that the higher the 5% mass loss temperature, the better the evaporation resistance and heat resistance.
  • (2) Corrosion test An iron plate having a purity of 99.9% cut into a strip shape was immersed in a solution obtained by mixing 5 ml of distilled water and 5 ml of a sample. The temperature of the solution was set to 60 ° C.
  • Example 1 80 parts by mass of 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide obtained in Synthesis Example 6 was added to 1-butyl-3-methylimidazolium bis (trifluoromethanesulfonyl) obtained in Synthesis Example 8.
  • a low-corrosive ionic liquid was prepared by mixing 19 parts by weight of imide and 1 part by weight of N-aminoethylpiperazine as an additive to obtain a lubricating oil composition, and its performance was evaluated. The results are shown in Table 1.
  • Examples 2-7 A low corrosive ionic liquid was prepared in the same manner as in Example 1 except that the ionic liquid and additives shown in Table 1 were mixed so as to have the blending ratio shown in Table 1, and a lubricating oil composition was obtained. .
  • the performance evaluation results are shown in Table 1.
  • Comparative Example 1 As shown in Table 1, only ionic liquid 1 was used to obtain a lubricating oil composition. The performance evaluation results are shown in Table 1.
  • the lubricating oil compositions of the present invention have superior corrosion resistance without impairing heat resistance and friction characteristics as compared with Comparative Example 1 containing no nitrogen-containing compound. Have. Also, from the pour point of the ionic liquid constituting the base oil of the lubricating oil composition and the kinematic viscosity at 40 ° C., it is excellent in low-temperature fluidity and can suppress power loss due to viscous resistance, and is suitable as a lubricating oil. I understand.
  • the low-corrosive ionic liquid of the present invention has features that are excellent in corrosion resistance to metals, and has thermal stability (hardly volatile, flame-retardant), high ion density (high ionic conductivity), large heat capacity, low viscosity, etc. It is suitably used for various applications, for example, electrolyte solutions for solar cells, extraction separation solvents, reaction solvents, antistatic materials, lubricating oils, etc., and particularly suitable for lubricating oils.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Lubricants (AREA)

Abstract

 本発明は、(A)イオン液体と、(B)イオン液体以外の含窒素化合物を含むことを特徴とし金属に対する防腐食性に優れる低腐食性イオン液体、及び該低腐食性イオン液体を基油として含み、引火の危険性が低く、高い耐熱性と良好な低温流動性を有し、かつ防食性に優れる潤滑油組成物を提供する。

