WO2009107403A1 - 光スイッチ素子及び光スイッチ - Google Patents

光スイッチ素子及び光スイッチ Download PDF

Info

Publication number
WO2009107403A1
WO2009107403A1 PCT/JP2009/000942 JP2009000942W WO2009107403A1 WO 2009107403 A1 WO2009107403 A1 WO 2009107403A1 JP 2009000942 W JP2009000942 W JP 2009000942W WO 2009107403 A1 WO2009107403 A1 WO 2009107403A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
optical
sensor
light
optical switch
Prior art date
Application number
PCT/JP2009/000942
Other languages
English (en)
French (fr)
Inventor
和彦 浜岡
仁 鎌田
重行 鈴木
一弘 渡辺
博幸 佐々木
Original Assignee
学校法人創価大学
日本電線工業株式会社
タマティーエルオー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人創価大学, 日本電線工業株式会社, タマティーエルオー株式会社 filed Critical 学校法人創価大学
Priority to JP2010500581A priority Critical patent/JP5261728B2/ja
Publication of WO2009107403A1 publication Critical patent/WO2009107403A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3564Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details
    • G02B6/3568Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details characterised by the actuating force
    • G02B6/3572Magnetic force
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3594Characterised by additional functional means, e.g. means for variably attenuating or branching or means for switching differently polarized beams

