WO2009101769A1 - 運転支援装置、運転支援方法および運転支援プログラム - Google Patents

運転支援装置、運転支援方法および運転支援プログラム Download PDF

Info

Publication number
WO2009101769A1
WO2009101769A1 PCT/JP2009/000412 JP2009000412W WO2009101769A1 WO 2009101769 A1 WO2009101769 A1 WO 2009101769A1 JP 2009000412 W JP2009000412 W JP 2009000412W WO 2009101769 A1 WO2009101769 A1 WO 2009101769A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear ratio
acceleration
vehicle speed
host vehicle
speed
Prior art date
Application number
PCT/JP2009/000412
Other languages
English (en)
French (fr)
Inventor
Atushi Takeuchi
Takayuki Miyajima
Fumiharu Ogawa
Yoshito Kondou
Original Assignee
Aisin Aw Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Aw Co., Ltd. filed Critical Aisin Aw Co., Ltd.
Priority to JP2009553354A priority Critical patent/JP4952799B2/ja
Priority to US12/866,432 priority patent/US8532904B2/en
Priority to CN200980102642XA priority patent/CN101952154B/zh
Priority to EP09710985.4A priority patent/EP2236375B1/en
Publication of WO2009101769A1 publication Critical patent/WO2009101769A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/16Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger operated by remote control, i.e. initiating means not mounted on vehicle
    • B60T7/18Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger operated by remote control, i.e. initiating means not mounted on vehicle operated by wayside apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18145Cornering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0098Details of control systems ensuring comfort, safety or stability not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/20Road profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/30Road curve radius
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle for navigation systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/103Speed profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/106Longitudinal acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/60Inputs being a function of ambient conditions
    • F16H59/66Road conditions, e.g. slope, slippery
    • F16H2059/666Determining road conditions by using vehicle location or position, e.g. from global navigation systems [GPS]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/60Inputs being a function of ambient conditions
    • F16H59/66Road conditions, e.g. slope, slippery
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present invention relates to a driving support apparatus, method, and program for supporting driving of a vehicle.
  • an acceleration shift for accelerating the host vehicle to a vehicle speed higher than the target vehicle speed based on the target vehicle speed when traveling in a predetermined section existing ahead of the host vehicle Get the ratio. Then, the speed ratio in the host vehicle is set to the acceleration gear ratio before the host vehicle reaches the start point of the predetermined section, and the vehicle speed of the host vehicle is decelerated before the host vehicle reaches the start point of the predetermined section. Car speed. That is, in the present invention, the acceleration gear ratio is determined by paying attention to the gear ratio for accelerating the host vehicle after traveling in a predetermined section. Therefore, according to the present invention, before reaching the predetermined section, the acceleration gear ratio is suitable for accelerating the host vehicle to a vehicle speed higher than the target vehicle speed, and at an acceleration stage after traveling the predetermined section. It is possible to accelerate smoothly.
  • the vehicle speed information acquisition unit may acquire the target vehicle speed when traveling in the predetermined section for the predetermined section ahead of the host vehicle, and may directly acquire information indicating the vehicle speed. It may be acquired indirectly.
  • the former it is possible to adopt a configuration in which a target vehicle speed is associated with a predetermined section set in advance and the target vehicle speed associated with the predetermined section is acquired.
  • the latter it is possible to adopt a configuration in which the target vehicle speed is determined based on information indicating a predetermined section and roads around it.
  • the predetermined section may be a section in which it is preferable to decelerate the host vehicle to reach the target vehicle speed before reaching the section and accelerate the host vehicle after traveling the predetermined section at the target vehicle speed.
  • a section in which the vehicle should travel while maintaining the above (or at a vehicle speed equal to or lower than the target vehicle speed) may be employed. For example, it is instructed to run in a curve section, a section of a predetermined distance before and after a point where there is an ETC (Electronic toll collection) gate recommended to decelerate below the limit vehicle speed when passing, or below the limit vehicle speed. There are slow sections and the like.
  • the predetermined section may be defined by a point.
  • the target vehicle speed is a preferable vehicle speed when traveling in the predetermined section, and may be set in advance.
  • a curve section it is preferable to travel in a section having a constant radius in the curve section at a constant speed, so that a configuration in which the constant speed is the target vehicle speed can be employed.
  • the limited vehicle speed for example, 20 km / h for the ETC gate and 10 km / h for the slowing section
  • the target vehicle speed for example, 20 km / h for the ETC gate and 10 km / h for the slowing section
  • the acceleration gear ratio acquisition means only needs to be able to acquire a gear ratio for accelerating the host vehicle to a vehicle speed higher than the target vehicle speed after traveling in a predetermined section, and at least further acceleration than the target vehicle speed is possible. It is only necessary that a correct gear ratio can be acquired. For example, it is possible to drive at a vehicle speed that is higher than the target vehicle speed when the speed ratio that can be accelerated from the target vehicle speed to a specific vehicle speed that is higher than the target vehicle speed, or when the rotational speed of the drive source is a specific value. It is sufficient if the gear ratio can be acquired.
  • gear ratios may be at least a gear ratio necessary and sufficient for accelerating to a vehicle speed higher than the target vehicle speed, but a gear ratio for smoothing acceleration may be determined in advance. For example, it is possible to estimate parameters such as the throttle opening / closing operation at the start of acceleration and the rotational speed of the vehicle drive source, and to select a gear ratio that can be most efficiently accelerated based on the estimation.
  • the gear ratio control means only needs to be able to set the gear ratio of the host vehicle to the acceleration gear ratio before reaching the start point of the predetermined section.
  • the speed ratio of the host vehicle is set to an acceleration gear ratio suitable for acceleration before reaching the start point of the predetermined section
  • the host vehicle traveling on the road before reaching the predetermined section is usually more It is changed to a large gear ratio. For this reason, it is possible to assist the deceleration before reaching the predetermined section by setting the speed ratio to the acceleration speed ratio.
  • traveling in the predetermined section can be stabilized.
  • the gear ratio can be set for a transmission unit (for example, a transmission with a torque converter) mounted on the host vehicle. That is, it suffices if the transmission ratio is set by an instruction of the transmission ratio for the transmission unit, and the transmission unit can switch to the transmission ratio as instructed based on the instruction.
  • a transmission unit for example, a transmission with a torque converter
  • the deceleration control means only needs to be able to decelerate the vehicle speed of the host vehicle to reach the target vehicle speed before reaching the start point of the predetermined section. Therefore, it is only necessary to control a deceleration unit for decelerating the host vehicle, for example, a control device for adjusting the rotational speed of the drive source (throttle or the like) or a brake to decelerate the host vehicle.
  • a deceleration unit for decelerating the host vehicle for example, a control device for adjusting the rotational speed of the drive source (throttle or the like) or a brake to decelerate the host vehicle.
  • a configuration for setting the host vehicle to the target vehicle speed for example, a configuration in which deceleration is performed by feedback control with respect to a reference parameter can be employed.
  • the reference parameter may be an index used as a reference when the vehicle speed of the host vehicle is set as the target vehicle speed, and the target vehicle speed within the distance from the current position of the host vehicle to the start point of the predetermined section is targeted.
  • the deceleration required for achieving the vehicle speed, the transition of the vehicle speed, and the like can be used as these reference parameters.
  • the acceleration gear ratio may be acquired based on the necessary acceleration amount for accelerating the target vehicle speed to the recommended vehicle speed.
  • the vehicle speed information acquisition unit is configured to acquire the recommended vehicle speed after traveling in a predetermined section, and the acceleration gear ratio acquisition unit acquires the necessary acceleration amount for accelerating the host vehicle from the target vehicle speed to the recommended vehicle speed.
  • the acceleration gear ratio which is the gear ratio for driving the host vehicle with the acceleration amount, is acquired. According to this configuration, it is possible to easily acquire the acceleration gear ratio for accelerating the vehicle to the recommended vehicle speed.
  • the recommended vehicle speed may be any vehicle speed that is higher than the target vehicle speed.
  • the speed limit on the road after traveling in a predetermined section can be set as the recommended vehicle speed.
  • the vehicle speed before the deceleration control process for the predetermined section by the deceleration control means or the vehicle speed at the time when the deceleration control process is started may be set as the recommended vehicle speed. Furthermore, in a vehicle that performs auto-cruise control, the vehicle speed that is set to be maintained may be set as the recommended vehicle speed.
  • the required acceleration amount may be an acceleration amount for changing the host vehicle from the target vehicle speed to the recommended vehicle speed, and for evaluating the energy output from the host vehicle in order to change the vehicle speed from the target vehicle speed to the recommended vehicle speed. It is sufficient if the parameter can be set to the required acceleration amount.
  • the parameter for example, acceleration, torque, engine output, etc. can be adopted.
  • the acceleration amount corresponding to the road after the predetermined section may be acquired.
  • an acceleration section of a predetermined distance is set in advance after the end point of a predetermined section, and when the acceleration is performed at a required acceleration amount (for example, at a constant acceleration) to make the target vehicle speed a recommended vehicle speed in the acceleration section. (Acceleration) can be employed.
  • the acceleration section only needs to be defined in association with each predetermined section, and may be a section of a certain distance, but may be appropriately changed according to the shape of the road or the like. For example, a clothoid section set after a curve section may be set as an acceleration section, or a predetermined section between a curve section and a next curve section when the curve section continues may be set as an acceleration section.
  • the fuel consumption is the highest among the gear ratios that can generate an acceleration amount greater than the required acceleration amount when the driving source of the host vehicle has a predetermined rotation speed. It is possible to adopt a configuration in which the gear ratio at which the reduction is reduced is the acceleration gear ratio. That is, the speed ratio that can be set to the recommended vehicle speed when acceleration is performed while maintaining the speed ratio and that can use the fuel most efficiently is set as the acceleration speed ratio. According to this structure, it is possible to use fuel efficiently.
  • the predetermined number of revolutions may be a predetermined value of the number of revolutions of the drive source at the time of starting acceleration in the own vehicle, and may be determined based on a statistical value or the like, It may be a value set in advance as the rotation speed at the start of acceleration when performing control for acceleration.
  • the drive source should just be able to drive a vehicle with rotational force, and an engine, a motor, etc. correspond to the said drive source.
  • the smallest transmission gear ratio among the transmission gear ratios that can generate an acceleration amount greater than the required acceleration amount when the driving source of the host vehicle has a predetermined rotation speed. It is possible to adopt a configuration in which the acceleration gear ratio is used. That is, a speed ratio that can be set to the recommended vehicle speed when acceleration is performed while maintaining the speed ratio, and the rotational speed when the rotational speed of the drive source on the input side is reduced and transmitted to the output side The speed ratio at which the degree of decrease is the smallest is the acceleration speed ratio. According to this configuration, the host vehicle can be accelerated from the target vehicle speed to the recommended vehicle speed without increasing the rotational speed of the drive source as much as possible, and acceleration can be performed efficiently.
  • a timing for setting the gear ratio to the acceleration gear ratio a timing for preventing a decrease in the running stability of the vehicle may be employed.
  • the transmission gear ratio can be set to the acceleration transmission gear ratio while preventing the traveling stability from deteriorating to a predetermined level or more. Therefore, it is possible to set the gear ratio to the acceleration gear ratio while suppressing the influence of the gear shift on the behavior of the vehicle.
  • the index for specifying the point in time when the degree of decrease in running stability exceeds a predetermined degree may be time or distance.
  • it may be configured to determine the force or the possibility of slip at a time point after a predetermined time interval (for example, 2 seconds) from the current time point, or at a position ahead by a predetermined distance from the current position. It is possible to adopt a configuration for determining the possibility of slippage or slipping, and various configurations can be adopted.
  • the deceleration by the engine brake can be effectively utilized to reduce the speed. Due to the effective functioning of the engine brake, the shock given to the vehicle at the time of shifting becomes relatively large.
  • the acceleration gear ratio is determined noting the deceleration at the time of deceleration but focusing on the acceleration, so that the shock applied to the vehicle at the time of the gear shift can be suppressed to be relatively small.
  • the gear ratio is changed at a relatively early stage in order to effectively use the deceleration.
  • the gear ratio is switched at an early stage after the start of deceleration, the drive source becomes high in rotation and the high rotation state continues for a long time, which easily gives the driver a sense of incongruity.
  • the acceleration gear ratio is determined focusing on acceleration, the gear ratio is switched at a relatively late stage after the start of deceleration, and this kind of discomfort is given to the driver. Absent.
  • the running stability may be evaluated based on the force acting on the host vehicle and the force causing slip on the host vehicle.
  • the force acting on the host vehicle is estimated when the gear ratio is set to the acceleration gear ratio in front of the host vehicle, and the gear ratio before the force acting on the host vehicle becomes a force that causes the host vehicle to slip. May be set to the acceleration gear ratio.
  • the speed ratio can be set so that the vehicle does not slip by setting the speed ratio to the acceleration speed ratio.
  • the index for specifying the point in time when the force acting on the host vehicle becomes the force that causes the host vehicle to slip may be time or distance.
  • it may be configured to determine the force or the possibility of slip at a time point after a predetermined time interval (for example, 2 seconds) from the current time point, or at a position ahead by a predetermined distance from the current position. It is possible to adopt a configuration for determining the possibility of slippage or slipping, and various configurations can be adopted.
  • a predetermined time interval for example, 2 seconds
  • the method of performing the deceleration control by setting the gear ratio for accelerating from the target vehicle speed when traveling in the predetermined section as in the present invention can be applied as a program or a method.
  • the above-described driving support device, program, and method may be realized as a single driving support device, or may be realized by using parts shared with each part provided in the vehicle.
  • the embodiment is included.
  • some changes may be made as appropriate, such as a part of software and a part of hardware.
  • the invention is also established as a recording medium for a program for controlling the driving support device.
  • the software recording medium may be a magnetic recording medium, a magneto-optical recording medium, or any recording medium to be developed in the future.
  • FIG. 1 is a block diagram showing a configuration of a navigation device 10 including a driving support device according to the present invention.
  • the navigation device 10 includes a control unit 20 including a CPU, a RAM, a ROM, and the like and a recording medium 30, and the control unit 20 can execute a program stored in the recording medium 30 or the ROM.
  • the navigation program 21 can be implemented as one of the programs, and the navigation program 21 sets a gear ratio suitable for acceleration in the acceleration section before reaching the curve section as one of its functions. And has a function to execute deceleration.
  • the vehicle according to the present embodiment (the vehicle on which the navigation device 10 is mounted) has a GPS receiving unit 41, a vehicle speed sensor 42, a gyro sensor 43, a transmission unit 44, a braking unit 45, and throttle control in order to realize the function of the navigation program 21.
  • the function by the navigation program 21 is implement
  • the GPS receiver 41 receives radio waves from GPS satellites and outputs information for calculating the current position of the vehicle via an interface (not shown).
  • the control unit 20 acquires this signal and acquires the current position of the vehicle.
  • the vehicle speed sensor 42 outputs a signal corresponding to the rotational speed of the wheels provided in the vehicle.
  • the control unit 20 acquires this signal via an interface (not shown) and acquires the speed of the vehicle.
  • the gyro sensor 43 outputs a signal corresponding to the direction of the host vehicle.
  • the control unit 20 acquires this signal via an interface (not shown) and acquires the traveling direction of the host vehicle.
  • the vehicle speed sensor 42 and the gyro sensor 43 are used for correcting the current position of the host vehicle specified from the output signal of the GPS receiver 41.
  • the current position of the host vehicle is corrected as appropriate based on the travel locus of the host vehicle.
  • Various other configurations can be adopted for acquiring information indicating the operation of the vehicle, such as a configuration in which the current position of the host vehicle is specified by a sensor or camera, a signal from GPS, or on a map. It is possible to adopt a configuration in which the own vehicle operation information is acquired by vehicle trajectory, vehicle-to-vehicle communication, road-to-vehicle communication, etc.
  • the transmission unit 44 includes a stepped torque converter having a plurality of speed stages such as a total of 6 speeds for forward and a total of 1 speed for reverse, and adjusts the rotational speed with a gear ratio corresponding to each speed. Can be transmitted to the wheels of the vehicle.
  • the control unit 20 outputs a control signal for switching the gear position via an interface (not shown), and the transmission unit 44 can acquire the control signal and switch the gear position.
  • the gear ratio is configured to become smaller as the gear position becomes higher, such as forward 1st to 6th forward.
  • the braking unit 45 includes a device that controls the pressure of the wheel cylinder that adjusts the degree of deceleration by the brake mounted on the wheel of the host vehicle, and the control unit 20 outputs a control signal to the braking unit 45 to output the wheel. It is possible to adjust the pressure of the cylinder. Accordingly, when the control unit 20 outputs a control signal to the braking unit 45 to increase the pressure of the wheel cylinder, the braking force by the brake increases and the host vehicle is decelerated.
  • the throttle control unit 46 includes a device that controls a throttle valve for adjusting the amount of air supplied to the engine mounted on the host vehicle.
