WO2009113347A1 - 車両用駆動装置の制御装置 - Google Patents

車両用駆動装置の制御装置 Download PDF

Info

Publication number
WO2009113347A1
WO2009113347A1 PCT/JP2009/052111 JP2009052111W WO2009113347A1 WO 2009113347 A1 WO2009113347 A1 WO 2009113347A1 JP 2009052111 W JP2009052111 W JP 2009052111W WO 2009113347 A1 WO2009113347 A1 WO 2009113347A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
electric motor
vehicle
impeller
torque
Prior art date
Application number
PCT/JP2009/052111
Other languages
English (en)
French (fr)
Inventor
博文 太田
幸一 宮本
真吾 江藤
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to DE112009000557T priority Critical patent/DE112009000557T5/de
Priority to CN2009801087156A priority patent/CN101970257B/zh
Priority to US12/922,009 priority patent/US8583335B2/en
Publication of WO2009113347A1 publication Critical patent/WO2009113347A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • B60W10/023Fluid clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/115Stepped gearings with planetary gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/48Control of exclusively fluid gearing hydrodynamic
    • F16H61/50Control of exclusively fluid gearing hydrodynamic controlled by changing the flow, force, or reaction of the liquid in the working circuit, while maintaining a completely filled working circuit
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/445Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0604Throttle position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0676Engine temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/16Ratio selector position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0605Throttle position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0616Position of fuel or air injector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/006Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising eight forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/0082Transmissions for multiple ratios characterised by the number of reverse speeds
    • F16H2200/0086Transmissions for multiple ratios characterised by the number of reverse speeds the gear ratios comprising two reverse speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
    • F16H2200/2007Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with two sets of orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/202Transmissions using gears with orbital motion characterised by the type of Ravigneaux set
    • F16H2200/2023Transmissions using gears with orbital motion characterised by the type of Ravigneaux set using a Ravigneaux set with 4 connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2048Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes with seven engaging means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2097Transmissions using gears with orbital motion comprising an orbital gear set member permanently connected to the housing, e.g. a sun wheel permanently connected to the housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/62Gearings having three or more central gears
    • F16H3/66Gearings having three or more central gears composed of a number of gear trains without drive passing from one train to another
    • F16H3/663Gearings having three or more central gears composed of a number of gear trains without drive passing from one train to another with conveying rotary motion between axially spaced orbital gears, e.g. RAVIGNEAUX
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/62Gearings having three or more central gears
    • F16H3/66Gearings having three or more central gears composed of a number of gear trains without drive passing from one train to another
    • F16H3/666Gearings having three or more central gears composed of a number of gear trains without drive passing from one train to another with compound planetary gear units, e.g. two intermeshing orbital gears
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/84Data processing systems or methods, management, administration

Definitions

  • the present invention relates to a vehicle drive device including a torque converter capable of amplifying torque via a fluid, and more particularly to controlling a vehicle drive device including a torque converter whose torque gain can be changed by an electric motor. It relates to the device.
  • a torque converter having a pump impeller, a turbine impeller, and a stator impeller disposed rotatably between the turbine impeller and the pump impeller is well known.
  • the stator wheel is connected to the non-rotating member via the one-way clutch, and does not have variable capacity characteristics.
  • the fluid characteristics of a torque converter are desired to have a high capacity (capacity coefficient) when fuel-oriented, but in the above conventional structure, depending on the shape of the pump impeller, turbine impeller, and stator impeller Since they are uniquely determined, the same fluid characteristics are obtained regardless of the running pattern, and there is a limit to improving the fuel efficiency and power performance at the same time.
  • a brake means is provided between the stator impeller and the non-rotating member, and a variable capacity type torque in which the capacity is varied by adjusting the braking torque of the brake means.
  • Converters have been proposed. According to this, it becomes possible to change the torque ratio and capacity coefficient of the torque converter steplessly or in multiple steps by adjusting the braking torque by the brake means, and the optimum torque ratio and The capacity coefficient can be set, and the running performance of the vehicle can be improved.
  • the rotation of the stator impeller is only controlled in the negative rotation direction opposite to the rotation direction of the pump impeller, and the torque ratio obtained thereby is reduced.
  • the present invention has been made against the background of the above circumstances, and the object of the present invention is to increase the torque ratio and change the capacity coefficient to a low level, thereby sufficiently improving the power performance of the vehicle.
  • An object of the present invention is to provide a control device for a vehicle drive device provided with a variable capacity type torque converter.
  • the stator impeller is rotated in the positive direction, which is the rotational direction of the pump impeller, using an electric motor that is a power source separate from the drive source of the vehicle. It was found that a high torque ratio and a low capacity coefficient can be obtained when driven actively in the direction.
  • the stator impeller is rotated (driven) in the positive rotation direction, which is the rotation direction of the pump impeller, and rotated in the negative rotation direction opposite to the rotation direction of the pump impeller (braking, regeneration) using an electric motor.
  • the change range of the torque ratio and the capacity coefficient becomes wider as compared with the conventional case, so that the fuel efficiency and power performance of the vehicle can be greatly improved.
  • an electric motor which is a power source for driving a stator impeller
  • a vehicle driving / braking (regeneration) motor Therefore, means for intermittently connecting the electric motor and the stator impeller, and means for intermittently connecting the electric motor and the output shaft are provided, and by discontinuing these means according to the running conditions of the vehicle, the fuel efficiency performance and power performance of the vehicle are improved. I found it even better.
  • the gist of the invention according to claim 1 is that (a) the pump impeller, the turbine impeller, and the turbine impeller can be rotated between the turbine impeller and the pump impeller.
  • a torque converter having a stator impeller disposed on the motor, (b) an electric motor that drives and / or brakes the stator impeller, and (c) a first that can intermittently connect the electric motor and the stator impeller.
  • D a second intermittent means capable of intermittently connecting the electric motor and the output shaft; and (e) a first state in which the first intermittent means is connected to control a rotation state of the stator impeller by the electric motor.
  • F a second mode that enables powering and regeneration by the electric motor with the second intermittent means connected, and (g) the first mode and the second mode according to the driving conditions of the vehicle.
  • Switch And over de switching means characterized in that it comprises.
  • the control device for a vehicle drive device configured to change the first mode and the first mode according to an allowable rotational speed of the motor. It is characterized by switching to one of two modes.
  • the mode switching means is configured such that the rotational speed of the turbine impeller is higher than the allowable rotational speed of the electric motor. When it is larger, the mode is switched to the first mode.
  • the control device for a vehicle drive device according to the second aspect, wherein the mode switching means has a rotational speed of the turbine impeller higher than an allowable rotational speed of the electric motor. When it is small, the mode is switched to the second mode.
  • a control device for a vehicle drive device according to the first aspect, wherein the mode switching means has the first mode and the second mode according to a required driving force of the vehicle. It is characterized by switching to one of the modes.
  • the mode switching means compares the required driving force of the vehicle with the output of the electric motor. To switch to either the first mode or the second mode.
  • a vehicular drive device control apparatus wherein the fuel consumption amount for calculating each fuel consumption amount when the mode is switched to the first mode and the second mode is calculated.
  • a fuel consumption amount comparing means for comparing the magnitude relations of the respective fuel consumption amounts, wherein the mode switching means has the fuel consumption when the required driving force of the vehicle is larger than the output of the electric motor.
  • the mode is characterized in that the mode is switched to the mode with the smaller fuel consumption determined by the consumption comparison means.
  • the gist of the invention according to claim 8 is that, in the control device for a vehicle drive device according to claim 6, when the required driving force of the vehicle is smaller than the output of the electric motor, the mode switching means is The mode is switched to the second mode.
  • the gist of the invention according to claim 9 is that, in the control device for a vehicle drive device according to claim 1, the mode switching means is in accordance with a power storage state of a power storage device that supplies power to the electric motor. Switching to either the first mode or the second mode is characterized.
  • the gist of the invention according to claim 10 is that, in the control device for a vehicle drive device according to claim 9, when the power storage state of the power storage device is smaller than a predetermined threshold, the mode switching means is Switching between the first mode and the second mode is performed based on an engagement state of a lock-up clutch provided in the torque converter.
  • the gist of the invention is the motor for calculating each motor operable time when switching to the first mode and the second mode in the control device for the vehicle drive device of claim 9.
  • An operation time calculating means and a motor operation time comparing means for comparing the magnitude relations of the respective operable times, and when the power storage state of the power storage device is larger than a predetermined threshold, the mode switching means It is characterized in that the mode is switched to a suitable mode by comparing the operable time.
  • third intermittent means capable of intermittently connecting the stator impeller and the stationary member.
  • a planetary gear device is interposed between the torque converter and the electric motor.
  • the three rotating elements of the planetary gear device are a first rotating element, a second rotating element, and a third rotating element,
  • the first rotating element is connected to the first rotating element via the first intermittent means.
  • the first rotating element is connected to the stationary member via the third interrupting means, and
  • the second rotating element is connected to the output via the second interrupting means.
  • the third rotating element is connected to the electric motor.
  • the pump impeller, the turbine impeller, and the stator impeller that is rotatably disposed between the turbine impeller and the pump impeller.
  • a motor for driving the stator impeller the stator impeller is rotated using the electric motor in the positive rotation direction that is the rotation direction of the pump impeller and the negative direction opposite to the rotation direction of the pump impeller.
  • a first mode in which the electric motor controls the rotation state of the stator impeller with the first intermittent means connected and a second mode in which the second intermittent means is connected to enable power running and regeneration by the electric motor. Since the mode switching means for switching between the two modes and the first mode and the second mode according to the driving conditions of the vehicle is provided, the mode is suitably switched to the first mode or the second mode according to the driving conditions of the vehicle. . Thereby, suitable control according to the mode is performed, and the fuel efficiency performance and power performance of the vehicle can be greatly improved.
  • the mode switching means switches between the first mode and the second mode according to the allowable rotational speed of the electric motor.
  • the mode is suitably switched, and the fuel efficiency and power performance of the vehicle can be greatly improved.
  • the mode switching means switches to the first mode when the rotational speed of the turbine impeller is larger than the allowable rotational speed of the electric motor. Since the switching is performed, the variable capacity control of the torque converter becomes possible. Thus, the driving force of the vehicle can be assisted (assisted) through the variable capacity of the torque converter. Further, by connecting the electric motor when the rotational speed of the turbine impeller is high, it is possible to prevent the motor from being over-rotated.
  • the mode switching means switches to the second mode when the rotational speed of the turbine impeller is smaller than the allowable rotational speed of the electric motor.
  • the vehicle can be directly driven and braked (regenerated) by the electric motor.
  • the direct drive by the electric motor includes so-called assist traveling in which the vehicle is driven by the driving force of the driving source and the driving force of the electric motor.
  • the mode switching means switches between the first mode and the second mode according to the required driving force of the vehicle.
  • the mode is suitably selected, and the fuel consumption performance and power performance of the vehicle can be greatly improved.
  • the mode switching means compares the required drive force of the vehicle with the output of the electric motor, thereby comparing the first mode and the first mode. Since the mode is switched to one of the two modes, a suitable mode can be selected in accordance with the performance of the electric motor.
  • the mode switching means is determined by the fuel consumption comparison means when the required driving force of the vehicle is larger than the output of the electric motor. Since the mode is switched to the mode with the smaller fuel consumption, the fuel efficiency of the vehicle can be improved.
  • the mode switching means switches to the second mode.
  • the vehicle can be directly driven (including assist travel) by the electric motor.
  • the mode switching means includes the first mode and the second mode according to a power storage state of a power storage device that supplies power to the electric motor. Therefore, the mode is suitably switched by detecting the power storage state of the power storage device, and the fuel efficiency and power performance of the vehicle can be greatly improved.
  • the mode switching means is a lockup clutch provided in the torque converter. Since the mode is switched to the first mode or the second mode based on the engagement state, it is possible to travel in a suitable mode. For example, if the lock-up clutch is engaged, switching to the second mode enables power generation control by the output shaft and improves the storage state. Further, if the lock-up clutch is in the disengaged state, the power generation control by the stator impeller can be performed, and the power storage state can be improved.
  • the motor operation time calculation means for calculating each motor operable time when switching to the first mode and the second mode
  • a motor operating time comparing means for comparing the magnitude relation of the operable time, and when the power storage state of the power storage device is greater than a predetermined threshold
  • the mode switching means is preferably used by comparing the operable time of the motor. Since the mode is switched, the vehicle can be driven in a suitable mode. For example, in the second mode, when the operable time in the electric travel mode using only the electric motor exceeds a predetermined threshold, the mode is switched to the electric travel mode. Also, the operation start times of the first mode and the second mode are compared, and the mode is switched to the mode with the longer operation time.
  • the mode switching means is further switched to the third mode in accordance with the driving condition of the vehicle.
  • the stator impeller is stopped.
  • the third mode can be switched as appropriate to operate the conventional torque converter.
  • the third intermittent means is connected to stop the rotation of the stator impeller to increase the torque ratio.
  • the third intermittent means is interrupted to idle the stator impeller.
  • the output torque of the motor Is torque converted via the planetary gear unit.
  • the electric motor can be further reduced in size.
  • FIG. 1 is a skeleton diagram of a vehicle drive device to which a torque converter (variable capacity type torque converter) according to an embodiment of the present invention is applied. It is a figure which shows the relationship between an electric motor, a drive current, and a generated current. It is a table
  • FIG. 2 is a block diagram illustrating a control system provided in the vehicle for controlling the engine, the automatic transmission, the torque converter, or the like of FIG. 1. It is a figure which shows the shape of the blade
  • Torque converter 6p Pump impeller 6t: Turbine impeller 6s: Stator impeller 7, 180: Vehicle drive device 10: Electric motor (electric motor) 11: Transmission case (stationary member) 22: Input shaft (torque converter 50: Power storage device 132: Mode switching means 156: Fuel consumption calculation means 158: Electric motor operation time calculation time 166: Electric motor operation time determination means 182: Planetary gear device Cs: Clutch (No. 1 intermittent means) Ci: clutch (second intermittent means) Bs: brake (third intermittent means) L / U: lock-up clutch
  • FIG. 1 is a skeleton diagram of a vehicle drive device 7 to which a torque converter 6 (variable capacity type torque converter) according to an embodiment of the present invention is applied.
  • This vehicle drive device 7 has a vertical-type automatic transmission 8 and is suitably employed in an FR (front engine / rear drive) type vehicle, and an engine as a driving force source for traveling. 9 is provided.
  • the output of the engine 9 composed of an internal combustion engine is driven right and left via a torque converter 6 that functions as a fluid transmission device, an automatic transmission 8, a differential gear device (final reduction gear) (not shown), a pair of axles, and the like. It is transmitted to the wheel.
  • the torque converter 6 is connected to a crankshaft of the engine 9 and is driven to rotate from the engine 9 to generate a fluid flow due to the flow of hydraulic oil in the torque converter 6, and the automatic transmission 8.
  • a turbine impeller 6t connected to the input shaft 22 and rotated by receiving a fluid flow from the pump impeller 6p, and a stator rotatably arranged in the fluid flow from the turbine impeller 6t to the pump impeller 6p.
  • the impeller 6s is provided to transmit power through hydraulic oil (fluid).
  • a lockup clutch L / C is provided between the pump impeller 6p and the turbine impeller 6t.
  • the lockup clutch L / C is engaged and slipped by a hydraulic control circuit 30 described later.
  • the disengaged state is controlled, and the pump impeller 6p and the turbine impeller 6t are integrally rotated by being in a fully engaged state, that is, the crankshaft of the engine 9 and the input shaft 22 are mutually connected. It is supposed to be directly connected.
  • the vehicle drive device 7 includes an electric motor (electric motor) 10 for rotationally driving the stator impeller 6s of the torque converter 6, and a clutch Cs capable of intermittently connecting the electric motor 10 and the stator impeller 6s.
  • a brake Bs that can be intermittently connected between a stator impeller 6s and a transmission case 11 (hereinafter referred to as a case) that is a stationary member, and a clutch Ci that can be intermittently connected between the electric motor 10 and the input shaft 22.
  • the clutch Cs of this embodiment corresponds to the first interrupting means of the present invention
  • the brake Bs corresponds to the third interrupting means of this embodiment
  • the clutch Ci is the second interrupting means of this embodiment. It corresponds to.
  • the input shaft 22 also functions as an output shaft of the torque converter 6 and corresponds to the output shaft in the present invention.
  • the electric motor 10 controls the rotational speed in the positive rotation direction, which is the rotation direction of the pump impeller 6p of the stator impeller 6s, by driving.
  • the stator impeller 6s is proportional to the magnitude of the drive current I D supplied to the electric motor 10 for rotational driving from an electronic control device 78 described later.
  • drive torque T D of the positive rotation direction is provided.
  • the electric motor 10 controls the rotational speed of the stator impeller 6s in the negative rotation direction by driving.
  • the stator wheel 6s for example, drive torque T D of the negative rotation direction is applied which is proportional to the magnitude of the drive current I D supplied to the electric motor 10.
  • the electric motor 10 corresponds to the electric motor of the present invention.
  • the electric motor 10 also controls the rotational speed in the negative rotational direction opposite to the rotational direction of the pump impeller 6p of the stator impeller 6s by braking (regeneration).
  • the stator wheel 6s for example, the negative direction of rotation is proportional to the magnitude of the generated current I G to be supplied ie electricity storage device or the like provided in the vehicle, for example, as shown in FIG. 2 (b) It is given a load torque i.e. brake torque T B.
  • the electric motor 10 controls the rotational speed in the positive rotation direction that is the rotation direction of the input shaft 22 by driving the clutch Ci. Also in this case, as shown in FIG. 2A, the drive torque T D in the positive rotation direction proportional to the magnitude of the drive current I D supplied to the electric motor 10 for rotation drive from the electronic control circuit is given. It is done.
  • the electric motor 10 also controls the rotation direction of the input shaft 22 by braking (regeneration). Also at this time, as shown in FIG. 2 (b), the load torque i.e. braking (regenerative) torque T B proportional to the magnitude of the generated current I G to be supplied ie electricity storage device such as, for example, provided in the vehicle Given.
  • the clutches Cs and Ci and the brake Bs are hydraulic friction engagement devices including a hydraulic actuator and a multi-plate clutch or brake that is frictionally engaged or released by the hydraulic pressure supplied to the hydraulic actuator.
  • the stator impeller 6s is fixed to the case 11 and cannot be rotated when the brake Bs is completely engaged. Further, the stator impeller 6 s is relatively positive with respect to the pump impeller 6 p that rotates in the positive rotation direction even by slip generated by adjusting the degree of engagement of the brake Bs, that is, the engagement pressure. It can be rotated in the negative rotation direction opposite to the rotation direction. At this time, the stator wheel 6s, the negative direction of rotation of the load torque i.e. brake torque T B is given, for example increasing with the engaging pressure is increased.
  • the stator wheel 6s has become by clutch Cs is engaged to the drive torque T D or brake torque T B by the electric motor 10 is transmitted as it is, also, the engagement of the clutch Cs the slip degree i.e. engagement pressure is generated by being adjusted according to the size of the engaging pressure so that the transmission ratio of the drive torque T D or brake torque T B is changed.
  • the clutch Ci is engaged, and so the driving torque T D or brake torque T B by the electric motor 10 is transmitted as it is, also, the engagement degree i.e. engagement pressure is adjusted in the clutch Ci depending on the size of the engagement pressure by a slip generated by being adapted to transfer rate of the drive torque T D or brake torque T B is changed.
  • the automatic transmission 8 includes a first transmission portion 14 mainly composed of a double pinion type first planetary gear device 12 and a single pinion type second in a case 11 as a non-rotating member attached to a vehicle body.
  • the planetary gear unit 16 and the second pinion type third planetary gear unit 18 and the second transmission unit 20 mainly composed of the planetary gear unit 16 and a second pinion type third planetary gear unit 18 are arranged on a common axis, and the output shaft 24 is shifted by rotating the input shaft 22.
  • the input shaft 22 is also a turbine shaft of the torque converter 6 that is rotationally driven by power from the engine 9 that is a power source for traveling.
  • the torque converter 6 and the automatic transmission 8 are configured substantially symmetrically with respect to their axis, and the lower half of these axes is omitted in the skeleton diagram of FIG.
  • the first planetary gear unit 12 includes a sun gear S1, a plurality of pairs of pinion gears P1 that mesh with each other, a carrier CA1 that supports the pinion gears P1 so as to rotate and revolve, and a ring gear R1 that meshes with the sun gear S1 via the pinion gears P1.
  • the second planetary gear device 16 includes a sun gear S2, a pinion gear P2, a carrier CA2 that supports the pinion gear P2 so as to be capable of rotating and revolving, and a ring gear R2 that meshes with the sun gear S2 via the pinion gear P2.
  • the third planetary gear unit 18 meshes with the sun gear S3 via the sun gear S3, a plurality of pairs of pinion gears P2 and P3 that mesh with each other, a carrier CA3 that supports the pinion gears P2 and P3 so as to rotate and revolve, and pinion gears P2 and P3.
  • a ring gear R3 is provided.
  • clutches C1 to C4 and brakes B1 and B2 are hydraulic actuators and multi-plate clutches or brakes that are engaged or released by the hydraulic pressure supplied to the hydraulic actuators, like the clutches Cs, Ci, and the brakes Bs.
  • the first rotary element RM1 (sun gear S2) is selectively connected to the case 11 via the first brake B1 and stopped rotating, and via the third clutch C3. It is selectively connected to the ring gear R1 of the first planetary gear unit 12 (that is, the second intermediate output path PA2) that is the intermediate output member, and further, the carrier CA1 (that is, the first planetary gear unit 12 of the first planetary gear unit 12 via the fourth clutch C4).
  • the first intermediate output path PA1 is selectively connected to the indirect path PA1b).
  • the second rotating element RM2 (carriers CA2 and CA3) is selectively connected to the case 11 via the second brake B2 and stopped rotating, and the input shaft 22 (that is, the first intermediate) via the second clutch C2.
  • a direct connection path PA1a) of the output path PA1 is selectively connected.
  • the third rotating element RM3 (ring gears R2 and R3) is integrally connected to the output shaft 24 to output rotation.
  • the fourth rotation element RM4 (sun gear S3) is connected to the ring gear R1 via the first clutch C1.
  • a one-way clutch F1 that prevents the reverse rotation while allowing the second rotation element RM2 to rotate forward (the same rotation direction as the input shaft 22) is provided between the second rotation element RM2 and the case 11. It is provided in parallel with B2.
  • FIG. 3 is a chart for explaining the operating state of each engaging element when each gear position is established in the automatic transmission 8.
  • “ ⁇ ” indicates the engaged state
  • “( ⁇ )” indicates only when the engine is braked.
  • the engaged state and the blank indicate the released state.
  • each of the engagement devices that is, a plurality of hydraulic friction engagement devices (clutch C1 to C4, brakes B1 and B2) are selectively engaged.
  • the gear ratio of each gear stage is appropriately determined by the gear ratios ⁇ 1, ⁇ 2, and ⁇ 3 of the first planetary gear device 12, the second planetary gear device 16, and the third planetary gear device 18.
  • FIG. 4 is a block diagram illustrating a control system provided in the vehicle for controlling the engine 9, the automatic transmission 8, the torque converter 6 and the like of FIG.
  • the electronic control unit 78 an engine signal indicative of the engine rotational speed N E from the rotational speed sensor 80, a turbine rotational speed N T that is, the signal indicating the input shaft speed N IN of the turbine speed sensor 82, a stator rotation speed sensor signal of the stator rotational speed N S of the 83, a signal indicating the intake air amount Q a from the intake air amount sensor 84, a signal indicating the intake air temperature T a from the intake air temperature sensor 86, a vehicle speed from the vehicle speed sensor 88 V that is, the signal indicating the output shaft rotational speed N OUT, a signal indicating a throttle valve opening theta TH from a throttle sensor 90, a signal indicating the cooling water temperature T W from the cooling water temperature sensor 92, the hydraulic control circuit from the oil temperature sensor 94 A signal indicating the hydraulic oil temperature T OIL of 30 and
  • the signal indicating the presence or absence of the operation of the foot brake 102 is a service brake from the foot brake switch 100, such as a signal indicative of the lever position (operating position) P SH of the shift lever 106 from the lever position sensor 104 is supplied It has become.
  • the electronic control unit 78 includes a so-called microcomputer having a CPU, a RAM, a ROM, an input / output interface, and the like.
  • the CPU uses a temporary storage function of the RAM and follows a program stored in the ROM in advance.
  • Each input signal is processed, and a signal, that is, an output signal is output to the electronic throttle valve 108, the fuel injection device 110, the ignition device 112, the linear solenoid valve of the hydraulic control circuit 30, or the electric motor 10, etc. Yes.
  • the electronic control device 78 performs such input / output signal processing, thereby controlling the output of the engine 9, the drive / regeneration control of the input shaft 22 by the electric motor 10, the shift control of the automatic transmission 8, or the torque converter 6.
  • the rotation control of the stator 6s and the like are executed, and it is configured separately for engine control, shift control, and the like as necessary.
  • the output control of the engine 9 is performed by the electronic throttle valve 108, the fuel injection device 110, the ignition device 112, and the like.
  • the shift control of the automatic transmission 8 is performed by the hydraulic control circuit 30, for example, based on the actual throttle valve opening ⁇ TH and the vehicle speed V from the shift map (shift map) stored in advance, the shift of the automatic transmission 8.
  • the gear stage to be determined is determined, and the engagement release states of the clutches C1 to C4 and the brakes B1 and B2 are switched in accordance with the operation table shown in FIG. 3 so as to establish the determined gear stage.
  • the rotation control of the stator wheel 6s of the torque converter 6 is performed by the clutch Cs, the brake Bs, and the electric motor 10. Specifically, the rotation control of the stator impeller 6s is performed by a driving torque T D proportional to the magnitude of the driving current I D supplied from the inverter (not shown) to the electric motor 10 according to a command from the electronic control unit 78, or for example, braking torque T B is executed by being appropriately adjusted in proportion to the magnitude of the generated current I G to be output from the electric motor 10.
  • the hydraulic oil that sticks to the outer peripheral side due to the centrifugal force is pump impeller 6p, turbine impeller 6t, starter along the streamline FL in FIG. It circulates in order of the impeller 6s.
  • the pump impeller 6p, the turbine impeller 6t, and the stator impeller 6s include a plurality of blades that are spaced apart from each other in the circumferential direction.
  • FIG. 5 shows the shape of the blades along the flow line FL of hydraulic oil in the torque converter 6 in each impeller.
  • the hydraulic fluid that is made to flow by being given energy by the blades of the pump impeller 6p acts on the blades of the turbine impeller 6t to rotate the turbine impeller 6t.
  • the hydraulic oil that has passed through the turbine impeller 6t hits the blades of the stator impeller 6s and is redirected to the pump impeller 6p.
  • reaction torque is generated in the stator impeller 6s.
  • the reaction torque corresponds to the direction change amount (angle) of the hydraulic oil and corresponds to the magnitude of a torque ratio t described later.
  • is the specific weight of the hydraulic oil in the torque converter 6 [kg / m 3 ]
  • g is the acceleration of gravity [m / s 2 ]
  • Q is the volume flow rate of the hydraulic oil [m 3 / s].
  • ⁇ (r ⁇ v U ) is the difference between the moments r ⁇ v U [m 2 / s] of the absolute speeds of the hydraulic oil at the outlet and inlet of the fluid flow in each impeller.
  • T P is pump torque [N ⁇ m], ie, the engine torque
  • T T is turbine torque [N ⁇ m] that is, the output torque
  • T S is the reaction torque of the stator wheel 6s
  • r 1 is the rotational axis at the fluid flow outlet bp of the pump impeller 6 p and the fluid flow inlet at of the turbine impeller 6 t, that is, the input shaft (turbine shaft) of the automatic transmission 8.
  • r 2 is a distance from the axis of rotation at the inlet as the fluid flow outlet bt and stator wheel 6s of fluid flow turbine wheel 6t [m]
  • r 3 is the stator wheel 6s The distance [m] from the rotation axis at the fluid flow outlet bs and the fluid flow inlet ap of the pump impeller 6p.
  • V UP is the circumferential speed [m / s] of the absolute speed of the pump impeller 6p
  • V UT is the circumferential speed of the absolute speed of the turbine impeller 6t [ m / s]
  • V US is the circumferential speed [m / s] of the absolute speed of the stator impeller 6s.
  • T T T P + T S (5)
  • the torque converter 6 of the present embodiment since the reaction force of the stator wheel 6s is increased or decreased by the driving torque T D or brake torque T B is adjusted by the rotation control of the electric motor 10 described above, the turbine blade The output torque output from the vehicle can be increased or decreased with respect to the output torque obtained by a conventional constant capacity torque converter.
  • FIG. 6 and 7 are diagrams showing the characteristics of the torque converter 6 of the present embodiment showing the above-described contents.
  • the braking torque T B is by or brake Bs is adjusted to a predetermined value are engaged, the stator wheel 6s is fixed to the case 11, the base line shown in solid line in FIG. 6 As indicated by Bt, torque is transmitted at a predetermined torque ratio t determined by design as in a conventional constant-capacity torque converter. Note that the capacity coefficient C of the torque converter 6 at this time is as indicated by a baseline BC shown by a solid line in FIG.
  • stator torque T D when the clutch Cs is rotated drive torque T D by the electric motor 10 is adjusted to a predetermined value the stator wheel 6s in the same rotational direction as the pump impeller 6p while being engaged properly engaged, the stator torque T As S increases, torque is transmitted at a torque ratio t larger than that obtained with a conventional constant-capacity torque converter as shown by the long chain line in FIG. 6 indicating normal rotation of the stator.
  • the capacity coefficient C of the torque converter 6 at this time is like a long chain line indicating the normal rotation of the stator in FIG.
  • the torque ratio t and the capacity coefficient C may be the same speed ratio e, Figure as indicated by the arrow a, d of FIG. 6 and FIG. 7 by the drive torque T D is further increased or decreased by the electric motor 10 It is appropriately set within the range from the base line Bt of 6 to the long chain line indicating the normal rotation of the stator or from the base line BC of FIG.
  • the stator torque T S is the stator wheel 6s
  • torque is transmitted at a torque ratio t smaller than that obtained by a conventional constant-capacity torque converter.
  • the capacity coefficient C of the torque converter 6 at this time is as shown by a short chain line shown by stator motor regeneration in FIG.
  • the torque ratio t and the capacity coefficient C may be the same speed ratio e, braking (regenerative) torque T B or arrow b in FIG. 6 and FIG. 7 by the engagement pressure of the brake Bs is further increased or decreased, As shown in c, it is appropriately set in the range from the base line Bt or BC to the one-dot chain line shown in a stator-free manner.
  • the electric motor 10 in the present embodiment increases the torque ratio t by controlling the rotation of the stator impeller 6s in the positive rotation direction that is the rotation direction of the pump impeller 6p. Further, the electric motor 10 in this embodiment reduces the torque ratio t by controlling the rotation of the stator impeller 6s in the negative rotation direction opposite to the rotation direction of the pump impeller 6p by braking (regeneration). is there. Furthermore, the brake Bs in the present embodiment reduces the torque ratio t by controlling the rotation of the stator impeller 6s in the negative rotation direction opposite to the rotation direction of the pump impeller 6p by the slip.
  • the drive / regeneration control of the input shaft 22 by the electric motor 10 is performed by the clutch Ci and the electric motor 10. Specifically, the drive / regenerative control is performed in a state where the clutch Ci is engaged, and the drive torque proportional to the magnitude of the drive current ID supplied from the inverter to the electric motor 10 in accordance with a command from the electronic control device 78. This is executed by adjusting the braking (regenerative) torque T B proportional to T D or, for example, the magnitude of the generated current I G output from the electric motor 10.
  • the vehicle drive device 7 has a configuration in which the travel mode of the vehicle can be appropriately changed by selectively engaging the clutches Cs and Ci and the brake Bs. Specifically, when the clutch Cs is engaged, the variable capacity control of the torque converter 6 can be performed, and when the clutch Ci is engaged, the vehicle can be driven / regenerated by the electric motor 10. It becomes. Further, when the brake Bs is engaged, the stator impeller 6s is brought into a rotation stopped state, so that a mode capable of functioning as a conventional torque converter having a constant capacity coefficient C is set.
  • the mode in which the variable capacity control of the torque converter 6 is possible corresponds to the first mode of the present invention, and the electric motor 10 and the stator impeller 6s are engaged by engaging the clutch Cs corresponding to the first intermittent means. And the electric motor 10 can control the rotational state of the stator impeller 6s. Further, the mode in which the drive / regeneration control of the vehicle can be performed corresponds to the second mode of the present invention, and the electric motor 10 and the input shaft 22 are powered by engaging the clutch Ci corresponding to the second intermittent means. Power transmission (driving) and braking (regeneration) by the electric motor 10 are possible because the electric motor 10 is connected. Further, the mode that can function as a conventional torque converter corresponds to the third mode of the present invention. By engaging the brake Bs corresponding to the third intermittent means, the stator impeller 6s and the case 11 are engaged. Are connected, and the stator impeller 6s is stopped.
  • the driving mode of the vehicle is changed by appropriately engaging the clutches Cs and Ci and the brake Bs according to the driving conditions of the vehicle.
  • the travel mode change control will be described below.
  • FIG. 8 is a functional block diagram for explaining the main part of the control operation by the electronic control unit 78.
  • the stepped shift control means 120 determines the running state of the vehicle, for example, and controls the engagement and disengagement of the lockup clutch L / U based on the vehicle speed and the accelerator opening Acc from a lockup engagement map stored in advance. At the same time, it is determined whether or not to perform a shift of the automatic transmission 8 based on a shift map stored in advance, and a command to execute the shift is output to the hydraulic control circuit 30 according to the determination result.
  • the driving force request determination means 122 is a driving force for the electric motor 10 based on a preset driving region map of the electric motor 10 using, for example, an accelerator opening Acc, a vehicle speed V, or the like as an operation amount of an accelerator pedal as parameters. Determine whether a request has occurred.
  • the turbine rotation speed calculation unit 124 detects the turbine rotation speed NT by the turbine rotation speed sensor 83.
  • the turbine rotation speed NT may be calculated based on the vehicle speed V, that is, the output shaft rotation speed N OUT and the gear ratio of the automatic transmission 8.
  • the turbine rotation speed determination unit 126 determines whether or not the turbine rotation speed NT detected by the turbine rotation speed calculation unit 124 is higher than the allowable rotation speed of the electric motor 10.
  • the allowable rotational speed of the electric motor 10 corresponds to a rotational speed that is set in a rating manner or a rotational speed that is calculated based on the current driving state of the electric motor 10.
  • the capacity coefficient changing assist torque calculating means 128 calculates the assist torque when the first mode is selected, that is, by the variable capacity control of the torque converter 6. For example, the current driving state of the vehicle is calculated from the rotational state of each rotating element of the torque converter 6 and the driving state of the engine 9, and the next timing is determined based on the accelerator opening Acc, the rate of change thereof, the vehicle speed V, and the like. To calculate the required driving force required. Then, the driving force of the engine 9 and the assist torque (auxiliary torque) of the electric motor 10 are calculated so that the necessary driving force can be obtained.
  • the capacity coefficient change assist control enable determination means 130 determines whether or not the assist torque calculated by the torque calculation means 128 can be controlled by the electric motor 10 (variable capacity control). judge. For example, it is determined whether or not control is possible based on output restriction based on the rated value of the electric motor 10, charge capacity SOC of the power storage device 50, failure of the electric motor 10, and the like.
  • the mode switching unit 132 performs mode switching based on the determination result of the assist enable determination unit 130 or the turbine rotation speed determination unit 126. For example, when the turbine rotational speed determining means 126 determines that the turbine rotational speed NT is higher than the motor allowable rotational speed of the electric motor 10, the mode switching means 132 is a torque converter by engaging the clutch Cs. 6 is switched to the variable capacity control (first mode). Actually, switching to the first mode is further executed based on the determination result of the assistable determination means 130. On the other hand, when it is determined that the turbine rotational speed NT is lower than the motor allowable rotational speed of the electric motor 10, the mode switching means 132 engages the clutch Ci, that is, connects the electric motor 10 directly to the input shaft 22. By switching to vehicle drive / regenerative control (second mode).
  • the turbine rotation speed determination means 126 determines that the turbine rotation speed NT is higher than the motor allowable rotation speed of the electric motor 10, and the assist enable determination means 130 performs torque assist by variable capacity control of the torque converter 6.
  • the mode switching unit 132 switches to the variable displacement control (first mode) of the torque converter 6 by engaging the clutch Cs.
  • the mode switching means for example, by appropriately engaging the brake Bs, the stator impeller 6s is stopped and the conventional torque converter with a constant capacity coefficient is used. (Third mode). It is also possible to operate as a variable capacity torque converter 6 by controlling the engagement pressure of the brake Bs to cause slip engagement. When the torque converter 6 is in the coupling range, the brake Bs is released and the stator impeller 6s is idled.
  • the motor control means 134 When the motor control means 134 is switched to the first mode, for example, by detecting the rotational speeds of the pump impeller 6s, the turbine impeller 6t, and the stator impeller 6s of the torque converter 6, the slip of the torque converter 6 is detected.
  • the torque ratio t and the capacity coefficient C of the torque converter 6 are calculated by calculating the state and calculating the input torque. Further, a torque ratio tp and a capacity coefficient Cp at which a necessary driving force is obtained, that is, an assist torque by the electric motor 10 is obtained are calculated, and the rotational speed of the electric motor 10 is feedback-controlled so as to obtain these.
  • the feedforward control of the electric motor 10 may be executed so that the rotation speed is determined based on a preset relationship map between the assist torque of the electric motor 10 and the rotation speed of the electric motor 10. .
  • the electric motor control unit 134 executes drive control of the vehicle by the electric motor 10 so as to obtain the necessary driving force. Note that at this time, either electric travel using only the electric motor 10 or assist travel using the engine 9 and the electric motor 10 may be performed.
  • the mode switching unit 132 switches the mode based on the allowable rotational speed of the electric motor 10 and the assist torque.
  • FIG. 9 is a flowchart for explaining a main part of the control operation of the electronic control unit 78, that is, a control operation for selectively switching the driving mode according to the driving condition of the vehicle, for example, an extremely short cycle of several msec to several tens msec. It is executed repeatedly in time.
  • SA1 corresponding to the driving force request determination unit 122, it is determined whether or not a driving force request for the electric motor 10 has occurred. If SA1 is negative, this routine is terminated. If SA1 is positive, the rotational speed of the turbine impeller 6t is calculated in SA2 corresponding to the turbine rotational speed calculation means 124. Then, in SA3 corresponding to the mode switching means 132 and the turbine rotational speed determining means 126, it is determined whether or not the turbine rotational speed NT is higher than the allowable rotational speed of the electric motor 10. If SA3 is denied, the electric motor 10 can directly control the driving / regeneration of the vehicle. Therefore, in SA7 corresponding to the electric motor control means 134, the clutch Ci is engaged to connect the electric motor 10 and the input shaft 22 to each other. By setting the connection state, vehicle drive (regeneration) control (second mode) by the electric motor 10 is performed.
  • variable capacity control of the torque converter 6 is performed by engaging the clutch Cs.
  • SA4 corresponding to the torque calculation means 128, the assist torque when the capacity coefficient of the torque converter 6 is changed is calculated.
  • SA5 corresponding to the assist capability determination means 130, it is determined whether or not the assist by the electric motor 10 is possible based on the assist torque calculated in SA4 and the driving state of the electric motor 10. If SA5 is negative, the routine is terminated, for example, by switching to the third mode.
  • SA5 is affirmed, the clutch Cs is engaged in SA6 corresponding to the motor control means 134, and variable capacity control (first mode) of the torque converter 6 is executed.
  • the first mode in which the rotation state of the stator impeller 6s is controlled by the electric motor 10 with the clutch Cs in the connected state, and the power running and regeneration by the electric motor 10 can be performed with the clutch Ci in the connected state.
  • the mode switching unit 132 calculates the allowable rotational speed of the electric motor 10 in order to switch between the first mode and the second mode according to the allowable rotational speed of the electric motor 10. By doing so, the mode is suitably switched, and the fuel consumption performance and power performance of the vehicle can be greatly improved.
  • the mode switching means 132 switches to the first mode when the rotational speed of the turbine impeller 6t is larger than the allowable rotational speed of the electric motor 10, so that the variable capacity control of the torque converter 6 is performed. It becomes possible.
  • the driving force of the vehicle can be assisted (assisted) through the variable capacity of the torque converter 6.
  • the electric motor 10 is also prevented from being over-rotated by connecting the electric motor 10 when the rotational speed of the turbine impeller 6t is high.
  • the mode switching means 132 directly drives the vehicle by the electric motor 10 in order to switch to the second mode when the rotational speed of the turbine impeller 6t is smaller than the allowable rotational speed of the electric motor 10.
  • braking can be performed.
  • the direct drive by the electric motor 10 includes so-called assist travel in which the vehicle is driven by the driving force of the engine 9 and the driving force of the electric motor 10.
  • the mode switching means 132 further switches to the third mode in accordance with the traveling condition of the vehicle. Therefore, when the mode switching means 132 is switched to the third mode, the stator impeller 6s is brought into a rotation stopped state. As a result, the third mode can be switched as appropriate to operate the conventional torque converter. For example, in the torque converter range of the torque converter 6, the brake Bs is connected to stop the rotation of the stator impeller 6s to increase the torque ratio. Further, for example, in the coupling range of the torque converter 6, the brake Bs is cut off and the stator impeller is idled.
  • FIG. 10 is a functional block diagram for explaining the main part of the control operation by the electronic control unit 78 according to another embodiment of the present invention.
  • the stepped gear shift control means 120 and the driving force request determination means 122 are the same as those in the above-described embodiment, and thus description thereof is omitted.
  • the required driving force calculation means 150 calculates the required driving force requested by the driver based on the accelerator opening Acc and the vehicle speed V.
  • the necessary driving force determination unit 152 uses the calculated necessary driving force and the driving force that can be output by the electric motor 10 in a rated manner, or the driving force that can be output that is calculated based on the current driving state of the electric motor 10. In comparison, it is determined whether or not the required driving force is larger than the driving force that can be output by the electric motor 10.
  • the motor margin driving force determination unit 154 determines whether or not the margin driving force defined by the difference between the calculated necessary driving force and the driving force that can be output by the electric motor 10 is greater than a threshold that is experimentally set in advance. Determine whether.
  • the threshold is set to a driving force that can respond to an acceleration request when the accelerator pedal is further depressed.
  • the mode switching means 132 selects an optimal vehicle travel mode (travel mode) based on the determination result of the motor margin driving force determination means 154. For example, when the marginal driving force is greater than the threshold, the mode switching unit 132 determines that traveling by only the electric motor 10 is possible, stops the engine 9, and performs the electric traveling mode only by driving the electric motor 10. Switch to (first mode). On the other hand, when the marginal driving force is smaller than the threshold value, the mode switching means 132 switches to the assist travel mode (first mode) by the engine 9 and the electric motor 10. The electric motor control means 134 engages the clutch Cs corresponding to the switched first mode and performs variable displacement control by the electric motor 10 so that the necessary driving force is obtained. Since the control operation of the electric motor 10 is the same as that in the above-described embodiment, the description thereof is omitted.
  • the fuel consumption amount calculating unit 156 is executed.
  • the fuel consumption calculation means 156 first calculates the instantaneous fuel consumption when the calculated required driving force is output, that is, the fuel consumption of the engine 9 corresponding to the accelerator opening Acc when the accelerator pedal is depressed. To do. Specifically, the instantaneous fuel consumption WA of the engine 9 is calculated based on the fuel injection data of the combustion injection device 110.
  • the fuel consumption amount calculation means 156 directly assists the vehicle by the electric motor 10 (assist traveling), that is, when the driving / regeneration control (second mode) is performed by the electric motor 10 at the time of direct assist.
  • the engine 9 fuel consumption WB is calculated.
  • the fuel consumption amount WB is calculated based on, for example, a fuel consumption amount map that is experimentally set in advance using the calculated instantaneous fuel consumption amount WA as a parameter, or a fuel consumption relational expression.
  • the fuel consumption amount calculation means 156 performs change control of the capacity coefficient C and the torque ratio t of the torque converter 6 by engaging the clutch Cs during the variable capacity control of the torque converter 6 (first mode).
  • the fuel consumption amount WC at the time of variable displacement assist is calculated.
  • the fuel consumption amount WC is calculated based on, for example, a fuel consumption amount map set experimentally in advance using the calculated instantaneous fuel consumption amount WA as a parameter or a fuel consumption relational expression.
  • the fuel consumption amount comparison unit 158 compares the fuel consumption amount WB at the time of direct assist calculated by the fuel consumption amount calculation unit 156 with the fuel consumption amount WC at the time of variable capacity assist, and the fuel consumption amount WB is the fuel consumption amount WC. Or less.
  • the mode switching means 132 switches to the optimum traveling mode based on the above selection means. For example, when the fuel consumption amount WB is smaller than the fuel consumption amount WC, the mode switching means 132 switches to the travel mode (second mode) by direct assist of the electric motor 10. On the other hand, when the fuel consumption amount WC is smaller than the fuel consumption amount WB, the mode switching means 132 switches to the travel mode (first mode) by the variable displacement assist. Then, the electric motor control means 134 outputs a command for engaging the clutch Cs or Ci corresponding to the selected travel mode to the hydraulic control circuit 30 to suitably control the electric motor 10.
  • the mode switching means 132 switches the mode based on the required driving force of the vehicle, the fuel consumption amount, and the surplus driving force.
  • FIG. 11 is another flowchart for explaining the main part of the control operation of the electronic control unit 78, that is, the control operation for selectively changing the travel mode in accordance with the travel condition of the vehicle, for example, several msec to several tens msec. It is executed repeatedly with a very short cycle time.
  • SB1 corresponding to the driving force request determining means 122 it is determined whether or not a driving force request for the electric motor 10 has occurred. If SB1 is negative, this routine is terminated, for example, by switching to the third mode.
  • SB1 is affirmed, the required driving force is calculated based on the accelerator opening Acc, the vehicle speed V, and the like in SB2 corresponding to the required driving force calculating means 150.
  • SB3 corresponding to the necessary driving force determination means 152, it is determined whether or not the necessary driving force calculated in SB2 is larger than the driving force that can be output by the electric motor 10.
  • SB3 the marginal driving force defined by the difference between the calculated necessary driving force and the driving force that can be output by the electric motor 10 in SB10 corresponding to the motor marginal driving force determination means 154 is experimental in advance. It is determined whether or not the threshold value is larger than the threshold value set in the above. If SB10 is positive, the electric travel mode is executed in SB11 corresponding to mode switching means 132 and motor control means 134. On the other hand, when SB10 is denied, assist travel by the engine 9 and the electric motor 10 is executed in SB12 corresponding to the mode switching means 132 and the electric motor control means 134.
  • the instantaneous fuel consumption WA of the engine 9 is calculated in SB4 corresponding to the fuel consumption calculation means 156.
  • SB5 corresponding to the fuel consumption calculation means 156
  • the fuel consumption WB when the direct assist (second mode) by the electric motor 10 is performed is calculated.
  • SB 6 corresponding to the fuel consumption calculation means 156
  • the fuel consumption WC when the variable capacity control (first mode) of the torque converter 6 is performed is calculated.
  • SB7 corresponding to the fuel consumption comparison means 158, the fuel consumption WB and the fuel consumption WC calculated in SB5 and SB6 are compared, and it is determined whether or not the fuel consumption WB is smaller than the fuel consumption WC. Determined.
  • SB7 traveling by direct assist (second mode) of the electric motor 10 is performed in SB8 corresponding to the mode switching means 132 and the electric motor control means 134. If SB7 is denied, travel by variable displacement assist (first mode) of the electric motor 10 is performed in SB9 corresponding to the mode switching means 132 and the motor control means 134.
  • the mode switching unit 132 calculates the required driving force of the vehicle in order to select either the first mode or the second mode according to the required driving force of the vehicle.
  • the vehicle can be switched to a suitable travel mode, and the fuel efficiency and power performance of the vehicle can be greatly improved.
  • control corresponding to the driving force can be avoided.
  • the mode switching means 132 switches between the first mode and the second mode by comparing the required driving force of the vehicle and the output of the electric motor 10. It is possible to switch to a suitable mode according to the performance.
  • the mode switching means 132 is switched to the mode with the smaller fuel consumption determined by the fuel consumption comparison means 158 when the required driving force of the vehicle is larger than the output of the electric motor 10. Since the switching is performed, the fuel efficiency of the vehicle can be improved.
  • the mode switching means 132 directly assists the vehicle by the electric motor 10 (electric travel is performed) in order to switch to the second mode. Can be included).
  • FIG. 12 is a functional block diagram for explaining the main part of the control operation by the electronic control unit 78 according to another embodiment of the present invention.
  • the stepped shift control means 120 is the same as that in the above-described embodiment, and therefore the description thereof is omitted.
  • the engine drive determination means 168 determines whether or not the engine 9 is in a driving state.
  • the required driving force calculation means 150 calculates the required driving force required by the driver based on the accelerator opening Acc, the vehicle speed V, the gear ratio of the automatic transmission 8, and the like.
  • the storage capacity determination unit 160 determines whether or not the charge capacity SOC of the power storage device 50 that supplies power to the electric motor 10 is smaller than a threshold value S that is a preset allowable lower limit value. When the charge capacity SOC is smaller than the threshold value S, the lockup determination unit 162 is executed.
  • the lock-up determination unit 162 determines whether or not lock-up clutch control is being executed in the torque converter 6.
  • the control state of the lockup clutch L / U is based on, for example, an output signal of a solenoid valve (not shown) that switches the operation of the lockup clutch L / U or an engagement hydraulic pressure that is a power source for engaging the lockup clutch L / U. Determined.
  • the mode switching unit 132 switches to a suitable mode by the electric motor 10. Specifically, when the lockup control is being performed, the mode switching unit 132 engages the clutch Ci (second mode) and causes the motor control unit 134 to perform power generation control by regeneration of the input shaft 22. . On the other hand, when the lockup control is not performed, the mode switching unit 132 engages the clutch Cs (first mode), and executes the power generation control by the regeneration of the stator impeller 6s by the motor control unit 134.
  • the motor operation time calculation unit 164 is implemented.
  • the electric motor operating time calculation means 164 first calculates an EV travelable time T1 that can be traveled when the vehicle is traveled only by the electric motor 10.
  • the EV travelable time T1 is calculated based on, for example, an operable time map that is experimentally set in advance with the driving force of the electric motor 10 and the storage capacity SOC.
  • the electric motor operation time calculation means 164 calculates a direct assist travelable time T2 that can be operated when the electric motor 10 assists driving, that is, when the vehicle is driven by the engine 9 and the electric motor 10 (second mode).
  • the direct assist travelable time T2 is calculated based on an operable time map previously set experimentally with the driving force and the storage capacity SOC required when assisting the electric motor 10 in the same manner as described above. .
  • the directly assistable travel time T2 is longer than the EV travelable time T1.
  • the motor operating time calculation means 164 calculates a torque converter assist travelable time T3 that can be traveled when the required driving force is output by the variable displacement control of the torque converter 6 (first mode).
  • the torque converter assistable travel time T3 is an operational time map that is experimentally set in advance using the driving force of the electric motor 10 and the storage capacity SOC that are required when outputting the required driving force, as described above. Calculated based on At this time, since the electric motor 10 is required to have a driving force that drives the stator impeller 6s, the torque converter assistable travel time T3 is longer than the EV travelable time T1.
  • the motor operating time determination unit 166 compares the magnitude relations of the travelable times calculated by the motor operating time calculation unit 164. Specifically, first, the electric motor operation time determination unit 166 compares the EV travelable time T1 with a threshold value T that is an operation time set in advance through experiments or the like, and the EV travelable time T1 is based on the threshold value T. It is determined whether or not it is larger. When the EV travelable time T1 is smaller than the threshold value T, the motor operating time determination unit 166 further compares the direct assist travelable time T2 calculated by the motor operating time calculation unit 164 with the torque converter assist travelable time T3. Then, it is determined whether or not the direct assist travelable time T2 is longer than the torque converter assist travelable time T3.
  • the mode switching unit 132 switches to a suitable travel mode based on the determination result of the electric motor operating time determination unit 166. Specifically, for example, when it is determined that the EV travelable time T1 is longer than the threshold T, the mode switching unit 132 switches to the EV travel mode using only the electric motor 10. On the other hand, when the EV travelable time T1 is smaller than the threshold T and the direct assist travelable time T2 is larger than the torque converter assist travelable time T3, motor assist travel by the engine 9 and the electric motor 10 is performed. That is, the mode is switched to the second mode.
  • the mode switching means 132 When the EV travelable time T1 is smaller than the threshold value T and the direct assist travelable time T2 is smaller than the torque converter assist travelable time T3, the mode switching means 132 performs torque converter assist by the variable capacity control of the torque converter 6. Carry out driving. That is, the mode is switched to the first mode.
  • the electric motor control means 134 executes control by the suitable electric motor 10 in accordance with the selected travel mode.
  • movement according to each driving mode of the electric motor 10 is the same as that of the above-mentioned Example, the description is abbreviate
  • mode switching means 132 switches the mode based on the storage capacity SOC of power storage device 50, the engagement state of lockup clutch L / U, and the operable time in each mode of electric motor 10.
  • FIG. 13 is a flowchart for explaining a main part of the control operation of the electronic control unit 78, that is, a control operation for selectively changing the travel mode in accordance with the travel condition of the vehicle. For example, about several msec to several tens msec. It is repeatedly executed with an extremely short cycle time.
  • SC1 corresponding to the engine drive determination means 168 it is determined whether or not the engine 9 is in a drive state. If SC1 is negative, this routine is terminated. When SC1 is affirmed, the required driving force is calculated based on the accelerator opening Acc, the vehicle speed V, and the like in SC2 corresponding to the required driving force calculating means 150. Then, in SC3 corresponding to the storage capacity determination means 160, it is determined whether or not the storage capacity SOC of the power storage device 50 is smaller than the threshold value S. If SC3 is positive, it is determined in SC4 corresponding to the lockup determination means 162 whether or not the lockup clutch L / U is being controlled.
  • the second mode is selected in SC5 corresponding to the mode switching means 132 and the motor control means 134, and power generation control by regeneration of the input shaft 22 is executed.
  • the first mode is selected in SC6 corresponding to the mode switching means 132 and the motor control means 134, and power generation control by regeneration of the stator impeller 6s is executed.
  • an EV travelable time T1 which is a travelable time of only the electric motor 10 is calculated in SC7 corresponding to the motor operating time calculation means 164.
  • SC8 corresponding to the electric motor operation time calculation means 164
  • a direct assist travelable time T2 that can be operated when the vehicle is driven by the engine 9 and the electric motor 10 is calculated.
  • SC9 corresponding to the electric motor operating time calculation means 164
  • the torque converter assist travelable time T3 during the torque converter assist travel by the electric motor 10 is calculated.
  • SC10 corresponding to the electric motor operating time determination means 166 it is determined whether or not the EV travelable time T1 is larger than the threshold value T.
  • SC10 When SC10 is affirmed, it is determined in SC11 corresponding to the mode switching means 132 and the motor control means 134 that it is possible to drive only by the electric motor 10, and the engine 9 is stopped and the clutch Ci is engaged to Running by the motor 10 is performed (second mode). On the other hand, if SC10 is negative, it is further determined in SC12 corresponding to the motor operating time determination means 166 whether or not the direct assist travelable time T2 is greater than the torque converter assist travel possible time T3. When SC12 is affirmed, it is determined in SC13 corresponding to mode switching means 132 and electric motor control means 134 that traveling by engine 9 and electric motor 10 is performed, and drive control by engine 9 and electric motor 10 is performed ( Second mode).
  • the mode switching unit 132 selects one of the first mode and the second mode according to the storage state SOC of the power storage device 50 that supplies power to the electric motor 10. Therefore, by detecting the power storage state of power storage device 50, the mode is suitably selected, and the fuel efficiency and power performance of the vehicle can be greatly improved. In addition, when the power storage device 50 has a low capacity, the output from the electric motor 10 is limited, so a mode that requires an output exceeding the limited output is not selected.
  • mode switching means 132 is based on the engagement state of lockup clutch L / U provided in torque converter 6. Therefore, since the mode is switched to either the first mode or the second mode, the vehicle can travel in a suitable mode. For example, if the lockup clutch L / U is engaged, the power generation control by the input shaft 22 can be performed by switching to the second mode, and the storage state SOC can be improved. Further, if the lock-up clutch L / U is in the disengaged state, the power generation control by the stator impeller 6s can be performed, and the storage state SOC can be improved.
  • the motor operation time calculation means 164 for calculating the motor operable time when the mode is switched to the first mode and the second mode, and the motor operation for comparing the magnitude relation between the operation possible times.
  • a time determination unit 166 and when the power storage state SOC of the power storage device 50 is larger than a predetermined threshold S, the mode switching unit 132 switches to a suitable mode by comparing the operable time of the electric motor 10, so that the vehicle Can be driven in a suitable mode. For example, in the second mode, when the operable time T1 in the electric travel mode using only the electric motor 10 exceeds a predetermined threshold B, the mode is switched to the electric travel mode. Also, the operation start times of the first mode and the second mode are compared, and the mode is switched to the mode with the longer operation time.
  • FIG. 14 is a skeleton diagram illustrating a part of a vehicle drive device 180 according to another embodiment of the present invention.
  • a planetary gear device 182 is interposed between the electric motor 10 and the torque converter 6 in addition to the vehicle drive device 7 of FIG.
  • the differential mechanism 184 is comprised by connecting each rotation element of the planetary gear apparatus 182 so that power transmission is possible.
  • the sun gear S of the planetary gear unit 182 is selectively coupled to the stator impeller 6s via the clutch Cs and is selectively coupled to the case 11 that is a stationary member via the brake Bs.
  • the The carrier CA of the planetary gear unit 182 is selectively coupled to the input shaft 22 via the clutch Ci.
  • the ring gear R of the planetary gear device 182 is connected to the electric motor 10.
  • the sun gear S constitutes the first rotating element RE1 of the present invention
  • the carrier CA constitutes the second rotating element RE2 of the present invention
  • the ring gear R of the present invention A third rotation element RE3 is configured.
  • the clutch Cs constitutes the first interrupting means of the present invention
  • the clutch Ci constitutes the second interrupting means of the present invention
  • the brake Bs is the third interrupting means of the present invention. Is configured.
  • the clutch Cs, the clutch Ci, and the brake Bs are intermittently driven according to the traveling condition of the vehicle, thereby driving by the electric motor 10.
  • Regenerative control (second mode), variable capacity control of torque converter 6 (first mode), and operation as a conventional torque converter (third mode) can be appropriately performed.
  • FIG. 15 is an engagement operation table showing the modes and relationships of the vehicle drive device 180 based on the engagement states of the clutches Cs and Ci and the brake Bs. For example, by setting the clutch Cs and the clutch Ci to the engaged state (connected state), it is possible to function as the first mode in which the capacity of the torque converter stator 6 can be controlled.
  • the clutch Cs When the clutch Cs is engaged, the electric motor 10 and the stator impeller 6s are connected via the planetary gear unit 182 so that power can be transmitted.
  • the clutch Ci is engaged, the input shaft 22 and the carrier CA are connected, so that the carrier Ci functions as a reaction force generating member.
  • the inertia inertial force
  • the rotational speed of the stator impeller 6s can be controlled by the electric motor 10 using the input shaft 22 as a reaction force reference, and the torque converter stator 6 can function as a variable capacity torque converter.
  • the electric motor 10 is connected to the input shaft 22 via the planetary gear unit 182 so that power can be transmitted (second mode). Accordingly, the input shaft can be rotationally driven by the electric motor 10, and regeneration by the electric motor 10 can be performed by the driving force transmitted from the input shaft 22 side. At this time, the sun gear S functions as a reaction force generating member by engaging the brake Bs.
  • the third mode is set.
  • the brake Bs When the brake Bs is engaged, the rotation of the stator impeller 6s is stopped because the clutch Cs is engaged. That is, by suitably engaging or releasing the brake Bs in the above state, the stator impeller 6s of the torque converter 6 can be operated in the same manner as a conventional torque converter stator. Specifically, for example, in the torque converter range of the torque converter 6, by engaging (connecting) the brake Bs, the flow of hydraulic oil in the torque converter 6 is changed to increase the torque.
  • the stator impeller 6s is idled to function as a fluid coupling.
  • the torque converter 6 operates in the same manner as the fluid coupling.
  • the clutch Ci when the clutch Ci is released and the brake Bs is engaged, the clutch Cs is appropriately engaged (including slip engagement) or released to enter the third mode.
  • the clutch Cs When the clutch Cs is engaged, the rotation of the stator impeller 6s is stopped because the brake Bs is engaged. That is, by suitably engaging or releasing the clutch Cs in the above state, the stator impeller 6s of the torque converter 6 can be operated in the same manner as a conventional torque converter stator. Specifically, for example, in the torque converter range of the torque converter 6, by engaging (connecting) the clutch Cs, the flow of hydraulic oil in the torque converter 6 is changed to increase the torque.
  • the clutch impeller In the coupling range, the clutch impeller is disengaged (disengaged) to cause the stator impeller 6s to idle and function as a fluid coupling.
  • the torque converter 6 When the clutch Cs is always released, the torque converter 6 operates in the same manner as the fluid coupling.
  • the planetary gear unit 182 is interposed, so that the driving force of the electric motor 10 is torque-converted by the planetary gear unit 182 and output. That is, even if the output of the electric motor 10 is small, it is possible to output a predetermined driving force by amplifying the torque by the planetary gear device 182. As a result, the electric motor 10 can be downsized.
  • the vehicle drive device 180 configured as described above is executed, the same effects as those of the above-described embodiment can be obtained by executing this control. Since the device 182 is interposed and the rotating elements of the planetary gear device 182 are connected as described above, the output torque of the electric motor 10 is torque-converted via the planetary gear device 182. Thereby, the electric motor 10 can be further reduced in size.
  • the stepped automatic transmission 8 is provided at the rear stage of the vehicle drive device 7, but the automatic transmission 8 is limited to the stepped transmission.
  • a continuously variable transmission such as a belt type continuously variable transmission may be used. That is, the structure of the transmission can be freely changed in the present invention within a consistent range.
  • connection relationship of the planetary gear device 182 is not particularly limited, and further includes a plurality of planetary gear devices or a double pinion type planetary gear device. It does not matter if it is
  • the required driving force is calculated based on the accelerator opening Acc and the vehicle speed V, the may be calculated based on the throttle valve opening theta TH instead of the accelerator opening Acc.
  • the electric motor 10 is controlled by feedback control or feedforward control, but may be controlled by other methods such as timer control.
  • the brake Bs is provided. However, since a sufficient effect can be obtained even with the configuration without the third mode, the brake Bs is not necessarily provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Fluid Gearings (AREA)

Abstract

 トルク比を高め且つ容量係数を低く変化させることができ、車両の動力性能を十分に高めることができる可変容量型トルクコンバータを備えた車両用駆動装置の制御装置を提供する。  クラッチCsを接続状態として電動モータ10によってステータ翼車6sの回転状態を制御する第1モードと、クラッチCiを接続状態として電動モータ10による力行および回生を可能とする第2モードと、前記第1モードと第2モードとを車両の走行条件に応じて選択するモード切換手段132とを、備えるため、車両の走行条件に応じて好適に第1モードまたは第2モードが選択される。これにより、モードに応じた好適な制御が実施され、車両の燃費性能および動力性能を大幅に向上させることができる。

Description

車両用駆動装置の制御装置
 本発明は、本発明は、流体を介してトルクを増幅可能なトルクコンバータを備えた車両用駆動装置に関し、特に、電動機によってトルク増幅率の変更可能なトルクコンバータを備えた車両用駆動装置の制御装置に関するものである。
 ポンプ翼車と、タービン翼車と、そのタービン翼車とポンプ翼車との間に回転可能に配設されたステータ翼車とを、有するトルクコンバータがよく知られている。このような従来のトルクコンバータでは、ステータ翼車が一方向クラッチを介して非回転部材に連結されており、可変容量特性を備えない。一般に、トルクコンバータの流体特性としては、燃費指向であるときは高い容量(容量係数)であることが望まれるが、上記従来の構造では、ポンプ翼車、タービン翼車、ステータ翼車の形状によって一義的に定められてしまうため、走行パターンに拘わらず同一流体特性となり、燃費性能および動力性能を同時に向上させることには限界があった。
 これに対し、特許文献1に示されているように、ステータ翼車と非回転部材との間にブレーキ手段を設け、そのブレーキ手段の制動トルクを調節して容量を可変をした可変容量型トルクコンバータが提案されている。これによれば、ブレーキ手段による制動トルクを調節することによってトルクコンバータのトルク比および容量係数を無段階或いは多段階に変化させることが可能となり、運転条件や走行条件に応じて最適なトルク比および容量係数を設定でき、車両の走行性能を高めることができる。
特開平1-169170号公報
 しかしながら、上記従来の可変容量型トルクコンバータでは、そのステータ翼車の回転は、ポンプ翼車の回転方向とは反対の負回転方向の範囲で制御されるに過ぎず、それにより得られるトルク比の上限や容量係数の下限値には限界があり、運転条件や走行状態に応じて必ずしも十分にトルクコンバータのトルク比を高め、容量係数を低く変化させることができず、車両の動力性能を十分に高めることができなかった。
 本発明は、以上の事情を背景として為されたものであり、その目的とするところは、トルク比を高め且つ容量係数を低く変化させることができ、車両の動力性能を十分に高めることができる可変容量型トルクコンバータを備えた車両用駆動装置の制御装置を提供することにある。
 そこで、発明者等は、以上の事情を背景として種々検討を重ねた結果、車両の駆動源とは別個の動力源である電動機を用いてステータ翼車をポンプ翼車の回転方向である正回転方向へ積極的に駆動させると、従来に比較して高いトルク比と低い容量係数が得られるということを見いだした。これより、電動機を用いてステータ翼車をポンプ翼車の回転方向である正回転方向へ回転(駆動)、並びにポンプ翼車の回転方向とは反対の負回転方向へ回転(制動、回生)させることにより、従来に比較してトルク比および容量係数の変化範囲が広範囲となるので、車両の燃費性能および動力性能を大幅に向上させることができる。
 さらに、発明者等は、ステータ翼車を駆動させるための動力源である電動機を、ステータ翼車の駆動のみでなく、車両の駆動・制動(回生)用モータとして兼用する方法を見いだした。そこで、電動機とステータ翼車とを断続させる手段、および電動機と出力軸とを断続させる手段を設け、それらの手段を車両の走行条件に応じて断続させることで、車両の燃費性能および動力性能をさらに向上させることを見いだした。
 すなわち、上記目的を達成するための、請求項1にかかる発明の要旨とするところは、(a)ポンプ翼車と、タービン翼車と、そのタービン翼車とポンプ翼車との間に回転可能に配設されたステータ翼車とを、有するトルクコンバータと、(b)前記ステータ翼車を駆動および/または制動させる電動機と、(c)前記電動機と前記ステータ翼車とを断続可能な第1断続手段と、(d)前記電動機と出力軸とを断続可能な第2断続手段と、(e)前記第1断続手段を接続状態として前記電動機によって前記ステータ翼車の回転状態を制御する第1のモードと、(f)前記第2断続手段を接続状態として前記電動機による力行および回生を可能とする第2モードと、(g)前記第1モードと第2モードとを車両の走行条件に応じて切り換えるモード切換手段とを、備えることを特徴とする。
 また、請求項2にかかる発明の要旨とするところは、請求項1の車両用駆動装置の制御装置において、前記モード切換手段は、前記電動機の許容回転速度に応じて、前記第1モードおよび第2モードのいずれかに切り換えることを特徴とする。
 また、請求項3にかかる発明の要旨とするところは、請求項2の車両用駆動装置の制御装置において、前記モード切換手段は、前記タービン翼車の回転速度が前記電動機の許容回転速度よりも大きいとき、前記第1モードに切り換えることを特徴とする。
 また、請求項4にかかる発明の要旨とするところは、請求項2の車両用駆動装置の制御装置において、前記モード切換手段は、前記タービン翼車の回転速度が前記電動機の許容回転速度よりも小さいとき、前記第2モードに切り換えることを特徴とする。
 また、請求項5にかかる発明の要旨とするところは、請求項1の車両用駆動装置の制御装置において、前記モード切換手段は、車両の必要駆動力に応じて、前記第1モードおよび第2モードのいずれかに切り換えることを特徴とする。
 また、請求項6にかかる発明の要旨とするところは、請求項5の車両用駆動装置の制御装置において、前記モード切換手段は、前記車両の必要駆動力と前記電動機の出力とを比較することにより、前記第1モードおよび第2モードのいずれかに切り換えることを特徴とする。
 また、請求項7にかかる発明の要旨とするところは、請求項6の車両用駆動装置の制御装置において、前記第1モードおよび第2モードに切り換えたときの各燃料消費量を算出する燃料消費量算出手段と、前記各燃料消費量の大小関係を比較する燃料消費量比較手段とを、備え、前記モード切換手段は、前記車両の必要駆動力が前記電動機の出力よりも大きいとき、前記燃料消費量比較手段で判定される燃料消費量の少ない側のモードに切り換えることを特徴とする。
 また、請求項8にかかる発明の要旨とするところは、請求項6の車両用駆動装置の制御装置において、前記車両の必要駆動力が前記電動機の出力よりも小さいとき、前記モード切換手段は、前記第2モードに切り換えることを特徴とする。
 また、請求項9にかかる発明の要旨とするところは、請求項1の車両用駆動装置の制御装置において、前記モード切換手段は、前記電動機に電力を供給する蓄電装置の蓄電状態に応じて、前記第1モードおよび第2モードのいずれかに切り換えることを特徴とする。
 また、請求項10にかかる発明の要旨とするところは、請求項9の車両用駆動装置の制御装置において、前記蓄電装置の蓄電状態が所定の閾値よりも小さいとき、前記モード切換手段は、前記トルクコンバータに備えられるロックアップクラッチの係合状態に基づいて前記第1モードおよび第2モードのいずれかに切り換えることを特徴とする。
 また、請求項11にかかる発明の要旨とするところは、請求項9の車両用駆動装置の制御装置において、前記第1モードおよび第2モードに切り換えたときの各電動機作動可能時間を算出する電動機作動時間算出手段と、前記各作動可能時間の大小関係を比較する電動機作動時間比較手段とを、備え、前記蓄電装置の蓄電状態が所定の閾値よりも大きいとき、前記モード切換手段は、前記電動機の作動可能時間の比較によって好適なモードに切り換えることを特徴とする。
 また、請求項12にかかる発明の要旨とするところは、請求項1乃至11のいずれか1つの車両用駆動装置の制御装置において、前記ステータ翼車と静止部材とを断続可能な第3断続手段をさらに備え、該第3断続手段を接続状態として前記ステータ翼車を停止状態とする第3モードを備え、前記モード切換手段は、車両の走行条件に応じてさらに前記第3モードに切り換えることを特徴とする。
 また、請求項13にかかる発明の要旨とするところは、請求項12の車両用駆動装置の制御装置において、(a)前記トルクコンバータと前記電動機との間には遊星歯車装置が介装されており、(b)前記遊星歯車装置の3つの回転要素を第1回転要素、第2回転要素、第3回転要素とすると、(c)前記第1回転要素が前記第1断続手段を介して前記ステータ翼車と連結され、(d)前記第1回転要素が前記第3断続手段を介して前記静止部材と連結され、(e)前記第2回転要素が前記第2断続手段を介して前記出力軸と連結され、(f)前記第3回転要素が前記電動機と連結されることを特徴とする。
 請求項1にかかる発明の車両用駆動装置の制御装置によれば、ポンプ翼車とタービン翼車とそのタービン翼車とポンプ翼車との間に回転可能に配設されたステータ翼車とを有するトルクコンバータと、前記ステータ翼車を駆動させる電動機を備えることから、電動機を用いてステータ翼車をポンプ翼車の回転方向である正回転方向、およびポンプ翼車の回転方向とは反対の負回転方向へ回転させることにより、従来に比較してトルク比および容量係数の変化範囲が広範囲となるので、車両の燃費性能および動力性能を大幅に向上させることができる。
 また、前記第1断続手段を接続状態として前記電動機によって前記ステータ翼車の回転状態を制御する第1のモードと、前記第2断続手段を接続状態として前記電動機による力行および回生を可能とする第2モードと、前記第1モードと第2モードとを車両の走行条件に応じて切り換えるモード切換手段とを、備えるため、車両の走行条件に応じて好適に第1モードまたは第2モードに切り換えられる。これにより、モードに応じた好適な制御が実施され、車両の燃費性能および動力性能を大幅に向上させることができる。
 また、請求項2にかかる発明の車両用駆動装置の制御装置によれば、前記モード切換手段は、前記電動機の許容回転速度に応じて、前記第1モードおよび第2モードのいずれかに切り換えるため、電動機の許容回転速度を算出することで、モードが好適に切り換えられ、車両の燃費性能および動力性能を大幅に向上させることができる。
 また、請求項3にかかる発明の車両用駆動装置の制御装置によれば、前記モード切換手段は、前記タービン翼車の回転速度が前記電動機の許容回転速度よりも大きいとき、前記第1モードに切り換えるため、トルクコンバータの可変容量制御が可能となる。これより、トルクコンバータの可変容量を介して車両の駆動力を補助(アシスト)することができる。また、タービン翼車の回転速度が高いときに電動機を連結することで、電動機が過回転化されることも回避される。
 また、請求項4にかかる発明の車両用駆動装置の制御装置によれば、前記モード切換手段は、前記タービン翼車の回転速度が前記電動機の許容回転速度よりも小さいとき、前記第2モードに切り換えるため、車両を電動機によって直接駆動並びに制動(回生)させることができる。なお、この電動機による直接駆動は、駆動源の駆動力および電動機の駆動力によって車両を駆動させる、所謂アシスト走行をも含むこととする。
 また、請求項5にかかる発明の車両用駆動装置の制御装置によれば、前記モード切換手段は、車両の必要駆動力に応じて、前記第1モードおよび第2モードのいずれかに切り換えるため、車両の必要駆動力を算出することで、モードが好適に選択され、車両の燃費性能および動力性能を大幅に向上させることができる。
 また、請求項6にかかる発明の車両用駆動装置の制御装置によれば、前記モード切換手段は、前記車両の必要駆動力と前記電動機の出力とを比較することにより、前記第1モードおよび第2モードのいずれかに切り換えるため、電動機の性能に合わせて好適なモードを選択することができる。
 また、請求項7にかかる発明の車両用駆動装置の制御装置によれば、前記モード切換手段は、前記車両の必要駆動力が前記電動機の出力よりも大きいとき、前記燃料消費量比較手段で判定される燃料消費量の少ない側のモードに切り換えるため、車両の燃費性能を向上させることができる。
 また、請求項8にかかる発明の車両用駆動装置の制御装置によれば、前記車両の必要駆動力が前記電動機の出力よりも小さいとき、前記モード切換手段は、前記第2モードに切り換えるため、電動機によって車両を直接駆動(アシスト走行を含む)させることができる。
 また、請求項9にかかる発明の車両用駆動装置の制御装置によれば、前記モード切換手段は、前記電動機に電力を供給する蓄電装置の蓄電状態に応じて、前記第1モードおよび第2モードのいずれかに切り換えるため、蓄電装置の蓄電状態を検出することで、モードが好適に切り換えられ、車両の燃費性能および動力性能を大幅に向上させることができる。
 また、請求項10にかかる発明の車両用駆動装置の制御装置によれば、前記蓄電装置の蓄電状態が所定の閾値よりも小さいとき、前記モード切換手段は、前記トルクコンバータに備えられるロックアップクラッチの係合状態に基づいて前記第1モードおよび第2モードのいずれかに切り換えるため、好適なモードでの走行が可能となる。例えば、ロックアップクラッチが係合された状態であれば、第2モードに切り換えることで、出力軸による発電制御が可能となり、蓄電状態を改善させることができる。また、ロックアップクラッチが非係合状態であれば、ステータ翼車による発電制御が可能となり、蓄電状態を改善させることができる。
 また、請求項11にかかる発明の車両用駆動装置の制御装置によれば、前記第1モードおよび第2モードに切り換えたときの各電動機作動可能時間を算出する電動機作動時間算出手段と、前記各作動可能時間の大小関係を比較する電動機作動時間比較手段とを、備え、前記蓄電装置の蓄電状態が所定の閾値よりも大きいとき、前記モード切換手段は、前記電動機の作動可能時間の比較によって好適なモードに切り換えるため、車両を好適なモードで走行させることができる。例えば、第2モードにおいて、電動機のみによる電気走行モードでの作動可能時間が所定の閾値を超えるとき、電気走行モードに切り換える。また、第1モードおよび第2モードとのそれぞれの作動開始時間を比較し、作動時間の長い側のモードに切り換える。
 また、請求項12にかかる発明の車両用駆動装置の制御装置によれば、前記モード切換手段は、車両の走行条件に応じてさらに前記第3モードに切り換えるため、第3モードに切り換えられると、ステータ翼車が回転停止状態とされる。これより、第3モードが適宜切り換えられることで、従来のトルクコンバータとしても作動させることができる。例えば、トルクコンバータのトルクコンバータレンジでは、第3断続手段を接続状態にしてステータ翼車を回転停止させてトルク比を増大させる。また、例えばトルクコンバータのカップリングレンジでは、第3断続手段を遮断させてステータ翼車を空転させる。
 また、請求項13にかかる発明の車両用駆動装置の制御装置によれば、遊星歯車装置が介装されて、遊星歯車装置の各回転要素が上述のように連結されるため、電動機の出力トルクが遊星歯車装置を介してトルク変換される。これより、電動機をさらに小型化することができる。
本発明の一実施例のトルクコンバータ(可変容量型トルクコンバータ)が適用された車両用駆動装置の骨子図である。 電動モータと駆動電流および発電電流との関係を示す図である。 自動変速機において各変速段を成立させる際の各係合要素の作動状態を説明する図表である。 図1のエンジンや自動変速機、あるいはトルクコンバータなどを制御するために車両に設けられた制御系統を説明するブロック線図である。 各翼車におけるトルクコンバータ内の作動油の流線FLに沿った羽根の形状をそれぞれ示す図である。 タービン翼車のタービン回転数とポンプ翼車のポンプ回転数との回転速度比すなわち速度比に対する、タービントルクとポンプトルクとのトルク比(トルク増幅率)を示す図である。 速度比に対する、容量係数を示す図である。 電子制御装置による制御作動の要部を説明する機能ブロック線図である。 電子制御装置の制御作動の要部すなわち、車両の走行条件に応じて走行モードを選択的に切り換える制御作動を説明するフローチャートである。 本発明の他の実施例である電子制御装置による制御作動の要部を説明する機能ブロック線図である。 電子制御装置の制御作動の要部、すなわち車両の走行条件に応じて走行モードを選択的に変更する制御作動を説明する他のフローチャートである。 本発明の他の実施例である電子制御装置による制御作動の要部を説明する機能ブロック線図である。 電子制御装置の制御作動の要部、すわわち車両の走行条件に応じて走行モードを選択的に変更する制御作動を説明するフローチャートである。 本発明の他の実施例である車両用駆動装置の一部を説明する骨子図である。 クラッチおよびブレーキの係合状態に基づく車両用駆動装置のモードと関係を示す係合作動表である。
符号の説明
6:トルクコンバータ 6p:ポンプ翼車 6t:タービン翼車 6s:ステータ翼車 7、180:車両用駆動装置 10:電動モータ(電動機) 11:トランスミッションケース(静止部材) 22:入力軸(トルクコンバータの出力軸) 50:蓄電装置 132:モード切換手段 156:燃料消費量算出手段 158:燃料消費量比較手段 164:電動機作動時間算出時間 166:電動機作動時間判定手段 182:遊星歯車装置 Cs:クラッチ(第1断続手段) Ci:クラッチ(第2断続手段) Bs:ブレーキ(第3断続手段) L/U:ロックアップクラッチ
 以下、本発明の実施例を図面を参照しつつ詳細に説明する。
 図1は、本発明の一実施例のトルクコンバータ6(可変容量型トルクコンバータ)が適用された車両用駆動装置7の骨子図である。この車両用駆動装置7は縦置き型の自動変速機8を有するものであって、FR(フロントエンジン・リアドライブ)型車両に好適に採用されるものであり、走行用の駆動力源としてエンジン9を備えている。内燃機関にて構成されるエンジン9の出力は、流体伝動装置として機能するトルクコンバータ6、自動変速機8、図示しない差動歯車装置(終減速機)、一対の車軸などを介して左右の駆動輪へ伝達されるようになっている。
 トルクコンバータ6は、エンジン9のクランク軸に連結され、そのエンジン9から回転駆動されることによってトルクコンバータ6内の作動油の流動による流体流を発生させるポンプ翼車6pと、自動変速機8の入力軸22に連結され、そのポンプ翼車6pからの流体流を受けて回転させられるタービン翼車6tと、タービン翼車6tからポンプ翼車6pへの流体流中に回転可能に配置されたステータ翼車6sとを備えており、作動油(流体)を介して動力伝達を行うようになっている。
 また、上記ポンプ翼車6pとタービン翼車6tとの間にはロックアップクラッチL/Cが設けられており、後述の油圧制御回路30によってそのロックアップクラッチL/Cの係合状態、スリップ状態、或いは解放状態が制御されるようになっており、完全係合状態とされることによってポンプ翼車6pおよびタービン翼車6tが一体回転させられるすなわちエンジン9のクランク軸および入力軸22が相互に直結状態とされるようになっている。
 また、車両用駆動装置7は、トルクコンバータ6のステータ翼車6sを回転駆動するための電動モータ(電動機)10と、その電動モータ10とステータ翼車6sとの間を断続可能なクラッチCsと、ステータ翼車6sと静止部材であるトランスミッションケース(以下、ケースと表す)11との間を断続可能なブレーキBsと、電動モータ10と入力軸22との間を断続可能なクラッチCiとを備えている。なお、本実施例のクラッチCsが本発明の第1断続手段に対応しており、ブレーキBsが本実施例の第3断続手段に対応しており、クラッチCiが本実施例の第2断続手段に対応している。また、入力軸22はトルクコンバータ6の出力軸としても機能するものであり、本発明においては出力軸に対応する。
 上記電動モータ10は、クラッチCsが係合された場合、その駆動によってステータ翼車6sのポンプ翼車6pの回転方向である正回転方向の回転数を制御するようになっている。この際、ステータ翼車6sには、例えば、図2(a)に示すように後述の電子制御装置78から回転駆動のために電動モータ10に供給される駆動電流IDの大きさに比例する上記正回転方向の駆動トルクTDが与えられる。また、電動モータ10は、その駆動によってステータ翼車6sの負回転方向の回転数を制御するようになっている。この際、ステータ翼車6sには、例えば、電動モータ10に供給される駆動電流IDの大きさに比例する上記負回転方向の駆動トルクTDが与えられる。なお、電動モータ10が本発明の電動機に対応している。
 また、電動モータ10は、その制動(回生)によってもステータ翼車6sのポンプ翼車6pの回転方向とは反対の負回転方向の回転数を制御するようになっている。この際、ステータ翼車6sには、例えば、図2(b)に示すように例えば車両に設けられた蓄電装置等に供給すなわち蓄電される発電電流IGの大きさに比例する上記負回転方向の負荷トルクすなわち制動トルクTBが与えられる。
 さらに、電動モータ10は、クラッチCiが係合された場合、その駆動によって入力軸22の回転方向である正回転方向の回転速度を制御するようになっている。この際も、図2(a)に示すように電子制御回路から回転駆動のために電動モータ10に供給される駆動電流IDの大きさに比例する上記正回転方向の駆動トルクTDが与えられる。また、電動モータ10は、その制動(回生)によっても入力軸22の回転方向を制御するようになっている。この際も、図2(b)に示すように、例えば車両に設けられた蓄電装置等に供給すなわち蓄電される発電電流IGの大きさに比例する負荷トルクすなわち制動(回生)トルクTBが与えられる。
 上記クラッチCs、CiおよびブレーキBsは、油圧アクチュエータとその油圧アクチュエータに供給される油圧により摩擦係合或いは解放される多板式のクラッチあるいはブレーキとを備える油圧式摩擦係合装置である。ステータ翼車6sは、ブレーキBsが完全係合されることによりケース11に固定され回転不能にされる。また、ステータ翼車6sは、ブレーキBsの係合度合いすなわち係合圧が調整されることで発生されるスリップによっても、上記正回転方向に回転するポンプ翼車6pに対して相対的にその正回転方向とは反対の負回転方向に回転させられるようになっている。この際、ステータ翼車6sには、例えば上記係合圧が大きくなるとともに増大する上記負回転方向の負荷トルクすなわち制動トルクTBが与えられる。また、ステータ翼車6sには、クラッチCsが係合されることにより上記電動モータ10による駆動トルクTDあるいは制動トルクTBがそのまま伝達されるようになっており、また、クラッチCsの係合度合いすなわち係合圧が調整されることで発生されるスリップによりその係合圧の大きさに応じて上記駆動トルクTDあるいは制動トルクTBの伝達割合が変化させられるようになっている。さらに、クラッチCiが係合されることにより、電動モータ10による駆動トルクTDあるいは制動トルクTBがそのまま伝達されるようになっており、また、クラッチCiの係合度合いすなわち係合圧が調整されることで発生されるスリップによりその係合圧の大きさに応じて上記駆動トルクTDあるいは制動トルクTBの伝達割合が変化させられるようになっている。
 自動変速機8は、車体に取り付けられる非回転部材としてのケース11内において、ダブルピニオン型の第1遊星歯車装置12を主体として構成されている第1変速部14と、シングルピニオン型の第2遊星歯車装置16及びダブルピニオン型の第3遊星歯車装置18を主体として構成されている第2変速部20とを共通の軸心上に有し、入力軸22の回転を変速して出力軸24から出力する。入力軸22は、走行用の動力源であるエンジン9からの動力により回転駆動されるトルクコンバータ6のタービン軸でもある。なお、このトルクコンバータ6および自動変速機8はその軸心に対して略対称的に構成されており、図1の骨子図においてはそれら軸心の下半分が省略されている。
 上記第1遊星歯車装置12は、サンギヤS1、互いに噛み合う複数対のピニオンギヤP1、そのピニオンギヤP1を自転及び公転可能に支持するキャリアCA1、ピニオンギヤP1を介してサンギヤS1と噛み合うリングギヤR1を備えている。また、第2遊星歯車装置16は、サンギヤS2、ピニオンギヤP2、そのピニオンギヤP2を自転及び公転可能に支持するキャリアCA2、ピニオンギヤP2を介してサンギヤS2と噛み合うリングギヤR2を備えている。また、第3遊星歯車装置18は、サンギヤS3、互いに噛み合う複数対のピニオンギヤP2及びP3、そのピニオンギヤP2及びP3を自転及び公転可能に支持するキャリアCA3、ピニオンギヤP2及びP3を介してサンギヤS3と噛み合うリングギヤR3を備えている。
 図1において、クラッチC1~C4およびブレーキB1、B2は、クラッチCs、CiおよびブレーキBsと同様に油圧アクチュエータとその油圧アクチュエータに供給される油圧により係合或いは解放される多板式のクラッチあるいはブレーキとを備える油圧式摩擦係合装置であって、第1回転要素RM1(サンギヤS2)は、第1ブレーキB1を介してケース11に選択的に連結されて回転停止され、第3クラッチC3を介して中間出力部材である第1遊星歯車装置12のリングギヤR1(すなわち第2中間出力経路PA2)に選択的に連結され、さらに第4クラッチC4を介して第1遊星歯車装置12のキャリアCA1(すなわち第1中間出力経路PA1の間接経路PA1b)に選択的に連結されるようになっている。
 また、第2回転要素RM2(キャリアCA2およびCA3)は、第2ブレーキB2を介してケース11に選択的に連結されて回転停止され、第2クラッチC2を介して入力軸22(すなわち第1中間出力経路PA1の直結経路PA1a)に選択的に連結されるようになっている。また、第3回転要素RM3(リングギヤR2およびR3)は、出力軸24に一体的に連結されて回転を出力するようになっている。また、第4回転要素RM4(サンギヤS3)は、第1クラッチC1を介してリングギヤR1に連結されるようになっている。なお、第2回転要素RM2とケース11との間には、第2回転要素RM2の正回転(入力軸22と同じ回転方向)を許容しつつ逆回転を阻止する一方向クラッチF1が第2ブレーキB2と並列に設けられている。
 図3は、自動変速機8において各変速段を成立させる際の各係合要素の作動状態を説明する図表であり、「○」は係合状態を、「(○)」はエンジンブレーキ時のみ係合状態を、空欄は解放状態をそれぞれ表している。図3に示すように、本実施例の自動変速機8は、上記各係合装置すなわち複数の油圧式摩擦係合装置(クラッチC1~C4、ブレーキB1、B2)が選択的に係合させられることにより変速比(=自動変速機8の入力軸回転速度NIN/自動変速機8の出力軸回転速度NOUT)が異なる前進8段を含む複数の変速段が成立するようになっている。なお、各変速段の変速比は、第1遊星歯車装置12、第2遊星歯車装置16、および第3遊星歯車装置18の各ギヤ比ρ1、ρ2、ρ3によって適宜定められる。
 図4は、図1のエンジン9や自動変速機8、あるいはトルクコンバータ6などを制御するために車両に設けられた制御系統を説明するブロック線図である。電子制御装置78には、エンジン回転速度センサ80からのエンジン回転速度NEを示す信号、タービン回転速度センサ82からのタービン回転速度NTすなわち入力軸回転速度NINを示す信号、ステータ回転速度センサ83からのステータ回転速度NSを示す信号、吸入空気量センサ84からの吸入空気量QAを示す信号、吸入空気温度センサ86からの吸入空気温度TAを示す信号、車速センサ88からの車速Vすなわち出力軸回転速度NOUTを示す信号、スロットルセンサ90からのスロットル弁開度θTHを示す信号、冷却水温センサ92からの冷却水温TWを示す信号、油温センサ94からの油圧制御回路30の作動油温度TOILを示す信号、アクセル操作量センサ96からのアクセルペダル98等のアクセル操作部材の操作量ACCを示す信号、フットブレーキスイッチ100からの常用ブレーキであるフットブレーキ102の操作の有無を示す信号、レバーポジションセンサ104からのシフトレバー106のレバーポジション(操作位置)PSHを示す信号などが供給されるようになっている。
 電子制御装置78は、CPU、RAM、ROM、入出力インターフェース等を備えた所謂マイクロコンピュータを含んで構成されており、CPUは、RAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って上記各入力信号を処理し、電子スロットル弁108や燃料噴射装置110、点火装置112、油圧制御回路30のリニアソレノイド弁等、あるいは電動モータ10などに信号すなわち出力信号をそれぞれ出力するようになっている。電子制御装置78は、このような入出力信号処理を行うことにより、エンジン9の出力制御や電動モータ10による入力軸22の駆動・回生制御、自動変速機8の変速制御、あるいはトルクコンバータ6のステータ6sの回転制御などを実行するようになっており、必要に応じてエンジン制御用や変速制御用などに分けて構成される。
 本実施例においては、上記エンジン9の出力制御は、電子スロットル弁108、燃料噴射装置110、点火装置112などによって行われる。
 自動変速機8の変速制御は、油圧制御回路30によって行われ、例えば予め記憶された変速線図(変速マップ)から実際のスロットル弁開度θTHおよび車速Vに基づいて自動変速機8の変速すべきギヤ段を決定し、その決定されたギヤ段を成立させるように前記図3に示す作動表に従ってクラッチC1~C4およびブレーキB1、B2の係合解放状態を切り換える。
 トルクコンバータ6のステータ翼車6sの回転制御は、クラッチCsやブレーキBs、および電動モータ10によって行われる。具体的には、上記ステータ翼車6sの回転制御は、電子制御装置78の指令に従って図示しないインバータから電動モータ10に供給される駆動電流IDの大きさに比例する駆動トルクTD、あるいは例えばその電動モータ10から出力される発電電流IGの大きさに比例する制動トルクTBが適宜調整されることにより実行される。
 ここで、本実施例のトルクコンバータ6において、遠心力により外周側に張り付く作動油は、トルクコンバータ6の断面において図1の流線FLに沿うようにポンプ翼車6p、タービン翼車6t、スタータ翼車6sの順に循環する。図5に示すように、ポンプ翼車6p、タービン翼車6t、ステータ翼車6sは、周方向において一定間隔に隔てられた複数の羽根を備えている。図5は、各翼車におけるトルクコンバータ6内の作動油の流線FLに沿った羽根の形状をそれぞれ表している。ポンプ翼車6pの羽根によってエネルギーが与えられることにより流動させられた作動油は、タービン翼車6tの羽根に作用してタービン翼車6tを回転させる。タービン翼車6tを通過した作動油は、コンバータ領域では、ステータ翼車6sの羽根に当たって方向変換させられた後、ポンプ翼車6pへ循環させられる。上記ステータ翼車6sの羽根に作動油が当たって方向変換させられることにより、そのステータ翼車6sに反力トルクが発生させられる。この反力トルクは、上記作動油の方向変換量(角度)に対応しており、後述のトルク比tの大きさに対応している。
 角運動量の定義によれば各翼車(ポンプ翼車6p、タービン翼車6t、およびステータ翼車6s)が作動油(流体)に与えるトルクT[N・m]は、次式(1)のように表される。
 T=(γ/g)×Q×△(r×v) ・・・式(1)
 式(1)において、γはトルクコンバータ6内の作動油の比重量[kg/m3]、gは重力加速度[m/s2]、Qは上記作動油の体積流量[m3/s]、△(r×v)は各翼車における流体流の出口と入口とにおける作動油の各絶対速度のモーメントr×v[m2/s]の差である。
 上記式(1)から、ポンプ翼車6pが作動油に与えるトルクT[N・m]、タービン翼車6tが作動油に与えるトルクT[N・m]、およびステータ翼車6sが作動油に与えるトルクT[N・m]は、次式(2)乃至(4)のように表される。式(2)乃至(4)において、Tはポンプトルク[N・m]すなわちエンジントルク、Tはタービントルク[N・m]すなわち出力トルク、Tはステータ翼車6sの反力トルクの大きさと一致するステータトルク[N・m]すなわちステータ翼車6sにより作動油の流れの向きが変えられる際にそのステータ翼車6sに対してポンプ翼車6pの回転方向である正回転方向に作用するトルクである。
 T= T =(γ/g)×Q×(VUP×r-VUS×r)・・・式(2)
 T=-T=(γ/g)×Q×(VUT×r-VUP×r)・・・式(3)
 T= T =(γ/g)×Q×(VUS×r-VUT×r)・・・式(4)
 式(2)乃至(4)において、rはポンプ翼車6pの流体流の出口bpおよびタービン翼車6tの流体流の入口atにおける回転軸心すなわち自動変速機8の入力軸(タービン軸)22からの距離[m]、rはタービン翼車6tの流体流の出口btおよびステータ翼車6sの流体流の入口asにおける回転軸心からの距離[m]、rはステータ翼車6sの流体流の出口bsおよびポンプ翼車6pの流体流の入口apにおける回転軸心からの距離[m]である。また、式(2)乃至(4)中において、VUPはポンプ翼車6pの絶対速度の円周分速度[m/s]、VUTはタービン翼車6tの絶対速度の円周分速度[m/s]、VUSはステータ翼車6sの絶対速度の円周分速度[m/s]である。
 式(2)乃至(4)からT+T+T=0(零)が成立するため、ポンプトルクT、タービントルクT、およびステータトルクTは次式(5)のように表される。つまり、トルクコンバータ6におけるポンプトルクTに対するタービントルクTのトルク増加分は、ステータトルクTに一致する。
 T=T+T ・・・式(5)
 ここで、本実施例のトルクコンバータ6は、ステータ翼車6sの反力が前述の電動モータ10の回転制御により調整される駆動トルクTDあるいは制動トルクTBにより増減されることから、タービン翼車から出力される出力トルクが従来の一定容量のトルクコンバータで得られる出力トルクに対して増減させられるようになっている。
 図6および図7は、上述の内容を示す本実施例のトルクコンバータ6の特性を示す図である。図6は、タービン翼車6tのタービン回転数N[rpm]とポンプ翼車6pのポンプ回転数N[rpm]との回転速度比すなわち速度比e(=N/N)に対する、タービントルクTとポンプトルクTとのトルク比(トルク増幅率)t(=T/T)を示す図であり、図7は、上記速度比e(=N/N)に対する、容量係数C(=T/N )[N・m/rpm2]を示す図である。
 図6および図7において、制動トルクTBが所定の値に調整されるかあるいはブレーキBsが係合されることにより、ステータ翼車6sがケース11に固定され、図6の実線に示すベースラインBtで示すように従来の一定容量のトルクコンバータと同様に設計上定まる所定のトルク比tでトルクの伝達が行われる。なお、このときのトルクコンバータ6の容量係数Cは、図7の実線で示すベースラインBCで示すようになる。
 また、クラッチCsが適宜係合された状態で電動モータ10により駆動トルクTDが所定の値に調整されてステータ翼車6sがポンプ翼車6pと同一回転方向で回転させられると、ステータトルクTが増加し、図6のステータ正転を示す長鎖線のように従来の一定容量のトルクコンバータで得られるよりも大きいトルク比tでトルクの伝達が行われる。このときのトルクコンバータ6の容量係数Cは、図7のステータ正転を示す長鎖線のようになる。なお、トルク比tおよび容量係数Cは、同じ速度比eであっても、電動モータ10により駆動トルクTDがさらに増減されることにより図6および図7の矢印a、dに示すように図6のベースラインBtからステータ正転を示す長鎖線以上または図7のベースラインBCからステータ正転を示す長鎖線以下の範囲で適宜設定される。
 また、クラッチCsおよびブレーキBsが解放されることによりステータトルクTが零とされると、図6のステータフリーを示す1点鎖線で示すようにトルクの増大が行われずトルク比t=1でトルクの伝達が行われる。その結果、トルクコンバータ6が流体継手として作動するようになる。このときのトルクコンバータ6の容量係数Cは、図7のステータフリーを示す1転鎖線のようになる。
 また、制動(回生)トルクTBが所定の値に調整されるかあるいはブレーキBsの係合圧が所定の値に調整されてブレーキBsがスリップさせられると、ステータトルクTがステータ翼車6sが固定される場合に比較して減少し、図6のステータモータ回生で示す短鎖線で示すように従来の一定容量のトルクコンバータで得られるよりも小さいトルク比tでトルクの伝達が行われる。このときのトルクコンバータ6の容量係数Cは、図6のステータモータ回生で示す短鎖線のようになる。なお、トルク比tおよび容量係数Cは、同じ速度比eであっても、制動(回生)トルクTあるいはブレーキBsの係合圧がさらに増減されることにより図6および図7の矢印b、cに示すようにベースラインBt又はBCからステータフリーで示す1点鎖線までの範囲で適宜設定される。
 つまり、本実施例における電動モータ10は、ステータ翼車6sをポンプ翼車6pの回転方向である正回転方向に回転制御することによりトルク比tを増加させるものである。また、本実施例における電動モータ10は、その制動(回生)によってステータ翼車6sをポンプ翼車6pの回転方向とは反対の負回転方向に回転制御することによりトルク比tを減少させるものである。さらに、本実施例におけるブレーキBsは、そのスリップによってステータ翼車6sをポンプ翼車6pの回転方向とは反対の負回転方向に回転制御することによりトルク比tを減少させるものである。
 また、電動モータ10による入力軸22の駆動・回生制御は、クラッチCiおよび電動モータ10によって行われる。具体的には、上記駆動・回生制御は、クラッチCiが係合された状態で、電子制御装置78の指令に従ってインバータから電動モータ10に供給される駆動電流IDの大きさに比例する駆動トルクTD、あるいは例えば電動モータ10から出力される発電電流IGの大きさに比例する制動(回生)トルクTBが適宜調整されることにより実行される。
 このように、車両用駆動装置7は、クラッチCs、CiおよびブレーキBsが選択的に係合されることで、車両の走行モードが適宜変更可能な構成となっている。具体的には、クラッチCsが係合されると、トルクコンバータ6の可変容量制御が可能なモードとなり、クラッチCiが係合されると、電動モータ10による車両の駆動・回生制御が可能なモードとなる。また、ブレーキBsが係合されると、ステータ翼車6sが回転停止状態とされるので、容量係数Cが一定である従来のトルクコンバータとして機能させることが可能なモードとなる。なお、前記トルクコンバータ6の可変容量制御が可能なモードが本発明の第1モードに対応しており、第1断続手段に対応するクラッチCsを係合させることで電動モータ10とステータ翼車6sとが動力伝達可能に接続され、電動モータ10によってステータ翼車6sの回転状態を制御することが可能となる。また、車両の駆動・回生制御が可能なモードが本発明の第2モードに対応しており、第2断続手段に対応するクラッチCiを係合させることで電動モータ10と入力軸22とが動力伝達可能に接続され、電動モータ10による力行(駆動)および制動(回生)が可能となる。さらに、従来のトルクコンバータとして機能させることが可能なモードが本発明の第3モードに対応しており、第3断続手段に対応するブレーキBsを係合させることでステータ翼車6sとケース11とが接続され、ステータ翼車6sが停止状態とされる。
 そして、本実施例では、クラッチCs、CiおよびブレーキBsが車両の走行条件に応じて適宜係合されることにより、車両の走行モードが変更される。以下、上記走行モードの変更制御について説明する。
 図8は、電子制御装置78による制御作動の要部を説明する機能ブロック線図である。有段変速制御手段120は、例えば車両の走行状態を判定し、予め記憶されたロックアップ係合マップから車速およびアクセル開度Accに基づいてロックアップクラッチL/Uの係合および解放を制御すると共に、予め記憶された変速マップに基づいて自動変速機8の変速を実行するか否かを判定し、その判断結果に従って変速を実行する命令を油圧制御回路30に出力する。
 駆動力要求判定手段122は、例えばアクセルペダルの操作量であるアクセル開度Accや車速V等をパラメータとする、予め設定された電動モータ10の駆動領域マップに基づいて、電動モータ10に対する駆動力要求が発生したか否かを判定する。
 電動モータ10の駆動が必要と判定されると、タービン回転速度算出手段124は、タービン回転速度センサ83によってタービン回転速度Nを検出する。なお、タービン回転速度Nは車速Vすなわち出力軸回転速度NOUTおよび自動変速機8のギヤ比に基づいて算出しても構わない。タービン回転速度判定手段126は、タービン回転速度算出手段124によって検出されたタービン回転速度Nが電動モータ10の許容回転速度よりも大きいか否かを判定する。なお、電動モータ10の許容回転速度は定格的に設定される回転速度、或いは現在の電動モータ10の駆動状態に基づいて算出される回転速度が対応する。タービン回転速度Nすなわち入力軸22の回転速度が電動モータ10の許容回転速度よりも大きいと、電動モータ10と入力軸22とが連結されたとき(クラッチCiが係合されたとき)、電動モータ10の回転速度が許容回転速度を超えて過回転化される可能性が生じる。このようなときは、クラッチCiの係合(第2モード)を禁止し、クラッチCsの係合(第1モード)によるトルクコンバータ6の可変容量制御を実施する。
 容量係数変更時アシストトルク算出手段128(以下、トルク算出手段128と記載する)は、第1モード選択時、すなわちトルクコンバータ6の可変容量制御によるアシストトルクを算出する。例えば、トルクコンバータ6の各回転要素の回転状態やエンジン9の駆動状態から現在の車両の駆動状態を算出し、さらに、アクセル開度Accおよびその変化率、車速V等に基づいて、次のタイミングで必要となる必要駆動力を算出する。そして、その必要駆動力が得られるように、エンジン9の駆動力および電動モータ10のアシストトルク(補助トルク)を算出する。
 容量係数変更時アシスト制御可能判定手段130(以下、アシスト可能判定手段130と記載する)は、トルク算出手段128によって算出されたアシストトルクを電動モータ10によって制御可能(可変容量制御)か否かを判定する。例えば、電動モータ10の定格値に基づく出力制限や蓄電装置50の充電容量SOC、並びに、電動モータ10のフェイルなどによって制御可能か否かを判定する。
 モード切換手段132は、アシスト可能判定手段130或いはタービン回転速度判定手段126の判定結果に基づいて、モード切換を実行する。例えば、タービン回転速度判定手段126によって、タービン回転速度Nが電動モータ10のモータ許容回転速度よりも大きいと判定されると、モード切換手段132は、クラッチCsを係合することによる、トルクコンバータ6の可変容量制御(第1モード)に切り換える。なお、実際には、さらにアシスト可能判定手段130の判定結果に基づいて、第1モードへの切換が実行される。一方、タービン回転速度Nが電動モータ10のモータ許容回転速度よりも小さいと判定されると、モード切換手段132は、クラッチCiを係合すること、すなわち電動モータ10を直接入力軸22に連結することによる車両の駆動・回生制御(第2モード)に切り換える。
 また、タービン回転速度判定手段126によって、タービン回転速度Nが電動モータ10のモータ許容回転速度よりも大きいと判定されると共に、アシスト可能判定手段130によって、トルクコンバータ6の可変容量制御によるトルクアシストが可能と判定されると、モード切換手段132は、クラッチCsを係合することによる、トルクコンバータ6の可変容量制御(第1モード)に切り換える。一方、電動モータ10による可変容量制御が不可能と判定されると、モード切換手段は、例えばブレーキBsを適宜係合させることで、ステータ翼車6sを停止状態として容量係数一定の従来のトルクコンバータとして作動させる(第3モード)。なお、ブレーキBsの係合圧を制御してスリップ係合させることで、可変容量のトルクコンバータ6として作動させることもできる。また、トルクコンバータ6がカップリングレンジとなるとブレーキBsを解放させてステータ翼車6sを空転させる。
 電動機制御手段134は、第1モードに切り換えられた場合、例えば、トルクコンバータ6のポンプ翼車6s、タービン翼車6t、およびステータ翼車6sの回転速度を検出することにより、トルクコンバータ6のスリップ状態を算出すると共に、入力トルクを算出することで、トルクコンバータ6のトルク比tおよび容量係数Cを算出する。さらに必要駆動力が得られる、すなわち電動モータ10によるアシストトルクが得られるトルク比tpおよび容量係数Cpを算出し、これらが得られるように電動モータ10の回転速度をフィードバック制御する。もしくは、予め設定された電動モータ10のアシストトルクと電動モータ10の回転速度との関係マップに基づいて決定される回転速度となるように、電動モータ10のフィードフォワード制御を実行しても構わない。また、第2モードに切り換えられた場合でも、電動機制御手段134は、前記必要駆動力が得られるように、電動モータ10による車両の駆動制御を実行する。なお、このとき、電動モータ10のみによる電気走行、或いはエンジン9および電動モータ10によるアシスト走行のいずれであっても構わない。このように、モード切換手段132は、電動モータ10の許容回転速度、アシストトルクに基づいてモードを切り換える。
 図9は、電子制御装置78の制御作動の要部すなわち、車両の走行条件に応じて走行モードを選択的に切り換える制御作動を説明するフローチャートであり、例えば数msec乃至数十msecの極めて短いサイクルタイムで繰り返し実行されるものである。
 先ず、駆動力要求判定手段122に対応するSA1において、電動モータ10に対する駆動力要求が生じたか否かが判定される。SA1が否定されると、本ルーチンは終了させられる。SA1が肯定されると、タービン回転速度算出手段124に対応するSA2において、タービン翼車6tの回転速度が算出される。そして、モード切換手段132およびタービン回転速度判定手段126に対応するSA3において、タービン回転速度Nが電動モータ10の許容回転速度よりも大きいか否かが判定される。SA3が否定されると、電動モータ10によって直接車両の駆動・回生制御が可能となるので、電動機制御手段134に対応するSA7において、クラッチCiを係合させて電動モータ10と入力軸22とを接続状態とすることで、電動モータ10による車両の駆動(回生)制御(第2モード)が実施される。
 SA3が肯定されると、クラッチCsを係合させることによるトルクコンバータ6の可変容量制御が実施されることとなる。先ず、トルク算出手段128に対応するSA4において、トルクコンバータ6の容量係数変更時のアシストトルクが算出される。そして、アシスト可能判定手段130に対応するSA5において、SA4において算出されたアシストトルク、および電動モータ10の駆動状態に基づいて電動モータ10によるアシストが可能か否かが判定される。SA5が否定されると、例えば第3モードに切り換えられて本ルーチンは終了させられる。SA5が肯定されると、電動機制御手段134に対応するSA6において、クラッチCsが係合されて、トルクコンバータ6の可変容量制御(第1モード)が実行される。
 上述のように、本実施例によれば、ポンプ翼車6pとタービン翼車6tと、そのタービン翼車6tとポンプ翼車6pとの間に回転可能に配設されたステータ翼車6sとを有するトルクコンバータ6と、前記ステータ翼車6sを駆動させる電動モータ10を備えることから、電動モータ10を用いてステータ翼車6sをポンプ翼車6pの回転方向である正回転方向、およびポンプ翼車6pの回転方向とは反対の負回転方向へ回転させることにより、従来に比較してトルク比tおよび容量係数Cの変化範囲が広範囲となるので、車両の燃費性能および動力性能を大幅に向上させることができる。
 また、本実施例によれば、クラッチCsを接続状態として電動モータ10によってステータ翼車6sの回転状態を制御する第1モードと、クラッチCiを接続状態として電動モータ10による力行および回生を可能とする第2モードと、前記第1モードと第2モードとを車両の走行条件に応じて選択する選択するモード切換手段132とを、備えるため、車両の走行条件に応じて好適に第1モードまたは第2モードが選択される。これにより、モードに応じた好適な制御が実施され、車両の燃費性能および動力性能を大幅に向上させることができる。
 また、本実施例によれば、モード切換手段132は、電動モータ10の許容回転速度に応じて、前記第1モードおよび第2モードのいずれかに切り換えるため、電動モータ10の許容回転速度を算出することで、モードが好適に切り換えられ、車両の燃費性能および動力性能を大幅に向上させることができる。
 また、本実施例によれば、モード切換手段132は、タービン翼車6tの回転速度が電動モータ10の許容回転速度よりも大きいとき、第1モードに切り換えるため、トルクコンバータ6の可変容量制御が可能となる。これより、トルクコンバータ6の可変容量を介して車両の駆動力を補助(アシスト)することができる。さらに、タービン翼車6tの回転速度が高いときに電動モータ10を連結することで、電動モータ10が過回転化されることも回避される。
 また、本実施例によれば、モード切換手段132は、タービン翼車6tの回転速度が電動モータ10の許容回転速度よりも小さいとき、第2モードに切り換えるため、車両を電動モータ10によって直接駆動並びに制動(回生)させることができる。なお、この電動モータ10による直接駆動は、エンジン9の駆動力および電動モータ10の駆動力によって車両を駆動させる、所謂アシスト走行をも含むこととする。
 また、本実施例によれば、モード切換手段132は、車両の走行条件に応じてさらに第3モードに切り換えるため、第3モードに切り換えられると、ステータ翼車6sが回転停止状態とされる。これより、第3モードが適宜切り換えられることで、従来のトルクコンバータとしても作動させることができる。例えば、トルクコンバータ6のトルクコンバータレンジでは、ブレーキBsを接続状態にしてステータ翼車6sを回転停止させてトルク比を増大させる。また、例えばトルクコンバータ6のカップリングレンジでは、ブレーキBsを遮断させてステータ翼車を空転させる。
 つぎに、本発明の他の実施例を説明する。なお、以下の説明において前述の実施例と共通する部分には同一の符号を付して説明を省略する。
 図10は、本発明の他の実施例である電子制御装置78による制御作動の要部を説明する機能ブロック線図である。有段変速制御手段120および駆動力要求判定手段122は、前述の実施例と同様であるため、その説明を省略する。必要駆動力算出手段150は、アクセル開度Accや車速Vなどに基づいて、運転者の要求する必要駆動力を算出する。必要駆動力判定手段152は、算出された必要駆動力と電動モータ10によって定格的に出力可能な駆動力、或いは現在の電動モータ10の駆動状態に基づいて算出される出力可能な駆動力とを比較し、必要駆動力が電動モータ10によって出力可能な駆動力よりも大きいか否かを判定する。
 必要駆動力判定手段152が否定される、すなわち電動モータ10によって出力可能な駆動力が必要駆動力よりも大きい場合、モータ余裕駆動力判定手段154が実行される。モータ余裕駆動力判定手段154は、算出された必要駆動力と電動モータ10が出力可能な駆動力との差で定義される余裕駆動力が予め実験的に設定されている閾値よりも大きいか否かを判定する。なお、前記閾値は、アクセルペダルがさらに踏み込まれた際の加速要求に対応できるような駆動力に設定されている。
 そして、モード切換手段132は、モータ余裕駆動力判定手段154の判定結果に基づいて最適な車両の走行態様(走行モード)を選択する。例えば、前記余裕駆動力が閾値よりも大きい場合、モード切換手段132は、電動モータ10のみによる走行が可能であると判定し、エンジン9を停止させて、電動モータ10の駆動のみによる電気走行モード(第1モード)に切り換える。一方、前記余裕駆動力が閾値よりも小さい場合、モード切換手段132は、エンジン9および電動モータ10によるアシスト走行モード(第1モード)に切り換える。そして、電動機制御手段134は、上記切り換えられた第1モードに対応するクラッチCsを係合させると共に、前記必要駆動力が得られるように、電動モータ10による可変容量制御を実施する。なお、電動モータ10の制御作動は前述の実施例と同様であるため、その説明を省略する。
 必要駆動力判定手段152が肯定される、すなわち電動モータ10によって出力可能な駆動力が必要駆動力よりも小さい場合、燃料消費量算出手段156が実行される。燃料消費量算出手段156は、先ず、前記算出された必要駆動力を出力する際の瞬間燃料消費量、すなわちアクセルペダルが踏み込まれることによるアクセル開度Accに対応するエンジン9の燃料消費量を算出する。具体的には燃焼噴射装置110の燃料噴射データに基づいて、エンジン9の瞬間的な燃料消費量WAを算出する。
 また、燃料消費量算出手段156は、電動モータ10によって直接的に車両を補助走行(アシスト走行)させる、すなわち電動モータ10による駆動・回生制御(第2モード)を実施した場合である直接アシスト時のエンジン9燃料消費量WBを算出する。この燃料消費量WBは、例えば、算出された瞬間的な燃料消費量WAをパラメータとする予め実験的に設定された燃料消費量マップ、或いは燃料消費の関係式に基づいて算出される。
 さらに、燃料消費量算出手段156は、トルクコンバータ6の可変容量制御時(第1モード)、すなわち、クラッチCsを係合させてトルクコンバータ6の容量係数Cおよびトルク比tの変更制御を実施した場合である可変容量アシスト時の燃料消費量WCを算出する。この燃料消費量WCは、例えば、算出された瞬間的な燃料消費量WAをパラメータとする予め実験的に設定された燃料消費量マップ、或いは燃料消費の関係式に基づいて算出される。
 燃料消費量比較手段158は、燃料消費量算出手段156によって算出された直接アシスト時の燃料消費量WBと可変容量アシスト時の燃料消費量WCとを比較し、燃料消費量WBが燃料消費量WCよりも少ないか否かを判定する。
 そして、モード切換手段132は、上記の各選択手段に基づいて最適な走行モードに切り換える。例えば、燃料消費量WBが燃料消費量WCよりも少ない場合、モード切換手段132は、電動モータ10の直接アシストによる走行モード(第2モード)に切り換える。一方、燃料消費量WCが燃料消費量WBよりも少ない場合、モード切換手段132は、可変容量アシストによる走行モード(第1モード)に切り換える。そして、電動機制御手段134は、上記選択された走行モードに対応するクラッチCsまたはCiを係合させる命令を油圧制御回路30に出力して、電動モータ10を好適に制御する。なお、第1モードまたは第2モードに切り換えられた場合の電動モータ10の作動制御は前述の実施例と同様であるため、その説明を省略する。このように、モード切換手段132は、車両の必要駆動力、燃料消費量、および余裕駆動力に基づいて、モードを切り換える。
 図11は、電子制御装置78の制御作動の要部、すなわち車両の走行条件に応じて走行モードを選択的に変更する制御作動を説明する他のフローチャートであり、例えば数msec乃至数十msecの極めて短いサイクルタイムで繰り返し実行されるものである。
 先ず、駆動力要求判定手段122に対応するSB1において、電動モータ10に対する駆動力要求が生じたか否かが判定される。SB1が否定されると、例えば第3モードに切り換えられるなどして本ルーチンは終了させられる。SB1が肯定されると、必要駆動力算出手段150に対応するSB2において、アクセル開度Accや車速Vなどに基づいて必要駆動力が算出される。そして、必要駆動力判定手段152に対応するSB3において、SB2で算出された必要駆動力が電動モータ10によって出力可能な駆動力よりも大きいか否かが判定される。SB3が否定されると、モータ余裕駆動力判定手段154に対応するSB10において、算出された必要駆動力と電動モータ10が出力可能な駆動力との差で定義される余裕駆動力が予め実験的に設定されている閾値よりも大きいか否かが判定される。SB10が肯定されると、モード切換手段132および電動機制御手段134に対応するSB11において、電気走行モードが実行される。一方、SB10が否定されると、モード切換手段132および電動機制御手段134に対応するSB12において、エンジン9および電動モータ10によるアシスト走行が実行される。
 SB3に戻り、SB3が肯定されると、燃料消費量算出手段156に対応するSB4において、エンジン9の瞬間的な燃料消費量WAが算出される。次いで、燃料消費量算出手段156に対応するSB5において、電動モータ10による直接アシスト(第2モード)を実施した場合の燃料消費量WBが算出される。さらに、燃料消費量算出手段156に対応するSB6において、トルクコンバータ6の可変容量制御(第1モード)を実施した場合の燃料消費量WCが算出される。
 そして、燃料消費量比較手段158に対応するSB7において、SB5およびSB6で算出された燃料消費量WBおよび燃料消費量WCを比較し、燃料消費量WBが燃料消費量WCよりも少ないか否かが判定される。SB7が肯定されると、モード切換手段132および電動機制御手段134に対応するSB8において、電動モータ10の直接アシスト(第2モード)による走行が実施される。SB7が否定されると、モード切換手段132および電動機制御手段134に対応するSB9において、電動モータ10の可変容量アシスト(第1モード)による走行が実施される。
 上述のように、本実施例によれば、モード切換手段132は、車両の必要駆動力に応じて、第1モードおよび第2モードのいずれかを選択するため、車両の必要駆動力を算出することで、好適な走行モードに切り換えられ、車両の燃費性能および動力性能を大幅に向上させることができる。また、電動モータ10の出力可能限界を超える駆動力が要求される場合、それに該当する制御を回避することができる。
 また、本実施例によれば、モード切換手段132は、車両の必要駆動力と電動モータ10の出力とを比較することにより、第1モードおよび第2モードのいずれかに切り換えるため、電動モータ10の性能に合わせて好適なモードに切り換えることができる。
 また、本実施例によれば、モード切換手段132は、車両の必要駆動力が電動モータ10の出力よりも大きいとき、燃料消費量比較手段158で判定される燃料消費量の少ない側のモードに切り換えるため、車両の燃費性能を向上させることができる。
 また、本実施例によれば、車両の必要駆動力が電動モータ10の出力よりも小さいとき、モード切換手段132は、第2モードに切り換えるため、電動モータ10によって車両を直接アシスト(電気走行を含む)させることができる。
 図12は、本発明の他の実施例である電子制御装置78による制御作動の要部を説明する機能ブロック線図である。有段変速制御手段120は、前述の実施例と同様であるため、その説明を省略する。エンジン駆動判定手段168は、エンジン9が駆動状態か否かを判定する。必要駆動力算出手段150は、アクセル開度Acc、車速V、並びに自動変速機8のギヤ比などに基づいて、運転者の要求する必要駆動力を算出する。蓄電容量判定手段160は、電動モータ10に電力を供給する蓄電装置50の充電容量SOCが予め設定された許容下限値である閾値Sよりも小さいか否かを判定する。そして、充電容量SOCが閾値Sよりも小さい場合、ロックアップ判定手段162が実行される。
 ロックアップ判定手段162は、トルクコンバータ6において、ロックアップクラッチ制御が実行されているか否かを判定する。ロックアップクラッチL/Uの制御状態は、例えばロックアップクラッチL/Uの作動を切り換える図示しないソレノイドバルブの出力信号やロックアップクラッチL/Uを係合させる動力源となる係合油圧に基づいて判定される。そして、ロックアップ判定手段162の判定結果に基づいて、モード切換手段132は、好適な電動モータ10によるモードに切り換える。具体的には、ロックアップ制御が実施されている場合、モード切換手段132は、クラッチCiを係合(第2モード)させて、電動機制御手段134による入力軸22の回生による発電制御を実行させる。一方、ロックアップ制御が実施されていない場合、モード切換手段132は、クラッチCsを係合(第1モード)させて、電動機制御手段134によるステータ翼車6sの回生による発電制御を実行させる。
 また、蓄電容量判定手段160によって蓄電容量SOCが閾値Sよりも多いと判定される場合、電動機作動時間算出手段164が実施される。電動機作動時間算出手段164は、先ず電動モータ10のみによって車両を走行させた場合に走行可能なEV走行可能時間T1を算出する。なお、EV走行可能時間T1は、例えば電動モータ10の駆動力と蓄電容量SOCとで予め実験的に設定された作動可能時間マップに基づいて算出される。また、電動機作動時間算出手段164は、電動モータ10のアシスト走行時、すなわちエンジン9および電動モータ10によって車両を駆動させる場合(第2モード)に作動可能な直接アシスト走行可能時間T2を算出する。なお、直接アシスト走行可能時間T2は、上記と同様に、電動モータ10のアシスト時に必要とされる駆動力と蓄電容量SOCとで予め実験的に設定された作動可能時間マップに基づいて算出される。このとき、電動モータ10には、エンジン9の駆動力をアシストする程度の駆動力が要求されるため、直接アシスト走行可能時間T2は、EV走行可能時間T1よりも大きくなる。さらに、電動機作動時間算出手段164は、トルクコンバータ6の可変容量制御によって必要駆動力を出力させる場合(第1モード)に走行可能なトルコンアシスト走行可能時間T3を算出する。なお、トルコンアシスト走行可能時間T3は、上記と同様に、必要駆動力を出力させる際に必要となる電動モータ10の駆動力と蓄電容量SOCとで予め実験的に設定された作動可能時間マップに基づいて算出される。このとき、電動モータ10には、ステータ翼車6sを駆動させる程度の駆動力が要求されるため、トルコンアシスト走行可能時間T3はEV走行可能時間T1よりも大きくなる。
 電動機作動時間判定手段166は、前記電動機作動時間算出手段164よって算出された各走行可能時間の大小関係を比較する。具体的には、先ず、電動機作動時間判定手段166は、EV走行可能時間T1と予め実験などによって設定されている作動時間である閾値Tとを比較し、EV走行可能時間T1がその閾値Tよりも大きいか否かを判定する。EV走行可能時間T1が閾値Tよりも小さい場合、電動機作動時間判定手段166は、さらに、電動機作動時間算出手段164によって算出された直接アシスト走行可能時間T2とトルコンアシスト走行可能時間T3とを比較し、直接アシスト走行可能時間T2がトルコンアシスト走行可能時間T3よりも大きいか否かを判定する。
 そして、モード切換手段132は、電動機作動時間判定手段166の判定結果に基づいて好適な走行モードに切り換える。具体的には、例えばEV走行可能時間T1が閾値Tよりも大きいと判定されると、モード切換手段132は、電動モータ10のみによるEV走行モードに切り換える。一方、EV走行可能時間T1が閾値Tよりも小さく、且つ、直接アシスト走行可能時間T2がトルコンアシスト走行可能時間T3よりも大きい場合、エンジン9および電動モータ10によるモータアシスト走行が実施される。すなわち、第2モードに切り換えられる。また、EV走行可能時間T1が閾値Tよりも小さく、且つ、直接アシスト走行可能時間T2がトルコンアシスト走行可能時間T3よりも小さい場合、モード切換手段132は、トルクコンバータ6の可変容量制御によるトルコンアシスト走行を実施する。すなわち、第1モードに切り換えられる。そして、電動機制御手段134は、これらの選択された走行モードに応じて好適な電動モータ10による制御を実行する。なお、電動モータ10の各走行モードに応じた制御作動は、前述の実施例と同様であるため、その説明を省略する。このように、モード切換手段132は、蓄電装置50の蓄電容量SOC、ロックアップクラッチL/Uの係合状態、および電動モータ10の各モードにおける作動可能時間に基づいてモードを切り換える。
 図13は、電子制御装置78の制御作動の要部、すわわち車両の走行条件に応じて走行モードを選択的に変更する制御作動を説明するフローチャートであり、例えば数msec乃至数十msec程度の極めて短いサイクルタイムで繰り返し実行されるものである。
 先ず、エンジン駆動判定手段168に対応するSC1において、エンジン9が駆動状態であるか否かが判定される。SC1が否定されると、本ルーチンは終了させられる。SC1が肯定されると、必要駆動力算出手段150に対応するSC2において、アクセル開度Accや車速Vなどに基づいて必要駆動力が算出される。そして、蓄電容量判定手段160に対応するSC3において、蓄電装置50の蓄電容量SOCが閾値Sよりも小さいか否かが判定される。SC3が肯定されると、ロックアップ判定手段162に対応するSC4において、ロックアップクラッチL/Uの制御が実施中であるか否かが判定される。SC4が肯定されると、モード切換手段132および電動機制御手段134に対応するSC5において、第2モードが選択され、入力軸22の回生による発電制御が実行される。一方、SC4が否定されると、モード切換手段132および電動機制御手段134に対応するSC6において、第1モードが選択され、ステータ翼車6sの回生による発電制御が実行される。
 SC3に戻り、SC3が否定されると、電動機作動時間算出手段164に対応するSC7において、電動モータ10のみの走行可能時間であるEV走行可能時間T1が算出される。次いで、電動機作動時間算出手段164に対応するSC8において、エンジン9および電動モータ10によって車両を駆動させる場合に作動可能な直接アシスト走行可能時間T2が算出される。さらに、電動機作動時間算出手段164に対応するSC9において、電動モータ10によるトルコンアシスト走行時のトルコンアシスト走行可能時間T3が算出される。そして、電動機作動時間判定手段166に対応するSC10において、EV走行可能時間T1が閾値Tよりも大きいか否かが判定される。SC10が肯定されると、モード切換手段132および電動機制御手段134に対応するSC11において、電動モータ10のみによる駆動が可能と判定され、エンジン9を停止させると共に、クラッチCiを係合させて、電動モータ10による走行を実施する(第2モード)。一方、SC10が否定されると、さらに電動機作動時間判定手段166に対応するSC12において、直接アシスト走行可能時間T2がトルコンアシスト走行可能時間T3よりも大きいか否かが判定される。SC12が肯定されると、モード切換手段132および電動機制御手段134に対応するSC13において、エンジン9および電動モータ10による走行を実施すると判定され、エンジン9および電動モータ10による駆動制御が実施される(第2モード)。また、SC12が否定されると、モード切換手段132および電動機制御手段134に対応するSC14において、トルクコンバータ6の可変容量制御による走行が選択され、クラッチCsが係合されて電動モータ10によるトルクコンバータ6の可変容量制御(第1モード)が実施される。
 上述のように、本実施例によれば、モード切換手段132は、電動モータ10に電力を供給する蓄電装置50の蓄電状態SOCに応じて、第1モードおよび第2モードのいずれかを選択するため、蓄電装置50の蓄電状態を検出することで、モードが好適に選択され、車両の燃費性能および動力性能を大幅に向上させることができる。また、蓄電装置50が低容量時では、電動モータ10からの出力が制限されるので、制限される出力を越える出力が要求されるモードは選択されない。
 また、本実施例によれば、蓄電装置50の蓄電状態SOCが所定の閾値Sよりも小さいとき、モード切換手段132は、トルクコンバータ6に備えられるロックアップクラッチL/Uの係合状態に基づいて第1モードおよび第2モードのいずれかに切り換えるため、好適なモードでの走行が可能となる。例えば、ロックアップクラッチL/Uが係合された状態であれば、第2モードに切り換えることで、入力軸22による発電制御が可能となり、蓄電状態SOCを改善させることができる。また、ロックアップクラッチL/Uが非係合状態であれば、ステータ翼車6sによる発電制御が可能となり、蓄電状態SOCを改善させることができる。
 また、本実施例によれば、第1モードおよび第2モードに切り換えたときの各電動機作動可能時間を算出する電動機作動時間算出手段164と、前記各作動可能時間の大小関係を比較する電動機作動時間判定手段166とを、備え、蓄電装置50の蓄電状態SOCが所定の閾値Sよりも大きいとき、モード切換手段132は、電動モータ10の作動可能時間の比較によって好適なモードに切り換えるため、車両を好適なモードで走行させることができる。例えば、第2モードにおいて、電動モータ10のみによる電気走行モードでの作動可能時間T1が所定の閾値Bを超えるとき、電気走行モードに切り換える。また、第1モードおよび第2モードとのそれぞれの作動開始時間を比較し、作動時間の長い側のモードに切り換える。
 図14は、本発明の他の実施例である車両用駆動装置180の一部を説明する骨子図である。本実施例の車両用駆動装置180は、前述した図1の車両用駆動装置7に、さらに遊星歯車装置182が電動モータ10とトルクコンバータ6との間に介装されている。そして、遊星歯車装置182の各回転要素が動力伝達可能に連結されることで、差動機構184が構成される。
 差動機構184において、遊星歯車装置182のサンギヤSは、クラッチCsを介してステータ翼車6sに選択的に連結されると共に、ブレーキBsを介して静止部材であるケース11に選択的に連結される。遊星歯車装置182のキャリヤCAは、クラッチCiを介して入力軸22に選択的に連結される。遊星歯車装置182のリングギヤRは、電動モータ10に連結される。ここで、本実施例の車両用駆動装置180において、サンギヤSが本発明の第1回転要素RE1を構成し、キャリヤCAが本発明の第2回転要素RE2を構成し、リングギヤRが本発明の第3回転要素RE3を構成している。なお、本実施例においても、クラッチCsが本発明の第1断続手段を構成しており、クラッチCiが本発明の第2断続手段を構成しており、ブレーキBsが本発明の第3断続手段を構成している。
 上記のように構成される車両用駆動装置180においても、前述の実施例と同様に、クラッチCs、クラッチCi、およびブレーキBsを車両の走行条件に応じて断続させることにより、電動モータ10による駆動・回生制御(第2モード)、トルクコンバータ6の可変容量制御(第1モード)、および従来のトルクコンバータとしての作動(第3モード)を適宜実施させることができる。
 図15は、クラッチCs、Ci、およびブレーキBsの係合状態に基づく車両用駆動装置180のモードと関係を示す係合作動表である。例えば、クラッチCsとクラッチCiとを係合状態(接続状態)とさせることで、トルクコンバータステータ6の容量が制御可能となる第1モードとして機能させることができる。クラッチCsが係合されると、電動モータ10とステータ翼車6sとが遊星歯車装置182を介して動力伝達可能に連結される。また、クラッチCiが係合されると、入力軸22とキャリヤCAとが連結されるので、キャリヤCiが反力発生部材として機能する。なお、入力軸22は、自動変速機8を介して車輪に連結されるため、他の回転要素に対してイナーシャ(慣性力)が大きいので、反力発生部材として機能させることが可能となる。これにより、入力軸22を反力基準として、電動モータ10によってステータ翼車6sの回転速度を制御させることが可能となり、トルクコンバータステータ6を可変容量型トルクコンバータとして機能させることが可能となる。
 また、クラッチCiとブレーキBsとを係合(接続)状態とすることで、電動モータ10が遊星歯車装置182を介して入力軸22に動力伝達可能に接続される(第2モード)。これにより、電動モータ10によって入力軸を回転駆動させることができると共に、入力軸22側から伝達される駆動力によって電動モータ10による回生が可能となる。このときブレーキBsが係合されることで、サンギヤSが反力発生部材として機能する。
 また、クラッチCsが係合されると共に、クラッチCiが解放された状態で、ブレーキBsを適宜係合(スリップ係合を含む)または解放させると、第3モードとなる。ブレーキBsを係合させると、クラッチCsが係合されていることにより、ステータ翼車6sが回転停止させられる。すなわち、上記状態でブレーキBsを好適に係合または解放させることで、トルクコンバータ6のステータ翼車6sを従来のトルクコンバータステータと同様の態様で作動させることが可能となる。具体的には、例えばトルクコンバータ6のトルクコンバータレンジでは、ブレーキBsを係合(接続)させることで、トルクコンバータ6内の作動油の流れを変化させてトルクを増大させる。また、カップリングレンジでは、ブレーキBsを解放(遮断)させることで、ステータ翼車6sを空転させて流体継手として機能させる。なお、ブレーキBsを常時解放させると、トルクコンバータ6が流体継手と同様の態様で作動することとなる。
 さらに、クラッチCiが解放されると共に、ブレーキBsが係合された状態で、クラッチCsを適宜係合(スリップ係合を含む)または解放させると、第3モードとなる。クラッチCsを係合させると、ブレーキBsが係合されていることにより、ステータ翼車6sが回転停止させられる。すなわち、上記状態でクラッチCsを好適に係合または解放させることで、トルクコンバータ6のステータ翼車6sを従来のトルクコンバータステータと同様の態様で作動させることが可能となる。具体的には、例えばトルクコンバータ6のトルクコンバータレンジでは、クラッチCsを係合(接続)させることで、トルクコンバータ6内の作動油の流れを変化させてトルクを増大させる。また、カップリングレンジでは、クラッチCsを解放(遮断)させることで、ステータ翼車6sを空転させて流体継手として機能させる。なお、クラッチCsを常時解放させると、トルクコンバータ6が流体継手と同様の態様で作動することとなる。
 なお、本実施例では、遊星歯車装置182が介装されることで、電動モータ10の駆動力が遊星歯車装置182によってトルク変換されて出力されることとなる。すなわち、電動モータ10の出力が小さいものであっても、遊星歯車装置182によってトルク増幅させることで所定駆動力を出力することが可能となる。これより、電動モータ10を小型化することも可能となる。
 上述のように、本実施例によれば、上記のように構成される車両用駆動装置180であっても、本制御を実行すると前述の実施例と同様の効果が得られ、さらに、遊星歯車装置182が介装されて、遊星歯車装置182の各回転要素が上述のように連結されるため、電動モータ10の出力トルクが遊星歯車装置182を介してトルク変換される。これより、電動モータ10をさらに小型化することができる。
 以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。
 例えば、前述の実施例では、車両用駆動装置7の後段部には、有段式の自動変速機8が設けられているが、この自動変速機8は、有段式の変速機に限定されず、例えばベルト式無段変速機などの無段変速機であっても構わない。すなわち、変速機の構造は本発明において、矛盾のない範囲で自由に変更することができる。
 また、前述の各実施例は、それぞれ独立して記載されているが、これらを組み合わせて実施しても構わない。
 また、前述の実施例の車両用駆動装置180において、遊星歯車装置182の連結関係は、特に限定されるものではなく、さらに、複数個の遊星歯車装置、或いはダブルピニオン式の遊星歯車装置で構成されるものであっても構わない。
 また、前述の実施例では、必要駆動力はアクセル開度Accや車速Vに基づいて算出されるが、アクセル開度Accの変わりにスロットル弁開度θTHに基づいて算出しても構わない。
 また、前述の実施例では、電動モータ10の制御は、フィードバック制御もしくは、フィードフォワード制御によって実施されるが、例えばタイマ制御など、他の方法によって制御しても構わない。
 また、前述の実施例では、ブレーキBsが設けられているが、第3モードをなくした構成であっても十分な効果が得られるので、必ずしもブレーキBsを設ける必要はない。
 なお、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。

Claims (13)

  1.  ポンプ翼車と、タービン翼車と、該タービン翼車とポンプ翼車との間に回転可能に配設されたステータ翼車とを、有するトルクコンバータと、
     前記ステータ翼車を駆動および/または制動させる電動機と、
     前記電動機と前記ステータ翼車とを断続可能な第1断続手段と、
     前記電動機と出力軸とを断続可能な第2断続手段と、
     前記第1断続手段を接続状態として前記電動機によって前記ステータ翼車の回転状態を制御する第1モードと、
     前記第2断続手段を接続状態として前記電動機による力行および回生を可能とする第2モードと、
     前記第1モードと第2モードとを車両の走行条件に応じて切り換えるモード切換手段とを、備えることを特徴とする車両用駆動装置の制御装置。
  2.  前記モード切換手段は、前記電動機の許容回転速度に応じて、前記第1モードおよび第2モードのいずれかに切り換えることを特徴とする請求項1の車両用駆動装置の制御装置。
  3.  前記モード切換手段は、前記タービン翼車の回転速度が前記電動機の許容回転速度よりも大きいとき、前記第1モードに切り換えることを特徴とする請求項2の車両用駆動装置の制御装置。
  4.  前記モード切換手段は、前記タービン翼車の回転速度が前記電動機の許容回転速度よりも小さいとき、前記第2モードに切り換えることを特徴とする請求項2の車両用駆動装置の制御装置。
  5.  前記モード切換手段は、車両の必要駆動力に応じて、前記第1モードおよび第2モードのいずれかに切り換えることを特徴とする請求項1の車両用駆動装置の制御装置。
  6.  前記モード切換手段は、前記車両の必要駆動力と前記電動機の出力とを比較することにより、前記第1モードおよび第2モードのいずれかに切り換えることを特徴とする請求項5の車両用駆動装置の制御装置。
  7.  前記第1モードおよび第2モードに切り換えたときの各燃料消費量を算出する燃料消費量算出手段と、
     前記各燃料消費量の大小関係を比較する燃料消費量比較手段とを、備え、
     前記モード切換手段は、前記車両の必要駆動力が前記電動機の出力よりも大きいとき、前記燃料消費量比較手段で判定される燃料消費量の少ない側のモードに切り換えることを特徴とする請求項6の車両用駆動装置の制御装置。
  8.  前記車両の必要駆動力が前記電動機の出力よりも小さいとき、前記モード切換手段は、前記第2モードに切り換えることを特徴とする請求項6の車両用駆動装置の制御装置。
  9.  前記モード切換手段は、前記電動機に電力を供給する蓄電装置の蓄電状態に応じて、前記第1モードおよび第2モードのいずれかに切り換えることを特徴とする請求項1の車両用駆動装置の制御装置。
  10.  前記蓄電装置の蓄電状態が所定の閾値よりも小さいとき、
     前記モード切換手段は、前記トルクコンバータに備えられるロックアップクラッチの係合状態に基づいて前記第1モードおよび第2モードのいずれかに切り換えることを特徴とする請求項9の車両用駆動装置の制御装置。
  11.  前記第1モードおよび第2モードに切り換えたときの各電動機作動可能時間を算出する電動機作動時間算出手段と、
     前記各作動可能時間の大小関係を比較する電動機作動時間比較手段とを、備え、
     前記蓄電装置の蓄電状態が所定の閾値よりも大きいとき、前記モード切換手段は、前記電動機の作動可能時間の比較によって好適なモードに切り換えることを特徴とする請求項9の車両用駆動装置の制御装置。
  12.  前記ステータ翼車と静止部材とを断続可能な第3断続手段をさらに備え、該第3断続手段を接続状態として前記ステータ翼車を停止状態とする第3モードを備え、
     前記モード切換手段は、車両の走行条件に応じてさらに前記第3モードに切り換えることを特徴とする請求項1乃至11のいずれか1つの車両用駆動装置の制御装置。
  13.  前記トルクコンバータと前記電動機との間には遊星歯車装置が介装されており、
     前記遊星歯車装置の3つの回転要素を第1回転要素、第2回転要素、第3回転要素とすると、
     前記第1回転要素が前記第1断続手段を介して前記ステータ翼車と連結され、
     前記第1回転要素が前記第3断続手段を介して前記静止部材と連結され、
     前記第2回転要素が前記第2断続手段を介して前記出力軸と連結され、
     前記第3回転要素が前記電動機と連結されることを特徴とする請求項12の車両用駆動装置の制御装置。
PCT/JP2009/052111 2008-03-13 2009-02-06 車両用駆動装置の制御装置 WO2009113347A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112009000557T DE112009000557T5 (de) 2008-03-13 2009-02-06 Steuergerät für eine Fahrzeug-Antriebsvorrichtung
CN2009801087156A CN101970257B (zh) 2008-03-13 2009-02-06 车辆用驱动装置的控制装置
US12/922,009 US8583335B2 (en) 2008-03-13 2009-02-06 Control device for vehicular drive apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-064387 2008-03-13
JP2008064387A JP4900292B2 (ja) 2008-03-13 2008-03-13 車両用駆動装置の制御装置

Publications (1)

Publication Number Publication Date
WO2009113347A1 true WO2009113347A1 (ja) 2009-09-17

Family

ID=41065019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052111 WO2009113347A1 (ja) 2008-03-13 2009-02-06 車両用駆動装置の制御装置

Country Status (5)

Country Link
US (1) US8583335B2 (ja)
JP (1) JP4900292B2 (ja)
CN (1) CN101970257B (ja)
DE (1) DE112009000557T5 (ja)
WO (1) WO2009113347A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012240566A (ja) * 2011-05-20 2012-12-10 Nissan Motor Co Ltd ハイブリッド車両の電気走行制御装置
US10668801B2 (en) 2014-11-17 2020-06-02 Alpraaz Ab Powertrain for a vehicle

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009222082A (ja) * 2008-03-13 2009-10-01 Toyota Motor Corp 可変容量型トルクコンバータ
JP4349464B2 (ja) * 2008-03-13 2009-10-21 トヨタ自動車株式会社 車両用駆動装置
JP4900292B2 (ja) 2008-03-13 2012-03-21 トヨタ自動車株式会社 車両用駆動装置の制御装置
JP5545309B2 (ja) * 2012-03-06 2014-07-09 株式会社デンソー エネルギ管理システム
JP5315487B1 (ja) 2012-04-03 2013-10-16 本田技研工業株式会社 可変容量ポンプの制御装置
SE536640C2 (sv) * 2012-06-27 2014-04-22 Scania Cv Ab Förfarande för styrning av ett drivsystem hos ett fordon, ett drivsystem, ett datorprogram, en datorprogramprodukt och ett fordon
SE1350768A1 (sv) 2012-06-27 2013-12-28 Scania Cv Ab Förfarande för framförande av ett fordon
WO2014022698A1 (en) * 2012-08-02 2014-02-06 New Hybrid Technologies, Llc Hybrid drive system
US9358974B2 (en) * 2012-12-07 2016-06-07 Ford Global Technologies, Llc Method and system for adjusting hybrid vehicle driveline torque
JP5863837B2 (ja) * 2013-03-07 2016-02-17 本田技研工業株式会社 自動変速機
SE537448C2 (sv) * 2013-03-22 2015-05-05 Wplug Ab Plugg avsedd att användas i våtrum
CN105452630B (zh) * 2013-07-23 2018-08-31 加特可株式会社 车辆的控制装置及其控制方法
CN103485780B (zh) * 2013-09-05 2015-12-23 中传重型装备有限公司 掘进机中铲板星轮驱动装置及其应用
FR3011698B1 (fr) * 2013-10-09 2015-10-23 Valeo Embrayages Actionneur electrique pour systeme de transmission de vehicule
JP5841991B2 (ja) * 2013-12-24 2016-01-13 本田技研工業株式会社 輸送機関の駆動装置
US10189460B2 (en) * 2015-02-12 2019-01-29 Ford Global Technologies, Llc Methods and system for operating a vehicle transmission
DE102015208581A1 (de) * 2015-05-08 2016-11-10 Zf Friedrichshafen Ag Getriebe für ein Kraftfahrzeug
DE102017104720B4 (de) * 2016-03-23 2018-12-20 Toyota Jidosha Kabushiki Kaisha Drehmomentwandler mit Drehschwingungsdämpfungsvorrichtung
SE540282C2 (en) * 2016-11-01 2018-05-22 Bae Systems Haegglunds Ab Power split hybrid powertrain
KR20180067262A (ko) * 2016-12-12 2018-06-20 현대자동차주식회사 하이브리드 차량의 주행 제어 장치 및 방법
JP6405404B1 (ja) * 2017-03-30 2018-10-17 本田技研工業株式会社 自動変速機
KR101838512B1 (ko) * 2017-04-04 2018-03-14 현대자동차주식회사 하이브리드 자동차 및 그를 위한 충전 모드 제어 방법
US10821977B1 (en) * 2017-11-15 2020-11-03 Motiv Power Systems, Inc. Pre-loading drivetrain to minimize electric vehicle rollback and increase drive responsiveness
CN109469718A (zh) * 2018-12-27 2019-03-15 贵州凯星液力传动机械有限公司 变矩和耦合工况可控转换的方法及液力变矩器
US11674566B2 (en) * 2019-04-10 2023-06-13 Dana Heavy Vehicle Systems Group, Llc Methods and systems for a multi-speed electric axle assembly

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5050509A (ja) * 1973-08-30 1975-05-07
JPS5744252U (ja) * 1980-08-27 1982-03-11
JPH02145353U (ja) * 1989-05-11 1990-12-10
JPH10339363A (ja) * 1997-06-05 1998-12-22 Luk Getriebe Syst Gmbh 流体力学的なトルクコンバータ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3382855A (en) * 1965-09-16 1968-05-14 Glamann Wilhelm Torque converters and power plants
DE2830543A1 (de) * 1978-07-12 1980-01-24 Volkswagenwerk Ag Hydrodynamisch-mechanisches getriebe fuer kraftfahrzeuge
JPS5744252A (en) * 1980-08-28 1982-03-12 Toshiba Corp Automatic jacket carrying device of disk player
JPH01169170A (ja) 1987-12-23 1989-07-04 Toyota Motor Corp 可変容量トルクコンバータ
JPH02145353A (ja) * 1988-11-29 1990-06-04 Canon Inc サーマルヘッド及び該サーマルヘツドを用いた熱転写記録装置
US5415603A (en) * 1992-04-01 1995-05-16 Kabushikikaisha Equos Research Hydraulic control system for hybrid vehicle
CN2168127Y (zh) * 1993-04-10 1994-06-08 哈尔滨工业大学 一种限速式可调节液力变矩器
JP3889381B2 (ja) * 2003-08-01 2007-03-07 本田技研工業株式会社 ハイブリッド車両の制御装置
US7676313B2 (en) * 2006-10-12 2010-03-09 Ford Global Technologies, Llc Target speed control strategy for power-off shifts in a hybrid electric vehicle
JP4900292B2 (ja) 2008-03-13 2012-03-21 トヨタ自動車株式会社 車両用駆動装置の制御装置
JP4349464B2 (ja) 2008-03-13 2009-10-21 トヨタ自動車株式会社 車両用駆動装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5050509A (ja) * 1973-08-30 1975-05-07
JPS5744252U (ja) * 1980-08-27 1982-03-11
JPH02145353U (ja) * 1989-05-11 1990-12-10
JPH10339363A (ja) * 1997-06-05 1998-12-22 Luk Getriebe Syst Gmbh 流体力学的なトルクコンバータ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012240566A (ja) * 2011-05-20 2012-12-10 Nissan Motor Co Ltd ハイブリッド車両の電気走行制御装置
US10668801B2 (en) 2014-11-17 2020-06-02 Alpraaz Ab Powertrain for a vehicle
US11046168B2 (en) 2014-11-17 2021-06-29 Alpraaz Ab Powertrain for a vehicle

Also Published As

Publication number Publication date
US20110010063A1 (en) 2011-01-13
CN101970257A (zh) 2011-02-09
DE112009000557T5 (de) 2011-01-27
US8583335B2 (en) 2013-11-12
CN101970257B (zh) 2013-12-18
JP4900292B2 (ja) 2012-03-21
JP2009222083A (ja) 2009-10-01

Similar Documents

Publication Publication Date Title
JP4900292B2 (ja) 車両用駆動装置の制御装置
US8882632B2 (en) Control device of vehicle power transmission device
JP4349464B2 (ja) 車両用駆動装置
US8734294B2 (en) Control device of vehicle power transmission device
JP5505510B2 (ja) 車両用駆動装置の制御装置
JP2004211600A (ja) ハイブリッド車輌の制御装置
JP7120035B2 (ja) 車両の変速制御装置
US8640839B2 (en) Control device for vehicular power transmitting system and corresponding method
JP5282758B2 (ja) 充電制御システム
JP5716620B2 (ja) ハイブリッド車両の駆動装置
JP4807370B2 (ja) トルクコンバータの制御装置
JP2004112995A (ja) ハイブリッド車両の駆動制御装置
JP4202074B2 (ja) 車両用駆動制御装置
JP2009264481A (ja) 車両用駆動装置の制御装置
JP5807590B2 (ja) ハイブリッド車両用自動変速機の制御装置
JP2009257398A (ja) 車両用駆動装置の制御装置
JP2009257403A (ja) 車両用駆動装置の制御装置
JP2010101476A (ja) 車両の走行制御装置
JP2001165305A (ja) 車両の減速制御装置
JP2009250380A (ja) トルクコンバータの制御装置
JP2004140942A (ja) 車両用駆動制御装置
JP2009228779A (ja) 車両用駆動装置の制御装置
JP2000193082A (ja) 動力伝達機構の制御装置
JP2009275847A (ja) 車両用駆動装置の制御装置
JP2004263646A (ja) 車両のロックアップクラッチ制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980108715.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09718941

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12922009

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120090005578

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112009000557

Country of ref document: DE

Date of ref document: 20110127

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 09718941

Country of ref document: EP

Kind code of ref document: A1