WO2009113477A1 - 転動部品及びその製造方法 - Google Patents

転動部品及びその製造方法 Download PDF

Info

Publication number
WO2009113477A1
WO2009113477A1 PCT/JP2009/054391 JP2009054391W WO2009113477A1 WO 2009113477 A1 WO2009113477 A1 WO 2009113477A1 JP 2009054391 W JP2009054391 W JP 2009054391W WO 2009113477 A1 WO2009113477 A1 WO 2009113477A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
amount
less
carburizing
nitriding
Prior art date
Application number
PCT/JP2009/054391
Other languages
English (en)
French (fr)
Inventor
木澤 克彦
友章 西川
毅志 宇田川
Original Assignee
株式会社ジェイテクト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェイテクト filed Critical 株式会社ジェイテクト
Priority to EP09719774A priority Critical patent/EP2253728A1/en
Priority to US12/736,089 priority patent/US20110000583A1/en
Priority to CN200980108497.6A priority patent/CN101970704A/zh
Publication of WO2009113477A1 publication Critical patent/WO2009113477A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/32Soft annealing, e.g. spheroidising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D5/00Heat treatments of cast-iron
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/66High carbon steel, i.e. carbon content above 0.8 wt%, e.g. through-hardenable steel

Definitions

  • the present invention relates to a rolling part and a manufacturing method thereof, and more particularly, a rolling part suitable for use as a rolling part used in a lubricating environment in which foreign matter is mixed, such as an automobile drive transmission unit, and in lubricating oil.
  • the present invention relates to a moving part and a manufacturing method thereof.
  • a rolling part refers to a part that performs pure rolling contact and contact in which rolling contact and sliding contact are mixed.
  • a bearing material high carbon chrome bearing steel
  • JIS SUJ2 a component material formed into a predetermined shape by machining, Manufactured by carburizing in a carburizing atmosphere with a carbon potential of 1.2% or more at 840 to 870 ° C for 3 hours or more, followed by quenching and tempering.
  • the total carbon amount is 1.0 to 1.6 wt% in the range up to the depth to be rolled, and the surface layer portion is rolled and slid with a precipitation amount of carbide of 5 to 20% with a particle size of 3 ⁇ m or less.
  • the amount of retained austenite on the surface layer is 30% or more. That is, a component formed of a steel material containing Cr: 3.2 to 5.0 wt% and at least one of Mo and V and formed into a predetermined shape by machining or the like has a carbon potential of 1.0 to 1.
  • the present invention has been made in view of such conventional problems, and achieves a long life even when applied as a rolling part used in a lubrication environment in which foreign matter is mixed without significant increase in cost. It is an object of the present invention to provide a rolling part that can be manufactured and a manufacturing method thereof.
  • 1st invention is a rolling component which has a rolling element and its rolling track member,
  • the above rolling parts are, by mass, C: 0.90% to 1.10%, Si: more than 0.35% to 0.70%, Mn: less than 0.80%, Cr: 1.85% to 2.
  • the surface of the rolling part has an average C amount and an average N amount on the surface in mass%, C: 1.20% to 1.50%, N: 0.10% to 0.60%, Carbides, nitrides, and carbonitrides, which are precipitates having a particle size of 0.1 ⁇ m or more on the surface, have an average particle size of 0.6 ⁇ m or less, and there are 700,000 or more per 1 mm 2.
  • the amount of retained austenite on the surface is 25% to 45% by volume,
  • the surface hardness is Hv750 or more,
  • the uncarburized nitrocarburized layer inside the rolling component is in the rolling component characterized in that the amount of retained austenite is 20% or less by volume.
  • the rolling component is formed of steel having a surface layer portion that has been subjected to carburizing and nitriding treatment and a non-carburizing and nitriding layer that is not affected by the carburizing and nitriding treatment.
  • the average C amount and the average N amount are mass%, C: 1.20% to 1.50%, N: 0.10% to 0.60%, Precipitates having a particle size of 0.1 ⁇ m or more on the surface have an average particle size of 0.6 ⁇ m or less, 700,000 or more per 1 mm 2 , an area ratio of 10% or more, and the amount of retained austenite on the surface.
  • the volume ratio is 25% to 45%, and the hardness of the surface is Hv 750 or more.
  • the surface is a portion that clearly contains a large amount of C and N as compared with the inside by carburizing and nitriding treatment, and is a depth portion that affects the life in rolling.
  • the range is 0 to 50 ⁇ m with reference to the outermost surface after finishing, and the surface layer means the range affected by the carburizing and nitriding treatment.
  • Cr contained in the steel material is 2.20% or less by mass.
  • the average N amount on the surface of the rolling component is 0.30% or less by mass%.
  • the amount of retained austenite on the surface of the rolling part is preferably 40% or less in volume ratio.
  • the amount of retained austenite inside the rolling part is preferably 15% or less in terms of volume ratio.
  • the material strength of the rolling component can be improved by optimizing the average particle size of the precipitates having a specific particle size, the number per mm 2 and the area ratio. Further, by ensuring the hardness of the surface, it is possible to suppress damage even in a lubrication environment where the function of the rolling parts is maintained and expressed and foreign matters are mixed.
  • the uncarburized nitrogen-nitriding layer inside the rolling part has a volume ratio of retained austenite of 20% or less.
  • the hardness of the uncarburized nitrogen-nitriding layer is desirably Hv 700 or more.
  • the above rolling parts are, in mass%, C: 0.90% to 1.10%, Si: more than 0.35% to 0.70%, Mn: less than 0.80%, Cr: 1.85 % To 2.50%, O: containing 12 ppm or less, the balance is characterized by using a steel material consisting of Fe and inevitable impurities, and the increase in alloying elements is the minimum necessary for life improvement, There is no significant increase in material costs.
  • a second invention is a method of manufacturing a rolling part having a rolling element and its rolling race member, In mass%, C: 0.90% to 1.10%, Si: more than 0.35% to 0.70%, Mn: less than 0.80%, Cr: 1.85% to 2.50%, O : A spheroidizing annealing step in which a spheroidizing annealing process is performed on a steel material containing 12 ppm or less and the balance being Fe and inevitable impurities; A processing step of forming into a predetermined shape; A carburizing and nitriding treatment process in which the NH 3 gas flow rate is 2% to 10% at 830 ° C. to 880 ° C. for 3 hours or more; A rolling part manufacturing method comprising a finishing process.
  • the figure which shows the heat pattern in the case where the carburizing nitrous temperature in Example 1 is 850 degreeC or more.
  • the figure which shows the heat pattern in case the carburizing nitrous temperature in Example 1 is less than 850 degreeC.
  • the rolling component according to the first aspect of the present invention is the above-described rolling component in mass%, C: 0.90% to 1.10%, Si: more than 0.35% to 0.70%, Mn: Less than 0.80%, Cr: 1.85% -2.50%, O: 12ppm or less, steel material consisting of Fe and inevitable impurities, spheroidizing annealing, processing, carburizing It is formed by nitriding and finishing.
  • the above steel materials have a C content of 0.90% to 1.10%.
  • C is an indispensable element for securing strength as a bearing after quenching (quenching) and tempering treatment after carburizing and nitriding.
  • quenching quenching
  • tempering treatment after carburizing and nitriding, they become precipitation nuclei to form precipitates, thereby precipitating and strengthening the matrix, and further agglomerating the carbides. Also suppress. Therefore, the lower limit was made 0.90%.
  • Si is contained more than 0.35% to 0.70%.
  • Si is an element necessary for deoxidation during refining of steel. Furthermore, since Si has the property that it is difficult to dissolve in carbide, an effect of suppressing coarse growth of carbide can be expected. For that purpose, addition exceeding 0.35% is necessary. However, since Si strengthens ferrite and adversely affects the machinability when forming into a predetermined shape before carburizing and nitriding, the upper limit was made 0.70%.
  • Mn is an element that increases the amount of retained austenite after quenching by securing and improving the hardenability of the steel and further stabilizing the austenite structure, it is desirable to add Mn. However, excessive addition of Mn also increases the amount of retained austenite in the uncarburized and carbonitrided region, adversely affects the dimensional stability of the rolling parts, and also deteriorates manufacturability such as hot workability. Less than 80%.
  • Cr is an element that secures and improves the hardenability of steel, and is a carbon / nitride-forming element. A large amount of undissolved carbide remains after spheroidizing annealing, and further, during nitrocarburizing, they are precipitated nuclei. Therefore, it is an indispensable element for suppressing coarsening of precipitates and forming a large amount of precipitates. In order to sufficiently obtain the above effect, 1.85% or more of addition is necessary. On the other hand, excessive addition not only increases the material cost but also generates coarse eutectic carbide that can be a starting point of fatigue fracture. Therefore, the upper limit is set to 2.50%. For the same reason, the upper limit is more preferably 2.20% or less.
  • O contains 12 ppm or less of O.
  • Most of O is present in steel by forming oxide inclusions by bonding with Al or Ca. These oxide inclusions are known to serve as starting points for peeling (surface fracture) during rolling fatigue, and reduce the rolling fatigue life. Therefore, the upper limit was set to 12 ppm.
  • the rolling parts are formed by subjecting a steel material having the above composition to spheroidizing annealing, machining, carburizing and nitriding, and finishing. Specifically, for example, it can be manufactured by the method for manufacturing a rolling part according to the second invention described later.
  • the surface of the rolling part has an average C content and an average N content in mass%, C: 1.20% to 1.50%, N: 0.10% to 0.60%.
  • the average C amount and average N amount mean the average of matrix solid solution + precipitates.
  • the C amount and N amount can be measured by concentration measurement by EPMA analysis.
  • the present invention in order to achieve a long life particularly in a lubricating environment in which foreign substances are mixed, it is essential to ensure the amount of retained austenite on the surface and to make up the soft structure with strength.
  • C 1.20% or more
  • N 0.10 % Or more
  • the upper limit is C: 1.50% or less and N: 0.60% or less.
  • N 0.60% or less.
  • the average particle size of precipitates (carbides, nitrides, and carbonitrides) of 0.1 ⁇ m or more is the average particle size of 0.6 ⁇ m or less. It is. As described above, a large amount of precipitates are indispensable for improving material strength, but precipitates having a particle size of less than 0.1 ⁇ m are accurately measured by relatively simple means such as a scanning electron microscope and an optical microscope. Therefore, the precipitates to be measured were limited to precipitates having a particle size of 0.1 ⁇ m or more, and the upper limit of the average particle size was 0.6 ⁇ m. That is, when the precipitate is coarsened, the strengthening function is lowered. The particle size of the precipitate can be measured by image analysis from observation by SEM.
  • 700,000 or more precipitates having a particle diameter of 0.1 ⁇ m or more on the surface exist per 1 mm 2 .
  • the present invention is characterized by maintaining a high hardness while securing a large amount of retained austenite on the surface of the rolling component, and it is essential to improve the strength by precipitates. Therefore, it is necessary that the number be 700,000 or more per 1 mm 2 .
  • the area ratio of precipitates having a particle size of 0.1 ⁇ m or more on the surface is 10% or more. That is, in order to improve the material strength due to the precipitates, it is desirable that the amount of precipitates is large. That is, it means that the area ratio of the precipitate is large, and in order to obtain the effect, the area ratio is 10% or more.
  • the amount of retained austenite on the surface is 25% to 45% by volume. It is known that the retained austenite structure on the surface of a rolling part improves the rolling life in a lubricating environment in which foreign matter is mixed by reducing stress concentration due to surface damage caused by the foreign matter. In order to obtain the effect, the volume ratio is required to be 25% or more. However, since the retained austenite structure is soft, it becomes difficult to ensure the hardness and strength necessary for rolling parts when the amount is large, so the upper limit was made 45%. For the same reason, the upper limit of the amount of retained austenite on the surface is more preferably 40%. The amount of retained austenite can be calculated from the peak intensity ratio by X-ray diffraction.
  • the hardness of the said surface is Hv750 or more. It is important for rolling parts to have high hardness in order to maintain and develop their functions. Further, in a lubricating environment where foreign matter is mixed, the foreign matter is caught between the rolling elements and the rolling surface, so that the rolling surface is damaged with plastic deformation. In order to suppress this damage, it is necessary to have a higher hardness, and the hardness is Vickers hardness and the lower limit is 750. Since the rolling surface has a curvature and the surface hardness cannot be measured, the hardness at the position of 50 ⁇ m below the surface of the cross section is substituted.