  • the control unit 20 outputs a control signal to the throttle control unit 46. It is possible to adjust the opening of the throttle valve. Therefore, when the control unit 20 outputs a control signal to the throttle control unit 46 to increase the intake air amount, the engine speed increases. Since the control unit 20 is configured to give control instructions to the transmission unit 44 and the throttle control unit 46, the current transmission ratio Sn set by the transmission unit 44 and the throttle control unit 46 are set in the control unit 20.
  • the current throttle opening degree Th can be acquired.
  • the control unit 20 executes a navigation program 21 to perform a vehicle route search or the like based on output information of the GPS reception unit 41, map information described later, and the like, and route guidance and the like via a display unit and a speaker (not shown). I do.
  • the navigation program 21 sets the transmission ratio in the transmission unit 44 and performs acceleration / deceleration control using the braking unit 45 and the throttle control unit 46, so that the navigation program 21 acquires the vehicle speed information acquisition unit 21a and the acceleration transmission ratio acquisition unit 21c ( A required acceleration amount acquisition unit 21b), a gear ratio control unit 21d, a deceleration control unit 21e, and an acceleration control unit 21f.
  • the recording medium 30 stores map information 30a for carrying out guidance by the navigation program 21.
  • the map information 30a includes node data indicating nodes set on the road on which the vehicle travels, shape interpolation point data for specifying the shape of the road between the nodes, link data indicating the connection between the nodes, the road and its surroundings Is used for specifying the current position of the host vehicle, guiding the destination, and the like.
  • FIG. 2 is a diagram showing an example of the curve section Zr, and shows a state where the host vehicle C is traveling toward the curve section Zr indicated by a thin one-dot chain line.
  • node data corresponding to the start point Rs of the curve section Zr is associated with information indicating the start point Rs of the curve section Zr, and node data corresponding to the end point Re of the curve section Zr. Is associated with information indicating the end point Re of the curve section Zr.
  • the shape interpolation data indicating the road shape between the start point Rs and the end point Re is data indicating the position on the arc of the curve section Zr, and a constant radius in the curve section Zr based on the shape interpolation data.
  • the vehicle speed (target vehicle speed V 0 ) when traveling at a constant vehicle speed in the section of R and the radius R can be specified.
  • information indicating the start point Rs and end point Re of the curve section Zr and the shape interpolation point therebetween is referred to as curve section information 30a1.
  • deceleration control may be performed before the section of the predetermined distance L 0 from the start point Rs of the curve section Zr to the opposite side of the curve section reaches the curve section Zr.
  • the section of the predetermined distance L 0 is indicated by a thin broken line.
  • the predetermined distance L 0 may be determined by the length of the clothoid section between the straight section and the constant curvature section.
  • the start point of the section of the predetermined distance L 0 is shown as the start point Ca.
  • information indicating the predetermined distance L 0 is associated with the curve section information 30a1.
  • an acceleration section Za (in FIG. 2) for accelerating toward a predetermined point (end point Ce of the acceleration section Za) after traveling the curve section Zr.
  • a section indicated by a dotted line, for example, a clothoid section) is set, and in this embodiment, the node data corresponding to the end point Ce of the acceleration section Za indicates information indicating that the end point Ce of the acceleration section Za. Are associated.
  • the start point of the acceleration zone Za coincides with the end point Re of the curve zone Zr, and the shape between the start point Re and the end point Ce of the acceleration zone Za is indicated by shape interpolation data.
  • the distance L 1 of the acceleration zone Za can be specified based on the information indicating the positions of the start point Re and the end point Ce of the acceleration zone Za.
  • the node data corresponding to the end point Ce of the acceleration zone Za is associated with the limited vehicle speed at that point, and the limited vehicle speed is the recommended vehicle speed V 1 after traveling in the acceleration zone in the present embodiment.
  • a throttle opening Th 1 is determined in advance at the start point Re of the acceleration zone Za for performing acceleration control described later, the throttle opening Th 1 node data corresponding to the end point Ce of the acceleration zone Za The information shown is associated.
  • the vehicle speed information acquisition unit 21a is a module that acquires the target vehicle speed V 0 when traveling in the curve section Zr and the recommended vehicle speed V 1 after traveling in the curve section Zr.
  • the vehicle speed information is referred to the map information 30a. Is identified. That is, the control unit 20 specifies the radius R of the curve section Zr with reference to the curve section information 30a1 by the processing of the vehicle speed information acquisition section 21a, and acquires the vehicle speed for traveling in the section of the radius R at a constant vehicle speed.
  • the vehicle speed (Gt ⁇ R) 1/2 for traveling at a constant vehicle speed at a preset lateral acceleration Gt (for example, 0.2 G) is acquired as the target vehicle speed V 0 .
  • the recommended vehicle speed V 1 is acquired with reference to the acceleration section information 30a3.
  • the acceleration gear ratio acquisition unit 21c is an acceleration gear ratio Sa (Sa is 1 to 6 (corresponding to the first to sixth forward speeds) described above) that is a gear ratio for driving the host vehicle at an acceleration greater than the required acceleration a.
  • the control unit 20 acquires the throttle opening Th 1 by referring to the acceleration section information 30a3 by the processing of the acceleration gear ratio acquisition unit 21c, and obtains the throttle opening Th 1 and the necessary acceleration a.
  • a gear ratio is determined based on the target vehicle speed V 0 .
  • the speed ratio at which the fuel consumption is minimized is the acceleration speed ratio Sa.
  • the host vehicle can be accelerated from the target vehicle speed V 0 to the recommended vehicle speed V 1 using fuel efficiently.
  • the selection of the gear ratio employs, for example, a configuration in which a fuel consumption map associated with the engine speed and the throttle opening Th 1 is prepared in advance and is executed based on the fuel consumption map. Is possible. Although the engine speed corresponding to the throttle opening degree Th 1 is assumed here, it is needless to say that the speed may be determined based on a statistical value or the like.
  • the transmission ratio control unit 21d is a module that sets the transmission ratio of the host vehicle to the acceleration transmission ratio Sa before the host vehicle reaches the start point Rs of the curve section Zr.
  • the control unit 20 performs processing of the transmission ratio control unit 21d.
  • a control signal for setting the transmission gear ratio to the acceleration transmission gear ratio Sa is output to the transmission unit 44 at a predetermined timing according to the processing procedure described later.
  • the transmission unit 44 switches the transmission gear ratio to the acceleration transmission gear ratio Sa according to the control signal.
  • the deceleration control unit 21e is a module that decelerates the vehicle speed of the host vehicle to reach the target vehicle speed V 0 before the host vehicle reaches the curve section Zr.
  • the control unit 20 performs the curve section by the processing of the deceleration control unit 21e.
  • Feedback control is performed so that the vehicle speed becomes the target vehicle speed V 0 at the start point Rs of Zr. That is, the current position of the host vehicle along the road shape is obtained from the information indicating the current position of the host vehicle and the position of the start point Rs and the shape interpolation point therebetween by acquiring the target vehicle speed V 0 and referring to the curve section information 30a1. And the end point Rs is acquired as the distance Lc.
  • the necessary deceleration Gr (negative acceleration when the traveling direction of the host vehicle is positive) for setting the current vehicle speed Vc of the host vehicle to the target vehicle speed V 0 is, for example, equal acceleration motion.
  • Gr (V 0 2 ⁇ Vc 2 ) / (2Lc).
  • the necessary deceleration Gr is acquired sequentially, and deceleration control is started when the necessary deceleration Gr exceeds a predetermined threshold (LimG_h or LimG_L described later). That is, the deceleration Ge by the engine brake is acquired based on the current gear ratio Sn set by the transmission unit 44 and the engine speed at the current throttle opening Th adjusted by the throttle control unit 46.
  • control unit 20 outputs a control signal for causing the brake to generate a deceleration corresponding to the difference (Gr ⁇ Ge) between the required deceleration Gr and the deceleration Ge.
  • the brake 45 operates the brake so as to compensate for the difference (Gr ⁇ Ge) between the required deceleration Gr and the deceleration Ge.
  • the gear ratio is switched to the acceleration gear ratio Sa during the deceleration operation before reaching the curve section. At this time, usually, the gear ratio becomes higher by switching the gear ratio. For this reason, it is possible to assist the deceleration before reaching the curve section by setting the speed ratio to the acceleration speed ratio Sa.
  • the acceleration control unit 21f is a module for controlling acceleration after the host vehicle travels in the curve section Zr.
  • the control unit 20 is a distance from the end point Re of the curve section Zr by the processing of the acceleration control unit 21f. in the acceleration zone Za between L 1, and controls the throttle opening Th such that the recommended vehicle speeds V 1 to the vehicle speed from the target vehicle speed V 0. That is, in a state where the transmission gear ratio is maintained at the acceleration transmission gear ratio Sa, a control signal is output to the throttle control unit 46 to set the throttle opening to Th 1 , and then the acceleration is appropriately performed so that the acceleration is performed at the necessary acceleration a. Adjust the throttle opening.
  • the acceleration gear ratio Sa is set at the stage where the host vehicle is traveling on the road before reaching the curve section, the vehicle is accelerated to the recommended vehicle speed V 1 when traveling on the acceleration section Za. Therefore, the acceleration gear ratio Sa is suitable, and it is possible to suppress unnecessary gear shifting in the acceleration zone Za. For this reason, the change of the engine speed accompanying the said unnecessary gear change can be suppressed, the fall of the running stability at the time of acceleration can be suppressed, and it can accelerate smoothly.
  • you select a gear ratio that provides the closest deceleration to the required deceleration Gr and perform deceleration you can effectively use the deceleration by the engine brake to reduce the speed.
  • the acceleration gear ratio Sa is determined by focusing not on the deceleration at the time of deceleration but on the required acceleration a at the time of acceleration, so that the shock applied to the vehicle at the time of shifting can be suppressed to a relatively small level.
  • state DS 1 for decelerating the vehicle speed to the target vehicle speed V
  • the control unit 20 acquires information on a curve section existing ahead of the host vehicle (step S120). That is, the control unit 20 specifies the current position of the host vehicle based on the output signal from the GPS receiving unit 41 and the like, and refers to the map information 30a to determine whether or not there is a curve section in a predetermined range in front of the current position. Determine whether. And when a curve section exists, the curve section information 30a1 and acceleration section information 30a3 regarding the curve section are acquired.
  • control unit 20 executes a vehicle deceleration process (step S130) and a gear ratio selection process (step S140), acquires an output signal of an ignition switch (not shown), and determines whether or not the ignition is turned off ( Step S150). Then, the processes after step S120 are repeated until it is determined that the ignition is turned off.
  • FIG. 4 is a flowchart showing the vehicle deceleration process in step S130.
  • FIG. 5 is a flowchart showing the deceleration start determination process in step S205.
  • the deceleration start determination process a process for setting the deceleration control state DS to “1” or “2” based on a predetermined condition is performed.
  • the control unit 20 first determines whether or not the host vehicle has reached a position within the predetermined distance L 0 to the start point Rs of the curve section Zr by the process of the deceleration control unit 21e (step S300). That is, it is determined whether or not the host vehicle has passed the start value point Ca.
  • the control unit 20 acquires the current position of the host vehicle based on the output signal from the GPS receiving unit 41 and the like, and acquires the position of the start point Rs of the curve section Zr with reference to the curve section information 30a1.
  • the distance between the current position of the host vehicle and the start point Rs is a predetermined distance L 0 or less.
  • the when it is not determined to have reached the start point position within the predetermined distance L 0 to the Rs of the curve zone Zr is returns to the process shown in FIG. 4 skips step S305 and subsequent steps.
  • step S300 the when the vehicle is determined to have reached the predetermined distance L 0 within position to the start point Rs of the curve zone Zr, the control unit 20 uses the processing of the vehicle speed information obtaining unit 21a and the deceleration control unit 21e
  • the necessary deceleration Gr for setting the vehicle speed of the host vehicle to the target vehicle speed V 0 at the start point Rs of the curve section Zr is acquired (step S305). That is, the control unit 20 acquires the vehicle speed when traveling a curve of the radius R at a constant speed with specifying the radius R of the curve zone Zr based on the curve zone information 30a1 as the target vehicle speed V 0.
  • the current position of the host vehicle specified based on the output signal of the GPS receiver 41 and the like, the start point Rs of the curve section Zr specified based on the curve section information 30a1, and the current position and start point Rs
  • the above-mentioned distance Lc is acquired from the information indicating the position of the shape interpolation point between them.
  • the control unit 20 determines whether or not the throttle valve is in an open state (accelerator on state) (step S310). That is, the control unit 20 acquires the current throttle opening degree Th by the process of the deceleration control unit 21e, and determines whether or not the throttle valve is in an open state. When it is not determined in step S310 that the throttle valve is in the open state (accelerator off state), the control unit 20 determines whether or not the required deceleration Gr is equal to or greater than the threshold LimG_L by the processing of the deceleration control unit 21e ( Step S315).
  • step S310 When it is determined in step S310 that the throttle valve is in the open state (accelerator on state), the control unit 20 determines whether the required deceleration Gr is equal to or greater than the threshold LimG_h by the processing of the deceleration control unit 21e. It discriminate
  • the control unit 20 sets the deceleration control state DS to “1” by the process of the deceleration control unit 21e (step S325). , S330). That is, when the host vehicle approaches the curve section Zr without decelerating, the necessary deceleration Gr for setting the vehicle speed to the target vehicle speed V 0 increases as the host vehicle approaches the curve section Zr, and is reduced at any timing. Since the speed Gr exceeds the threshold value, the deceleration control state DS is set to “1” so that the deceleration control is performed after the threshold value is exceeded.
  • the timing at which deceleration should be started differs depending on the state of the throttle valve, and the threshold values LimG_h and LimG_L when the throttle valve is in the open state and the closed state are set to different values, and LimG_h> LimG_L is set.
  • step S315 and S320 when it is not determined in steps S315 and S320 that the required deceleration Gr is greater than or equal to the respective threshold values, the control unit 20 has reached the start point Rs of the curve section Zr by the processing of the deceleration control unit 21e. Whether or not (step S335). That is, the current position of the host vehicle is acquired based on the output signal from the GPS receiver 41 and the like, the position of the start point Rs of the curve section Zr is acquired with reference to the curve section information 30a1, and the current position of the host vehicle is started. It is determined whether or not it is closer to the curve section Zr than the position of the point Rs.
  • step S335 When it is determined in step S335 that the host vehicle has reached the start point Rs of the curve section Zr, the deceleration control state DS is set to “2”. That is, when the necessary deceleration Gr reaches the curve section Zr without exceeding the threshold value, the deceleration control state DS is set to “2”. If it is not determined in step S335 that the host vehicle has reached the start point Rs of the curve section Zr, the process returns to the process shown in FIG.
  • FIG. 6 is a flowchart showing the deceleration control process in step S215.
  • the control unit 20 first determines whether or not the start point Rs of the curve section Zr has been reached by the process of the deceleration control unit 21e (step S400). That is, the control unit 20 acquires the current position of the host vehicle based on an output signal from the GPS receiving unit 41 and the like, acquires the position of the start point Rs of the curve section Zr with reference to the curve section information 30a1, and It is determined whether or not the current position of is closer to the curve section Zr than the position of the start point Rs.
  • step S400 When it is not determined in step S400 that the host vehicle has reached the start point Rs of the curve section Zr, the control unit 20 performs the processing of the vehicle speed information acquisition unit 21a and the deceleration control unit 21e to start the start point Rs of the curve section Zr. To obtain the necessary deceleration Gr for setting the vehicle speed of the host vehicle to the target vehicle speed V 0 (step S405). This process is the same as that in step S305 described above.
  • control part 20 generates the required deceleration Gr by an engine brake and a braking part (step S410). That is, the control unit 20 acquires the current gear ratio Sn and the current throttle opening degree Th by the processing of the deceleration control unit 21e, and performs engine braking based on the engine speed at the gear ratio Sn and the throttle opening degree Th. To obtain the deceleration Ge. Then, the control unit 20 outputs a control signal for generating a deceleration corresponding to (Gr—Ge) to the braking unit 45 by the brake.
  • the brake 45 applies a brake so as to compensate for the difference (Gr ⁇ Ge) between the required deceleration Gr and the deceleration Ge, and the deceleration in the host vehicle becomes the required deceleration Gr.
  • the required deceleration Gr is a required deceleration for setting the current vehicle speed Vc of the host vehicle to the target vehicle speed V 0 at the distance Lc. Therefore, the vehicle speed of the host vehicle is reduced by repeating the above control. It can be converged to the target vehicle speed V 0 .
  • the speed ratio in the above deceleration control is determined based on the required acceleration a instead of the required deceleration Gr, and the speed ratio of the host vehicle is switched to the acceleration speed ratio Sa before reaching the curve section by a process described later.
  • step S405 When it is determined in step S400 that the host vehicle has reached the start point Rs of the curve section Zr, the control unit 20 sets the deceleration control state DS to “2” (step S415). That is, when the vehicle reaches the curve section Zr, the deceleration control state DS is set to “2” in order to perform the process of maintaining the vehicle speed instead of the deceleration. In addition, it returns to the process shown in FIG. 4 after step S410, S415.
  • FIG. 7 is a flowchart showing the vehicle speed limiting process in step S225.
  • a process for maintaining the vehicle speed of the host vehicle at the target vehicle speed V 0 is performed.
  • the control unit 20 first determines whether or not the end point Re of the curve section Zr (start point of the acceleration section Za) has been reached by the process of the deceleration control section 21e (step S500).