Definitions

  • the present invention relates to an optical switch element using an optical fiber sensor and an optical switch including the same.
  • the two optical fibers are configured so that the end faces of the two optical fibers face each other and light is transmitted between the two optical fibers, and the end faces are sufficiently aligned and transmitted between the two optical fibers. It is known that the state in which the loss at the end face of light is reduced and the state in which the loss is increased by shifting the end faces are controlled by mechanical operation of a switch member. In this optical switch, the on / off state is determined based on the amount of light transmitted through the two optical fibers according to the operating state of the switch member.
  • Patent Document 2 discloses an optical switch using a hetero-core type optical fiber sensor.
  • this optical switch according to the state in which the pressing member presses the disk-shaped member that is in contact with the sensor unit having the hetero-core structure, the curvature of the sensor unit and its vicinity changes, and the transmission loss of the sensor light changes. It is used to determine the on / off state.
  • the hetero-core type optical fiber sensor is disclosed in Patent Documents 3 and 4. JP 2001-250462 A JP 2005-338360 A International Publication No. 97/48994 Pamphlet JP 2003-214906 A
  • the optical switch disclosed in Patent Document 2 performs a switch operation by bringing a disk-shaped member into direct contact with a sensor unit.
  • the sensor part is provided in the middle part of the optical fiber sensor by bonding or the like, there is a problem that the sensor part is highly likely to be pressed and damaged by the contacting disk-like member.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide an optical switch element and an optical switch that can perform a switch operation without contact with a sensor unit.
  • optical switch element and an optical switch that are preferably excellent in repeatability and accurate.
  • the present invention preferably provides an optical switch element and an optical switch that can adjust the transmission loss of sensor light and have a wide general-purpose range.
  • the optical switch element of the present invention includes a core and a clad laminated on the outer periphery of the core, and includes a light transmitting member that enables interaction with a part of the transmitted light, and includes the light transmitting member.
  • the optical fiber sensor is arranged so as to draw a curve with a predetermined curvature in the range, the light is incident on the incident end, and the light that has passed through the light transmitting member is emitted from the emission end, and the position varies due to the action of an external magnetic field.
  • a switch member that changes a shape of a curve drawn by the optical fiber sensor in accordance with the position without contact with the light transmission member, and the switch member changes a shape of the curve drawn by the optical fiber sensor.
  • the position of the switch member fluctuates due to the action of an external magnetic field
  • the shape of the curve drawn by the optical fiber sensor fluctuates according to the position without contact with the light transmission member
  • the optical fiber The curvature of the light transmitting member of the sensor and the vicinity thereof vary. Due to this variation in curvature, the interaction generated between the light transmitted to the optical fiber sensor and the outside world varies. Accordingly, the switching operation can be performed by detecting the fluctuation of the generated interaction.
  • the switch member does not contact the light transmitting member of the optical fiber sensor that is easily damaged by bending. , Durability is improved.
  • the optical switch element can be manufactured at low cost. Further, since the optical switch element does not use an electrical contact, it can be suitably used in an explosion-proof facility.
  • the optical switch element of the present invention includes a first locking member that locks the switch member at a first position, and a second locking member that locks the switch member at a second position, It is preferable that the switch member has a first state where the switch member is locked at the first position and a second state where the switch member is locked at the second position. In this case, in the two states of the first state and the second state, the switch member is locked, and the curvature of the light transmitting member of the optical fiber sensor and its vicinity does not change. Therefore, it is possible to reliably determine these states.
  • the optical switch element of the present invention it is preferable that at least one of the first position and the second position is adjustable. In this case, the interaction generated in the state corresponding to the position where the optical switch element can be adjusted can be adjusted, and the versatility is high.
  • the switch member is made of a leaf spring. In this case, the switch member can be configured easily.
  • the leaf spring has a bending prevention structure having an L-shaped cross section. In this case, it is possible to prevent the leaf spring from being bent and to realize a stable switch operation.
  • the light transmitting member is a hetero core portion having a core diameter different from that of the optical fiber positioned before and after the light transmitting member.
  • the light transmitting member is preferably made of a material having a refractive index equivalent to the refractive index of the core of the optical fiber or the refractive index of the clad positioned before and after the light transmitting member.
  • the switch operation can be performed by detecting the transmission loss of the light. Therefore, an inexpensive detection device can be used. Further, since the transmission loss of light depends on the curvature of the light transmitting member and the vicinity thereof, the switch operation can be performed with high accuracy. In addition, the light transmission member can be easily provided by fusion by discharge.
  • the optical switch of the present invention includes the optical switch element of the present invention, a light source provided at an incident end of the optical fiber sensor, and a light receiving unit provided at an output end of the optical fiber sensor.
  • optical switch of the present invention an optical switch having the effects of the optical switch element of the present invention can be obtained.
  • (A) And (b) is a schematic diagram which shows the structure of the optical switch element which concerns on 1st Embodiment of this invention.
  • the sensor part vicinity of an optical fiber sensor is shown notionally, (a) is a perspective view, (b) is longitudinal direction sectional drawing. It is a schematic diagram which shows the structure of the optical switch which concerns on 1st Embodiment of this invention.
  • (A) And (b) is a schematic diagram which shows the partial structure of the optical switch element which concerns on 2nd Embodiment of this invention.
  • movement of the variable part of the switch member which comprise the optical switch element concerning 3rd Embodiment of this invention are shown typically, (a) is a perspective view, (b) is a top view.
  • or (b) is a schematic diagram which shows the structure of the optical switch element which concerns on 4th Embodiment of this invention.
  • (A) And (b) is a schematic diagram which shows the partial structure of the optical switch element which concerns on 5th Embodiment of this invention.
  • (A) And (b) is longitudinal direction sectional drawing of the sensor part vicinity of the optical switch element which concerns on 6th Embodiment of this invention. It is a schematic diagram which shows the structure of the optical switch which concerns on 7th Embodiment of this invention. It is a schematic diagram which shows the structure of the optical switch which concerns on 8th Embodiment of this invention. It is a schematic diagram which shows the structure of the optical switch element which concerns on 9th Embodiment of this invention. It is a schematic diagram which shows the structure of the optical switch element which concerns on 10th Embodiment of this invention.
  • an optical switch element SW is an optical fiber sensor (sensor) including optical fibers 20a and 20b and a sensor portion SP that is a light transmission member provided in the middle of the optical fibers. Fiber). Details of the optical fibers 20a and 20b and the sensor unit SP constituting the optical fiber sensor will be described later.
  • the optical fiber sensor has a casing in which a range including the sensor portion SP and its vicinity (hereinafter, these ranges are simply referred to as “the vicinity of the sensor portion SP”) has a predetermined curvature. It is housed in.
  • the optical fiber sensor is arranged so as to draw a predetermined curve by being sandwiched between the movable part 1a of the switch member 1 whose position is changed by the action of an external magnetic field and the wall surface 2a of the housing.
  • the optical fiber sensor is held in a ring shape in the housing.
  • the optical fiber sensor may be held in a shape such as a U shape or an ⁇ shape. However, when the optical fiber sensor is accommodated in the housing, it can be easily accommodated in a ring shape.
  • the switch member 1 is composed of a leaf spring made of a magnetic metal.
  • the switch member 1 is fixed to a housing (not shown) except for the movable portion 1a, and the movable portion 1a operates with the base end portion as a fulcrum by the action of an external magnetic field, and its position changes.
  • the moving distance of the tip of the movable part 1a is, for example, several mm to several cm.
  • the inner direction a force acting in the direction approaching the sensor part SP of the optical fiber sensor (hereinafter referred to as the inner direction) is acting on the movable part 1a by its own spring action.
  • a first locking member 3a that locks the movable portion 1a that moves so as to approach the inner direction at the first position. Therefore, the movable portion 1a is locked at the position shown in FIG. 1A, and is positioned in a state where it is held at an angle ⁇ 1 with respect to the portion of the switch member 1 excluding the movable portion 1a.
  • the distance between the movable portion 1a and the wall surface 2a of the housing is narrow, and the optical fiber sensor is pressed from the vertical direction in the figure, and has a shape that draws a curve in the vicinity of the sensor portion SP having a predetermined large curvature R1.
  • This state is referred to as an off state (first state).
  • a second locking member 4a that locks the movable portion 1a that operates in the outward direction at the second position. Therefore, the movable portion 1a is locked at the position shown in FIG. 1B, and is positioned in a state where it is held at an angle ⁇ 1a with respect to the portion of the switch member 1 excluding the movable portion 1a.
  • the distance between the movable portion 1a and the wall surface 2a of the housing is wide, and the optical fiber sensor extends in the upward direction in the figure, and the vicinity of the sensor portion SP has a shape that draws a curve having a small predetermined curvature R2. This state is referred to as an on state (second state).
  • the optical switch element SW has two types of states, an on state in which the external magnet MG is close and an off state in which the external magnet MG is not close, depending on the distance from the external magnet MG. Turns on or off.
  • the configuration in which the external magnet MG is in close proximity is arbitrary.
  • the external magnet MG is slidably provided on the casing to which the switch member 1 is fixed, and a separate object comes into contact with the external magnet MG or the member to which the external magnet MG is fixed to move the external magnet MG. You may comprise so that it may adjoin to the part 1a.
  • the external magnet MG may be fixed to the tip of an object separate from the casing, and the object may be close to the movable portion 1a.
  • the optical switch element SW includes the first locking member 3a that locks the movable portion 1a of the switch member 1 whose position is changed by the action of the external magnetic field at the first position, and the second position.