  • the amount of retained austenite is 20% or less by volume in the inside of the rolling component (non-carburized nitrogen-nitriding layer).
  • the rolling parts are usually used for a long time, and it is necessary to suppress the secular deformation in order to maintain the function.
  • the retained austenite structure may be soft, and if present in a large amount, the aged deformation characteristics deteriorate.
  • the carburizing and nitriding according to the present invention modifies only the surface layer of the rolling part, and it is the properties of the inside, that is, the non-carburizing and nitriding area, that greatly affects the aging deformation. For this reason, the upper limit of the amount of retained austenite inside is set to 20%. However, when the amount of retained austenite in the interior exceeds 15%, the secular deformation slightly increases, so the upper limit is desirably set to 15%.
  • the inside of the rolling component has a hardness of Hv 700 or more.
  • Rolling parts often support a large load, and it is necessary to suppress deformation and breakage due to the load.
  • the internal hardness is desirably 700 or more in terms of Vickers hardness.
  • the manufacturing method of the rolling part according to the second aspect of the present invention is, in mass%, C: 0.90% to 1.10%, Si: more than 0.35% to 0.70%, Mn: Spheroidization to improve workability for steel materials containing less than 0.80%, Cr: 1.85% to 2.50%, O: 12ppm or less, the balance being Fe and inevitable impurities It has an annealing process.
  • a state where a large amount of precipitates exist spheroidizing annealing structure
  • the reasons for limiting the components of the steel material are the same as in the case of the invention of claim 1.
  • the steel material has a high C content of around 1.00%, it is necessary to have a spheroidized annealing structure in order to ensure formability by cold working or machining. Furthermore, since carbides in the spheroidized annealed structure are harder to dissolve during heating than pearlite (layered carbides), it becomes easier to leave a large amount of undissolved carbides and act as nuclei of precipitates during carburizing and nitriding. .
  • the state of carbide after spheroidizing annealing is that the average particle size is 0.1 to 0.5 ⁇ m, and the number of precipitated carbides having a size of 0.1 ⁇ m or more is 1500,000 or more / mm 2. Is desirable. In order to obtain such a fine precipitation state, it is necessary to heat to a temperature in the vicinity of 800 ° C. and gradually cool at a slow rate of 25 ° C./h or less. By subjecting the processed steel material in such a precipitation state to a carburizing and nitriding treatment described later, a part having a surface on which a large amount of precipitates can be obtained as described in claim 1.
  • the manufacturing method of the rolling component of 2nd invention it has the process process which shape
  • the carburizing and nitriding treatment is a surface reforming heat treatment in which C and N are introduced from the surface into the steel surface layer by diffusion. That is, carbon and nitrogen that have entered from the surface of the material are deposited as precipitates such as carbide, nitride, and carbonitride.
  • the lower limit was set to 830 ° C.
  • the carburizing / nitriding time is too long, the decomposition of ammonia introduced for nitriding is accelerated, and a large amount of ammonia is required, which is economically disadvantageous.
  • the upper limit was set to 880 ° C.
  • the NH 3 gas is necessary for mixing N into the steel surface layer by mixing with the carburizing gas in the atmosphere, and in order to obtain an effective amount of N, a flow rate of 2% or more and a processing time of 3 hours or more are required. It is.
  • the NH 3 gas flow rate is preferably 3% or more. However, if the NH 3 gas flow rate is too high, the effect tends to saturate and is not economical, so the upper limit is made 10%. However, regarding the processing time, C and N diffuse into the steel as the length increases, so that it can be increased as necessary. Finally, the finishing process such as polishing is performed to complete the part.
  • Example 1 In this example, an example according to the rolling component and the manufacturing method thereof of the present invention will be described.
  • 14 types of steel materials (Steel A to Steel N) shown in Table 1 were prepared, and rolling parts (Sample E1 to Sample E5) shown in Table 2 were produced and compared as examples of the present invention.
  • rolling parts (sample C1 to sample C16) shown in Table 3 were produced and subjected to a dimensional change test and a life test.
  • the rolling parts (samples E1 to E5) of this example are rolling parts having rolling elements and rolling race members, and are in mass%, C: 0.90% to 1.10%, Si: 0.
  • it is formed by spheroidizing annealing, processing, carburizing and nitriding, and finishing.
  • the surface of the rolling part has an average C amount and an average N amount on the surface in mass%, C: 1.20% to 1.50%, N: 0.10% to 0.60%.
  • the precipitates (carbides, nitrides, and carbonitrides) having a particle size of 0.1 ⁇ m or more on the surface have an average particle size of 0.6 ⁇ m or less, and there are 700,000 or more per 1 mm 2.
  • the rate is 10% or more.
  • the amount of retained austenite on the surface is 25% to 45% by volume, and the hardness of the surface is Hv 750 or more. Further, the amount of retained austenite is 20% or less by volume in the inside of the rolling component (non-carburized nitrogen-nitriding layer).
  • the specimen before carburizing and nitriding treatment was observed with a scanning electron microscope at a magnification of 10,000 times, and a particle size of 0. The number of precipitates of 1 ⁇ m or more was measured.
  • the heat treatment condition 1 shown in FIG. 1 shows a heat pattern when the carburizing and nitriding temperature is 850 ° C. or higher, and after heating and holding at the carburizing temperature Y in the carburizing and nitriding atmosphere at the NH 3 flow rate X for Z hours, Subsequent to heating, it is heated and held at 850 ° C. for 0.5 hours in a carburizing and nitriding atmosphere with NH 3 flow rate X, and then oil-cooled to 80 ° C.
  • heat treatment condition 2 shown in FIG. 2 shows a heat pattern in the case where the carburizing and nitriding temperature is less than 850 ° C.
  • the values of the NH 3 flow rate X, processing temperature Y, and processing time Z are shown in Tables 2 and 3, respectively.
  • a tempering process is performed in which the film is finally heated and held at 200 ° C. for 2 hours and then air-cooled.
  • ⁇ Average particle size of precipitates having a particle size of 0.1 ⁇ m or more on the surface, number per 1 mm 2 , area ratio> The average particle diameter of the precipitates having a particle diameter of 0.1 ⁇ m or more on the surface, the number per 1 mm 2 , and the area ratio were measured by image analysis from observation with a scanning electron microscope (SEM).
  • ⁇ Residual austenite amount> The amount of retained austenite was calculated from the peak intensity ratio by X-ray diffraction.
  • the surface hardness of the rolling surface was evaluated by measuring the Vickers hardness at a position of 50 ⁇ m from the surface of the cross section because the surface hardness cannot be measured because it has a curvature.
  • the number of precipitates in the uncarburized and carburized layer was measured with a scanning electron microscope (10,000 times). Note that the number of precipitates deposited in the uncarburized and carburized nitrogen layer after carburizing and nitriding is used to determine whether the degree of precipitation solid solution during the carburizing and nitriding is optimal. What is necessary is just to measure. By this measurement, the optimum range of the carburizing and nitriding temperature can be determined.
  • the testing machine shown in Table 5 can simultaneously test two ball bearings, and the radial load in Table 5 means the radial load of one ball bearing.
  • the radial load in Table 5 means the radial load of one ball bearing.
  • Sample C16 is a submerged quenching (quenching temperature of 830 ° C., oil cooling ( This is an example in which an oil temperature of 80 ° C. and a tempering temperature of 180 ° C. were performed. Therefore, the effect of this invention can be grasped
  • the comparative example that does not satisfy some of the conditions of claim 1 has a lifetime as compared with sample C15 and sample C16. It turned out that it cannot improve as expected.
  • the sample C1 as a comparative example is obtained by carburizing and nitriding the JIS SUJ2 which is a conventional steel.
  • the JIS SUJ2 which is a conventional steel.
  • the deposits after the high-concentration carburizing and nitriding treatment decreased, and the life decreased.
  • the sample C2 as a comparative example uses steel G where C is lower than the lower limit of the present invention, and there are few undissolved carbides serving as nuclei before high-concentration carburizing and nitriding, Precipitates were reduced and the life was shortened.
  • sample C3 as a comparative example uses the steel H in which C exceeds the upper limit of the present invention, precipitates containing C are coarsened, and the lifetime is reduced from that.
  • sample C4 as a comparative example uses steel I in which Si is lower than the lower limit, and since the amount of Si is small, the growth of precipitates cannot be suppressed, and the precipitates become coarse, and the life is shortened from that. did.
  • sample C5 as a comparative example uses the steel J in which Si exceeds the upper limit, and the carburizability deteriorates due to excessive addition of Si, and the life is shortened because sufficient C and N concentrations cannot be obtained.
  • Sample C6 as a comparative example uses steel K in which Mn exceeds the upper limit, and by adding a large amount of Mn, the amount of residual residue inside increases significantly, the dimensional change rate increases, In addition to the inability to obtain accuracy, the amount of residual wrinkles on the surface layer was increased, and the life was shortened because the hardness could not be obtained.
  • sample C7 as a comparative example uses steel L in which Cr is lower than the lower limit of the present invention, and therefore, as in sample C1, there are few undissolved carbides serving as nuclei before high-concentration carburizing and nitriding. The precipitates after the high-concentration carburizing and nitriding decreased, and the life decreased.
  • sample C8 as a comparative example uses the steel M in which Cr exceeds the upper limit of the present invention, the C precipitate is coarsened, and the life is shortened from that.
  • sample C9 as a comparative example uses steel N in which O exceeds the upper limit of the present invention, all the characteristic values satisfy the scope of the present invention, but non-metallic inclusions due to the large amount of O. Increased, and the life decreased from that point.
  • the carburizing and nitriding temperature of the sample C10 as a comparative example is lower than the lower limit of the present invention, the C concentration on the surface is decreased, and the residual soot amount is decreased, so that the lifetime is decreased.
  • the sample C11 as a comparative example has a carburizing and nitriding temperature exceeding the upper limit of the present invention, so that the decomposition of ammonia is accelerated and an effective N amount cannot be obtained. It became coarse and the life decreased from that.
  • the sample C12 as a comparative example had a reduced lifetime because the NH 3 flow rate was below the lower limit of the present invention and the surface N concentration was reduced. Further, in the sample C13 as a comparative example, since the carburizing and nitriding time is less than the lower limit of the present invention, the diffusion of C and N becomes insufficient, and the C and N diffusion to the inside exceeds the processed amount after finishing. Since the C concentration and N concentration on the surface were not sufficient, the life decreased.
  • Sample C14 as a comparative example is an example in which the carburizing and nitriding treatment of Example 1 is changed to performing only the carburizing treatment without performing the nitriding treatment. Since the amount of soot was reduced, the service life was shorter than that of Example 1. In addition, the disappearance of the nitride is considered as one of the causes of the life reduction.
  • the sample C15 and the sample C16 as comparative examples are those using JIS SUJ2, which is a conventional steel, and the sample C16 is subjected to the sublimation quenching that has been widely performed conventionally, and the sample C15 is the above-mentioned
  • the recently proposed high-concentration carburizing treatment is an example, but the life is greatly inferior because the components are not optimized and N is not utilized.
  • the examples (sample E1 to sample E5) all have the component range, surface C and N content, particle size, number of deposits, area ratio, retained austenite amount, and surface hardness.
  • the dimensional change rate was low despite the fact that the test was conducted under harsh conditions mixed with foreign matter called high-speed steel powder. It was confirmed that an excellent life of 5.5 to 8.0 times was obtained as compared with Comparative Example C16 which is an inner ring produced by submerged quenching of JIS SUJ2.
  • the sample E4 of the present invention when the internal retained austenite amount exceeds 15%, the dimensional change rate is increased. Since it tends to increase, the amount of retained austenite is preferably 15% or less.
  • the internal hardness of each of the samples E1 to E5 was Hv 700 or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Rolling Contact Bearings (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