  • control unit 20 acquires the current position of the host vehicle based on the output signal from the GPS receiving unit 41 and the like, acquires the position of the end point Re of the curve section Zr with reference to the curve section information 30a1, and It is determined whether or not the current position of is closer to the acceleration zone Za than the position of the end point Re.
  • step S500 When it is not determined in step S500 that the host vehicle has reached the end point Re of the curve section Zr, the control unit 20 specifies the current vehicle speed Vc based on the output information of the vehicle speed sensor 42 by the process of the deceleration control unit 21e. Then, it is determined whether or not the current vehicle speed Vc exceeds a target vehicle speed V 0 that is a threshold value (step S505). If it is determined that the current vehicle speed Vc exceeds the target vehicle speed V 0 at step S505, the control unit 20 generates the required deceleration Gr using the engine brake and the braking portion (step S510). The processing in step S510 is the same as that in step S410 described above.
  • step S500 when it is determined in step S500 that the host vehicle has reached the end point Re of the curve section Zr, the control unit 20 sets the deceleration control state DS to “0” in order to end the deceleration control (step S515). ). After step S510, S515, and when the current vehicle speed Vc is not determined to exceed the target vehicle speed V 0 at step S505 and returns to the process shown in FIG.
  • FIG. 8 is a flowchart showing the gear ratio selection process in step S140.
  • the speed ratio control state GS is specified, the acceleration speed ratio Sa is acquired, and a process for setting the speed ratio is executed.
  • step S605 the control unit 20, the processing of the deceleration control unit 21e, the vehicle is determined whether the host vehicle has reached the position within the predetermined distance L 0 to the start point Rs of the curve zone Zr. Then, at step S605, when the vehicle is not determined to have reached the position within the predetermined distance L 0 to the start point Rs of the curve zone Zr is returns to the process shown in FIG. 3 skips step S610.
  • step S620 The gear ratio acquisition process in step S620 will be described in detail later.
  • a value indicating the gear stage corresponding to the acceleration gear ratio Sa is substituted into a variable N indicating the gear stage corresponding to the gear ratio
  • Processing for changing the gear ratio control state GS to “2” is performed.
  • the control unit 20 Is set to travel at a gear ratio corresponding to the variable N by the processing of the gear ratio control unit 21d (step S630).
  • a value indicating the gear position corresponding to the acceleration gear ratio Sa is substituted for the variable N, and the control unit 20 outputs a control signal to the gear shift unit 44 to shift to the gear position indicated by the variable N.
  • the control unit 20 determines whether or not to maintain the state where the transmission gear ratio is set to the acceleration transmission gear ratio Sa by the processing of the transmission gear ratio control unit 21d. That is, it is determined whether or not the end point Ce of the acceleration zone Za has been reached (step S635), whether or not the steering angle is within a predetermined angle (step S640), and the current vehicle speed is equal to or less than a predetermined value. Whether or not (step S645). If it is determined in step S635 that the end point Ce has been reached, if it is determined in step S640 that the steering angle is within a predetermined angle, it is determined in step S645 that the current vehicle speed is less than or equal to the predetermined value. When this is done, the control unit 20 sets the gear ratio control state GS to “0” (step S650). On the other hand, in other cases, step S650 is skipped.
  • step S635 the control unit 20 acquires the current position of the host vehicle based on the output signal from the GPS reception unit 41 and the like, and acquires the position of the end point Ce of the acceleration section Za with reference to the acceleration section information 30a3. Then, it is determined whether or not the current position of the host vehicle is after the position of the end point Ce. Accordingly, before the host vehicle passes the end point Ce, it is considered that the host vehicle is in a state where acceleration can be performed with the acceleration gear ratio Sa set, and the driver passes the end point Ce.
  • the gear ratio can be set according to the operation.
  • step S640 the control unit 20 acquires output information of a steering angle sensor (not shown), and specifies a steering angle based on the output information. Then, it is determined whether or not the steering angle is within a predetermined angle by comparing the steering angle with a predetermined angle.
  • the steering angle is within a predetermined angle, it is considered that acceleration can be performed with the acceleration gear ratio Sa being set, and when the steering angle is not within the predetermined angle, the speed change according to the operation of the driver is performed. Make the ratio configurable.
  • step S645 the control unit 20 specifies the current vehicle speed of the host vehicle based on the output information of the vehicle speed sensor 42, and determines whether or not the current vehicle speed is equal to or less than a predetermined value.
  • the acceleration gear ratio Sa is considered to be a state where acceleration can be performed.
  • the gear ratio according to the driver's operation is determined. Can be set.
  • FIG. 9 is a flowchart showing the gear ratio acquisition process in step S620.
  • the control unit 20 substitutes the gear position corresponding to the acceleration gear ratio Sa for N (step S700). That is, the control unit 20 calculates the acceleration gear ratio Sa by the processing of the vehicle speed information acquisition unit 21a, the necessary acceleration amount acquisition unit 21b, and the acceleration gear ratio acquisition unit 21c. Specifically, the control unit 20 specifies the target vehicle speed V 0 based on the radius R of the curve section by the processing of the vehicle speed information acquisition unit 21a, and acquires the recommended vehicle speed V 1 with reference to the acceleration section information 30a3.
  • the torque Tra corresponding to the required acceleration a is acquired as, for example, acceleration ⁇ vehicle weight ⁇ tire radius / differential gear ratio.
  • the engine speed is realized by the gear ratio at the target vehicle speed V 0 to (rpm), for example, target vehicle speed V 0 ⁇ 1000/3600 / ( 2 ⁇ ⁇ tire radius) ⁇ differential gear ratio ⁇ 60 ⁇ gear ratio ⁇ Acquired as torque converter slip ratio.
  • the engine speeds Re 1 to Re 6 at the target vehicle speed V 0 corresponding to the gear ratios 1 to 6 (speeds 6 to 1) are acquired.
  • torques Tr 1 to Tr 6 that can be output at each engine speed Re 1 to Re 6 and at the throttle opening Th 1 are acquired.
  • the torques Tr 1 to Tr 6 are, for example, torques corresponding to the engine rotational speeds Re 1 to Re 6 on the basis of a torque characteristic map in which the throttle opening Th 1 and the engine rotational speed are associated with torque for each gear ratio. Tr 1 to Tr 6 may be acquired.
  • step S710 the control unit 20 performs a process for setting the speed ratio by setting the speed ratio control state GS to “2” at a timing for preventing a decrease in running stability of the vehicle.
  • the control unit 20 calculates a deceleration force Fad acting on the host vehicle when the shift stage of the host vehicle is set to a shift stage corresponding to the acceleration gear ratio Sa (step S710).
  • the deceleration force Fad indicates a deceleration force (force directed toward the rear of the host vehicle) that acts on the host vehicle when traveling at the current vehicle speed and the current engine speed at the shift speed corresponding to the acceleration gear ratio Sa. Yes.
  • the deceleration force Fad for example, the torque corresponding to the gear position corresponding to the acceleration gear ratio Sa is acquired in the same manner as the calculation of the torques Tr 1 to Tr 6 described above, and the deceleration based on the torque and the vehicle weight is obtained.
  • the force Fad may be calculated.
  • control unit 20 performs a process for evaluating the force that causes the vehicle to slip. For this purpose, first, the control unit 20 acquires the curvature ⁇ at a point two seconds ahead by the process of the transmission ratio control unit 21d (step S715). That is, the control unit 20 estimates a point when the vehicle travels for 2 seconds at the current vehicle speed, acquires at least three shape interpolation points or nodes closest to the point, and obtains at least three shape interpolation points. Alternatively, the curvature ⁇ at the point is acquired based on the node. Further, the control unit 20 acquires the friction coefficient ⁇ of the road surface at the point 2 seconds ahead (step S720).
  • the friction coefficient ⁇ of the road surface only needs to be specified in advance, and the friction coefficient measured in advance may be recorded in the map information 30a.
  • the friction coefficient of the road surface is determined by estimation based on the weather or the like. Alternatively, the friction coefficient may be determined using probe information.
  • the control unit 20 acquires a threshold LimFad for evaluating the force that causes the own vehicle to slip by the process of the transmission ratio control unit 21d (step S725).
  • the threshold LimFad is represented by (( ⁇ ⁇ W ⁇ S) 2 -Fc ( ⁇ ) 2 ) 1/2 , W is the weight of the host vehicle, S is a coefficient greater than 0 and less than 1, Fc ( ⁇ ) Is a function indicating the lateral force acting on the host vehicle when traveling at a curvature ⁇ . Note that the weight W, the coefficient S, and the function Fc ( ⁇ ) are recorded in the recording medium 30 in advance, and the control unit 20 refers to the recording medium 30 to acquire such information and calculates the threshold LimFad.
  • FIG. 10 is an explanatory diagram for explaining the deceleration force Fad and the threshold LimFad.
  • the host vehicle C traveling toward the arrow Fw and the magnitude of the frictional force ⁇ ⁇ W acting on the host vehicle C are indicated by solid circles.
  • slip occurs in the host vehicle C when the tip of the vector indicating the force acting on the host vehicle C (the resultant force of the lateral force Fc ( ⁇ ) and the deceleration force) exceeds the solid circle. That is, if the frictional force ⁇ ⁇ W is divided into a lateral force Fc ( ⁇ ) and a deceleration force toward the rear of the vehicle, the deceleration force can be regarded as a limit deceleration force that causes slip.
  • a constant margin is given to the frictional force ⁇ ⁇ W, and the value ⁇ ⁇ W ⁇ S obtained by multiplying the frictional force ⁇ ⁇ W by a coefficient S of 1 or less is used as the lateral force Fc ( ⁇ ),
  • the value obtained by dividing the force toward the rear of the vehicle is defined as the threshold LimFad. That is, as illustrated in FIG. 10, when the tip of the vector indicating the deceleration force Fad is closer to the outer periphery of the circle than the position P corresponding to the tip of the component force vector of the vector ⁇ ⁇ W ⁇ S, It is assumed that the running stability is reduced.
  • the control unit 20 determines whether or not the deceleration force Fad is larger than the threshold value LimFad (step S730). If it is not determined that the deceleration force Fad is larger than the threshold value LimFad, the control unit 20 determines whether the point is 2 seconds ahead. Is determined to have exceeded the start point Rs of the curve section Zr (step S735), and if it is not determined that the start point Rs has been exceeded, the process returns to the process shown in FIG. On the other hand, when it is determined in step S730 that the deceleration force Fad is larger than the threshold value LimFad, or when it is determined in step S735 that the vehicle 2 seconds ahead exceeds the start point Rs of the curve section Zr.
  • the gear ratio control state GS is set to “2” in order to set the gear ratio.
  • the gear ratio control state GS becomes “2” after step S730 and further the process of setting the gear ratio is performed in step S630 after the determination in step S615, the force acting on the host vehicle is applied to the host vehicle.
  • the gear ratio is set to the acceleration gear ratio Sa before the slip generation force is generated. Therefore, by setting the transmission gear ratio to the acceleration transmission gear ratio Sa, the transmission gear ratio can be set so that the own vehicle does not slip, and the transmission gear ratio can be set while suppressing the influence of the gear shifting on the behavior of the vehicle. Is possible.
  • a configuration for evaluating the force at a position ahead by a predetermined distance from the current position may be adopted.
  • “2 seconds” in steps S715 and S735 is an example, and the transmission ratio control unit 21d outputs a control signal for setting the transmission ratio to the acceleration transmission ratio Sa to the transmission unit 44. Accordingly, it is only necessary to set a value larger than the time required until the change of the gear ratio by the transmission unit 44 is completed. For example, in step S735, it is only necessary to determine whether or not a point that arrives after a time that allows the gear ratio to be switched to the acceleration gear ratio Sa exceeds the start point Rs.
  • the deceleration control state GS is “ Since the acceleration gear ratio Sa is, for example, the gear ratio corresponding to the third gear, the speed is changed to the third gear by the process of step S630. Therefore, as shown by a thick dashed line in FIG. 2, the speed stage is maintained at the third speed on the road, the curve section Zr, and the acceleration section Za before reaching the subsequent curve section, and the acceleration is accelerated in the acceleration section Za. Accelerate smoothly when you start.
  • the above embodiment is an example for carrying out the present invention, and various other embodiments can be used as long as the speed reduction ratio is set for accelerating from the target vehicle speed when traveling in a predetermined section.
  • the target vehicle speed is calculated from the radius R of the curve section Zr, but it is of course possible to associate the target vehicle speed with each curve section in advance and acquire the associated target vehicle speed.
  • the application target of the present invention is not limited to the curve section, and a configuration may be adopted in which a section that travels while maintaining the target vehicle speed (or at a vehicle speed equal to or lower than the target vehicle speed) is set as the predetermined section.
  • the predetermined section may be defined by a point.
  • the limit vehicle speed (for example, 20 km / h for the ETC gate and 10 km / h for the slow section) may be set as the target vehicle speed.
  • the present invention is not limited to the configuration for acquiring the gear ratio corresponding to the required acceleration amount, and may be various as long as the gear ratio capable of accelerating to a vehicle speed higher than the target vehicle speed can be determined.
  • a configuration can be adopted. For example, the number of revolutions of the drive source (engine or motor) corresponding to the throttle opening / closing operation after traveling a predetermined section such as a curve section is learned in advance, and the learned rotation is performed after traveling the predetermined section on the own vehicle. It is possible to adopt a configuration that identifies the acceleration gear ratio for rotating the drive source by a number and accelerating from the target vehicle speed to a higher vehicle speed. That is, even when the recommended vehicle speed is not specified, various configurations can be employed as long as the vehicle speed of the host vehicle can be accelerated to a vehicle speed higher than the target vehicle speed after traveling in a predetermined section.
  • the acceleration gear ratio may be at least a gear ratio necessary and sufficient for accelerating to a vehicle speed higher than the target vehicle speed, but a gear ratio for smoothing acceleration may be determined in advance. For example, it is possible to estimate parameters such as the throttle opening / closing operation at the start of acceleration and the rotational speed of the vehicle drive source, and to select a gear ratio that can be most efficiently accelerated based on the estimation.
  • a configuration in which feedback control is performed based on the deceleration as described above, or feedback control based on the vehicle speed may be employed.
  • the required acceleration amount may be a parameter for evaluating energy output from the host vehicle in order to change the vehicle speed from the target vehicle speed to the recommended vehicle speed, and is not limited to the above-described required acceleration a.
  • torque, engine output, etc. can be employed.
  • the acceleration section Za and the example of the section defined by the predetermined distance L 0 and the acceleration section Za are defined as clothoid sections.
  • each of these sections is for deceleration. It suffices if it is determined in advance as the section and the section for acceleration, and may be shorter or longer than the clothoid section.
  • a predetermined section between a curve section and a next curve section when the curve sections continue may be used as an acceleration section.
  • the shift to the acceleration gear ratio may be performed before reaching the predetermined section, and the shift may be performed at the start point of the predetermined section or the start point Ca of the section defined by the predetermined distance L 0 . Shifting may be performed when the required deceleration Gr exceeds the thresholds LimG_h and LimG_L, and various configurations can be employed.
  • the necessary deceleration Gr is the threshold LimG_h, has been configured to perform deceleration control when it exceeds LimG_L, course, other configurations, for example, is defined by the predetermined distance L 0 section It is good also as a structure which starts deceleration after passing the starting point Ca.
  • the vehicle speed limiting process the vehicle is decelerated when the current vehicle speed Vc exceeds the target vehicle speed V 0. However, even when the current vehicle speed Vc falls below the target vehicle speed V 0 , acceleration is performed. good.
  • the speed ratio with the smallest fuel consumption is selected as the speed ratio Sa, among the speed ratios that can output more than the torque Tra corresponding to the required acceleration a.
  • the acceleration gear ratio may be determined based on the idea. For example, torque Tra corresponding to the required acceleration a and torques Tr 1 to Tr 6 output at each gear ratio are acquired, and the smallest gear ratio among the gear ratios capable of generating torque greater than torque Tra May be the acceleration gear ratio Sa.
  • the engine speed corresponding to the throttle opening Th 1 is a gear ratio that allows the vehicle speed of the host vehicle to be the recommended vehicle speed V 1 when accelerating at the required acceleration a while maintaining the gear ratio.
  • the speed ratio at which the degree of decrease in the rotational speed when the number is decreased and transmitted to the output side is the acceleration speed ratio Sa.
  • the host vehicle can be accelerated from the target vehicle speed V 0 to the recommended vehicle speed V 1 without increasing the engine speed as much as possible, and acceleration can be performed efficiently.
  • the engine speed corresponding to the throttle opening degree Th 1 is assumed here, it is needless to say that the speed may be determined based on a statistical value or the like.
  • the transmission unit 44 includes a stepped torque converter in the above-described embodiment
  • the present invention is applied to a vehicle equipped with a transmission unit including a continuously variable transmission that can continuously change the transmission gear ratio.
  • the continuously variable transmission may be configured to control the gear ratio by control based on a plurality of parameters, and may be configured to control the acceleration gear ratio by the control before reaching a predetermined section.
  • the torque Tra corresponding to the required acceleration a described above is acquired, and the engine speed at which a torque equivalent to the torque Tra can be output at the throttle opening Th 1 and the target vehicle speed V 0 is specified.
  • the gear ratio is controlled so as to eliminate the difference between the target engine speed and the running engine speed.
  • the present invention can be applied to a vehicle including a continuously variable transmission.
  • the control target is not limited to the engine speed, and among the parameters (throttle opening, vehicle speed, engine speed, gear ratio), a fixed parameter may be changed as appropriate. That is, in the continuously variable transmission, various configurations can be employed as long as the acceleration gear ratio can be set at a stage before reaching the predetermined section.
  • the present invention may be applied to a hybrid vehicle. That is, in the hybrid vehicle, a part of the driving force generated by the engine is transmitted as regenerative energy to the electric motor to store the rechargeable battery. Therefore, in the deceleration control process shown in FIG. 6, control may be performed so that deceleration is performed by an engine brake and a braking unit that accompany acquisition of the regenerative energy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Fluid Gearings (AREA)
  • Regulating Braking Force (AREA)

