WO2009104391A1 - 小型低損失インダクタ素子 - Google Patents

小型低損失インダクタ素子 Download PDF

Info

Publication number
WO2009104391A1
WO2009104391A1 PCT/JP2009/000672 JP2009000672W WO2009104391A1 WO 2009104391 A1 WO2009104391 A1 WO 2009104391A1 JP 2009000672 W JP2009000672 W JP 2009000672W WO 2009104391 A1 WO2009104391 A1 WO 2009104391A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
layer
inductor
inductor element
layers
Prior art date
Application number
PCT/JP2009/000672
Other languages
English (en)
French (fr)
Inventor
田辺昭
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2009554218A priority Critical patent/JP5358460B2/ja
Publication of WO2009104391A1 publication Critical patent/WO2009104391A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5227Inductive arrangements or effects of, or between, wiring layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a small, low-loss inductor element formed on a semiconductor substrate.
  • the inductor wiring has a wiring width larger than the wiring interval, the upper and lower inductor wirings are overlapped as shown in FIG. For this reason, the wiring capacity could not be reduced so much.
  • Patent Document 4 a structure shown in FIG. 16 has been proposed (see Patent Document 4 and Patent Document 5, hereinafter referred to as a 3D solenoid).
  • FIG. 17 is a schematic diagram of a cross section of the wiring.
  • the wiring width w is larger than the wiring thickness t.
  • the capacitance Cv between the upper and lower sides of the wiring is larger than the capacitance Ch between the left and right.
  • the dominant component of the parasitic capacitance of the inductor wiring in a general multilayer inductor is the capacitance Cv between the upper and lower sides of the wiring.
  • the capacitance other than Cv can be further reduced by increasing the interval s between the wirings arranged side by side rather than the interlayer film thickness h of the wiring.
  • FIG. 18 and 19 are equivalent circuits of the inductor including Cv
  • FIG. 18 is the equivalent circuit of FIG. 13
  • FIG. 19 is the equivalent circuit of FIG.
  • the 3D solenoid structure can reduce the parasitic capacitance in this way, it is necessary to connect the inductor wiring up and down every round, so that the upper and lower inductor wiring must be at the same position in the horizontal plane.
  • the thickness of the wiring closer to the silicon substrate (lower layer) is usually thinner and the distance from the substrate, that is, the wiring of the upper layer is thicker.
  • the minimum wiring pitch that can be manufactured according to this, that is, the wiring width and the wiring interval are narrower in the lower layer, and the upper layer wiring has a wider pitch.
  • wiring layers having different pitches are mixed in the wiring having a multilayer structure.
  • FIG. 20 is a cross section of the inductor wiring.
  • FIG. 20 is a cross section of the inductor wiring.
  • vias are arranged over the entire length of the wiring between the upper, middle, and lower layers, and the wiring layers are connected in parallel.
  • the series resistance can be lowered to 1/3 when only one layer is used.
  • the laminated spiral structure has a problem that the parasitic capacitance is large.
  • the 3D solenoid structure has a small parasitic capacitance, there is a problem in that the use efficiency of the wiring is low because a structure that spans different wiring layers cannot be created.
  • the present invention has been made in view of the above-mentioned problems, and an example of the object thereof is to reduce the parasitic capacitance of the inductor wiring as well as the wiring layers having different pitches, similarly to the 3D solenoid structure. Therefore, it is possible to provide a small-sized and low-loss inductor element capable of increasing the use efficiency of the wiring and reducing the chip area.
  • an inductor element of the present invention is an inductor element in a wiring layer in an insulating film on a semiconductor substrate, and the inductor wiring that is a peripheral wiring of the inductor element includes at least two Cross sections of the wiring layer are formed at different wiring pitches, and one end of the two wiring layers has an end portion in the circumferential wiring that circulates around the circumference approximately one or two times. Connected to the end of the peripheral wiring of the other wiring layer directly above or directly below by the via, and the peripheral wiring connected by the via has the same current direction in the wiring layer Features.
  • At least two wiring layers are formed at different wiring pitches in the cross section, so that an inductor that extends over wiring layers having different wiring pitches can be formed.
  • the parasitic capacitance of the inductor wiring can be reduced, and wirings of wiring layers having different pitches can be mixed.
  • the area can be reduced.
  • an inductor element according to the present embodiment is an inductor element in a wiring layer in an insulating film on a semiconductor substrate, and an inductor wiring that is a circumferential wiring of the inductor element includes at least two wiring layers ( The lower layer and the upper layer are formed with different wiring pitches, and one of the two wiring layers (the lower layer and the upper layer) (lower layer or upper layer) has a circumference of approximately one turn (or approximately two turns). There is an end (A or B) in the peripheral wiring, and the end is connected to the end of the peripheral wiring of the other wiring layer (upper layer or lower layer) immediately above or directly below by the via.
  • An inductor element characterized in that the connected circumferential wirings (lower layer and upper layer) have the same current direction (clockwise) in each wiring layer.
  • FIG. 1 is a top view of the inductor structure of the present invention and a cross-sectional view of the ⁇ - ⁇ portion in the figure.
  • Fig. 1 shows a three-turn inductor that straddles the upper and lower wiring layers.
  • the wiring pitch refers to the distance between the centers of two wirings between wirings in the same layer.
  • the upper layer wiring is wider than the lower layer wiring. Further, in FIG. 1, the upper layer wiring is thick and the upper layer wiring has a wide wiring pitch. That is, the upper layer wiring has a smaller number of circuit wiring than the lower layer wiring.
  • the number of the surrounding wirings in the upper wiring layer and the number of the surrounding wirings in the lower wiring layer are different from each other, and the number of the surrounding wirings in the lower wiring layer is larger. This is because the upper layer wiring is formed on an uneven surface as compared with the lower layer wiring, and thus needs to be formed thicker.
  • the circumferential wirings are stacked vertically in a limited area, the number of upper layer wirings needs to be smaller than the number of lower layer wirings.
  • the upper-layer circuit wiring width is larger than the lower-layer circuit wiring width. Since an overlapping portion is generated, the lower layer and the upper layer can be connected via vias. Further, the parasitic capacitance can be reduced in the non-overlapping portion.
  • the signal input from IN moves around the lower outer wiring approximately once and then moves to the upper wiring through the via at point A.
  • This via is formed in the above-described overlapping portion of the upper and lower wirings.
  • This signal then goes around the upper layer wiring approximately once, then moves to the lower layer wiring via a via at point B, and then outputs from the OUT after making approximately one round of the lower layer inner wiring.
  • the point B is also formed in the overlapping portion of the upper and lower wirings.
  • substantially one round means that the purpose is to form a coil and it is not a complete round.
  • the arrows in the cross-sectional view of FIG. 1 indicate the movement of signals between inductors.
  • FIG. 2 is a cross-sectional view of the inductor wiring when the lower wiring layer has a plurality of layers.
  • the signal path between the laps is indicated by an arrow.
  • the signal input from IN enters the metal wiring M5 at the point A while circulating around the metal wirings M1 to M4, and then goes around the metal wiring M5 substantially once before the lower layer wiring.