Description

低腐食性イオン液体及びそれを含む潤滑油組成物
 本発明は、低腐食性イオン液体及びそれを含む潤滑油組成物に関する。さらに詳しくは、本発明は、金属に対する防食性に優れる低腐食性イオン液体、及び該低腐食性イオン液体を基油として含み、引火の危険性が低く、高い耐熱性と良好な低温流動性を有し、かつ防食性に優れる潤滑油組成物に関するものである。
 近年、カチオンとアニオンとから構成されたイオン液体は、アニオンの異なる一連のエチルメチルイミダゾリウム塩が、優れた熱安定性と高いイオン伝導性を有し、空気中でも安定な液体となることが報告されて以来(例えば、非特許文献1参照)、注目され、その熱安定性(難揮発性、難燃性)、高イオン密度(高イオン伝導性)、大熱容量、低粘性などの特徴を活かして様々な用途、例えば太陽電池などの電解液(例えば、特許文献1参照)、抽出分離溶媒、反応溶媒、潤滑油などとして、応用研究が積極的になされている。
 イオン液体はカチオンとアニオンから構成されており、それぞれの引き合う力が固体の塩と比べて弱いために常温でも液状を示す。逆に言えば、引き合う力が若干弱くなるようにカチオンおよびアニオンの構造を設計すればイオン液体を得ることができる。さらに、カチオンとアニオンの組合せを変えたり、それぞれのイオンに置換基を導入することにより、イオン液体の物性や化学的特性を意図的にコントロールすることが可能と言われている。
 しかしながら、イオン液体はイオンのみから構成されているため、水分が混入した場合、構成イオンが解離し,この解離したイオンが金属表面に作用することで,材質によっては腐食を引き起こしてしまうという問題があった。
 身の回りには自動車や産業用機械など摺動部をもつものが数多く存在し、技術の発展と共に摺動部に生じる負荷は過酷なものとなってきている。摺動部に生じる摩擦或いは摩耗を低減させることはエネルギーロスおよび材料の長寿命化を図る点で重要であり、そのための潤滑油の高性能化が望まれている。現在、潤滑油は主として石油を精製することで得られる鉱油が使用されている。鉱油は、燃料製造における副産物であるため安価であることや、技術の蓄積があるため広い分野で多用されている。しかしながら鉱油の主成分は炭化水素であり、高温環境下では揮発したり引火したりする問題がある。
 こうした問題を解決するためにさまざまな合成油がこれまで開発されてきている。鉱油と同じく炭化水素系の合成油は、粘性を意図的にコントロールする点では有利であるが、粘性を下げようとすると揮発の問題や引火の問題を払拭できない。揮発性が低く、高温特性に優れる合成油として、エステル系オイルやシリコーンオイル、フッ素系オイルが提案されてきた。エステル系オイルは加水分解性があるため寿命の面で問題がある。
 また、シリコーンオイルや、含フッ素ポリエーテルに代表されるようなフッ素系オイルは、耐熱性や揮発性の点では優れているが、潤滑性能が炭化水素系の鉱油や合成油に比べて劣るといった問題がある。
 こうした中、潤滑油を使用するハード側の使用温度環境はますます厳しくなり、また摺動部の高速作動化がますます進んでおり、これまで提案されてきた上記の潤滑油では厳しい要求事項を満たすことができないようになってきている。
 これに対し、前記イオン液体は、揮発しにくく、また300℃以上の高温まで安定に存在し,尚且つ潤滑性に優れるといった特徴があることから,エステル系オイルやシリコーンオイル,フッ素系オイルに代わる耐熱型合成油として期待される。
 非特許文献2、非特許文献3、及び非特許文献4にはイオン液体を潤滑油として使用することが提案されており、従来の潤滑油に比べ遜色のない潤滑性能を有し、優れた耐熱性を有していることが報告されている。
 また、特許文献2には潤滑性基油とイオン液体とからなる潤滑油組成物が開示されている。該潤滑油組成物は制電性、熱安定性に優れ、金属を腐食せず安定性に優れているとされている。しかし,制電性は得られるが、潤滑油基油の熱安定性が低い場合には揮発や引火の恐れも生じてしまう。さらにイオン液体は、前述したように水分が混入した場合、構成イオンが解離し,この解離したイオンが金属表面に作用することで,材質によっては腐食を引き起こしてしまうという問題がある。
 このように、イオン液体を潤滑油に用いた場合、摩擦環境あるいは摺動部の材質によっては、腐食が生じるおそれがあるため、低腐食性イオン液体の開発が望まれていた。
特開2003-31270号公報 特開2005-89667号公報 「J.Chem.Soc.,Chem.Commun.」,965(1992年) Chem. Commun., 2001, 2244-2245 Tribology International 35 (2002) 503-509 Journal of The Society of Tribologists and Lubrication Engineers, 2003, July, 16-21
 本発明は、このような状況下になされたもので、金属に対する防食性に優れる低腐食性イオン液体、及び該低腐食性イオン液体を基油として含み、引火の危険性が低く、高い耐熱性と良好な低温流動性を有し、かつ防食性に優れる潤滑油組成物を提供することを目的とするものである。
 本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、イオン液体に、イオン液体以外の含窒素化合物、好ましくは窒素原子2個以上を有する脂肪族化合物及び窒素原子1個以上をヘテロ原子として含む複素環式化合物の中から選ばれる少なくとも一種を配合することにより、低腐食性イオン液体が得られ、その目的を達成し得ることを見出した。本発明は、かかる知見に基づいて完成したものである。
 すなわち、本発明は、
(1)(A)イオン液体と、(B)イオン液体以外の含窒素化合物を含むことを特徴とする低腐食性イオン液体、
(2)(B)含窒素化合物が、窒素原子2個以上を有する脂肪族化合物及び窒素原子1個以上をヘテロ原子として含む複素環式化合物の中から選ばれる少なくとも一種である上記(1)に記載の低腐食性イオン液体、
(3)(A)イオン液体が、下記一般式(1)
  (Zp+ k(Aq- m  ・・・(1)
(式中、Zp+ はカチオン、Aq- はアニオンである。p、q、k、m、p×k及びq×mは、それぞれ1~3の整数であり、p×k=q×mを満たす。k又はmが2以上のとき、Z又はAは、それぞれ同一でも異なっていてもよい。)
で表される上記(1)に記載の低腐食性イオン液体、
(4)(A)イオン液体が、流動点-10℃以下のものである上記(1)に記載の低腐食性イオン液体、
(5)(A)イオン液体が、二種以上のイオン液体の混合物である上記(1)に記載の低腐食性イオン液体、
(6)一般式(1)で表されるイオン液体において、Zp+がZ+であって、下記一般式(2)~(11)
Figure JPOXMLDOC01-appb-C000004
(式中、R1~R12は、それぞれ独立に水素原子、エーテル結合及び/又はヒドロキシ基を有していてもよい炭素数1~18のアルキル基、炭素数3~18のアルケニル基、炭素数6~18のアリール基、炭素数7~18のアラルキル基又はトリアルキルシリルメチル基を示す。)
で表される構造を有するカチオンの中から選ばれるいずれかである上記(3)に記載の低腐食性イオン液体、
(7)一般式(1)で表されるイオン液体において、Aq-がA-であって、BF4 -、PF6 -、Cn(2n+1)OSO3 -、(Cn(2n+1-x)x)SO3 -、[Cn(2n+1-x)x)SO22-、(Cn(2n+1-x)x)COO-、NO3 -、CH3SO3 -、(CN)2-、HSO3 -、C65SO3 -、CH3(C64)SO3 -、(FSO22-、PF6-Y(Cn2n-1Y -、BF4-Z(Cn2n-1Z -、FeCl4 -、(CN)4-ZBFZ -(前記式中、nは1~8の整数、xは0~17の整数、yは1~6の整数、zは0~4の整数である。)、及び下記一般式(12)~(14)
Figure JPOXMLDOC01-appb-C000005
(式中、R13~R20は、それぞれ独立に水素原子、あるいはエーテル結合及び/又はヒドロキシ基を有していてもよい炭素数1~18のアルキル基を示す。)
で表される構造を有するフェニルスルホン酸系アニオン、テトラゾール系アニオン、トリアゾール系アニオンの中から選ばれるいずれかである上記(3)に記載の低腐食性イオン液体、
(8)(B)含窒素化合物が、下記一般式(15)~(21)
Figure JPOXMLDOC01-appb-C000006
(式中、炭素原子又は窒素原子に結合するR21~R25は、それぞれ独立に水素原子、アミノ基、炭素数1~18のアルキル基、炭素数3~18のアルケニル基、炭素数6~18のアリール基、炭素数7~18のアラルキル基、炭素数1~18のアミノアルキル基、炭素数1~18のアルキルアミノ基又は炭素数1~18のヒドロキシアルキル基を示すが、炭素原子に結合するR21~R25は、さらにハロゲン原子であってもよい。nは1~18の整数である。)
で表される化合物の中から選ばれる少なくとも一種である上記(1)に記載の低腐食性イオン液体、
(9)(B)含窒素化合物が、アミノアルキルイミダゾール、アミノピリジン、アミノアルキルピリジン、N-アミノアルキルピペラジン及びアミノアルキルアミンの中から選ばれる少なくとも一種である上記(1)に記載の低腐食性イオン液体、
(10)(B)含窒素化合物の含有量が、0.001~10質量%である上記(1)に記載の低腐食性イオン液体、及び
(11)上記(1)~(10)のいずれかに記載の低腐食性イオン液体を基油として含むことを特徴とする潤滑油組成物、
を提供するものである。
 本発明によれば、金属に対する防食性に優れる低腐食性イオン液体、及び該低腐食性イオン液体を基油として含み、引火の危険性が低く、高い耐熱性と良好な低温流動性を有し、かつ防食性に優れる潤滑油組成物を提供することができる。
 まず、本発明の低腐食性イオン液体について説明する。
[低腐食性イオン液体]
 本発明の低腐食性イオン液体は、(A)イオン液体と、(B)イオン液体以外の含窒素化合物を含むことを特徴とする。
((A)イオン液体)
 本発明の低腐食性イオン液体において、(A)成分として用いられる(A)イオン液体としては、例えば下記一般式(1)
  (Zp+ k(Aq- m  ・・・(1)
(式中、Zp+ はカチオン、Aq- はアニオンである。p、q、k、m、p×k及びq×mは、それぞれ1~3の整数であり、p×k=q×mを満たす。k又はmが2以上のとき、Z又はAは、それぞれ同一でも異なっていてもよい。)
で表される化合物を挙げることができる。
 本発明においては、上記一般式(1)において、p、q、k及びmが2以下であることが好ましく、p、q、k及びmが1である、一般式(1-a)
  Z+- ・・・(1-a)
(式中、Z+はカチオン、A-はアニオンである。)
で表される化合物が好適である。
<Z+カチオン>
 本発明においては、前記一般式(1-a)におけるZ+カチオンとして、下記一般式(2)~(11)
Figure JPOXMLDOC01-appb-C000007
で表される構造を有するカチオンの中から選ばれるいずれかを挙げることができる。
 前記一般式(2)~(11)において、R1~R12は、それぞれ独立に水素原子、エーテル結合及び/又はヒドロキシ基を有していてもよい炭素数1~18のアルキル基、炭素数3~18のアルケニル基、炭素数6~18のアリール基、炭素数7~18のアラルキル基又はトリアルキルシリルメチル基を示す。
 前記エーテル結合及び/又はヒドロキシ基を有していてもよい炭素数1~18のアルキル基は、直鎖状、分岐状、環状のいずれであってもよく、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、各種ペンチル基、各種ヘキシル基、各種ヘプチル基、各種オクチル基、各種デシル基、各種ドデシル基、各種テトラデシル基、各種ヘキサデシル基、各種オクタデシル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基、2-メトキシエチル基、3-メトキシプロピル基、2-ヒドロキシエチル基、3-ヒドロキシプロピル基などが挙げられる。
 前記炭素数3~18のアルケニル基は直鎖状、分岐状、環状のいずれであってもよく、例えばアリル基、プロペニル基、各種ブテニル基、各種ヘキセニル基、各種オクテニル基、各種デセニル基、各種ドデセニル基、各種テトラデセニル基、各種ヘキサデセニル基、各種オクタデセニル基、シクロペンテニル基、シクロヘキセニル基、シクロオクテニル基などが挙げられる。