Abstract

自車両の前方の所定区間を走行する際の目標車速を取得し、前記所定区間を走行した後に前記自車両を前記目標車速よりも大きい車速に加速させるための変速比である加速変速比を取得し、前記所定区間の開始地点に到達する前に前記自車両の変速比を前記加速変速比に設定させ、前記所定区間の開始地点に到達する前に前記自車両の車速を前記目標車速まで減速させる。

Description

運転支援装置、運転支援方法および運転支援プログラム
 本発明は、車両の運転を支援する運転支援装置、方法およびプログラムに関する。
 従来、車両の制動力を制御する装置として、目標減速度を超えない範囲で目標減速度に最も近い減速度が得られる変速段に切り替え、当該変速段におけるエンジンブレーキを利用しながら当該エンジンブレーキによる減速では不足する減速度をブレーキで補って減速する技術が知られている(例えば、特許文献1参照)。
特許第3858952号公報
 従来の技術においては、減速をした後に加速する際にスムーズに加速することができなかった。
  すなわち、従来の技術においては、目標減速度に着目し、当該目標減速度を超えない範囲で目標減速度に最も近い減速度が得られる変速段に切り替えている。しかし、減速動作の後に加速を行う場合、例えば、所定区間の入口以前で減速し出口以後で加速する場合には、目標減速度に合わせて変速段を切り替えると加速の段階で加速に適した変速比になっていないことがあり、スムーズに加速を行うことができない。
  本発明は、上記課題にかんがみてなされたもので、減速をした後に加速する際にスムーズに加速することが可能な技術を提供することを目的とする。
 上記の目的を達成するため、本発明においては、自車両の前方に存在する所定区間を走行する際の目標車速に基づいて、自車両を当該目標車速よりも大きい車速に加速させるための加速変速比を取得する。そして、自車両が所定区間の開始地点に到達する前に自車両における変速比を加速変速比に設定し、自車両が所定区間の開始地点に到達する前に自車両の車速を減速させて目標車速とする。すなわち、本発明においては、所定区間を走行した後に自車両を加速させるための変速比に着目して加速変速比を決定する。従って、本発明によれば、所定区間に到達する前に、自車両を目標車速よりも大きい車速に加速するために適した加速変速比となっており、所定区間を走行した後の加速段階でスムーズに加速することが可能である。
 ここで、車速情報取得手段は、自車両の前方における所定区間について、当該所定区間を走行する際の目標車速を取得することができればよく、車速を示す情報を直接的に取得しても良いし、間接的に取得しても良い。前者としては、予め設定された所定区間に対して予め目標車速を対応付けておき、当該所定区間に対応付けられた目標車速を取得する構成を採用可能である。後者としては、所定区間やその前後の道路を示す情報に基づいて目標車速を決定する構成を採用可能である。
 また、所定区間は、当該区間に到達する前に自車両を減速させて目標車速にするとともに、目標車速で所定区間を走行した後に自車両を加速させることが好ましい区間であれば良く、目標車速を維持して(または目標車速以下の車速で)走行すべき区間を所定区間とする構成を採用してもよい。例えば、カーブ区間や、通過する際に制限車速以下に減速させることが推奨されているETC(Electronic toll collection)ゲートが存在する地点の前後所定距離の区間や制限車速以下で走行することが指示されている徐行区間等が挙げられる。なお、所定区間は地点によって定義されていても良い。さらに、目標車速は当該所定区間を走行する際の好ましい車速であり、予め設定されればよい。例えば、カーブ区間においては、カーブ区間における一定半径の区間を一定の速度で走行することが好ましいため、当該一定の速度を目標車速とする構成を採用可能である。上述のように、制限車速が決められている場合には、当該制限車速(例えば、ETCゲートについて20km/h、徐行区間について10km/h)を目標車速とすればよい。
 加速変速比取得手段は、所定区間を走行した後に自車両を目標車速よりも大きい車速に加速させるための変速比を取得することができれば良く、少なくとも、目標車速よりもさらに加速を行うことが可能な変速比を取得することができればよい。例えば、目標車速から当該目標車速より大きい特定の車速に加速させることが可能な変速比や、駆動源の回転数が特定の値であるときに目標車速よりも大きい車速で走行させることが可能な変速比を取得することができればよい。すなわち、これらの変速比を加速変速比とし、所定区間の走行を完了する前に当該加速変速比としておくことにより、所定区間の走行後の加速段階で変速比を変更することなく加速可能であればよい。この結果、所定区間を走行後に自車両をスムーズに加速させることが可能になる。なお、変速比は、少なくとも、目標車速よりも大きい車速に加速させるために必要充分な変速比であればよいが、加速をよりスムーズにするための変速比を予め決定しても良い。例えば、加速開始時点でのスロットル開閉操作や自車両駆動源の回転数等のパラメータを推定し、当該推定に基づいて最も効率的に加速が可能な変速比等を選択可能である。
 変速比制御手段は、所定区間の開始地点に到達する前に前記自車両の変速比を前記加速変速比に設定させることができればよい。すなわち、所定区間の開始地点に到達する前に自車両の変速比を加速に適した加速変速比に設定すると、所定区間に到達する前の道路を走行している自車両において、通常は、より大きい変速比に変更される。このため、変速比を加速変速比とすることで所定区間に到達する以前の減速を補助することが可能である。また、所定区間到達以降では加速変速比を変更せず維持すれば、所定区間における走行を安定させることができる。なお、変速比の設定は自車両に搭載された変速部(例えば、トルクコンバータ付き変速機)に対して実施することができれば良い。すなわち、当該変速部に対する変速比の指示によって変速比を設定し、当該指示に基づいて変速部が指示通りの変速比に切り替えることができればよい。
 減速制御手段は、自車両の車速を所定区間の開始地点に到達する前に目標車速にするように減速させることができればよい。従って、自車両を減速させるための減速部、例えば、駆動源の回転数の調整装置(スロットル等)やブレーキを制御して自車両を減速させることができれば良い。また、自車両を目標車速とするための構成としては、例えば、基準のパラメータに対するフィードバック制御によって減速を行う構成等を採用可能である。なお、基準のパラメータは、自車両の車速を目標車速とする際に基準となる指標であれば良く、自車両の現在位置から所定区間の開始地点までの距離内で自車両の現在車速を目標車速とするために必要な減速度や車速の推移等をこれらの基準のパラメータとすることができる。
 さらに、目標車速を推奨車速に加速させるための必要加速量に基づいて加速変速比を取得しても良い。例えば、車速情報取得手段において所定区間走行後の推奨車速を取得するように構成し、加速変速比取得手段において自車両を目標車速から推奨車速に加速させるための必要加速量を取得し、当該必要加速量で自車両を走行させるための変速比である加速変速比を取得する構成とする。この構成によれば、自車両において、推奨車速まで加速させるための加速変速比を容易に取得することが可能である。なお、推奨車速は、目標車速よりも大きい車速であればよく、例えば、所定区間走行後の道路における制限速度を推奨車速とすることができる。また、減速制御手段にて所定区間に対する減速制御処理を行う前の車速や減速制御処理を開始した時点での車速を推奨車速としてもよい。さらに、オートクルーズ制御を行う車両において、維持するように設定された車速を推奨車速としてもよい。
 なお、必要加速量は、自車両を目標車速から推奨車速にするための加速量であれば良く、車速を目標車速から推奨車速にするために自車両にて出力されるエネルギーを評価するためのパラメータを必要加速量とすることができればよい。当該パラメータとしては、例えば、加速度,トルク,エンジン出力等を採用可能である。
 さらに、必要加速量を取得する際に、所定区間の後の道路に応じた加速量を取得しても良い。例えば、所定区間の終了地点以降に予め所定距離の加速区間を設定しておき、当該加速区間にて目標車速を推奨車速にするための必要加速量(例えば、等加速度にて当該加速を行う際の加速度)を取得する構成を採用可能である。なお、加速区間は各所定区間に対応付けて定義されれば良く、一定の距離の区間でも良いが、道路の形状等に応じて適宜変更する構成としても良い。例えば、カーブ区間の後に設定されたクロソイド区間を加速区間としても良いし、カーブ区間が連続する際にあるカーブ区間と次のカーブ区間との間の所定区間を加速区間としても良い。
 さらに、変速比を決定するための構成例として、自車両の駆動源が所定の回転数であるときに必要加速量以上の加速量を発生させることが可能な変速比のうち、最も燃料消費量が少なくなる変速比を加速変速比とする構成を採用可能である。すなわち、変速比を維持しながら加速を行ったときに推奨車速とすることが可能な変速比であって燃料を最も効率的に使用可能な変速比を加速変速比とする。この構成によれば、効率的に燃料を使用することが可能である。なお、所定の回転数は自車両にて加速を開始する時点における駆動源の回転数の既定値であれば良く、統計値等に基づいて決定してもよいし、自車両を必要加速量で加速させるための制御を行う際に加速開始時点の回転数として予め設定された値であっても良い。また、駆動源は回転力によって車両を駆動することができれば良く、エンジンやモーター等が当該駆動源に相当する。
 さらに、変速比を決定するための構成例として、自車両の駆動源が所定の回転数であるときに必要加速量以上の加速量を発生させることが可能な変速比のうち、最も小さな変速比を加速変速比とする構成を採用可能である。すなわち、変速比を維持しながら加速を行ったときに推奨車速とすることが可能な変速比であって、入力側の駆動源の回転数を低下させて出力側に伝達する際の当該回転数の低下度合いが最も小さい変速比を加速変速比とする。この構成によれば、駆動源の回転数をできるだけ上昇させずに自車両を目標車速から推奨車速へ加速させることができ、効率的に加速を行うことが可能である。
 さらに、変速比を加速変速比に設定する際のタイミングとして、車両の走行安定性の低下を防止するタイミングを採用しても良い。例えば、変速比を加速変速比に設定することによって自車両の走行安定性が低下する程度が所定の程度を越える時点を推定し、当該時点以前に変速比を加速変速比に設定する構成を採用可能である。この構成によれば、走行安定性が所定の程度以上に低下することを防止しながら変速比を加速変速比に設定することができる。従って、変速が車両の挙動に与える影響を抑えながら変速比を加速変速比に設定することが可能である。なお、走行安定性が低下する程度が所定の程度を越える時点を特定するための指標は時間であっても良いし、距離であっても良い。例えば、現在時点から所定の時間間隔(例えば、2秒など)だけ後の時点での力やスリップの可能性を判定する構成であっても良いし、現在位置から所定の距離だけ前方の位置での力やスリップの可能性を判定する構成であっても良く、種々の構成を採用可能である。
 さらに、上述の従来技術のように目標減速度に最も近い減速度が得られる変速比を選択して減速を行うとエンジンブレーキによる減速度を有効に活用して減速することが可能であるが、当該エンジンブレーキを有効に機能させることに起因して変速時に車両に与えるショックは比較的大きくなる。しかし、本発明においては減速時の減速度ではなく加速に着目して加速変速比を決定しているため、変速時に車両に与えるショックを比較的小さく抑えることができる。また、目標減速度に最も近い減速度が得られる変速比を選択する構成においては、減速度を有効に活用するために比較的早い段階で変速比の変更が実施される。このように、減速開始後の早い段階で変速比を切り替えると、駆動源が高回転になるとともに当該高回転の状態が長く続くことになり、運転者に違和感を与えやすい。しかし、本発明においては、加速に着目して加速変速比を決定しているため、減速開始後の比較的遅い段階で変速比を切り替えることになり、運転者にこの種の違和感を与えることはない。
 さらに、自車両に作用する力と自車両にスリップを生じさせる力とに基づいて走行安定性を評価しても良い。例えば、自車両の前方において変速比を加速変速比に設定したときに自車両に作用する力を推定し、当該自車両に作用する力が自車両にスリップを生じさせる力となる以前に変速比が加速変速比に設定される構成としても良い。この構成によれば、変速比を加速変速比に設定することによって自車両にスリップが生じないように変速比を設定することができる。ここでも、自車両に作用する力が自車両にスリップを生じさせる力となる時点を特定するための指標は時間であっても良いし、距離であっても良い。例えば、現在時点から所定の時間間隔(例えば、2秒など)だけ後の時点での力やスリップの可能性を判定する構成であっても良いし、現在位置から所定の距離だけ前方の位置での力やスリップの可能性を判定する構成であっても良く、種々の構成を採用可能である。
 さらに、本発明のように所定区間を走行する際の目標車速から加速するための変速比を設定して減速制御を行う手法は、プログラムや方法としても適用可能である。また、以上のような運転支援装置、プログラム、方法は、単独の運転支援装置として実現される場合もあれば、車両に備えられる各部と共有の部品を利用して実現される場合もあり、各種の態様を含むものである。例えば、以上のような運転支援装置を備えたナビゲーション装置や方法、プログラムを提供することが可能である。また、一部がソフトウェアであり一部がハードウェアであったりするなど、適宜、変更可能である。さらに、運転支援装置を制御するプログラムの記録媒体としても発明は成立する。むろん、そのソフトウェアの記録媒体は、磁気記録媒体であってもよいし光磁気記録媒体であってもよいし、今後開発されるいかなる記録媒体においても全く同様に考えることができる。
運転支援装置を含むナビゲーション装置のブロック図である。 カーブ区間の例を示す図である。 運転支援処理のフローチャートである。 車両減速処理のフローチャートである。 減速開始判定処理のフローチャートである。 減速制御処理のフローチャートである。 車速制限処理のフローチャートである。 変速比選択処理のフローチャートである。 変速比取得処理のフローチャートである。 車両に作用する力を説明する説明図である。
符号の説明
  10…ナビゲーション装置、20…制御部、21…ナビゲーションプログラム、21a…車速情報取得部、21b…必要加速量取得部、21c…加速変速比取得部、21d…変速比制御部、21e…減速制御部、21f…加速制御部、30…記録媒体、30a…地図情報、30a1…カーブ区間情報、30a3…加速区間情報、41…GPS受信部、42…車速センサ、43…ジャイロセンサ、44…変速部、45…制動部、46…スロットル制御部
 ここでは、下記の順序に従って本発明の実施の形態について説明する。
(1)ナビゲーション装置の構成:
(2)運転支援処理:
  (2-1)車両減速処理:
  (2-2)減速開始判定処理:
  (2-3)減速制御処理:
  (2-4)車速制限処理:
  (2-5)変速比選択処理:
  (2-6)変速比取得処理:
(3)他の実施形態:
 (1)ナビゲーション装置の構成:
  図1は、本発明にかかる運転支援装置を含むナビゲーション装置10の構成を示すブロック図である。ナビゲーション装置10は、CPU,RAM,ROM等を備える制御部20と記録媒体30とを備えており、記録媒体30やROMに記憶されたプログラムを制御部20で実行することができる。本実施形態においては、このプログラムの一つとしてナビゲーションプログラム21を実施可能であり、当該ナビゲーションプログラム21はその機能の一つとしてカーブ区間に到達する前に加速区間における加速に適した変速比を設定して減速を実行させる機能を備えている。
 本実施形態における車両(ナビゲーション装置10が搭載された車両)は、ナビゲーションプログラム21による機能を実現するためにGPS受信部41と車速センサ42とジャイロセンサ43と変速部44と制動部45とスロットル制御部46とを備えており、これらの各部と制御部20とが協働することによってナビゲーションプログラム21による機能を実現する。
 GPS受信部41は、GPS衛星からの電波を受信し、図示しないインタフェースを介して車両の現在位置を算出するための情報を出力する。制御部20は、この信号を取得して車両の現在位置を取得する。車速センサ42は、車両が備える車輪の回転速度に対応した信号を出力する。制御部20は、図示しないインタフェースを介してこの信号を取得し、車両の速度を取得する。ジャイロセンサ43は、自車両の向きに対応した信号を出力する。制御部20は図示しないインタフェースを介してこの信号を取得し、自車両の走行方向を取得する。車速センサ42およびジャイロセンサ43は、GPS受信部41の出力信号から特定される自車両の現在位置を補正するなどのために利用される。また、自車両の現在位置は、当該自車両の走行軌跡に基づいて適宜補正される。なお、車両の動作を示す情報を取得するための構成は、ほかにも種々の構成を採用可能であり、自車両の現在位置をセンサやカメラによって特定する構成や、GPSからの信号や地図上での車両の軌跡,車車間通信,路車間通信等によって自車両動作情報を取得する構成等を採用可能である。
 変速部44は、前進について計6速、後進について計1速等の複数の変速段を有する有段のトルクコンバータを備えており、各変速段に対応した変速比で回転数を調整しながらエンジンの駆動力を自車両の車輪に伝達することができる。制御部20は図示しないインタフェースを介して変速段を切り替えるための制御信号を出力し、変速部44は当該制御信号を取得して変速段を切り替えることが可能である。本実施形態においては、前進1速~前進6速のように変速段がハイギアになるにつれて変速比が小さくなるように構成されている。
 制動部45は、自車両の車輪に搭載されたブレーキによる減速の程度を調整するホイールシリンダの圧力を制御する装置を含み、制御部20は当該制動部45に対して制御信号を出力してホイールシリンダの圧力を調整させることが可能である。従って、制御部20が当該制動部45に対して制御信号を出力してホイールシリンダの圧力を増加させると、ブレーキによる制動力が増加し、自車両が減速される。
 スロットル制御部46は、自車両に搭載されたエンジンに供給する空気の量を調整するためのスロットルバルブを制御する装置を含み、制御部20は当該スロットル制御部46に対して制御信号を出力してスロットルバルブの開度を調整することが可能である。従って、制御部20が当該スロットル制御部46に対して制御信号を出力して吸気量を増加させると、エンジンの回転数が増加する。なお、制御部20は変速部44およびスロットル制御部46に対する制御指示を行う構成であるため、当該制御部20においては変速部44によって設定された現在の変速比Snとスロットル制御部46によって設定された現在のスロットル開度Thを取得することができる。
 制御部20は、ナビゲーションプログラム21を実行することにより、GPS受信部41の出力情報や後述する地図情報等に基づいて車両の経路探索等を行い、図示しない表示部やスピーカーを介して経路案内等を行う。また、このとき、変速部44における変速比の設定と制動部45およびスロットル制御部46を利用した加減速制御を実施するため、ナビゲーションプログラム21は車速情報取得部21aと加速変速比取得部21c(必要加速量取得部21bを含む)と変速比制御部21dと減速制御部21eと加速制御部21fを備えている。
 また、記録媒体30には、ナビゲーションプログラム21による案内を実施するため地図情報30aが記憶されている。地図情報30aは、車両が走行する道路上に設定されたノードを示すノードデータ,ノード間の道路の形状を特定するための形状補間点データ,ノード同士の連結を示すリンクデータ,道路やその周辺に存在する地物を示すデータ等を含み、自車両の現在位置の特定や目的地への案内等に利用される。
 本実施形態においては、カーブ区間(一定半径の区間)に到達する前に減速制御を行うように構成されており、カーブ区間およびその前後の道路を示す情報が地図情報30aに含まれている。図2は、カーブ区間Zrの例を示す図であり、自車両Cが細い一点鎖線で示すカーブ区間Zrに向けて走行している状態を示している。本実施形態においては、カーブ区間Zrの開始地点Rsに相当するノードデータに当該カーブ区間Zrの開始地点Rsであることを示す情報が対応付けられ、カーブ区間Zrの終了地点Reに相当するノードデータに当該カーブ区間Zrの終了地点Reであることを示す情報が対応付けられている。また、当該開始地点Rsと終了地点Reとの間の道路形状を示す形状補間データはカーブ区間Zrの円弧上の位置を示すデータであり、当該形状補間データに基づいてカーブ区間Zrにおける一定の半径Rおよび当該半径Rの区間を一定の車速で走行する際の車速(目標車速V0)を特定することができる。本実施形態においては、カーブ区間Zrの開始地点Rsと終了地点Reとその間の形状補間点を示す情報をカーブ区間情報30a1と呼ぶ。
 また、上述のカーブ区間Zr以前の区間においては、カーブ区間Zrの開始地点Rsからカーブ区間の逆側に所定距離L0の区間を当該カーブ区間Zrに到達する前に減速制御を実施しても良い区間として設定する。図2においては、細い破線で所定距離L0の区間を示している。所定距離L0は直線区間と定曲率区間との間のクロソイド区間の長さによって決められていても良い。なお、図2においては所定距離L0の区間の開始地点を開始地点Caとして示している。本実施形態においては、カーブ区間情報30a1に対して所定距離L0を示す情報が対応づけられている。
 さらに、上述のカーブ区間Zr以降の区間においては、当該カーブ区間Zrを走行した後の所定地点(加速区間Zaの終了地点Ce)に向けて加速を行うための加速区間Za(図2にて二点鎖線で示す区間、例えば、クロソイド区間)が設定されており、本実施形態においては、加速区間Zaの終了地点Ceに相当するノードデータに当該加速区間Zaの終了地点Ceであることを示す情報が対応付けられている。なお、本実施形態において、加速区間Zaの開始地点はカーブ区間Zrの終了地点Reと一致し、加速区間Zaの開始地点Reと終了地点Ceとの間の形状は形状補間データによって示される。
 また、加速区間Zaの開始地点Reと終了地点Ceとの位置を示す情報に基づいて加速区間Zaの距離L1を特定することができる。また、加速区間Zaの終了地点Ceに相当するノードデータには、その地点における制限車速が対応付けられており、当該制限車速は本実施形態において加速区間を走行後の推奨車速V1となる。さらに、後述の加速制御を行うために加速区間Zaの開始地点Reにおけるスロットル開度Th1が予め決められており、加速区間Zaの終了地点Ceに相当するノードデータに当該スロットル開度Th1を示す情報が対応付けられている。本実施形態においては、加速区間Zaの開始地点Reと終了地点Ceと、それらの間の道路形状を示す形状補間データと推奨車速V1とスロットル開度Th1を示す情報を加速区間情報30a3と呼ぶ。
 車速情報取得部21aは、カーブ区間Zrを走行する際の目標車速V0とカーブ区間Zrを走行後の推奨車速V1とを取得するモジュールであり、地図情報30aを参照してこれらの車速情報を特定する。すなわち、制御部20は車速情報取得部21aの処理によりカーブ区間情報30a1を参照してカーブ区間Zrの半径Rを特定し、当該半径Rの区間を一定の車速で走行するための車速を取得して目標車速V0とする。例えば、予め設定された横加速度Gt(例えば、0.2G)にて一定車速で走行するための車速(Gt・R)1/2を目標車速V0として取得する。また、加速区間情報30a3を参照して推奨車速V1を取得する。
 必要加速量取得部21bは、自車両を目標車速V0から推奨車速V1に加速させるための必要加速量を取得するためのモジュールであり、制御部20は必要加速量取得部21bの処理により加速区間情報30a3に基づいて加速区間の距離L1を特定し、当該距離L1にて目標車速V0から推奨車速V1に加速させるための必要加速度aを取得する。すなわち、加速区間Zaの開始地点Reと終了地点Ceとその間の形状補間点との位置を示す情報から道路形状に沿った開始地点Reと終了地点Ceとの間の長さを距離L1として取得する。そして、当該距離L1にて目標車速V0を推奨車速V1とするための必要加速度aを、例えば、等加速度運動を想定し、a=(V1 2-V0 2)/(2L1)などとして取得する。
 加速変速比取得部21cは、必要加速度a以上の加速度で自車両を走行させるための変速比である加速変速比Sa(Saは1~6(上述の前進1速~6速に対応)のいずれか)を取得するモジュールであり、制御部20は加速変速比取得部21cの処理により加速区間情報30a3を参照してスロットル開度Th1を取得し、当該スロットル開度Th1と必要加速度aと目標車速V0とに基づいて変速比を決定する。本実施形態においては、自車両における車速が目標車速V0であり、スロットル開度Th1に対応するエンジン回転数で走行している状態において、必要加速度a以上の加速度を発生させることが可能な変速比のうち、最も燃料消費量が少なくなる変速比を加速変速比Saとする。
 この構成によれば、効率的に燃料を使用して自車両を目標車速V0から推奨車速V1へ加速させることができる。なお、ここで、変速比の選択は、例えば、エンジン回転数やスロットル開度Th1に対応付けられた燃料消費量マップを予め用意し、当該燃料消費量マップに基づいて実施する構成等を採用可能である。また、ここではスロットル開度Th1に対応したエンジン回転数を想定したが、むろん、当該回転数を統計値等に基づいて決定しても良い。
 変速比制御部21dは、自車両がカーブ区間Zrの開始地点Rsに到達する前に自車両の変速比を加速変速比Saに設定させるモジュールであり、制御部20は変速比制御部21dの処理により、後述する処理手順に従った所定のタイミングで変速比を加速変速比Saとするための制御信号を変速部44に出力する。変速部44は、当該制御信号に応じて変速比を加速変速比Saに切り替える。
 減速制御部21eは、自車両がカーブ区間Zrに到達する前に自車両の車速が目標車速V0になるように減速させるモジュールであり、制御部20は減速制御部21eの処理により、カーブ区間Zrの開始地点Rsにおいて車速が目標車速V0となるようにフィードバック制御を行う。すなわち、目標車速V0を取得するとともにカーブ区間情報30a1を参照して自車両の現在位置と開始地点Rsとその間の形状補間点との位置を示す情報から道路形状に沿った自車両の現在位置と終了地点Rsとの間の長さを距離Lcとして取得する。
 そして、当該距離Lcにて自車両の現在車速Vcを目標車速V0とするための必要減速度Gr(自車両の進行方向を正とした場合の負の加速度)を、例えば、等加速度運動を想定し、Gr=(V0 2-Vc2)/(2Lc)などとして取得する。さらに、本実施形態においては、必要減速度Grを逐次取得しており、当該必要減速度Grが予め決められた閾値(後述するLimG_hあるいはLimG_L)を超えたときに減速制御を開始する。すなわち、変速部44によって設定されている現在の変速比Snおよびスロットル制御部46によって調整された現在のスロットル開度Thでのエンジン回転数に基づいてエンジンブレーキによる減速度Geを取得する。そして、制御部20は、必要減速度Grと当該減速度Geとの差分(Gr-Ge)に相当する減速度をブレーキによって発生させるための制御信号を制動部45に出力する。この結果、制動部45においては、必要減速度Grと当該減速度Geとの差分(Gr-Ge)を補うようにブレーキを作用させる。
 なお、本実施形態においては、カーブ区間に到達する前において減速動作を行っている最中に変速比を加速変速比Saに切り替える。このとき、通常は変速比の切り替えによってよりトルクが大きい変速比となる。このため、変速比を加速変速比Saとすることでカーブ区間に到達する以前の減速を補助することが可能である。
 さらに、加速制御部21fは、自車両がカーブ区間Zrを走行した後の加速を制御するためのモジュールであり、制御部20は加速制御部21fの処理により、カーブ区間Zrの終了地点Reから距離L1の間の加速区間Zaにおいて、車速を目標車速V0から推奨車速V1にするようにスロットル開度Thを制御する。すなわち、変速比を加速変速比Saに維持した状態で、スロットル制御部46に制御信号を出力してスロットル開度をTh1に設定し、その後、必要加速度aにて加速が行われるように適宜スロットル開度を調整する。
 以上の構成によれば、自車両にてカーブ区間に到達する前の道路を走行している段階で加速変速比Saに設定するため、加速区間Zaを走行する段階では推奨車速V1に加速するために適した加速変速比Saとなっており、当該加速区間Zaにて不要な変速を行うことを抑制することができる。このため、当該不要な変速に伴うエンジン回転数の変化を抑制し、加速時の走行安定性の低下を抑制することができ、スムーズに加速することが可能である。また、必要減速度Grに最も近い減速度が得られる変速比を選択して減速を行うと、エンジンブレーキによる減速度を有効に活用して減速することが可能であるが、当該エンジンブレーキを有効に機能させることに起因して変速時に車両に与えるショックは比較的大きくなる。しかし、本発明においては減速時の減速度ではなく加速時の必要加速度aに着目して加速変速比Saを決定しているため、変速時に車両に与えるショックを比較的小さく抑えることができる。
 (2)運転支援処理:
  次に、以上の構成においてナビゲーション装置10が実施する運転支援処理を説明する。ナビゲーション装置10によってナビゲーションプログラム21が実行されているとき、当該ナビゲーションプログラム21が備える各部は図3に示す処理を実行する。本実施形態においては、減速制御に関して3種類の異なる制御の状態(減速制御状態DSと呼ぶ)を設け、変速比制御に関して3種類の異なる制御の状態(変速比制御状態GSと呼ぶ)を設けており、制御部20は減速制御状態DSおよび変速比制御状態GSを特定するための変数を"0"に初期化する(ステップS100,S110)。なお、本実施形態において、車速の制御を実施しない状態がDS=0,車速を目標車速V0に減速させる状態がDS=1,カーブ区間において車速を維持する状態がDS=2である。また、変速比の制御を行わない状態がGS=0,変速比の算出処理を行う状態がGS=1,変速比の切り替え処理を行う状態がGS=2である。
 減速制御状態DSおよび変速比制御状態GSを初期化すると、制御部20は、自車両の前方に存在するカーブ区間の情報を取得する(ステップS120)。すなわち、制御部20は、GPS受信部41等の出力信号に基づいて自車両の現在位置を特定し、地図情報30aを参照して当該現在位置の前方の所定範囲にカーブ区間が存在するか否かを判定する。そして、カーブ区間が存在する場合には、そのカーブ区間に関するカーブ区間情報30a1,加速区間情報30a3を取得する。さらに、制御部20は、車両減速処理(ステップS130)、変速比選択処理(ステップS140)を実行し、図示しないイグニションスイッチの出力信号を取得してイグニションがオフにされたか否かを判定する(ステップS150)。そして、イグニションがオフにされたと判別されるまでステップS120以降の処理を繰り返す。
 (2-1)車両減速処理:
  図4は、ステップS130における車両減速処理を示すフローチャートである。同図4に示す車両減速処理において、制御部20は、減速制御状態DSが"0"であるか否か(ステップS200)、"1"であるか否か(ステップS210)、"2"であるか否か(ステップS220)を判別する。そして、ステップS200にてDS=0であると判別されたときには減速開始判定処理(ステップS205)、ステップS210にてDS=1であると判別されたときには減速制御処理(ステップS215)、ステップS220にてDS=2であると判別されたときには車速制限処理(ステップS225)を実行する。他の判別結果であった場合およびステップS205,S215,S225を実施した後には、図3に復帰して処理を繰り返す。
 (2-2)減速開始判定処理:
  図5は、ステップS205における減速開始判定処理を示すフローチャートである。当該減速開始判定処理においては、予め決められた条件に基づいて減速制御状態DSを"1"あるいは"2"にするための処理を行う。このためにまず制御部20は、減速制御部21eの処理により、自車両がカーブ区間Zrの開始地点Rsまで所定距離L0以内の位置に到達したか否かを判別する(ステップS300)。すなわち、自車両が開始値点Caを通過したか否かを判別する。具体的には、制御部20は、GPS受信部41等の出力信号に基づいて自車両の現在位置を取得し、カーブ区間情報30a1を参照してカーブ区間Zrの開始地点Rsの位置を取得し、自車両の現在位置が開始地点Rsの位置に近づく過程において、自車両の現在位置と開始地点Rsとの距離が所定距離L0以下であるか否かを判別する。ステップS300にて、カーブ区間Zrの開始地点Rsまで所定距離L0以内の位置に到達したと判別されないときには、ステップS305以降の処理をスキップして図4に示す処理に復帰する。
 ステップS300にて、自車両がカーブ区間Zrの開始地点Rsまで所定距離L0以内の位置に到達したと判別されたとき、制御部20は、車速情報取得部21aおよび減速制御部21eの処理により、カーブ区間Zrの開始地点Rsにて自車両の車速を目標車速V0とするための必要減速度Grを取得する(ステップS305)。すなわち、制御部20は、カーブ区間情報30a1に基づいてカーブ区間Zrの半径Rを特定するとともに当該半径Rのカーブを一定速度で走行する際の車速を目標車速V0として取得する。また、GPS受信部41等の出力信号に基づいて特定される自車両の現在位置と、カーブ区間情報30a1に基づいて特定されるカーブ区間Zrの開始地点Rsと、現在位置と開始地点Rsとの間の形状補間点の位置を示す情報から上述の距離Lcを取得する。そして、車速センサ42の出力情報に基づいて現在車速Vcを特定し、Gr=(V0 2-Vc2)/(2Lc)として必要減速度Grを取得する。
 次に、制御部20は、スロットルバルブが開状態(アクセルオン状態)であるか否かを判別する(ステップS310)。すなわち、制御部20は減速制御部21eの処理により、現在のスロットル開度Thを取得し、スロットルバルブが閉じられていない開状態であるか否かを判別する。ステップS310にてスロットルバルブが開状態であると判別されない(アクセルオフ状態)とき、制御部20は減速制御部21eの処理により、必要減速度Grが閾値LimG_L以上であるか否かを判別する(ステップS315)。また、ステップS310にてスロットルバルブが開状態であると判別された(アクセルオン状態)とき、制御部20は減速制御部21eの処理により、必要減速度Grが閾値LimG_h以上であるか否かを判別する(ステップS320)。
 ステップS315,S320にて、必要減速度Grがそれぞれの閾値以上であると判別されたとき、制御部20は減速制御部21eの処理により、減速制御状態DSを"1"に設定する(ステップS325,S330)。すなわち、自車両が減速することなくカーブ区間Zrに近づくとき、自車両がカーブ区間Zrに近づくにつれて車速を目標車速V0にするための必要減速度Grが大きくなり、いずれかのタイミングで必要減速度Grが閾値を超えるので、閾値を超えた後に減速制御を実施するように減速制御状態DSを"1"に設定する。なお、本実施形態においては、スロットルバルブの状態によって減速を開始すべきタイミングが異なると見なし、スロットルバルブが開状態であるときと閉状態であるときの閾値LimG_h,LimG_Lを異なる値とし、LimG_h>LimG_Lと設定してある。
 一方、ステップS315,S320にて、必要減速度Grがそれぞれの閾値以上であると判別されないとき、制御部20は減速制御部21eの処理により、自車両がカーブ区間Zrの開始地点Rsに到達したか否かを判別する(ステップS335)。すなわち、GPS受信部41等の出力信号に基づいて自車両の現在位置を取得し、カーブ区間情報30a1を参照してカーブ区間Zrの開始地点Rsの位置を取得し、自車両の現在位置が開始地点Rsの位置よりもカーブ区間Zr寄りであるか否かを判別する。ステップS335にて自車両がカーブ区間Zrの開始地点Rsに到達したと判別されたときには減速制御状態DSを"2"に設定する。すなわち、必要減速度Grが閾値を超えることなくカーブ区間Zrに到達したときには、減速制御状態DSを"2"とする。ステップS335にて自車両がカーブ区間Zrの開始地点Rsに到達したと判別されないときには図4に示す処理に復帰する。
 (2-3)減速制御処理:
  図6は、ステップS215における減速制御処理を示すフローチャートである。当該減速制御処理においては、自車両を減速させて目標車速V0とするための処理を行う。このためにまず制御部20は、減速制御部21eの処理により、カーブ区間Zrの開始地点Rsに到達したか否かを判別する(ステップS400)。すなわち、制御部20は、GPS受信部41等の出力信号に基づいて自車両の現在位置を取得し、カーブ区間情報30a1を参照してカーブ区間Zrの開始地点Rsの位置を取得し、自車両の現在位置が開始地点Rsの位置よりもカーブ区間Zr寄りであるか否かを判別する。
 ステップS400にて、自車両がカーブ区間Zrの開始地点Rsに到達したと判別されないときに、制御部20は、車速情報取得部21aおよび減速制御部21eの処理により、カーブ区間Zrの開始地点Rsにて自車両の車速を目標車速V0とするための必要減速度Grを取得する(ステップS405)。当該処理は、上述のステップS305と同様である。
 そして、制御部20は、エンジンブレーキおよび制動部によって必要減速度Grを発生させる(ステップS410)。すなわち、制御部20は、減速制御部21eの処理により、現在の変速比Snおよび現在のスロットル開度Thを取得し、当該変速比Snおよびスロットル開度Thでのエンジン回転数に基づいてエンジンブレーキによる減速度Geを取得する。そして、制御部20は、(Gr-Ge)に相当する減速度をブレーキによって発生させるための制御信号を制動部45に出力する。
 この結果、制動部45においては、必要減速度Grと当該減速度Geとの差分(Gr-Ge)を補うようにブレーキを作用させ、自車両における減速度が必要減速度Grとなる。必要減速度Grは、上述のように、距離Lcにて自車両の現在車速Vcを目標車速V0とするための必要減速度であるため、以上の制御を繰り返すことにより、自車両の車速を目標車速V0に収束させることができる。なお、以上の減速制御における変速比は必要減速度Grではなく必要加速度aに基づいて決定され、自車両の変速比は後述する処理によってカーブ区間に到達する前に加速変速比Saに切り替えられる。
 ステップS400にて自車両がカーブ区間Zrの開始地点Rsに到達したと判別されたとき、制御部20は減速制御状態DSを"2"に設定する(ステップS415)。すなわち、カーブ区間Zrに到達したときには、減速ではなく車速を維持する処理を行うために減速制御状態DSを"2"とする。なお、ステップS410,S415の後に図4に示す処理に復帰する。
 (2-4)車速制限処理:
  図7は、ステップS225における車速制限処理を示すフローチャートである。当該車速制限処理においては、自車両の車速を目標車速V0に維持するための処理を行う。このためにまず制御部20は、減速制御部21eの処理により、カーブ区間Zrの終了地点Re(加速区間Zaの開始地点)に到達したか否かを判別する(ステップS500)。すなわち、制御部20は、GPS受信部41等の出力信号に基づいて自車両の現在位置を取得し、カーブ区間情報30a1を参照してカーブ区間Zrの終了地点Reの位置を取得し、自車両の現在位置が終了地点Reの位置よりも加速区間Za寄りであるか否かを判別する。
 ステップS500にて、自車両がカーブ区間Zrの終了地点Reに到達したと判別されないときに、制御部20は、減速制御部21eの処理により車速センサ42の出力情報に基づいて現在車速Vcを特定し、現在車速Vcが閾値である目標車速V0を超えているか否かを判別する(ステップS505)。ステップS505にて現在車速Vcが目標車速V0を超えていると判別されたとき、制御部20は、エンジンブレーキおよび制動部によって必要減速度Grを発生させる(ステップS510)。当該ステップS510の処理は上述のステップS410と同様である。
 一方、ステップS500にて自車両がカーブ区間Zrの終了地点Reに到達したと判別されたとき、減速制御を終了させるため、制御部20は減速制御状態DSを"0"に設定する(ステップS515)。そして、ステップS510,S515の後、およびステップS505にて現在車速Vcが目標車速V0を超えていると判別されないときには図4に示す処理に復帰する。
 (2-5)変速比選択処理:
  図8は、ステップS140における変速比選択処理を示すフローチャートである。当該変速比選択処理においては、変速比制御状態GSを特定し,加速変速比Saを取得し、変速比の設定を行うための処理を実行する。当該変速比選択処理において、制御部20は、変速比制御状態GSが"0"であるか否か(ステップS600)、"1"であるか否か(ステップS615)を判別する。そして、ステップS600にてGS=0であると判別されたときには、変速比制御状態GSを"1"に設定するための処理(ステップS605,S610)を実行し、ステップS615にてGS=1であると判別されたときには変速比取得処理(ステップS620)を実行する。
 なお、ステップS605において、制御部20は、減速制御部21eの処理により、自車両がカーブ区間Zrの開始地点Rsまで所定距離L0以内の位置に到達したか否かを判別する。そして、ステップS605にて、自車両がカーブ区間Zrの開始地点Rsまで所定距離L0以内の位置に到達したと判別されないときには、ステップS610をスキップして図3に示す処理に復帰する。一方、自車両がカーブ区間Zrの開始地点Rsまで所定距離L0以内の位置に到達したと判別されたときには、変速比制御状態GSを"1"に設定する。すなわち、カーブ区間に到達する前に加速変速比Saを取得するための状態であるGS=1に設定する。
 ステップS620の変速比取得処理は後に詳述するが、当該変速比取得処理においては、変速比に対応した変速段を示す変数Nに加速変速比Saに対応した変速段を示す値を代入し、変速比制御状態GSを"2"にするための処理を行う。図8において、ステップS600にてGS=0であると判別されず、ステップS615にてGS=1であると判別されないとき、すなわち、変速比制御状態GSが"2"であるとき、制御部20は、変速比制御部21dの処理により、変数Nに対応した変速比で走行するように設定を行う(ステップS630)。ここで、変数Nには加速変速比Saに対応した変速段を示す値が代入されており、制御部20は、変速部44に制御信号を出力し、変数Nが示す変速段に変速させる。
 次に、制御部20は、変速比制御部21dの処理により、変速比を加速変速比Saに設定した状態を維持するか否かの判定を行う。すなわち、加速区間Zaの終了地点Ceに到達したか否かを判別し(ステップS635)、操舵角が所定角以内であるか否かを判別し(ステップS640)、現在車速が所定値以下であるか否かを判別する(ステップS645)。また、ステップS635にて終了地点Ceに到達したと判別されたとき、ステップS640にて操舵角が所定角以内であると判別されたとき、ステップS645にて現在車速が所定値以下であると判別されたとき、制御部20は変速比制御状態GSを"0"に設定する(ステップS650)。一方、これら以外の場合にはステップS650をスキップする。
 なお、本実施形態においては、変速比制御状態GSが"0"になると、変速比を加速変速比Saに設定した状態を解除し、運転者の操作に応じた変速を実施することが可能になる。また、ステップS635において制御部20は、GPS受信部41等の出力信号に基づいて自車両の現在位置を取得し、加速区間情報30a3を参照して加速区間Zaの終了地点Ceの位置を取得し、自車両の現在位置が終了地点Ceの位置以降であるか否かを判別する。従って、自車両が終了地点Ceを通過する以前においては自車両の状態が加速変速比Saに設定した状態で加速を行って良い状態であると見なし、自車両が終了地点Ceを通過すると運転者の操作に応じた変速比を設定可能にする。
 さらに、ステップS640において制御部20は、図示しない舵角センサの出力情報を取得し、当該出力情報に基づいて操舵角を特定する。そして、当該操舵角と予め決められた所定角とを比較することによって操舵角が所定角以内であるか否かを判定する。なお、ここでは、操舵角が所定角以内であるときには加速変速比Saに設定した状態で加速を行って良い状態であると見なし、操舵角が所定角以内でないときには運転者の操作に応じた変速比を設定可能にする。
 さらに、ステップS645において制御部20は、車速センサ42の出力情報に基づいて自車両の現在車速を特定し、当該現在車速が所定値以下であるか否かを判定する。ここでは、現在車速が所定値以下であるときに加速変速比Saに設定した状態で加速を行って良い状態であると見なし、現在車速が所定値以下でないときには運転者の操作に応じた変速比を設定可能にする。
 (2-6)変速比取得処理:
  図9は、ステップS620における変速比取得処理を示すフローチャートである。当該変速比取得処理においては、加速変速比Saに対応した変速段をNに代入し、当該加速変速比Saに対応した変速段に切り替えるための状態(GS=2)に設定するための処理を行う。
 当該変速比取得処理において、制御部20は、加速変速比Saに対応する変速段をNに代入する(ステップS700)。すなわち、制御部20は、車速情報取得部21a,必要加速量取得部21b,加速変速比取得部21cの処理により加速変速比Saを算出する。具体的には、制御部20が車速情報取得部21aの処理によりカーブ区間の半径Rに基づいて目標車速V0を特定し、加速区間情報30a3を参照して推奨車速V1を取得する。
 さらに制御部20は必要加速量取得部21bの処理により、加速区間情報30a3に基づいて加速区間の距離L1を特定し、必要加速度a=(V1 2-V0 2)/(2L1)を取得する。さらに、制御部20は、加速変速比取得部21cの処理により、加速区間情報30a3を参照して加速区間Zaの開始地点Reにおけるスロットル開度Th1を取得し、必要加速度aと目標車速V0とに基づいて変速比を決定する。本実施形態においては、自車両の車速が目標車速V0かつスロットル開度Th1であるときに各変速比において出力されるトルクTr1~Tr6(1~6は変速比に対応)と、必要加速度aに対応したトルクTraとを比較する。
 このため、まず、必要加速度aに対応したトルクTraを、例えば、加速度×車重×タイヤ半径/ディファレンシャルギア比などとして取得する。一方、目標車速V0において各変速比にて実現されるエンジン回転数(rpm)を、例えば、目標車速V0×1000/3600/(2π×タイヤ半径)×ディファレンシャルギア比×60×変速比×トルクコンバータスリップ比などとして取得する。この結果、変速比1~6(変速段6~1)に対応した目標車速V0でのエンジン回転数Re1~Re6が取得される。さらに、各エンジン回転数Re1~Re6かつスロットル開度Th1にて出力可能なトルクTr1~Tr6を取得する。当該トルクTr1~Tr6は、例えば、変速比毎にスロットル開度Th1およびエンジン回転数とトルクとを対応付けたトルク特性マップに基づいて各エンジン回転数Re1~Re6に対応するトルクTr1~Tr6を取得してもよい。
 以上のようにして必要加速度aに対応したトルクTraと、各変速比において出力されるトルクTr1~Tr6を取得すると、トルクTra以上のトルクを発生させることが可能(すなわち、必要加速度a以上の加速度を発生可能)な変速比の中で最も燃料消費量が少なくなる変速比を選択して加速変速比Saとする。この結果、必要加速度aにて加速を行ったときに自車両の車速を推奨車速V1とすることが可能な変速比であって、最も燃料消費量が少なくなる変速比が加速変速比Saとなる。加速変速比Saが得られたら、当該加速変速比Saに対応した変速段を示す値を変数Nに代入する。
 さらに、制御部20は、ステップS710以降にて、車両の走行安定性の低下を防止するタイミングで変速比制御状態GSを"2"に設定して変速比を設定するための処理を行う。この処理において、制御部20は、自車両の変速段を加速変速比Saに対応した変速段に設定したときに、当該自車両に作用する減速力Fadを算出する(ステップS710)。ここで、減速力Fadは加速変速比Saに対応した変速段において現在車速かつ現在のエンジン回転数で走行する際に自車両に作用する減速力(自車両の後方に向けた力)を示している。当該減速力Fadは、例えば、上述のトルクTr1~Tr6の算出と同様にして加速変速比Saに対応した変速段に対応するトルクを取得し、当該トルクと車重等に基づいて当該減速力Fadを算出すればよい。
 さらに、制御部20は自車両にスリップを生じさせる力を評価するための処理を行う。このためにまず、制御部20は、変速比制御部21dの処理により、2秒先の地点における曲率γを取得する(ステップS715)。すなわち、制御部20は、自車両の現在車速にて2秒間走行したときの地点を推定し、当該地点に最も近い少なくとも3点の形状補間点あるいはノードを取得し、少なくとも3点の形状補間点あるいはノードに基づいて当該地点における曲率γを取得する。さらに、制御部20は、前記2秒先の地点における路面の摩擦係数μを取得する(ステップS720)。当該路面の摩擦係数μは、予め特定されていれば良く、予め計測した摩擦係数を地図情報30aに記録しておいても良いし、天候等に基づいて推測して路面の摩擦係数を決定しても良いし、プローブ情報を利用して摩擦係数を決定しても良い。
 次に、制御部20は変速比制御部21dの処理により、自車両にスリップを生じさせる力を評価するための閾値LimFadを取得する(ステップS725)。本実施形態において閾値LimFadは((μ・W・S)2-Fc(γ)21/2で表され、Wは自車両の重量、Sは0より大きく1以下の係数、Fc(γ)は曲率γを走行しているときに自車両に作用する横方向の力を示す関数である。なお、重量W、係数S、関数Fc(γ)は予め記録媒体30に記録されており、制御部20は、記録媒体30を参照してこれらの情報を取得して閾値LimFadを算出する。
 図10は、減速力Fadと閾値LimFadを説明するための説明図である。同図10においては、矢印Fwに向かって走行する自車両Cと当該自車両Cに作用する摩擦力μ・Wの大きさを実線の円で示している。同図10において、自車両Cに作用する力(横方向の力Fc(γ)と減速力との合力)を示すベクトルの先端が実線の円を超える場合に自車両Cにてスリップが生じる。すなわち、摩擦力μ・Wを横方向の力Fc(γ)と車両後方に向けた減速力とに分力すれば、当該減速力をスリップが生じる限界の減速力とみなすことができる。
 そこで、本実施形態においては、摩擦力μ・Wに対して一定のマージンを与え、摩擦力μ・Wに1以下の係数Sを乗じた値μ・W・Sを横方向の力Fc(γ)に基づいて車両後方に向けた力に分力して得られた値を閾値LimFadとしている。すなわち、図10に例示するように、減速力Fadを示すベクトルの先端が、ベクトルμ・W・Sの分力ベクトルの先端に相当する位置Pよりも円の外周に近い場合に自車両Cの走行安定性が低下するとみなす。
 このため、制御部20は減速力Fadが閾値LimFadよりも大きいか否かを判別し(ステップS730)、減速力Fadが閾値LimFadよりも大きいと判別されないときには、制御部20は2秒先の地点がカーブ区間Zrの開始地点Rsを超えたか否かを判別し(ステップS735)、開始地点Rsを超えたと判別されない場合には、図8に示す処理に復帰する。一方、ステップS730にて減速力Fadが閾値LimFadよりも大きいと判別されたとき、または、ステップS735にて2秒先の地点が自車両がカーブ区間Zrの開始地点Rsを超えたと判別されたときには、変速比の設定を行わせるために変速比制御状態GSを"2"に設定する。
 従って、ステップS730を経て変速比制御状態GSが"2"となり、さらに、ステップS615の判別を経てステップS630にて変速比を設定する処理が行われると、自車両に作用する力が自車両にスリップを生じさせる力となる以前に変速比が加速変速比Saに設定されることになる。従って、変速比を加速変速比Saに設定することによって自車両にスリップが生じないように変速比を設定することができ、変速が車両の挙動に与える影響を抑えながら変速比を設定することが可能である。なお、ここでは、自車両の前方において自車両に作用する力がスリップを生じさせる力となるか否かを評価することができれば良く、上述のように現在時点から所定の時間間隔だけ後の時点における力を評価する構成の他、現在位置から所定の距離だけ前方の位置での力を評価する構成を採用しても良い。なお、ステップS715,S735における「2秒」は一例であり、変速比制御部21dが変速部44に、変速比を加速変速比Saとするための制御信号を出力してから、当該制御信号に応じて変速部44による変速比の切り替えが完了するまでに要する時間より大きい値が設定されていればよい。例えば、ステップS735においては、変速比を加速変速比Saに切り替えることができる時間以上後に到達する地点が開始地点Rsを超えたか否かを判定すればよい。むろん、現在時点から所定の時間間隔だけ後の時点における力を評価するために、上述のように現在位置から所定の距離だけ前方の位置での力を採用したときには、現在位置にて変速のための処理を開始してから変速が完了するまでの距離より大きい距離を所定の距離とする構成を採用可能である。
 以上の処理によれば、例えば、図2に太い破線の矢印で示すように、カーブ区間に到達する前の道路を6速で走行している自車両Cがカーブ区間Zrに接近すると、減速制御がなされてカーブ区間Zrの開始地点Rsまでに目標車速V0とされる。当該カーブ区間に到達する前の道路においては、変速比取得処理において加速変速比Saが算出される。また、当該変速比取得処理においては自車両Cより2秒先の道路の曲率γを取得しており、当該γが大きくなって減速力Fadが閾値LimFadを超えた段階で減速制御状態GSが"2"に設定されるので、加速変速比Saが例えば、3速の変速段に対応する変速比であれば、ステップS630の処理により変速段が3速となる。従って、図2にて太い一点鎖線で示すように、これ以後のカーブ区間に到達する前の道路、カーブ区間Zr、加速区間Zaにおいて変速段は3速に維持され、加速区間Zaにて加速を開始したときにスムーズに加速を行うことができる。
 (3)他の実施形態:
  以上の実施形態は本発明を実施するための一例であり、所定区間を走行する際の目標車速から加速するための変速比を設定して減速制御を行う限りにおいて、他にも種々の実施形態を採用可能である。例えば、目標車速はカーブ区間Zrの半径Rから算出したが、むろん、予め各カーブ区間に対して目標車速を対応付けておき、当該対応付けられた目標車速を取得しても良い。さらに、本発明の適用対象はカーブ区間に限定されず、目標車速を維持して(または目標車速以下の車速で)走行する区間を所定区間とする構成を採用してもよい。例えば、通過する際に制限車速以下に減速させることが推奨されているETC(Electronic toll collection)ゲートが存在する地点の前後所定距離の区間や制限車速以下で走行することが指示されている徐行区間等が挙げられる。なお、所定区間は地点によって定義されていても良い。さらに、制限車速が決められている区間を所定区間とする場合には、当該制限車速(例えば、ETCゲートについて20km/h、徐行区間について10km/h)を目標車速とすればよい。
 さらに、本発明は、必要加速量に対応した変速比を取得する構成に限定されることはなく、目標車速より大きい車速に加速することが可能な変速比を決定することができる限りにおいて種々の構成を採用可能である。例えば、カーブ区間等の所定区間を走行した後のスロットル開閉操作に対応した駆動源(エンジンやモータ)の回転数を予め学習しておき、自車両にて所定区間を走行した後に当該学習した回転数にて駆動源を回転させ、目標車速からより大きい車速に加速するための加速変速比を特定する構成等を採用可能である。すなわち、推奨車速が特定されていない場合であっても、所定区間を走行後に自車両の車速を目標車速よりも大きい車速に加速させることができる限りにおいて、種々の構成を採用可能である。
 さらに、加速変速比は、少なくとも、目標車速よりも大きい車速に加速させるために必要充分な変速比であればよいが、加速をよりスムーズにするための変速比を予め決定しても良い。例えば、加速開始時点でのスロットル開閉操作や自車両駆動源の回転数等のパラメータを推定し、当該推定に基づいて最も効率的に加速が可能な変速比等を選択可能である。また、減速制御に際しては、上述のように減速度に基づいてフィードバック制御を行うほか、車速に基づいてフィードバック制御を行う構成を採用しても良い。
 さらに、必要加速量は車速を目標車速から推奨車速にするために自車両にて出力されるエネルギーを評価するためのパラメータであればよく、上述の必要加速度aに限定されない。例えば、トルク,エンジン出力等を採用可能である。さらに、上述の実施形態においては、当該加速区間Zaや上述の所定距離L0によって定義される区間の一例および加速区間Zaをクロソイド区間としたが、むろん、これらの区間はそれぞれが減速のための区間および加速のための区間として予め決められていれば良く、クロソイド区間より短くても良いし長くても良い。さらに、クロソイド区間でなくても良く、例えば、カーブ区間が連続する際にあるカーブ区間と次のカーブ区間との間の所定区間を加速区間としても良い。さらに、加速変速比への変速は所定区間に到達する前に実施されれば良く、所定区間の開始地点あるいは所定距離L0によって定義される区間の開始地点Caで変速を行っても良いし、必要減速度Grが閾値LimG_h,LimG_Lを超えたときに変速を行っても良く、種々の構成を採用可能である。
 また、上述の実施形態においては、必要減速度Grが閾値LimG_h,LimG_Lを超えたときに減速制御を行うように構成したが、むろん、他の構成、例えば、所定距離L0によって定義される区間の開始地点Caを通過した後に減速を開始する構成としても良い。また、車速制限処理においては、現在車速Vcが目標車速V0を超えているときに減速を行う構成としたが、現在車速Vcが目標車速V0を下回るときに加速を行う構成であっても良い。さらに、上述の実施形態においては、必要加速度aに対応したトルクTraを超える出力が可能な変速比の中で最も燃料消費量の少ない変速比を選択して加速変速比Saとしていたが、他の思想に基づいて加速変速比を決定しても良い。例えば、必要加速度aに対応したトルクTraと、各変速比において出力されるトルクTr1~Tr6を取得し、トルクTra以上のトルクを発生させることが可能な変速比の中で最も小さな変速比を加速変速比Saとしてもよい。
 すなわち、変速比を維持しながら必要加速度aにて加速を行ったときに自車両の車速を推奨車速V1とすることが可能な変速比であって、スロットル開度Th1に対応するエンジン回転数を低下させて出力側に伝達する際の当該回転数の低下度合いが最も小さい変速比を加速変速比Saとする。この構成によれば、エンジンの回転数をできるだけ上昇させずに自車両を目標車速V0から推奨車速V1へ加速させることができ、効率的に加速を行うことが可能である。なお、ここではスロットル開度Th1に対応したエンジン回転数を想定したが、むろん、当該回転数を統計値等に基づいて決定しても良い。
 さらに、上述の実施形態において変速部44は有段のトルクコンバータを備えていたが、連続的に変速比を変更可能な無段変速機を備えた変速部を搭載した車両に本発明を適用しても良い。すなわち、無段変速機において、複数のパラメータに基づく制御によって変速比を制御する構成とし、所定区間に到達する前に当該制御によって加速変速比となるように制御する構成としても良い。例えば、上述の必要加速度aに対応したトルクTraを取得し、スロットル開度Th1および目標車速V0において、トルクTraと同等のトルクを出力可能なエンジン回転数を特定する。そして、所定区間に到達する前において、当該目標エンジン回転数と走行中のエンジン回転数との差分を解消するように変速比を制御する。
 以上の構成によれば、無段変速機を備えた車両に対して本発明を適用することができる。むろん、制御対象はエンジン回転数に限定されず、各パラメータ(スロットル開度、車速、エンジン回転数、変速比)のうち、固定するパラメータを適宜変更してもよい。すなわち、無段変速機において、所定区間に到達する前の段階で加速変速比に設定することができる限りにおいて、種々の構成を採用可能である。
 さらに、本発明を、ハイブリッド車両に適用しても良い。すなわち、ハイブリッド車両においては、エンジンによって発生した駆動力の一部を回生エネルギーとして電動機に伝達して充電池を蓄電する。そこで、図6に示す減速制御処理において、当該回生エネルギーの取得を伴うエンジンブレーキと制動部によって減速を行うように制御するように構成してもよい。