 質量%で、C:0.90%~1.10%、Si:0.35%超~0.70%、Mn:0.80%未満、Cr:1.85%~2.50%、O:12ppm以下を含有する鉄鋼材料に対して、球状化焼鈍、加工、浸炭浸窒処理、仕上げ加工を施すことにより形成される転動部品。表面における平均C量は1.20~1.50質量%、平均N量は0.10~0.60質量%。表面における粒径0.1μm以上の析出物は、平均粒径が0.6μm以下、1mm2あたりに70万個以上存在、面積率は10%以上。表面の残留オーステナイト量は、体積率で25~45%。表面の硬さはHv750以上。転動部品の内部は、残留オーステナイト量が体積率で20%以下。

Description

転動部品及びその製造方法
 本発明は、転動部品及びその製造方法、さらに詳しくは、たとえば自動車用駆動伝達ユニットなど、異物が混入する潤滑環境下、及び潤滑油中において使用される転がり部品として用いられるのに適した転動部品及びその製造方法に関する。
 なお、この明細書及び特許請求の範囲において、転動部品とは、純然たる転がり接触、及び転がり接触とすべり接触とが混在する接触を行う部品を指すものとする。
 異物が混入し得る潤滑油を用いて使用される転動部品としては、例えば、JIS SUJ2等の軸受鋼(高炭素クロム軸受鋼)を、機械加工などで所定の形状に形成した部品素材を、カーボンポテンシャルが1.2%以上である浸炭雰囲気中において840~870℃で3時間以上加熱する浸炭処理を施した後、急冷さらに焼もどし処理を施すことで製造され、表面から最大せん断応力が作用する深さまでの範囲で全炭素量が1.0~1.6wt%とされるとともに、前記表層部に粒径3μm以下で5~20%の面積率の炭化物が析出量となされた転がり、摺動部品が知られている
特開2004-52101号公報
 しかしながら、部品の大型化を抑制するため、転動部品にかかる荷重の増大や使用温度の高温化等のより過酷な使用環境への対応が求められており、特許文献1に記載の転動部品を上回る高性能化が望まれる。
 異物混入潤滑環境下における転動部品の長寿命化の対策として、例えば、表層の残留オーステナイト量を30%以上とすることが考えられる。すなわち、Cr:3.2~5.0wt%、及びMo、Vの少なくとも一種を含む成分の鋼材を用い、機械加工などで所定の形状に形成された部品を、カーボンポテンシャル1.0~1.5wt%の浸炭雰囲気中で870~950℃に加熱して浸炭処理を施した後、急冷、焼もどし処理を施すことで、表層部の平均炭化物粒径を0.2~0.4μm、炭化物の面積率を9~30%、表層部の硬さをロックウェルCで62~67、表層部の残留オーステナイト量を30~55%とすることが知られている(WO 2006/068205参照)。
 しかしながら、この対策においては鋼の合金成分量が多く、JIS SUJ2に対して材料コストが増大し、経済的な汎用性が損なわれる問題がある。さらに、地球資源環境の点からも合金量の低減が求められている。一方、省エネルギーの観点では、浸炭コストを抑制するため処理温度の低温化が望まれる。これらの環境から、JIS SUJ2より大幅な合金増加を招くことなく、最適な化学成分の鋼材を用いて、その機能を最大限に発揮する製造方法によってなされた転動部品が強く望まれている。
 本発明は、かかる従来の問題点に鑑みてなされたものであって、大きなコスト増加なしに、異物が混入した潤滑環境下で用いられる転動部品として適用した場合にも、長寿命化を達成することができる転動部品及びその製造方法を提供しようとするものである。
 第1の発明は、転動体及びその転動軌道部材を有する転動部品であって、
 上記転動部品は、質量%で、C:0.90%~1.10%、Si:0.35%超~0.70%、Mn:0.80%未満、Cr:1.85%~2.50%、O:12ppm以下を含有し、残部がFe及び不可避的不純物からなる鉄鋼材料に対して、球状化焼鈍、加工、浸炭浸窒処理、仕上げ加工を施すことにより形成され、
 上記転動部品の表面は、該表面における平均C量、平均N量が、質量%で、C:1.20%~1.50%、N:0.10%~0.60%であり、
 上記表面における粒径0.1μm以上の析出物である炭化物、窒化物、及び炭窒化物は、平均粒径が0.6μm以下であり、1mm2あたりに70万個以上存在し、面積率は10%以上であり、
 上記表面の残留オーステナイト量は、体積率で25%~45%であり、
 上記表面の硬さはHv750以上であり、
 上記転動部品の内部の未浸炭浸窒層は、残留オーステナイト量が体積率で20%以下であることを特徴とする転動部品にある。
 上記転動部品は、表面に浸炭浸窒処理された表層部と、浸炭浸窒処理の影響を受けていない未浸炭浸窒層とを有する鋼により形成されている。
 上記表層部のうちの表面においては、平均C量、平均N量が、質量%で、C:1.20%~1.50%、N:0.10%~0.60%であり、上記表面における粒径0.1μm以上の析出物は、平均粒径が0.6μm以下であり、1mm2あたりに70万個以上存在し、面積率が10%以上であり、上記表面の残留オーステナイト量が、体積率で、25%~45%であり、上記表面の硬さがHv750以上となされているものである。
 ここで、表面とは、浸炭浸窒処理によって、内部と比較すると、明瞭に多量のC及びNを含有する部分であって、転がりにおける寿命に影響を及ぼす深さ部分であり、例えば異物油中で使用される転動部品では仕上げ加工後の最表面を基準として0~50μmの範囲であり、表層部とは、浸炭浸窒処理の影響を受けている範囲を意味する。
 また、上記鉄鋼材料の含有するCrが、質量%で、2.20%以下であることが好ましい。
 また、上記転動部品の表面における平均N量が、質量%で、0.30%以下であることが好ましい。
 また、上記転動部品の表面の残留オーステナイト量が、体積率で、40%以下であることが好ましい。
 また、上記転動部品の内部の残留オーステナイト量は、体積率で、15%以下であることが好ましい。
 表面の残留オーステナイト量を最適化することにより、異物による表面損傷による応力集中を低減し、転動寿命を改善する。
 そして、特定の粒径の析出物の平均粒径、1mm2あたりの個数、及び面積率を最適化することにより、転動部品の材料強度を向上することができる。
 また、上記表面の硬さを確保することによって、転動部品の機能の維持、発現、及び、異物が混入する潤滑環境下においても、損傷を抑制することができる。
 また、上記転動部品の内部の上記未浸炭浸窒層は、残留オーステナイト量が体積率で、20%以下となされているものである。また、上記未浸炭浸窒層の硬さは、Hv700以上とすることが望ましい。
 転動部品内部の残留オーステナイト量、硬さを上記範囲に制限することによって、大きな荷重を支える場合であっても、経年変形や、その荷重による変形や破壊を抑制することができる。
 このように、軟質な残留オーステナイトを表面に多量に存在させても、表面に最適なサイズの析出物を多量に析出させて表面の硬度を確保することにより、異物が混入した潤滑下での損傷を防止することができ、寿命の向上を実現することができ、さらに内部の残留オーステナイト量を抑制することにより、部品の経年変形を抑制し、優れた転動部品の製造が可能となる。
 また、上記転動部品は、質量%で、C:0.90%~1.10%、Si:0.35%超~0.70%、Mn:0.80%未満、Cr:1.85%~2.50%、O:12ppm以下を含有し、残部がFe及び不可避的不純物からなる鉄鋼材料を用いることを特徴とし、合金元素の増量は寿命改善のための必要最小限としているため、大きな材料コストの増大がない。
 このように、本発明によれば、大きなコスト増加なしに、経年変形や荷重による変形や破壊を抑制することができ、長寿命化を達成することができる転動部品を提供することができる。
 第2の発明は、転動体及びその転動軌道部材を有する転動部品を製造する方法であって、