  • the metal wire M1 is turned around the metal wire M1 approximately twice at the point B and moved to the point C of the inner wiring.
  • the metal wire M5 enters the metal wire M5 at the point D while circling the metal wires M1 to M4, and moves around the metal wire M5 approximately two times to the point E of the inner wiring. Furthermore, it returns to the lower layer wiring and is output at OUT.
  • substantially two rounds is not intended to form two complete turns for the purpose of forming a coil close to two rounds.
  • FIG. 3 shows the case where the thickness of each wiring layer is the same and only the wiring pitch is different.
  • the signal flow is the same as in FIG.
  • FIG. 4 is a cross-sectional view of the inductor wiring when the upper wiring layer has a plurality of layers.
  • the signal path between the laps is indicated by an arrow.
  • the signal input from IN is transmitted through the metal wiring M1 around the metal wiring M1 and enters the metal wiring M2 at the point A, while circulating around the metal wirings M2 to M5.
  • the metal wiring M5 is rotated approximately two times and moved to the point C of the inner wiring. Further, it travels around the metal wirings M5 to M1 and is output at OUT.
  • FIG. 5 is a cross-sectional view of the inductor wiring when the upper and lower wiring layers are both a plurality of layers. Further, in FIG. 5, the signal path between each round is indicated by an arrow.
  • the metal wirings M1 to M4 are rotated approximately four times per layer, and the metal wirings M5 to M6 are rotated approximately three times per layer.
  • the signal entered from IN moves through the wiring layer while going around each layer approximately one turn up to point F, but does not move to the metal wiring M5 on the way from point F to the upper layer. Instead, it is output from OUT.
  • FIG. 6 is a cross-sectional view of the inductor wiring when the upper and lower wiring layers are both a plurality of layers. Further, the signal path between the laps is indicated by an arrow.
  • FIG. 6 it is assumed that there are a lower layer wiring of the metal wirings M1 to M4 and an upper layer wiring of the metal wirings M5 to M6, and the wiring pitch of the metal wirings M1 to M4 is smaller than the metal wirings M5 to M6.
  • the metal wirings M1 to M4 are turned about 8 turns per layer, and the metal wirings M5 to M6 are turned about 6 turns per layer.
  • the signal input from IN moves through the wiring layer while going around each layer up to point G, but does not move to the upper metal wiring M5 at point G. Move to H point on the inner wiring.
  • the pitch difference between the upper layer and lower layer wiring is filled, and thereafter, the wiring layer is moved while going around each layer substantially once, and output from OUT.
  • the wiring pitch is constant in the same wiring layer, but in FIG. 6, the distance between the point D and the point K is wider than the other parts, and thus the same. It is also possible to arrange wirings with different pitches in the wiring layer.
  • the upper layer wiring generally has a larger pitch and a larger film thickness than the lower layer wiring. For this reason, the wiring resistance of the upper layer wiring is lower than that of the lower layer wiring.
  • the series resistance of the entire inductor is limited by the resistance of the lower layer wiring and cannot be sufficiently reduced. Therefore, even in the 3D solenoid structure, it is possible to lower the wiring resistance by partially connecting the inductor wirings of a plurality of wiring layers in parallel (backing wiring).
  • the metal wirings M1 to M4 are the lower layer wiring and the metal wiring M5 is the upper layer wiring.
  • the metal wiring M1 and the metal wiring M2, and the metal wiring M3 and the metal wiring M4 are set as one set.
  • the wiring of each layer is connected in parallel by connecting vias up and down as shown in FIG.
  • the wiring resistance of the lower layer wiring is substantially halved, so that the wiring resistance of the entire inductor can be reduced.
  • metal wirings M1 to M3 are lower layer wirings and metal wirings M4 to M5 are upper layer wirings.
  • the upper layer wiring has a larger wiring film thickness and lower resistance than the lower layer wiring. Therefore, the lower layer wiring is a set of 3 layers, the upper layer wiring is a set of 2 layers, and the lower resistance upper layer wiring reduces the number of wiring layers so that the wiring resistance around each inductor is made uniform. can do.
  • the process assumes a 90-nm node 6-layer Cu wiring, the metal wirings M2 to M5 are wiring layers having the same pitch, and the metal wiring M6 is a wiring layer having a wider pitch than these.
  • 9 and 10 are a plan view and a cross-sectional view taken along ⁇ - ⁇ of the inductor used in the simulation.
  • the inductor wiring is composed only of the metal wirings M2 to M5.
  • the metal wiring M2 and the metal wiring M3, and the metal wiring M4 and the metal wiring M5 are one set, respectively.
  • the wiring of each layer is connected to the upper and lower vias as shown in FIG.
  • FIG. 11 shows the series inductance values of the conventional method and the inductor of the present invention obtained from the simulation.
  • the inductance value of the conventional method and the inductance value of the present invention are substantially the same.
  • the conventional method is 342 ⁇ m 2 and the present invention is 240 ⁇ m 2, so the area can be reduced by about 30%.
  • FIG. 12 shows the conventional method obtained from the simulation and the Q value of the present invention.
  • the Q value of the conventional method and the present invention can be substantially the same value.
  • the area can be reduced without degrading the characteristics of the conventional 3D solenoid inductor.
  • a small low-loss inductor element of the present invention is a small low-loss inductor element in a wiring layer in an insulating film on a semiconductor substrate, Inductor wiring, which is the wiring of the inductor element, is formed with at least two different wiring pitches in the plurality of wiring layer layers, and the inductor wiring of each wiring layer is made one or two rounds around the circumference.
  • the wiring has a cutting portion, and is connected to a surrounding wiring directly above or below by a via at the cutting portion, and the wirings connected by the via have the same current direction in the wiring.
  • the small low-loss inductor element of the present invention is a small low-loss inductor element in a wiring layer in an insulating film on a semiconductor substrate.
  • the inductor wiring that is the wiring of the inductor element includes at least two types of inductor wiring. Formed with at least two different wiring pitches in wiring layers with different minimum wiring pitches, the inductor wiring of each wiring layer has a cut portion in the wiring every time it makes one or two rounds, The cut portion is connected to a surrounding wiring immediately above or below by a via, and the wirings connected by the via have the same current direction in the wiring.
  • a small and low-loss inductor element characterized in that vias are formed at portions where the upper and lower wirings overlap at the cut portions at the connection portions where the upper and lower wiring layers have different wiring pitches.
  • the inductor wiring is characterized in that the number of turns in the same layer of the narrow pitch wiring layer is larger than the number of turns in the same layer of the wide pitch wiring layer.
  • the inductor wiring does not have a via between the wide pitch wiring layer and the wide pitch wiring layer in the same pitch wiring layer in the narrow pitch wiring layer.
  • a small low-loss inductor element characterized by having a portion connected to the adjacent inductor wiring.
  • the inductor wiring includes a portion in which a plurality of wiring layers adjacent in the vertical direction are connected by the vias so that the plurality of wiring layers are connected in parallel to form an integral wiring.
  • the thin layer of the wiring film has a smaller number of wiring layers constituting the part connected in parallel and integrated than the thick layer of wiring. Low loss inductor element.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