Claims (7)

  1.  自車両の前方の所定区間を走行する際の目標車速を取得する車速情報取得手段と、
     前記所定区間を走行した後に前記自車両を前記目標車速よりも大きい車速に加速させるための変速比である加速変速比を取得する加速変速比取得手段と、
     前記所定区間の開始地点に到達する前に前記自車両の変速比を前記加速変速比に設定させる変速比制御手段と、
     前記所定区間の開始地点に到達する前に前記自車両の車速を前記目標車速まで減速させる減速制御手段と、
    を備える運転支援装置。
  2.  前記車速情報取得手段は、前記所定区間走行後の推奨車速を取得し、
     前記加速変速比取得手段は、前記自車両を前記目標車速から前記推奨車速に加速させるための必要加速量を取得し、当該必要加速量で前記自車両を走行させるための変速比を前記加速変速比として取得する、
    請求項1に記載の運転支援装置。
  3.  前記加速変速比取得手段は、前記所定区間の終了地点以降に設定された加速区間の距離を取得し、当該距離にて前記自車両を前記目標車速から前記推奨車速に加速させるための加速量を前記必要加速量として取得する、
    請求項2に記載の運転支援装置。
  4.  前記加速変速比取得手段は、前記自車両の駆動源が所定の回転数であるときに前記必要加速量以上の加速量を発生させることが可能な変速比のうち、最も燃料消費量が少なくなる変速比を前記加速変速比として取得する、
    請求項2または請求項3のいずれかに記載の運転支援装置。
  5.  前記変速比制御手段は、前記自車両の前方において変速比を前記加速変速比に設定したときに前記自車両に作用する力を推定し、当該自車両に作用する力が前記自車両にスリップを生じさせる力となる以前に前記変速比を前記加速変速比に設定させる、
    請求項1~請求項4のいずれかに記載の運転支援装置。
  6.  自車両の前方の所定区間を走行する際の目標車速を取得する車速情報取得工程と、
     前記所定区間を走行した後に前記自車両を前記目標車速よりも大きい車速に加速させるための変速比である加速変速比を取得する加速変速比取得工程と、
     前記所定区間の開始地点に到達する前に前記自車両の変速比を前記加速変速比に設定させる変速比制御工程と、
     前記所定区間の開始地点に到達する前に前記自車両の車速を前記目標車速まで減速させる減速制御工程と、
    を含む運転支援方法。
  7.  自車両の前方の所定区間を走行する際の目標車速を取得する車速情報取得機能と、
     前記所定区間を走行した後に前記自車両を前記目標車速よりも大きい車速に加速させるための変速比である加速変速比を取得する加速変速比取得機能と、
     前記所定区間の開始地点に到達する前に前記自車両の変速比を前記加速変速比に設定させる変速比制御機能と、
     前記所定区間の開始地点に到達する前に前記自車両の車速を前記目標車速まで減速させる減速制御機能と、
    をコンピュータに実現させる運転支援プログラム。
PCT/JP2009/000412 2008-02-15 2009-02-03 運転支援装置、運転支援方法および運転支援プログラム WO2009101769A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009553354A JP4952799B2 (ja) 2008-02-15 2009-02-03 運転支援装置、運転支援方法および運転支援プログラム
US12/866,432 US8532904B2 (en) 2008-02-15 2009-02-03 Driving support device, driving support method, and driving support program
CN200980102642XA CN101952154B (zh) 2008-02-15 2009-02-03 驾驶支援装置、驾驶支援方法
EP09710985.4A EP2236375B1 (en) 2008-02-15 2009-02-03 Driving support device, driving support method, and driving support program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-035351 2008-02-15
JP2008035351 2008-02-15

Publications (1)

Publication Number Publication Date
WO2009101769A1 true WO2009101769A1 (ja) 2009-08-20

Family

ID=40956804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000412 WO2009101769A1 (ja) 2008-02-15 2009-02-03 運転支援装置、運転支援方法および運転支援プログラム

Country Status (5)

Country Link
US (1) US8532904B2 (ja)
EP (1) EP2236375B1 (ja)
JP (1) JP4952799B2 (ja)
CN (1) CN101952154B (ja)
WO (1) WO2009101769A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050344A1 (ja) * 2008-10-28 2010-05-06 株式会社アドヴィックス 車両の走行制御装置
WO2012137355A1 (ja) * 2011-04-08 2012-10-11 トヨタ自動車株式会社 運転支援システム
JP2017100655A (ja) * 2015-12-04 2017-06-08 株式会社デンソー 走行制御装置
WO2018207430A1 (ja) * 2017-05-09 2018-11-15 株式会社デンソー 走行制御装置
US10562530B2 (en) 2016-12-15 2020-02-18 Toyota Jidosha Kabushiki Kaisha Driving support apparatus
JP2021024449A (ja) * 2019-08-06 2021-02-22 トヨタ自動車株式会社 運転支援装置

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010003013A (ja) * 2008-06-18 2010-01-07 Aisin Aw Co Ltd 運転支援装置、運転支援方法および運転支援プログラム
KR100993360B1 (ko) * 2008-11-28 2010-11-09 현대자동차주식회사 타이어 구동 최적화 시스템 및 이의 제어방법
US9020669B2 (en) * 2010-12-29 2015-04-28 Cummins Inc. Hybrid vehicle driver coach
KR101245101B1 (ko) * 2011-06-08 2013-03-25 주식회사 만도 순항 제어 장치 및 그 제어 방법
CN102831778A (zh) * 2011-06-16 2012-12-19 环达电脑(上海)有限公司 存储媒体、计算机程序产品以及导航装置及其控制方法
JP5318920B2 (ja) 2011-07-06 2013-10-16 クラリオン株式会社 電気自動車用の情報端末及びクルーズコントロール装置
JP2013117515A (ja) * 2011-11-02 2013-06-13 Aisin Aw Co Ltd レーン案内表示システム、方法およびプログラム
JP6101219B2 (ja) * 2014-01-21 2017-03-22 本田技研工業株式会社 車両用操舵システム
JP6474307B2 (ja) * 2015-04-27 2019-02-27 アイシン・エィ・ダブリュ株式会社 自動運転支援システム、自動運転支援方法及びコンピュータプログラム
CN104960518B (zh) * 2015-06-17 2017-07-11 奇瑞汽车股份有限公司 一种提示驾驶员的方法和装置
JP6558239B2 (ja) * 2015-12-22 2019-08-14 アイシン・エィ・ダブリュ株式会社 自動運転支援システム、自動運転支援方法及びコンピュータプログラム
CN105891106A (zh) * 2016-04-08 2016-08-24 重庆交通大学 公路路面抗滑性测量系统
JP6754904B2 (ja) * 2017-07-26 2020-09-16 日立オートモティブシステムズ株式会社 変速機制御装置
WO2019125108A1 (es) * 2017-12-19 2019-06-27 Kitazawa Molina Elvia Isabel Sistema de mejora de modo de conducción crucero con inclusión de rutas con trayectos curvos basado en ajustes de velocidad automáticos
JP6924724B2 (ja) * 2018-06-14 2021-08-25 本田技研工業株式会社 車両の制御装置
JP2021024356A (ja) * 2019-08-01 2021-02-22 本田技研工業株式会社 車両制御装置、車両制御方法、及びプログラム
CN111016882B (zh) * 2019-12-13 2021-12-10 苏州智加科技有限公司 一种车辆控制信号计算方法、装置、设备及存储介质
JP2023172645A (ja) * 2022-05-24 2023-12-06 株式会社Subaru 変速制御装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000130207A (ja) * 1998-10-23 2000-05-09 Toyota Motor Corp 車両の車速制御装置
JP2002081345A (ja) * 2000-06-22 2002-03-22 Denso Corp 車両統合制御システム
JP2006138457A (ja) * 2004-11-15 2006-06-01 Toyota Motor Corp 車輌用駆動力制御装置
JP3858952B2 (ja) 1997-08-13 2006-12-20 日産自動車株式会社 車両用制動力制御装置
JP2007168741A (ja) * 2005-12-26 2007-07-05 Aisin Aw Co Ltd 車両制御装置及び方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4120566C2 (de) 1991-06-21 1995-04-13 Porsche Ag Steuereinrichtung für ein selbsttätig schaltendes Getriebe eines Kraftfahrzeugs
EP0588896B1 (de) * 1991-06-21 1994-11-09 Dr.Ing.h.c. F. Porsche Aktiengesellschaft Verfahren zur steuerung eines automatisch betätigten getriebes eines kraftfahrzeugs
JPH10141496A (ja) * 1996-10-25 1998-05-29 Aqueous Res:Kk 車両制御装置
JPH10184877A (ja) * 1996-12-24 1998-07-14 Toyota Motor Corp 有段変速機の制御装置
EP1302356B1 (en) * 2001-10-15 2006-08-02 Ford Global Technologies, LLC. Method and system for controlling a vehicle
JP3979400B2 (ja) * 2004-04-23 2007-09-19 日産自動車株式会社 前方道路対応制御装置
JP4639997B2 (ja) * 2005-02-18 2011-02-23 トヨタ自動車株式会社 車両の減速制御装置
JP4737519B2 (ja) * 2005-06-28 2011-08-03 アイシン・エィ・ダブリュ株式会社 車両制御補助装置及び車両制御補助方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3858952B2 (ja) 1997-08-13 2006-12-20 日産自動車株式会社 車両用制動力制御装置
JP2000130207A (ja) * 1998-10-23 2000-05-09 Toyota Motor Corp 車両の車速制御装置
JP2002081345A (ja) * 2000-06-22 2002-03-22 Denso Corp 車両統合制御システム
JP2006138457A (ja) * 2004-11-15 2006-06-01 Toyota Motor Corp 車輌用駆動力制御装置
JP2007168741A (ja) * 2005-12-26 2007-07-05 Aisin Aw Co Ltd 車両制御装置及び方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5468549B2 (ja) * 2008-10-28 2014-04-09 株式会社アドヴィックス 車両の走行制御装置
WO2010050344A1 (ja) * 2008-10-28 2010-05-06 株式会社アドヴィックス 車両の走行制御装置
US9139173B2 (en) 2008-10-28 2015-09-22 Advics Co., Ltd. Device for controlling traveling of vehicle
CN103459225B (zh) * 2011-04-08 2016-01-27 丰田自动车株式会社 驾驶支援系统
US8762021B2 (en) 2011-04-08 2014-06-24 Toyota Jidosha Kabushiki Kaisha Driving support system
JPWO2012137355A1 (ja) * 2011-04-08 2014-07-28 トヨタ自動車株式会社 運転支援システム
CN103459225A (zh) * 2011-04-08 2013-12-18 丰田自动车株式会社 驾驶支援系统
JP5794298B2 (ja) * 2011-04-08 2015-10-14 トヨタ自動車株式会社 運転支援システム
WO2012137355A1 (ja) * 2011-04-08 2012-10-11 トヨタ自動車株式会社 運転支援システム
JP2017100655A (ja) * 2015-12-04 2017-06-08 株式会社デンソー 走行制御装置
WO2017094906A1 (ja) * 2015-12-04 2017-06-08 株式会社デンソー 走行制御装置
US10562530B2 (en) 2016-12-15 2020-02-18 Toyota Jidosha Kabushiki Kaisha Driving support apparatus
WO2018207430A1 (ja) * 2017-05-09 2018-11-15 株式会社デンソー 走行制御装置
JP2018188023A (ja) * 2017-05-09 2018-11-29 株式会社デンソー 走行制御装置
JP2021024449A (ja) * 2019-08-06 2021-02-22 トヨタ自動車株式会社 運転支援装置
JP7243514B2 (ja) 2019-08-06 2023-03-22 トヨタ自動車株式会社 運転支援装置

Also Published As

Publication number Publication date
EP2236375A4 (en) 2018-05-02
US20100324796A1 (en) 2010-12-23
EP2236375A1 (en) 2010-10-06
US8532904B2 (en) 2013-09-10
JP4952799B2 (ja) 2012-06-13
CN101952154A (zh) 2011-01-19
JPWO2009101769A1 (ja) 2011-06-09
CN101952154B (zh) 2013-11-20
EP2236375B1 (en) 2019-07-10

Similar Documents

Publication Publication Date Title
JP4952799B2 (ja) 運転支援装置、運転支援方法および運転支援プログラム
JP4985555B2 (ja) 運転支援装置、運転支援方法および運転支援プログラム
JP4983732B2 (ja) 運転支援装置、運転支援方法および運転支援プログラム
JP2010003013A (ja) 運転支援装置、運転支援方法および運転支援プログラム
JP5169525B2 (ja) 運転支援装置、運転支援方法および運転支援プログラム
EP2112044B1 (en) Driving support device, driving support method, and driving support program
JP2009220605A (ja) 運転支援装置、運転支援方法および運転支援プログラム
JP2016182887A (ja) 走行制御装置、及び、走行制御方法
JP5187032B2 (ja) 運転支援装置、運転支援方法および運転支援プログラム
JP5051067B2 (ja) 運転支援装置、運転支援方法および運転支援プログラム
JP5098857B2 (ja) 運転支援装置、運転支援方法および運転支援プログラム
JP5157720B2 (ja) 運転支援装置、運転支援方法および運転支援プログラム
JP5115353B2 (ja) 運転支援装置、運転支援方法および運転支援プログラム
JP5387389B2 (ja) 目標充電電力設定装置、方法およびプログラム
WO2015107914A1 (ja) 車両制御システム、方法およびプログラム
JP2006312997A (ja) 変速機の変速制御装置
JP2010014170A (ja) 運転支援装置、運転支援方法および運転支援プログラム
JP2005306072A (ja) 車両の駆動力制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980102642.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09710985

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2009553354

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009710985

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12866432

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE