WO2009108615A1 - Infundibular reducer devices - Google Patents

Infundibular reducer devices Download PDF

Info

Publication number
WO2009108615A1
WO2009108615A1 PCT/US2009/034949 US2009034949W WO2009108615A1 WO 2009108615 A1 WO2009108615 A1 WO 2009108615A1 US 2009034949 W US2009034949 W US 2009034949W WO 2009108615 A1 WO2009108615 A1 WO 2009108615A1
Authority
WO
WIPO (PCT)
Prior art keywords
wires
prosthetic valve
valve assembly
stent
middle portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2009/034949
Other languages
English (en)
French (fr)
Inventor
Morgan House
Philipp Bonhoeffer
Nasser Rafiee
Rany Huynh Busold
Nareak Douk
Juan-Pablo Mas
Stuart R. Macdonald
Michael Finney
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Vascular Inc
Original Assignee
Medtronic Vascular Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40512153&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2009108615(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Medtronic Vascular Inc filed Critical Medtronic Vascular Inc
Priority to CN200980106911.XA priority Critical patent/CN101951858B/zh
Priority to AU2009219415A priority patent/AU2009219415B2/en
Priority to JP2010548817A priority patent/JP2011512948A/ja
Priority to MX2010009289A priority patent/MX2010009289A/es
Priority to CA2715448A priority patent/CA2715448C/en
Priority to EP09714661.7A priority patent/EP2257242B2/en
Publication of WO2009108615A1 publication Critical patent/WO2009108615A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • A61F2/2418Scaffolds therefor, e.g. support stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M29/00Dilators with or without means for introducing media, e.g. remedies
    • A61M29/02Dilators made of swellable material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0028Shapes in the form of latin or greek characters
    • A61F2230/0054V-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0073Quadric-shaped
    • A61F2230/0078Quadric-shaped hyperboloidal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0073Quadric-shaped
    • A61F2230/008Quadric-shaped paraboloidal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0023Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in porosity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0039Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in diameter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0048Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in mechanical expandability, e.g. in mechanical, self- or balloon expandability

Definitions

  • This invention relates generally to the treatment of cardiac valve disease using prosthetic valves, and more particularly to replacement of malfunctioning pulmonary valves using infundibular reducer devices.
  • Natural heart valves such as aortic valves, mitral valves, pulmonary valves and tricuspid valves, often become damaged by disease in such a manner that they fail to maintain blood flow in a single direction.
  • a malfunctioning heart valve may be stenotic (i.e., heart leaflets are closed down) or regurgitant (i.e., heart leaflets are wide open).
  • Maintenance of blood flow in a single direction through the heart valve is important for proper flow, pressure and perfusion of blood through the body.
  • a heart valve that does not function properly may noticeably impair the function of the heart.
  • Cardiac valve prostheses are well known in the treatment of heart disease to replace malfunctioning heart valves. Heart valve replacement generally has been accomplished by major open heart surgery.
  • a catheter is used to insert a mechanical or bioprosthetic valve in a lumen of a blood vessel via percutaneous entry through a distal blood vessel.
  • percutaneous prosthetic valve devices comprise an expandable stent segment, a stent anchoring segment and a flow-regulation segment, such as a ball valve or a biological valve.
  • the expandable stent portion is generally expanded using a balloon that is part of a transcatheter delivery system.
  • the replacement pulmonary valve may be implanted to replace native pulmonary valves or prosthetic pulmonary valves located in valved conduits. Surgical procedures for percutaneous pulmonary valve implantation are described in Khambadkone et al., Percutaneous Pulmonary Valve Implantation in Humans, Circulation, 1189-1197 (Aug. 23, 2005).
  • Pulmonary valve replacement using venous valves is not available to all who might benefit from it due to the relatively narrow size range of available valved segments of veins, for example, with typical sizes available only up to a diameter of about 22 mm.
  • many patients requiring pulmonary valve replacement are adults and children who have right ventricular outflow tracts that are larger than 22 mm in diameter. This could have resulted, for example, from having previously undergone transannular patch repair of tetralogy of Fallot during infancy. There are other causes, however, for an enlarged right ventricular outflow tract.
  • venous valvular replacements having an upper limit of 22 mm on their diameters, cannot typically be securely implanted within these patients.
  • the present invention provides infundibular reducer devices used for replacing a malfunctioning heart valve, and in particular, a pulmonary heart valve.
  • the infundibular reducer devices may be delivered through percutaneous transcatheter implantation to an anatomic site within or near the heart.
  • the devices are at least partially self-expandable, and have modularity, such that segments of the devices are independently expandable with respect to other segments of the devices.
  • the infundibular reducer devices include a pericardial heart valve or a valved segment of bovine jugular vein, for example, and are implanted in the right ventricular outflow tract, for example.
  • the present inventive devices may include other collapsible valves and may be implanted in other anatomical sites in the body.
  • a benefit of some embodiments of the present invention is that the devices may be delivered through a catheter to a desired anatomic site and may expand without a need for a balloon to expand the devices. Delivery of devices without a balloon minimizes the bulkiness of the delivery system, which can allow for easier insertion and removal of the devices.
  • Another benefit of the present invention is that modularity of the devices allows different segments of the devices to expand and move independently. Thus, the devices are able to conform more closely to an irregular implanted site. Certain segments of the devices may rotate with respect to other segments, and the devices may shorten and lengthen. The devices are also able to move within the implanted site during the cardiac cycle, and still conform to the implanted site. As a result, the devices are more effective. [0013] Another benefit of the devices is that the devices may be collapsed and repositioned after partial deployment or partial expansion. This is beneficial if it is determined during early stages of delivery of one of the devices that the device is not being placed correctly. The device may then be re-compressed and moved to a correct location.
  • the devices are easily explantable.
  • the stent portion may be peeled from the wall of the implanted site, collapsed, and the valve and stent may then be removed from the body.
  • a further benefit of the present invention is that drastic failure of the devices due to fracture of one wire or a few wires is eliminated. Since the stent portions of the devices are comprised of a plurality of wires that are independently connected in a plurality of locations to the fabric frame, fracture of one wire or a few wires does not cause the whole device to fail.
  • the devices may include features that allow the devices to be located using fluoroscopy, for example. Fluoroscopy may be helpful in placement of the devices as well as for later identification purposes.
  • the devices may include materials that are antimicrobial, prevent thrombosis, and either increase or reduce tissue ingrowth. Such materials allow the devices to be better secured in a vessel, and decrease the chance of rejection of the devices.
  • a first aspect of the present invention is a prosthetic valve assembly.
  • One embodiment comprises: a radially self-expandable stent configured to expand to bear against a wall of a native body lumen; and an implantable prosthetic valve, having a diameter, the valve being mounted inside the stent; wherein the diameter of the stent is greater than the diameter of the prosthetic valve.
  • the stent may comprise a plurality of wires.
  • the plurality of wires may comprise a material having shape memory, or the plurality of wires may comprise a plurality of different materials.
  • the plurality of wires may be circular in shape and include a plurality of sinusoidal bends. The sinusoidal bends in the wires may have different sizes. At least some of the plurality of wires are in a nested configuration. At least some of the plurality of wires are in a point-to-point configuration.
  • the stent may comprise a middle portion having a smaller diameter than at end portions thereof, and the valve may be mounted in the middle portion.
  • the stent may comprise a middle portion having a diameter and end portions thereof may have tapered diameters in directions toward the middle portion, and the valve may be mounted in the middle portion.
  • the middle portion may be cylindrical in shape.
  • the stent may comprise a plurality of wires attached to at least one piece of fabric.
  • the middle portion and each end portion articulate with respect to each other.
  • a second embodiment of the invention is a prosthetic valve assembly comprising: a radially self-expandable stent comprising a middle portion having a smaller diameter than end portions thereof, with the end portions configured to expand to bear against a wall of a native body lumen; and an implantable prosthetic valve mounted inside the middle portion of the stent.
  • the stent may comprise a plurality of wires.
  • the plurality of wires may comprise a plurality of different materials.
  • the plurality of wires may be circular in shape and include a plurality of bends. The bends in the wires may be sinusoidal in shape.
  • the plurality of wires may comprise a material having shape memory.
  • the end portions may have tapered diameters in directions toward the middle portion.
  • the middle portion may be cylindrical in shape.
  • the stent may comprise a plurality of wires attached to at least one piece of fabric. The middle portion and each end portion articulate with respect to each other. At least some of the plurality of wires are in a nested configuration. At least some of the plurality of wires are in a point-to-point configuration.
  • a third embodiment of the present invention is a prosthetic valve assembly comprising: a radially self-expandable stent configured to expand to bear against a wall of a native body lumen, the stent comprising: a plurality of wires; and at least one piece of fabric to which the plurality of wires are attached; and an implantable prosthetic valve mounted inside the stent; wherein the plurality of wires of the stent are individually expandable and compressible providing the assembly with modularity.
  • the plurality of wires comprise circular wires having a plurality of bends around the circumference of the circular wires.
  • the plurality of wires may be in a nested configuration or a point-to-point configuration or a combination thereof.
  • the plurality of wires may comprise a material having shape memory.
  • FIG. 1 is a perspective view of an infundibular reducer device, in accordance with the present invention.
  • FIG. 2 is a side view of the infundibular reducer device of FIG. 1;
  • FIG. 3 is an end view of the infundibular device of FIGS. 1 and 2;
  • FIG. 4 is a side view of an infundibular reducer device, in accordance with the present invention.
  • FIG. 5 is a side view of an infundibular reducer device, in accordance with the present invention.
  • FIG. 6 is a perspective view of an infundibular device, in accordance with the present invention.
  • FIG. 7 is a side view of the infundibular device of FIG. 6; and
  • FIG. 8 is an end view of the infundibular device of FIGS. 6 and 7.
  • infundibular reducer and related devices are disclosed, taught and suggested by the multiple embodiments.
  • the devices are called "infundibular reducer" devices, the devices may be used in anatomic locations other than the infundibulum, such as the right ventricular outflow tract and other locations in or near the heart.
  • the devices allow for prosthetic heart valves to be implanted in the right ventricular outflow tract or the infundibulum.
  • the purpose of such devices is to allow replacement valves, such as pericardial heart valves, for example, having a smaller diameter than the diameter of the implanted site (e.g., the right ventricular outflow tract) to be implanted.
  • the devices generally disclosed and shown may be used for other purposes as well.
  • the devices disclosed are beneficially configured such that the devices fit well in irregularly-shaped anatomy.
  • the infundibular reducer devices of the present invention are preferably at least partially self-expandable.
  • the devices are modular, which means that different segments of the devices are somewhat independent in their ability to expand and move. Thus, the devices are able to conform more closely to an irregularly shaped implant site.
  • the modularity of the devices allows different segments of the devices to move with respect to one another in order to accommodate the movement of different segments of the implant site during a cardiac cycle, for example.
  • the feature of the devices that allows for the modularity is the plurality of wires that comprise the device. These wires are preferably independently connected to one piece of fabric, for example.
  • the configuration of and the material that comprises each of the plurality of wires may vary in order to provide additional modularity of the devices.
  • some segments of the devices may expand to greater diameters than other segments. Segments may rotate with respect to other segments.
  • the devices may be able to shorten and lengthen.
  • the modularity also allows the devices to better fit in an irregularly shaped implant site and move within the site during a cardiac cycle, for example.
  • the devices are more stable in the implant site, and are more effective. The better contact that the device has with the wall of the implant site, the more stable the device is in the site, which prevents paravalvular leaks around the device.
  • the infundibular reducer device 100 comprises a self-expandable stent portion 105 and a replacement valve portion 102 (visible in FIG. 3).
  • the infundibular reducer device 100 is preferably compressible to be inserted via catheter and expandable to fit a desired body lumen, such as the infundibulum or the right ventricular outflow tract.
  • the device 100 is preferably self-expandable from a first reduced diameter to a second enlarged diameter.
  • the device 100 is also preferably modular in expandability, meaning that different segments of the device 100 may independently expand from a first reduced diameter to a second enlarged diameter, and such different segments may rotate with respect to each other and/or cause the device 100 to shorten and lengthen.
  • Such modularity of expandability of the device 100 allows the device 100 to fit in an irregularly shaped implantation site (e.g., the right ventricular outflow tract).
  • the stent 105 is preferably formed from a plurality of wires 115 that are shaped in order for the stent portion 105 (and specifically different segments of the stent 105) to have a desired expanded configuration.
  • the plurality of wires 115 should allow the stent portion 105 to be compressed to a particular shape and size, and also allows the stent to regain the desired expanded configuration upon release from compression.
  • the wires 115 preferably include a series of sinusoidal bends around their circumference, as shown in FIGS. 1-3, which allow for the compression and expansion of the stent 105 with minimal force.
  • the shapes of the wires 115 may include sinusoidal bends that resemble a sine wave with rounded apices, or the wires 115 have a zig-zag design that resembles more of a triangular wave form and with sharper apices having a smaller interior angle.
  • the angles of the wires 115 may depend upon the diameter of the wires 115 and the material comprising the wires 115.
  • Other shapes of the wires 115, beside those shown, having, for example, different shapes, angles and numbers of apices, are also contemplated by the present invention.
  • Each of the plurality of wires 115 is preferably circular in shape, without free ends. However, other shapes are contemplated.
  • the ends of each of the plurality of wires 115 are preferably joined using a crimped hypotube 116, as shown in FIG. 1, that surrounds the ends and joins them. However, it is contemplated that the ends of the wires 115 may be joined using any other possible means for attachment (e.g., gluing or melting ends of wires 115 together).
  • the wires 115 preferably include sinusoidal bends around their circumference.
  • Each of the sinusoidal bends (or other shapes, as discussed above) of the wires 115 includes an apex, and as shown, the apices of each wire 115 may each contact an apex of an adjacent wire 115 (i.e., a point-to-point configuration).
  • the sinusoidal bends may line up, follow, or "nest” together and will not contact each other at apices (i.e., a nesting configuration).
  • adjacent wires within a single device may have different numbers of sinusoidal bends and apices, and therefore, less than all of the apices of adjacent wires may have either a point-to- point configuration or a nesting configuration, and it is possible to have a combination of both configurations in one device.
  • the different configurations of the wires 115 such as the point-to-point configuration and the nesting configuration may result in different load distribution to the anatomy at the implanted site. For example, separate joints will distribute the load more than those that are connected, such as in a point-to-point configuration.
  • the different configurations of the wires 115 may also allow different movement of the device.
  • the device may be able to shorten and lengthen.
  • the plurality of wires 115 comprise a material or materials that have shape memory characteristics, such as a nickel-titanium alloy (NitinolTM), or other similar inert biocompatible metal or combination of metals.
  • the material from which the stents are made includes approximately 54.5 percent to 57 percent nickel, and a majority of the balance of the material comprises titanium, as such percentages are known in the field of medical devices and surgical implants (see ASTM designation: F 2063-00, for example).
  • the stent portion 105 is preferably formed into a desired shape and made from a framework that comprises a plurality of wires 115 made of NitinolTM.
  • device 100 may include a plurality of wires 115, with different wires 115 comprising different materials.
  • the different materials may have different strengths and may contribute to modularity of the device.
  • different strengths of the wires 115 may result in some wires 115 expanding to a larger or a smaller diameter than other wires 115.
  • one embodiment may include a more stiff or rigid wire material for the wires surrounding the valve portion of the device, in order to stabilize the valve.
  • the end portions of the device may include wires made of a more flexible material, in order for the end portions to conform more closely to the anatomy of the implantation site.
  • the plurality of wires 115 of device 100 may also have different configurations.
  • the wires 115 may have different numbers of sinusoidal bends or the amplitudes of such bends may differ.
  • the varying configurations of the wires 115 also contributes to the modularity of the device 100.
  • wires 115 with sinusoidal bends that have a smaller amplitude may be stiffer than those with bends having larger amplitudes.
  • the configuration of the wires 115, as well as the number of wires 115, and the material comprising the wires 115 may all be varied in order to contribute to a desired modularity of device 100 for a given application.
  • the wires 115 of the stent portion 105 are preferably shaped, configured and aligned such that a central lumen 101 runs through the center of the stent 105 along its length.
  • a central lumen 101 accommodates a replacement valve portion 102 (FIG. 3), such as a bovine jugular vein, a pericardial heart valve, or other collapsible valve, for example.
  • Other biological or prosthetic valves may also be used in the stent portion 105, having a size and shape that accommodates the patient's anatomy.
  • FIG. 3 illustrates the inclusion of the replacement valve portion 102, it is contemplated that any of the devices shown or described herein preferably includes such a replacement valve portion 102.
  • the wires 115 of the invention are formed in their desired circular shape and also preferably including their desired sinusoidal wave pattern. This method of manufacture is preferred because if wires fracture they generally return to their earlier configuration. Thus, if a wire is formed in a flat configuration, it will generally return to that flat configuration. The straightening of a wire in a device may result in failure of the device. Therefore, an advantage of embodiments of the invention is that because the wire 115 are preferably formed in their shaped configurations, if fracture of one wire does occur, the fracture will not result in failure of the device as a whole.
  • the stent portion 105 of the device 100 preferably has extremely good flexibility, dimensional stability, very smooth surfaces, a low profile when collapsed and an immunity to fatigue and corrosion.
  • the length of the stent portion 105 can be adjusted or designed by varying the number of wires 115 that are utilized, by varying the arrangement of wires 115, and/or by varying other features of the wires 115 and arrangement of wires 115 as discussed above.
  • the working range of the stent 105 between its collapsed condition/configuration and its expanded condition/configuration can also be adjusted by choosing or designing a certain number of curves, zig-zags or bends in each wire 115.
  • the shape of the self-expandable stent 105 is one exemplary shape, which can be described as a generally hourglass shape.
  • Such an hourglass shape (which is achieved when the stent 105 is in an expanded or partially- expanded configuration) includes a middle portion 125 that is generally cylindrical in shape. This middle portion 125 has a diameter that is preferably at least slightly smaller than the diameter of end portions 130.
  • One advantage of the middle portion 125 having a smaller diameter than the end portions 130 is to allow at least a portion of the middle portion 125 of the stent 105 to hold or retain a replacement valve portion (not visible) (e.g., a valved segment of bovine jugular vein) in its central lumen, when such a replacement valve portion 102 has a smaller diameter than the lumen in which the prosthetic valve 100 is to be placed.
  • a replacement valve portion e.g., a valved segment of bovine jugular vein
  • the larger diameter of the end portions 130 allows the prosthetic valve 100 to be secured in place in such a tubular organ, or a valved anatomic site, having a diameter larger than that of the replacement valve but smaller than the diameter of the end portions 130.
  • the end portions 130 are also shown to be flared, such that they increase in diameter from where the end portions 130 extend from the middle portion 125.
  • the angle at which these flared end portions 130 extend from the middle portion 125 can vary depending on the desired maximum diameter and desired length of the stent 105, along with other factors.
  • the number, configuration and material of the wires 115 in the middle portion 125 in order to allow the stent 105 to be more rigid in that area, for example. Increased rigidity in the middle portion 125 may assist in better retaining and supporting a replacement valve 102 in the device 100.
  • the areas of the ends portions 130 that result from bends in the wire 115 on the outer edge of the end portions 130 are referred to as crowns 132 of the device 100.
  • the number, spacing, and amplitude of the crowns 132 can vary the modularity and also the stability of the device 100 in an implanted site. The more spaced out the crowns 132 are, for example, the more flexible are the end portions 130 of the device 100.
  • the invention contemplates many different configurations, numbers and spacings of the crowns 132.
  • the crowns 132 on at least one of the end portions 130 preferably comprise attachment loops 133.
  • the purpose of the attachment loops 133 is to attach the device 100 to a delivery system.
  • the loops 133 preferably do not impede blood flow through the device 100, and may be located such that the loops 133 are attached to or formed on the outer surface of the crowns 132.
  • the attachment loops 133 may preferably resemble belt loops, however, other shapes are contemplated.
  • the attachment lops 133 may be made from the same material as fabric 120, or the loops 133 may comprise suture material, for example. Other materials for the attachment loops 133 are also contemplated by the present invention, however.
  • the attachment loops 13 are threaded onto another component (e.g., a wire in a circular shape with free ends) of the delivery system, which allows the end portion 132 of the device 100 to be compressed and attached to the delivery system.
  • a compressed configuration preferably allows the device 100 to be inserted percutaneously.
  • both end portions 130 may include the attachment lops 133 on crowns 132.
  • One example of a delivery system that the device 100 may be attached to by using such attachment lops 133 is described in co-pending patent application filed on January 23, 2009, titled "Infundibular Reducer Device Delivery System and Related Methods," and having attorney docket number P27272.01.
  • the end portions 130 can be particularly articulable with respect to the middle portion 125 when the wires 115 used for the framework of the middle portion 125 and end portions 130 are not attached to each other.
  • the end portions 130 may be able to rotate with respect to one another and/or with respect to the middle portion 125.
  • the wires 115 of the middle portion 125 it would also be possible for the wires 115 of the middle portion 125 to be attached to the wires 115 of one or both end portions 130, thereby limiting movement.
  • the replacement valve 102 preferably included in device 100 is a pericardial heart valve or a preserved bovine jugular vein of the type described in the above-cited Bonhoeffer, et al.
  • Such replacement valves 102 may be formed from a variety of materials including biological materials and polymers.
  • Exemplary biological materials include homograft, allograft or xenograft, with xenograft being common and well accepted and usually from bovine, ovine, swine or porcine pericardium, or a combination thereof.
  • polymers include expanded TEFLONTM polymers, high density polyethylene, polyurethane, and combinations thereof.
  • the replacement valve portion 102 is attached to (i.e., affixed to, held by, retained by, etc.) the central lumen of the stent portion 105, and is sutured or otherwise attached within the stent 105.
  • the valve portion 102 may be sutured to the wires 115 and/or the fabric 120 of the stent 105.
  • Other means and method for attaching the replacement valve portion 102 to the stent portion 105 are also contemplated, however.
  • the replacement valve portion 102 is preferably positioned within the middle portion 125 of the device and in the central lumen 101.
  • the stent portion 105 includes one piece of fabric 120 (i.e., cloth, material, etc.) to which the wires 115 are attached or through which the wires 115 are woven.
  • the fabric 120 used for the stent can be a polyester knit, for example, or may instead be an ultra high molecular weight polyethylene (UHMWPE), cotton, or the like.
  • UHMWPE ultra high molecular weight polyethylene
  • the fabric 120 should be biocompatible and may include a number of different fabrics in different areas of the stent and/or in layers, if desired. It is also contemplated that the device 100 may include more than one piece of fabric 120.
  • the fabric portion 120 of the present invention provides connection and support for the individual wires 115.
  • the wires 115 are attached to the fabric portion 120, and may be woven through the material or otherwise attached.
  • the wires 115 preferably hold open the fabric portion 120. The movement of each wire 115 is independent in the fabric 120 and also limited by the flexibility of the wire 115 itself and by the fabric to some extent.
  • the fabric 120 may comprise stretchable material, such as a knit for example.
  • the fabric 120 may be a non-stretchable woven material, which would restrict the movement of the wires 115 more than a knit material, for example.
  • the movement of the wires 115 is dependent upon the choice of fabric 120 material as well as the material choice and shape of the wires 115 themselves.
  • the configuration of the plurality of wires 115 also affects the flexibility and movement of the stent 105.
  • the wires 115 may be nested, as in the embodiment in FIGS. 1-3, or aligned point-to-point, as in the embodiment shown in FIG. 4 (discussed below).
  • the nested configuration allows for more flexibility of the stent 105 than the point-to-point configuration.
  • the nested configuration may also allow the device 100 to be shortened and lengthened.
  • the amount of bends in the wires 115, creating the points, can also affect the flexibility and motion of the wires 115 of the stent 105.
  • This nested configuration of the wires 115 also aids in the retractability of the device 100 and the stability of the device 100 longitudinally.
  • a point-to-point configuration in which the apices may be connected together, for example by sutures, may decrease the flexibility of the device 100. Therefore, in order to have a device 100 flexible enough to apply to the right ventricular outflow tract, which is quite irregular, it may be desired to include more nesting of wires 115 than point-to-point connections. Flexibility of the device 100 may be, for example, preferred in order to allow the device 100 to better follow the variations in the right ventricular outflow tract that occur throughout the cardiac cycle. Such flexibility in the device 100 would allow for shortening and lengthening of the device 100 without straining the device 100 throughout the cardiac cycle.
  • FIG. 4 shows another embodiment of the present invention.
  • Infundibular reducer device 400 is shown and includes a valve portion (not visible) and a stent portion 405 that comprises a plurality of wires 415 and fabric 420.
  • the shape and configuration of device 400 is different from that of device 100 (FIGS. 1-3), including a different number, shape, and arrangement of wires 415.
  • the discussion above with regard to the components of device 100 also applies to the corresponding components of device 400.
  • device 400 also includes a middle portion 425 with a generally cylindrical shape and flared end portions 430 that include a generally angled portion and a generally straight portion that forms a cylinder with a diameter that is larger than that of the middle portion 425.
  • FIG. 5 shows another exemplary infundibular reducer device 600 of the present invention.
  • the shape and configuration of a stent portion 605 is different from that of the stent portions 105, 405 of the earlier described embodiments, including a different number, shape and arrangement of wires 615.
  • Stent 605 does not include end portions 630 that have a diameter that is greater than that of the middle portion 625.
  • the inner lumen (not visible) may be configured such that a valve having a smaller diameter than device 600 may be secured in the inner lumen.
  • the embodiment in FIG. 5 illustrates one of a plurality of configurations that are contemplated by the present invention.
  • Device 700 shown in FIGS. 6-8.
  • Device 700 includes a stent portion 705 with a middle portion 725 and two end portions 730, 740. As shown, the end portions 730, 740 are different in device 700. End portion 730 has a larger diameter, and the wires 715 in the end portion 730 are in a nested configuration. End portion 740, on the other hand, is smaller in diameter than end portion 730 and the wires 115 are in a point-to-point configuration.
  • Device 700 may be arranged in an implantation site such that end portion 730 or end portion 740 is located more distal, or vice versa. Device 700 also illustrates that a plurality of different configurations of devices are contemplated by the present invention.
  • the prosthetic valve or infundibular reducer device of the present invention may be part of a delivery system.
  • a delivery system is described in co-pending non-provisional patent application titled "Infundibular Reducer Device Delivery System and Related Methods," having docket number P27271.01 (MTI0066/US), filed on January 23, 2009, and incorporated herein by reference in its entirety.
  • the infundibular reducer devices of the present invention may be fastened to such a delivery system using a fastening means.
  • a plurality of loops 133 provided on or near the proximal end (for example, on the crowns of at least one of the end portions) of the infundibular reducer device is one example of such a fastening means.
  • Such loops 133 may be formed from, for example, sutures or from the fabric used to form part of the stent 105.
  • the attachment loops 133 resemble belt loops, and do not maintain a significant profile so as to not impede blood flow.
  • Other fastening means besides loops 133 are also contemplated by the present invention.
  • Another feature that can be included in the device of the present invention is to include silver in the stent portion.
  • Silver can be applied to or included in the stent portion in various ways. For example, silver may be applied by using thread impregnated with silver in the stent portion. The silver thread could be applied near where a replacement valve is attached to the stent portion. The silver thread could help prevent excessive tissue ingrowth, which could negatively affect the function of the valve.
  • a stent portion of a device of the present invention can include such silver impregnated thread in locations where infections are likely to develop.
  • silver may be viewed under fluoroscopy.
  • the silver may act as a marker when seeking to locate the valve under fluoroscopy for monitoring and/or subsequent location for deployment or during other procedures.
  • Yet another possible feature of the device of the present invention is inclusion of a pattern of radiopaque markers.
  • An example may be including a radiopaque marker or markers in the shape or pattern of a ring located circumferentially around the ends of the valve portion of the device.
  • a ring could be applied directly, with ink, or thread, or tape or other means.
  • such a ring could allow for easy identification and location of the valve portion of the device of the present invention under fluoroscopy for monitoring and/or subsequent deployment procedures.
  • radiopaque thread markers on the stent portion at various locations.
  • One particular material that can be used as a radiopaque marker is a platinum strand or cable.
  • Yet another possible feature of the device of the present invention is to embed materials into the fabric used in the stent portion. These materials can be used to enhance tissue ingrowth. The purpose of tissue ingrowth is to secure the device as well as help close any paravalvular leaks.
  • Some exemplary materials that can be embedded include, but are not limited to, collagen, hydrophilic materials, gelatins, albumen, or other proteins. The material could be put into solution and the fabric of the stent portion could be soaked in the solution. The stent portion could then be stored in saline and post-sterilized to prevent destruction of the material in glutaraldehyde or other storage chemical sterilant.
  • a further possible feature of the device of the present invention is the addition of a felt edge on the device.
  • the felt edge would preferably be located on the crowns of at least one of the two end portions.
  • the purpose of adding felt to the edge is to control tissue ingrowth and thrombosis.
  • the felt can facilitate rapid ingrowth of tissue due to its porous nature.
  • Other areas of the stent may be made of a knit or weave where the maximum amount of ingrowth is not necessarily desired. Rapid, healthy tissue ingrowth on the edges of the stent portion, where the stent portion contacts the body, will aid in fixation of the stent to help prevent migration as well as provide strain relief from the remainder to the stent and vessel.
  • FIG. 10 Further embodiments of the present invention are possible by varying the permeability or porosity of the fabric used in the device.
  • a semi-permeable material may, for example, be desired to enhance tissue ingrowth of the endothelium into the device. In other cases, the fabric may not be desired to be permeable. It is contemplated that all levels of permeability and porosity are possible for the fabric material of the devices of the present invention.
  • a hydrophobic material such as Ultra High Molecular Weight Polyethylene (UHMWPE), polypropylene, etc. could be applied in a variety of ways including using thread made entirely or in part from one of these hydrophobic materials. The material would not need to be applied to all thread, however.
  • hydrophobic thread could be applied at the margin of the implanted valve portion to help prevent excessive tissue ingrowth which could affect the function of the valve. The distance from the valve and the concentration of material would depend upon the margin of inhibition necessary as well as the duration needed as the device is accepted by the body. It is likely that full ingrowth would be desired for the areas contacting the patient anatomy and inhibition of growth within the valve portion.
  • the purpose of using a hydrophobic material may include reducing tissue ingrowth as well as reducing thrombosis.
  • FIG.4 Another optional feature of the present invention can be seen in the embodiment shown in FIG.4.
  • the wires 415 in the end portions 430 can be seen to have a point to point configuration of the bends. The purpose of such a configuration is to keep excess fabric from being in the path of blood flow through the device 400. Particularly, this configuration is desired at the in-flow end of the device 400.
  • a further optional feature of the present invention is to add a weave or braid of structural thread to the stent portion in the area where it contacts the valve portion. The angle of the braid or weave is based upon providing a firm fit for the valve portion in the stent portion, but allows for expansion at the rate of subsequent valved stents.
  • the stent of the present invention may be completely self-expanding based upon the choice of materials and configuration of the wires.
  • the stent may be moderately self-expanding and may use a balloon to assure complete expansion.
  • the wires may comprise MP35N, for example.
  • it may be desired to have the end portions of the device self- expandable while the middle portion, including the valve, is balloon-expandable.
  • the device of the present invention may not be removed once the replacement valve portion of the device no longer functions, such as after a significant period of time has passed since implantation.
  • the device may then serve as a landing zone or location where a replacement valve may be implanted or docked.
  • a replacement valve may be implanted or docked.
  • One exemplary valve that may be implanted within the present inventive device is the MelodyTM Transcatheter Pulmonary Valve, made by Medtronic, Inc., Minneapolis, Minnesota, U.S.A., which is a bovine jugular vein valve. It is contemplated, however, that other similar devices may also be implanted within the present inventive device.
  • the device of the present invention preferably includes a stent portion that is able to expand to surround the replacement device.