  • a second locking member 4a for locking is provided. Therefore, it is possible to clearly position the movable portion 1a corresponding to the on / off state of the optical switch element SW.
  • the optical fiber sensor constituting the optical switch element SW is configured to have a sensor part SP between the optical fibers 20a and 20b, that is, between the optical fiber 20a on the light incident side and the optical fiber 20b on the light output side. ing.
  • the optical fibers 20a and 20b have a configuration including a core 21 and a clad 22 stacked on the outer periphery of the core 21.
  • the optical fibers 20a and 20b receive the sensor light emitted from the light source 11 (see FIG. 3) such as a laser diode or a light emitting diode, and the optical fiber 20b end that is the emission end.
  • the sensor light that has passed through the sensor unit SP is received by the light receiving unit 12 (see FIG. 3) such as a photodiode.
  • the sensor unit SP includes a hetero core unit 30 that leaks a part of the transmitted light.
  • the hetero core portion 30 is composed of a core 31 having a core diameter bl different from the core diameter al of the optical fibers 20a and 20b, and a clad 32 provided on the outer periphery thereof.
  • the diameter bl of the core 31 of the hetero-core part 30 is smaller than the diameter al of the core 21 of the optical fibers 20a and 20b.
  • the diameter al of the core 21 is 9 ⁇ m
  • the core diameter bl of the core 31 is 5 ⁇ m.
  • the length cl of the hetero core part 30 is about 1 mm to 2 mm, for example.
  • the hetero-core part 30 and the optical fibers 20a and 20b constituting the sensor part SP are substantially coaxial so that the cores are joined to each other at the interface 40 orthogonal to the longitudinal direction, for example, by fusion using a generalized discharge. Are joined.
  • optical fibers 20a and 20b and the hetero-core portion 30 either a single mode optical fiber or a multimode optical fiber can be used, and these may be used in combination.
  • a multimode optical fiber having a core diameter of 50 ⁇ m may be used as the optical fibers 20a and 20b.
  • a hetero core type sensor part SP is joined to the middle part of the optical fibers 20a, 20b, and the diameter bl of the core 31 in the hetero core part 30 and the diameter al of the core 21 of the optical fibers 20a, 20b are different at the interface 40. . Due to the difference in the core diameter, as shown in FIG. 5A, a part of the transmitted light leaks to the clad 32 of the hetero-core portion 30, and leak light W is generated.
  • the leak light W is small, most of the light is incident on the core 21 again, and the transmission loss (loss) of the transmitted sensor light is small.
  • the difference between the core diameters of the core 21 and the core 31 is set to be large, the leak light W becomes large and the transmission loss of the sensor light to be transmitted becomes large.
  • the magnitude of the leaked light W, and hence the transmission loss of the sensor light changes sharply due to the change in the bending of the optical fiber sensor in the vicinity of the sensor unit SP, and increases as the bending increases.
  • the optical switch element SW is an optical fiber sensor sandwiched between the movable portion 1a and the wall surface 2a of the housing when the position of the movable portion 1a of the switch member 1 fluctuates. And the curvature in the vicinity of the sensor portion SP varies between R1 and R2.
  • the transmission loss in the optical fiber sensor varies in a binary manner depending on the position of the movable portion 1a, that is, whether the external magnet MG is close to the movable portion 1a or is not close. . Therefore, it is possible to determine the on / off state of the optical switch element SW by receiving the sensor light emitted from the emission end of the optical fiber 20b and measuring the loss of the sensor light, thereby realizing the switch operation. .
  • the optical switch includes the optical switch element SW, the external magnet MG, the light source 11 provided at the end of the optical fiber 20a that is the light incident end of the optical fiber sensor, and the light emission of the optical fiber sensor.
  • the light-receiving part 12 provided in the optical fiber 20b end part which is an end is provided.
  • the light source 11 has, for example, a light emitting element such as a semiconductor light emitting diode (LED) or a semiconductor laser, and emits sensor light.
  • the light receiving unit 12 is an optical multimeter having a light receiving element such as a photodiode (PD) or a charge coupled device (CCD), for example, and detects sensor light emitted from the light emitting end.
  • a light emitting element such as a semiconductor light emitting diode (LED) or a semiconductor laser
  • LED semiconductor light emitting diode
  • the light receiving unit 12 is an optical multimeter having a light receiving element such as a photodiode (PD) or a charge coupled device (CCD), for example, and detects sensor light emitted from the light emitting end.
  • PD photodiode
  • CCD charge coupled device
  • the position of the movable portion 1a is changed by the action of the external magnetic field, and the transmission loss of the sensor light is changed according to the position.
  • the switch operation can be performed in a non-contact manner according to the distance from the external magnet MG.
  • the movable part 1a is in contact with the abdomen (upper part in FIG. 1) of the ring-shaped optical fiber sensor, and the position of the movable part 1a varies depending on the distance from the external magnet MG. Therefore, the shape of the ring-shaped optical fiber sensor changes when the movable portion 1a that defines the bulge of the abdomen is operated. Therefore, the curvature in the vicinity of the sensor part SP is changed without bringing any member in the vicinity of the sensor part SP. Therefore, compared with the optical switch disclosed in Patent Document 2 in which the disk-shaped member is in direct contact with the sensor unit to change the curvature, the possibility that the optical fiber sensor is broken, such as being broken at the interface 40 of the sensor unit SP, is reduced. So durability is improved.
  • the optical switch element SW has only two states, an on state and an off state. Therefore, it can be determined with high accuracy from the transmission loss whether the state is on or off, and repeatability is excellent. For example, even if the spring action or magnetic force of the switch member 1 deteriorates over time, it can be reliably determined whether the switch member 1 is on or off.
  • the optical switch element SW is configured to generate a loss with respect to the light transmitted through the optical fiber sensor according to the position of the movable portion 1a of the switch member 1. And the curvature according to the position of the movable part 1a is produced in the sensor part SP vicinity where a transmission loss changes sharply according to the change of a curvature.
  • the hetero core part 30 which comprises sensor part SP can be simply provided by the fusion
  • the optical switch element SW since it does not use an electrical contact, it can be suitably used in an explosion-proof facility. When used outside an explosion-proof facility or the like, an electromagnet may be used as the external magnet MG.
  • the movable portion 1a of the switch member 1 whose position is changed by the action of an external magnetic field is locked at a first position corresponding to the on / off state of the optical switch element SW. It is locked by either the member 3a or the second locking member 4a locked at the second position, and clear positioning is performed.
  • the optical switch element SW is turned on. It is possible to adjust the magnitude of transmission loss corresponding to the off state. This makes it possible to change the threshold distance of the external magnet MG that discriminates between the on / off states, and is highly versatile.
  • the optical switch element according to the second embodiment is different from the optical switch element SW according to the first embodiment in that the first position defined by the first locking member 3a is defined. Variable.
  • the fixing position of the first locking member 3a is variable, and here, the first locking member 3a is composed of a pin that is fixed by being inserted into a hole formed in a housing or the like.
  • the pin fixing position By configuring the pin fixing position to be variable stepwise or steplessly, the magnitude of transmission loss can be adjusted stepwise or steplessly.
  • the second position defined by the second locking member 4a may also be variable.
  • the second locking member 3c is formed of a kind of leaf spring, and here, a screw is attached to the wall surface 2b of the housing 2. 5 is fixed.
  • the second position 3e for locking the movable portion 1a of the switch member 1 is steplessly variable depending on whether the adjusting portion 3d of the first locking member 3c is moved closer to or away from the wall surface 2b of the housing by the screw 5. It is comprised so that.
  • the first locking member may be configured in the same manner as the second locking member 3c, and the first position may be variable.
  • the adjustment mechanism as described above.
  • a plurality of optical switch elements are obtained by connecting in series optical switch elements having different transmission losses of sensor light in the on / off state, and comparing the total transmission loss with the transmission loss of each optical switch element. It is possible to easily determine which optical switch element is on and which optical switch element is off.
  • the switch member 1 constituting the optical switch element according to the third embodiment is a leaf spring, as in the first embodiment.
  • this leaf spring is formed with a bending preventing structure 1w having an L-shaped cross section in the movable portion 1a.
  • the position of the movable portion 1a varies due to its own spring action and external magnetic field action.
  • the movable portion 1a has an elongated shape, there is a possibility that bending may occur when the position is changed by being attracted by an external magnetic field.
  • the position of the movable portion 1a in contact with the optical fiber sensor in each of the on / off states becomes unstable, so that the variation in the shape of the optical fiber sensor becomes unstable, and the on / off state is discriminated. May become difficult.
  • a bending prevention structure 1w is provided on the movable portion 1a of the switch member 1 to increase the strength in the bending direction. For this reason, it is possible to prevent the movable portion 1a from being bent and to realize a stable switch operation.
  • the switch member 1 of the optical switch element SWa has a first movable part 1a and a second movable part, the positions of which respectively change due to the action of an external magnetic field.
  • the movable part 1b is provided.
  • the switch member 1 is composed of a leaf spring made of a magnetic metal, and is fixed to a housing (not shown) at a portion excluding the first movable portion 1a and the second movable portion 1b of the switch member 1.
  • the optical fiber sensor has a shape that draws a predetermined curve with the first movable portion 1a and the second movable portion 1b of the switch member 1 sandwiched in the vertical direction in the figure.
  • the position of the first movable part 1a varies due to the action of an external magnetic field.
  • the first movable portion 1a in the absence of an external magnetic field, the first movable portion 1a is acted on by its own spring action to act inward (downward in the figure), and the first movable portion 1a. Moves inward.
  • a first locking member 3a that locks the first movable portion 1a at the first position is provided. Therefore, the 1st movable part 1a is latched in the position shown to Fig.6 (a), and is the state hold
  • the position of the second movable part 1b varies due to the action of an external magnetic field.
  • a force inward acts on the second movable portion 1b by its own spring action, and the second movable portion 1b operates in the inward direction.
  • a first locking member 3b that locks the second movable part 1b at the first position is provided. Therefore, the second movable portion 1b is locked at the position shown in FIG. 6A and is held at an angle ⁇ 2 with respect to the portion of the switch member 1 excluding the first movable portion 1a and the second movable portion 1b. Is positioned.
  • the optical fiber sensor is pressed from the vertical direction in the figure, and has a shape that draws a curve having a large predetermined curvature R1 in the vicinity of the sensor portion SP. This state is referred to as an off state.
  • the external magnet MG comes close to the first movable part 1a, it is attracted to the external magnet MG by the spring action of the first movable part 1a and is attracted to the external magnet MG.
  • the force acting on the upper side in the figure increases, and the first movable portion 1a operates in the outer direction.
  • the 2nd latching member 4a which latches the 1st movable part 1a in a 2nd position is provided. Therefore, the first movable portion 1a is locked at the position shown in FIG. 6B, and is held at an angle ⁇ 1a with respect to the portion of the switch member 1 excluding the movable portion 1a and the second movable portion 1b. Is positioned.
  • the optical fiber sensor has a shape that spreads upward in the figure and draws a curve in which the vicinity of the sensor portion SP has a predetermined curvature R2 smaller than the curvature R1. This state is referred to as a first on state.
  • the external magnet MG when the external magnet MG approaches the second movable portion 1b, the external magnet MG is more than the force acting inward due to the spring action of the second movable portion 1b, as described above. Accordingly, the force acting in the outer direction (the lower direction in the figure) is increased, and the second movable portion 1b operates in the outer direction.
  • a second locking member 4b that locks the second movable portion 2a at the second position is provided. Therefore, the second movable portion 1b is locked at the position shown in FIG. 6C, and is held at an angle ⁇ 2a with respect to the portion excluding the movable portion 1a and the second movable portion 1b of the switch member 1. Is positioned.
  • the optical fiber sensor has a shape that spreads downward in the figure and draws a curve in which the vicinity of the sensor portion SP has a predetermined curvature R3 smaller than the curvature R1. This state is referred to as a second on state.
  • the position of the movable parts 1a and 3b is changed by the action of the external magnetic field, and the transmission loss of the sensor light is changed according to the position.
  • the switch element SWa has three states: an off state, a first on state, and a second on state. Therefore, it is possible to perform a switch operation according to the three states.
  • curvature R2 and curvature R3 may become a common curvature, and can also consider a 1st ON state and a 2nd ON state as the same ON state. Moreover, it can also have the 4th state which made the external magnet MG adjoin both to two movable parts 1a and 3b.
  • the optical switch element of the fifth embodiment is similar to the optical switch element of the second embodiment with respect to the first embodiment, with respect to the fourth embodiment, the first position defined by the first locking member 3a, And / or the 2nd position prescribed
  • the first locking members 3a and 3b can be fixed at their fixed positions.
  • the first locking members 3a and 3b are constituted by pins that are fixed by being inserted into holes formed in a housing or the like. ing.
  • the pin fixing position By configuring the pin fixing position to be variable stepwise or steplessly, the magnitude of transmission loss can be adjusted stepwise or steplessly.
  • the fixing positions of the second locking members 4a and 4b may be made variable as well.
  • the second locking member 3c is constituted by a kind of leaf spring, and is fixed to the wall surface 2b of the housing 2 by screws 5 here.
  • the second positions 3e and 3f for locking the movable portions 1a and 1b of the switch member 1 are not provided. It is configured to be variable in stages.
  • the first locking member may be configured in the same manner as the second locking member 3c, and the first position may be variable.
  • the diameter bl of the core 31 is larger than the diameter al of the core 21 of the optical fibers 20a and 20b. Is configured to be larger.
  • the sensor part SP of the optical switch element has a refractive index equivalent to the refractive index of the core 21 or the refractive index of the cladding 22 of the optical fibers 20a and 20b. It is made up of materials.
  • the sensor part SP is a light transmitting member 30a that does not have a hetero-core structure, and is joined to the middle part of the optical fibers 20a and 20b.
  • an OTDR (Optical time-domain reflectometer) device 70 is connected to the end of the optical fiber 20a.
  • the OTDR device 70 itself detects Rayleigh scattered light behind the sensor light incident from the OTDR device 70.
  • the on / off state can be reliably determined from the amount of light detected by the OTDR device 70.
  • a plurality of optical switch elements are connected in series on one optical fiber, and an OTDR device 70 is connected to the end of the optical fiber 20a. ing.
  • the first optical switch element SW1 is provided in the middle of the optical fibers 20a and 20b
  • the second optical switch element SW2 is provided in the middle of the optical fibers 20b and 20c
  • the middle parts of the optical fibers 20c and 20d is provided.
  • the third optical switch element SW3 is provided.
  • the first movable portion 1 a and the second movable portion 1 b configured as shown in FIG. 7B are provided inside the rectangular parallelepiped housing 2.
  • a switch member 1 is provided.
  • a portion of the switch member 1 excluding the first movable portion 1a and the second movable portion 1b is fixed to the wall surface of the housing 2.
  • Each of the first movable part 1a and the second movable part 1b is provided with a deflection preventing structure 1w.
  • the first locking member 3c formed of a leaf spring is fixed to the wall surface 2b of the housing 2 with screws 5, and the adjusting portion 3d of the first locking member 3c is enclosed by the screws 5 with the housing. It is possible to adjust the first position where the first movable part 1a and the second movable part 1b are locked by the first locking member 3c depending on whether it is closer to or away from the wall surface 2b of the body. .
  • the wall surfaces 2c and 2d of the housing are the second locking members.
  • An optical fiber sensor having a sensor part SP composed of a hetero-core part 30 is led into the casing in the middle of the optical fibers 20a and 20b, and the vicinity of the sensor part SP is arranged to draw a curve with a predetermined curvature.
  • a portion 20r wound in several layers, which is a part of the optical fibers 20a and 20b, is provided in the housing 2, and the optical fiber of the other portions influences a predetermined curvature curve formed in the vicinity of the sensor portion SP. It is configured not to give.
  • the optical switch is turned on when an external magnet (not shown) is brought close to the first movable part 1a or the second movable part 1b from the outside of the housing 2 and turned off when it is moved away from either.
  • an optical fiber sensor configured by providing a sensor part SP in the middle part of the optical fibers 20a and 20b is a predetermined part near the sensor part SP. It arrange
  • One fixing point 7 is provided with a switch member 8 whose position is changed by the action of an external magnetic field, and a part of the optical fiber sensor is fixed to the switch member 8.
  • the switch member 8 is provided so as to be able to swing between a position A and a position B with the fixed point 7 as an axis center.
  • the switch member 8 exists at the position A when the external magnet (not shown) is separated, and exists at the position B when the external magnet is close.
  • the optical fiber sensor When the switch member 8 exists at the position A, the optical fiber sensor has a shape that draws a curve in the vicinity of the sensor portion SP having a predetermined curvature R1. This state is referred to as an off state.
  • the optical fiber sensor when the switch member 8 is present at the position B, the optical fiber sensor has a shape that draws a curve in which the vicinity of the sensor portion SP is substantially linear (the curvature R2 is ⁇ ). This state is referred to as an on state.
  • the ON state where there is no bending in the vicinity of the sensor unit SP is the state where the transmission loss in the optical fiber sensor is the smallest. Therefore, by comparing with the transmission loss in the OFF state where there is a bend in the vicinity of the sensor unit SP, it is possible to detect the presence or absence of the bend in the vicinity of the sensor unit SP and to clearly determine the ON / OFF state.
  • the transmission loss in the optical fiber sensor varies in a binary manner depending on the position of the switch member 8, that is, depending on whether the sensor portion SP is bent in the off state or the sensor portion SP is not bent. To do. Therefore, by receiving the sensor light emitted from the emission end of the optical fiber 20b and measuring the transmission loss of the sensor light, the ON / OFF state of the optical switch element SW can be accurately determined, and the repeatability is excellent. ing. For example, even when the drive mechanism of the switch member 8 is deteriorated with time and the positions A and B are slightly shifted, it can be reliably determined whether the switch member 8 is on or off.
  • the position of the switch member 8 is changed by the action of the external magnetic field, and the transmission loss of the sensor light is changed according to the position, and the switch operation is performed in a non-contact manner according to the distance from the external magnet MG. It is possible.
  • the shape of the optical fiber sensor is changed by changing the tilt of the optical fiber sensor at the fixed point 7 by the switch member 8. Therefore, the curvature in the vicinity of the sensor part SP is changed without any member coming into contact with the sensor part SP. Therefore, compared with the optical switch disclosed in Patent Document 2 in which the disk-shaped member is in direct contact with the sensor unit to change the curvature, the possibility that the optical fiber sensor is broken such as being broken at the interface 40 of the sensor unit SP is reduced. So durability is improved.
  • the present invention is not limited to the above-described embodiments, and may be a form in which the embodiments are appropriately combined, and various modifications can be made without departing from the gist of the present invention.
  • the switch member 1 is configured by a leaf spring made of a magnetic metal, other configurations may be employed.
  • a magnet having a polarity opposite to that of the external magnet MG is fixed to the distal end of the movable portion 1a, and the movable portion 1a operates inwardly due to the proximity of the external magnet MG. It may return to the state.
  • an urging force such as a coil spring or a sponge may be used.
  • the switch member may be configured to change the curvature of the optical fiber sensor in a non-contact manner by the action of an external magnetic field.
  • the state in which the external magnet MG is close is referred to as the on state and the state in which the external magnet MG is moving away is the off state, these on state and off state may be interchanged.
  • the state where the curvature near the sensor unit SP is small is the on state
  • the state where the curvature near the sensor unit SP is large is the off state
  • these on state and off state may be interchanged.
  • a planar optical switch may be configured by arranging a plurality of switch elements SW in a two-dimensional array, for example.
  • optical switch element of the present invention and the optical switch using the same can be suitably used as a switch in an explosion-proof facility or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Push-Button Switches (AREA)
  • Switches Operated By Changes In Physical Conditions (AREA)

