WO2009107541A1 - 有機電界発光素子 - Google Patents

有機電界発光素子 Download PDF

Info

Publication number
WO2009107541A1
WO2009107541A1 PCT/JP2009/052883 JP2009052883W WO2009107541A1 WO 2009107541 A1 WO2009107541 A1 WO 2009107541A1 JP 2009052883 W JP2009052883 W JP 2009052883W WO 2009107541 A1 WO2009107541 A1 WO 2009107541A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
layer
difficult
electron
light emitting
Prior art date
Application number
PCT/JP2009/052883
Other languages
English (en)
French (fr)
Inventor
崇人 小山田
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Publication of WO2009107541A1 publication Critical patent/WO2009107541A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers

Definitions

  • the present invention relates to an organic electroluminescence device, and more particularly to an organic electroluminescence (EL) device using an organic compound having a charge transporting property (hole or electron mobility) and having an organic light emitting layer made of such a compound.
  • EL organic electroluminescence
  • a transparent gate electrode is provided on a substrate, a transparent gate insulating film is formed thereon so as to cover the gate electrode, and a source electrode (charge injection) having an opening on the gate insulating film And an organic semiconductor film, an organic EL film is laminated on the organic semiconductor film, and a drain electrode (charge injection) is laminated thereon (see Patent Document 1).
  • the organic EL film has a structure in which a plurality of organic material layers are stacked.
  • the organic material layer has a layer made of a material having a hole transport ability such as a hole injection layer and a hole transport layer, and an electron transport ability such as an electron transport layer and an electron injection layer. Layers made of materials are included.
  • the electron injection layer includes an alkali metal, an alkaline earth metal or an electron-donating material of those compounds mixed in an organic material layer, or an inorganic compound composed only of the electron-donating material.
  • the organic active light emitting device When an electric field is applied to the organic light-emitting layer and the organic EL film of the electron or hole transport layer stack, holes are injected from the source electrode and electrons are injected from the drain electrode. When combined, excitons are formed and emit light when returning to the ground state. In order to improve the light emission efficiency, it is important to efficiently transport carriers such as electrons to the interface, and the organic active light emitting device has a multilayer structure using an organic compound having a charge transporting property.
  • 1,10-phenanthroline derivatives are known as charge transport materials used in organic EL devices. Since the 1,10-phenanthroline derivative has a relatively high electron mobility as an organic compound material, such as 4,7-diphenyl-1,10-phenanthroline proposed in Patent Documents 3 and 4, for example, organic EL It has been used as a host material for the electron transport layer of the device. However, since 4,7-diphenyl-1,10-phenanthroline and 4,7-diphenyl-1,10-phenanthroline have a relatively low glass transition temperature (about 60 ° C.), they are not suitable for use in organic EL devices.
  • 4,7-diphenyl-1,10-phenanthroline and 4,7-diphenyl-1,10-phenanthroline have a relatively low glass transition temperature (about 60 ° C.), they are not suitable for use in organic EL devices.
  • Patent Documents 2 and 3 do not disclose the specific diffusion of metal salt ions and do not disclose the suppression effect with respect to the disclosed diffusion prevention layer.
  • the inventor conducted an experiment using an alkali metal or alkaline earth metal having a low work function, a compound thereof (CsF, Cs 2 CO 3 , Li 2 O, LiF) or the like for the inorganic electron injection layer.
  • a compound thereof CsF, Cs 2 CO 3 , Li 2 O, LiF
  • a problem to be solved by the invention is to provide an organic EL element capable of extending the life as an example.
  • An organic electroluminescent device includes a plurality of organic layers including an organic light emitting layer laminated between a pair of opposed anodes and cathodes, and the cathode is provided with an electron injection layer mixed with an electron donating material. And an organic electroluminescent device between the organic light emitting layers, wherein the organic electroluminescent element is disposed between the electron injection layer and the organic light emitting layer and is in contact with the interface of the electron injection layer and obstructs the passage of the electron donating material.
  • the material having a difficult-to-pass layer made of a compound and constituting the difficult-to-pass layer is a material having a glass transition temperature of 97 ° C. or higher and containing one or more nitrogen atoms.
  • a difficult-to-pass layer made of an organic semiconductor that obstructs the passage of the electron donating material is provided so that the electron donating material does not reach the light emitting layer.
  • the difficult-to-pass layer includes at least one of an organic block layer that blocks the electron donating material and an organic trap layer that traps the electron donating material.
  • the hard-to-pass layer is composed of a single layer of an organic block layer, a single layer of an organic trap layer, or a stack of an organic block layer and an organic trap layer (from the electron injection layer side, the organic block layer and It may be in the order of the organic trap layer or in the order of the organic trap layer and the organic block layer).
  • the difficult-to-pass layer can be composed of a stack of the organic block layer and the organic trap layer that are in contact with each other. Since an organic block layer is provided to suppress a decrease in light emission amount, or an organic trap layer is provided and intentionally diffused (trapped) so as not to reach the light emitting layer, a low driving voltage can be achieved. As a result, it is possible to obtain an effect that not only prevents a decrease in luminance but also suppresses drive (life) deterioration.
  • At least one of the organic block layer and the organic trap layer can be made of an electron transporting organic compound.
  • the glass transition temperature of the organic trap layer can be equal to or higher than the glass transition temperature of the organic block layer in a storage environment. Therefore, the glass transition temperature of the organic block layer is lower than that of the organic trap layer.
  • the organic block layer thin film may be amorphous.
  • the thin film of the organic trap layer may be a microcrystal.
  • the organic block layer thin film may have a higher density than the organic trap layer thin film. Therefore, the organic trap layer thin film has a lower density than the organic block layer thin film.
  • the difficult-to-pass layer can be a single layer of the organic block layer.
  • the difficult-to-pass layer can be a single layer of the organic trap layer.
  • the electron donating material may be an alkali metal, an alkaline earth metal, or a compound thereof.
  • the electron donating material may be the alkali metal, alkaline earth metal, or a mixture of these compounds and an electron transporting organic compound.
  • either one of the anode and the cathode can be translucent or transparent, or the anode and cathode can be transparent.
  • the difficult-to-pass layer may be in contact with the interface of the organic light emitting layer.
  • the material constituting the difficult-to-pass layer can be Alq3, TPT-1, NBphen, TPBI, or TCTA.
  • an example of the organic EL element of the present embodiment includes a transparent anode 2, a hole transport layer 4, an organic light emitting layer 5, and a difficult-to-pass layer 6 on a transparent substrate 1 such as glass in order.
  • the electron injection layer 7 and the cathode 8 made of a metal are laminated.
  • the hole transport layer 4, the organic light emitting layer 5, the difficult-to-pass layer 6 and the electron injection layer 7 are organic semiconductor layers. That is, in the organic EL element, a plurality of organic semiconductor layers stacked between a pair of opposed anodes and cathodes include a hole injection layer, a hole transport layer, and an organic light emitting layer.
  • the layer adjacent to the difficult-to-pass layer 6 is not limited to the light emitting layer 5, and a configuration in which a block layer and / or a buffer layer (not shown) is inserted is also included in the present invention.
  • electrode materials for the anode 2 and the cathode 8 metals such as Ti, Al, Al, Cu, Ni, Ag, Mg: Ag, Au, Pt, Pd, Ir, Cr, Mo, W, Ta, or alloys thereof are used. Can be mentioned. Alternatively, a conductive polymer such as polyaniline or PEDT: PSS can be used. Alternatively, an oxide transparent conductive thin film, for example, one containing indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide, tin oxide or the like as a main composition can be used. The thickness of each electrode is preferably about 10 to 500 nm. These electrode materials are preferably produced by vacuum deposition or sputtering.
  • a conductive material having a work function larger than that of the cathode 8 is selected. Further, when the anode and the cathode are on the light emission extraction side, the materials and film thicknesses are selected so as to be transparent or translucent. In particular, it is preferable to select a material in which either one or both of the anode and the cathode has a transmittance of at least 10% at the emission wavelength obtained from the organic light emitting material.
  • Organic semiconductor layer-- The organic semiconductor layer constituting the main components of the hole injection layer 3, the hole transport layer 4, the light emitting layer 5, the difficult-to-pass layer 6, and the electron injection layer 7 has a charge transport property (hole and / or electron mobility).
  • Examples of the organic compound having an electron transport property as a main component of the light emitting layer and the electron injection layer include polycyclic compounds such as p-terphenyl and quaterphenyl and derivatives thereof, naphthalene, tetracene, pyrene, coronene, chrysene, anthracene, Condensed polycyclic hydrocarbon compounds such as diphenylanthracene, naphthacene, phenanthrene and derivatives thereof, condensed heterocyclic compounds such as phenanthroline, bathophenanthroline, phenanthridine, acridine, quinoline, quinoxaline, phenazine and derivatives thereof, fluorescein, Perylene, phthaloperylene, naphthaloperylene, perinone, phthaloperinone, naphthaloperinone, diphenylbutadiene, tetraphenylbutadiene, oxadiazole, al
  • a metal chelate complex compound particularly a metal chelated oxanoid compound, tris (8-quinolinolato) aluminum, bis (8-quinolinolato) magnesium, bis [benzo (f) -8-quinolinolato Zinc, bis (2-methyl-8-quinolinolato) aluminum, tris (8-quinolinolato) indium, tris (5-methyl-8-quinolinolato) aluminum, 8-quinolinolatolithium, tris (5-chloro-8- There may also be mentioned metal complexes having at least one 8-quinolinolato or a derivative thereof such as quinolinolato) gallium and bis (5-chloro-8-quinolinolato) calcium as a ligand.
  • organic compounds having electron transport properties oxadiazoles, triazines, stilbene derivatives, distyrylarylene derivatives, styryl derivatives, and diolefin derivatives can be suitably used.
  • organic compound that can be used as an organic compound having an electron transporting property 2,5-bis (5,7-di-t-benzyl-2-benzoxazolyl) -1,3,4-thiazole, 4, 4'-bis (5,7-t-pentyl-2-benzoxazolyl) stilbene, 4,4'-bis [5,7-di- (2-methyl-2-butyl) -2-benzoxazoly Ru] stilbene, 2,5-bis (5.7-di-t-pentyl-2-benzoxazolyl) thiophene, 2,5-bis [5- ( ⁇ , ⁇ -dimethylbenzyl) -2-benzoxa Zolyl] thiophene, 2,5-bis [5,7-di- (2-methyl-2-butyl) -2-benzoxazolyl] -3,4-diphenylthiophene, 2,5-bis (5- Methyl-2-benzoxazolyl) thiophene, 4,
  • 1,4-bis (2-methylstyryl) benzene 1,4-bis (3-methylstyryl) benzene, 1,4-bis (4-methylstyryl) benzene, Distyrylbenzene, 1,4-bis (2-ethylstyryl) benzene, 1,4-bis (3-ethylstyryl) benzene, 1,4-bis (2-methylstyryl) -2-methylbenzene, 1,4 Examples thereof include -bis (2-methylstyryl) -2-ethylbenzene.
  • organic compound having an electron transporting property 2,5-bis (4-methylstyryl) pyrazine, 2,5-bis (4-ethylstyryl) pyrazine, 2,5-bis [2- (1- Naphthyl) vinyl] pyrazine, 2,5-bis (4-methoxystyryl) pyrazine, 2,5-bis [2- (4-biphenyl) vinyl] pyrazine, 2,5-bis [2- (1-pyrenyl) vinyl ] Pyrazine etc. are mentioned.
  • organic compounds having electron transport properties include 1,4-phenylene dimethylidin, 4,4'-phenylene dimethylidin, 2,5-xylylene dimethylidin, and 2,6-naphthylene dimethylidene. Din, 1,4-biphenylenedimethylidin, 1,4-p-terephenylenedimethylidin, 9,10-anthracenediyldimethylidin, 4,4 '-(2,2-di-t-butylphenylvinyl
  • Known materials conventionally used for the production of organic EL devices such as biphenyl and 4,4 ′-(2,2-diphenylvinyl) biphenyl can be appropriately used.
  • organic compounds having hole transporting properties include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl, N, N′-diphenyl-N, N′-di (3-methyl Phenyl) -4,4′-diaminobiphenyl, 2,2-bis (4-di-p-tolylaminophenyl) propane, N, N, N ′, N′-tetra-p-tolyl-4,4′- Diaminobiphenyl, bis (4-di-p-tolylaminophenyl) phenylmethane, N, N′-diphenyl-N, N′-di (4-methoxyphenyl) -4,4′-diaminobiphenyl, N, N, N ′, N′-tetraphenyl-4,4′-diaminodiphenyl ether, 4,4′-bis (diphenylamino) quadriphenyl
  • the electron donating material mixed into the electron transporting organic compound as the main component of the electron injection layer is not particularly limited as long as it is an alkali metal such as Li, an alkaline earth metal such as Mg, or a compound thereof.
  • a metal having a work function of 4.0 eV or less can be suitably used. Specific examples include Cs, Li, Na, K, Be, Mg, Ca, Sr, Ba, Y, La, Mg, Sm, Gd, Yb, Or those compounds etc. are mentioned.
  • the hole injection layer, the hole transport layer, and the hole transport light emitting layer those obtained by dispersing the above organic compound in a polymer or those polymerized can be used.
  • So-called ⁇ -conjugated polymers such as polyparaphenylene vinylene and derivatives thereof, hole-transporting non-conjugated polymers typified by poly (N-vinylcarbazole), and sigma-conjugated polymers of polysilanes can also be used.
  • the hole injection layer is not particularly limited, but conductive polymers such as metal phthalocyanines such as copper phthalocyanine and metal-free phthalocyanines, carbon films, and polyaniline can be preferably used.
  • CsF as an inorganic electron injection layer among alkali metals, alkaline earth metals, and their compounds that have a low effective work function as an electron-donating material.
  • High temperature storage experiments were performed by Backside-Secondary-Ion-Mass-Spectrometry (BSS) analysis. This is for searching for a material of a difficult-to-pass layer made of an organic semiconductor that obstructs the passage of the electron donating material CsF.
  • BSS Backside-Secondary-Ion-Mass-Spectrometry
  • TPT-1 N, N'-bis [4 '-(N, N-diphenylamino) -4-biphenylyl] -N, N'-diphenylbenzidine
  • BAlq Bis- (2-methyl-8-quinolinolate) -4- (phenylphenolato) -aluminium
  • the element structure for BSS analysis is a sample film Smp having a predetermined thickness of TPT-1, NBphen, TPBI, Alq3, and BAlq between the ITO film on the glass substrate and the CsF / Al film.
  • the film was formed so as to sandwich the film.
  • the element structure is as follows.
  • TPT-1 ITO / TPT-1 (100 nm) / CsF (1 nm) / Al.
  • NBphen ITO / NBphen (100 nm) / CsF (1 nm) / Al.
  • TPBI Element structure
  • Element structure (Alq3): ITO / CuPc (25 nm) / TPT-1 (45 nm) / Alq3 (60 nm) / CsF (1 nm) / Al.
  • FIG. 6 is a schematic graph summarizing the BSS analysis results (excluding element (BAlq) and Al element) in which the vertical axis indicates the strength of the Cs element and the horizontal axis indicates the distance from the interface of the CsF film.
  • 7 to 11 are graphs showing the measurement results (element (TPT-1), element (NBphen), element (TPBI), element (Alq3), element (BAlq)) based on FIG.
  • the vertical axis represents the strength intensity of Cs and Al
  • the horizontal axis represents the distance Depth from the ITO film interface).
  • TSC thermal stimulation current measurement
  • an Alq3-CsF element (element structure (comparison): ITO / CuPc (25 nm) / TPT-1 (45 nm) / Alq3 (60 nm) / CsF (1 nm) / Al (80 nm)) has a higher trap amount than before storage. Although it decreased and was around 0.15 eV, a peak shift around 0.25 eV was observed after high temperature storage, and a new peak was confirmed between 0.40 and 0.45 eV.
  • the Alq3-CsF element having a moderate diffusion degree improved the luminance by 30 cd / m 2 when the voltage was increased by 0.6 V and increased to 50 hours or more, and the operation was stable, and the luminance was not decreased.
  • the difficult-to-pass layer is a material having a blocking ability and a trap ability with respect to the electron donating material, an electron donating material
  • the organic compound is selected from organic compounds that obstruct the passage of light, and is disposed in contact with the interface of the electron injection layer between the electron injection layer and the organic light emitting layer.
  • the difficult-to-pass layer that does not allow the electron donating material to move to the light emitting layer can be composed of either a single layer of an organic block layer that blocks the electron donating material or an organic trap layer that traps the electron donating material.
  • the difficult-to-pass layer 6 can be configured as a laminate of an organic block layer 6a and an organic trap layer 6b. From the electron injection layer side 7, the organic block layer 6a and the organic trap layer 6b may be arranged in this order, or the organic trap layer 6b and the organic block layer 6a may be arranged in this order. That is, in the organic electroluminescent element of the present invention, the difficult-to-pass layer can be composed of a laminate of the organic block layer 6a and the organic trap layer 6b that are in contact with each other.
  • the block ability and the trap ability of the difficult-to-pass layer 6 suppress the decrease in the amount of light emission and reduce the driving. Voltage can be changed. This not only prevents a decrease in luminance but also suppresses drive (life) deterioration.
  • the organic block layer thin film is amorphous.
  • the organic block layer thin film has a higher density than the organic trap layer thin film. It is considered that the organic trap layer thin film, which is a microcrystal, has a lower density than the organic block layer thin film, and the organic trap layer material has a glass transition temperature of about the same or lower than that in the storage environment.
  • a plurality of organic EL elements were prepared, and the life characteristics and the film thickness dependence characteristics of the electron injection layer were measured and evaluated.
  • TPT-1 copper phthalocyanine CuPc was formed in a thickness of 25 nm as a hole injection layer in order by vacuum deposition, and on that, TPT-1 was formed as a hole transport layer at 45 nm. A thickness of 50 nm was formed thereon as an organic light emitting layer. Further, a plurality of precursors similarly formed up to the organic light emitting layer Alq3 were prepared, and TPT-1 (10 nm thickness), TPBI (10 nm thickness), NBphen (10 nm thickness) were formed as a difficult-to-pass layer by vapor deposition on each organic light emitting layer.
  • Element 1 ITO / CuPc (25 nm) / TPT-1 (45 nm) / Alq3 (50 nm) / TPT-1 (10 nm) / CsF (1 nm) / Al (80 nm).
  • Element 2 ITO / CuPc (25 nm) / TPT-1 (45 nm) / Alq3 (50 nm) / TPBI (10 nm) / CsF (1 nm) / Al (80 nm).
  • Element 3 ITO / CuPc (25 nm) / TPT-1 (45 nm) / Alq3 (50 nm) / NBphen (10 nm) / CsF (1 nm) / Al (80 nm).
  • Element 4 ITO / CuPc (25 nm) / TPT-1 (45 nm) / Alq3 (50 nm) / TCTA (10 nm) / CsF (1 nm) / Al (80 nm).
  • Element 5 ITO / CuPc (25 nm) / TPT-1 (45 nm) / Alq3 (30 nm) / TCTA (10 nm) / 17% -Cs 2 MoO 4 : NBphen (20 nm) / Al (80 nm).
  • Element 6 ITO / BAlq (50 nm) / CsF (1 nm) / Al (80 nm).
  • Each of the examples (elements 1 to 6 and the above-described element structure (comparative)) was driven at a current density of 7.5 mA / cm 2 under a high-temperature storage environment (85 ° C., 100 ° C., 500 hours).
  • the element 5 has a structure in which a Cs compound is contained in NBphen as a trap layer and TCTA is introduced as a block layer.
  • the driving voltage can be reduced, and the life of the device can be expected to be extended.
  • the element 6 using BAlq having the lowest glass transition temperature significantly increased the driving voltage.
  • the glass transition temperature of BAlq or higher when stored for a long time under a storage environment of 100 ° C., it reaches the glass transition temperature of BAlq or higher, so that the thin film state cannot be maintained and Al atoms as the cathode diffuse, and worst, between the anode and the cathode In some cases, holes (electrons) cannot be injected into the organic thin film, causing no light emission.
  • a 1,10-phenanthroline derivative, quinoline derivative, or triphenylamine derivative having a glass transition temperature of at least 97 ° C. or more and containing at least one nitrogen atom is suitable as a material constituting the difficult-to-pass layer. I understand that.
  • the organic EL element was demonstrated in the said Example, as an organic semiconductor element, for example in the organic solar cell in which a some organic-semiconductor layer contains at least 1 of a light collection layer, an electron carrying layer, and a positive hole transport layer
  • the present invention is applicable.
  • a structure having a difficult-to-pass layer made of an organic compound that obstructs the passage of the electron donating material in contact with the electron injection layer also exhibits a life extension effect and a moisture resistance effect similar to those in the above examples.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 有機電界発光素子は、対向する1対の陽極及び陰極の間に積層配置された有機発光層を含む複数の有機半導体層を備え、電子供与性材料が混合された電子注入層を陰極及び有機発光層間に有する有機電界発光素子であって、電子注入層と有機発光層の間に配置され、電子注入層の界面に接しかつ電子供与性材料の通過を妨害する有機化合物からなる通過困難層を有する。通過困難層を構成する材料は、ガラス転移温度97°C以上で、窒素原子を1以上含む材料である。