Landscapes

  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Vascular Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Prostheses (AREA)
PCT/US2009/034949 2008-02-25 2009-02-24 Infundibular reducer devices Ceased WO2009108615A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN200980106911.XA CN101951858B (zh) 2008-02-25 2009-02-24 漏斗形节流装置
AU2009219415A AU2009219415B2 (en) 2008-02-25 2009-02-24 Infundibular reducer devices
JP2010548817A JP2011512948A (ja) 2008-02-25 2009-02-24 漏斗部整復器具
MX2010009289A MX2010009289A (es) 2008-02-25 2009-02-24 Dispositivos reductores infundibuliformes.
CA2715448A CA2715448C (en) 2008-02-25 2009-02-24 Infundibular reducer devices
EP09714661.7A EP2257242B2 (en) 2008-02-25 2009-02-24 Infundibular reducer devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US3126608P 2008-02-25 2008-02-25
US61/031,266 2008-02-25

Publications (1)

Publication Number Publication Date
WO2009108615A1 true WO2009108615A1 (en) 2009-09-03

Family

ID=40512153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/034949 Ceased WO2009108615A1 (en) 2008-02-25 2009-02-24 Infundibular reducer devices

Country Status (9)

Country Link
US (1) US8801776B2 (enExample)
EP (1) EP2257242B2 (enExample)
JP (2) JP2011512948A (enExample)
KR (1) KR101616138B1 (enExample)
CN (1) CN101951858B (enExample)
AU (1) AU2009219415B2 (enExample)
CA (1) CA2715448C (enExample)
MX (1) MX2010009289A (enExample)
WO (1) WO2009108615A1 (enExample)

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012127309A1 (en) 2011-03-21 2012-09-27 Ontorfano Matteo Disk-based valve apparatus and method for the treatment of valve dysfunction
US8414643B2 (en) 2006-09-19 2013-04-09 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
EP2614794A1 (de) * 2012-01-11 2013-07-17 Biotronik AG Herzklappenprothese
EP2566416A4 (en) * 2010-05-05 2014-01-08 Neovasc Tiara Inc TRANS-CATHETER mitral valve prosthesis
WO2014110023A1 (en) * 2013-01-08 2014-07-17 Medtronic Inc. Valve prosthesis
US8834564B2 (en) 2006-09-19 2014-09-16 Medtronic, Inc. Sinus-engaging valve fixation member
USD732666S1 (en) 2005-05-13 2015-06-23 Medtronic Corevalve, Inc. Heart valve prosthesis
CN104720936A (zh) * 2015-03-26 2015-06-24 杭州启明医疗器械有限公司 使用安全的瓣膜支架以及具有该瓣膜支架的瓣膜置换装置
FR3021209A1 (fr) * 2014-05-23 2015-11-27 Thomas Modine Prothese de valve cardiaque mitrale ou tricuspide
EP2982336A1 (en) * 2014-08-04 2016-02-10 Alvimedica Tibb Ürünler San. Ve Dis Tic. A.S. Mitral valve prosthesis, particularly suitable for transcatheter implantation
US9308087B2 (en) 2011-04-28 2016-04-12 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
US9439757B2 (en) 2014-12-09 2016-09-13 Cephea Valve Technologies, Inc. Replacement cardiac valves and methods of use and manufacture
US9554899B2 (en) 2013-07-17 2017-01-31 Cephea Valve Technologies, Inc. System and method for cardiac valve repair and replacement
EP2448522A4 (en) * 2009-07-02 2018-01-31 The Cleveland Clinic Foundation Apparatus and method for replacing a diseased cardiac valve
US9925044B2 (en) 2010-04-01 2018-03-27 Medtronic, Inc. Transcatheter valve with torsion spring fixation and related systems and methods
CN108430394A (zh) * 2016-12-15 2018-08-21 美利奴生命科学有限公司 人造瓣膜
US10143552B2 (en) 2015-05-14 2018-12-04 Cephea Valve Technologies, Inc. Replacement mitral valves
US10206775B2 (en) 2012-08-13 2019-02-19 Medtronic, Inc. Heart valve prosthesis
US10368990B2 (en) 2017-01-23 2019-08-06 Cephea Valve Technologies, Inc. Replacement mitral valves
US10449041B2 (en) 2015-11-12 2019-10-22 Valmy Holding Mitral or tricuspid heart valve prosthesis
US10470881B2 (en) 2015-05-14 2019-11-12 Cephea Valve Technologies, Inc. Replacement mitral valves
US10849746B2 (en) 2015-05-14 2020-12-01 Cephea Valve Technologies, Inc. Cardiac valve delivery devices and systems
EP3756623A1 (en) * 2013-02-04 2020-12-30 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
EP3644905A4 (en) * 2017-06-30 2021-03-24 Ohio State Innovation Foundation HEART VALVE PROSTHESIS WITH TRIPLE SAIL
EP2670349B1 (en) 2011-02-01 2021-04-07 St. Jude Medical, Cardiology Division, Inc. D/B/A Repositioning of prosthetic heart valve and deployment
US10993805B2 (en) 2008-02-26 2021-05-04 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
EP3360513B1 (en) 2008-08-22 2021-06-30 Edwards Lifesciences Corporation Prosthetic heart valve
US11065138B2 (en) 2016-05-13 2021-07-20 Jenavalve Technology, Inc. Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system
US11185405B2 (en) 2013-08-30 2021-11-30 Jenavalve Technology, Inc. Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame
EP3922218A1 (en) * 2014-09-09 2021-12-15 Occlutech Holding AG A flow regulating device in the heart
US11259919B2 (en) 2008-01-24 2022-03-01 Medtronic, Inc. Stents for prosthetic heart valves
US11304801B2 (en) 2006-09-19 2022-04-19 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
US11331187B2 (en) 2016-06-17 2022-05-17 Cephea Valve Technologies, Inc. Cardiac valve delivery devices and systems
US11337800B2 (en) 2015-05-01 2022-05-24 Jenavalve Technology, Inc. Device and method with reduced pacemaker rate in heart valve replacement
US11357624B2 (en) 2007-04-13 2022-06-14 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
EP2838473B1 (en) 2012-04-18 2022-07-20 Medtronic CV Luxembourg S.à.r.l. Valve prosthesis
US20220273426A1 (en) * 2019-08-01 2022-09-01 W. L. Gore & Associates, Inc. Transcatheter prosthetic valve with multi-part frame subcomponent transverse deformation resistance
US11517431B2 (en) 2005-01-20 2022-12-06 Jenavalve Technology, Inc. Catheter system for implantation of prosthetic heart valves
US11564794B2 (en) 2008-02-26 2023-01-31 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US11589981B2 (en) 2010-05-25 2023-02-28 Jenavalve Technology, Inc. Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent
US11744699B2 (en) 2015-10-09 2023-09-05 Medtronic Vascular, Inc. Heart valve prostheses and methods for percutaneous heart valve replacement
US11779742B2 (en) 2019-05-20 2023-10-10 Neovasc Tiara Inc. Introducer with hemostasis mechanism
US11833039B2 (en) 2011-02-01 2023-12-05 St. Jude Medical, Cardiology Division, Inc. Leaflet suturing to commissure points for prosthetic heart valve
US11998447B2 (en) 2019-03-08 2024-06-04 Neovasc Tiara Inc. Retrievable prosthesis delivery system
US12109111B2 (en) 2015-12-15 2024-10-08 Neovasc Tiara Inc. Transseptal delivery system
US12121461B2 (en) 2015-03-20 2024-10-22 Jenavalve Technology, Inc. Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath
US12171658B2 (en) 2022-11-09 2024-12-24 Jenavalve Technology, Inc. Catheter system for sequential deployment of an expandable implant
US12414854B2 (en) 2010-05-20 2025-09-16 Jenavalve Technology, Inc. Catheter system for introducing an expandable stent into the body of a patient
US12433745B2 (en) 2017-01-27 2025-10-07 Jenavalve Technology, Inc. Heart valve mimicry

Families Citing this family (257)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050055082A1 (en) * 2001-10-04 2005-03-10 Shmuel Ben Muvhar Flow reducing implant
WO2007072469A2 (en) * 2005-12-23 2007-06-28 Vysera Biomedical Limited A medical device suitable for treating reflux from a stomach to an oesophagus
AU2008294012B2 (en) 2007-08-24 2013-04-18 St. Jude Medical, Inc. Prosthetic aortic heart valves
EP2572676B1 (en) * 2007-09-26 2016-04-13 St. Jude Medical, Inc. Collapsible prosthetic heart valves
US9532868B2 (en) 2007-09-28 2017-01-03 St. Jude Medical, Inc. Collapsible-expandable prosthetic heart valves with structures for clamping native tissue
US8784481B2 (en) 2007-09-28 2014-07-22 St. Jude Medical, Inc. Collapsible/expandable prosthetic heart valves with native calcified leaflet retention features
US8157853B2 (en) 2008-01-24 2012-04-17 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
EP3005984B1 (en) 2008-02-28 2025-10-01 Medtronic Inc. Prosthetic heart valve systems
EP2282684B1 (en) * 2008-04-03 2016-06-15 Cook Medical Technologies LLC Occlusion device
AU2009261577B2 (en) 2008-06-20 2015-03-12 Vysera Biomedical Limited Esophageal valve
US20100114327A1 (en) * 2008-06-20 2010-05-06 Vysera Biomedical Limited Valve
US8323335B2 (en) 2008-06-20 2012-12-04 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic valves and methods for using
EP4215162A1 (en) 2008-07-15 2023-07-26 St. Jude Medical, LLC Collapsible and re-expandable prosthetic heart valve cuff designs and complementary technological applications
EP4541320A3 (en) 2008-09-29 2025-07-09 Edwards Lifesciences CardiAQ LLC Heart valve
CA2739275C (en) 2008-10-01 2017-01-17 Impala, Inc. Delivery system for vascular implant
WO2010098857A1 (en) 2009-02-27 2010-09-02 St. Jude Medical, Inc. Stent features for collapsible prosthetic heart valves
JP2012523894A (ja) 2009-04-15 2012-10-11 カルディアック バルブ テクノロジーズ,インコーポレーテッド 血管インプラント及びその配設システム
US8500801B2 (en) 2009-04-21 2013-08-06 Medtronic, Inc. Stents for prosthetic heart valves and methods of making same
US9730790B2 (en) 2009-09-29 2017-08-15 Edwards Lifesciences Cardiaq Llc Replacement valve and method
US8870950B2 (en) 2009-12-08 2014-10-28 Mitral Tech Ltd. Rotation-based anchoring of an implant
ES2647826T3 (es) * 2009-12-18 2017-12-26 Coloplast A/S Un dispositivo urológico
US9226826B2 (en) 2010-02-24 2016-01-05 Medtronic, Inc. Transcatheter valve structure and methods for valve delivery
PL3335670T3 (pl) 2010-03-05 2022-09-05 Edwards Lifesciences Corporation Mechanizmy ustalające do zastawek protetycznych
US20110224785A1 (en) 2010-03-10 2011-09-15 Hacohen Gil Prosthetic mitral valve with tissue anchors
EP4494608A3 (en) * 2010-04-21 2025-04-02 Medtronic, Inc. Prosthetic valve with sealing members
US9795476B2 (en) 2010-06-17 2017-10-24 St. Jude Medical, Llc Collapsible heart valve with angled frame
US8657872B2 (en) 2010-07-19 2014-02-25 Jacques Seguin Cardiac valve repair system and methods of use
US9763657B2 (en) 2010-07-21 2017-09-19 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US11653910B2 (en) 2010-07-21 2023-05-23 Cardiovalve Ltd. Helical anchor implantation
EP4098227B1 (en) 2010-07-23 2025-06-04 Edwards Lifesciences Corporation A system for delivering a prosthetic valve
BR112013004264A2 (pt) 2010-08-24 2016-08-02 St Jude Medical dispositivo, sistema e método de colocação para uma válvula cardíaca protética colapsável
AU2011302640B2 (en) 2010-09-17 2014-11-06 St. Jude Medical, Cardiology Division, Inc. Staged deployment devices and methods for transcatheter heart valve delivery
USD648854S1 (en) 2010-09-20 2011-11-15 St. Jude Medical, Inc. Commissure points
USD660432S1 (en) 2010-09-20 2012-05-22 St. Jude Medical, Inc. Commissure point
USD653341S1 (en) 2010-09-20 2012-01-31 St. Jude Medical, Inc. Surgical stent
USD660967S1 (en) 2010-09-20 2012-05-29 St. Jude Medical, Inc. Surgical stent
JP2013540484A (ja) 2010-09-20 2013-11-07 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド 折畳み可能な人工弁における弁尖の取付装置
USD654169S1 (en) 2010-09-20 2012-02-14 St. Jude Medical Inc. Forked ends
USD652927S1 (en) 2010-09-20 2012-01-24 St. Jude Medical, Inc. Surgical stent
USD660433S1 (en) 2010-09-20 2012-05-22 St. Jude Medical, Inc. Surgical stent assembly
USD653342S1 (en) 2010-09-20 2012-01-31 St. Jude Medical, Inc. Stent connections
USD653343S1 (en) 2010-09-20 2012-01-31 St. Jude Medical, Inc. Surgical cuff
USD684692S1 (en) 2010-09-20 2013-06-18 St. Jude Medical, Inc. Forked ends
USD652926S1 (en) 2010-09-20 2012-01-24 St. Jude Medical, Inc. Forked end
USD654170S1 (en) 2010-09-20 2012-02-14 St. Jude Medical, Inc. Stent connections
US8992410B2 (en) 2010-11-03 2015-03-31 Vysera Biomedical Limited Urological device
US9155619B2 (en) 2011-02-25 2015-10-13 Edwards Lifesciences Corporation Prosthetic heart valve delivery apparatus
US9554897B2 (en) 2011-04-28 2017-01-31 Neovasc Tiara Inc. Methods and apparatus for engaging a valve prosthesis with tissue
US8852272B2 (en) 2011-08-05 2014-10-07 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
WO2013021374A2 (en) 2011-08-05 2013-02-14 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
EP3417813B1 (en) 2011-08-05 2020-05-13 Cardiovalve Ltd Percutaneous mitral valve replacement
US20140324164A1 (en) 2011-08-05 2014-10-30 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US9060860B2 (en) 2011-08-18 2015-06-23 St. Jude Medical, Cardiology Division, Inc. Devices and methods for transcatheter heart valve delivery
BR112014014025B1 (pt) 2011-12-19 2021-05-04 Coloplast A/S prótese luminal autoexpansível
EP3326585B1 (en) 2012-01-31 2019-06-19 Mitral Valve Technologies Sàrl Mitral valve docking devices and systems
US9427315B2 (en) 2012-04-19 2016-08-30 Caisson Interventional, LLC Valve replacement systems and methods
US9011515B2 (en) 2012-04-19 2015-04-21 Caisson Interventional, LLC Heart valve assembly systems and methods
US9345573B2 (en) 2012-05-30 2016-05-24 Neovasc Tiara Inc. Methods and apparatus for loading a prosthesis onto a delivery system
US9289292B2 (en) 2012-06-28 2016-03-22 St. Jude Medical, Cardiology Division, Inc. Valve cuff support
US9554902B2 (en) 2012-06-28 2017-01-31 St. Jude Medical, Cardiology Division, Inc. Leaflet in configuration for function in various shapes and sizes
US20140005776A1 (en) 2012-06-29 2014-01-02 St. Jude Medical, Cardiology Division, Inc. Leaflet attachment for function in various shapes and sizes
US9615920B2 (en) 2012-06-29 2017-04-11 St. Jude Medical, Cardiology Divisions, Inc. Commissure attachment feature for prosthetic heart valve
US9241791B2 (en) * 2012-06-29 2016-01-26 St. Jude Medical, Cardiology Division, Inc. Valve assembly for crimp profile
US9808342B2 (en) 2012-07-03 2017-11-07 St. Jude Medical, Cardiology Division, Inc. Balloon sizing device and method of positioning a prosthetic heart valve
US10004597B2 (en) 2012-07-03 2018-06-26 St. Jude Medical, Cardiology Division, Inc. Stent and implantable valve incorporating same
US9801721B2 (en) 2012-10-12 2017-10-31 St. Jude Medical, Cardiology Division, Inc. Sizing device and method of positioning a prosthetic heart valve
US10524909B2 (en) 2012-10-12 2020-01-07 St. Jude Medical, Cardiology Division, Inc. Retaining cage to permit resheathing of a tavi aortic-first transapical system
WO2014115149A2 (en) 2013-01-24 2014-07-31 Mitraltech Ltd. Ventricularly-anchored prosthetic valves
US9314163B2 (en) 2013-01-29 2016-04-19 St. Jude Medical, Cardiology Division, Inc. Tissue sensing device for sutureless valve selection
US9186238B2 (en) 2013-01-29 2015-11-17 St. Jude Medical, Cardiology Division, Inc. Aortic great vessel protection
US9655719B2 (en) 2013-01-29 2017-05-23 St. Jude Medical, Cardiology Division, Inc. Surgical heart valve flexible stent frame stiffener
US9844435B2 (en) 2013-03-01 2017-12-19 St. Jude Medical, Cardiology Division, Inc. Transapical mitral valve replacement
US9901470B2 (en) 2013-03-01 2018-02-27 St. Jude Medical, Cardiology Division, Inc. Methods of repositioning a transcatheter heart valve after full deployment
US9480563B2 (en) 2013-03-08 2016-11-01 St. Jude Medical, Cardiology Division, Inc. Valve holder with leaflet protection
US10583002B2 (en) 2013-03-11 2020-03-10 Neovasc Tiara Inc. Prosthetic valve with anti-pivoting mechanism
US9398951B2 (en) 2013-03-12 2016-07-26 St. Jude Medical, Cardiology Division, Inc. Self-actuating sealing portions for paravalvular leak protection
US10271949B2 (en) 2013-03-12 2019-04-30 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak occlusion device for self-expanding heart valves
US9636222B2 (en) 2013-03-12 2017-05-02 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak protection
US10314698B2 (en) 2013-03-12 2019-06-11 St. Jude Medical, Cardiology Division, Inc. Thermally-activated biocompatible foam occlusion device for self-expanding heart valves
US9339274B2 (en) 2013-03-12 2016-05-17 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak occlusion device for self-expanding heart valves
EP2967849B1 (en) 2013-03-12 2025-08-13 St. Jude Medical, Cardiology Division, Inc. Self-actuating sealing portions for paravalvular leak protection
US9730791B2 (en) 2013-03-14 2017-08-15 Edwards Lifesciences Cardiaq Llc Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery
US9326856B2 (en) 2013-03-14 2016-05-03 St. Jude Medical, Cardiology Division, Inc. Cuff configurations for prosthetic heart valve
US9681951B2 (en) 2013-03-14 2017-06-20 Edwards Lifesciences Cardiaq Llc Prosthesis with outer skirt and anchors
US9131982B2 (en) 2013-03-14 2015-09-15 St. Jude Medical, Cardiology Division, Inc. Mediguide-enabled renal denervation system for ensuring wall contact and mapping lesion locations
US20140277427A1 (en) 2013-03-14 2014-09-18 Cardiaq Valve Technologies, Inc. Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery
US9572665B2 (en) 2013-04-04 2017-02-21 Neovasc Tiara Inc. Methods and apparatus for delivering a prosthetic valve to a beating heart
KR101429005B1 (ko) 2013-05-06 2014-08-12 부산대학교 산학협력단 심장판막 고정장치
US9326854B2 (en) 2013-06-13 2016-05-03 Medtronic Vascular Galway Delivery system with pacing element
EP3010446B2 (en) 2013-06-19 2024-03-20 AGA Medical Corporation Collapsible valve having paravalvular leak protection
US9668856B2 (en) 2013-06-26 2017-06-06 St. Jude Medical, Cardiology Division, Inc. Puckering seal for reduced paravalvular leakage
WO2015002832A1 (en) * 2013-07-01 2015-01-08 St. Jude Medical, Cardiology Division, Inc. Hybrid orientation pravalvular sealing stent
CR20160094A (es) 2013-08-14 2018-03-05 Mitral Valve Tech Sarl Equipo y métodos para implantar una válvula cardiaca de reemplazo
USD730521S1 (en) 2013-09-04 2015-05-26 St. Jude Medical, Cardiology Division, Inc. Stent with commissure attachments
USD730520S1 (en) 2013-09-04 2015-05-26 St. Jude Medical, Cardiology Division, Inc. Stent with commissure attachments
US9867611B2 (en) 2013-09-05 2018-01-16 St. Jude Medical, Cardiology Division, Inc. Anchoring studs for transcatheter valve implantation
US10117742B2 (en) 2013-09-12 2018-11-06 St. Jude Medical, Cardiology Division, Inc. Stent designs for prosthetic heart valves
US9050188B2 (en) 2013-10-23 2015-06-09 Caisson Interventional, LLC Methods and systems for heart valve therapy
WO2015069683A1 (en) 2013-11-06 2015-05-14 St. Jude Medical, Cardiology Division, Inc. Reduced profile prosthetic heart valve
US9913715B2 (en) 2013-11-06 2018-03-13 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak sealing mechanism
EP2870946B1 (en) 2013-11-06 2018-10-31 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak sealing mechanism
WO2015073287A1 (en) 2013-11-12 2015-05-21 St. Jude Medical, Cardiology Division, Inc. Pneumatically power-assisted tavi delivery system
WO2015077274A1 (en) 2013-11-19 2015-05-28 St. Jude Medical, Cardiology Division, Inc. Sealing structures for paravalvular leak protection
EP4467104A3 (en) 2013-11-27 2024-12-04 St. Jude Medical, Cardiology Division, Inc. Cuff stitching reinforcement
EP4527350A3 (en) 2013-12-19 2025-06-18 St. Jude Medical, Cardiology Division, Inc. Leaflet-cuff attachments for prosthetic heart valve
US20150209141A1 (en) 2014-01-24 2015-07-30 St. Jude Medical, Cardiology Division, Inc. Stationary intra-annular halo designs for paravalvular leak (pvl) reduction-passive channel filling cuff designs
US9820852B2 (en) 2014-01-24 2017-11-21 St. Jude Medical, Cardiology Division, Inc. Stationary intra-annular halo designs for paravalvular leak (PVL) reduction—active channel filling cuff designs
US10292711B2 (en) 2014-02-07 2019-05-21 St. Jude Medical, Cardiology Division, Inc. Mitral valve treatment device having left atrial appendage closure
US9867556B2 (en) 2014-02-07 2018-01-16 St. Jude Medical, Cardiology Division, Inc. System and method for assessing dimensions and eccentricity of valve annulus for trans-catheter valve implantation
EP3107496B1 (en) 2014-02-18 2018-07-04 St. Jude Medical, Cardiology Division, Inc. Bowed runners for paravalvular leak protection
PL3107499T3 (pl) 2014-02-20 2025-09-22 Mitral Valve Technologies Sàrl System do implantacji protezy zastawki serca podtrzymywanej przez kotwicę zwojową
CR20160366A (es) 2014-02-21 2016-11-15 Mitral Valve Tecnhnologies Sarl Dispositivos, sistemas y métodos de suministro de válvula mitral prostética y dispositivo de anclaje
US9763778B2 (en) 2014-03-18 2017-09-19 St. Jude Medical, Cardiology Division, Inc. Aortic insufficiency valve percutaneous valve anchoring
US10085834B2 (en) 2014-03-18 2018-10-02 St. Jude Medical, Cardiology Divsion, Inc. Mitral valve replacement toggle cell securement
WO2015143103A1 (en) 2014-03-21 2015-09-24 St. Jude Medical, Cardiology Division, Inc. Leaflet abrasion mitigation
CR20160424A (es) 2014-03-26 2016-12-08 St Jude Medical Cardiology Div Inc Marcos de endoprótesis de válvula mitral transcateter
US10143551B2 (en) 2014-03-31 2018-12-04 St. Jude Medical, Cardiology Division, Inc. Paravalvular sealing via extended cuff mechanisms
US10226332B2 (en) 2014-04-14 2019-03-12 St. Jude Medical, Cardiology Division, Inc. Leaflet abrasion mitigation in prosthetic heart valves
EP4501286A3 (en) 2014-05-16 2025-04-09 St. Jude Medical, Cardiology Division, Inc. Stent assembly for use in prosthetic heart valves
US9668858B2 (en) 2014-05-16 2017-06-06 St. Jude Medical, Cardiology Division, Inc. Transcatheter valve with paravalvular leak sealing ring
WO2015175524A1 (en) 2014-05-16 2015-11-19 St. Jude Medical, Cardiology Division, Inc. Subannular sealing for paravalvular leak protection
EP3145450B1 (en) 2014-05-22 2019-07-17 St. Jude Medical, Cardiology Division, Inc. Stents with anchoring sections
EP2954875B1 (en) 2014-06-10 2017-11-15 St. Jude Medical, Cardiology Division, Inc. Stent cell bridge for cuff attachment
US9974647B2 (en) 2014-06-12 2018-05-22 Caisson Interventional, LLC Two stage anchor and mitral valve assembly
WO2016016899A1 (en) 2014-07-30 2016-02-04 Mitraltech Ltd. Articulatable prosthetic valve
WO2016028583A1 (en) 2014-08-18 2016-02-25 St. Jude Medical, Cardiology Division, Inc. Sensors for prosthetic heart devices
EP3182927B1 (en) 2014-08-18 2024-11-13 St. Jude Medical, Cardiology Division, Inc. Prosthetic heart devices having diagnostic capabilities
US9737264B2 (en) 2014-08-18 2017-08-22 St. Jude Medical, Cardiology Division, Inc. Sensors for prosthetic heart devices
US10016272B2 (en) 2014-09-12 2018-07-10 Mitral Valve Technologies Sarl Mitral repair and replacement devices and methods
US9750607B2 (en) 2014-10-23 2017-09-05 Caisson Interventional, LLC Systems and methods for heart valve therapy
US9750605B2 (en) 2014-10-23 2017-09-05 Caisson Interventional, LLC Systems and methods for heart valve therapy
EP3028668B1 (en) * 2014-12-05 2024-10-30 Nvt Ag Prosthetic heart valve system and delivery system therefor
ES2978714T3 (es) 2015-02-05 2024-09-18 Cardiovalve Ltd Válvula protésica con marcos de deslizamiento axial
US9974651B2 (en) 2015-02-05 2018-05-22 Mitral Tech Ltd. Prosthetic valve with axially-sliding frames
US10314699B2 (en) 2015-03-13 2019-06-11 St. Jude Medical, Cardiology Division, Inc. Recapturable valve-graft combination and related methods
EP3273912A1 (en) 2015-03-23 2018-01-31 St. Jude Medical, Cardiology Division, Inc. Heart valve repair
WO2016154166A1 (en) 2015-03-24 2016-09-29 St. Jude Medical, Cardiology Division, Inc. Prosthetic mitral valve
EP3273910B1 (en) 2015-03-24 2024-12-18 St. Jude Medical, Cardiology Division, Inc. Mitral heart valve replacement
EP3280359A1 (en) 2015-04-07 2018-02-14 St. Jude Medical, Cardiology Division, Inc. System and method for intraprocedural assessment of geometry and compliance of valve annulus for trans-catheter valve implantation
US10016273B2 (en) 2015-06-05 2018-07-10 Medtronic, Inc. Filtered sealing components for a transcatheter valve prosthesis
WO2016201024A1 (en) 2015-06-12 2016-12-15 St. Jude Medical, Cardiology Division, Inc. Heart valve repair and replacement
CN113384384A (zh) 2015-06-29 2021-09-14 莱拉医药公司 支架装载和递送系统
CN108135688B (zh) 2015-06-29 2021-06-04 莱拉医药公司 用于治疗鼻窦炎的可植入支架
US10232082B2 (en) 2015-06-29 2019-03-19 480 Biomedical, Inc. Implantable scaffolds for treatment of sinusitis
US10639149B2 (en) 2015-07-16 2020-05-05 St. Jude Medical, Cardiology Division, Inc. Sutureless prosthetic heart valve
EP3334380B1 (en) 2015-08-12 2022-03-16 St. Jude Medical, Cardiology Division, Inc. Collapsible heart valve including stents with tapered struts
US10350047B2 (en) 2015-09-02 2019-07-16 Edwards Lifesciences Corporation Method and system for packaging and preparing a prosthetic heart valve and associated delivery system
CA2995855C (en) * 2015-09-02 2024-01-30 Edwards Lifesciences Corporation Spacer for securing a transcatheter valve to a bioprosthetic cardiac structure
US10321996B2 (en) 2015-11-11 2019-06-18 Edwards Lifesciences Corporation Prosthetic valve delivery apparatus having clutch mechanism
US11033387B2 (en) 2015-11-23 2021-06-15 Edwards Lifesciences Corporation Methods for controlled heart valve delivery
US10357351B2 (en) 2015-12-04 2019-07-23 Edwards Lifesciences Corporation Storage assembly for prosthetic valve
US10973664B2 (en) 2015-12-30 2021-04-13 Lyra Therapeutics, Inc. Scaffold loading and delivery systems
EP3397208B1 (en) 2015-12-30 2020-12-02 Caisson Interventional, LLC Systems for heart valve therapy
CN113633435B (zh) 2016-01-29 2024-11-29 内奥瓦斯克迪亚拉公司 用于防止流出阻塞的假体瓣膜
US10363130B2 (en) 2016-02-05 2019-07-30 Edwards Lifesciences Corporation Devices and systems for docking a heart valve
US10531866B2 (en) 2016-02-16 2020-01-14 Cardiovalve Ltd. Techniques for providing a replacement valve and transseptal communication
EP3429509B1 (en) 2016-03-14 2024-10-16 Medtronic Vascular Inc. Stented prosthetic heart valve having a wrap and delivery devices
WO2017196909A1 (en) 2016-05-12 2017-11-16 St. Jude Medical, Cardiology Division, Inc. Mitral heart valve replacement
USD802766S1 (en) 2016-05-13 2017-11-14 St. Jude Medical, Cardiology Division, Inc. Surgical stent
USD802764S1 (en) 2016-05-13 2017-11-14 St. Jude Medical, Cardiology Division, Inc. Surgical stent
WO2017196912A1 (en) 2016-05-13 2017-11-16 St. Jude Medical, Cardiology Division, Inc. Heart valve with stent having varying cell densities
USD802765S1 (en) 2016-05-13 2017-11-14 St. Jude Medical, Cardiology Division, Inc. Surgical stent
US10828150B2 (en) 2016-07-08 2020-11-10 Edwards Lifesciences Corporation Docking station for heart valve prosthesis
GB201613219D0 (en) 2016-08-01 2016-09-14 Mitraltech Ltd Minimally-invasive delivery systems
USD800908S1 (en) 2016-08-10 2017-10-24 Mitraltech Ltd. Prosthetic valve element
ES3018641T3 (es) 2016-08-10 2025-05-16 Cardiovalve Ltd Válvula protésica con marcos concéntricos
WO2018039543A1 (en) 2016-08-26 2018-03-01 St. Jude Medical, Cardiology Division, Inc. Prosthetic heart valve with paravalvular leak mitigation features
US10722359B2 (en) 2016-08-26 2020-07-28 Edwards Lifesciences Corporation Heart valve docking devices and systems
US12329641B2 (en) 2016-08-26 2025-06-17 Edwards Lifesciences Corporation Heart valve docking devices and systems
CR20190069A (es) 2016-08-26 2019-05-14 Edwards Lifesciences Corp Valvulas y sistemas de acoplamiento de valvulas corazon
EP3512466B1 (en) 2016-09-15 2020-07-29 St. Jude Medical, Cardiology Division, Inc. Prosthetic heart valve with paravalvular leak mitigation features
EP3531977B1 (en) 2016-10-28 2024-06-26 St. Jude Medical, Cardiology Division, Inc. Prosthetic mitral valve
CN113893064A (zh) 2016-11-21 2022-01-07 内奥瓦斯克迪亚拉公司 用于快速收回经导管心脏瓣膜递送系统的方法和系统
US10758352B2 (en) 2016-12-02 2020-09-01 St. Jude Medical, Cardiology Division, Inc. Transcatheter delivery system with two modes of actuation
WO2018102520A1 (en) 2016-12-02 2018-06-07 St. Jude Medical, Cardiology Division, Inc. Transcatheter delivery system with transverse wheel actuation
US10433993B2 (en) 2017-01-20 2019-10-08 Medtronic Vascular, Inc. Valve prosthesis having a radially-expandable sleeve integrated thereon for delivery and prevention of paravalvular leakage
US11185406B2 (en) 2017-01-23 2021-11-30 Edwards Lifesciences Corporation Covered prosthetic heart valve
US11013600B2 (en) 2017-01-23 2021-05-25 Edwards Lifesciences Corporation Covered prosthetic heart valve
US11654023B2 (en) 2017-01-23 2023-05-23 Edwards Lifesciences Corporation Covered prosthetic heart valve
USD867595S1 (en) 2017-02-01 2019-11-19 Edwards Lifesciences Corporation Stent
US11278396B2 (en) 2017-03-03 2022-03-22 St. Jude Medical, Cardiology Division, Inc. Transcatheter mitral valve design
US10201639B2 (en) 2017-05-01 2019-02-12 480 Biomedical, Inc. Drug-eluting medical implants
US10842619B2 (en) 2017-05-12 2020-11-24 Edwards Lifesciences Corporation Prosthetic heart valve docking assembly
WO2018213091A1 (en) 2017-05-15 2018-11-22 St. Jude Medical, Cardiology Division, Inc. Transcatheter delivery system with wheel actuation
USD889653S1 (en) 2017-05-15 2020-07-07 St. Jude Medical, Cardiology Division, Inc. Stent having tapered struts
USD875250S1 (en) 2017-05-15 2020-02-11 St. Jude Medical, Cardiology Division, Inc. Stent having tapered aortic struts
USD875935S1 (en) 2017-05-15 2020-02-18 St. Jude Medical, Cardiology Division, Inc. Stent having tapered struts
MX2019015340A (es) 2017-06-30 2020-02-20 Edwards Lifesciences Corp Estaciones de acoplamiento para valvulas transcateter.
CR20190570A (es) 2017-06-30 2020-05-17 Edwards Lifesciences Corp Mecanismos de bloqueo para dispositivos implantables transcatéter
WO2019028264A1 (en) * 2017-08-03 2019-02-07 The Regents Of The University Of California AURICULAR CAGE FOR THE PLACEMENT, FASTENING AND ANCHORING OF ATRIOVENTRICULAR VALVES
US10888421B2 (en) 2017-09-19 2021-01-12 Cardiovalve Ltd. Prosthetic heart valve with pouch
US11246704B2 (en) 2017-08-03 2022-02-15 Cardiovalve Ltd. Prosthetic heart valve
US11793633B2 (en) 2017-08-03 2023-10-24 Cardiovalve Ltd. Prosthetic heart valve
US10537426B2 (en) 2017-08-03 2020-01-21 Cardiovalve Ltd. Prosthetic heart valve
US12064347B2 (en) 2017-08-03 2024-08-20 Cardiovalve Ltd. Prosthetic heart valve
US10575948B2 (en) 2017-08-03 2020-03-03 Cardiovalve Ltd. Prosthetic heart valve
USD890333S1 (en) 2017-08-21 2020-07-14 Edwards Lifesciences Corporation Heart valve docking coil
WO2019036810A1 (en) 2017-08-25 2019-02-28 Neovasc Tiara Inc. TRANSCATHETER MITRAL VALVULE PROSTHESIS WITH SEQUENTIAL DEPLOYMENT
JP7249332B2 (ja) * 2017-09-01 2023-03-30 トランスミューラル システムズ エルエルシー 経皮シャント装置及び関連する方法
US12458493B2 (en) 2017-09-19 2025-11-04 Cardiovalve Ltd. Prosthetic heart valve and delivery systems and methods
US20190083242A1 (en) 2017-09-19 2019-03-21 Cardiovalve Ltd. Systems and methods for implanting a prosthetic valve within a native heart valve
US11382751B2 (en) 2017-10-24 2022-07-12 St. Jude Medical, Cardiology Division, Inc. Self-expandable filler for mitigating paravalvular leak
US10888444B2 (en) 2017-11-01 2021-01-12 Boston Scientific Scimed, Inc. Esophageal stent including a valve member
GB201720803D0 (en) 2017-12-13 2018-01-24 Mitraltech Ltd Prosthetic Valve and delivery tool therefor
GB201800399D0 (en) 2018-01-10 2018-02-21 Mitraltech Ltd Temperature-control during crimping of an implant
US11813413B2 (en) 2018-03-27 2023-11-14 St. Jude Medical, Cardiology Division, Inc. Radiopaque outer cuff for transcatheter valve
WO2019195860A2 (en) 2018-04-04 2019-10-10 Vdyne, Llc Devices and methods for anchoring transcatheter heart valve
EP3556323B1 (en) 2018-04-18 2023-07-19 St. Jude Medical, Cardiology Division, Inc. Prosthetic heart valve
US20210290214A1 (en) * 2018-07-18 2021-09-23 W. L. Gore & Associates, Inc. Medical devices for shunts, occluders, fenestrations and related systems and methods
US11344413B2 (en) 2018-09-20 2022-05-31 Vdyne, Inc. Transcatheter deliverable prosthetic heart valves and methods of delivery
US10595994B1 (en) 2018-09-20 2020-03-24 Vdyne, Llc Side-delivered transcatheter heart valve replacement
EP3852679B1 (en) 2018-09-20 2024-08-21 St. Jude Medical, Cardiology Division, Inc. Attachment of leaflets to prosthetic heart valve
US11071627B2 (en) 2018-10-18 2021-07-27 Vdyne, Inc. Orthogonally delivered transcatheter heart valve frame for valve in valve prosthesis
US12186187B2 (en) 2018-09-20 2025-01-07 Vdyne, Inc. Transcatheter deliverable prosthetic heart valves and methods of delivery
US10321995B1 (en) 2018-09-20 2019-06-18 Vdyne, Llc Orthogonally delivered transcatheter heart valve replacement
US11278437B2 (en) 2018-12-08 2022-03-22 Vdyne, Inc. Compression capable annular frames for side delivery of transcatheter heart valve replacement
US11364117B2 (en) 2018-10-15 2022-06-21 St. Jude Medical, Cardiology Division, Inc. Braid connections for prosthetic heart valves
US11109969B2 (en) 2018-10-22 2021-09-07 Vdyne, Inc. Guidewire delivery of transcatheter heart valve
CN113271890B (zh) 2018-11-08 2024-08-30 内奥瓦斯克迪亚拉公司 经导管二尖瓣假体的心室展开
US11471277B2 (en) 2018-12-10 2022-10-18 St. Jude Medical, Cardiology Division, Inc. Prosthetic tricuspid valve replacement design
US12295836B2 (en) * 2018-12-20 2025-05-13 Biotronik Ag Prosthetic heart valve comprising a stent structure having a conical-convex inflow region and a linear cylindrical outflow region
US11253359B2 (en) 2018-12-20 2022-02-22 Vdyne, Inc. Proximal tab for side-delivered transcatheter heart valves and methods of delivery
US11273030B2 (en) 2018-12-26 2022-03-15 St. Jude Medical, Cardiology Division, Inc. Elevated outer cuff for reducing paravalvular leakage and increasing stent fatigue life
WO2020146842A1 (en) 2019-01-10 2020-07-16 Vdyne, Llc Anchor hook for side-delivery transcatheter heart valve prosthesis
CN113891686B (zh) 2019-01-23 2024-12-27 冲击波医疗公司 具有覆盖物的流改变装置
US11185409B2 (en) 2019-01-26 2021-11-30 Vdyne, Inc. Collapsible inner flow control component for side-delivered transcatheter heart valve prosthesis
US11273032B2 (en) 2019-01-26 2022-03-15 Vdyne, Inc. Collapsible inner flow control component for side-deliverable transcatheter heart valve prosthesis
GB201901887D0 (en) 2019-02-11 2019-04-03 Cardiovalve Ltd Device for conditioning ex vivo pericardial tissue
EP3923862A4 (en) * 2019-02-17 2022-11-16 Aorto Medical LLC Flow restricting stent-graft
US10702407B1 (en) 2019-02-28 2020-07-07 Renata Medical, Inc. Growth stent for congenital narrowings
CN120899433A (zh) 2019-03-05 2025-11-07 维迪内股份有限公司 用于正交经导管心脏瓣膜假体的三尖瓣反流控制装置
US11076956B2 (en) 2019-03-14 2021-08-03 Vdyne, Inc. Proximal, distal, and anterior anchoring tabs for side-delivered transcatheter mitral valve prosthesis
US11173027B2 (en) 2019-03-14 2021-11-16 Vdyne, Inc. Side-deliverable transcatheter prosthetic valves and methods for delivering and anchoring the same
JP7438236B2 (ja) 2019-04-01 2024-02-26 ニオバスク ティアラ インコーポレイテッド 制御可能に展開可能な補綴弁
CN113924065A (zh) 2019-04-10 2022-01-11 内奥瓦斯克迪亚拉公司 具有自然血流的假体瓣膜
CN120827457A (zh) 2019-05-04 2025-10-24 维迪内股份有限公司 用于在自体瓣环中部署侧面递送的假体心脏瓣膜的束紧装置和方法
IL288447B2 (en) 2019-06-07 2025-07-01 Edwards Lifesciences Corp Systems, devices, and methods for treating heart valves
US11311376B2 (en) 2019-06-20 2022-04-26 Neovase Tiara Inc. Low profile prosthetic mitral valve
US11672654B2 (en) 2019-07-31 2023-06-13 St. Jude Medical, Cardiology Division, Inc. Alternate stent CAF design for TAVR
CA3152042A1 (en) 2019-08-20 2021-02-25 Vdyne, Inc. Delivery and retrieval devices and methods for side-deliverable transcatheter prosthetic valves
AU2020337235A1 (en) 2019-08-26 2022-03-24 Vdyne, Inc. Side-deliverable transcatheter prosthetic valves and methods for delivering and anchoring the same
US11878133B2 (en) 2019-10-08 2024-01-23 Medtronic, Inc. Methods of preparing balloon expandable catheters for cardiac and vascular interventions
JP7426487B2 (ja) * 2019-12-20 2024-02-01 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド 圧縮剛性領域が強化されたインプラント可能なデバイスの支持構造
US11234813B2 (en) 2020-01-17 2022-02-01 Vdyne, Inc. Ventricular stability elements for side-deliverable prosthetic heart valves and methods of delivery
US12016774B2 (en) 2020-05-08 2024-06-25 Medtronic Vascular, Inc. Delivery system for prosthetic valve device having controlled release of inflow and outflow ends
EP3906894B1 (en) * 2020-05-08 2024-12-11 St. Jude Medical, Cardiology Division, Inc. Prosthetic heart valve with radiopaque elements
US12427018B2 (en) 2020-05-11 2025-09-30 St. Jude Medical, Cardiology Division, Inc. Transcatheter mitral valve fixation concepts
WO2022015634A1 (en) 2020-07-15 2022-01-20 Tendyne Holdings, Inc. Tether attachment for mitral valve
CN112402058A (zh) * 2020-10-12 2021-02-26 金仕生物科技(常熟)有限公司 介入二尖瓣瓣膜支架
US12357459B2 (en) 2020-12-03 2025-07-15 Cardiovalve Ltd. Transluminal delivery system
WO2022156335A1 (zh) * 2021-01-20 2022-07-28 上海纽脉医疗科技股份有限公司 一种介入式人工心脏瓣膜及医用装置
US11951004B2 (en) * 2021-02-28 2024-04-09 Medtronic, Inc. Prosthetic valve device resistant to backfolding and buckling
CN114832218B (zh) * 2021-10-27 2023-12-05 上海微创道通医疗科技有限公司 鼻内用的药物支架
WO2024124034A1 (en) 2022-12-09 2024-06-13 Renata Medical, Inc. Transcatheter growth devices and methods for norwood, glenn and fontan therapy
US20240350266A1 (en) 2023-04-21 2024-10-24 Medtronic, Inc. Prosthetic heart valve implant apparatus
US20240358510A1 (en) 2023-04-28 2024-10-31 Medtronic, Inc. Prosthetic heart valve delivery system having an improved coil assembly
US20240423794A1 (en) 2023-06-20 2024-12-26 Medtronic, Inc. Capture devices for controlled release of prosthetic valve devices

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020138135A1 (en) * 2001-03-21 2002-09-26 Duerig Thomas W. Stent-based venous valves
US20040210307A1 (en) * 2003-04-18 2004-10-21 Alexander Khairkhahan Percutaneous transcatheter heart valve replacement
WO2004096100A1 (en) * 2003-04-24 2004-11-11 Cook Incorporated Artificial valve prosthesis with improved flow dynamics
WO2005096993A1 (en) * 2004-03-31 2005-10-20 Med Institute, Inc. Endoluminal graft with a prosthetic valve
US20060052867A1 (en) * 2004-09-07 2006-03-09 Medtronic, Inc Replacement prosthetic heart valve, system and method of implant
WO2006127412A1 (en) * 2005-05-20 2006-11-30 The Cleveland Clinic Foundation Apparatus and methods for repairing the function of a diseased valve and method for making same
WO2007071436A2 (en) * 2005-12-22 2007-06-28 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US20070244546A1 (en) * 2006-04-18 2007-10-18 Medtronic Vascular, Inc. Stent Foundation for Placement of a Stented Valve

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5713950A (en) * 1993-11-01 1998-02-03 Cox; James L. Method of replacing heart valves using flexible tubes
US5480424A (en) * 1993-11-01 1996-01-02 Cox; James L. Heart valve replacement using flexible tubes
US5855597A (en) 1997-05-07 1999-01-05 Iowa-India Investments Co. Limited Stent valve and stent graft for percutaneous surgery
EP1057460A1 (en) 1999-06-01 2000-12-06 Numed, Inc. Replacement valve assembly and method of implanting same
US6293968B1 (en) * 1999-09-02 2001-09-25 Syde A. Taheri Inflatable intraluminal vascular stent
US20070043435A1 (en) 1999-11-17 2007-02-22 Jacques Seguin Non-cylindrical prosthetic valve system for transluminal delivery
US7018406B2 (en) 1999-11-17 2006-03-28 Corevalve Sa Prosthetic valve for transluminal delivery
US7195641B2 (en) 1999-11-19 2007-03-27 Advanced Bio Prosthetic Surfaces, Ltd. Valvular prostheses having metal or pseudometallic construction and methods of manufacture
US6458153B1 (en) * 1999-12-31 2002-10-01 Abps Venture One, Ltd. Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof
DE20122916U1 (de) 2000-01-31 2009-12-10 Cook Biotech, Inc., West Lafayette Stentventil
US7510572B2 (en) 2000-09-12 2009-03-31 Shlomo Gabbay Implantation system for delivery of a heart valve prosthesis
WO2002022054A1 (en) * 2000-09-12 2002-03-21 Gabbay S Valvular prosthesis and method of using same
US20050182483A1 (en) * 2004-02-11 2005-08-18 Cook Incorporated Percutaneously placed prosthesis with thromboresistant valve portion
CN1160029C (zh) * 2002-03-29 2004-08-04 中南大学湘雅二医院 弹性瓣环心包二尖瓣
US8721713B2 (en) * 2002-04-23 2014-05-13 Medtronic, Inc. System for implanting a replacement valve
US20030199971A1 (en) * 2002-04-23 2003-10-23 Numed, Inc. Biological replacement valve assembly
US7485141B2 (en) 2002-05-10 2009-02-03 Cordis Corporation Method of placing a tubular membrane on a structural frame
US20040215323A1 (en) 2003-04-24 2004-10-28 Medtronic Ave, Inc. Membrane eyelet
DE10334868B4 (de) 2003-07-29 2013-10-17 Pfm Medical Ag Implantierbare Einrichtung als Organklappenersatz, dessen Herstellungsverfahren sowie Grundkörper und Membranelement dafür
DE602004013352T2 (de) * 2003-10-10 2009-05-07 Cook Inc., Bloomington Stentimplantate mit fenstern
US20050085894A1 (en) 2003-10-16 2005-04-21 Kershner James R. High strength and lubricious materials for vascular grafts
US8052749B2 (en) 2003-12-23 2011-11-08 Sadra Medical, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US8287584B2 (en) 2005-11-14 2012-10-16 Sadra Medical, Inc. Medical implant deployment tool
US7780725B2 (en) 2004-06-16 2010-08-24 Sadra Medical, Inc. Everting heart valve
US7445630B2 (en) 2004-05-05 2008-11-04 Direct Flow Medical, Inc. Method of in situ formation of translumenally deployable heart valve support
FR2874812B1 (fr) 2004-09-07 2007-06-15 Perouse Soc Par Actions Simpli Valve protheique interchangeable
US8182530B2 (en) 2004-10-02 2012-05-22 Christoph Hans Huber Methods and devices for repair or replacement of heart valves or adjacent tissue without the need for full cardiopulmonary support
US7914569B2 (en) 2005-05-13 2011-03-29 Medtronics Corevalve Llc Heart valve prosthesis and methods of manufacture and use
DE102005052628B4 (de) 2005-11-04 2014-06-05 Jenavalve Technology Inc. Selbstexpandierendes, flexibles Drahtgeflecht mit integrierter Klappenprothese für den transvaskulären Herzklappenersatz und ein System mit einer solchen Vorrichtung und einem Einführkatheter
CN100362971C (zh) 2005-11-16 2008-01-23 程英升 贲门支架
US20070142907A1 (en) 2005-12-16 2007-06-21 Micardia Corporation Adjustable prosthetic valve implant
US20070213813A1 (en) * 2005-12-22 2007-09-13 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US20070244545A1 (en) 2006-04-14 2007-10-18 Medtronic Vascular, Inc. Prosthetic Conduit With Radiopaque Symmetry Indicators
EP1849440A1 (en) 2006-04-28 2007-10-31 Younes Boudjemline Vascular stents with varying diameter
CN101442958B (zh) 2006-04-28 2012-09-05 麦德托尼克公司 心脏瓣膜替换设备
FR2909857B1 (fr) 2006-12-14 2009-03-06 Perouse Soc Par Actions Simpli Endovalve.
WO2008089365A2 (en) 2007-01-19 2008-07-24 The Cleveland Clinic Foundation Method for implanting a cardiovascular valve
US8221505B2 (en) * 2007-02-22 2012-07-17 Cook Medical Technologies Llc Prosthesis having a sleeve valve

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020138135A1 (en) * 2001-03-21 2002-09-26 Duerig Thomas W. Stent-based venous valves
US20040210307A1 (en) * 2003-04-18 2004-10-21 Alexander Khairkhahan Percutaneous transcatheter heart valve replacement
WO2004096100A1 (en) * 2003-04-24 2004-11-11 Cook Incorporated Artificial valve prosthesis with improved flow dynamics
WO2005096993A1 (en) * 2004-03-31 2005-10-20 Med Institute, Inc. Endoluminal graft with a prosthetic valve
US20060052867A1 (en) * 2004-09-07 2006-03-09 Medtronic, Inc Replacement prosthetic heart valve, system and method of implant
WO2006127412A1 (en) * 2005-05-20 2006-11-30 The Cleveland Clinic Foundation Apparatus and methods for repairing the function of a diseased valve and method for making same
WO2007071436A2 (en) * 2005-12-22 2007-06-28 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US20070244546A1 (en) * 2006-04-18 2007-10-18 Medtronic Vascular, Inc. Stent Foundation for Placement of a Stented Valve

Cited By (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11517431B2 (en) 2005-01-20 2022-12-06 Jenavalve Technology, Inc. Catheter system for implantation of prosthetic heart valves
USD732666S1 (en) 2005-05-13 2015-06-23 Medtronic Corevalve, Inc. Heart valve prosthesis
USD812226S1 (en) 2005-05-13 2018-03-06 Medtronic Corevalve Llc Heart valve prosthesis
US10010416B2 (en) 2006-02-18 2018-07-03 The Cleveland Clinic Foundation Apparatus and method for replacing a diseased cardiac valve
US12245937B2 (en) 2006-09-19 2025-03-11 Medtronic Ventor Technologies, Ltd. Sinus-engaging valve fixation member
US9642704B2 (en) 2006-09-19 2017-05-09 Medtronic Ventor Technologies Ltd. Catheter for implanting a valve prosthesis
US8771346B2 (en) 2006-09-19 2014-07-08 Medtronic Ventor Technologies Ltd. Valve prosthetic fixation techniques using sandwiching
US11304800B2 (en) 2006-09-19 2022-04-19 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
US8834564B2 (en) 2006-09-19 2014-09-16 Medtronic, Inc. Sinus-engaging valve fixation member
US11304801B2 (en) 2006-09-19 2022-04-19 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
US8747460B2 (en) 2006-09-19 2014-06-10 Medtronic Ventor Technologies Ltd. Methods for implanting a valve prothesis
US12257148B2 (en) 2006-09-19 2025-03-25 Medtronic Ventor Technologies, Ltd. Sinus-engaging valve fixation member
US9138312B2 (en) 2006-09-19 2015-09-22 Medtronic Ventor Technologies Ltd. Valve prostheses
US8414643B2 (en) 2006-09-19 2013-04-09 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
US10004601B2 (en) 2006-09-19 2018-06-26 Medtronic Ventor Technologies Ltd. Valve prosthesis fixation techniques using sandwiching
US11304802B2 (en) 2006-09-19 2022-04-19 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
US8771345B2 (en) 2006-09-19 2014-07-08 Medtronic Ventor Technologies Ltd. Valve prosthesis fixation techniques using sandwiching
US12076237B2 (en) 2006-09-19 2024-09-03 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
US12396849B2 (en) 2006-09-19 2025-08-26 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
US11357624B2 (en) 2007-04-13 2022-06-14 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
US11259919B2 (en) 2008-01-24 2022-03-01 Medtronic, Inc. Stents for prosthetic heart valves
US11154398B2 (en) 2008-02-26 2021-10-26 JenaValve Technology. Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US12232957B2 (en) 2008-02-26 2025-02-25 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US11564794B2 (en) 2008-02-26 2023-01-31 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US10993805B2 (en) 2008-02-26 2021-05-04 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US11690718B2 (en) 2008-08-22 2023-07-04 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
EP3360513B1 (en) 2008-08-22 2021-06-30 Edwards Lifesciences Corporation Prosthetic heart valve
US11730597B2 (en) 2008-08-22 2023-08-22 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
US11540918B2 (en) 2008-08-22 2023-01-03 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
EP2448522A4 (en) * 2009-07-02 2018-01-31 The Cleveland Clinic Foundation Apparatus and method for replacing a diseased cardiac valve
US9925044B2 (en) 2010-04-01 2018-03-27 Medtronic, Inc. Transcatheter valve with torsion spring fixation and related systems and methods
US11554010B2 (en) 2010-04-01 2023-01-17 Medtronic, Inc. Transcatheter valve with torsion spring fixation and related systems and methods
US11833041B2 (en) 2010-04-01 2023-12-05 Medtronic, Inc. Transcatheter valve with torsion spring fixation and related systems and methods
US10716665B2 (en) 2010-04-01 2020-07-21 Medtronic, Inc. Transcatheter valve with torsion spring fixation and related systems and methods
US10449042B2 (en) 2010-05-05 2019-10-22 Neovasc Tiara Inc. Transcatheter mitral valve prosthesis
US11432924B2 (en) 2010-05-05 2022-09-06 Neovasc Tiara Inc. Transcatheter mitral valve prosthesis
US9770329B2 (en) 2010-05-05 2017-09-26 Neovasc Tiara Inc. Transcatheter mitral valve prosthesis
EP2566416A4 (en) * 2010-05-05 2014-01-08 Neovasc Tiara Inc TRANS-CATHETER mitral valve prosthesis
US9241790B2 (en) 2010-05-05 2016-01-26 Neovasc Tiara Inc. Transcatheter mitral valve prosthesis
US11419720B2 (en) 2010-05-05 2022-08-23 Neovasc Tiara Inc. Transcatheter mitral valve prosthesis
US9248014B2 (en) 2010-05-05 2016-02-02 Neovasc Tiara Inc. Transcatheter mitral valve prosthesis
EP4523658A3 (en) * 2010-05-05 2025-06-04 Neovasc Tiara Inc. Transcatheter mitral valve prosthesis
US12414854B2 (en) 2010-05-20 2025-09-16 Jenavalve Technology, Inc. Catheter system for introducing an expandable stent into the body of a patient
US11589981B2 (en) 2010-05-25 2023-02-28 Jenavalve Technology, Inc. Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent
US12447015B2 (en) 2010-05-25 2025-10-21 Jenavalve Technology, Inc. Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent
US11833039B2 (en) 2011-02-01 2023-12-05 St. Jude Medical, Cardiology Division, Inc. Leaflet suturing to commissure points for prosthetic heart valve
US12285332B2 (en) 2011-02-01 2025-04-29 St. Jude Medical, Cardiology Division, Inc. Leaflet suturing to commissure points for prosthetic heart valve
EP2670349B1 (en) 2011-02-01 2021-04-07 St. Jude Medical, Cardiology Division, Inc. D/B/A Repositioning of prosthetic heart valve and deployment
US10456255B2 (en) 2011-03-21 2019-10-29 Cephea Valve Technologies, Inc. Disk-based valve apparatus and method for the treatment of valve dysfunction
EP4119095A1 (en) * 2011-03-21 2023-01-18 Cephea Valve Technologies, Inc. Disk-based valve apparatus
WO2012127309A1 (en) 2011-03-21 2012-09-27 Ontorfano Matteo Disk-based valve apparatus and method for the treatment of valve dysfunction
EP2688516A4 (en) * 2011-03-21 2015-01-07 Cephea Valve Technologies Inc HEART FLAP DISC DEVICE AND METHOD FOR TREATING HEART FLAP DENSITY FUNCTIONS
US11931252B2 (en) 2011-03-21 2024-03-19 Cephea Valve Technologies, Inc. Disk-based valve apparatus and method for the treatment of valve dysfunction
US9713529B2 (en) 2011-04-28 2017-07-25 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
US9308087B2 (en) 2011-04-28 2016-04-12 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
US12053369B2 (en) 2011-11-23 2024-08-06 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
US10537422B2 (en) 2011-11-23 2020-01-21 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
US11413139B2 (en) 2011-11-23 2022-08-16 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
EP2614794A1 (de) * 2012-01-11 2013-07-17 Biotronik AG Herzklappenprothese
EP2838473B1 (en) 2012-04-18 2022-07-20 Medtronic CV Luxembourg S.à.r.l. Valve prosthesis
US10206775B2 (en) 2012-08-13 2019-02-19 Medtronic, Inc. Heart valve prosthesis
US11123190B2 (en) 2012-08-13 2021-09-21 Medtronic, Inc. Heart valve prosthesis
US10869757B2 (en) 2013-01-08 2020-12-22 Medtronic, Inc. Valve prosthesis and method for delivery
EP2943158B1 (en) 2013-01-08 2020-02-26 Medtronic Inc. Valve prosthesis
WO2014110023A1 (en) * 2013-01-08 2014-07-17 Medtronic Inc. Valve prosthesis
US11833038B2 (en) 2013-01-08 2023-12-05 Medtronic, Inc. Valve prosthesis and method for delivery
US12303385B2 (en) 2013-02-04 2025-05-20 Edwards Lifesciences Corporation Method of implanting a spacer body in a mitral valve
EP3756623A1 (en) * 2013-02-04 2020-12-30 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
US12357453B2 (en) 2013-02-04 2025-07-15 Edwards Lifesciences Corporation Prosthetic heart valve with atrial sealing member
US11510780B2 (en) 2013-07-17 2022-11-29 Cephea Valve Technologies, Inc. System and method for cardiac valve repair and replacement
US12193934B2 (en) 2013-07-17 2025-01-14 Cephea Valve Technologies, Inc. System and method for cardiac valve repair and replacement
US9554899B2 (en) 2013-07-17 2017-01-31 Cephea Valve Technologies, Inc. System and method for cardiac valve repair and replacement
US9561103B2 (en) 2013-07-17 2017-02-07 Cephea Valve Technologies, Inc. System and method for cardiac valve repair and replacement
US10149761B2 (en) 2013-07-17 2018-12-11 Cephea Valve Technlologies, Inc. System and method for cardiac valve repair and replacement
US10624742B2 (en) 2013-07-17 2020-04-21 Cephea Valve Technologies, Inc. System and method for cardiac valve repair and replacement
US10154906B2 (en) 2013-07-17 2018-12-18 Cephea Valve Technologies, Inc. System and method for cardiac valve repair and replacement
US12318281B2 (en) 2013-08-30 2025-06-03 Jenavalve Technology, Inc. Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame
US11185405B2 (en) 2013-08-30 2021-11-30 Jenavalve Technology, Inc. Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame
FR3021209A1 (fr) * 2014-05-23 2015-11-27 Thomas Modine Prothese de valve cardiaque mitrale ou tricuspide
EP2982336A1 (en) * 2014-08-04 2016-02-10 Alvimedica Tibb Ürünler San. Ve Dis Tic. A.S. Mitral valve prosthesis, particularly suitable for transcatheter implantation
EP3922218A1 (en) * 2014-09-09 2021-12-15 Occlutech Holding AG A flow regulating device in the heart
US10548721B2 (en) 2014-12-09 2020-02-04 Cephea Valve Technologies, Inc. Replacement cardiac valves and methods of use and manufacture
US10869755B2 (en) 2014-12-09 2020-12-22 Cephea Valve Technologies, Inc. Replacement cardiac valves and methods of use and manufacture
US10433953B2 (en) 2014-12-09 2019-10-08 Cephea Valve Technologies, Inc. Replacement cardiac valves and methods of use and manufacture
US9492273B2 (en) 2014-12-09 2016-11-15 Cephea Valve Technologies, Inc. Replacement cardiac valves and methods of use and manufacture
US9439757B2 (en) 2014-12-09 2016-09-13 Cephea Valve Technologies, Inc. Replacement cardiac valves and methods of use and manufacture
US11147665B2 (en) 2014-12-09 2021-10-19 Cepha Valve Technologies, Inc. Replacement cardiac valves and methods of use and manufacture
US12121461B2 (en) 2015-03-20 2024-10-22 Jenavalve Technology, Inc. Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath
CN104720936A (zh) * 2015-03-26 2015-06-24 杭州启明医疗器械有限公司 使用安全的瓣膜支架以及具有该瓣膜支架的瓣膜置换装置
US11337800B2 (en) 2015-05-01 2022-05-24 Jenavalve Technology, Inc. Device and method with reduced pacemaker rate in heart valve replacement
US12343255B2 (en) 2015-05-01 2025-07-01 Jenavalve Technology, Inc. Device and method with reduced pacemaker rate in heart valve replacement
US11617646B2 (en) 2015-05-14 2023-04-04 Cephea Valve Technologies, Inc. Replacement mitral valves
US11786373B2 (en) 2015-05-14 2023-10-17 Cephea Valve Technologies, Inc. Cardiac valve delivery devices and systems
US10143552B2 (en) 2015-05-14 2018-12-04 Cephea Valve Technologies, Inc. Replacement mitral valves
US10470881B2 (en) 2015-05-14 2019-11-12 Cephea Valve Technologies, Inc. Replacement mitral valves
US10555808B2 (en) 2015-05-14 2020-02-11 Cephea Valve Technologies, Inc. Replacement mitral valves
US10849746B2 (en) 2015-05-14 2020-12-01 Cephea Valve Technologies, Inc. Cardiac valve delivery devices and systems
US11744699B2 (en) 2015-10-09 2023-09-05 Medtronic Vascular, Inc. Heart valve prostheses and methods for percutaneous heart valve replacement
US10449041B2 (en) 2015-11-12 2019-10-22 Valmy Holding Mitral or tricuspid heart valve prosthesis
US12109111B2 (en) 2015-12-15 2024-10-08 Neovasc Tiara Inc. Transseptal delivery system
US11065138B2 (en) 2016-05-13 2021-07-20 Jenavalve Technology, Inc. Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system
US11331187B2 (en) 2016-06-17 2022-05-17 Cephea Valve Technologies, Inc. Cardiac valve delivery devices and systems
RU2750619C1 (ru) * 2016-12-15 2021-06-30 Мерил Лайф Сайенсиз Пвт Лтд Искусственный клапан
CN108430394A (zh) * 2016-12-15 2018-08-21 美利奴生命科学有限公司 人造瓣膜
EP3402441A4 (en) * 2016-12-15 2019-09-11 Meril Life Sciences Pvt Ltd FLAP GRAFT
US11633278B2 (en) 2017-01-23 2023-04-25 Cephea Valve Technologies, Inc. Replacement mitral valves
US11090158B2 (en) 2017-01-23 2021-08-17 Cephea Valve Technologies, Inc. Replacement mitral valves
US11058535B2 (en) 2017-01-23 2021-07-13 Cephea Valve Technologies, Inc. Replacement mitral valves
US10828153B2 (en) 2017-01-23 2020-11-10 Cephea Valve Technologies, Inc. Replacement mitral valves
US12290437B2 (en) 2017-01-23 2025-05-06 Cephea Valve Technologies, Inc. Replacement mitral valves
US10568737B2 (en) 2017-01-23 2020-02-25 Cephea Valve Technologies, Inc. Replacement mitral valves
US10368990B2 (en) 2017-01-23 2019-08-06 Cephea Valve Technologies, Inc. Replacement mitral valves
US12433745B2 (en) 2017-01-27 2025-10-07 Jenavalve Technology, Inc. Heart valve mimicry
US12268596B2 (en) 2017-06-30 2025-04-08 Ohio State Innovation Foundation Tri-leaflet prosthetic heart valve
EP3644905A4 (en) * 2017-06-30 2021-03-24 Ohio State Innovation Foundation HEART VALVE PROSTHESIS WITH TRIPLE SAIL
US11998447B2 (en) 2019-03-08 2024-06-04 Neovasc Tiara Inc. Retrievable prosthesis delivery system
US11779742B2 (en) 2019-05-20 2023-10-10 Neovasc Tiara Inc. Introducer with hemostasis mechanism
US20220273426A1 (en) * 2019-08-01 2022-09-01 W. L. Gore & Associates, Inc. Transcatheter prosthetic valve with multi-part frame subcomponent transverse deformation resistance
US12171658B2 (en) 2022-11-09 2024-12-24 Jenavalve Technology, Inc. Catheter system for sequential deployment of an expandable implant

Also Published As

Publication number Publication date
AU2009219415A1 (en) 2009-09-03
CN101951858B (zh) 2015-02-11
CA2715448A1 (en) 2009-09-03
CA2715448C (en) 2017-06-13
CN101951858A (zh) 2011-01-19
US8801776B2 (en) 2014-08-12
US20100049306A1 (en) 2010-02-25
JP2011512948A (ja) 2011-04-28
KR101616138B1 (ko) 2016-04-28
EP2257242B2 (en) 2019-09-04
JP2014198257A (ja) 2014-10-23
EP2257242B1 (en) 2013-02-20
AU2009219415B2 (en) 2013-01-17
MX2010009289A (es) 2010-10-25
EP2257242A1 (en) 2010-12-08
KR20100124296A (ko) 2010-11-26
JP5895326B2 (ja) 2016-03-30

Similar Documents

Publication Publication Date Title
EP2257242B1 (en) Infundibular reducer devices
US11154398B2 (en) Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
CN112336498B (zh) 二尖瓣瓣膜组件
JP2011512948A5 (enExample)
US9023098B2 (en) Dual valve prosthesis for transcatheter valve implantation
US8790395B2 (en) Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US8398704B2 (en) Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
EP2964152B1 (en) Prosthesis for transcatheter valve implantation
EP2538878B1 (en) Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US20070244546A1 (en) Stent Foundation for Placement of a Stented Valve
KR102563467B1 (ko) 카테터경유 폐의 볼 판막 조립체
AU2011219865A1 (en) Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
WO2002022054A1 (en) Valvular prosthesis and method of using same
HK40045359A (en) Mitral valve assembly

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980106911.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09714661

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2715448

Country of ref document: CA

Ref document number: 2974/KOLNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: MX/A/2010/009289

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2010548817

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009219415

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 20107020752

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2009219415

Country of ref document: AU

Date of ref document: 20090224

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009714661

Country of ref document: EP