Abstract

光スイッチ素子SWは、ヘテロコア構造のセンサ部SPを有する光ファイバセンサと、外部磁界の作用によって位置が変動し、センサ部SPに非接触で、前記位置に応じて光ファイバセンサの描く曲線の形状を変動させるスイッチ部材1とを備える。スイッチ部材1が光ファイバの描く曲線の形状を変動させることにより、光ファイバセンサのセンサ部SP及びその近傍部分の曲率が変動し、曲率に応じたセンサ光の伝送損失が発生する。センサ部SPに非接触でスイッチ動作を行うことができる。

Description

光スイッチ素子及び光スイッチ
 本発明は、光ファイバセンサを用いた光スイッチ素子、及びこれを備えた光スイッチに関する。
 防爆領域などでは、スイッチの切り替え時に火花が発生するおそれがあるので、電気接点を有するスイッチを用いることができない。そのため、光を利用してオン/オフ状態を切り替える光スイッチが用いられる。
 従来の光スイッチとして、例えば特許文献1を参照して、発光素子からの光を光ファイバで防爆領域に導き、防爆領域に設けられた遮光部を通過させ、光スイッチから戻ってくる出力光を光ファイバで防爆領域外へと導いて受光素子で受光し、受光した光量に応じてオン/オフ状態を判断するものが知られている。
 また、従来の光スイッチとして、2本の光ファイバの端面同士を向かい合わせて両光ファイバ間に光を伝送させるように構成し、端面同士を十分に合わせて2本の光ファイバ間に伝送する光の端面における損失を小さくした状態と、端面同士をずらせて損失を大きくした状態とを、スイッチ部材の機械的な動作により制御するものが知られている。この光スイッチでは、スイッチ部材の動作状況に応じて、2本の光ファイバを伝送する光量によってオン/オフ状態を判別している。
 しかし、これら従来の光スイッチにおいては、スイッチ動作を実現するために、例えばコア径が1mm程度の太い光ファイバが必要であり、さらにスイッチ動作が安定しないなどの欠点を有していた。
 そこで、特許文献2には、ヘテロコア型の光ファイバセンサを用いた光スイッチが開示されている。この光スイッチにおいては、ヘテロコア構造のセンサ部と接触する円盤状部材を押圧部材が押圧する状態に応じて、センサ部及びその近傍部分の曲率が変化し、センサ光の伝送損失が変化することを利用して、オン/オフ状態を判別している。
 なお、ヘテロコア型の光ファイバセンサについては、特許文献3及び4に開示されている。
特開2001-250462号公報 特開2005-338360号公報 国際公開97/48994号パンフレット 特開2003-214906号公報
 特許文献2に開示された光スイッチは、円盤状部材をセンサ部に直接接触させて、スイッチ動作を行っている。しかし、センサ部は、接合などにより光ファイバセンサの中途部に設けられているので、接触する円盤状部材に押圧されて破損するおそれが高いという問題があった。
 また、センサ部と円盤状部材とが非接触状態での曲率と、センサ部が円盤状部材を介して押圧部材に押し込まれた状態での曲率とにそれぞれ応じた伝送損失を計測することによってオン/オフ状態を判別している。そのため、特に、繰り返しの再現性に劣り、且つ精度が良くないという問題があった。さらに、オン/オフ状態でのセンサ光の伝送損失を調整できないので、汎用範囲が狭いという問題があった。
 本発明は、以上の点に鑑み、センサ部に非接触でスイッチ動作を行うことが可能な光スイッチ素子及び光スイッチを提供することを目的としている。
 さらに、本発明は、好ましくは、繰り返しの再現性に優れ、精度が良い光スイッチ素子及び光スイッチを提供することを目的としている。
 さらに、本発明は、好ましくは、センサ光の伝送損失が調整でき、汎用範囲が広い光スイッチ素子及び光スイッチを提供することを目的としている。
 本発明の光スイッチ素子は、コア及びコアの外周に積層されたクラッドを備え、伝送する光の一部の外界との相互作用を可能にする光透過部材を有し、前記光透過部材を含む範囲で所定の曲率の曲線を描くように配置され、入射端に光が入射されて出射端から前記光透過部材を通過した光を出射する光ファイバセンサと、外部磁界の作用によって位置が変動し、前記光透過部材に非接触で、前記位置に応じて前記光ファイバセンサの描く曲線の形状を変動させるスイッチ部材とを備え、前記スイッチ部材が前記光ファイバセンサの描く曲線の形状を変動させることにより、該光ファイバセンサの前記光透過部材及びその近傍部分の曲率が変動し、前記外界との相互作用が前記曲率に応じて前記光ファイバセンサを伝送する光に対して生じるように構成されている。
 本発明の光スイッチ素子によれば、外部磁界の作用によってスイッチ部材の位置が変動し、光透過部材に非接触で、当該位置に応じて光ファイバセンサの描く曲線の形状が変動し、光ファイバセンサの前記光透過部材及びその近傍部分の曲率が変動する。そして、この曲率の変動により、光ファイバセンサに伝送される光と外界とで発生する相互作用が変動する。従って、発生した相互作用の変動を検出することにより、スイッチ動作を行うことが可能となる。 
 そして、センサ部に直接円盤状部材が接触して曲率を変動させる特許文献2に開示された光スイッチと比較して、曲げにより破損しやすい光ファイバセンサの光透過部材にスイッチ部材が接触しないので、耐久性が向上する。また、光透過部材は簡易に設けることができるので、光スイッチ素子を安価に製造することが可能となる。また、光スイッチ素子は、電気接点を用いていないので、防爆施設などでも好適に使用できる。
 また、本発明の光スイッチ素子において、前記スイッチ部材を第1の位置で係止させる第1係止部材と、前記スイッチ部材を第2の位置で係止させる第2係止部材とを備え、前記スイッチ部材が前記第1の位置に係止された第1の状態と、前記スイッチ部材が前記第2の位置に係止された第2の状態とを有することが好ましい。この場合、第1の状態と第2の状態との2つの状態において、スイッチ部材が係止され、光ファイバセンサの前記光透過部材及びその近傍部分の曲率が変動しない。そのため、これらの状態の判別を確実に行うことが可能となる。
 また、本発明の光スイッチ素子において、前記第1の位置又は前記第2の位置の少なくとも一方が調整可能であることが好ましい。この場合、光スイッチ素子の調整可能とした位置に対応する状態において発生する相互作用を調整することが可能となり、汎用性に富む。
 また、本発明の光スイッチ素子において、前記スイッチ部材が板バネからなることが好ましい。この場合、スイッチ部材を簡易に構成することが可能となる。
 また、本発明の光スイッチ素子において、前記板バネが断面L字形状の撓み防止構造を有することが好ましい。この場合、板バネに撓みが発生することが防止され、安定なスイッチ動作を実現することが可能となる。
 また、本発明の光スイッチ素子において、前記光透過部材は、該光透過部材の前後に位置する光ファイバのコア径と異なるコア径を有するヘテロコア部であることが好ましい。
 また、本発明の光スイッチ素子において、前記光透過部材は、該光透過部材の前後に位置する光ファイバのコアの屈折率又はクラッドの屈折率と同等の屈折率を持つ材料からなることが好ましい。
 これらの場合、光透過部材は伝送する光の一部を漏洩するので、光の伝送損失を検出することによって、スイッチ動作を行うことができる。そのため、安価な検出装置を用いることが可能となる。また、光の伝送損失は、光透過部材及びその近傍部分の曲率に依存するので、スイッチ動作を高精度に行うことが可能となる。また、放電による融着などにより簡易に光透過部材を設けることが可能となる。
 本発明の光スイッチは、前記本発明の光スイッチ素子と、前記光ファイバセンサの入射端に設けられた光源と、前記光ファイバセンサの出射端に設けられた受光部とを備える。
 本発明の光スイッチによれば、前記本発明の光スイッチ素子が有する効果を備えた光スイッチを得ることができる。
(a)及び(b)は、本発明の第1実施形態に係る光スイッチ素子の構成を示す模式図である。 光ファイバセンサのセンサ部近傍を概念的に示し、(a)は斜視図であり、(b)は長手方向断面図である。 本発明の第1実施形態に係る光スイッチの構成を示す模式図である。 (a)及び(b)は本発明の第2実施形態に係る光スイッチ素子の部分的な構成を示す模式図である。 本発明の第3実施形態に係る光スイッチ素子を構成するスイッチ部材の可変部の構成及び動作を模式的に示し、(a)は斜視図であり、(b)は平面図である。 (a)乃至(b)は、本発明の第4実施形態に係る光スイッチ素子の構成を示す模式図である。 (a)及び(b)は、本発明の第5実施形態に係る光スイッチ素子の部分的な構成を示す模式図である。 (a)及び(b)は、本発明の第6実施形態に係る光スイッチ素子のセンサ部近傍の長手方向断面図である。 本発明の第7実施形態に係る光スイッチの構成を示す模式図である。 本発明の第8実施形態に係る光スイッチの構成を示す模式図である。 本発明の第9実施形態に係る光スイッチ素子の構成を示す模式図である。 本発明の第10実施形態に係る光スイッチ素子の構成を示す模式図である。
 以下に、本発明の光スイッチ素子及びこれを用いた光スイッチに係る実施形態について、図面を参照して説明する。
 〔第1実施形態〕
 図1(a)を参照して、第1実施形態に係る光スイッチ素子SWは、光ファイバ20a,20b及びその中途部に設けられた光透過部材であるセンサ部SPからなる光ファイバセンサ(センサファイバ)を備えている。光ファイバセンサを構成する光ファイバ20a,20b及びセンサ部SPの詳細については後述する。
 光ファイバセンサは、センサ部SP及びその近傍部分を含む範囲(以下、これらの範囲を合わせて、単に、「センサ部SP近傍」という)が所定の曲率となる曲線を描くようにして、筐体などに収容されている。
 光ファイバセンサは、ここでは、外部磁界の作用によって位置が変動するスイッチ部材1の可動部1aと筐体の壁面2aとで挟まれることによって、所定の曲線を描くように配置されている。光ファイバセンサは、筐体内でリング形状となるように保持されている。なお、光ファイバセンサは、U字状やΩ字状などの形状に保持されていてもよい。ただし、光ファイバセンサを筐体内に収容する場合、リング状であれば容易に収容可能となる。
 スイッチ部材1は、ここでは、磁性体金属からなる板バネで構成されている。スイッチ部材1は、可動部1aを除く部分が不図示の筐体に固定されており、外部磁界の作用によって可動部1aが基端部を支点として動作し、その位置が変動する。なお、可動部1a先端の移動距離は、例えば、数mmから数cmである。
 外部磁界がない状態では、可動部1aには自身のバネ作用により光ファイバセンサのセンサ部SPに近づく方向(以下、内側方向という)への力のみが作用している。しかし、内側方向に近づくように動作する可動部1aを第1の位置に係止する第1係止部材3aが設けられている。そのため、可動部1aは、図1(a)に示す位置に係止され、スイッチ部材1の可動部1aを除く部分に対して角度θ1で保持された状態となって位置決めされる。このとき、可動部1aと筐体の壁面2aとの間隔が狭く、光ファイバセンサは、図中上下方向から押さえ込まれ、センサ部SP近傍が所定の大きな曲率R1となる曲線を描く形状になる。この状態をオフ状態(第1状態)とする。
 オフ状態の光スイッチ素子SWにおいて、図1(b)に示すように、スイッチ部材1の可動部1aに外部磁石MGが近接するに従い、外部磁石MGが可動部1aを引き寄せる力が徐々に大きくなる。そして、スイッチ部材1の可動部1aから所定範囲内に外部磁石MGが近接すると、可動部1aのバネ作用による内側方向への力よりも可動部1aが外部磁石MGに引き寄せられる外側方向への力が大きくなり、可動部1aは光ファイバセンサから遠ざかる方向(以下、外側方向という)に動作する。しかし、外側方向に動作する可動部1aを第2の位置で係止する第2係止部材4aが設けられている。そのため、可動部1aは、図1(b)に示す位置で係止され、スイッチ部材1の可動部1aを除く部分に対して角度θ1aで保持された状態となって位置決めされる。このとき、可動部1aと筐体の壁面2aとの間隔が広く、光ファイバセンサは、図中上方向に広がり、そのセンサ部SP近傍が小さな所定の曲率R2となる曲線を描く形状になる。この状態をオン状態(第2状態)とする。
 このように、光スイッチ素子SWには、外部磁石MGが近接したオン状態と、外部磁石MGが近接していないオフ状態との2種類の状態があり、外部磁石MGとの距離に応じて、オン状態又はオフ状態になる。
 なお、外部磁石MGが近接する構成は任意である。例えば、外部磁石MGが、スイッチ部材1を固定した筐体に摺動可能に設けられ、別体の対象物が外部磁石MGあるいは外部磁石MGを固定した部材と当接して、外部磁石MGを可動部1aに近接させるように構成してもよい。又、筐体とは別体の対象物の先端に外部磁石MGを固定し、当該対象物が可動部1aに近接するものであってもよい。
 スイッチ部材1の可動部1aと筐体の壁面2aとで挟まれた光ファイバセンサの形状の変化が安定すると、センサ部SP近傍の曲率の変動が安定する。即ち、可動部1aが第1の位置で係止されるオン状態では、センサ部SP近傍の曲率がR1となり、可動部1aが第2の位置で係止されるオフ状態では、センサ部SP近傍の曲率がR2となるような再現性を、長期間に亘って良好に得る必要がある。そのために、光ファイバセンサがリング形状となるように保持した部分の一箇所又は複数箇所を筐体などに固定してもよい。ただし、固定せずに曲率の変動が安定する場合には固定しなくてもよい。なお、センサ部SP近傍の曲率がR1,R2から多少変化しても、オン/オフ状態を正確に判別できるので、オン/オフ各状態における光ファイバセンサの形状はそれぞれ厳密に一定である必要はない。
 光スイッチ素子SWには、上記のように、外部磁界の作用によって位置が変動するスイッチ部材1の可動部1aを第1の位置で係止する第1係止部材3aと、第2の位置で係止する第2係止部材4aとが設けられている。そのため、光スイッチ素子SWのオン/オフ状態に対応する可動部1aの位置決めを明確に行うことができる。
 光スイッチ素子SWを構成する光ファイバセンサは、光ファイバ20a,20bの中途部、即ち、光入射側の光ファイバ20aと光出射側の光ファイバ20bの間にセンサ部SPを有して構成されている。
 図2(a)及び図2(b)を参照して、光ファイバ20a,20bは、コア21と、該コア21の外周に積層されたクラッド22とを有する構成である。光ファイバ20a,20bは、入射端である光ファイバ20a端部、レーザダイオードや発光ダイオードなどの光源11(図3参照)から出射されたセンサ光が入射され、出射端である光ファイバ20b端部からセンサ部SPを通過したセンサ光がフォトダイオードなどの受光部12(図3参照)で受光される構成になっている。
 センサ部SPは、伝送する光の一部を漏洩するヘテロコア部30からなっている。ヘテロコア部30は、光ファイバ20a,20bのコア径alと異なるコア径blを有するコア31と、その外周に設けられたクラッド32とからなっている。ヘテロコア部30のコア31の径blは、光ファイバ20a,20bのコア21の径alより小さい。ここでは、コア21の径alは9μmであり、コア31のコア径blは5μmである。また、ヘテロコア部30の長さclは、例えば、1mmから2mm程度である。
 センサ部SPを構成するヘテロコア部30と光ファイバ20a,20bとは、長手方向に直交する界面40でコア同士が接合するように略同軸に、例えば、汎用化されている放電による融着などにより、接合されている。
 光ファイバ20a,20b及びヘテロコア部30として、シングルモード光ファイバとマルチモード光ファイバとのいずれも使用可能であり、これらを組み合わせて使用してもよい。例えば、光ファイバ20a,20bとして、コア径50μmのマルチモード光ファイバを使用してもよい。
 光ファイバ20a,20bの中途部にヘテロコア型のセンサ部SPが接合されており、ヘテロコア部30におけるコア31の径blと光ファイバ20a,20bのコア21の径alとが界面40で異なっている。このコア径の差に起因して、図5(a)に示すように、伝送される光の一部がヘテロコア部30のクラッド32へ漏洩し、リーク光Wが発生する。
 コア21とコア31のコア径の相違が小さくなるように設定すると、リーク光Wが小さくなり、大部分の光は再びコア21に入射し、伝送するセンサ光の伝送損失(ロス)が小さくなる。一方、コア21とコア31のコア径の相違が大きくなるように設定すると、リーク光Wが大きくなり、伝送するセンサ光の伝送損失が大きくなる。
 ヘテロコア型のセンサ部SPにおいて、リーク光Wの大きさ、ひいてはセンサ光の伝送損失は、センサ部SP近傍の光ファイバセンサの曲げの変化により鋭敏に変化し、曲げが大きいほど大きくなる。
 光スイッチ素子SWは、図1(a)及び(b)に示すように、スイッチ部材1の可動部1aの位置が変動すると、可動部1aと筐体の壁面2aとで挟み込まれた光ファイバセンサの形状が変化し、センサ部SP近傍の曲率がR1とR2とで変動することになる。
 従って、可動部1aの位置に応じて、即ち、可動部1aに外部磁石MGが近接しているオン状態か近接していないオフ状態かにより、光ファイバセンサにおける伝送損失が2値的に変動する。そこで、光ファイバ20bの出射端から出射されるセンサ光を受光し、センサ光の損失を測定することにより、光スイッチ素子SWのオン/オフ状態を判別することが可能となり、スイッチ動作を実現できる。
 図3を参照して、光スイッチは、上記した光スイッチ素子SW、外部磁石MG、光ファイバセンサの光入射端である光ファイバ20a端部に設けられた光源11、及び光ファイバセンサの光出射端である光ファイバ20b端部に設けられた受光部12を備えている。
 光源11は、例えば、半導体発光ダイオード(LED)や半導体レーザなどの発光素子を有しており、センサ光を出射する。受光部12は、例えば、フォトダイドード(PD)や電荷結合素子(CCD)などの受光素子を有する光マルチメータであり、光出射端から出射されるセンサ光を検出する。
 このように、光スイッチ素子SW及びこれを備えた光スイッチによれば、外部磁界の作用により可動部1aの位置を変動させ、その位置に応じてセンサ光の伝送損失を変動させる構成であり、外部磁石MGとの距離に応じて非接触でスイッチ動作させることが可能である。
 そして、リング状の光ファイバセンサの腹部(図1では上部)に可動部1aが当接しており、該可動部1aは外部磁石MGとの距離に応じて位置が変動する。そのため、リング状の光ファイバセンサは、その腹部の膨らみを規定する可動部1aが動作することにより形状が変動する。よって、センサ部SP近傍に何ら部材を接触させることなく、当該センサ部SP近傍の曲率を変動させている。そのため、センサ部に直接円盤状部材が接触して曲率を変動させる特許文献2に開示された光スイッチと比較して、センサ部SPの界面40で折れるなど光ファイバセンサが破損するおそれが減少するので、耐久性が向上する。
 また、光スイッチ素子SWには、オン状態とオフ状態の2つの状態しかない。そのため、オン/オフいずれの状態であるかを伝送損失によって高精度で判別でき、繰り返しの再現性も優れている。例えば、スイッチ部材1のバネ作用や磁性力が経年劣化しても、オン/オフいずれの状態であるかを確実に判別できる。
 また、光スイッチ素子SWは、スイッチ部材1の可動部1aの位置に応じて光ファイバセンサを伝送する光に対して損失を発生させる構成となっている。そして、曲率の変化に応じて鋭敏に伝送損失が変化するセンサ部SP近傍に可動部1aの位置に応じた曲率を生じさせている。また、センサ部SPを構成するヘテロコア部30は、汎用化されている放電による融着などにより簡易に設けることが可能である。そのため、安価で軽重量物を高精度で光スイッチを実現することができる。
 また、光スイッチ素子SWは、電気接点を用いていないので、防爆施設などでも好適に使用できる。なお、防爆施設など以外で用いる場合には、外部磁石MGとして電磁石を用いてもよい。
 〔第2実施形態〕
 第1実施形態において、外部磁界の作用によって位置が変動するスイッチ部材1の可動部1aは、光スイッチ素子SWのオン/オフ状態に対応して、第1の位置で係止する第1係止部材3aと、第2の位置で係止する第2係止部材4aとのいずれかによって係止され、明確な位置決めが行われる。
 ここで、第1係止部材3aにより規定される第1の位置、及び/又は第2係止部材4aにより規定される第2の位置が調整可能である場合には、光スイッチ素子SWのオン/オフ状態に対応する伝送損失の大きさを調整することが可能となる。そして、これにより、オン/オフ状態を峻別する外部磁石MGの閾距離を変化させることが可能となり、汎用性に富むことになる。
 そこで、図4(a)を参照して、第2実施形態に係る光スイッチ素子は、第1実施形態に係る光スイッチ素子SWと異なり、第1係止部材3aが規定する第1の位置を可変としている。
 第1係止部材3aは、その固定位置が可変であり、ここでは、筐体などに形成された穴に嵌入されて固定されるピンから構成されている。ピン固定位置を段階的あるいは無段階的に可変となるように構成することで、伝送損失の大きさを段階的あるいは無段階的に調整することができる。なお、第2係止部材4aが規定する第2の位置も同様に可変にしてもよい。
 図4(b)を参照して、第2実施形態の変形に係る光スイッチ素子において、第2係止部材3cは、一種の板バネで構成され、ここでは、筐体2の壁面2bにネジ5によって固定されている。ネジ5によって第1係止部材3cの調整部3dを筐体の壁面2bに近づけるか、あるいは遠ざけるかによって、スイッチ部材1の可動部1aを係止する第2の位置3eを無段階的に可変となるように構成されている。なお、第1係止部材を、第2係止部材3cと同様に構成して、第1の位置を可変にしてもよい。
 なお。例えば、複数個の光スイッチ素子を直列に接続して共通の受光部で複数個の光スイッチ素子全体の伝送損失を検出する構成とした場合も、上記のような調整機構を設けることが好ましい。この場合、オン/オフ状態のセンサ光の伝送損失が互いに異なる光スイッチ素子を直列に接続し、全伝送損失と各光スイッチ素子の伝送損失の組み合わせを比較することによって、複数個の光スイッチ素子のどの光スイッチ素子がオン状態で、どの光スイッチ素子がオフ状態であるかを容易に判別することが可能となる。
 〔第3実施形態〕
 第3実施形態に係る光スイッチ素子を構成するスイッチ部材1は、第1実施形態と同様に、板バネである。しかし、図5(a)及び図5(b)を参照して、この板バネは、第1実施形態と異なり、断面L字形状の撓み防止構造1wが可動部1aに形成されている。
 光スイッチ素子を構成するスイッチ部材1は、自身のバネ作用及び外部磁界の作用で可動部1aの位置が変動する。特に可動部1aが細長形状の場合、外部磁界によって引き付けられ位置を変動する際に撓みが発生するおそれがある。撓みが発生すると、オン/オフ状態の各状態における可動部1aの光ファイバセンサと当接する位置が不安定になるため、光ファイバセンサの形状の変動も不安定になり、オン/オフ状態の判別が困難になるおそれがある。
 そこで、スイッチ部材1の可動部1aに、撓み防止構造1wを設けて、撓む方向への強度を高めている。そのため、可動部1aに撓みが発生することが防止され、安定なスイッチ動作を実現することが可能となる。
 〔第4実施形態〕
 図6(a)乃至図6(c)を参照して、第4実施形態に係る光スイッチ素子SWaのスイッチ部材1は、外部磁界の作用によってそれぞれ位置が変動する第1可動部1a及び第2可動部1bを備えている。スイッチ部材1は、ここでは、磁性体金属からなる板バネで構成され、スイッチ部材1の第1可動部1a及び第2可動部1bを除く部分で不図示の筐体に固定されている。
 光ファイバセンサは、スイッチ部材1の第1可動部1aと第2可動部1bとで図中上下方向を挟み込まれた状態で所定の曲線を描く形状になる。
 第1可動部1aは、外部磁界の作用によって位置が変動する。図6(a)を参照して、外部磁界がない状態では、第1可動部1aには自身のバネ作用により内側方向(図中下側方向)への力が作用し、第1可動部1aは内側方向へ動作する。しかし、第1可動部1aを第1の位置で係止する第1係止部材3aが設けられている。そのため、第1可動部1aは、図6(a)に示す位置で係止され、スイッチ部材1の第1可動部1a及び第2可動部1bを除く部分に対して角度θ1で保持された状態となって位置決めされる。
 第2可動部1bも、第1可動部1aと同様に、外部磁界の作用によって位置が変動する。外部磁界がない状態では、第2可動部1bには自身のバネ作用により内側方向(図中上側方向)への力が作用し、第2可動部1bは内側方向へ動作する。しかし、第2可動部1bを第1の位置で係止する第1係止部材3bが設けられている。そのため、第2可動部1bは、図6(a)に示す位置で係止され、スイッチ部材1の第1可動部1a及び第2可動部1bを除く部分に対して角度θ2で保持された状態となって位置決めされる。
 このとき、光ファイバセンサは、図中上下方向から押さえ込まれたようになり、センサ部SP近傍が大きな所定の曲率R1となる曲線を描く形状になる。この状態をオフ状態とする。
 図6(b)を参照して、外部磁石MGが第1可動部1aに近接すると、第1可動部1aのバネ作用により内側方向に作用する力よりも外部磁石MGに引き寄せられて外側方向(図中上側方向)に作用する力が大きくなり、第1可動部1aは外側方向に動作する。しかし、第1可動部1aを第2の位置で係止する第2係止部材4aが設けられている。そのため、第1可動部1aは、図6(b)に示す位置で係止され、スイッチ部材1の可動部1a及び第2可動部1bを除く部分に対して角度θ1aで保持された状態となって位置決めされる。このとき、光ファイバセンサは、図中上方向に広がり、そのセンサ部SP近傍が曲率R1より小さな所定の曲率R2となる曲線を描く形状になる。この状態を第1オン状態とする。
 さらに、図6(c)を参照して、外部磁石MGが第2可動部1bに近接すると、上記と同様に、第2可動部1bのバネ作用により内側方向に作用する力よりも外部磁石MGに引き寄せられて外側方向(図中下側方向)に作用する力が大きくなり、第2可動部1bは外側方向に動作する。しかし、第2可動部2aを第2の位置で係止する第2係止部材4bが設けられている。そのため、第2可動部1bは、図6(c)に示す位置で係止され、スイッチ部材1の可動部1a及び第2可動部1bを除く部分に対して角度θ2aで保持された状態となって位置決めされる。このとき、光ファイバセンサは、図中下方向に広がり、そのセンサ部SP近傍が曲率R1より小さな所定の曲率R3となる曲線を描く形状になる。この状態を第2オン状態とする。
 このように、光スイッチ素子SWa及びこれを備えた光スイッチによれば、外部磁界の作用により可動部1a,3bの位置を変動させ、その位置に応じてセンサ光の伝送損失を変動させる構成であり、外部磁石MGとの距離に応じて非接触でスイッチ動作させることが可能である。
 そして、スイッチ素子SWaには、オフ状態、第1オン状態及び第2オン状態の3つの状態がある。そのため、3つの状態に応じたスイッチ動作させることが可能となる。
 なお、曲率R2と曲率R3とが共通の曲率となるように構成して、第1オン状態と第2オン状態を同一のオン状態とみなすこともできる。また、2つの可動部1a,3bに共に外部磁石MGを近接させた第4の状態を有することもできる。
 〔第5実施形態〕
 第5実施形態の光スイッチ素子は、第1実施形態に対する第2実施形態の光スイッチ素子と同様に、第4実施形態に対して、第1係止部材3aにより規定される第1の位置、及び/又は第2係止部材4aにより規定される第2の位置が調整可能となるように構成している。
 図7(a)を参照して、第1係止部材3a,3bは、その固定位置が可変であり、ここでは、筐体などに形成された穴に嵌入されて固定されるピンから構成されている。ピン固定位置を段階的あるいは無段階的に可変となるように構成することで、伝送損失の大きさを段階的あるいは無段階的に調整することができる。なお、第2係止部材4a,4bの固定位置も同様に可変にしてもよい。
 図7(b)を参照して、第2係止部材3cは、一種の板バネで構成され、ここでは、筐体2の壁面2bにネジ5によって固定されている。ネジ5によって第1係止部材3cの調整部3dを筐体の壁面2bに近づけるか、あるいは遠ざけるかによって、スイッチ部材1の可動部1a,1bを係止する第2の位置3e,3fを無段階的に可変となるように構成されている。なお、第1係止部材を、第2係止部材3cと同様に構成して、第1の位置を可変にしてもよい。
 〔第6実施形態〕
 センサ部SPとして、図2(a)及び図2(b)に示したヘテロコア部30以外の構成を採用することも可能である。
 図8(a)を参照して、第6実施形態に係る光スイッチ素子のセンサ部SPを構成するヘテロコア部30は、コア31の径blが、光ファイバ20a,20bのコア21の径alよりも大きくなるように構成されている。
 図8(b)を参照して、第6実施形態の変形に係る光スイッチ素子のセンサ部SPは、光ファイバ20a,20bのコア21の屈折率又はクラッド22の屈折率と同等の屈折率を持つ材料から構成されている。このセンサ部SPは、ヘテロコア構造ではない光透過部材30aであり、光ファイバ20a,20bの中途部に接合されている。
 センサ部SPを上記のように構成しても、伝送する光の一部がセンサ部SPで漏洩するので、前記実施形態と同様に、オン/オフ状態を確実に判別することができる。
 〔第7実施形態〕
 図9を参照して、第7実施形態に係る光スイッチにおいては、光ファイバ20a端部に、OTDR(Optical time-domain reflectometer)装置70が接続されている。OTDR装置70から入射されたセンサ光の後方へのレイリー散乱光をOTDR装置70自身が検出する。
 後方へのレイリー散乱光は、センサ部SP近傍の曲げに応じて発生するため、OTDR装置70が検出した光量から、オン/オフ状態を確実に判別することができる。
 〔第8実施形態〕
 図10を参照して、第8実施形態に係る光スイッチにおいては、1本の光ファイバ上に複数個の光スイッチ素子が直列に接続され、光ファイバ20a端部に、OTDR装置70が接続されている。
 ここでは、光ファイバ20a,20bの中途部に第1光スイッチ素子SW1が設けられ、光ファイバ20b,20cの中途部に第2光スイッチ素子SW2が設けられ、さらに光ファイバ20c,20dの中途部に第3光スイッチ素子SW3が設けられている。
 OTDR装置70からセンサ光が入射されると、3個の光スイッチ素子SW1~SW3のそれぞれにおいて後方へのレイリー散乱光が発生し、これらの光量をOTDR装置70が検出する。これにより、複数個の光スイッチ素子SW1~SW3で同時にオン/オフ状態を判別することができる。
 〔第9実施形態〕
 図11を参照して、第9実施形態に係る光スイッチ素子においては、直方体形状の筐体2の内部に、図7(b)に示す構成の第1可動部1a及び第2可動部1bを有するスイッチ部材1が設けられている。筐体2の壁面に、第1可動部1a及び第2可動部1bを除く部分のスイッチ部材1が固定されている。第1可動部1a及び第2可動部1bには、それぞれ撓み防止構造1wが設けられている。
 図7(b)と同様に、板バネで構成される第1係止部材3cが筐体2の壁面2bにネジ5で固定され、ネジ5によって第1係止部材3cの調整部3dを筐体の壁面2bに近づけるか、あるいは遠ざけるかによって、第1可動部1aと第2可動部1bが第1係止部材3cにより係止される第1の位置を調整することが可能となっている。筐体の壁面2c,2dが第2係止部材となっている。
 光ファイバ20a,20bの中途部にヘテロコア部30からなるセンサ部SPを有する光ファイバセンサが筐体内に導かれ、センサ部SP近傍が所定の曲率の曲線を描くように配置されている。光ファイバ20a,20bの一部である数重に巻かれた部分20rが筐体2内に設けられ、センサ部SP近傍で形成される所定の曲率の曲線にそれ以外の部分の光ファイバが影響を与えないように構成されている。
 光スイッチは、筐体2の外部から、図示しない外部磁石を第1可動部1a又は第2可動部1bに近づけるとオン状態となり、いずれからも遠ざけるとオフ状態となる。
 〔第10実施形態〕
 図12を参照して、第10実施形態に係る光スイッチ素子においては、光ファイバ20a,20bの中途部にセンサ部SPが設けられて構成された光ファイバセンサが、センサ部SP近傍で所定の曲率を有する曲線を描いて撓むように、距離Lだけ離れた2つの固定点6,7を通過するように配置されている。
 一方の固定点7には、外部磁界の作用によって位置が変動するスイッチ部材8が設けられており、このスイッチ部材8に光ファイバセンサの一部が固定されている。ここでは、スイッチ部材8は、固定点7を軸中心にして、位置Aと位置Bとの間を揺動可能に設けられている。スイッチ部材8は、図示しない外部磁石が離れたとき、位置Aに存在し、外部磁石が近接したとき、位置Bに存在する。なお、図示しないが、スイッチ部材8を、位置Aに係止する第1係止部材、及び位置Bに係止する第2係止部材を設けることが好ましい。
 スイッチ部材8が位置Aに存在するとき、光ファイバセンサは、センサ部SP近傍が所定の曲率R1となる曲線を描く形状になる。この状態をオフ状態とする。一方、スイッチ部材8が位置Bに存在するとき、光ファイバセンサは、センサ部SP近傍が実質的に直線状態(曲率R2は∞)となる曲線を描く形状になる。この状態をオン状態とする。
 センサ部SP近傍に曲げがないオン状態が、光ファイバセンサにおける伝送損失が最も小さい状態である。よって、センサ部SP近傍に曲げがあるオフ状態での伝送損失と比較することにより、センサ部SP近傍の曲げの有無を敏感に感知して、オン/オフ状態を明確に判別することができる。
 従って、スイッチ部材8の位置に応じて、即ち、センサ部SP近傍に曲げがあるオフ状態か、センサ部SP近傍に曲げがないオン状態かにより、光ファイバセンサにおける伝送損失が2値的に変動する。そこで、光ファイバ20bの出射端から出射されるセンサ光を受光し、センサ光の伝送損失を測定することにより、光スイッチ素子SWのオン/オフ状態を精度良く判別でき、繰り返しの再現性も優れている。例えば、スイッチ部材8の駆動機構が経年劣化して位置A,Bが多少ずれても、オン/オフいずれの状態であるかを確実に判別できる。
 このように、外部磁界の作用によりスイッチ部材8の位置を変動させ、その位置に応じてセンサ光の伝送損失を変動させる構成であり、外部磁石MGとの距離に応じて非接触でスイッチ動作させることが可能である。
 そして、光ファイバセンサの固定点7における傾きをスイッチ部材8で変動させることにより、光ファイバセンサの形状が変動する。よって、センサ部SP近傍に何ら部材が接触することなく、当該センサ部SP近傍の曲率を変動させている。そのため、センサ部に直接円盤状部材が接触して曲率を変動させる特許文献2に開示された光スイッチと比較して、センサ部SPの界面40で折れるなど光ファイバセンサが破損するおそれが減少するので、耐久性が向上する。
 本発明は、上記の各実施形態に限定されず、各実施形態を適宜組み合わせた形態などであってもよく、本発明の要旨を逸脱しない範囲で、種々の変更が可能である。
 例えば、スイッチ部材1を磁性体金属からなる板バネから構成したが、他の構成としてもよい。例えば、外部磁石MGと逆極の磁石を可動部1a先端に固定し、外部磁石MGの近接により、可動部1aが内側方向に動作し、外部磁石MGが遠ざかると、外側方向に動作して水平状態に戻るものであってもよい。また、元の状態に戻る作用して自身のバネ作用を利用したが、例えば、コイルバネやスポンジ等の付勢力を利用してもよい。
 また、スイッチ部材の構成は、外部磁界の作用により非接触で光ファイバセンサの曲率を変動させる構成であればよい。
 また、外部磁石MGが近接した状態をオン状態、外部磁石MGが遠ざかっている状態をオフ状態としたが、これらのオン状態とオフ状態とを入れ替えてもよい。また、センサ部SP近傍の曲率が小さい状態をオン状態、センサ部SP近傍の曲率が大きい状態をオフ状態としたが、これらのオン状態とオフ状態とを入れ替えてもよい。
 また、複数のスイッチ素子SWを例えば2次元アレイ状に配置して、面状の光スイッチを構成としてもよい。
 本発明の光スイッチ素子及びこれを用いた光スイッチは、防爆施設などにおけるスイッチに好適に利用可能である。

Claims (8)

  1.  コア及びコアの外周に積層されたクラッドを備え、伝送する光の一部の外界との相互作用を可能にする光透過部材を有し、前記光透過部材を含む範囲で所定の曲率の曲線を描くように配置され、入射端に光が入射されて出射端から前記光透過部材を通過した光を出射する光ファイバセンサと、
     外部磁界の作用によって位置が変動し、前記光透過部材に非接触で、前記位置に応じて前記光ファイバセンサの描く曲線の形状を変動させるスイッチ部材とを備え、
     前記スイッチ部材が前記光ファイバセンサの描く曲線の形状を変動させることにより、光ファイバセンサの前記光透過部材及びその近傍部分の曲率が変動し、前記外界との相互作用が前記曲率に応じて前記光ファイバセンサを伝送する光に対して生じるように構成されている光スイッチ素子。
  2.  前記スイッチ部材を第1の位置で係止させる第1係止部材と、
     前記スイッチ部材を第2の位置で係止させる第2係止部材とを備え、
     前記スイッチ部材が前記第1の位置に係止された第1の状態と、前記スイッチ部材が前記第2の位置に係止された第2の状態とを有する請求項1に記載の光スイッチ素子。
  3.  前記第1の位置又は前記第2の位置の少なくとも一方が調整可能である請求項2に記載の光スイッチ素子。
  4.  前記スイッチ部材が板バネからなる請求項1から3のいずれか1項に記載の光スイッチ素子。
  5.  前記板バネが断面L字形状の撓み防止構造を有する請求項4に記載の光スイッチ素子。
  6.  前記光透過部材は、前記光ファイバのコア径と異なるコア径を有するヘテロコア部である請求項1から5のいずれか1項に記載の光スイッチ素子。
  7.  前記光透過部材は、前記光ファイバのコアの屈折率あるいはクラッドの屈折率と同等の屈折率を持つ光透過部材である請求項1から5のいずれか1項に記載の光スイッチ素子。
  8.  請求項1から7のいずれか1項に記載の光スイッチ素子と、
     前記光ファイバセンサの入射端に設けられた光源と、
     前記光ファイバセンサの出射端に設けられた受光部とを備える光スイッチ。
PCT/JP2009/000942 2008-02-29 2009-03-02 光スイッチ素子及び光スイッチ WO2009107403A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010500581A JP5261728B2 (ja) 2008-02-29 2009-03-02 光スイッチ素子及び光スイッチ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008049616 2008-02-29
JP2008-049616 2008-02-29

Publications (1)

Publication Number Publication Date
WO2009107403A1 true WO2009107403A1 (ja) 2009-09-03

Family

ID=41015809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000942 WO2009107403A1 (ja) 2008-02-29 2009-03-02 光スイッチ素子及び光スイッチ

Country Status (2)

Country Link
JP (1) JP5261728B2 (ja)
WO (1) WO2009107403A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58199304A (ja) * 1982-05-17 1983-11-19 Nippon Telegr & Teleph Corp <Ntt> 光スイツチ
JPS61151503A (ja) * 1984-12-26 1986-07-10 Hitachi Ltd 光分波合波器
JPS61258131A (ja) * 1985-05-10 1986-11-15 Sumitomo Electric Ind Ltd 光フアイバセンサ−
JP2004053816A (ja) * 2002-07-18 2004-02-19 Seiko Instruments Inc 光スイッチ
JP2005338361A (ja) * 2004-05-26 2005-12-08 Inter Action Corp 光スイッチシステム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58199304A (ja) * 1982-05-17 1983-11-19 Nippon Telegr & Teleph Corp <Ntt> 光スイツチ
JPS61151503A (ja) * 1984-12-26 1986-07-10 Hitachi Ltd 光分波合波器
JPS61258131A (ja) * 1985-05-10 1986-11-15 Sumitomo Electric Ind Ltd 光フアイバセンサ−
JP2004053816A (ja) * 2002-07-18 2004-02-19 Seiko Instruments Inc 光スイッチ
JP2005338361A (ja) * 2004-05-26 2005-12-08 Inter Action Corp 光スイッチシステム

Also Published As

Publication number Publication date
JP5261728B2 (ja) 2013-08-14
JPWO2009107403A1 (ja) 2011-06-30

Similar Documents

Publication Publication Date Title
JP6289525B2 (ja) 光学測定装置
US8724944B2 (en) Fiber optic bi-directional coupling lens
CN100409054C (zh) 具有基于全内反射光学转向的集成双光路的小型全聚合物光学设备
US9435959B2 (en) Coupling of fiber optics to planar grating couplers
JP5399050B2 (ja) 光ファイバ曲げ受光器
US20050167508A1 (en) Microengineered optical scanner
JP2009163212A (ja) 光結合素子およびこれを備えた光モジュール
JP2012163922A (ja) 光スイッチ
US9366695B2 (en) Scanning probe microscope head design
JP2005049742A (ja) 可変光減衰器
JP2009075065A (ja) 改良された光ファイバ化学センサ
JP5261728B2 (ja) 光スイッチ素子及び光スイッチ
JP2013024738A (ja) 活線検出装置
TWI599808B (zh) 光學通訊裝置
KR100771765B1 (ko) 광 스위치
US6778585B2 (en) VCSEL monitoring using refracted ray coupling
JP5186660B2 (ja) 光スイッチ素子及び光スイッチ
WO2010007767A1 (ja) 重量計測素子及び重量計
CN109581596B (zh) 一种棱镜隔离器及光器件
JP2005338361A (ja) 光スイッチシステム
JP4926768B2 (ja) 光スイッチアレイ
JP7405469B2 (ja) 導波路の側面照射のシステムおよび方法
JP4310324B2 (ja) 光スイッチ
JP2007187774A (ja) マルチモード用光モジュールの製造方法
JP3832714B2 (ja) 光スイッチ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09715441

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2010500581

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09715441

Country of ref document: EP

Kind code of ref document: A1