Description

有機電界発光素子
 本発明は、有機電界発光素子に関し、特に電荷輸送性(正孔又は電子の移動性)を有する有機化合物を利用し、かかる化合物からなる有機発光層を備えた有機エレクトロルミネッセンス(EL)素子に関する。
 従来から、有機EL素子を有機薄膜トランジスタでアクティブマトリクス駆動させる有機アクティブ発光素子の研究が行われている。
 有機アクティブ発光素子には、例えば、基板上に透明ゲート電極を設け、ゲート電極を覆うようにその上に透明ゲート絶縁膜を形成し、ゲート絶縁膜の上に開口を有するソース電極(電荷注入)と有機半導体膜を設け、有機半導体膜上に有機EL膜を積層して、その上にドレイン電極(電荷注入)を積層したものが知られている(特許文献1参照)。
 一般に、有機EL膜は、複数の有機材料層を積層した構造を有している。有機材料層には、有機発光層の他に、正孔注入層、正孔輸送層等の正孔輸送能を持つ材料からなる層や、電子輸送層、電子注入層等の電子輸送能を持つ材料からなる層等が含まれる。電子注入層には、アルカリ金属、アルカリ土類金属やそれらの化合物の電子供与性材料が有機材料層に混合されたものや、その電子供与性材料のみからなる無機化合物も含まれる。
 有機発光層並びに電子或いは正孔の輸送層の積層体の有機EL膜に電界が印加されると、ソース電極からは正孔が、ドレイン電極からは電子が注入され、これらが有機発光層において再結合し励起子が形成され、基底状態に戻るとき発光する。発光効率を向上させるためには、電子等キャリアを効率よく界面に輸送することが重要で、有機アクティブ発光素子でも電荷輸送性を有する有機化合物を利用した多層構造を有している。
 このように、有機EL素子の発光効率を増大させるには電荷注入層を設けることが有効であるが、さらに、素子の延命化が必要であり、連続駆動でき高効率の素子が望まれている。
 有機EL素子において駆動電圧を低下させ長期保存においても輝度低下のない安定化を目的として、 陽極および陰極間の少なくとも1層以上の有機層に金属塩を含有させ、金属塩を構成するイオンの拡散を抑制する拡散防止層を設ける素子が、提案されている(特許文献2、3参照)。
 また、有機EL素子に用いられる電荷輸送性材料として1,10-フェナントロリン誘導体が知られている。1,10-フェナントロリン誘導体は、例えば特許文献3、4で提案されている4,7-ジフェニル-1,10-フェナントロリンのように、有機化合物材料としては比較的電子移動度が高いため、有機EL素子の電子輸送層のホスト材料として用いられてきた。しかしながら、4,7-ジフェニル-1,10-フェナントロリンや、4,7-ジフェニル-1,10-フェナントロリンはガラス転移温度(約60℃程度)が比較的低いために、有機EL素子に用いるには高温信頼性が低く、薄膜にした際の安定性に欠けるため、実用に耐えることができないという問題点がある。この問題点を解決するために、様々な置換基を導入した1,10-フェナントロリン誘導体が有機EL素子用化合物として提案されてきた(特許文献4、5参照)。
特開2007-200788 特開2007-088015 特開2002-231457 特表2005-530320 特表2007-525023
 しかしながら、特許文献2、3は、その開示する拡散防止層に関して、具体的な、金属塩構イオンの拡散を開示することなく、さらに抑制効果も開示していない。
 そこで、発明者は、仕事関数が低いアルカリ金属やアルカリ土類金属、それらの化合物(CsF、Cs2CO3、Li2O、LiF)等を無機電子注入層に用いた実験で、これらの材料が酸化(例えばCs2O)、材料によっては分解(Cs2CO3)し易く、また潮解性を有し、取り扱いが難しいことを知見した。
 そこで、これらの電子供与性材料を使用、特に混合することで駆動電圧を低減させる効果があるものの、高温保存下ではこれらの電子供与性材料が発光層中まで拡散してしまい発光量が減少してしまう問題を知見した。
 仕事関数が低いアルカリ金属やアルカリ土類金属やそれらの化合物をドーピングする際は、上記で挙げた問題があり、特にCs単体ではその融点が23度、その分子量が軽いため、有機EL素子を高温下で保存保管した場合、Csが拡散し素子劣化に繋がる恐れがあると考えられる。このような状態になると、結果的に素子の駆動寿命が短くなる。
 そこで、発明が解決しようとする課題は、延命化が図れる有機EL素子を提供することが一例として挙げられる。
 本発明による有機電界発光素子は、対向する1対の陽極及び陰極の間に積層配置された有機発光層を含む複数の有機層を備え、電子供与性材料が混合された電子注入層を前記陰極及び前記有機発光層間に有する有機電界発光素子であって、前記電子注入層と前記有機発光層の間に配置され、前記電子注入層の界面に接しかつ前記電子供与性材料の通過を妨害する有機化合物からなる通過困難層を有し、前記通過困難層を構成する材料は、ガラス転移温度97℃以上で、窒素原子を1以上含む材料であることを特徴とする。
 このように、有機発光層に隣接する層として、電子供与性材料の通過を妨害する有機半導体からなる通過困難層を設け、電子供与性材料が発光層まで届かなくさせる。通過困難層は、電子供与性材料をブロックする有機ブロック層及び電子供与性材料をトラップする有機トラップ層の少なくとも1層からなる。具体的には、通過困難層は、有機ブロック層の単層からなるか、有機トラップ層の単層からなるか、有機ブロック層及び有機トラップ層の積層(電子注入層側から、有機ブロック層及び有機トラップ層の順か、又は有機トラップ層及び有機ブロック層の順でもよい)からなる。すなわち、本発明の有機電界発光素子においては、前記通過困難層は、互いに接している前記有機ブロック層及び有機トラップ層の積層からなることとすることができる。
有機ブロック層を設けて発光量減少を抑制、又は有機トラップ層を設けて故意に拡散(トラップ)させて発光層まで届かなくさせるので、低駆動電圧化を図ることもできる。これにより、輝度低下を防ぐだけではなく、駆動(寿命)劣化の抑制もできる効果が得られる。
 本発明の有機電界発光素子においては、前記有機ブロック層及び有機トラップ層の少なくとも1層は、電子輸送性有機化合物からなることとすることができる。
 本発明の有機電界発光素子においては、前記有機トラップ層のガラス転移温度は保存環境下の前記有機ブロック層のガラス転移温度以上であることとすることができる。よって、有機ブロック層のガラス転移温度は有機トラップ層のものより低い。
 本発明の有機電界発光素子においては、前記有機ブロック層の薄膜はアモルファスであることとすることができる。
 本発明の有機電界発光素子においては、前記有機トラップ層の薄膜は微結晶であることとすることができる。
 本発明の有機電界発光素子においては、前記有機ブロック層の薄膜は有機トラップ層の薄膜より密度が高いこととすることができる。よって、有機トラップ層の薄膜は有機ブロック層の薄膜より密度が低い。
 本発明の有機電界発光素子においては、前記通過困難層は、前記有機ブロック層の単層からなることとすることができる。
 本発明の有機電界発光素子においては、前記通過困難層は、前記有機トラップ層の単層からなることとすることができる。
 本発明の有機電界発光素子においては、前記電子供与性材料が、アルカリ金属、アルカリ土類金属又はそれらの化合物であることとすることができる。
 本発明の有機電界発光素子においては、前記電子供与性材料が、前記アルカリ金属、アルカリ土類金属、又はそれらの化合物と電子輸送性有機化合物との混合物であることとすることができる。
 本発明の有機電界発光素子においては、前記陽極及び陰極のどちらか片方の電極が半透明、又は透明、又は前記陽極及び陰極が透明であることとすることができる。
 本発明の有機電界発光素子においては、前記通過困難層は、前記有機発光層の界面に接していることとすることができる。
 本発明の有機電界発光素子において、前記通過困難層を構成する材料は、Alq3、TPT-1、NBphen、TPBI、又はTCTAであることとすることができる。
本発明による実施形態の有機EL素子を示す概略部分断面図である。 本発明による他の実施形態の有機EL素子を示す概略部分断面図である。 本発明による他の実施形態の有機EL素子を示す概略部分断面図である。 本発明による他の実施形態の有機EL素子を示す概略部分断面図である。 本発明によるBSS分析のための素子構造を示す概略部分断面図である。 本発明による有機EL素子の通過困難層のためのBSS分析結果のグラフである。 本発明による有機EL素子(TPT-1)の通過困難層のためのBSS分析結果のグラフである。 本発明による有機EL素子(NBphen)の通過困難層のためのBSS分析結果のグラフである。 本発明による有機EL素子(TPBI)の通過困難層のためのBSS分析結果のグラフである。 本発明による有機EL素子(Alq3)の通過困難層のためのBSS分析結果のグラフである。 本発明による有機EL素子(BAlq)の通過困難層のためのBSS分析結果のグラフである。 本発明による他の実施形態の有機EL素子を示す概略拡大部分断面図である。 本発明による他の実施形態の有機EL素子を示す概略拡大部分断面図である。
符号の説明
 1 基板
 2 陽極
 3 正孔注入層
 4 正孔輸送層
 5 発光層
 6 通過困難層
 7 電子注入層
 8 陰極
発明を実施するための形態
 以下に本発明による実施の形態を図面を参照しつつ説明する。
 本実施形態の有機EL素子の一例は、図1に示すように、ガラス等の透明基板1上にて、順に、透明な陽極2、正孔輸送層4、有機発光層5、通過困難層6、電子注入層7及び金属からなる陰極8が積層されて得られるものである。正孔輸送層4、有機発光層5、通過困難層6及び電子注入層7は有機半導体層である。すなわち、有機EL素子において、対向する1対の陽極及び陰極の間に積層配置された複数の有機半導体層が正孔注入層、正孔輸送層、有機発光層を包含する。これら有機半導体層などの構成要素について後に詳述する。
 --有機EL素子積層構造--
 図1に示す陽極2/正孔注入層3/正孔輸送層4/発光層5/通過困難層6/電子注入層7/陰極8/の構成の他に、図2に示すように、陽極2/正孔注入層3/発光層5/通過困難層6/電子注入層7/陰極8/の構成や、図3に示すように、陽極2/正孔輸送層4/発光層5/通過困難層6/電子注入層7/陰極8/の構成や、図4に示すように、陽極2/発光層5/通過困難層6/電子注入層7/陰極8/の構成も本発明に含まれる。
 また、通過困難層6の隣接層は発光層5に限定されることなく、ブロック層及び/又はバファ層(図示せず)などを挿入した構成も本発明に含まれる。
 --基板並びに陽極及び陰極--
 基板1のガラスの透明材料の他としては、ポリスチレンなどのプラスチック材料といった半透明材料の他に、シリコンやAlなどの不透明な材料、フェノール樹脂などの熱硬化性樹脂、ポリカーボネートなどの熱可塑性樹脂などを用いることができる。
 陽極2及び陰極8の電極材料としては、Ti、Al、Al、Cu、Ni、Ag、Mg:Ag、Au、Pt、Pd、Ir、Cr、Mo、W、Taなどの金属あるいはこれらの合金が挙げられる。あるいは、ポリアニリンやPEDT:PSSなどの導電性高分子を用いることができる。あるいは、酸化物透明導電薄膜、例えばインジウムすず酸化物(ITO)、インジウム亜鉛酸化物(IZO)、酸化亜鉛、酸化錫などのいずれかを主組成としたものを用いることができる。また、各電極の厚さは10~500nm程度が好ましい。これらの電極材料は真空蒸着法、スパッタ法で作製されたものが好ましい。
 陽極2には陰極8より仕事関数の大きな導電性材料が選択される。さらに、陽極及び陰極は、発光の取り出し側となる場合は、透明又は半透明となるように材料、膜厚を選択する。特に陽極及び陰極のうちどちらか、もしくはその両方が、有機発光材料から得られる発光波長において少なくとも10%以上の透過率を持つ材料を選択することが好ましい。
 --有機半導体層--
 正孔注入層3、正孔輸送層4、発光層5、通過困難層6並びに電子注入層7の主成分を構成する有機半導体層は、電荷輸送性(正孔及び/又は電子の移動性)を有する有機化合物を利用する。
 発光層や電子注入層の主成分の電子輸送性を有する有機化合物としては、p-テルフェニルやクアテルフェニル等の多環化合物およびそれらの誘導体、ナフタレン、テトラセン、ピレン、コロネン、クリセン、アントラセン、ジフェニルアントラセン、ナフタセン、フェナントレン等の縮合多環炭化水素化合物及びそれらの誘導体、フェナントロリン、バソフェナントロリン、フェナントリジン、アクリジン、キノリン、キノキサリン、フェナジン等の縮合複素環化合物およびそれらの誘導体や、フルオロセイン、ペリレン、フタロペリレン、ナフタロペリレン、ペリノン、フタロペリノン、ナフタロペリノン、ジフェニルブタジエン、テトラフェニルブタジエン、オキサジアゾール、アルダジン、ビスベンゾキサゾリン、ビススチリル、ピラジン、シクロペンタジエン、オキシン、アミノキノリン、イミン、ジフェニルエチレン、ビニルアントラセン、ジアミノカルバゾール、ピラン、チオピラン、ポリメチン、メロシアニン、キナクリドン、ルブレン等およびそれらの誘導体等を挙げることができる。
 また、電子輸送性を有する有機化合物として、金属キレート錯体化合物、特に金属キレート化オキサノイド化合物では、トリス(8-キノリノラト)アルミニウム、ビス(8-キノリノラト)マグネシウム、ビス[ベンゾ(f)-8-キノリノラト]亜鉛、ビス(2-メチル-8-キノリノラト)アルミニウム、トリス(8-キノリノラト)インジウム、トリス(5-メチル-8-キノリノラト)アルミニウム、8-キノリノラトリチウム、トリス(5-クロロ-8-キノリノラト)ガリウム、ビス(5-クロロ-8-キノリノラト)カルシウム等の8-キノリノラト或いはその誘導体を配位子として少なくとも一つ有する金属錯体も挙げることができる。
 また、電子輸送性を有する有機化合物として、オキサジアゾール類、トリアジン類、スチルベン誘導体およびジスチリルアリーレン誘導体、スチリル誘導体、ジオレフィン誘導体も好適に使用され得る。
 さらに、電子輸送性を有する有機化合物として使用できる有機化合物として、2,5-ビス(5,7-ジ-t-ベンチル-2-ベンゾオキサゾリル)-1,3,4-チアゾール、4,4’-ビス(5,7-t-ペンチル-2-ベンゾオキサゾリル)スチルベン、4,4’-ビス[5,7-ジ-(2-メチル-2-ブチル)-2-ベンゾオキサゾリル]スチルベン、2,5-ビス(5.7-ジ-t-ペンチル-2-ベンゾオキサゾリル)チオフェン、2,5-ビス[5-(α,α-ジメチルベンジル)-2-ベンゾオキサゾリル]チオフェン、2,5-ビス[5,7-ジ-(2-メチル-2-ブチル)-2-ベンゾオキサゾリル]-3,4-ジフェニルチオフェン、2,5-ビス(5-メチル-2-ベンゾオキサゾリル)チオフェン、4,4’-ビス(2-ベンゾオキサゾリル)ビフェニル、5-メチル-2-{2-[4-(5-メチル-2-ベンゾオキサゾリル)フェニル]ビニル}ベンゾオキサゾール、2-[2-(4-クロロフェニル)ビニル]ナフト(1,2-d)オキサゾール等のベンゾオキサゾール系、2,2’-(p-フェニレンジピニレン)-ビスベンゾチアゾール等のベンゾチアゾール系、2-{2-[4-(2-ベンゾイミダゾリル)フェニル〕ビニル}ベンゾイミダゾール、2-[2-(4-カルボキシフェニル)ビニル]ベンゾイミダゾール等も挙げられる。
 さらに、電子輸送性を有する有機化合物として、1,4-ビス(2-メチルスチリル)ベンゼン、1,4-ビス(3-メチルスチリル)ベンゼン、1,4-ビス(4-メチルスチリル)ベンゼン、ジスチリルベンゼン、1,4-ビス(2-エチルスチリル)ベンゼン、1,4-ビス(3-エチルスチリル)ベンゼン、1,4-ビス(2-メチルスチリル)-2-メチルベンゼン、1,4-ビス(2-メチルスチリル)-2-エチルベンゼン等も挙げられる。
 また、さらに、電子輸送性を有する有機化合物として、2,5-ビス(4-メチルスチリル)ピラジン、2,5-ビス(4-エチルスチリル)ピラジン、2,5-ビス[2-(1-ナフチル)ビニル]ピラジン、2,5-ビス(4-メトキシスチリル)ピラジン、2,5-ビス[2-(4-ビフェニル)ビニル]ピラジン、2,5-ビス[2-(1-ピレニル)ビニル]ピラジン等が挙げられる。
 その他、さらに、電子輸送性を有する有機化合物として、1,4-フェニレンジメチリディン、4,4’-フェニレンジメチリディン、2,5-キシリレンジメチリディン、2,6-ナフチレンジメチリディン、1,4-ビフェニレンジメチリディン、1,4-p-テレフェニレンジメチリディン、9,10-アントラセンジイルジメチリディン、4,4’-(2,2-ジ-t-ブチルフェニルビニル)ビフェニル、4,4’-(2,2-ジフェニルビニル)ビフェニル等、従来有機EL素子の作製に使用されている公知のものを適宜用いることができる。
 一方、正孔輸送性を有する有機化合物として、N,N,N’,N’-テトラフェニル-4,4’-ジアミノフェニル、N,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-4,4’-ジアミノビフェニル、2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン、N,N,N’,N’-テトラ-p-トリル-4,4’-ジアミノビフェニル、ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン、N,N’-ジフェニル-N,N’-ジ(4-メトキシフェニル)-4,4’-ジアミノビフェニル、N,N,N’,N’-テトラフェニル-4,4’-ジアミノジフェニルエーテル、4,4’-ビス(ジフェニルアミノ)クオードリフェニル、4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン、3-メトキシ-4’-N,N-ジフェニルアミノスチルベンゼン、N-フェニルカルバゾール、1,1-ビス(4-ジ-p-トリアミノフェニル)-シクロヘキサン、1,1-ビス(4-ジ-p-トリアミノフェニル)-4-フェニルシクロヘキサン、ビス(4-ジメチルアミノ-2-メチルフェニル)-フェニルメタン、N,N,N-トリ(p-トリル)アミン、4-(ジ-p-トリルアミノ)-4’-[4(ジ-p-トリルアミノ)スチリル]スチルベン、N,N,N’,N’-テトラ-p-トリル-4,4’-ジアミノ-ビフェニル、N,N,N’,N’-テトラフェニル-4,4’-ジアミノ-ビフェニルN-フェニルカルバゾール、4,4’-ビス[N-(1-ナフチル)-N-フェニル-アミノ]ビフェニル、4,4’’-ビス[N-(1-ナフチル)-N-フェニル-アミノ]p-ターフェニル、4,4’-ビス[N-(2-ナフチル)-N-フェニル-アミノ]ビフェニル、4,4’-ビス[N-(3-アセナフテニル)-N-フェニル-アミノ]ビフェニル、1,5-ビス[N-(1-ナフチル)-N-フェニル-アミノ]ナフタレン、4,4’-ビス[N-(9-アントリル)-N-フェニル-アミノ]ビフェニル、4,4’’-ビス[N-(1-アントリル)-N-フェニル-アミノ]p-ターフェニル、4,4’-ビス[N-(2-フェナントリル)-N-フェニル-アミノ]ビフェニル、4,4’-ビス[N-(8-フルオランテニル)-N-フェニル-アミノ]ビフェニル、4,4’-ビス[N-(2-ピレニル)-N-フェニル-アミノ]ビフェニル、4,4’-ビス[N-(2-ペリレニル)-N-フェニル-アミノ]ビフェニル、4,4’-ビス[N-(1-コロネニル)-N-フェニル-アミノ]ビフェニル、2,6-ビス(ジ-p-トリルアミノ)ナフタレン、2,6-ビス[ジ-(1-ナフチル)アミノ]ナフタレン、2,6-ビス[N-(1-ナフチル)-N-(2-ナフチル)アミノ]ナフタレン、4.4’’-ビス[N,N-ジ(2-ナフチル)アミノ]ターフェニル、4.4’-ビス{N-フェニル-N-[4-(1-ナフチル)フェニル]アミノ}ビフェニル、4,4’-ビス[N-フェニル-N-(2-ピレニル)-アミノ]ビフェニル、2,6-ビス[N,N-ジ(2-ナフチル)アミノ]フルオレン、4,4’’-ビス(N,N-ジ-p-トリルアミノ)ターフェニル、ビス(N-1-ナフチル)(N-2-ナフチル)アミン等が挙げられる。
 電子注入層の主成分の電子輸送性有機化合物へ混合される電子供与性材料は、Li等のアルカリ金属、Mg等のアルカリ土類金属又はそれらの化合物であれば特に限定はない。特に、仕事関数が4.0eV以下の金属が好適に使用でき、具体例としてCs、Li、Na、K、Be、Mg、Ca、Sr、Ba、Y、La、Mg、Sm、Gd、Yb、又はそれらの化合物等が挙げられる。
 さらに、正孔注入層、正孔輸送層、正孔輸送性発光層として、上述の有機化合物をポリマ中に分散したものや、ポリマ化したものも使用できる。ポリパラフェニレンビニレンやその誘導体等のいわゆるπ共役ポリマー、ポリ(N-ビニルカルバゾール)に代表される正孔輸送性非共役ポリマ、ポリシラン類のシグマ共役ポリマーも用いることができる。
 正孔注入層としては、特に限定はないが、銅フタロシアニン等の金属フタロシアニン類および無金属フタロシアニン類、カーボン膜、ポリアニリン等の導電性ポリマーが好適に使用できる。
 --通過困難層--
 発明者は、電子供与性材料として有力な仕事関数が低いアルカリ金属やアルカリ土類金属やそれらの化合物の中で、CsFを無機電子注入層に用い、隣接する発光層への侵入、拡散について、Backside-Secondary-Ion-Mass-Spectrometry(BSS)分析により、高温保存実験を実行した。電子供与性材料CsFの通過を妨害する有機半導体からなる通過困難層の材料を探索するためである。材料としては、上述の電荷輸送性(正孔及び/又は電子の移動性)を有する有機化合物の中でバソフェナントロリン誘導体、フラーレン誘導体、キノリン誘導体、イミダゾール誘導体、トリフェニルアミン誘導体に着目し、さらに、以下の電荷輸送性有機化合物の試料Alq3、TPBI、NBphen、TPT-1、TCTA、BAlqを用いた。
 Alq3:tris(8-hydroxy-quinolinato)aluminum
Figure JPOXMLDOC01-appb-C000001
 TPBI:2,2’,2’’-(1,3,5-benzenetriyl)tris(1-phenyl)-1H-benzimidazole
Figure JPOXMLDOC01-appb-C000002
 NBphen:2,9-bis(2-naphthyl)-4,7-diphenyl-1,10-phenanthroline
Figure JPOXMLDOC01-appb-C000003
 TPT-1:N,N’-ビス[4’-(N,N-ジフェニルアミノ)-4-ビフェニリル]-N,N’-ジフェニルベンジジン
Figure JPOXMLDOC01-appb-C000004
 TCTA:4,4’,4’’-tri(N-carbazolyl-9-yl)triphenylamine
Figure JPOXMLDOC01-appb-C000005
 BAlq:Bis-(2-methyl-8-quinolinolate)-4-(phenylphenolato)-aluminium
Figure JPOXMLDOC01-appb-C000006
 BSS分析のための素子構造は、図5に示すようにガラス基板上ITO膜とCsF/Al膜の間に、個別にTPT-1、NBphen、TPBI、Alq3及びBAlqの所定膜厚の試料膜Smpを挟み込むように成膜して作成した。素子構造は、以下のとおりである。
 素子構造(TPT-1):ITO/TPT-1(100nm)/CsF(1nm)/Al。
 素子構造(NBphen):ITO/NBphen(100nm)/CsF(1nm)/Al。
 素子構造(TPBI):ITO/TPBI(100nm)/CsF(1nm)/Al。
 素子構造(Alq3):ITO/CuPc(25nm)/TPT-1(45nm)/Alq3(60nm)/CsF(1nm)/Al。
 素子構造(BAlq):ITO/BAlq(50nm)/CsF(1nm)/Al。
 かかる素子を、高温保存(100℃、500時間)した後、試料膜TPT-1、NBphen、TPBI、Alq3及びBAlqの各々の膜厚方向におけるCs元素の強度プロファイルをBSS分析した。図6は、縦軸にCs元素の強度を、横軸にCsF膜界面からの距離を示すBSS分析結果(素子(BAlq)、Al元素を除く)をまとめた概要のグラフである。図7~図11は、図6の基になった測定結果(素子(TPT-1)、素子(NBphen)、素子(TPBI)、素子(Alq3)、素子(BAlq))を示すグラフ(ただし、縦軸にCs、Alの強度Intensityを、横軸にITO膜界面からの距離Depthを示す)である。
 図6及び図7~11から明らかなように、Cs原子の拡散移動の程度が大きいのはNBphen、BAlq中であり、NBphen=BAlq>TPBI>Alq3>TPT-1の順で、拡散が小さかった。このことは、Cs原子の補足、トラップ能力が高い順にNBphen=BAlq>TPBI>Alq3>TPT-1であり、Cs原子の阻止、ブロック能力の高い順はTPT-1>Alq3>TPBI>NBphenであることが分かる。また、Alq3誘導体であるBAlqは図11からAlq3よりガラス転移温度が低いためCs原子の拡散量が増大している。
 BSS分析結果及び試料膜の物性薄膜状態から拡散の度合いと物性相関を考察すると、下記表1にまとめられる。
Figure JPOXMLDOC01-appb-T000007
 高温保存(100℃、500時間)下での拡散状況は、ガラス転移温度が高いほどブロック能力が高く、アモルファスで窒素原子数が多い材料ほど、Cs原子の拡散度合いが少ないと推察される。Alq3については酸素原子も考慮に入れられる。一般的に、分子内の酸素は誘起効果で電子求引をしつつ共鳴効果で電子供与もあり、共鳴効果及び誘起効果が相殺されるが、エステルの場合、共鳴効果>誘起効果となり、エステルの酸素は電子供与が強いと考えられる。また、酸素、窒素では共鳴効果>誘起効果の関係があり、窒素の効果の差は酸素より大きと考えられる。
 更に、CsFが拡散した場合、熱刺激電流測定(TSC)によってトラップの変化を観測することができた。
 特に、Alq3-CsF素子(素子構造(比較):ITO/CuPc(25nm)/TPT-1(45nm)/Alq3(60nm)/CsF(1nm)/Al(80nm))は保存前に比べトラップ量が減少し、0.15eV付近であったが、高温保存後、0.25eV付近のピークのシフトが観測され、0.40~0.45eV間に新たなピークを確認した。
 また、拡散度合い中程度のAlq3-CsF素子は、0.6V電圧上昇、50時間以上で30cd/m2輝度が向上しその動作は安定であって、輝度が低下することは無かった。
 よって、電子供与性材料が混合された電子注入層を陰極及び有機発光層間に有する有機電界発光素子において、通過困難層は電子供与性材料に対しブロック能力及びトラップ能力を有する材料、電子供与性材料の通過を妨害する有機化合物から選択され、電子注入層と有機発光層の間に電子注入層の界面に接して配置されることが好ましい。
 このように、電子供与性材料が発光層まで移動させない通過困難層は、電子供与性材料をブロックする有機ブロック層、又は電子供与性材料をトラップする有機トラップ層のいずれか単一層から構成できる。
 さらに、図12及び図13に示すように、通過困難層6は有機ブロック層6a及び有機トラップ層6bの積層として構成できる。電子注入層側7から、有機ブロック層6a及び有機トラップ層6bの順か、又は有機トラップ層6b及び有機ブロック層6aの順でもよい)からなる。すなわち、本発明の有機電界発光素子においては、通過困難層は、互いに接している有機ブロック層6a及び有機トラップ層6bの積層からなることとすることができる。有機ブロック層と有機トラップ層の積層の一方(有機ブロック層又は有機トラップ層)が発光層に接しているので、通過困難層6のブロック能力及びトラップ能力により、発光量減少の抑制と、低駆動電圧化をできる。これにより、輝度低下を防ぐだけではなく、駆動(寿命)劣化の抑制もできる。
 有機ブロック層及び有機トラップ層の性状を考察すると、有機ブロック層の薄膜はアモルファス(非晶質)である、有機ブロック層の薄膜は有機トラップ層の薄膜より密度が高い、有機トラップ層の薄膜は微結晶である、有機トラップ層の薄膜は有機ブロック層の薄膜より密度が低い、有機トラップ層の材料は保存環境下よりガラス転移温度が同程度から低い、と考えられる。
 複数の有機EL素子を作製し、寿命特性並びに電子注入層の膜厚依存特性を測定し、評価した。
 陽極として透明電極ITOを形成したガラス基板上に、真空蒸着により順に、正孔注入層として銅フタロシアニンCuPcを25nmの厚さで形成し、その上に、正孔輸送層としてTPT-1を45nmの厚さで形成し、その上に、有機発光層としてAlq3を50nmの厚さで形成した。さらに、有機発光層Alq3まで同様に形成した前駆体を複数作成し、それぞれの有機発光層上に蒸着により、通過困難層としてTPT-1(10nm厚)、TPBI(10nm厚)、NBphen(10nm厚)、TCTA(10nm厚)を個別に形成し、それぞれの上に、電子注入層CsF(1nm厚)及び陰極Al(80nm厚)を形成した。このようにして、実施例の複数の有機EL素子を作製した。素子構造は、以下のとおりである。
 素子1:ITO/CuPc(25nm)/TPT-1(45nm)/Alq3(50nm)/TPT-1(10nm)/CsF(1nm)/Al(80nm)。
 素子2:ITO/CuPc(25nm)/TPT-1(45nm)/Alq3(50nm)/TPBI(10nm)/CsF(1nm)/Al(80nm)。
 素子3:ITO/CuPc(25nm)/TPT-1(45nm)/Alq3(50nm)/NBphen(10nm)/CsF(1nm)/Al(80nm)。
 素子4:ITO/CuPc(25nm)/TPT-1(45nm)/Alq3(50nm)/TCTA(10nm)/CsF(1nm)/Al(80nm)。
 素子5:ITO/CuPc(25nm)/TPT-1(45nm)/Alq3(30nm)/TCTA(10nm)/17%-Cs2MoO4:NBphen(20nm)/Al(80nm)。
 素子6:ITO/BAlq(50nm)/CsF(1nm)/Al(80nm)。
 実施例(素子1~6、上記の素子構造(比較))について、高温保存環境(85℃、100℃、500時間)の下で、電流密度7.5mA/cm2の条件でそれぞれ駆動し、駆動電圧変化ΔV(V)及び輝度変化ΔL(cd/m2)を測定した。素子4、5で使用したTCTA(Tg=155℃)はTPT-1よりガラス転移温度が高い材料である。素子5はCs化合物をトラップ層であるNBphenに含有させブロック層としてTCTAを導入した構成である。
 実験結果を下記表2に示す。
Figure JPOXMLDOC01-appb-T000008
 上記表2結果及び上記表1の物性から明らかなように、駆動電圧が低減でき、これにより、素子の延命化が期待できる。一方、ガラス転移温度が最も低いBAlqを用いた素子6は大幅な駆動電圧の上昇を確認した。例えば、100℃の保存環境下で、更に長時間保存した場合、BAlqのガラス転移温度以上に達してしまうため、薄膜状態を維持できず陰極であるAl原子が拡散し、最悪、陽極と陰極間の通電(ショート)を招き有機薄膜に正孔、電子が注入できず発光しない場合もある。
 すなわち、例えば、1,10-フェナントロリン誘導体、キノリン誘導体、トリフェニルアミン誘導体でもそのガラス転移温度が少なくとも97℃以上で、窒素原子を1以上含む材料が、通過困難層を構成する材料に適していることが分かる。
 さらに、上記実施例で有機EL素子を説明したが、有機半導体素子として、例えば、複数の有機半導体層が光捕集層と電子輸送層及び正孔輸送層の少なくとも1つとを含む有機太陽電池において本発明を適応可能である。電子注入層を有する場合にこれに接した電子供与性材料の通過を妨害する有機化合物からなる通過困難層を有する構成としても、上記実施例同様の延命効果や耐湿効果を奏する。

Claims (21)

  1.  対向する1対の陽極及び陰極の間に積層配置された有機発光層を含む複数の有機半導体層を備え、電子供与性材料が混合された電子注入層を前記陰極及び前記有機発光層間に有する有機電界発光素子であって、前記電子注入層と前記有機発光層の間に配置され、前記電子注入層の界面に接しかつ前記電子供与性材料の通過を妨害する有機化合物からなる通過困難層を有し、前記通過困難層を構成する材料は、ガラス転移温度97℃以上で、窒素原子を1以上含む材料であることを特徴とする有機電界発光素子。
  2.  前記通過困難層は、前記電子供与性材料をブロックする有機ブロック層及び電子供与性材料をトラップする有機トラップ層の少なくとも1層からなることを特徴とする請求項1に記載の有機電界発光素子。
  3.  前記通過困難層は、互いに接している前記有機ブロック層及び有機トラップ層の積層からなることを特徴とする請求項2に記載の有機電界発光素子。
  4.  前記有機ブロック層及び有機トラップ層の積層は、前記発光層側から有機ブロック層及び有機トラップ層の順に積層されていることを特徴とする請求項3に記載の有機電界発光素子。
  5.  前記有機ブロック層及び有機トラップ層の積層は、前記発光層側から有機トラップ層及び有機ブロック層の順に積層されていることを特徴とする請求項3に記載の有機電界発光素子。
  6.  前記有機層及び有機トラッブロックプ層の少なくとも1層は、電子輸送性有機化合物からなることを特徴とする請求項1~5のいずれか1に記載の有機電界発光素子。
  7.  前記有機ブロック層のガラス転移温度は保存環境下の前記有機トラップ層のガラス転移温度以上であることを特徴とする請求項1~6のいずれか1に記載の有機電界発光素子。
  8.  前記有機ブロック層の薄膜はアモルファスであることを特徴とする請求項1~7のいずれか1に記載の有機電界発光素子。
  9.  前記有機トラップ層の薄膜は微結晶であることを特徴とする請求項1~8のいずれか1に記載の有機電界発光素子。
  10.  前記有機ブロック層の薄膜は有機トラップ層の薄膜より密度が高いことを特徴とする請求項1~9のいずれか1に記載の有機電界発光素子。
  11.  前記通過困難層は、前記有機ブロック層の単層からなることを特徴とする請求項2に記載の有機電界発光素子。
  12.  前記有機ブロック層の薄膜はアモルファスであることを特徴とする請求項11に記載の有機電界発光素子。
  13.  前記有機ブロック層は、電子輸送性有機化合物からなることを特徴とする請求項10又は11に記載の有機電界発光素子。
  14.  前記通過困難層は、前記有機トラップ層の単層からなることを特徴とする請求項2に記載の有機電界発光素子。
  15.  前記有機トラップ層の薄膜は微結晶であることを特徴とする請求項14に記載の有機電界発光素子。
  16.  前記有機トラップ層は、電子輸送性有機化合物からなることを特徴とする請求項14又は15に記載の有機電界発光素子。
  17.  前記電子供与性材料が、アルカリ金属、アルカリ土類金属又はそれらの化合物であることを特徴とする請求項1~16のいずれか1に記載の有機電界発光素子。
  18.  前記電子供与性材料が、前記アルカリ金属、アルカリ土類金属、又はそれらの化合物と電子輸送性有機化合物との混合物であることを特徴とする請求項1~17のいずれか1に記載の有機電界発光素子。
  19.  前記陽極及び陰極のどちらか片方の電極が半透明、又は透明、又は前記陽極及び陰極が透明であることを特徴とする請求項1~18のいずれか1に記載の有機電界発光素子。
  20.  前記通過困難層は、前記有機発光層の界面に接していることを特徴とする請求項1~19のいずれか1に記載の有機電界発光素子。
  21.  前記通過困難層を構成する材料は、Alq3、TPT-1、NBphen、TPBI、又はTCTAであることを特徴とする請求項1~20のいずれか1に記載の有機電界発光素子。
PCT/JP2009/052883 2008-02-25 2009-02-19 有機電界発光素子 WO2009107541A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2008/053172 WO2009107187A1 (ja) 2008-02-25 2008-02-25 有機電界発光素子
JPPCT/JP2008/053172 2008-02-25

Publications (1)

Publication Number Publication Date
WO2009107541A1 true WO2009107541A1 (ja) 2009-09-03

Family

ID=41015601

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2008/053172 WO2009107187A1 (ja) 2008-02-25 2008-02-25 有機電界発光素子
PCT/JP2009/052883 WO2009107541A1 (ja) 2008-02-25 2009-02-19 有機電界発光素子

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/053172 WO2009107187A1 (ja) 2008-02-25 2008-02-25 有機電界発光素子

Country Status (1)

Country Link
WO (2) WO2009107187A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012023177A1 (ja) * 2010-08-17 2012-02-23 パイオニア株式会社 有機発光素子
KR20150018408A (ko) * 2013-08-09 2015-02-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 디스플레이 모듈, 조명 모듈, 발광 장치, 표시 장치, 전자 기기, 및 조명 장치
JP2015144233A (ja) * 2013-08-09 2015-08-06 株式会社半導体エネルギー研究所 発光素子、ディスプレイモジュール、照明モジュール、発光装置、表示装置、電子機器及び照明装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111438A1 (ja) 2010-03-09 2011-09-15 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス部材及び有機エレクトロルミネッセンス素子の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005220080A (ja) * 2004-02-05 2005-08-18 Toyota Central Res & Dev Lab Inc アダマンタン誘導体及びこれを用いた有機電界発光素子
JP2007242712A (ja) * 2006-03-06 2007-09-20 Toyota Central Res & Dev Lab Inc 有機電界発光素子

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3690286B2 (ja) * 2001-02-02 2005-08-31 松下電器産業株式会社 有機電界発光素子
US20030230980A1 (en) * 2002-06-18 2003-12-18 Forrest Stephen R Very low voltage, high efficiency phosphorescent oled in a p-i-n structure
JP3750682B2 (ja) * 2003-06-26 2006-03-01 セイコーエプソン株式会社 有機el装置とその製造方法、並びに電子機器
JP2005063910A (ja) * 2003-08-20 2005-03-10 Canon Inc 有機発光素子及びその製造方法
US7211948B2 (en) * 2004-01-13 2007-05-01 Eastman Kodak Company Using a crystallization-inhibitor in organic electroluminescent devices
JP5050333B2 (ja) * 2005-09-20 2012-10-17 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005220080A (ja) * 2004-02-05 2005-08-18 Toyota Central Res & Dev Lab Inc アダマンタン誘導体及びこれを用いた有機電界発光素子
JP2007242712A (ja) * 2006-03-06 2007-09-20 Toyota Central Res & Dev Lab Inc 有機電界発光素子

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012023177A1 (ja) * 2010-08-17 2012-02-23 パイオニア株式会社 有機発光素子
JPWO2012023177A1 (ja) * 2010-08-17 2013-10-28 パイオニア株式会社 有機発光素子
KR20150018408A (ko) * 2013-08-09 2015-02-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 디스플레이 모듈, 조명 모듈, 발광 장치, 표시 장치, 전자 기기, 및 조명 장치
JP2015057770A (ja) * 2013-08-09 2015-03-26 株式会社半導体エネルギー研究所 発光素子、ディスプレイモジュール、照明モジュール、発光装置、表示装置、電子機器及び照明装置
JP2015144233A (ja) * 2013-08-09 2015-08-06 株式会社半導体エネルギー研究所 発光素子、ディスプレイモジュール、照明モジュール、発光装置、表示装置、電子機器及び照明装置
TWI686971B (zh) * 2013-08-09 2020-03-01 日商半導體能源研究所股份有限公司 發光元件、顯示模組、照明模組、發光裝置、顯示裝置、電子裝置、及照明裝置
KR102176523B1 (ko) 2013-08-09 2020-11-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 디스플레이 모듈, 조명 모듈, 발광 장치, 표시 장치, 전자 기기, 및 조명 장치
KR20200127952A (ko) * 2013-08-09 2020-11-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 디스플레이 모듈, 조명 모듈, 발광 장치, 표시 장치, 전자 기기, 및 조명 장치
TWI727366B (zh) * 2013-08-09 2021-05-11 日商半導體能源研究所股份有限公司 發光元件、顯示模組、照明模組、發光裝置、顯示裝置、電子裝置、及照明裝置
KR102319366B1 (ko) 2013-08-09 2021-10-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 디스플레이 모듈, 조명 모듈, 발광 장치, 표시 장치, 전자 기기, 및 조명 장치

Also Published As

Publication number Publication date
WO2009107187A1 (ja) 2009-09-03

Similar Documents

Publication Publication Date Title
JP5090534B2 (ja) 有機電界発光素子
JP4486713B2 (ja) 有機エレクトロルミネッセント素子
JP4514841B2 (ja) 有機エレクトロルミネッセント素子
JP5216104B2 (ja) 有機電界発光素子
JP4505067B2 (ja) 有機エレクトロルミネッセント素子
KR100641880B1 (ko) 유기전기장발광성소자
JP4824848B2 (ja) 有機エレクトロルミネッセント素子、有機エレクトロルミネッセント素子群及びその発光スペクトルの特定方法
JP4939284B2 (ja) 有機エレクトロルミネッセント素子
US6013384A (en) Organic electroluminescent devices
KR101688317B1 (ko) 저전압 구동 유기발광소자 및 이의 제조 방법
JP2001102175A (ja) 有機エレクトロルミネッセント素子、有機エレクトロルミネッセント素子群及びその発光スペクトルの制御方法
WO2013039914A1 (en) Efficient organic light-emitting diodes and fabrication of the same
WO2009110075A1 (ja) 有機半導体素子
WO2009107541A1 (ja) 有機電界発光素子
JP5456120B2 (ja) 有機電界発光素子
WO2012023177A1 (ja) 有機発光素子
JP4825296B2 (ja) 有機エレクトロルミネッセント素子
JP2004079414A (ja) 有機エレクトロルミネッセント素子
KR20210015222A (ko) 유기발광소자 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09715837

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09715837

Country of ref document: EP

Kind code of ref document: A1