 本発明のインダクタ素子は、半導体基板上の絶縁膜中の配線層の内のインダクタ素子であって、そのインダクタ素子の周回配線であるインダクタ配線は、少なくとも2つのその配線層の断面で、それぞれ異なる配線ピッチで形成され、2つのその配線層の一方で、周回状に周囲を略1周乃至略2周するその周回配線内に端部を有し、その端部でビアにより直上又は直下の他方のその配線層のその周回配線の端部に接続され、そのビアにより接続されたその周回配線同士はそれぞれの配線層内の電流方向が同一であることを特徴とするインダクタ素子。

Description

小型低損失インダクタ素子
 本発明は、半導体基盤上に形成される小型低損失インダクタ素子に関する。
 近年、無線LAN(Local Area Network)、Bluetooth、地上波デジタルTV等種々の高速なデジタル無線方式が実用化されている。また、デジタルの半導体集積回路では、特にGHz以上の高速な動作をするものでは、無線回路と同様のアナログ技術が使用される。このような回路では、受動素子として半導体基板上に形成されたオンチップインダクタを使用する。このインダクタは、半導体上のメタル配線を渦巻き状に巻いた形状をしており、大きくても数nH程度のインダクタンスしかないが、GHz程度の周波数で動作する回路では、実用的なインダクタンス値である。
 このような高周波・無線回路では、通常複数のインダクタ素子を集積する。しかし、インダクタ素子は、1つの大きさが数10μm~数100μm角と大きく、チップ面積の増大を招いていた。
 インダクタの面積を縮小する方式としては、図13のような構造(特許文献1参照、以下、多層直列方式と称する。)が提案されている。この構造は、多層配線構造を利用して、スパイラル形状のインダクタを多数の配線層に形成し、それらのインダクタを直列接続することによって、全体でのインダクタンス値を大きくすることができる。これにより、配線層数をnとすると、チップ面積は1層のみのインダクタの約1/nにすることができる。
 しかし、この形状では、上下の配線間の容量によりインダクタ全体の寄生容量が大きくなるという問題があった。
 図13では、全てのインダクタ配線は、平面上では同じ位置にあったが、配線容量を低減するために、図14のように、層ごとにインダクタ配線の平面上の位置をずらせる方式が提案されている(特許文献2、及び特許文献3参照)。図では、上層の配線は、下層の配線の配線と配線の隙間の上を通るように配置されている。
 しかし、一般に、インダクタ配線は、配線幅が配線間隔よりも大きいために、上下のインダクタ配線は、図15のように重なり部分ができる。このために、配線容量をあまり減らすことはできなかった。
 そこで、配線容量の低減策として、図16に示す構造が提案されている(特許文献4、及び特許文献5参照、以下、3Dソレノイドと称する。)。
 この構造では、1周回ごと配線に切れ目があり、ビアで上又は下の配線に移動する形となっている。
 ここで、積層スパイラルと3Dソレノイドの寄生容量について説明する。
 図17は、配線の断面の模式図である。
 インダクタ配線では、配線の直列抵抗を低減するために、一般的に幅広の配線が使用されるので、配線幅wは、配線厚さtよりも大きい。このために、配線層の絶縁体の誘電率が配線層全体で同じならば、配線の上下間の容量Cvは、左右間の容量Chよりも大きい。つまり、一般的な多層構造のインダクタでインダクタ配線の寄生容量の支配的な成分は、配線の上下間の容量Cvである。更に、配線の層間膜厚hよりも横に並んでいる配線間の間隔sを大きくすることで、Cv以外の容量を更に小さくすることができる。
 このCvを含むインダクタの等価回路が図18及び19であり、図18は図13の等価回路であり、図19は図16の等価回路である。
 図18では、Cvは、INとOUTに直接つながる形となるので、インダクタ外部からはCvが直接観測される。これに対して、図19では、Cvは、インダクタ配線の途中につながるために、インダクタ外部からはCvが直接は観測されず、この影響は小さくなる。つまり、インダクタ両端からみた実効的な寄生容量は、図19つまり図16の3Dソレノイド構造の方が小さくなる。
 3Dソレノイド構造は、このように寄生容量を低減できる反面、インダクタ配線を1周回毎に上下に接続する必要があるために、上下のインダクタ配線が水平面内の同じ位置にある必要があった。シリコン基板上の多層構造の配線では、通常はシリコン基板に近い側(下層)の配線ほど膜厚が薄く、基板から遠ざかる、つまり上層の配線ほど厚くなる。これに合わせて製造可能な最小の配線ピッチ、つまり配線幅と配線間隔は下層が狭く、上層の配線ほどピッチが広い。このように、多層構造の配線では異なるピッチの配線層が混在している。
 しかし、3Dソレノイド構造では、上述の制約のために配線ピッチの異なる配線層にまたがる構造は作成できなかった。このため、多層の配線構造であっても、実質的に使用できる配線層が少なくなり、配線の使用効率が低下してチップ面積の増大を招いていた。
 また、オンチップインダクタでは、インダクタンス値以外にQ値が重要な性能である。このQ値は、インダクタの直列抵抗が低いほど向上する。オンチップインダクタに使用される配線は、薄膜のために抵抗が高く、一般的にQ値は低い。
 これを解決する方法として、図20のような構造(特許文献6参照)が提案されている。図20は、インダクタ配線の断面であるが、図20のように複数の配線層の配線をビアでつないで並列に接続することにより、実質的な配線抵抗を下げることができる。図20では、上層・中層・下層の3層の間に配線全長にわたってビアを配置して各配線層を並列に接続する。これにより、1層のみ使用する場合の1/3に直列抵抗を下げることができる。
 しかし、この構造では、多層の配線層を用いても総配線長を長くできないので、チップ面積が大きくなるという問題があった。
実開昭60‐136156号公報 特開昭61‐265857号公報 特開平03‐089548号公報 特許第2976926号 特願2006‐209915号公報 特許第2986081号
 しかしながら、上記従来の技術では、積層スパイラル構造は、寄生容量が大きいという問題があった。また、3Dソレノイド構造は、寄生容量は小さいものの、異なる配線層にまたがる構造が作成できないために、配線の利用効率が低いという問題点があった。
 そこで、本発明は、上記各問題点に鑑みて為されたもので、その目的の一例は、3Dソレノイド構造と同様に、インダクタ配線の寄生容量を低減することができるとともに、ピッチの異なる配線層の配線を混在させることができるために、配線の使用効率が高まり、チップ面積を縮小することができる小型低損失インダクタ素子を提供することである。
 上記の課題を解決するために、本発明のインダクタ素子は、半導体基板上の絶縁膜中の配線層の内のインダクタ素子であって、前記インダクタ素子の周回配線であるインダクタ配線は、少なくとも2つの前記配線層の断面で、それぞれ異なる配線ピッチで形成され、2つの前記配線層の一方で、周回状に周囲を略1周乃至略2周する当該周回配線内に端部を有し、当該端部でビアにより直上又は直下の他方の前記配線層の前記周回配線の端部に接続され、前記ビアにより接続された前記周回配線同士はそれぞれの前記配線層内の電流方向が同一であることを特徴とする。
 本発明によれば、少なくとも二つの配線層で、断面でのそれぞれ異なる配線ピッチで形成されるので、配線ピッチの異なる配線層にまたがるインダクタを形成できる。
 本発明によれば、3Dソレノイド構造と同様に、インダクタ配線の寄生容量を低減することができるとともに、ピッチの異なる配線層の配線を混在させることができるために、配線の使用効率が高まり、チップ面積を縮小することができる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
本発明の実施形態に係るインダクタ構造の上面図とα‐βの部分の断面図を示す図である。 本発明の実施形態を示す図である。 本発明の他の実施形態を示す図である。 本発明の他の実施形態を示す図である。 本発明の他の実施形態を示す図である。 本発明の他の実施形態を示す図である。 本発明の他の実施形態を示す図である。 本発明の他の実施形態を示す図である。 従来のインダクタの効果を説明するためのレイアウト図である。 本発明のインダクタの効果を説明するためのレイアウト図である。 インダクタの直列インダクタンス値を比較する図である。 インダクタのQ値を比較する図である。 従来の積層スパイラルインダクタの鳥瞰図である。 従来の配線位置をずらせた積層スパイラルインダクタの上面図である。 従来の配線位置をずらせた積層スパイラルインダクタの断面図である。 従来の3Dソレノイドインダクタの鳥瞰図である。 従来のインダクタの断面図である。 図13における寄生容量を説明する図である。 図16における寄生容量を説明する図である。 従来のインダクタ配線の断面図である。
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様な符号を付し、適宜説明を省略する。
 本発明に好適な実施の形態1について、図面に基づいて説明する。図1において、本実施の形態によるインダクタ素子は、半導体基板上の絶縁膜中の配線層の内のインダクタ素子であって、そのインダクタ素子の周回配線であるインダクタ配線は、少なくとも2つの配線層(下層及び上層)の断面で、それぞれ異なる配線ピッチで形成され、2つのその配線層(下層及び上層)の一方(下層又は上層)で、周回状に周囲を略1周(乃至略2周)するその周回配線内に端部(A又はB)を有し、その端部でビアにより直上又は直下の他方のその配線層(上層又は下層)のその周回配線の端部に接続され、そのビアにより接続されたその周回配線(下層及び上層)同士はそれぞれのその配線層内の電流方向(右回り)が同一であることを特徴とするインダクタ素子。
 図1を参照してさらに詳細に説明する。なお、図1は本発明のインダクタ構造の上面図と図のα‐βの部分の断面図である。
 図1では上層と下層の配線層にまたがる3巻きのインダクタを示している。ここで、配線ピッチとは同層の配線間で、2つの配線の中央間の距離を言う。
 図1の断面図に示すように、上層の配線は、下層の配線よりも幅が広い。また、図1では、上層の配線の膜厚が厚く、上層配線の配線ピッチが広い。すなわち上層周回配線は下層周回配線より周回配線数が少ない。2つの配線層の上方の配線層の周回配線数と下方の配線層の周回配線数が異なり、下方の配線層の周回配線数のほうが多い。これは、下層配線に比べて上層配線は凹凸のある平面に形成されるため、厚く形成する必要があるからである。限られた領域に周回配線を縦方向に積み上げる場合、上層配線数は下層配線数より少なくする必要がある。
 このように、上層の周回配線数が下層の周回配線数より少なくても、上層周回配線の配線幅が下層周回配線の配線幅より大きいので、配線の一部は、上下同じ位置にはないものの、重なり部分が生じるのでビアを介して下層の周回配と上層の周回配線接続できる。また、重ならない部分は寄生容量を減らすことができる。
 このインダクタにおいてINから入った信号は、下層の外側配線を略1周してからA点でビアを介して上層配線に移動する。このビアは、前述の上下配線の重なり部分に形成する。この信号は、次に上層配線を略1周してからB点でビアを介して下層配線に移動し、下層の内側配線を略1周してからOUTから出力される。ここで、B点も同様に上下配線の重なり部分に形成する。また、略1周とは、コイルを形成することを目的とし、完全に一周させるものではないことを意味する。
 このように上下の配線の重なり部分を利用することで、配線ピッチの異なる配線層にまたがるインダクタを形成できる。
 図1の断面図における矢印は、インダクタ周回間の信号の移動を示したものである。
 図1の断面図において、信号はインダクタ配線を略1周する度に、図1の断面の順番で上下の配線間を移動する。
 以下においても、インダクタ配線を略1周する度の信号の移動を断面図の矢印で示すものとする。
 次に、本発明の第2の実施形態について、図2を参照して説明する。なお、図2は、下層の配線層が複数層の場合のインダクタ配線の断面図である。また、図2において各周回間の信号の経路を矢印で示している。
 図2において、金属配線M1~M4の下層配線と金属配線M5の上層配線があり、金属配線M5の配線ピッチは、金属配線M1~M4より大きく、金属配線M5の配線膜厚は、他の層よりも厚いものとする。
 この場合においても、図2における矢印のように、INから入った信号は、金属配線M1~M4を周回しながらA点で金属配線M5に入り、金属配線M5を略1周してから下層配線に戻り、B点で金属配線M1を略2周して1つ内側の配線のC点に移動する。次に、金属配線M1~M4を周回しながらD点で金属配線M5に入り、金属配線M5を略2周して1つ内側の配線のE点に移動する。更に、下層配線に戻り、OUTで出力される。ここで、略2周とは、1周から2周に近づけたコイルを形成する目的で、完全に2周させるものではない。
 このように、上層と下層の配線のピッチの差に合わせて同一配線層内での周回数を調整することで、配線ピッチの異なる配線層にまたがるインダクタを形成することができる。
 次に、本発明の第3の実施形態を図3に示す。なお、図3は、各配線層の膜厚は同じで配線のピッチのみが異なる場合である。また、信号の流れは、図2と同じである。
 次に、本発明の第4の実施形態について、図4を参照して説明する。なお、図4は上層の配線層が複数層の場合のインダクタ配線の断面図である。また、図4において、各周回間の信号の経路を矢印で示している。
 図4に示すように、金属配線M1の下層配線と金属配線M2~M5の上層配線があり、金属配線M1の配線ピッチは、金属配線M1~M4より小さいものとする。
 この場合においても、図4における矢印のように、INから入った信号は、金属配線M1を略2周回してA点で金属配線M2に入り、金属配線M2~M5を周回しながら伝わり、B点で金属配線M5を略2周回して1つ内側の配線のC点に移動する。更に、金属配線M5~M1を周回しながら伝わり、OUTで出力される。
 次に、本発明の第5の実施形態について、図5を参照して説明する。なお、図5は上下層の配線層が共に複数層の場合のインダクタ配線の断面図である。また、図5において、各周回間の信号の経路を矢印で示している。
 図5に示すように、金属配線M1~M4の下層配線と金属配線M5~M6の上層配線があり、金属配線M1~M4の配線ピッチは、金属配線M5~M6より小さいものとする。
 図5において、金属配線M1~M4は、1層あたり略4周回し、金属配線M5~M6は、1層あたり略3周回する。図5の矢印のように、INから入った信号は、F点までは各層を略1周ずつ周回しながら配線層を移動するが、F点から上層に移る途中で金属配線M5には移動せず、OUTから出力される。
 本発明の第6の実施形態について、図6を参照して説明する。なお、図6は上下層の配線層が共に複数層の場合のインダクタ配線の断面図である。また、各周回間の信号の経路を矢印で示している。
 図6においては、金属配線M1~M4の下層配線と金属配線M5~M6の上層配線があり、金属配線M1~M4の配線ピッチは、金属配線M5~M6より小さいものとする。
 図6において金属配線M1~M4は、1層あたり略8周回し、金属配線M5~M6は、1層あたり略6周回する。図6における矢印のように、INから入った信号は、G点までは各層を略1周ずつ周回しながら配線層を移動するが、G点で上層の金属配線M5に移動せず、1つ内側の配線のH点に移動する。
 これによって、上層と下層の配線のピッチ差を埋め、以降は各層を略1周ずつ周回しながら配線層を移動してOUTから出力される。
 なお、図2乃至5においては、同一の配線層内では配線ピッチが一定であるが、図6においては、D点とK点の間隔が他の部分よりも広くなっており、このように同一の配線層内に異なるピッチの配線を配置することも可能である。
 次に、本発明の第7の実施形態について、図7を参照して説明する。
 図7に示すように、多層配線構造では、一般に上層配線は、下層配線よりもピッチが広いと同時に膜厚も厚い。このため、上層配線の配線抵抗は、下層配線よりも低い。
 しかし、3Dソレノイド構造では、上層配線と下層配線を直列に接続するので、インダクタの全体での直列抵抗は、下層配線の抵抗に律速されて十分に低くすることができない。そこで、3Dソレノイド構造においても部分的に複数の配線層のインダクタ配線を並列に接続する(裏打ち配線)ことで、配線抵抗を下げることが可能である。
 図7では、金属配線M1~M4が下層配線、金属配線M5が上層配線であるが、金属配線M1と金属配線M2、金属配線M3と金属配線M4を夫々1組として、組の配線層では、各層の配線を図7のように上下にビアで接続することで並列接続とする。
 これによって、下層配線の配線抵抗は、実質的に1/2となるので、インダクタ全体の配線抵抗を下げることができる。
 次に、本発明の第8の実施形態について、図8を参照して説明する。
 図8において、金属配線M1~M3が下層配線、金属配線M4~M5が上層配線である。
 図8において、上層配線は、下層配線よりも配線膜厚が大きく低抵抗であるとする。そこで、下層配線は3層を一組、上層配線は2層を1組と、低抵抗の上層配線ほど組にする配線の層数を減らすことで、各インダクタの周回での配線抵抗を均一とすることができる。
 次に、本発明の効果を電磁界シミュレーションにより示す。
 なお、プロセスは、90nmノードの6層Cu配線を仮定し、金属配線M2~M5が同一ピッチの配線層、金属配線M6はこれらよりもピッチの広い配線層とする。
 図9及び10は、シミュレーションに使用したインダクタの平面図とα‐βでの断面図である。
 図9の従来構造では、インダクタ配線は、金属配線M2~M5のみで構成されており、金属配線M2と金属配線M3、金属配線M4と金属配線M5を夫々1組として、組の配線層では、各層の配線を図9のように上下にビアで接続することで裏打ち配線としている。
 これに対して、図10の本発明では、インダクタ配線は、金属配線M2~M6で構成されており、金属配線M2と金属配線M3、金属配線M4と金属配線M5を夫々裏打ち配線として、金属配線M6のみは裏打ちなしとなっている。
 図11は、シミュレーションより求めた従来方式と本発明のインダクタの直列インダクタンス値である。
 図11に示すように、低周波領域においては、従来方式のインダクタンス値と本発明のインダクタンス値とは、ほぼ同じである。しかし、面積で比較すると、従来方式が342μm2に対して、本発明が240μm2であるので、約30%の面積縮小が可能である。
 図12は、シミュレーションより求めた従来方式と本発明のQ値である。
 図12に示すように、従来方式と本発明のQ値は、ほぼ同じ値が実現できる。
 以上説明したように、本発明によれば、従来の3Dソレノイドインダクタに対して、特性を劣化させることなく面積の縮小が可能である。
 尚、これらは本発明に例示であり、上記以外の様々な構成を採用することもできる。
(1)本発明の小型低損失インダクタ素子は、半導体基板上の絶縁膜中の配線層の内の小型低損失インダクタ素子であって、
 前記インダクタ素子の配線であるインダクタ配線は、複数の前記配線層層中で、少なくとも2種類の異なる配線ピッチで形成され、前記各配線層のインダクタ配線は、周囲を1周又は2周する度に当該配線内に切断部を有し、当該切断部でビアにより直上又は直下の周回配線と接続され、前記ビアにより接続された前記配線同士は、当該配線内の電流方向が同一であることを特徴とする。
(2)本発明の小型低損失インダクタ素子は、半導体基板上の絶縁膜中の配線層の内の小型低損失インダクタ素子であって、前記インダクタ素子の配線であるインダクタ配線は、少なくとも2種類の異なる最小配線ピッチの配線層中で少なくとも2種類の異なる配線ピッチで形成され、前記各配線層のインダクタ配線は、周囲を1周又は2周する度に当該配線内に切断部を有し、当該切断部でビアにより直上又は直下の周回配線と接続され、前記ビアにより接続された前記配線同士は、当該配線内の電流方向が同一であることを特徴とする。
(3)上記に記載の小型低損失インダクタ素子において、
 前記複数の配線ピッチの配線層は、前記配線ピッチの異なる配線層毎に前記配線層の膜厚が異なることを特徴とする小型低損失インダクタ素子。
(4)上記記載の小型低損失インダクタ素子において、
 上下の配線層の配線ピッチが異なる部分の接続部は、前記切断部で上下の配線の重なる部分にビアが形成されていることを特徴とする小型低損失インダクタ素子。
(5)上記記載の小型低損失インダクタ素子において、
 前記インダクタ配線は、狭ピッチの配線層の同一層内での周回数が広ピッチの配線層の同一層内での周回数より多いことを特徴とする小型低損失インダクタ素子。
(6)上記記載の小型低損失インダクタ素子において、
 前記インダクタ配線は、前記狭ピッチの配線層中で、前記広ピッチの配線層と上下に隣接する配線層におけるインダクタ配線では広ピッチの配線層との間にビアを有さず、同一配線層中の隣接するインダクタ配線に接続されている部分を有することを特徴とする小型低損失インダクタ素子。
(7)上記記載の小型低損失インダクタ素子において、
 前記インダクタ配線の中には、上下に隣接する複数の配線層を前記ビアで接続することにより、当該複数の配線層が並列接続されて一体の配線となっている部分を有することを特徴とする小型低損失インダクタ素子。
(8)上記記載の小型低損失インダクタ素子において、
 前記複数の配線層のうち、配線膜厚の薄い層は、配線膜厚の厚い層よりも前記並列接続されて一体となっている部分を構成する配線層の数が多いことを特徴とする小型低損失インダクタ素子。
この出願は、2008年2月20日に出願された日本出願2008-038410号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (9)

  1.  半導体基板上の絶縁膜中の配線層の内のインダクタ素子であって、
     前記インダクタ素子の周回配線であるインダクタ配線は、少なくとも2つの前記配線層の断面で、それぞれ異なる配線ピッチで形成され、2つの前記配線層の一方で、周回状に周囲を略1周乃至略2周する当該周回配線内に端部を有し、当該端部でビアにより直上又は直下の他方の前記配線層の前記周回配線の端部に接続され、
     前記ビアにより接続された前記周回配線同士はそれぞれの前記配線層内の電流方向が同一であることを特徴とするインダクタ素子。
  2.  請求項1に記載のインダクタ素子において、
     前記2つの配線層の一方の配線層の周回配線である上層周回配線と、
     他方の配線層の周回配線である下層周回配線とで、
     前記下層配周回線の数の方が前記上層周回配線の数より多いことを特徴とするインダクタ素子。
  3.  請求項2に記載のインダクタ素子において、
     前記上層周回配線の配線幅の方が前記下層周回配線の配線幅より大きいことを特徴とするインダクタ素子。
  4.  請求項1乃至3何れか1項に記載のインダクタ素子において、
     前記配線ピッチの配線層は、前記配線ピッチの異なる配線層毎に前記配線層の膜厚が異なることを特徴とするインダクタ素子。
  5.  請求項1乃至4何れか1項に記載のインダクタ素子において、
     上下の配線層の配線ピッチが異なる部分の接続部は、前記切断部で上下の配線の重なる部分に前記ビアが形成されていることを特徴とするインダクタ素子。
  6.  請求項1乃至5の何れか1項に記載のインダクタ素子において、
     前記インダクタ配線は、前記配線ピッチが狭ピッチの配線層内での周回数が、前記配線ピッチが広ピッチの配線層内での周回数より多いことを特徴とするインダクタ素子。
  7.  請求項6に記載のインダクタ素子において、
     前記インダクタ配線は、前記狭ピッチの配線層中で、前記広ピッチの配線層と上下に隣接する配線層におけるインダクタ配線では、前記広ピッチの配線層との間に前記ビアを有さず、同一配線層中の隣接する前記インダクタ配線に接続されている部分を有することを特徴とするインダクタ素子。
  8.  請求項1乃至5の何れか1項に記載のインダクタ素子において、
     前記インダクタ配線の中には、上下に隣接する複数の前記配線層を前記ビアで接続することにより、当該複数の配線層が並列接続されて一体の配線となっている部分を有することを特徴とするインダクタ素子。
  9.  請求項8に記載のインダクタ素子において、
     前記複数の配線層のうち、配線膜厚の薄い層は、配線膜厚の厚い層よりも並列接続されて一体となっている部分を構成する前記配線層の数が多いことを特徴とするインダクタ素子。
PCT/JP2009/000672 2008-02-20 2009-02-18 小型低損失インダクタ素子 WO2009104391A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009554218A JP5358460B2 (ja) 2008-02-20 2009-02-18 小型低損失インダクタ素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008038410 2008-02-20
JP2008-038410 2008-02-20

Publications (1)

Publication Number Publication Date
WO2009104391A1 true WO2009104391A1 (ja) 2009-08-27

Family

ID=40985279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000672 WO2009104391A1 (ja) 2008-02-20 2009-02-18 小型低損失インダクタ素子

Country Status (2)

Country Link
JP (1) JP5358460B2 (ja)
WO (1) WO2009104391A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015114758A1 (ja) * 2014-01-29 2017-03-23 ルネサスエレクトロニクス株式会社 半導体装置
CN106961250A (zh) * 2016-01-08 2017-07-18 精工爱普生株式会社 振荡模块、电子设备以及移动体
JPWO2019171980A1 (ja) * 2018-03-09 2020-12-17 株式会社村田製作所 積層型トリプレクサ

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613590A (ja) * 1992-06-26 1994-01-21 Nec Corp 半導体集積回路装置
JPH0897377A (ja) * 1994-09-16 1996-04-12 Internatl Business Mach Corp <Ibm> シリコン技術における高価なメタライゼーションを使用しない高qインダクタ構造
JPH09162354A (ja) * 1995-07-07 1997-06-20 Northern Telecom Ltd 集積インダクタ構造およびその製造方法
JP2000507051A (ja) * 1996-12-30 2000-06-06 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 一体化されたコイルを具えた装置
JP2002110676A (ja) * 2000-09-26 2002-04-12 Toshiba Corp 多層配線を有する半導体装置
WO2004112138A1 (ja) * 2003-06-16 2004-12-23 Nec Corporation 半導体デバイスおよびその製造方法
JP2005183467A (ja) * 2003-12-16 2005-07-07 Matsushita Electric Ind Co Ltd インダクタ装置
JP2007059915A (ja) * 2005-08-24 2007-03-08 Avago Technologies General Ip (Singapore) Private Ltd 集積回路に形成される、交差結合されたインダクター

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613590A (ja) * 1992-06-26 1994-01-21 Nec Corp 半導体集積回路装置
JPH0897377A (ja) * 1994-09-16 1996-04-12 Internatl Business Mach Corp <Ibm> シリコン技術における高価なメタライゼーションを使用しない高qインダクタ構造
JPH09162354A (ja) * 1995-07-07 1997-06-20 Northern Telecom Ltd 集積インダクタ構造およびその製造方法
JP2000507051A (ja) * 1996-12-30 2000-06-06 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 一体化されたコイルを具えた装置
JP2002110676A (ja) * 2000-09-26 2002-04-12 Toshiba Corp 多層配線を有する半導体装置
WO2004112138A1 (ja) * 2003-06-16 2004-12-23 Nec Corporation 半導体デバイスおよびその製造方法
JP2005183467A (ja) * 2003-12-16 2005-07-07 Matsushita Electric Ind Co Ltd インダクタ装置
JP2007059915A (ja) * 2005-08-24 2007-03-08 Avago Technologies General Ip (Singapore) Private Ltd 集積回路に形成される、交差結合されたインダクター

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015114758A1 (ja) * 2014-01-29 2017-03-23 ルネサスエレクトロニクス株式会社 半導体装置
CN106961250A (zh) * 2016-01-08 2017-07-18 精工爱普生株式会社 振荡模块、电子设备以及移动体
CN106961250B (zh) * 2016-01-08 2022-03-22 精工爱普生株式会社 振荡模块、电子设备以及移动体
JPWO2019171980A1 (ja) * 2018-03-09 2020-12-17 株式会社村田製作所 積層型トリプレクサ
US11456718B2 (en) 2018-03-09 2022-09-27 Murata Manufacturing Co., Ltd. Multilayer triplexer

Also Published As

Publication number Publication date
JP5358460B2 (ja) 2013-12-04
JPWO2009104391A1 (ja) 2011-06-16

Similar Documents

Publication Publication Date Title
US10643790B2 (en) Manufacturing method for 3D multipath inductor
CN107452710B (zh) 交错式变压器及其制造方法
US11373795B2 (en) Transformer device
US7598836B2 (en) Multilayer winding inductor
US7888227B2 (en) Integrated circuit inductor with integrated vias
US9559053B2 (en) Compact vertical inductors extending in vertical planes
JPWO2008090995A1 (ja) インダクタ
US20090066457A1 (en) Electronic device having transformer
US7936245B2 (en) Stacked structure of a spiral inductor
US7064411B2 (en) Spiral inductor and transformer
JP4895039B2 (ja) インダクタ、配線基板、および半導体装置
JP6235099B2 (ja) コモンモードフィルタ及びその製造方法
CN103579096A (zh) 半导体器件及其制造方法
KR101216946B1 (ko) 온칩 적층형 스파이럴 인덕터
US8751992B2 (en) Power supply wiring structure
US20080180204A1 (en) Multiple-level inductance
JP5358460B2 (ja) 小型低損失インダクタ素子
TW202117765A (zh) 晶片內建電感結構
JP5177387B2 (ja) インダクタ用シールドおよびシールド付きインダクタ
JP2006066769A (ja) インダクタ及びその製造方法
JP2012182286A (ja) コイル部品
JP2010114283A (ja) スパイラルインダクタ
JP2010034248A (ja) スパイラルインダクタ
JP2012182285A (ja) コイル部品
CN109428141B (zh) 平衡非平衡转换器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09712640

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009554218

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09712640

Country of ref document: EP

Kind code of ref document: A1