 前記炭素数6~18のアリール基は、環上にアルキル基などの適当な置換基を有していてもよく、例えばフェニル基、トリル基、キシリル基、ナフチル基、メチルナフチル基などが挙げられ、炭素数7~18のアラルキル基は、環上にアルキル基などの適当な置換基を有していてもよく、例えばベンジル基、メチルベンジル基、フェネチル基、メチルフェネチル基、フェニルプロピル基、メチルフェニルプロピル基、ナフチルメチル基、メチルナフチルメチル基などが挙げられる。
 一方、前記トリアルキルシリルメチル基は、ケイ素原子に結合する3個のアルキル基は、炭素数1~8のものが好ましく、それらは同一でも異なっていてもよく、例えばトリメチルシリルメチル基、トリエチルシリルメチル基、トリプロピルシリルメチル基、トリブチルシリルメチル基などが挙げられる。
 当該Z+カチオンにおいて、一般式(2)で示されるイミダゾリウムカチオンとしては、例えば1-メチルイミダゾリウム、1,3-ジメチルイミダゾリウム、1-エチル-3-メチルイミダゾリウム、1-プロピル-3-メチルイミダゾリウム、1-ブチル-3-メチルイミダゾリウム、1-ヘキシル-3-メチルイミダゾリウム、1-オクチル-3-メチルイミダゾリウム、1-トリメチルシリルメチル-3-メチルイミダゾリウム、1-メチル-3-イソプロピルイミダゾリウム、1-sec-ブチル-3-メチルイミダゾリウム、1-メトキシエチル-3-メチルイミダゾリウム、1-メトキシメチル-3-メチルイミダゾリウムなどが挙げられる。
 一般式(3)で示されるピロリニウムカチオンとしては、例えばN,N-プロピルメチルピロリニウム、N,N-ブチルメチルピロリニウム、N,N-メトキシエチル(メチル)ピロリニウム、N,N-メトキシメチル(メチル)ピロリニウム、N,N-イソプロピルメチルピロリニウムなどが挙げられる。
 一般式(4)で示される2H-ピロリニウムカチオンとしては、例えば1,2-ジメチル-2H-ピロリニウム、1-エチル-2-メチル-2H-ピロリニウム、1-プロピル-2-メチル-2H-ピロリニウム、1-ブチル-2-メチル-2Hピロリニウム、1-ヘキシル-2-メチル-2H-ピロリニウム、1-オクチル-2-メチル-2H-ピロリニウム、1-トリメチルシリルメチル-2-メチル-2H-ピロリニウム、1-イソプロピル-2-メチル-2H-ピロリニウム、1-sec-ブチル-2-メチル-2H-ピロリニウム、1-メトキシエチル-2-メチル-2H-ピロリニウム、1-メトキシメチル-2-メチル-2H-ピロリニウムなどが挙げられる。
 一般式(5)で示されるピロリジニウムカチオンとしては、例えばN,N-プロピルメチルピロリジニウム、N,N-ブチルメチルピロリジニウム、N,N-メトキシエチル(メチル)ピロリジニウム、N,N-メトキシメチル(メチル)ピロリジニウム、N,N-イソプロピルメチルピロリジニウムなどが挙げられ、一般式(6)で示されるピリジニウムカチオンとしては、例えば1-エチルピリジニウム、1-プロピルピリジニウム、1-ブチルピリジニウム、1-メトキシエチルピリジニウム、1-メトキシメチルピリジニウム、1-イソプロピルピリジニウム、1-sec-ブチルピリジニウム、トリメチルシリルメチルピリジニウムなどが挙げられる。
 一般式(7)で示されるピペリジニウムカチオンとしては、例えばN,N-プロピルメチルピペリジニウム、N,N-ブチルメチルピペリジニウム、N,N-メトキシエチル(メチル)ピペリジニウム、N,N-メトキシメチル(メチル)ピペリジニウム、N,N-イソプロピルメチルピペリジニウムなどが挙げられる。
 一般式(8)で示されるアンモニウムカチオンとしては、例えばN,N-ジエチル-N,N-メチル(2-メトキシエチル)アンモニウム、テトラエチルアンモニウム、トリエチルメチルアンモニウム、トリメチルプロピルアンモニウム、トリメチルヘキシルアンモニウム、トリエトキシ(2-メトキシエチル)アンモニウムなどが挙げられ、一般式(9)で示されるホスホニウムカチオンとしては、例えばN,N-ジエチル-N,N-メチル(2-メトキシエチル)ホスホニウム、テトラエチルホスホニウム、トリエチルメチルホスホニウム、トリメチルプロピルホスホニウム、トリメチルヘキシルホスホニウム、トリエチル(2-メトキシエチル)ホスホニウムなどが挙げられ、一般式(10)で示されるスルホニウムカチオンとしては、例えばトリエチルスルホニウム、ジエチル(2-メトキシエチル)スルホニウム、トリプロピルスルホニウム、ジメチルヘキシルスルホニウムなどが挙げられる。
 一般式(11)で示されるイソオキサゾリウムカチオンとしては、例えば2-エチル-5-メチルイソオキサゾリウム、2-プロピル-5-メチルイソオキサゾリウム、2-ヘキシル-5-メチルイソオキサゾリウム、2-メトキシメチル-5-メチルイソオキサゾリウムなどが挙げられる。
<A-アニオン>
 本発明においては、前記一般式(1-a)におけるA-アニオンとして、BF4 -、PF6 -、Cn(2n+1)OSO3、(Cn(2n+1-x)x)SO3 -、[C3(2n+1-x)x)SO22-、(Cn(2n+1-x)x)COO-、NO3 -、CH3SO3 -、(CN)2-、HSO3 -、C65SO3 -、CH3(C64)SO3 -、(FSO22-、PF8-y(Cn2n-1y -、BF4-z(Cn2n-1z -、FeCl4 -、(CN)4-zBFz -(前記式中、nは1~8の整数、xは0~17の整数、yは1~6の整数、zは0~4の整数である。)、及び下記一般式(12)~(14)
Figure JPOXMLDOC01-appb-C000008
で表される構造を有するアニオンの中から選ばれるいずれかを挙げることができる。
 前記一般式(12)~(14)において、R13~R20は、それぞれ独立に水素原子、あるいはエーテル結合及び/又はヒドロキシ基を有していてもよい炭素数1~18のアルキル基を示す。
 上記のエーテル結合及び/又はヒドロキシ基を有していてもよい炭素数1~18のアルキル基については、前述のR1~R12の説明において示したとおりである。
 当該A-で示されるアニオンの具体例としては、(トリフルオロメタン)トリフルオロボレート、(ペンタフルオロエタン)トリフルオロボレート、ビス(フルオロスルホニル)イミド、ビス(トリフルオロメタンスルホニル)イミド、ビス(ペンタフルオロエタンスルホニル)イミド、ジシアンアミド、(フルオロスルホニル)(トリフルオロメタンスルホニル)イミド、(トリフルオロメタンスルホニル)(トリフルオロメタンカルボニル)イミド、トリフルオロメタンスルホン酸、ペンタフルオロエタンスルホン酸、パーフルオロプロパンスルホン酸、パーフルオロブタンスルホン酸などを挙げることができる。
<Z+-化合物>
 本発明の低腐食性イオン液体において、(A)成分のイオン液体として好適な、一般式(1-a)で示されるZ+-化合物としては、例えばテトラエチルアンモニウムビス(フルオロスルホニル)イミド、トリエチルメチルアンモニウムビス(フルオロスルホニル)イミド、ジエチルジメチルアンモニウムビス(フルオロスルホニル)イミド、トリメチルプロピルアンモニウムビス(フルオロスルホニル)イミド、トリメチルヘキシルアンモニウムビス(フルオロスルホニル)イミド、トリエチルメトキシメチルアンモニウムビス(フルオロスルホニル)イミド、トリエチルメトキシエチルアンモニウムビス(フルオロスルホニル)イミド、ジエチルジメトキシエチルアンモニウムビス(フルオロスルホニル)イミド、トリエチルイソプロピルアンモニウムビス(フルオロスルホニル)イミド、1,3-ジメチルイミダゾリウムビス(フルオロスルホニル)イミド、1-エチル-3-メチルイミダゾリウムビス(フルオロスルホニル)イミド、1-プロピル-3-メチルイミダゾリウムビス(フルオロスルホニル)イミド、1-ブチル-3-メチルイミダゾリウムビス(フルオロスルホニル)イミド、1-ヘキシル-3-メチルイミダゾリウムビス(フルオロスルホニル)イミド、1-オクチル-3-メチルイミダゾリウムビス(フルオロスルホニル)イミド、1-メチル-3-トリメチルシリルメチルイミダゾリウムビス(フルオロスルホニル)イミド、1-エチルピリジニウムビス(フルオロスルホニル)イミド、1-プロピルピリジニウムビス(フルオロスルホニル)イミド、1-ブチルピリジニウムビス(フルオロスルホニル)イミド、1-メトキシエチルピリジニウムビス(フルオロスルホニル)イミド、1-イソプロピルピリジニウムビス(フルオロスルホニル)イミド、1-(3-メチルプロピル)ピリジニウムビス(フルオロスルホニル)イミド、N,N-プロピルメチルピロリジニウムビス(フルオロスルホニル)イミド、N,N-メトキシエチル(メチル)ピロリジニウムビス(フルオロスルホニル)イミド、N,N-メトキシメチル(メチル)ピロリジニウムビス(フルオロスルホニル)イミド、N,N-イソプロピルメチルピロリジニウムビス(フルオロスルホニル)イミド、
 テトラエチルアンモニウムビス(トリフルオロメタンスルホニル)イミド、トリエチルメチルアンモニウムビス(トリフルオロメタンスルホニル)イミド、ジエチルジメチルアンモニウムビス(トリフルオロメタンスルホニル)イミド、トリメチルプロピルアンモニウムビス(トリフルオロメタンスルホニル)イミド、トリメチルヘキシルアンモニウムビス(トリフルオロメタンスルホニル)イミド、トリエチル(メトキシメチル)アンモニウムビス(トリフルオロメタンスルホニル)イミド、トリエチル(メトキシエチル)アンモニウムビス(トリフルオロメタンスルホニル)イミド、ジエチル(ジメトキシエチル)アンモニウムビス(トリフルオロメタンスルホニル)イミド、トリエチルイソプロピルアンモニウムビス(トリフルオロメタンスルホニル)イミド、N,N-メトキシエチル(メチル)ピロリジニウムビス(トリフルオロメタンスルホニル)イミド、1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド、1-プロピル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド、1-ブチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド、1-ヘキシル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド、1-オクチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド、1-メチル-3-トリメチルシリルメチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド、1-エチルピリジニウムビス(トリフルオロメタンスルホニル)イミド、1-プロピルピリジニウムビス(トリフルオロメタンスルホニル)イミド、1-ブチルピリジニウムビス(トリフルオロメタンスルホニル)イミド、1-メトキシエチルピリジニウムビス(トリフルオロメタンスルホニル)イミド、1-イソプロピルピリジニウムビス(トリフルオロメタンスルホニル)イミド、1-(3-メチルプロピル)ピリジニウムビス(トリフルオロメタンスルホニル)イミド、N,N-プロピルメチルピロリジニウムビス(トリフルオロメタンスルホニル)イミド、N,N-メトキシエチル(メチル)ピロリジニウムビス(トリフルオロメタンスルホニル)イミド、N,N-メトキシメチル(メチル)ピロリジニウムビス(トリフルオロメタンスルホニル)イミド、N,N-イソプロピルメチルピロリジニウムビス(トリフルオロメタンスルホニル)イミド、
 テトラエチルアンモニウムビス(ペンタフルオロエタンスルホニル)イミド、トリエチルメチルアンモニウムビス(ペンタフルオロエタンスルホニル)イミド、ジエチルジメチルアンモニウムビス(ペンタフルオロエタンスルホニル)イミド、トリメチルプロピルアンモニウムビス(ペンタフルオロエタンスルホニル)イミド、トリメチルヘキシルアンモニウムビス(ペンタフルオロエタンスルホニル)イミド、トリエチル(メトキシメチル)アンモニウムビス(ペンタフルオロエタンスルホニル)イミド、トリエチル(メトキシエチル)アンモニウムビス(ペンタフルオロエタンスルホニル)イミド、ジエチルジ(メトキシエチル)アンモニウムビス(ペンタフルオロエタンスルホニル)イミド、トリエチルイソプロピルアンモニウムビス(ペンタフルオロエタンスルホニル)イミド、1-エチル-3-メチルイミダゾリウムビス(ペンタフルオロエタンスルホニル)イミド、1-プロピル-3-メチルイミダゾリウムビス(ペンタフルオロエタンスルホニル)イミド、1-ブチル-3-メチルイミダゾリウムビス(ペンタフルオロエタンスルホニル)イミド、1-ヘキシル-3-メチルイミダゾリウムビス(ペンタフルオロエタンスルホニル)イミド、1-オクチル-3-メチルイミダゾリウムビス(ペンタフルオロエタンスルホニル)イミド、1-メチル-3-トリメチルシリルメチルイミダゾリウムビス(ペンタフルオロエタンスルホニル)イミド、1-エチルピリジニウムビス(ペンタフルオロエタンスルホニル)イミド、1-プロピルピリジニウムビス(ペンタフルオロエタンスルホニル)イミド、1-ブチルピリジニウムビス(ペンタフルオロエタンスルホニル)イミド、1-メトキシエチルピリジニウムビス(ペンタフルオロエタンスルホニル)イミド、1-イソプロピルピリジニウムビス(ペンタフルオロエタンスルホニル)イミド、1-(3-メチルプロピル)ピリジニウムビス(ペンタフルオロエタンスルホニル)イミド、N,N-プロピルメチルピロリジニウムビス(ペンタフルオロエタンスルホニル)イミド、N,N-メトキシエチル(メチル)ピロリジニウムビス(ペンタフルオロエタンスルホニル)イミド、N,N-メトキシメチル(メチル)ピロリジニウムビス(ペンタフルオロエタンスルホニル)イミド、N,N-イソプロピルメチルピロリジニウムビス(ペンタフルオロエタンスルホニル)イミド、
 テトラエチルアンモニウムトリフルオロメタンスルホネート、トリエチルメチルアンモニウムトリフルオロメタンスルホネート、ジエチルジメチルアンモニウムトリフルオロメタンスルホネート、トリメチルプロピルアンモニウムトリフルオロメタンスルホネート、トリメチルヘキシルアンモニウムトリフルオロメタンスルホネート、トリエチル(メトキシメチル)アンモニウムトリフルオロメタンスルホネート、トリエチル(メトキシエチル)アンモニウムトリフルオロメタンスルホネート、ジエチルジ(メトキシエチル)アンモニウムトリフルオロメタンスルホネート、トリエチルイソプロピルアンモニウムトリフルオロメタンスルホネート、1-エチル-3-メチルイミダゾリウムトリフルオロメタンスルホネート、1-プロピル-3-メチルイミダゾリウムトリフルオロメタンスルホネート、1-ブチル-3-メチルイミダゾリウムトリフルオロメタンスルホネート、1-ヘキシル-3-メチルイミダゾリウムトリフルオロメタンスルホネート、1-オクチル-3-メチルイミダゾリウムトリフルオロメタンスルホネート、1-メチル-3-トリメチルシリルメチルイミダゾリウムトリフルオロメタンスルホネート、1-エチルピリジニウムトリフルオロメタンスルホネート、1-プロピルピリジニウムトリフルオロメタンスルホネート、1-ブチルピリジニウムトリフルオロメタンスルホネート、1-メトキシエチルピリジニウムトリフルオロメタンスルホネート、1-イソプロピルピリジニウムトリフルオロメタンスルホネート、1-(3-メチルプロピル)ピリジニウムトリフルオロメタンスルホネート、N,N-プロピルメチルピロリジニウムトリフルオロメタンスルホネート、N,N-メトキシエチル(メチル)ピロリジニウムトリフルオロメタンスルホネート、N,N-メトキシメチル(メチル)ピロリジニウムトリフルオロメタンスルホネート、N,N-イソプロピルメチルピロリジニウムトリフルオロメタンスルホネート、
 テトラエチルアンモニウムパーフルオロブタンスルホネート、トリエチルメチルアンモニウムパーフルオロブタンスルホネート、ジエチルジメチルアンモニウムパーフルオロブタンスルホネート、トリメチルプロピルアンモニウムパーフルオロブタンスルホネート、トリメチルヘキシルアンモニウムパーフルオロブタンスルホネート、トリエチル(メトキシメチル)アンモニウムパーフルオロブタンスルホネート、トリエチル(メトキシエチル)アンモニウムパーフルオロブタンスルホネート、ジエチルジ(メトキシエチル)アンモニウムパーフルオロブタンスルホネート、トリエチルイソプロピルアンモニウムパーフルオロブタンスルホネート、1-エチル-3-メチルイミダゾリウムパーフルオロブタンスルホネート、1-プロピル-3-メチルイミダゾリウムパーフルオロブタンスルホネート、1-ブチル-3-メチルイミダゾリウムパーフルオロブタンスルホネート、1-ヘキシル-3-メチルイミダゾリウムパーフルオロブタンスルホネート、1-オクチル-3-メチルイミダゾリウムパーフルオロブタンスルホネート、1-メチル-3-トリメチルシリルメチルイミダゾリウムパーフルオロブタンスルホネート、1-エチルピリジニウムパーフルオロブタンスルホネート、1-プロピルピリジニウムパーフルオロブタンスルホネート、1-ブチルピリジニウムパーフルオロブタンスルホネート、1-メトキシエチルピリジニウムパーフルオロブタンスルホネート、1-イソプロピルピリジニウムパーフルオロブタンスルホネート、1-(3-メチルプロピル)ピリジニウムパーフルオロブタンスルホネート、N,N-プロピルメチルピロリジニウムパーフルオロブタンスルホネート、N,N-メトキシエチル(メチル)ピロリジニウムパーフルオロブタンスルホネート、N,N-メトキシメチル(メチル)ピロリジニウムパーフルオロブタンスルホネート、N,N-イソプロピルメチルピロリジニウムパーフルオロブタンスルホネートなどが挙げられる。
 本発明の低腐食性イオン液体において、(A)成分のイオン液体として用いられる、一般式(1-a)で示されるZ+-化合物の中で好ましいイオン液体として、Z+カチオンがイミダゾリウム、ピリジウム、ピロリジニウム、アンモニウム、ホスホニウムであり、かつA-アニオンがPF6 -、[Cn(2n+1-x)x)SO22-、(FSO22-、PF6-y(Cn2n-1y -、BF4-z(Cn2n-1z -、(CN)2-、(CN)4-zz -であるイオン液体が挙げられる。なお、nは1~8の整数、xは0~17の整数、yは1~6の整数、zは0~4の整数である。
 具体的には,1-エチル-3-メチルイミダゾリウムビス(フルオロスルホニル)イミド、テトラエチルアンモニウムビス(トリフルオロメタンスルホニル)イミド、トリメチルプロピルアンモニウムビス(トリフルオロメタンスルホニル)イミド、
 トリメチルヘキシルアンモニウムビス(トリフルオロメタンスルホニル)イミド、1,3-ジメチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド、1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド、1-プロピル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド、1-ブチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド、1-ヘキシル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド、1-オクチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド、1-メチル-3-トリメチルシリルメチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド、1-エチルピリジニウムビス(トリフルオロメタンスルホニル)イミド、1-ブチルピリジニウムビス(トリフルオロメタンスルホニル)イミド、1-メトキシエチルピリジニウムビス(トリフルオロメタンスルホニル)イミド、1-イソプロピルピリジニウムビス(トリフルオロメタンスルホニル)イミド、1-(3-メチルプロピル)ピリジニウムビス(トリフルオロメタンスルホニル)イミド、N,N-プロピルメチルピロリジニウムビス(トリフルオロメタンスルホニル)イミド、N,N-メトキシエチル(メチル)ピロリジニウムビス(トリフルオロメタンスルホニル)イミド、N,N-メトキシメチル(メチル)ピロリジニウムビス(トリフルオロメタンスルホニル)イミド、N,N-イソプロピルメチルピロリジニウムビス(トリフルオロメタンスルホニル)イミド、
 1-エチル-3-メチルイミダゾリウムビス(ペンタフルオロエタンスルホニル)イミド、1-プロピル-3-メチルイミダゾリウムビス(ペンタフルオロエタンスルホニル)イミド、1-ブチル-3-メチルイミダゾリウムビス(ペンタフルオロエタンスルホニル)イミド、1-ヘキシル-3-メチルイミダゾリウムビス(ペンタフルオロエタンスルホニル)イミド、1-オクチル-3-メチルイミダゾリウムビス(ペンタフルオロエタンスルホニル)イミドなどが挙げられる。
 特に好ましいイオン液体としては、テトラエチルアンモニウムビス(トリフルオロメタンスルホニル)イミド、1-エチル-3-メチルイミダゾリウムビス(フルオロスルホニル)イミド、1,3-ジメチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド、1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド、1-プロピル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド、1-ブチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド、1-ヘキシル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド、1-オクチル-3-メチルイミダゾリウム(トリフルオロメタンスルホニル)イミド、1-エチルピリジニウムビス(トリフルオロメタンスルホニル)イミド、1-ブチルピリジニウムビス(トリフルオロメタンスルホニル)イミド、1-メトキシエチルピリジニウムビス(トリフルオロメタンスルホニル)イミド、1-イソプロピルピリジニウムビス(トリフルオロメタンスルホニル)イミド、N,N-プロピルメチルピロリジニウムビス(トリフルオロメタンスルホニル)イミド、N,N-メトキシエチルピロリジニウムビス(トリフルオロメタンスルホニル)イミド、N,N-メトキシメチルメチルピロリジニウムビス(トリフルオロメタンスルホニル)イミド、N,N-イソプロピルメチルピロリジニウムビス(トリフルオロメタンスルホニル)イミドなどが挙げられる。
 当該(A)成分のイオン液体は、流動点が-10℃以下のものが好ましく、より好ましくは-20℃以下、さらに好ましくは-30℃以下である。なお、この流動点は、JIS K 2269に準拠して測定した値である。
 このような流動点を有するイオン液体を用いてなる本発明の低腐食性イオン液体は、潤滑油の基油などとして、好適に用いられる。
 また、本発明の低腐食性イオン液体においては、当該(A)成分のイオン液体として、二種以上のイオン液体の混合物を用いることができる。(A)成分のイオン液体を二種以上の混合物とすることにより、当該(A)成分であるイオン液体の流動性を高めることができる。
 (A)成分のイオン液体として、このような流動性の高い、二種以上のイオン液体の混合物を用いてなる本発明の低腐食性イオン液体は、特に潤滑油の基油として好適である。二種以上のイオン液体を混合する場合、主成分となる第1のイオン液体のイオン液体混合物全体に対する配合割合は、50質量%を超えることが好ましく、副成分の第2のイオン液体は50質量%以下であることが好ましい。三種類以上のイオン液体を混合する場合には、副成分の第2のイオン液体の配合よりも少ない配合量で、3成分目以降のイオン液体を混合することが好ましい。
((B)含窒素化合物)
 本発明の低腐食性イオン液体においては、防食性を向上させるために、(B)成分として含窒素化合物を含有させる。
 イオン液体は、水分が混入した場合、構成イオンが解離し、この解離したイオンが金属表面に作用することで、金属の材質によっては腐食が生じる。このような腐食を抑えるために、(B)成分として含窒素化合物が配合される。
 本発明において、防食性向上剤として用いる(B)成分の含窒素化合物としては、窒素原子2個以上を有する脂肪族化合物及び窒素原子1個以上をヘテロ原子として含む複素環式化合物の中から選ばれる少なくとも一種、具体的には、下記一般式(15)~(21)
Figure JPOXMLDOC01-appb-C000009
で表される化合物の中から選ばれる少なくとも一種を挙げることができる。
 前記一般式(15)~(21)において、炭素原子又は窒素原子に結合するR21~R25は、それぞれ独立に水素原子、アミノ基、炭素数1~18のアルキル基、炭素数3~18のアルケニル基、炭素数6~18のアリール基、炭素数7~18のアラルキル基、炭素数1~18のアミノアルキル基、炭素数1~18のアルキルアミノ基又は炭素数1~18のヒドロキシアルキル基を示すが、炭素原子に結合するR21~R25は、さらにハロゲン原子であってもよい。nは1~18の整数である。
 ここで、前記炭素数1~18のアルキル基は、直鎖状、分岐状、環状のいずれであってもよく、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、各種ペンチル基、各種ヘキシル基、各種ヘプチル基、各種オクチル基、各種デシル基、各種ドデシル基、各種テトラデシル基、各種ヘキサデシル基、各種オクタデシル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基などが挙げられる。
 炭素数3~18のアルケニル基、炭素数6~18のアリール基及び炭素数7~18のアラルキル基については、前述のR1~R12の説明において示したとおりである。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子などが挙げられ、アミノアルキル基としては、例えば-(CH2n-NH2(nは1~18の整数)が挙げられる。アルキルアミノ基としては、例えば-NR2が挙げられる。上記2つのRは水素原子又は炭素数1~18の直鎖状、分岐状、若しくは環状のアルキル基を示し、たがいに同一でも異なっていてもよいが、2つのRが同時に水素原子であり得ない。ヒドロキシアルキル基としては、例えば-(CH2n-OH(nは1~18の整数)が挙げられる。
 前記一般式(15)~(21)において、R21~R25としては、特にアミノ基、アルキルアミノ基又はアミノアルキル基であることが好ましい。
 特に好ましい含窒素化合物としては、アミノアルキルイミダゾール、アミノピリジン、アミノアルキルピリジン、N-アミノアルキルピペラジン及びアミノアルキルアミンを挙げることができる。
 本発明において、(B)成分として用いる含窒素化合物は、沸点200℃以上のものが好ましい。当該含窒素化合物の沸点の上限については特に制限はないが、一般には500℃程度である。
 当該含窒素化合物の具体例としては、ビス(アミノプロピルメチル)アミン、3-ジブチルアミノプロピルアミン、2-ヒドロキシエチルアミノプロピルアミン、N,N,N’,N’-テトラアリル-1,4-ジアミノブタン、N,N,N’,N’-テトラメチル-1,6-ヘキサンジアミン、1-アミノプロピルイミダゾール、1-アミノエチルイミダゾール、2-アミノピリジン、3-アミノピリジン、4-アミノピリジン、4-ジメチルアミノピリジン、4-ブチルピリジン、2-メチル-5-ブチルピリジン、2-アミノ-4-メチルピリジン、2-アミノ-4,6-ジメチルピリジン、2-フェニルピリジン、2-ベンジルピリジン、4-ベンジルピリジン、N-アミノエチルピペラジン、N-アミノプロピルピペラジン、2-アミノエチルピペラジン、2-アミノプロピルピペラジン、3-アミノエチルピリダジン、3-アミノプロピルピリダジン、2-アミノエチルピリミジン、2-アミノプロピルピリミジン、2-アミノエチルピラジン、2-アミノプロピルピラジンなどを挙げることができる。
 本発明の低腐食性イオン液体においては、前記の含窒素化合物を一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。また、その配合量は、前述した(A)成分のイオン液体との合計量に基づき、0.001~10質量%の範囲が好ましい。この配合量が上記範囲にあれば、イオン液体の防食性向上効果が発揮されると共に、他の性能、例えば潤滑性能や耐熱性などが損なわれるのを抑制することができる。より好ましい配合量は0.005~5質量%であり、さらに好ましい配合量は0.01~1.0質量%である。
 前述した(A)イオン液体と、(B)含窒素化合物とを含む本発明の低腐食性イオン液体は、金属に対する防食性に優れる特徴を有すると共に、熱安定性(難揮発性、難燃性)、高イオン密度(高イオン伝導性)、大熱容量、低粘性などを有しており、従来イオン液体が用いられている各種用途、例えば太陽電池などの電解液、抽出分離溶媒、反応溶媒、帯電防止材料、潤滑油などに好適に用いられる。これらの中で、特に潤滑油用途に好適である。
 次に、本発明の潤滑油組成物について説明する。
[潤滑油組成物]
 本発明の潤滑油組成物は、グリース組成物を含む概念であり、前述した本発明の低腐食性イオン液体を基油として含むことを特徴とする。
(基油)
 本発明の潤滑油組成物において、基油に用いられる低腐食性イオン液体は、粘性が低く、高温耐熱性及び低温流動性に優れている。動粘度としては、40℃において、1000mm2/sよりも小さいことが好ましく、さらに好ましくは、1~360mm2/sで,特に好ましくは1~100mm2/sである。動粘度が1000mm2/sを超えると、高速作動する用途において抵抗が大きくなり、エネルギーロス等の問題を生じる場合がある。また、高温耐熱性としては、潤滑油組成物の熱分解温度が200℃より高いことが好ましく、さらに好ましくは250℃より高いことである。熱分解温度が200℃より低いと、従来用いられているパーフルオロポリエーテル等のフッ素系オイルに比較し、メリットを得ることができない。また、低温流動性としては、上述のように流動点が-10℃以下であることが好ましく、-20℃以下であることが好ましく、-30℃以下であることがより好ましい。
 当該基油における低腐食性イオン液体の含有量は、30~100質量%であることが好ましく、50~100質量%であることがより好ましく、70~100質量%であることがさらに好ましく、90~100質量%であることがさらに一層好ましく、他の基油成分を含まないことが特に好ましい。
 低腐食性イオン液体と、基油全量に基づき、好ましくは70質量%以下、より好ましくは50質量%以下、さらに好ましくは30質量%以下、さらに一層好ましくは10質量%以下の割合で併用し得る他の基油成分としては、例えば鉱油や合成油の中から適宜選ぶことができる。
 鉱油としては、例えば、パラフィン基原油、中間基原油又はナフテン基原油を常圧蒸留するか、あるいは常圧蒸留残渣油を減圧蒸留して得られる留出油、これらの留出油を常法に従って精製することによって得られる精製油、具体的には溶剤精製油、水添精製油、脱ロウ処理油、白土処理油などが挙げられる。
 また、合成油としては、例えば、低分子量ポリブテン、低分子量ポリプロピレン、炭素数8~14のα-オレフィンオリゴマー及びこれらの水素化物、ポリオールエステル(例えば、トリメチロールプロパンの脂肪酸エステル、ペンタエリスリトールの脂肪酸エステルなど)、二塩基酸エステル、芳香族ポリカルボン酸エステル(例えば、トリメリット酸エステル、ピロメリット酸エステルなど)、リン酸エステルなどのエステル化合物、アルキルベンゼン、アルキルナフタレン、アルキルフェニルエーテル、ターフェニルなどのアルキルアロマ系化合物、シリコーン油、フッ素系オイル(例えば、フルオロカーボン、パーフルオロポリエーテルなど)などが挙げられる。
 これらのその他の基油は一種を単独で又は二種以上を組み合わせて用いることができる。
(潤滑油添加剤)
 本発明の潤滑油組成物においては、その用途に応じて、例えば酸化防止剤、油性剤、極圧剤、清浄分散剤、粘度指数向上剤、防錆剤、金属不活性化剤および消泡剤などの中から、適宜一種又は二種以上選び配合することができる。また、潤滑油組成物がグリース組成物である場合は、通常増ちょう剤を配合する。なお、用途によっては、添加剤を配合せず、潤滑油基油をそのまま潤滑油として使用してもよい。
<酸化防止剤>
 酸化防止剤としては、従来の炭化水素系潤滑油に使用されているアミン系酸化防止剤、フェノール系酸化防止剤およびリン系酸化防止剤,硫黄系酸化防止剤などを使用することができる。これらの酸化防止剤は、一種を単独でまたは二種以上を組み合わせて用いることができる。アミン系酸化防止剤としては、例えば、モノオクチルジフェニルアミン、モノノニルジフェニルアミンなどのモノアルキルジフェニルアミン系化合物、4,4’-ジブチルジフェニルアミン、4,4’-ジペンチルジフェニルアミン、4,4’-ジヘキシルジフェニルアミン、4,4’-ジヘプチルジフェニルアミン、4,4’-ジオクチルジフェニルアミン、4,4’-ジノニルジフェニルアミンなどのジアルキルジフェニルアミン系化合物、テトラブチルジフェニルアミン、テトラヘキシルジフェニルアミン、テトラオクチルジフェニルアミン、テトラノニルジフェニルアミンなどのポリアルキルジフェニルアミン系化合物、α-ナフチルアミン、フェニル-α-ナフチルアミン、ブチルフェニル-α-ナフチルアミン、ペンチルフェニル-α-ナフチルアミン、ヘキシルフェニル-α-ナフチルアミン、ヘプチルフェニル-α-ナフチルアミン、オクチルフェニル-α-ナフチルアミン、ノニルフェニル-α-ナフチルアミンなどのナフチルアミン系化合物等が挙げられる。
 フェノール系酸化防止剤としては、例えば、2,6-ジ-tert-ブチル-4-メチルフェノール、2,6-ジ-tert-ブチル-4-エチルフェノールなどのモノフェノール系化合物、4,4’-メチレンビス(2,6-ジ-tert-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-tert-ブチルフェノール)などのジフェノール系化合物が挙げられる。
 硫黄系酸化防止剤としては、例えば、2,6-ジ-tert-ブチル-4-(4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イルアミノ)フェノール、五硫化リンとピネンとの反応物などのチオテルペン系化合物、ジラウリルチオジプロピオネート、ジステアリルチオジプロピオネートなどのジアルキルチオジプロピオネートなどが挙げられる。
 リン系酸化防止剤としては,トリフェニルフォスファイト,ジエチル[3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル]ホスフォネートなどが挙げられる.
 これらの酸化防止剤の配合量は、潤滑油全量基準で、通常0.01~10質量%程度であり、好ましくは0.03~5質量%である。
<油性剤、極圧剤>
 油性剤としては、脂肪族アルコール、脂肪酸や脂肪酸金属塩などの脂肪酸化合物、ポリオールエステル、ソルビタンエステル、グリセライドなどのエステル化合物、脂肪族アミンなどのアミン化合物などを挙げることができる。これらの油性剤の配合量は、配合効果の点から、潤滑油組成物全量基準で、通常0.1~30質量%程度であり、好ましくは0.5~10質量%である。
 極圧剤としては、硫黄系極圧剤、リン系極圧剤、硫黄および金属を含む極圧剤、リンおよび金属を含む極圧剤などが挙げられる。これらの極圧剤は一種を単独でまたは二種以上組み合わせて用いることができる。極圧剤としては、分子中に硫黄原子および/またはリン原子を含み、耐荷重性や耐摩耗性を発揮しうるものであればよい。分子中に硫黄を含む極圧剤としては、例えば、硫化油脂、硫化脂肪酸、硫化エステル、硫化オレフィン、ジヒドロカルビルポリサルファイド、チアジアゾール化合物、アルキルチオカルバモイル化合物、トリアジン化合物、チオテルペン化合物、ジアルキルチオジプロピオネート化合物などを挙げることができる。
 硫黄、リンおよび金属を含む極圧剤としては、ジアルキルチオカルバミン酸亜鉛(Zn-DTC)、ジアルキルチオカルバミン酸モリブデン(Mo-DTC)、ジアルキルチオカルバミン酸鉛、ジアルキルチオカルバミン酸錫、ジアルキルジチオリン酸亜鉛(Zn-DTP)、ジアルキルジチオリン酸モリブデン(Mo-DTP)、ナトリウムスルホネート、カルシウムスルホネートなどが挙げられる。分子中にリンを含む極圧剤として代表的なものは、トリクレジルフォスフェート、ジメチルアシッドフォスフェート、ジエチルアシッドフォスフェート、ジプロピルアシッドフォスフェート、ジブチルアシッドフォスフェート、ジ2-エチルヘキシルアシッドフォスフェート、ジオレイルアシッドフォスフェート、ジブチルハイドロジェンフォスファイト、ジオレイルハイドロジェンフォスファイトなどのリン酸エステル類およびそのアミン塩である。これら極圧剤の配合量は、配合効果および経済性の点から、潤滑油組成物全量基準で、通常0.01~30質量%程度であり、より好ましくは0.01~10質量%である。
<清浄分散剤、粘度指数向上剤>
 清浄分散剤としては、金属スルホネート、金属サリチレート、金属フィネート、コハク酸イミドなどが挙げられる。これら清浄分散剤の配合量は、配合効果の点から、潤滑油組成物全量基準で、通常0.1~30質量%程度であり、好ましくは0.5~10質量%である。
 粘度指数向上剤としては、例えば、ポリメタクリレート、分散型ポリメタクリレート、オレフィン系共重合体(例えば、エチレン-プロピレン共重合体など)、分散型オレフィン系共重合体、スチレン系共重合体(例えば、スチレン-ジエン水素化共重合体など)などが挙げられる。これら粘度指数向上剤の配合量は、配合効果の点から、潤滑油組成物全量基準で、通常0.5~35質量%程度であり、好ましくは1~15質量%である。
<防錆剤、金属不活性化剤、消泡剤>
 防錆剤としては、金属系スルホネート、コハク酸エステルなどを挙げることができる。これら防錆剤の配合量は、配合効果の点から、潤滑油組成物全量基準で、通常0.01~10質量%程度であり、好ましくは0.05~5質量%である。
 金属不活性化剤としては、ベンゾトリアゾール、チアジアゾールなどを挙げることができる。これら金属不活性化剤の好ましい配合量は、配合効果の点から、潤滑油組成物全量基準で、通常0.01~10質量%程度であり、好ましくは0.01~1質量%である。
 消泡剤としては、メチルシリコーン油、フルオロシリコーン油、ポリアクリレートなどを挙げることができる。これらの消泡剤の配合量は、配合効果の点から、潤滑油組成物全量基準で、通常0.0005~0.01質量%程度である。
<増ちょう剤>
 増ちょう剤としては、リチウム、カルシウム、ナトリウムなどの金属石鹸系、ベントナイト、シリカ、テフロン(登録商標)などの粒子や、尿素樹脂なとの非石鹸系の増ちょう剤を挙げることができる。これら増ちょう剤の配合量は、所望するちょう度によって異なるが、グリース組成物全量基準で、通常5~40質量%程度であり、より好ましくは10~30質量%である。
(潤滑油組成物の用途)
 本発明の潤滑油組成物は、防食性に優れると共に、低粘度であっても蒸気圧が低く、引火の危険性もなく、さらに耐熱性に優れ、従来の炭化水素系潤滑油と比べて何ら遜色のない摩擦特性を有し、高温下、真空下などの極めて厳しい条件の下でも長期間使用することができるなどの特性を有している。
 したがって、例えば内燃機関、トルク伝達装置、すべり軸受、ころがり軸受、ボールネジ、ころがり案内面などの転動装置、クラッチ内蔵回転伝達装置、パワーステアリング装置、含油軸受、流体軸受、圧縮装置、レシプロ型圧縮機、ターボチャージャー、チェーン、歯車、油圧、真空ポンプ、スパッタなどの蒸着装置、気化、昇華による真空蒸着装置、シリコンウェハーなどへの注入を目的としたイオン打ち込み装置、液晶、有機EL、プラズマなどの薄型ディスプレー製造に用いられるディスプレー素子製造装置、時計部品、ハードディスク、冷凍機、切削、圧延、絞り抽伸、転造、鍛造、熱処理、熱媒体、洗浄などの装置、ショックアブソーバ、ブレーキ、密封装置、航空機や人工衛星等の航空宇宙機器などに好適に使用することができる。もちろん、各種機械装置の防錆油や洗浄油としても好適である。
 また、本発明の潤滑油組成物は、摺動部分が、鉄、銅、アルミニウム、亜鉛など機械材料として一般に用いられる金属材料や非金属材料であるものに対して使用でき、特に、耐食材料であるステンレス材料の機械装置や機械部品、セラミック材料〔例えば、窒化ケイ素(Si34)、炭化ケイ素(SiC)〕、アルミナ(Al23)、窒化アルミニウム(AlN)、炭化ホウ素(B4C)、ホウ化チタン(TiB2)、窒化ホウ素(BN)、炭化チタン(TiC)、窒化チタン(TiN)、ジルコニア(ZrO2)、さらには、DLC(ダイヤモンドライクカーボン)など、及びそれらで表面コーティングされた材料であるものに好適に用いることができる。
 以下、本発明を具体的な実施例により説明するが、本発明は以下の実施例に限定されるものではない。
<イオン液体のカチオン成分の合成>
合成例1 1-エチル-3-メチルイミダゾリウムブロマイドの合成
 1-メチルイミダゾール(試薬:東京化成製)30gを110gのトルエンに溶解し、窒素置換した。25℃でエチルブロマイド(試薬:東京化成製)48gを1時間かけて滴下した。攪拌しながら除々に昇温させ還流を37時間行ない、反応を終了した。室温まで冷却し、生じた固体を濾別した。70gのトルエンにて洗浄した後、減圧乾燥して白色固体の1-エチル-3-メチルイミダゾリウムブロマイド67gを得た。
合成例2 1-プロピル-3-メチルイミダゾリウムブロマイドの合成
 1-メチルイミダゾール(試薬:東京化成製)30gを110gのトルエンに溶解し、窒素置換した。25℃でプロピルブロマイド(試薬:東京化成製)54gを1時間かけて滴下した。攪拌しながら除々に昇温させ還流を37時間行ない、反応を終了した。室温まで冷却し、生じた固体を濾別した。70gのトルエンにて洗浄した後、減圧乾燥して白色固体の1-プロピル-3-メチルイミダゾリウムブロマイド70gを得た。
合成例3 1-ブチル-3-メチルイミダゾリウムブロマイドの合成
 1-メチルイミダゾール(試薬:東京化成製)30gを110gのトルエンに溶解し、窒素置換した。25℃でブチルブロマイド(試薬:東京化成製)60gを1時間かけて滴下した。攪拌しながら除々に昇温させ還流を37時間行ない、反応を終了した。室温まで冷却し、生じた固体を濾別した。70gのトルエンにて洗浄した後、減圧乾燥して白色固体の1-ブチル-3-メチルイミダゾリウムブロマイド74gを得た。
合成例4 1-ヘキシル-3-メチルイミダゾリウムブロマイドの合成
 1-メチルイミダゾール(試薬:東京化成製)30gを110gのトルエンに溶解し、窒素置換した。25℃でヘキシルブロマイド(試薬:東京化成製)72gを1時間かけて滴下した。攪拌しながら除々に昇温させ還流を37時間行ない、反応を終了した。室温まで冷却し、生じた固体を濾別した。70gのトルエンにて洗浄した後、減圧乾燥して白色固体の1-ヘキシル-3-メチルイミダゾリウムブロマイド82gを得た。
合成例5 1-オクチル-3-メチルイミダゾリウムブロマイドの合成
 1-メチルイミダゾ―ル(試薬:東京化成製)30gを110gのトルエンに溶解し、窒素置換した。25℃でオクチルブロマイド(試薬:東京化成製)85gを1時間かけて滴下した。攪拌しながら除々に昇温させ還流を37時間行ない、反応を終了した。室温まで冷却し、生じた固体を濾別した。70gのトルエンにて洗浄した後、減圧乾燥して白色固体の1-オクチル-3-メチルイミダゾリウムブロマイド91gを得た。
<イオン液体の合成>
合成例6
 1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミドの合成
 合成例1で得た1-エチル-3-メチルイミダゾリウムブロマイド50gを水50gに溶解し、室温下、リチウムビストリフルオロメタンスルホニルイミド(試薬:Aldrich製)75gを添加した。30分攪拌した後、クロロホルム50gを添加し、抽出した。有機層は10gの水にて15回洗浄した後、減圧濃縮し、乾燥した。無色液体の目的物86gを得た。
合成例7
 1-プロピル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミドの合成
 合成例2で得た1-プロピル-3-メチルイミダゾリウムブロマイド50gを水50gに溶解し、室温下、リチウムビストリフルオロメタンスルホニルイミド(試薬:Aldrich製)70gを添加した。30分攪拌した後、クロロホルム50gを添加し、抽出した。有機層は10gの水にて15回洗浄した後、減圧濃縮し、乾燥した。無色液体の目的物84gを得た。
合成例8
 1-ブチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミドの合成
 合成例3で得た1-ブチル-3-メチルイミダゾリウムブロマイド50gを水50gに溶解し、室温下、リチウムビストリフルオロメタンスルホニルイミド(試薬:Aldrich製)66gを添加した。30分攪拌した後、クロロホルムを添加し、抽出した。有機層は10gの水にて15回洗浄した後、減圧濃縮し、乾燥した。無色液体の目的物80gを得た。
合成例9
 1-ヘキシル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミドの合成
 合成例4で得た1-ヘキシル-3-メチルイミダゾリウムブロマイド50gを水50gに溶解し、室温下、リチウムビストリフルオロメタンスルホニルイミド(試薬:Aldrich製)58gを添加した。30分攪拌した後、クロロホルムを添加し、抽出した。有機層は10gの水にて15回洗浄した後、減圧濃縮し、乾燥した。無色液体の目的物77gを得た。
合成例10
 1-オクチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミドの合成
 合成例5で得た1-オクチル-3-メチルイミダゾリウムブロマイド50gを水50gに溶解し、室温下、リチウムビストリフルオロメタンスルホニルイミド(試薬:Aldrich製)52gを添加した。30分攪拌した後、クロロホルムを添加し、抽出した。有機層は10gの水にて15回洗浄した後、減圧濃縮し、乾燥した。無色液体の目的物74gを得た。
合成例11
 テトラエチルアンモニウムビス(トリフルオロメタンスルホニル)イミドの合成
 テトラエチルアンモニウムクロライド(試薬:関東化学製)50gを水50gに溶解し、室温下、リチウムビストリフルオロメタンスルホニルイミド(試薬:Aldrich製)87gを添加した。30分攪拌した後、クロロホルムを添加し、抽出した。有機層は10gの水にて15回洗浄した後、減圧濃縮し、乾燥した。白色固体の目的物105gを得た。
<低腐食性イオン液体、潤滑油組成物の調製>
 各例で用いたイオン液体1~6及び添加剤A~Fは、以下のとおりである。
 イオン液体1:1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド
 イオン液体2:1-プロピル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド
 イオン液体3:1-ブチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド
 イオン液体4:1-ヘキシル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド
 イオン液体5:1-オクチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド
 イオン液体6:テトラエチルアンモニウムビス(トリフルオロメタンスルホニル)イミド
 添加剤A:N-アミノエチルピペラジン
 添加剤B:2-アミノエチルピペラジン
 添加剤C:4-ジメチルアミノピリジン
 添加剤D:3-アミノプロピルイミダゾール
 添加剤E:ビス(アミノプロピル)メチルアミン
 各例で得られた潤滑油組成物の性能評価方法を以下に示す。
 (1)耐熱性試験(5%質量減温度)
 熱重量分析装置((株)リガク製、型式TG8110)を用いて耐熱性を測定した
。10℃/minの速度で昇温し、質量減が初期質量の5%となる温度を測定した。5%質量減温度が高いほど,耐蒸発性,耐熱性に優れると言える。
 (2)腐食性試験
 蒸留水5mlと,試料5mlとを混合した溶液に,短冊状にカットした純度99.9%の鉄板を浸漬した。溶液の温度を60℃に設定し,鉄板を168時間浸漬した後,鉄板の外観を観察した。茶褐色または黒色状の変色が認められた場合を錆あり(腐食あり)と判断した。 ○:腐食なし、×:表面に腐食あり
(3)摩擦特性(耐荷重性試験)
 ASTM D2783に準拠して、回転数1800rpm、室温の条件で実施した。最大非焼付荷重(LNL)と融着荷重(WL)から荷重摩耗指数(WLI)を求めた。この値が大きいほど耐荷重性が良好である。
(4)イオン液体又はイオン液体混合物
 (a)流動点
  JIS K 2269に準拠して測定した。
 (b)40℃動粘度
  JIS K 2283に準拠して測定した。
実施例1
合成例6で得られた1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド80質量部に、合成例8で得られた1-ブチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド19質量部と、添加剤としてのN-アミノエチルピペラジン1質量部とを混合することにより、低腐食性イオン液体を調製して潤滑油組成物とし、その性能を評価した。結果を表1に示す。
実施例2~7
 表1に示すイオン液体及び添加剤を、表1に示す配合割合となるように混合した以外は、上記実施例1と同様にして、低腐食性イオン液体を調製し、潤滑油組成物とした。その性能評価結果を表1に示す。
比較例1
 表1に示すように、イオン液体1のみを用い、潤滑油組成物とした。その性能評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000010
 表1から分かるように、本発明の潤滑油組成物(実施例1~7)は、含窒素化合物を含まない比較例1に比べて、耐熱性や摩擦特性を損なうことなく、優れた耐食性を有している。また、潤滑油組成物の基油を構成するイオン液体の流動点及び40℃動粘度から、低温流動性に優れ、かつ粘性抵抗による動力損失を抑えることができ、潤滑油として好適であることが分かる。
 本発明の低腐食性イオン液体は、金属に対する防食性に優れる特徴を有すると共に、熱安定性(難揮発性、難燃性)、高イオン密度(高イオン伝導性)、大熱容量、低粘性などを有しており、各種用途、例えば太陽電池などの電解液、抽出分離溶媒、反応溶媒、帯電防止材料、潤滑油などに好適に用いられ、特に潤滑油用として好適である。

Claims (11)

  1.  (A)イオン液体と、(B)イオン液体以外の含窒素化合物を含むことを特徴とする低腐食性イオン液体。
  2.  (B)含窒素化合物が、窒素原子2個以上を有する脂肪族化合物及び窒素原子1個以上をヘテロ原子として含む複素環式化合物の中から選ばれる少なくとも一種である請求項1に記載の低腐食性イオン液体。
  3.  (A)イオン液体が、下記一般式(1)
      (Zp+ k(Aq- m  ・・・(1)
    (式中、Zp+ はカチオン、Aq- はアニオンである。p、q、k、m、p×k及びq×mは、それぞれ1~3の整数であり、p×k=q×mを満たす。k又はmが2以上のとき、Z又はAは、それぞれ同一でも異なっていてもよい。)
    で表される請求項1に記載の低腐食性イオン液体。
  4.  (A)イオン液体が、流動点-10℃以下のものである請求項1に記載の低腐食性イオン液体。
  5.  (A)イオン液体が、二種以上のイオン液体の混合物である請求項1に記載の低腐食性イオン液体。
  6.  一般式(1)で表されるイオン液体において、Zp+がZ+であって、下記一般式(2)~(11)
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1~R12は、それぞれ独立に水素原子、エーテル結合及び/又はヒドロキシ基を有していてもよい炭素数1~18のアルキル基、炭素数3~18のアルケニル基、炭素数6~18のアリール基、炭素数7~18のアラルキル基又はトリアルキルシリルメチル基を示す。)
    で表される構造を有するカチオンの中から選ばれるいずれかである請求項3に記載の低腐食性イオン液体。
  7.  一般式(1)で表されるイオン液体において、Aq-がA-であって、BF4 -、PF6 -、Cn(2n+1)OSO3 -、(Cn(2n+1-x)x)SO3 -、[Cn(2n+1-x)x)SO22-、(Cn(2n+1-x)x)COO-、NO3 -、CH3SO3 -、(CN)2-、HSO3 -、C65SO3 -、CH3(C64)SO3 -、(FSO22-、PF6-Y(Cn2n-1Y -、BF4-Z(Cn2n-1Z -、FeCl4 -、(CN)4-ZBFZ -(前記式中、nは1~8の整数、xは0~17の整数、yは1~6の整数、zは0~4の整数である。)、及び下記一般式(12)~(14)
    Figure JPOXMLDOC01-appb-C000002
    (式中、R13~R20は、それぞれ独立に水素原子、あるいはエーテル結合及び/又はヒドロキシ基を有していてもよい炭素数1~18のアルキル基を示す。)
    で表される構造を有するアニオンの中から選ばれるいずれかである請求項3に記載の低腐食性イオン液体。
  8.  (B)含窒素化合物が、下記一般式(15)~(21)
    Figure JPOXMLDOC01-appb-C000003
    (式中、炭素原子又は窒素原子に結合するR21~R25は、それぞれ独立に水素原子、アミノ基、炭素数1~18のアルキル基、炭素数3~18のアルケニル基、炭素数6~18のアリール基、炭素数7~18のアラルキル基、炭素数1~18のアミノアルキル基、炭素数1~18のアルキルアミノ基又は炭素数1~18のヒドロキシアルキル基を示すが、炭素原子に結合するR21~R25は、さらにハロゲン原子であってもよい。nは1~18の整数である。)
    で表される化合物の中から選ばれる少なくとも一種である請求項1に記載の低腐食性イオン液体。
  9.  (B)含窒素化合物が、アミノアルキルイミダゾール、アミノピリジン、アミノアルキルピリジン、N-アミノアルキルピペラジン及びアミノアルキルアミンの中から選ばれる少なくとも一種である請求項1に記載の低腐食性イオン液体。
  10.  (B)含窒素化合物の含有量が、0.001~10質量%である請求項1に記載の低腐食性イオン液体。
  11.  請求項1~10のいずれかに記載の低腐食性イオン液体を基油として含むことを特徴とする潤滑油組成物。
PCT/JP2009/054912 2008-03-14 2009-03-13 低腐食性イオン液体及びそれを含む潤滑油組成物 WO2009113677A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-066409 2008-03-14
JP2008066409 2008-03-14
JP2008-109246 2008-04-18
JP2008109246A JP5297679B2 (ja) 2008-03-14 2008-04-18 低腐食性イオン液体及びそれを含む潤滑油組成物

Publications (1)

Publication Number Publication Date
WO2009113677A1 true WO2009113677A1 (ja) 2009-09-17

Family

ID=41065336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054912 WO2009113677A1 (ja) 2008-03-14 2009-03-13 低腐食性イオン液体及びそれを含む潤滑油組成物

Country Status (2)

Country Link
JP (1) JP5297679B2 (ja)
WO (1) WO2009113677A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103333728A (zh) * 2013-07-09 2013-10-02 陈立功 一种抗腐蚀性润滑剂
WO2015033749A1 (ja) * 2013-09-05 2015-03-12 富士フイルム株式会社 光電変換素子、色素増感太陽電池および光電変換素子用電子移動促進剤
EP2735602A4 (en) * 2011-07-22 2015-07-08 Kyodo Yushi GREASE COMPOSITION
CN113493715A (zh) * 2020-04-07 2021-10-12 中国石油天然气股份有限公司 一种液压油添加剂组合物
CN113493719A (zh) * 2020-04-07 2021-10-12 中国石油天然气股份有限公司 一种燃气轮机润滑油组合物
CN113717771A (zh) * 2020-05-25 2021-11-30 中国石油天然气股份有限公司 一种钢板桩润滑剂

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010168544A (ja) * 2008-12-26 2010-08-05 Nippon Synthetic Chem Ind Co Ltd:The 合成潤滑剤
JP5510957B2 (ja) * 2009-02-17 2014-06-04 日本合成化学工業株式会社 合成潤滑剤
JP5739121B2 (ja) * 2010-07-30 2015-06-24 出光興産株式会社 潤滑油基油および潤滑油組成物
JP5822100B2 (ja) 2010-08-06 2015-11-24 協同油脂株式会社 イオン液体を基油とした錆止め性に優れる潤滑剤組成物
JP6097470B2 (ja) * 2010-12-27 2017-03-15 出光興産株式会社 グリース組成物
JP5955905B2 (ja) * 2014-07-31 2016-07-20 出光興産株式会社 潤滑油組成物
WO2016125840A1 (ja) * 2015-02-06 2016-08-11 デクセリアルズ株式会社 磁気記録媒体用潤滑剤、及び磁気記録媒体
JP6437392B2 (ja) * 2015-02-06 2018-12-12 デクセリアルズ株式会社 磁気記録媒体用潤滑剤、及び磁気記録媒体
JP6933010B2 (ja) * 2017-06-13 2021-09-08 東ソー株式会社 摩擦低減剤、及び潤滑油組成物
CN113717770B (zh) * 2020-05-25 2022-06-03 中国石油天然气股份有限公司 一种金属加工油

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610168A (ja) * 1992-06-26 1994-01-18 Mitsubishi Materials Corp 銅系材料の腐食抑制剤と該腐食抑制剤を含有する潤滑油
JPH10511140A (ja) * 1996-05-31 1998-10-27 エコラボ インク 腐食抑制剤を含むアルキルエーテルアミンコンベヤ潤滑剤
WO2005035702A1 (ja) * 2003-10-10 2005-04-21 Idemitsu Kosan Co., Ltd. 潤滑油
JP2007231987A (ja) * 2006-02-27 2007-09-13 Nsk Ltd 転動装置、及びこれを用いた空気圧縮機、ターボチャージャ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610168A (ja) * 1992-06-26 1994-01-18 Mitsubishi Materials Corp 銅系材料の腐食抑制剤と該腐食抑制剤を含有する潤滑油
JPH10511140A (ja) * 1996-05-31 1998-10-27 エコラボ インク 腐食抑制剤を含むアルキルエーテルアミンコンベヤ潤滑剤
WO2005035702A1 (ja) * 2003-10-10 2005-04-21 Idemitsu Kosan Co., Ltd. 潤滑油
JP2007231987A (ja) * 2006-02-27 2007-09-13 Nsk Ltd 転動装置、及びこれを用いた空気圧縮機、ターボチャージャ

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2735602A4 (en) * 2011-07-22 2015-07-08 Kyodo Yushi GREASE COMPOSITION
US9206375B2 (en) 2011-07-22 2015-12-08 Kyodo Yushi Co., Ltd. Lubricating grease composition
CN103333728A (zh) * 2013-07-09 2013-10-02 陈立功 一种抗腐蚀性润滑剂
WO2015033749A1 (ja) * 2013-09-05 2015-03-12 富士フイルム株式会社 光電変換素子、色素増感太陽電池および光電変換素子用電子移動促進剤
JP2015053148A (ja) * 2013-09-05 2015-03-19 富士フイルム株式会社 光電変換素子、色素増感太陽電池および光電変換素子用電子移動促進剤
CN113493715A (zh) * 2020-04-07 2021-10-12 中国石油天然气股份有限公司 一种液压油添加剂组合物
CN113493719A (zh) * 2020-04-07 2021-10-12 中国石油天然气股份有限公司 一种燃气轮机润滑油组合物
CN113493719B (zh) * 2020-04-07 2022-06-03 中国石油天然气股份有限公司 一种燃气轮机润滑油组合物
CN113493715B (zh) * 2020-04-07 2022-06-03 中国石油天然气股份有限公司 一种液压油添加剂组合物
CN113717771A (zh) * 2020-05-25 2021-11-30 中国石油天然气股份有限公司 一种钢板桩润滑剂
CN113717771B (zh) * 2020-05-25 2022-06-03 中国石油天然气股份有限公司 一种钢板桩润滑剂

Also Published As

Publication number Publication date
JP2009242765A (ja) 2009-10-22
JP5297679B2 (ja) 2013-09-25

Similar Documents

Publication Publication Date Title
JP5297679B2 (ja) 低腐食性イオン液体及びそれを含む潤滑油組成物
JP4982083B2 (ja) 潤滑油
JP5237681B2 (ja) 潤滑油基油および潤滑油組成物
US8258089B2 (en) Grease composition
US8455407B2 (en) Lubricating grease composition based on ionic liquids
US8697618B2 (en) Method of using ionic liquids to improve the lubrication of chains, steel belts, wheel bearings, roller bearings, and electric motors
JP5739121B2 (ja) 潤滑油基油および潤滑油組成物
RU2566364C2 (ru) Смазки на основе ионных жидкостей и смазочные присадки, содержащие ионы
US20170096614A1 (en) Halogen free ionic liquids as lubricant or lubricant additives and a process for the preparation thereof
JP6834949B2 (ja) ケイ素含有イオン液体を含む潤滑剤
EP3119859A1 (en) Halogen free ionic liquids as lubricant or lubricant additives and a process for the preparation thereof
JP2007112828A (ja) 潤滑剤組成物
JP5955905B2 (ja) 潤滑油組成物
JP6097470B2 (ja) グリース組成物
JP2004149708A (ja) 焼結含油軸受油組成物及び焼結含油軸受ユニット
JP2007297287A (ja) 常温溶融塩及びそれを利用する潤滑剤
JP2017008335A (ja) グリース組成物
JP2023151487A (ja) ガスエンジン用潤滑油組成物
JP2010037500A (ja) 潤滑油組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09719404

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09719404

Country of ref document: EP

Kind code of ref document: A1