 質量%で、C:0.90%~1.10%、Si:0.35%超~0.70%、Mn:0.80%未満、Cr:1.85%~2.50%、O:12ppm以下を含有し、残部がFe及び不可避的不純物からなる鉄鋼材料に対して球状化焼鈍処理を行う球状化焼鈍工程と、
 所定形状に成形する加工工程と、
 830℃~880℃で、浸炭変成ガス流量に対するNH3ガス流量:2%~10%で、3時間以上の処理を行う浸炭浸窒処理工程と、
 仕上げ加工工程とを有することを特徴とする転動部品の製造方法にある。
 上記転動部品の製造方法を行うことによって、大きなコスト増加なしに、上述の、異物が混入した潤滑環境下で用いられる転動部品として適用した場合にも、長寿命化を達成することができる転動部品を製造することができる。
実施例1における、浸炭浸窒温度が850℃以上の場合のヒートパターンを示す図。 実施例1における、浸炭浸窒温度が850℃未満の場合のヒートパターンを示す図。
 第1の発明の転動部品は、上述したように、上記転動部品は、質量%で、C:0.90%~1.10%、Si:0.35%超~0.70%、Mn:0.80%未満、Cr:1.85%~2.50%、O:12ppm以下を含有し、残部がFe及び不可避的不純物からなる鉄鋼材料に対して、球状化焼鈍、加工、浸炭浸窒処理、仕上げ加工を施すことにより形成される。
 上記鉄鋼材料は、Cを0.90%~1.10%とする。Cは浸炭浸窒を施した後の急冷(焼入)、焼もどし処理後に軸受として強度を確保するために不可欠な元素である。また、球状化焼鈍後において、多量の未固溶炭化物を残存させ、浸炭浸窒処理時にそれらが析出核となって析出物を形成させることで、マトリックスを析出強化させ、さらに炭化物の凝集成長をも抑制する。そのため下限を0.90%とした。しかし、過剰の添加は、疲労破壊の起点になり得る粗大な共晶炭化物が生成し易くなり、また、材料の硬さが上昇するため、浸炭浸窒処理前に所定の形状に成形する際の機械加工性に悪影響を及ぼすため、上限を1.10%とした。
 また、Siを0.35%超~0.70%含有する。Siは鋼の精錬時の脱酸のために必要な元素である。さらに、Siは炭化物中に固溶し難い性質を有することから、炭化物の粗大成長を抑制する効果が期待できる。そのためには0.35%を超えた添加が必要である。しかし、Siはフェライトを強化することで、浸炭浸窒処理前に所定の形状に成形する際の機械加工性に悪影響を及ぼすため、上限を0.70%とした。
 また、Mnを0.80%未満含有する。Mnは鋼の焼入性を確保、向上させ、さらにオーステナイト組織を安定化させることで、焼入後の残留オーステナイト量を増加させる元素であるため添加することが望ましい。しかし、Mnの過剰な添加は未浸炭浸窒領域における残留オーステナイト量も増加させ、転動部品の寸法安定性に悪影響が生じ、さらに熱間加工性などの製造性も劣化するため、上限を0.80%未満とした。
 また、Crを1.85%~2.50%含有する。Crは鋼の焼入性を確保、向上させる元素であるとともに、炭・窒化物形成元素であり、球状化焼鈍処理後に多量の未固溶炭化物を残存させ、さらに浸炭浸窒時にはそれらが析出核となることで析出物の粗大化を抑制し、かつ多量の析出物を形成するために不可欠な元素である。前記効果を十分に得るためには1.85%以上の添加が必要であり、一方、過剰な添加は材料コストを増大させるばかりでなく、疲労破壊の起点になり得る粗大な共晶炭化物を生成し易くなるため、上限を2.50%とした。また、同様の理由で、上限は2.20%以下であることがより好ましい。
 また、Oを12ppm以下含有する。Oはその多くがAlやCaと結合することで酸化物系介在物を形成して鋼中に存在する。これら酸化物系介在物は転動疲労時の剥離(表面破壊)起点となることが知られており、転動疲労寿命を低下させる。このことから、上限を12ppmとした。
 そして、上記転動部品は、上述の組成を有する鉄鋼材料に対して、球状化焼鈍、加工、浸炭浸窒処理、仕上げ加工を施すことにより形成される。具体的には、例えば、後述する第2の発明の転動部品の製造方法によって製造することができる。
 また、上記転動部品の表面は、平均C量、平均N量が、質量%で、C:1.20%~1.50%、N:0.10%~0.60%である。
 なお、上記平均C量、平均N量とは、マトリックス固溶分+析出物の平均を意味する。
 そして、上記C量、N量はEPMA分析による濃度測定によって測定することができる。
 本発明において、特に異物が混入する潤滑環境下で長寿命とするためには、表面における残留オーステナイト量の確保と、軟質な前記組織を強度的に補う析出物が不可欠である。この析出物である炭化物、窒化物、あるいは炭窒化物を浸炭浸窒処理によって多量に生成させるためには、少なくとも転動疲労を受ける表面において、C:1.20%以上、N:0.10%以上が必要である。しかしながら、C、Nが多量になると、析出物が粗大成長することで長寿命が得られなくなる他に、軟質な残留オーステナイト量が過剰になることで、十分な材料強度を得ることが困難になるため、上限をC:1.50%以下、N:0.60%以下とする。ただし、同様の理由で、Nは0.30%以下とすることがより好ましい。
 また、上記表面における粒径(円相当直径のことを意味する。以下、同じ。)0.1μm以上の析出物(炭化物、窒化物、及び炭窒化物)は、平均粒径が0.6μm以下である。
 上述したように、材料強度を向上させるために多量の析出物が不可欠であるが、粒径0.1μm未満の析出物は走査型電子顕微鏡や光学顕微鏡などの比較的簡易な手段による正確な測定が困難であることから、測定対象の析出物を粒径0.1μm以上の析出物に限定し、その平均粒径の上限を0.6μmとした。すなわち析出物が粗大化すると強化機能が低下するためである。
 上記析出物の粒径は、SEMによる観察から、画像解析によって測定することができる。
 また、上記表面における粒径0.1μm以上の析出物は、1mm2あたりに70万個以上存在する。
 本発明では、転動部品の表面において、多量の残留オーステナイトを確保しつつ、高硬度を維持することを特徴としており、析出物による強度向上が不可欠となる。従って、1mm2あたり70万個以上とする必要がある。
 また、上記表面における粒径0.1μm以上の析出物の面積率は10%以上である。
 すなわち、上記析出物による材料強度向上のためには、多量の析出物量であることが望ましい。すなわち、それは析出物の面積率が大きいことを意味しており、その効果を得るためには面積率10%以上である。
 また、上記表面の残留オーステナイト量は、体積率で、25%~45%である。
 転動部品の表面の残留オーステナイト組織は、異物による表面損傷による応力集中を低減することで、異物が混入した潤滑環境下の転動寿命を改善することが知られている。その効果を得るためには体積率で25%以上必要である。しかしながら、残留オーステナイト組織は軟質であることから、多量になると転動部品として必要な硬度及び強度を確保することが困難になるため、上限を45%とした。また、同様の理由で、上記表面の残留オーステナイト量の上限は40%とすることがより望ましい。
 上記残留オーステナイト量の測定はX線回折によるピーク強度比より算出することができる。
 また、上記表面の硬さはHv750以上である。
 転動部品にとってその機能を維持、発現するために高硬度であることは重要である。さらに異物が混入する潤滑環境下においては、転動体と転走面との間に異物が噛み込むことで転走面に塑性変形を伴う損傷が発生する。この損傷を抑制するためにはより高硬度であることが必要であり、硬さはビッカース硬度で750を下限とする。
 転動表面に関しては曲率を持つため表面硬さが測定できないため、断面の表面下50μm位置の硬さで代用する。
 また、上記転動部品の内部(未浸炭浸窒層)は、残留オーステナイト量が体積率で、20%以下である。
 転動部品は長時間の使用をすることが通常であり、その機能維持のために経年変形は抑制する必要がある。残留オーステナイト組織は軟質なこともあり、多量に存在すると経年変形特性を劣化させる。本発明による浸炭浸窒は転動部品の表面層のみを改質するものであり、経年変形に大きく影響するのは内部、すなわち未浸炭浸窒領域の性状である。このことから、内部の残留オーステナイト量の上限を20%とする。但し、内部の残留オーステナイト量が15%を超えると経年変形が若干大きくなるため、上限を15%とすることが望ましい。
 また、上記転動部品の内部は、硬さがHv700以上であることが望ましい。
 転動部品は大きな荷重を支える場合が多く、その荷重による変形や破壊は抑制する必要がある。そのためには内部、すなわち未浸炭浸窒領域の強度を確保する必要がある。従って、内部における硬さはビッカース硬度で700以上であることが望ましい。
 第2の発明の、転動部品の製造方法は、上述したように、質量%で、C:0.90%~1.10%、Si:0.35%超~0.70%、Mn:0.80%未満、Cr:1.85%~2.50%、O:12ppm以下を含有し、残部がFe及び不可避的不純物からなる鉄鋼材料に対して、加工性改善のために行う球状化焼鈍工程を有する。該球状化焼鈍工程を行うことにより、多量の析出物が存在した状態(球状化焼鈍組織)とすることができる。
 上記鉄鋼材料の成分の限定理由は、請求項1の発明の場合と同様である。
 上記鉄鋼材料は1.00%前後の高いC量であるため、冷間加工や機械加工による成形性を確保するために球状化焼鈍組織となっていることが必要である。さらに、球状化焼鈍組織の炭化物はパーライト(層状炭化物)よりも加熱時に固溶し難いため、未固溶炭化物を多く残存させ、浸炭浸窒時の析出物の核として作用させることが容易になる。
 なお、球状化焼鈍後の炭化物の状態としては、平均粒径が0.1~0.5μmであって、0.1μm以上の大きさの炭化物の析出数が1500000個以上/mm2とすることが望ましい。このような微細な析出状態とするには、800℃付近の温度に加熱し25℃/h以下というゆっくりとした速度で徐冷することが必要である。このような析出状態とされている加工済み鉄鋼材料を後述の浸炭浸窒処理することにより、請求項1に記載した通り、析出物が多量に存在する表面を有する部品を得ることができる。
 また、第2の発明の転動部品の製造方法においては、上記鉄鋼材料を塑性加工、機械加工等により所定形状に成形する加工工程を有する。
 その後、830℃~880℃で、浸炭変成ガス流量に対するNH3ガス流量:2%~10%で、3時間以上の処理を行う浸炭浸窒処理工程を有する。
 上記浸炭浸窒処理は表面からC、Nを拡散によって鋼材表層に導入する表面改質熱処理である。つまり、素材表面から進入した炭素及び窒素が、炭化物、窒化物、及び炭窒化物等の析出物として析出する。その際に、上記球状化焼鈍において析出済みの多数の未固溶炭化物のうちの一部が浸炭浸窒中においても固溶することなく残存するため、それが析出核となって上記析出物の微細析出が可能となり、かつ、析出物の粗大化も抑制される。その効果により、異物混入下での寿命の向上を図ることができる。
 浸炭浸窒処理前の炭化物が、浸炭浸窒処理中にどの程度残存しているかは、処理後において、未浸炭浸窒層の析出物の析出数を測定することにより確認できるため、この析出数が適当な数値となるように処理温度を調整することが必要である。
 上記浸炭浸窒処理の温度が低すぎると、C、Nの拡散が困難になり、仕上加工による表面加工代を考慮すると、浸炭浸窒処理時間を長時間にする必要が生じ、生産性を劣化させてしまうので、下限を830℃とした。また浸炭浸窒処理時間が高すぎると、浸窒のために導入したアンモニアの分解が促進し、多量のアンモニアが必要になることから経済的に不利であり、さらに鋼表面に侵入したC、Nによる析出物の粗大成長を促進することで、析出強化機能が発揮され難くなってしまうため、上限を880℃とした。
 また、上記NH3ガスは浸炭ガスとともに雰囲気に混入することで、鋼表層にNを侵入させるために必要であり、有効なN量を得るために2%以上の流量、処理時間3hr以上が必要である。また、上記NH3ガス流量は3%以上とするのがよい。しかしながら、NH3ガス流量が多すぎると、その効果は飽和する傾向であり、経済的ではないので上限を10%とする。ただし、処理時間に関しては、長いほどC、Nは鋼内部に拡散するため、必要に応じて長くすることは可能である。
 そして、最後に研磨加工等の上記仕上げ加工工程を行って、部品を完成させる。
(実施例1)
 本例は、本発明の転動部品及びその製造方法にかかる実施例について説明する。
 本例では、表1に示す14種類の鉄鋼材料(鋼A~鋼N)を用意し、本発明の実施例として、表2に示す転動部品(試料E1~試料E5)を作製し、比較例として、表3に示す転動部品(試料C1~試料C16)を作製し、寸法変化試験及び寿命試験を行った。
 本例の転動部品(試料E1~試料E5)は、転動体及びその転動軌道部材を有する転動部品であり、質量%で、C:0.90%~1.10%、Si:0.35%超~0.70%、Mn:0.80%未満、Cr:1.85%~2.50%、O:12ppm以下を含有し、残部がFe及び不可避的不純物からなる鉄鋼材料に対して、球状化焼鈍、加工、浸炭浸窒処理、仕上げ加工を施すことにより形成される。
 また、上記転動部品の表面は、該表面における平均C量、平均N量が、質量%で、C:1.20%~1.50%、N:0.10%~0.60%であり、上記表面における粒径0.1μm以上の析出物(炭化物、窒化物、及び炭窒化物)は、平均粒径が0.6μm以下であり、1mm2あたりに70万個以上存在し、面積率は10%以上である。
 上記表面の残留オーステナイト量は、体積率で25%~45%であり、上記表面の硬さはHv750以上である。
 また、上記転動部品の内部(未浸炭浸窒層)は、残留オーステナイト量が体積率で20%以下である。
 この発明の具体的実施例を比較例と共に説明する。
 まず、表1に示す組成を有する14種類の鋼材を用意し、前述したとおり、優れた加工性を得ると共に、浸炭浸窒後の高強度を得るために、浸炭浸窒前に多量の炭化物を析出させた状態とする必要性から、これらの鋼材に対し、球状化焼鈍処理を施した。
Figure JPOXMLDOC01-appb-T000001
 なお、表1において、全ての鋼の残部はFe及び不可避的不純物からなる。
 その後、上記鋼材(鋼A~鋼N)を用いて、型番6206の転がり軸受に用いられる21種類の内輪素材(内径φ30mm、外径φ62mm、厚み16mm)を形成した。その後、これらの内輪素材に対して、表2、表3、図1、図2に示す条件で浸炭浸窒処理を施した。そして、研磨による仕上げ加工を行うことにより、内輪(試料E1~試料E5及び試料C1~試料C16)を製造した。なお、球状化焼鈍後で浸炭浸窒処理前の炭化物の析出個数を測定するため、浸炭浸窒処理前の試験片について走査型電子顕微鏡で1万倍に拡大して観察し、粒径0.1μm以上の析出物の個数を測定した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 図1に示す熱処理条件1は、浸炭浸窒温度が850℃以上の場合のヒートパターンを示しており、NH3流量Xの浸炭浸窒雰囲気中において浸炭温度YでZ時間加熱保持した後、この加熱に引き続いてNH3流量Xの浸炭浸窒雰囲気中において850℃で0.5時間加熱保持し、次いで80℃に油冷するものである。
 また、図2に示す熱処理条件2は、浸炭浸窒温度が850℃未満の場合のヒートパターンを示しており、NH3流量Xの浸炭浸窒雰囲気中において浸炭温度YでZ時間加熱保持した後、80℃に油冷するものである。
 なお、上記NH3流量X、処理温度Y、処理時間Zの値は、それぞれ表2、表3に示す。
 また、前述した熱処理条件においては、図示は省略したが、最後に200℃で2時間加熱保持した後、空冷する焼き戻し処理が施される。
 このようにして製造された実施例(試料E1~試料E5)及び比較例(試料C1~試料C16)の内輪の、表面における平均C量、平均N量、表面における粒径0.1μm以上の析出物の平均粒径、1mm2あたりの個数、面積率、表面の残留オーステナイト量(残留繃量)、表面の硬さ、上記内輪の内部の残留オーステナイト量をそれぞれ測定した。結果を表2及び表3に示す。
<表面における平均C量、平均N量>
 平均C量及び平均N量の測定は、EPMA分析による濃度測定によって行った。
<表面における粒径0.1μm以上の析出物の平均粒径、1mm2あたりの個数、面積率>
 表面における粒径0.1μm以上の析出物の平均粒径、1mm2あたりの個数、面積率の測定は、走査型電子顕微鏡(SEM)による観察から画像解析によって行った。
<残留オーステナイト量>
 残留オーステナイト量の測定は、X線回折によるピーク強度比により算出した。
<硬さ>
 表面の硬さは、転動表面に関しては、曲率をもつため表面硬さが測定できないので、断面の表面から50μm位置のビッカース硬さを測定することにより評価した。
 また、浸炭浸窒処理前と同様、浸炭浸窒処理後についても、析出物の析出状態を確認するため、未浸炭浸窒層の析出数を走査型電子顕微鏡(1万倍)で測定した。なお、浸炭浸窒処理温度を調整し、その結果浸炭浸窒時における析出固溶の程度が最適であるかを判断するのに、浸炭浸窒後の未浸炭浸窒層における析出物の析出数を測定すればよいことについては、上述したとおりである。この測定により最適な浸炭浸窒処理温度の範囲を判定することができる。
 そして、更に、上記内輪(試料E1~試料E5、及び試料C1~試料C16)について、寸法変化試験、及び寿命試験を行った。結果を表2、表3に併せて示す。
<寸法変化試験>
 寸法変化試験は、実施例(試料E1~試料E5)及び比較例(試料C1~試料C16)の内輪について、表4に示す試験条件で、寸法変化率を測定した。
Figure JPOXMLDOC01-appb-T000004
<寿命試験>
 実施例(試料E1~試料E5)及び比較例(試料C1~試料C16)の内輪を、JIS SUJ2からなりかつ通常の浸炭浸窒処理が施されてなる外輪及び玉とを組み合わせて型番6206C3の玉軸受を組み立てた。そして、これらの玉軸受を使用し、異物が混入した潤滑油を用いて寿命試験を行った。試験条件は、表5に示すとおりである。
Figure JPOXMLDOC01-appb-T000005
 なお、表5に示す試験機は、同時に2個の玉軸受の試験を行うことが可能であり、表5中のラジアル荷重は、1つの玉軸受のラジアル荷重を意味する。
 試験機に同じ内輪を設けた玉軸受を2個セットし、いずれかの玉軸受の内輪が破損するまでの時間を測定するという試験を5回繰り返し、ワイブル分布により10%の破損確率があると推定されるL10寿命を求めた。表2、表3の標準軸受比欄には、比較例である試料C16の寿命を1とした場合の比率を示す。なお、試料C15は、従来鋼であるJIS SUJ2に高濃度浸炭処理を行った例であり、試料C16は、JIS SUJ2に従来から広く行われてきたズブ焼入れ(焼入温度830℃、油冷(油温80℃)、焼き戻し温度180℃)を行った例である。そのため、これらと結果を比較することにより、本発明の効果を把握することができる。
 表2、表3に示す結果から明らかなように、請求項1のうち一部の条件を満たしていない比較例(試料C1~試料C14)については、試料C15、試料C16と比較して寿命が期待通りに改善できないことがわかった。
 すなわち、比較例としての試料C1は、従来鋼であるJIS SUJ2に対し、浸炭浸窒処理を行ったものであるが、Crが少ないことにより高濃度浸炭浸窒処理前の未固溶炭化物が少ないため、高濃度浸炭浸窒処理後の析出物が減少し、寿命が低下した。
 また、比較例としての試料C2は、Cが本発明の下限を下回る鋼Gを用いており、高濃度浸炭浸窒前の核となる未固溶炭化物が少ないため、高濃度浸炭浸窒後の析出物が減少し、寿命が低下した。
 また、比較例としての試料C3は、Cが本発明の上限を上回る鋼Hを用いているため、Cを含む析出物が粗大化し、それを起点として寿命が低下した。
 また、比較例としての試料C4は、Siが下限を下回る鋼Iを用いており、Siが少ないことから、析出物の成長を抑制できず、析出物が粗大化し、それを起点とし寿命が低下した。
 また、比較例としての試料C5は、Siが上限を上回る鋼Jを用いており、Si過剰添加により、浸炭性が悪化し、十分なC、N濃度が得られないことにより寿命が低下した。
 また、比較例としての試料C6は、Mnが上限を上回る鋼Kを用いており、Mnを多量に添加したことにより、内部の残留繃量が大幅に上昇し、寸法変化率が上昇し、寸法精度を得られないことに加え、表層の残留繃量も増量し、硬さを得ることができなかったため寿命が低下した。
 また、比較例としての試料C7は、Crが本発明の下限を下回っている鋼Lを用いているため、試料C1と同様に高濃度浸炭浸窒前の核となる未固溶炭化物が少ないため、高濃度浸炭浸窒後の析出物が減少し、寿命が低下した。
 また、比較例としての試料C8は、Crが本発明の上限を上回る鋼Mを用いているため、C析出物が粗大化し、それを起点として寿命が低下した。
 また、比較例としての試料C9は、Oが本発明の上限を上回る鋼Nを用いているため、特性値は全て本発明の範囲を満足しているが、Oが多いことにより非金属介在物が増加し、それを起点として寿命が低下した。
 また、比較例としての試料C10は、浸炭浸窒処理温度が、本発明の下限を下回るため、表面のC濃度が減少し、残留繃量が低下したため寿命が低下した。
 また、比較例としての試料C11は、浸炭浸窒処理温度が本発明の上限を上回るため、アンモニアの分解が促進し、有効なN量が得られないのに加え、Cの拡散促進により析出物が粗大化し、それを起点として寿命が低下した。
 また、比較例としての試料C12は、NH3の流量が本発明の下限を下回り、表面のN濃度が低下したため、寿命が低下した。
 また、比較例としての試料C13は、浸炭浸窒時間が本発明の下限を下回るため、C、Nの拡散が不十分となり、仕上げ加工後による加工分を超えて内部までのC、N拡散が十分でなく、表面のC濃度及びN濃度が低下したため、寿命が低下した。
 また、比較例としての試料C14は、実施例1の浸炭浸窒処理を、浸窒処理を実施せず浸炭処理のみを施すことに変更した例であり、材料に固溶N量がなくなり、残留繃量が減少したために、実施例1よりも寿命が低下した。また、窒化物がなくなったことも寿命低下の一因として考えられる。
 さらに、比較例としての試料C15、試料C16は、前記した通り、従来鋼であるJIS SUJ2を用いたもので、試料C16が従来から広く行われていたズブ焼入れを施したもの、試料C15が前記した通り、最近提案された高濃度浸炭処理を行った例であるが、成分が最適化されておらず、かつNの活用がされていないため、寿命が大きく劣るものである。
 上述の比較例に対し、実施例(試料E1~試料E5)については、成分範囲、表面のC、N量、析出物の粒径、数、面積率、残留オーステナイト量、表面硬さが全て本発明の条件を満足するように製造したことによって、ハイス鋼粉末という異物が混入した厳しい条件下で試験を行っているにも関わらず、低い寸法変化率を示し、その結果、従来から広く実施されているJIS SUJ2のズブ焼入れにより作製した内輪である比較例C16と比較して5.5~8.0倍という優れた寿命が得られることが確認できた。但し、本発明の試料E4、比較例の試料C3、試料C6、試料C12と、これらを除く試料との比較から明らかなように、内部の残留オーステナイト量が15%を超えると、寸法変化率が上昇する傾向となるため、残留オーステナイト量は15%以下とするのが望ましい。
 なお、表には数値を示していないが、試料E1~試料E5の内部硬さは全てHv700以上であった。
 この結果より、寿命を得るためには、従来鋼に比べ、成分の最適化を図った上で、浸炭浸窒処理前に多量かつ微細に炭化物が析出した状態としておき、浸炭浸窒処理を行うことにより、浸炭浸窒処理後の転動部品の表面(浸炭浸窒層)において残留オーステナイトと多量の析出物を確保し、また、内部(未浸炭浸窒層)において残留オーステナイト量を抑制して高硬度を有する状態とすることが重要であることが確認できた。

Claims (6)

  1.  転動体及びその転動軌道部材を有する転動部品であって、
     上記転動部品は、質量%で、C:0.90%~1.10%、Si:0.35%超~0.70%、Mn:0.80%未満、Cr:1.85%~2.50%、O:12ppm以下を含有し、残部がFe及び不可避的不純物からなる鉄鋼材料に対して、球状化焼鈍、加工、浸炭浸窒処理、仕上げ加工を施すことにより形成され、
     上記転動部品の表面は、該表面における平均C量、平均N量が、質量%で、C:1.20%~1.50%、N:0.10%~0.60%であり、
     上記表面における粒径0.1μm以上の析出物である炭化物、窒化物、及び炭窒化物は、平均粒径が0.6μm以下であり、1mm2あたりに70万個以上存在し、面積率は10%以上であり、
     上記表面の残留オーステナイト量は、体積率で25%~45%であり、
     上記表面の硬さはHv750以上であり、
     上記転動部品の内部の未浸炭浸窒層は、残留オーステナイト量が体積率で20%以下であることを特徴とする転動部品。
  2.  上記鉄鋼材料の含有するCrが、質量%で、2.20%以下であることを特徴とする請求項1記載の転動部品。
  3.  上記転動部品の表面における平均N量が、質量%で、0.30%以下であることを特徴とする請求項1記載の転動部品。
  4.  上記転動部品の表面の残留オーステナイト量が、体積率で、40%以下であることを特徴とする請求項1記載の転動部品。
  5.  上記転動部品の内部の残留オーステナイト量が、体積率で、15%以下であることを特徴とする請求項1記載の転動部品。
  6.  転動体及びその転動軌道部材を有する転動部品を製造する方法であって、
     質量%で、C:0.90%~1.10%、Si:0.35%超~0.70%、Mn:0.80%未満、Cr:1.85%~2.50%、O:12ppm以下を含有し、残部がFe及び不可避的不純物からなる鉄鋼材料に対して球状化焼鈍処理を行う球状化焼鈍工程と、
     所定形状に成形する加工工程と、
     830℃~880℃で、浸炭変成ガス流量に対するNH3ガス流量:2%~10%で、3時間以上の処理を行う浸炭浸窒処理工程と、
     仕上げ加工工程とを有することを特徴とする転動部品の製造方法。
PCT/JP2009/054391 2008-03-10 2009-03-09 転動部品及びその製造方法 WO2009113477A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09719774A EP2253728A1 (en) 2008-03-10 2009-03-09 Rolling component and manufacturing method thereof
US12/736,089 US20110000583A1 (en) 2008-03-10 2009-03-09 Rolling part and manufacturing method thereof
CN200980108497.6A CN101970704A (zh) 2008-03-10 2009-03-09 滚动部件及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008059752A JP5202043B2 (ja) 2008-03-10 2008-03-10 転動部品及びその製造方法
JP2008-059752 2008-03-10

Publications (1)

Publication Number Publication Date
WO2009113477A1 true WO2009113477A1 (ja) 2009-09-17

Family

ID=41065144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054391 WO2009113477A1 (ja) 2008-03-10 2009-03-09 転動部品及びその製造方法

Country Status (5)

Country Link
US (1) US20110000583A1 (ja)
EP (1) EP2253728A1 (ja)
JP (1) JP5202043B2 (ja)
CN (1) CN101970704A (ja)
WO (1) WO2009113477A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102741572A (zh) * 2010-03-30 2012-10-17 Ntn株式会社 滚动轴承

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2961037B1 (fr) 2010-04-28 2018-05-25 Sintertech Realisation d'une phase de machine homopolaire tournante, applique a la conception de son circuit magnetique
EP2789705B1 (en) * 2011-12-08 2018-10-10 NTN Corporation Machine part, rolling bearing, conical roller bearing and method for manufacturing machine part
CN104781427A (zh) * 2012-08-21 2015-07-15 Skf公司 热处理钢构件的方法及钢构件
CN105264246B (zh) * 2013-06-06 2018-10-12 Ntn株式会社 轴承部件及滚动轴承
WO2014196431A1 (ja) 2013-06-06 2014-12-11 Ntn株式会社 軸受部品および転がり軸受
EP3006756B1 (en) 2013-06-06 2020-11-25 NTN Corporation Bearing component and rolling bearing
WO2014196430A1 (ja) 2013-06-06 2014-12-11 Ntn株式会社 軸受部品および転がり軸受
CN103526213B (zh) * 2013-10-21 2015-07-01 无锡鹰贝精密轴承有限公司 提高16MnCr5零件使用寿命的方法
JP6535276B2 (ja) * 2015-12-09 2019-06-26 株式会社ジェイテクト 軸受構成部材及びその製造方法並びに転がり軸受
JP6939670B2 (ja) * 2018-03-21 2021-09-22 愛知製鋼株式会社 転動疲労特性に優れた鋼部品
JP7548951B2 (ja) 2022-01-31 2024-09-10 高周波熱錬株式会社 焼入れ鋼材及びその製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0578814A (ja) * 1991-09-19 1993-03-30 Nippon Seiko Kk 転がり軸受
JP2004052101A (ja) 2001-11-14 2004-02-19 Koyo Seiko Co Ltd 転がり、摺動部品およびその製造方法
JP2004060015A (ja) * 2002-07-30 2004-02-26 Koyo Seiko Co Ltd 摺動部品およびその製造方法
JP2006144086A (ja) * 2004-11-22 2006-06-08 Nsk Ltd 転動軸
WO2006068205A1 (ja) 2004-12-24 2006-06-29 Jtekt Corporation 転がり、摺動部品およびその製造方法
JP2007063627A (ja) * 2005-08-31 2007-03-15 Jfe Steel Kk 疲労特性に優れた軸受用鋼部品およびその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080047633A1 (en) * 2005-12-22 2008-02-28 Jtekt Corporation Rolling-Sliding Elements and Process for Production of the Same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0578814A (ja) * 1991-09-19 1993-03-30 Nippon Seiko Kk 転がり軸受
JP2004052101A (ja) 2001-11-14 2004-02-19 Koyo Seiko Co Ltd 転がり、摺動部品およびその製造方法
JP2004060015A (ja) * 2002-07-30 2004-02-26 Koyo Seiko Co Ltd 摺動部品およびその製造方法
JP2006144086A (ja) * 2004-11-22 2006-06-08 Nsk Ltd 転動軸
WO2006068205A1 (ja) 2004-12-24 2006-06-29 Jtekt Corporation 転がり、摺動部品およびその製造方法
JP2007063627A (ja) * 2005-08-31 2007-03-15 Jfe Steel Kk 疲労特性に優れた軸受用鋼部品およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102741572A (zh) * 2010-03-30 2012-10-17 Ntn株式会社 滚动轴承

Also Published As

Publication number Publication date
CN101970704A (zh) 2011-02-09
JP2009215597A (ja) 2009-09-24
EP2253728A1 (en) 2010-11-24
US20110000583A1 (en) 2011-01-06
JP5202043B2 (ja) 2013-06-05

Similar Documents

Publication Publication Date Title
JP5202043B2 (ja) 転動部品及びその製造方法
JP6205060B2 (ja) 浸炭窒化軸受部品
JP5094126B2 (ja) 転がり、摺動部品およびその製造方法
US9593389B2 (en) Steel wire rod for bearing steel, manufacturing method of steel wire rod for bearing steel, heat treatment method of steel bearing, steel bearing and soaking method of bearing steel
CN113260728B (zh) 渗碳氮化轴承部件
JP4923776B2 (ja) 転がり、摺動部品およびその製造方法
WO2013146124A1 (ja) 転動疲労特性に優れた軸受用鋼材およびその製造方法
CN113227424B (zh) 作为渗碳氮化轴承部件的坯料的钢材
JP6939670B2 (ja) 転動疲労特性に優れた鋼部品
JP5599211B2 (ja) 軸受部品の製造方法及び軸受部品
US20080047633A1 (en) Rolling-Sliding Elements and Process for Production of the Same
JP2005042188A (ja) 異物混入環境下での転動疲労寿命に優れた浸炭窒化軸受鋼
JP2018053337A (ja) 耐摩耗性および疲労特性に優れた浸炭部品およびその製造方法
WO2018212196A1 (ja) 鋼及び部品
JP5668283B2 (ja) 転がり摺動部材の製造方法
JP2022170056A (ja) 鋼材
JPH11229032A (ja) 軟窒化用鋼材の製造方法及びその鋼材を用いた軟窒化部品
JP5194538B2 (ja) 転がり軸受
JP2019056141A (ja) 浸炭窒化用鋼材および浸炭窒化軸受部品
JP3353698B2 (ja) 軟窒化用鋼材の製造方法及びその鋼材を用いた軟窒化部品
WO2022249349A1 (ja) 鋼材、及び、その鋼材を素材とするクランクシャフト
JP7368697B2 (ja) 浸炭歯車用鋼、浸炭歯車及び浸炭歯車の製造方法
JPH11335732A (ja) 軟窒化用鋼材の製造方法及びその鋼材を用いた軟窒化部品
JP6601359B2 (ja) 耐摩耗性に優れた浸炭部品およびその製造方法
WO2021106086A1 (ja) 鋼及び軸受

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980108497.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09719774

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12736089

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009719774

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE