WO2009097790A1 - 防冰霜涂料及其使用方法 - Google Patents

防冰霜涂料及其使用方法 Download PDF

Info

Publication number
WO2009097790A1
WO2009097790A1 PCT/CN2009/070233 CN2009070233W WO2009097790A1 WO 2009097790 A1 WO2009097790 A1 WO 2009097790A1 CN 2009070233 W CN2009070233 W CN 2009070233W WO 2009097790 A1 WO2009097790 A1 WO 2009097790A1
Authority
WO
WIPO (PCT)
Prior art keywords
acrylate
methacrylate
polymer
icing
hydrophobic
Prior art date
Application number
PCT/CN2009/070233
Other languages
English (en)
French (fr)
Inventor
Min He
Yanlin Song
Biqian Liu
Original Assignee
Institute Of Chemistry, Chinese Academy Of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute Of Chemistry, Chinese Academy Of Sciences filed Critical Institute Of Chemistry, Chinese Academy Of Sciences
Priority to EP09709215A priority Critical patent/EP2236573A4/en
Priority to JP2010544565A priority patent/JP5112521B2/ja
Priority to US12/864,607 priority patent/US8372484B2/en
Publication of WO2009097790A1 publication Critical patent/WO2009097790A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/062Copolymers with monomers not covered by C09D133/06
    • C09D133/066Copolymers with monomers not covered by C09D133/06 containing -OH groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/10Homopolymers or copolymers of methacrylic acid esters
    • C09D133/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • C09D133/16Homopolymers or copolymers of esters containing halogen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/20Metallic substrate based on light metals
    • B05D2202/25Metallic substrate based on light metals based on Al
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/04Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a surface receptive to ink or other liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/062Copolymers with monomers not covered by C08L33/06
    • C08L33/066Copolymers with monomers not covered by C08L33/06 containing -OH groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • C08L33/16Homopolymers or copolymers of esters containing halogen atoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/065Details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the invention belongs to the field of refrigeration energy conservation, in particular to an anti-icing coating.
  • the coating formed by the coating has a hydrophilic and super-hydrophobic composite structure, and the coating can be applied to refrigerators, air conditioners, large cold storages and other refrigeration equipment and cold surface anti-icing . Background technique
  • Icing is a common natural phenomenon that occurs on cold surfaces.
  • icing on cold surfaces can reduce the efficiency of refrigeration equipment, resulting in huge energy waste, such as power plant cooling tower icing, car carburetor icing, refrigeration plant heat exchanger icing, refrigerator junction Ice, etc.
  • frost layer has a certain heat insulation effect
  • frost or ice on the surface of the refrigeration equipment causes the heat transfer efficiency of the equipment to decrease, and the air passage is narrowed or even blocked, thereby causing huge energy waste.
  • a frost thickness of about 5 mm in the refrigerator will reduce the cooling efficiency by 20%, and the corresponding energy consumption will increase by 20%. What is more serious is that freezing on the cold surface can cause major safety accidents, such as aircraft.
  • the frost is ablated by additional energy consumption, that is, when the frost layer reaches a certain thickness, by electric heating, electric pulse or mechanical action.
  • the method melts or scrapes the frost.
  • These methods have a certain degree of defrost effect, but they all require extra energy.
  • Today, as energy is getting tighter, these methods undoubtedly have significant limitations.
  • the second is to prevent the formation of frost on the cold surface by applying anti-icing paint on the cold surface to achieve anti-icing and energy saving.
  • the hydrophobic cold surface inhibits frost formation and There is a certain effect in reducing the thickness of the frost layer, but as the temperature of the cold surface is lowered, once the frost is formed on the cold surface, the hydrophobic surface loses the anti-icing effect.
  • the second is to make the cold surface hydrophilic, and absorb the water droplets condensed on the cold surface at the initial stage of frost formation by the water absorption of the hydrophilic material, and at the same time reduce the freezing point of the water, thereby suppressing the formation of frost.
  • Hydrophilic anti-icing coatings mainly have the following categories: 1. Anti-icing/anti-frosting agents, such as CN 1061987A,
  • Anti-icing/anti-frost agents disclosed in CN 1044947A, CN 1048053A and CN 1104674A are mainly ethanol, glycerin, and propylene glycol, which are volatile and have poor durability.
  • the hydrophilic polymer coated with propylene glycol see CN1632014A
  • the hydrophilic component of such materials also has the problem of volatilization, and its anti-icing effect is affected by the cold surface temperature and environmental humidity, not suitable for lower Use in environments where temperature (temperature below -15 ° C) and high humidity (humidity greater than 50%). 3.
  • Hydrophilic polymers are blended with inorganic salts (eg sodium chloride, potassium chloride) (see CN 1916094A) o These materials can be used at lower temperatures and higher ambient humidity conditions, but The compatibility of the inorganic salt with the polymer is not good; moreover, the mobility of the inorganic salt in the material causes the material to exhibit non-uniformity, thereby affecting its anti-icing effect. More importantly, hydrophilic anti-icing coatings have the disadvantage of being susceptible to contamination. Once the surface of the material is contaminated, it will lose its anti-icing function. Summary of the invention
  • An object of the present invention is to provide an anti-icing coating which has a good anti-icing effect even when used in a refrigerating apparatus and a cold environment in a special environment, and which can be repeatedly used, has good durability, and is resistant to pollution.
  • the anti-icing coating obtained by the method of the present invention has a hydrophilic and superhydrophobic composite structure.
  • the coating formed by applying the anti-icing coating of the present invention to a substrate has a hydrophilic and hydrophobic composite structure, and the anti-icing coating contains a hydrophobic polymer and a hydrophilic polymer.
  • the anti-frost coating further contains a solvent.
  • the solvent may be various organic solvents
  • the organic solvent may be a mixture of dioxane, benzene, hydrazine, hydrazine-dimethylformamide (DMF), hydrazine, hydrazine-dimethylacetamide, methanol or more than one.
  • the content of the solvent is not particularly limited as long as the coating requirements are satisfied, but preferably, the weight ratio of the total amount of the hydrophobic polymer and the hydrophilic polymer to the solvent is (0.01). -0.5 ): 1.
  • the anti-icing coating of the present invention is composed of a hydrophobic polymer and a hydrophilic polymer, and the inner layer of the coating layer formed on the substrate is a hydrophilic polymer layer, and the surface layer is a hydrophobic polymer layer.
  • the hydrophobic polymer is contained in an amount of 20 to 50% by weight based on the total of the hydrophobic polymer and the hydrophilic polymer, and the hydrophilic polymer is contained in an amount of 50 to 80% by weight.
  • the number average molecular weight of the hydrophilic polymer may be any number average molecular weight. According to the anti-icing coating provided by the present invention, the number average molecular weight of the hydrophilic polymer may be any number average molecular weight.
  • the hydrophobic polymer may have a number average molecular weight of 1 ⁇ 10 4 -5 ⁇ 10 6 .
  • the present invention distinguishes a polymer into a hydrophobic polymer and a hydrophilic polymer by whether the static contact angle of the smooth film formed of the polymer is greater than 90°.
  • the polymer when the smooth film formed by the polymer has a static contact angle with water of not less than 90°, the polymer is said to be a hydrophobic polymer; when a smooth film formed of such a polymer is water- When the static contact angle is less than 90, the polymer is said to be a hydrophilic polymer.
  • the smooth film refers to a film obtained by dissolving the polymer in a good solvent or heating the molten polymer to form a film.
  • the hydrophilic polymer water is used as a solvent when testing the static contact angle; and for the hydrophobic polymer, when the static contact angle is tested, the polymer is heated and melted to form a smooth film.
  • the static contact angle of the smoothing film to water was measured using a German Dataphysics OCA20 Contact Angle system.
  • the hydrophobic polymer is preferably selected from one or a mixture of polyacrylates, polyfluoroacrylates, and polyolefins; or
  • the acrylate is preferably one or more than one of the acrylates represented by the following structural formula (1):
  • R 2 is -C n H 2n+1 , wherein n is an integer of 1-18, preferably an integer of 1-10, for example, R 2 may be methyl, B Base, propyl, isopropyl, cyclopropyl, butyl, tert-butyl, sec-butyl, pentyl, isopentyl, tert-amyl, neopentyl, hexyl, cyclohexyl, 2-methylpentyl , heptyl, octyl, decyl or fluorenyl.
  • the fluorine-containing acrylate is preferably one or more than one of the fluorine-containing acrylates represented by the following structural formula (2) and/or structural formula (3):
  • R 3 is -H or -CH 3 ;
  • R 4 is -C m H 2m , wherein m is 1 or 2;
  • R 5 is -C a F 2a+1 , wherein a is 1-12 An integer, preferably an integer from 1 to 8;
  • R 6 is -H or -CH 3 ; ⁇ is - ⁇ ! ⁇ , where b is an integer from 1 to 10, preferably an integer from 1 to 6; ⁇ is ⁇ , where p is an integer from 1 to 12, preferably an integer from 1 to 10.
  • the polyacrylate may be a homopolymer or a mixture of homopolymers of the above acrylates.
  • the polyfluorinated acrylate is preferably a specific mixture of a homopolymer or a homopolymer of the above fluorine-containing acrylate, and the acrylate is preferably methyl acrylate, ethyl acrylate, butyl acrylate, octyl acrylate or acrylic acid.
  • the fluorine-containing acrylate is preferably hexafluorobutyl acrylate, perfluorooctanoyloxyethyl acrylate, perfluorooctyl acrylate, pentafluorobutyl acrylate, heptafluoropentyl acrylate, nonafluorohexyl acrylate, acrylic acid.
  • the polyacrylate is preferably polymethyl acrylate, polymethyl methacrylate, polybutyl acrylate, polyethyl acrylate, polyoctyl acrylate, polyethyl acrylate, polyethyl methacrylate, polymethacrylic acid. Butyl ester, polyoctyl methacrylate, polypentyl methacrylate or a mixture thereof.
  • the polyfluorinated acrylate is preferably polyhexafluorobutyl acrylate, polyperfluorooctanoyloxyethyl acrylate, polyperfluorooctyl acrylate, polypentafluorobutyl acrylate, polyhexafluoropentyl acrylate, poly Nonafluorohexyl acrylate, dodecafluorooctyl polyacrylate, pentafluorobutyl polymethacrylate, polysevofluoropentamethyl methacrylate, polyhexafluorohexyl methacrylate, polytetrafluorooctyl methacrylate , polyfluorooctyl methacrylate, polyperfluorooctanoyloxyethyl methacrylate or a mixture thereof.
  • the polyolefin is polypropylene and/or polyethylene.
  • the hydrophilic polymer is preferably selected from the group consisting of sodium polyacrylate, polyacrylic acid, polymethacrylic acid, poly-2-hydroxyethyl methacrylate, poly-2-hydroxypropyl methacrylate, polyglycidyl methacrylate. Ester, polyacrylamide or a mixture thereof; or
  • the anti-icing coating of the present invention is used by: dissolving a hydrophilic polymer and a hydrophobic polymer in the same solvent to form a homogeneous solution, coating the substrate to form a film, and drying and solidifying to obtain a hydrophobic surface layer. And a coating of a hydrophilic and hydrophobic composite structure of the hydrophilic inner layer.
  • hydrophilic polymer and the hydrophobic polymer are dissolved in the same solvent at a temperature of 60 to 130 °C.
  • the same solvent means that the solvent for dissolving the hydrophilic polymer is the same as the solvent for dissolving the hydrophobic polymer, and may be a mixed solvent of one or more of the above-exemplified organic solvents.
  • the temperature at the time of drying and curing may be 20 to 60 °C.
  • the hydrophobic surface layer can further exhibit superhydrophobicity by drying under reduced pressure.
  • the superhydrophobicity means that the contact angle to water is greater than 150°.
  • the pressure of the reduced pressure may be
  • the anti-icing coating of the present invention can be applied by conventional methods such as spraying, spin coating, and natural flow.
  • the principle that the coating formed by the anti-icing coating of the present invention prevents ice formation, that is, anti-icing, is:
  • the hydrophobic or superhydrophobic property of the surface of the coating increases the contact angle of the condensed water droplets on the cold surface with the hydrophobic surface (this The contact angle measuring instrument used in the invention is the Dataphysics OCA20 Contact Angle system of Germany.
  • the contact area of the water droplet with the hydrophobic or superhydrophobic surface is small, and the heat conduction is slow, thereby prolonging the transition time of the condensed water droplet to the frost crystal; meanwhile, due to hydrophobicity or superhydrophobicity
  • the hydrophobic or superhydrophobic nature of the surface the water droplets tend to roll off the hydrophobic or superhydrophobic surface, reducing the amount of condensed water droplets on the hydrophobic or superhydrophobic surface, that is, reducing the amount of frost crystal formation.
  • the inner hydrophilic polymer absorbs the condensed water droplets that penetrate the inside of the material and exists in the form of a gel to prevent the formation of frost crystals, thereby effectively preventing icing.
  • the advantages of the hydrophilic anti-icing material and the hydrophobic anti-icing material are combined to achieve an excellent anti-icing effect.
  • the anti-icing coating of the present invention has the following advantages over other anti-icing materials: First, anti-pollution, hydrophilic anti-icing paint surface is easy to accumulate dust or other impurities and is not easy to clean, surface contamination will greatly affect the anti-icing effect (CN 1632014A; CN 1916094A). On the other hand, the surface of the coating formed by the anti-icing coating of the present invention has hydrophobic or superhydrophobic characteristics, and the water droplets are easily rolled freely, so that dust and impurities deposited on the surface can be easily removed.
  • the existing hydrophilic anti-icing coating is to use the water absorption of the hydrophilic component of the coating to achieve anti-icing effect (CN 1632014A; CN 1916094A).
  • the water absorption capacity of any water absorbing material has a certain limit; and as the water absorption increases, the anti-icing effect will decrease. When the water absorption reaches a certain level, the anti-icing effect will be lost.
  • the coating of the anti-icing coating of the present invention after use has a composite structure of a hydrophobic or superhydrophobic surface layer and a hydrophilic inner layer, and the hydrophobic or superhydrophobic property of the surface causes most of the condensed water droplets to roll off the surface and thus penetrate into The inner layer has fewer water droplets, thereby extending the life of the hydrophilic inner layer, which is to extend the life of the anti-icing paint.
  • Non-volatile components existing anti-icing/anti-frost agents (CN 1061987A; CN 1044947 A; CN 1048053A; CN 1104674A) and anti-icing coatings (CN 1632014A), which have the main component of anti-icing action. Volatile ethanol, propylene glycol, glycerin, and the volatilization of alcohol can affect the anti-icing effect and durability of the coating.
  • the anti-icing coating of the present invention mixes several different components to form a composite structure having a hydrophobic or superhydrophobic surface layer and a hydrophilic inner layer. No volatile components are introduced during the preparation process, which improves the durability of the coating.
  • DRAWINGS BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a photograph showing a contact angle of an aluminum sheet coated with an anti-icing paint according to Example 1 of the present invention. The static contact angle to water shown in the figure is 159°.
  • FIG. 2A and FIG. 2B respectively show that in the first embodiment of the present invention, under the conditions of an ambient temperature of 20 ° C, an aluminum sheet surface temperature of -15 ° C, and an ambient humidity of 50%, no anti-icing coating and anti-icing coating are within 4 hours. The icing effect is compared to the photo.
  • Fig. 3 is a view showing the relationship between the thickness of the frost layer on the surface of an aluminum sheet having an anti-icing coating and an anti-icing coating according to Example 2 of the present invention.
  • Fig. 4 is a view showing the relationship between the thickness of the frost layer on the surface of an aluminum sheet having an anti-icing coating and an anti-icing coating according to Example 3 of the present invention.
  • the components are as follows: Sodium acrylate 20 g, -2-hydroxyethyl methacrylate 10 g.
  • the monomeric sodium acrylate and 2-hydroxyethyl methacrylate were mixed according to the above formulation to obtain a mixed monomer Al.
  • a mixed monomer Al In a vessel with a reflux condenser, a stirrer, a dropping funnel, 160 g of water was added, and 21 g of the above mixed monomer A1 was added under nitrogen gas, and the temperature was raised to 60 ° C, and 0.25 g of an initiator was added.
  • Ammonium persulfate and 0.2 g of pH adjuster sodium hydrogencarbonate the remaining mixed monomer A1 was added dropwise in 10 minutes; after 4 hours of reaction, 0.05 g of initiator ammonium persulfate was added to continue the reaction for 2 hours, and the reaction was completed.
  • the product is dehydrated and then vacuum dried to obtain a hydrophilic polymer.
  • the number average molecular weight was determined by gel permeation chromatography (GPC) method to be 5.6 x 10 5 .
  • the smooth film prepared by using water as a solvent has a static contact angle to water of less than 5°.
  • the components are as follows: Perfluorooctanoyloxyethyl acrylate 10 g, methyl methacrylate 20 g, propylene 15 g of hexafluorobutyl acrylate and 10 g of butyl acrylate.
  • Ethyl perfluorooctanoyloxyacrylate, methyl methacrylate, hexafluorobutyl acrylate and butyl acrylate were mixed according to the above formula to obtain a mixed monomer Bl.
  • a mixed monomer Bl In a vessel equipped with a reflux condenser, a stirrer, and a dropping funnel, 60 ml of butyl acetate was added, and 31.5 g of the above mixed monomer B1 was added under a nitrogen atmosphere, and the temperature was raised to 70 ° C, and O. lg was added.
  • the initiator benzoyl peroxide, the remaining mixed monomer B1 was added dropwise in 10 minutes; after 4 hours of reaction, 0.05 g of the initiator benzoyl peroxide was added to continue the reaction for 2 hours, after the reaction, the product After solvent removal, it is vacuum dried to obtain a hydrophobic polymer.
  • the number average molecular weight measured by the GPC method was 9.7 x 10 4 . Its smooth film has a static contact angle to water of 96.4°.
  • an aluminum sheet having an anti-icing coating on the surface is obtained, wherein the inner layer of the anti-icing coating is a copolymer of hydrophilic sodium acrylate/-2-hydroxyethyl methacrylate, and the surface layer is hydrophobic perfluorooctanoyl acrylate. Ethyl ester/methyl methacrylate/hexafluorobutyl acrylate copolymer, the total thickness of the anti-icing coating is 0.4 mm.
  • Test equipment Contact angle measuring instrument adopts German Dataphysics OCA20 Contact Angle system; cooling device adopts low temperature intelligent constant temperature circulating tank (Beijing Oriental Jingrui X30-D) and heat exchanger; multi-channel inspection instrument is purchased from Beijing Zhongyi Huashi Technology Co., Ltd.
  • Test method the aluminum sheet with the anti-icing coating on the surface is placed in the middle of the fin of the heat exchanger, and the surface of the aluminum sheet and the temperature of the frost layer are measured by a multi-channel inspection instrument connected by a platinum resistor;
  • the angle measuring instrument comes with a digital camera, CCD, microscopy system, image processing software and computer recording frosting process.
  • Figure 1 is a photograph of the static contact angle of water on an aluminum sheet with an anti-icing coating on the surface, with a contact angle of 159°. As can be seen from the photograph, the surface of the aluminum sheet having an anti-icing coating on the surface exhibits superhydrophobic properties.
  • FIG. 2A and Fig. 2B show the comparison results of frosting results on the surface of aluminum sheets without anti-icing coating and anti-icing coating when the ambient humidity is maintained at 40% and the wall temperature is -15 °C.
  • 2A is an uncoated aluminum sheet
  • FIG. 2B is an aluminum sheet having an anti-icing coating on the surface.
  • the thickness of the frost layer is 3.15mm, and the surface of the aluminum sheet with anti-icing coating has almost no ice crystals, especially in the case of large-area frost layer growth.
  • the anti-icing coating of the present invention preferably inhibits the growth of the frost layer. Under the condition that the wall temperature is greater than -15 ° C and the ambient humidity is less than 50%, the frost layer appears for more than 4 hours, and the frost resistance The effect is obvious.
  • Example 2
  • polyacrylic acid number average molecular weight: 1.01 ⁇ 10 7
  • poly-2-hydroxyethyl methacrylate number average molecular weight: 1.3 ⁇ 10 5
  • the hydrophilic polymer is polyacrylic acid and polymethyl.
  • the smooth film prepared from this mixture has a static contact angle to water of less than 5°.
  • An aluminum sheet having an anti-icing coating on the surface is obtained, wherein the inner layer of the anti-icing coating is a copolymer of hydrophilic polyacrylic acid/-2-hydroxyethyl methacrylate, and the surface layer is hydrophobic perfluorooctanoyloxy acrylic acid. Ethyl ester/methyl methacrylate/hexafluorobutyl acrylate copolymer, the total thickness of the anti-icing coating is 0.6 mm.
  • the static contact angle of the anti-icing coating to water was 155.6°, and the test procedure was the same as in Example 1.
  • the purchased polyacrylic acid is selected as a hydrophilic polymer.
  • the smooth film of the hydrophilic polymer has a static contact angle to water of less than 5°.
  • the purchased polypropylene is selected as a hydrophobic polymer.
  • the smooth film of the hydrophobic polymer had a static contact angle to water of 102.5.
  • An aluminum sheet having an anti-icing coating on the surface wherein the inner layer of the anti-icing coating is hydrophilic Copolymer of sodium acrylate/2-hydroxyethyl methacrylate, surface layer of hydrophobic perfluorooctanoyl acrylate ethyl acrylate / methyl methacrylate / hexafluorobutyl acrylate copolymer, anti-icing coating
  • the total thickness is 0.82 mm.
  • the static contact angle of the anti-icing coating to water was 158.2°, and the test procedure was the same as in Example 1.
  • the components are as follows: 10 g of acrylic acid, 15 g of sodium acrylate, and 10 g of 2-hydroxyethyl methacrylate. Acrylic acid, sodium acrylate and 2-hydroxyethyl methacrylate were mixed according to the above formulation to obtain a mixed monomer A4. 200 g of water was placed in a vessel equipped with a reflux condenser, a stirrer, and a dropping funnel, and 24.5 g of the above mixed monomer A4 was added under a nitrogen atmosphere, and the temperature was raised to 60 ° C, and 0.3 g of the initiator was added.
  • the commercially available polymethyl methacrylate is selected.
  • the hydrophobic polymer is a mixture of polymethyl methacrylate and polyhexafluorobutyl acrylate.
  • the product was desolvated and dried under vacuum to give a hydrophobic poly(hexafluorobutyl acrylate).
  • the number average molecular weight measured by the GPC method was 1.0 X 10 4 .
  • the smoothing film of the hydrophilic polymer had a contact angle with water of 97.2.
  • An aluminum sheet having an anti-icing coating on the surface is obtained, wherein the inner layer of the anti-icing coating is a copolymer of sodium polyacrylate/-2-hydroxyethyl methacrylate/acrylic acid, and the surface layer is hydrophobic polymethyl methacrylate and The polyhexafluorobutyl acrylate mixture, the total thickness of the anti-icing coating is 0.35 mm.
  • the static contact angle of the anti-icing coating to water was 153.8°, and the test procedure was the same as in Example 1.
  • the hydrophobic polymers are polymethyl methacrylate, polybutyl acrylate, polyhexafluorobutyl acrylate and polyperfluorooctanoyl acrylate. a mixture of ethyl esters.
  • hydrophobic poly(perfluorooctanoyloxyethyl acrylate) The number average molecular weight measured by the GPC method was 2.6 x 10 4 .
  • the smooth film made from this hydrophobic polymer had a static contact angle to water of 105.4.
  • the coated aluminum sheet was dried and cured under reduced pressure at 60 ° C, 750 Pa.
  • An aluminum sheet having an anti-icing coating on the surface is obtained, wherein the inner layer of the anti-icing coating is a hydrophilic sodium acrylate/2-hydroxyethyl methacrylate copolymer, and the surface layer is hydrophobic polymethyl methacrylate, poly A mixture of butyl acrylate, polyhexafluorobutyl acrylate and polyperfluorooctanoyl acrylate, the total thickness of the anti-icing coating is 0.72 mm.
  • the static contact angle of the anti-icing coating to water was 156.2°, and the test procedure was the same as in Example 1.
  • the anti-icing coating of the present invention has a good effect in anti-icing, and can be applied to the outdoor air conditioning and frost protection in the refrigeration industry and in the northern regions of China.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)

Description

防冰霜涂料及其使用方法 技术领域
本发明属于制冷节能领域, 特别涉及防冰霜涂料, 由这种涂料形成的涂 层具有亲水与超疏水复合结构, 该涂料可应用于冰箱、 空调、 大型冷库以及 其它制冷设备和冷表面防冰霜。 背景技术
结冰是冷表面上出现的一种常见的自然现象。 在我们的日常生活中, 冷 表面上结冰会降低制冷设备运行效率, 造成巨大的能源浪费, 如发电厂冷却 塔结冰、 汽车化油器结冰、 制冷厂换热器结冰、 冰箱结冰等, 由于霜层具有 一定的隔热效果, 因此制冷设备表面结霜或冰, 导致设备的传热效率会降低, 气流通道变窄甚至堵塞, 从而造成巨大的能源浪费。 一般而言, 冰箱内霜层 厚度约 5毫米就会降低 20%的制冷效率, 相应的能耗就会增加 20%; 更为严 重的是冷表面上结冰会造成重大的安全事故, 如飞机因机身结冰儿坠毁等。 目前, 针对冷表面的结霜或冰问题, 主要有两种解决办法: 一是通过额外的 能量消耗来消融冰霜, 即当霜层达到一定厚度的时候, 通过电加热、 电脉冲 或者外加机械作用等方法将冰霜融化或者刮除。 这些方法在一定程度上有一 定的除冰霜效果, 但是它们都需要额外消耗大量的能源。 在能源日趋紧张的 今天, 这些方法无疑有很大的局限性。 二是通过在冷表面涂覆防冰霜涂料, 防止冰霜在冷表面的形成, 以达到防冰霜、 节能的目的。
目前, 防冰霜涂料抑制冰霜形成的机理主要有两种: 一是使冷表面呈现 疏水性, 增大水在冷表面的接触角, 减少水滴与冷表面的接触面积, 从而延 缓水滴的凝结时间, 起到抑制冰霜的作用; 同时, 疏水表面还可以降低水滴 在表面的附着, 减少冰霜的形成。 总的来看, 疏水冷表面在抑制冰霜形成和 减少霜层的厚度方面具有一定的效果, 但是, 随着冷表面的温度降低, 冰霜 一旦在冷表面上形成, 疏水表面就失去了防冰霜的作用。 二是使冷表面呈亲 水性, 通过亲水材料的吸水性, 吸收结霜初期冷表面上凝结的水滴, 同时降 低水的凝固点, 从而起到抑制冰霜形成的作用。
亲水性防冰霜涂料主要有以下几类: 一、防冰 /防霜剂, 如 CN 1061987A、
CN 1044947A、 CN 1048053A和 CN 1104674A公开的防冰 /防霜剂。 这类防冰 霜材料主要以乙醇、 甘油、 丙二醇为主, 易挥发, 而且耐久性不好。 二、 亲 水性聚合物包覆丙二醇 (参见 CN1632014A), 这类材料的亲水组分同样存在 易挥发的问题, 而且其防冰霜效果受冷表面温度和环境湿度的影响, 不适合 在较低温度 (温度低于 -15°C ) 和较高湿度 (湿度大于 50% ) 的环境中使用。 三、亲水性聚合物与无机盐类(如氯化钠、氯化钾)共混(参见 CN 1916094A) o 这类材料虽然可以在较低的温度和较高的环境湿度条件下使用, 但是, 无机 盐与聚合物的相容性不好; 而且, 无机盐在材料中的迁移性会使材料体现出 不均匀性, 从而影响其防冰霜效果。 更重要的是亲水性防冰霜涂料存在易污 染的缺点, 材料表面一旦被污染, 将失去防冰霜的功能。 发明内容
本发明的目的在于提供一种即使用于制冷设备和特殊环境下的冷表面也 具有较好的防冰霜效果, 且可反复使用、 耐久性好、 具有抗污染等优点的防 冰霜涂料。
本发明的再一目的是提供一种防冰霜涂料的使用方法。 采用本发明所述 的方法得到的防冰霜涂层具有亲水与超疏水复合结构。
本发明的防冰霜涂料涂覆在基材上后形成的涂层具有亲水与疏水复合结 构, 所述防冰霜涂料含有疏水性聚合物和亲水性聚合物。
优选情况下, 所述防冰霜涂料还含有溶剂。 所述溶剂可以是各种有机溶 剂, 所述有机溶剂可以是二噁垸、 苯、 Ν,Ν-二甲基甲酰胺(DMF)、 Ν,Ν-二甲 基乙酰胺、 甲醇中的一种或大于一种的混合物。
对所述溶剂的含量没有特别的限定, 只要能满足涂覆要求即可, 但优选 情况下, 所述疏水性聚合物和亲水性聚合物的总量与所述溶剂的重量比为 (0.01-0.5 ): 1。
本发明的防冰霜涂料由疏水性聚合物和亲水性聚合物构成, 涂覆在基材 上后形成的涂层的内层为亲水性聚合物层, 表层为疏水性聚合物层。 以所述 疏水性聚合物和亲水性聚合物的总量为基准, 所述疏水性聚合物的含量为 20-50重量%, 所述亲水性聚合物的含量为 50-80重量%。
根据本发明提供的防冰霜涂料, 所述亲水性聚合物的数均分子量可以为
5χ103-2χ107, 所述疏水性聚合物的数均分子量可以为 1χ104-5χ106
本发明通过由聚合物形成的平滑膜的静态接触角是否大于 90° 来将聚合 物区分为疏水性聚合物和亲水性聚合物。 本发明中, 当由这种聚合物形成的 平滑膜对水的静态接触角不小于 90° 时, 则称该聚合物为疏水性聚合物; 当 由这种聚合物形成的平滑膜对水的静态接触角小于 90° 时, 则称该聚合物为 亲水性聚合物。 所述平滑膜是指采用良溶剂溶解该聚合物或者加热熔融聚合 物后再成膜所得到的膜。 本发明实施例中, 对于亲水性聚合物, 测试静态接 触角时均用水作为溶剂; 对于疏水性聚合物, 测试静态接触角时则是通过将 聚合物加热熔融后制成平滑膜的。 所述平滑膜对水的静态接触角采用德国 Dataphysics OCA20 Contact Angle system测得。
具体的, 所述疏水性聚合物优选选自聚丙烯酸酯、 聚含氟丙烯酸酯、 聚 烯烃中的一种或大于一种的混合物; 或者
选自丙烯酸酯与含氟丙烯酸酯的共聚物。
所述丙烯酸酯优选是由下述结构式 (1 )表示的丙烯酸酯中的一种或大于 一种的混合物:
Figure imgf000006_0001
上述化学式 (1 ) 中, 或者 -CH3, R2是 -CnH2n+1, 其中 n为 1-18 的整数, 优选为 1-10的整数, 例如, R2可以为甲基、 乙基、 丙基、 异丙基、 环丙基、 丁基、 叔丁基、 仲丁基、 戊基、 异戊基、 叔戊基、 新戊基、 己基、 环己基、 2-甲基戊基、 庚基、 辛基、 壬基或癸基。
所述含氟丙烯酸酯优选是由下述结构式 (2) 和 /或结构式 (3 ) 表示的含 氟丙烯酸酯中的一种或大于一种的混合物:
Figure imgf000006_0002
Figure imgf000006_0003
上述化学式 (2) 中, R3是 -H或者 -CH3 ; R4是 -CmH2m, 其中 m为 1或 2; R5是 -CaF2a+1, 其中 a为 1-12的整数, 优选为 1-8的整数;
上述化学式 (3 ) 中, R6是 -H或者 -CH3 ; !^是-^!^,其中 b为 1-10的整 数, 优选为 1-6的整数; !^是^^^^, 其中 p为 1-12的整数, 优选 1-10的整 数。
所述聚丙烯酸酯可以是上述丙烯酸酯的均聚物或均聚物的混合物。 所述聚含氟丙烯酸酯优选是上述含氟丙烯酸酯的均聚物或均聚物的混合 具体的, 所述丙烯酸酯优选是丙烯酸甲酯、 丙烯酸乙酯、 丙烯酸丁酯、 丙烯酸辛酯、 丙烯酸戊酯、 甲基丙烯酸甲酯、 甲基丙烯酸乙酯、 甲基丙烯酸 丁酯、 甲基丙烯酸辛酯、 甲基丙烯酸戊酯或它们的混合物。
所述含氟丙烯酸酯优选是丙烯酸六氟丁酯、 全氟辛酰氧基丙烯酸乙酯、 全氟辛基丙烯酸酯、 丙烯酸五氟丁酯、 丙烯酸七氟戊酯、 丙烯酸九氟己酯、 丙烯酸十二氟辛酯、 甲基丙烯酸五氟丁酯、 甲基丙烯酸七氟戊酯、 甲基丙烯 酸九氟己酯、 甲基丙烯酸十二氟辛酯、 全氟辛基甲基丙烯酸酯、 全氟辛酰氧 基甲基丙烯酸乙酯或它们的混合物。
所述聚丙烯酸酯优选是聚丙烯酸甲酯、 聚甲基丙烯酸甲酯、 聚丙烯酸丁 酯、 聚丙烯酸乙酯、 聚丙烯酸辛酯、 聚丙烯酸戊酯、 聚甲基丙烯酸乙酯、 聚 甲基丙烯酸丁酯、 聚甲基丙烯酸辛酯、 聚甲基丙烯酸戊酯或它们的混合物。
所述聚含氟丙烯酸酯优选是聚丙烯酸六氟丁酯、 聚全氟辛酰氧基丙烯酸 乙酯、 聚全氟辛基丙烯酸酯、 聚丙烯酸五氟丁酯、 聚丙烯酸七氟戊酯、 聚丙 烯酸九氟己酯、 聚丙烯酸十二氟辛酯、 聚甲基丙烯酸五氟丁酯、 聚甲基丙烯 酸七氟戊酯、 聚甲基丙烯酸九氟己酯、 聚甲基丙烯酸十二氟辛酯、 聚全氟辛 基甲基丙烯酸酯、 聚全氟辛酰氧基甲基丙烯酸乙酯或它们的混合物。
所述聚烯烃是聚丙烯和 /或聚乙烯。
所述亲水性聚合物优选选自聚丙烯酸钠、 聚丙烯酸、 聚甲基丙烯酸、 聚 甲基丙烯酸 -2-羟基乙酯、 聚甲基丙烯酸 -2-羟基丙酯、 聚甲基丙烯酸缩水甘油 酯、 聚丙烯酰胺或它们的混合物; 或者
选自丙烯酸钠、 丙烯酸、 甲基丙烯酸、 甲基丙烯酸 -2-羟基丙酯、 甲基丙 烯酸缩水甘油酯丙烯酰胺、 甲基丙烯酸 -2-羟基乙酯中的两者或两者以上组合 的共聚物。 本发明的防冰霜涂料的使用方法是: 将亲水性聚合物和疏水性聚合物溶 解在同一种溶剂中形成均相溶液, 涂覆在基材上成膜, 干燥固化, 即得到具 有疏水表层和亲水内层的亲水与疏水复合结构的涂层。
所述亲水性聚合物和疏水性聚合物是在温度为 60-130°C下溶解在同一种 溶剂中。
所述同一种溶剂是指溶解亲水性聚合物的溶剂和溶解疏水性聚合物的溶 剂相同, 可以为上述列举的有机溶剂中的一种或几种的混合溶剂。
所述干燥固化时的温度可以为 20-60 °C。
本发明的发明人还发现, 通过在减压下干燥能使疏水表层进一步显示超 疏水性。所述超疏水性是指对水的接触角大于 150° 。所述减压的压力可以是
Figure imgf000008_0001
本发明的防冰霜涂料在涂覆时可以采用常规的方法, 如喷涂、 旋涂, 自 然流平等。
本发明的防冰霜涂料涂覆后所形成的涂层防止结冰即防冰霜的原理是: 涂层表面的疏水或超疏水特性使得冷表面上的冷凝水滴与疏水表面的接触角 增大 (本发明所用的接触角测量仪是德国 Dataphysics OCA20 Contact Angle system) , 水滴与疏水或超疏水表面的接触面积很小, 热传导缓慢, 从而延长 冷凝水滴向霜晶转变的时间; 同时, 由于疏水或超疏水表面的疏水或超疏水 特性, 水滴易于从疏水或超疏水表面滚落, 减少了疏水或超疏水表面上冷凝 水滴的附着量, 也就是减少了霜晶的形成量。 内层亲水性聚合物将渗透到材 料内部的冷凝水滴吸收, 以凝胶的形式存在, 阻止霜晶的形成, 从而有效防 止结冰。 利用内层亲水性聚合物的吸水性和表面的疏水或超疏水特性的协同 作用, 将亲水防冰霜材料和疏水防冰霜材料的优点结合起来, 实现优异的防 冰霜效果。
与其它防冰霜材料相比, 本发明的防冰霜涂料具有以下优点: 一、 抗污染, 亲水性防冰霜涂料表面容易积聚灰尘或其它杂质而且不易 清洁, 表面污染会极大地影响防冰霜效果 (CN 1632014A; CN 1916094A)。 而本发明的防冰霜涂料涂覆后形成的涂层表面具有疏水或超疏水特性, 水滴 易于自由滚动, 因此可以很容易的将沉积在表面的灰尘和杂质除去。
二、 长的使用寿命, 现有亲水性防冰霜涂料是利用涂料中亲水组分的吸 水性来实现防冰霜的作用 (CN 1632014A; CN 1916094A)。 但是, 任何吸水 材料的吸水能力都是有一定的限度的; 而且随着吸水量的增加, 其防冰霜效 果会下降, 当吸水达到一定程度后, 将失去防冰霜的作用, 这也是目前亲水 性防冰霜涂料所面临的共同问题——使用周期短。 本发明的防冰霜涂料在使 用后得到的涂层, 由于具有疏水或超疏水表层和亲水内层的复合结构, 表面 的疏水或超疏水特性使得大部分冷凝水滴从表面滚落, 因而渗透到内层的水 滴较少, 从而延长了亲水内层的寿命, 也就是延长了防冰霜涂料的使用寿命。
三、 无易挥发组分, 现有的防冰 /防霜剂 (CN 1061987A; CN 1044947 A; CN 1048053A; CN 1104674A) 以及防冰霜涂料 (CN 1632014A), 它们发挥 防冰霜作用的主要成分是具有挥发性的乙醇、 丙二醇、 甘油, 而醇的挥发会 影响涂层的防冰霜效果和耐久性。 本发明所述的防冰霜涂料是将若干种不同 的组分混合, 形成具有疏水或超疏水表层和亲水内层的复合结构。 制备过程 中不引入易挥发组分, 提高了涂层的耐久性。
四、 良好的防冰霜效果, 一般疏水性防冰霜涂料在延缓冷表面结冰方面 的作用有限 (CN 1880396A); 而本发明的防冰霜涂料在基材表面涂覆后, 会 形成超疏水表面, 延缓冰核的形成和降低冰霜的厚度。 本发明将疏水或超疏 水表层和亲水内层在防冰霜方面的优点结合起来, 通过二者的协同作用提高 防冰霜的效果。 附图说明 图 1为本发明实施例 1铝片表面涂覆防冰霜涂料后的接触角照片。 图中 所示对水的静态接触角达到 159°。
图 2A和图 2B分别为本发明实施例 1在环境温度为 20°C、铝片表面温度 为 -15°C、 环境湿度 50%条件下, 没有防冰霜涂料和有防冰霜涂料在 4小时内 结冰效果对比照片。
图 3为本发明实施例 2有防冰霜涂料和无防冰霜涂料的铝片表面霜层厚 度与时间的关系。
图 4为本发明实施例 3有防冰霜涂料和无防冰霜涂料的铝片表面霜层厚 度与时间的关系。 具体实施方式
下面的实施例将对本发明做进一步的说明。
实施例 1
1、 亲水性聚合物的制备
各组分如下: 丙烯酸钠 20g, 甲基丙烯酸 -2-羟基乙酯 10g。
按照上述配方将单体丙烯酸钠和甲基丙烯酸 -2-羟基乙酯混合, 得到混合 单体 Al。 在带有回流冷凝器、 搅拌器、 滴液漏斗的容器中加入 160g的水, 在通入氮气的条件下先加入 21g的上述混合单体 A1 ,升温至 60 °C,加入 0.25g 的引发剂过硫酸铵和 0.2g的 pH调节剂碳酸氢钠, 余下的混合单体 A1在 10 分钟内滴加完; 反应 4小时后, 加入 0.05g的引发剂过硫酸铵, 继续反应 2小 时, 反应结束后, 产物脱水后再真空干燥得亲水性聚合物。 采用凝胶渗透色 谱 (GPC) 方法测得数均分子量为 5.6xl05。 以水为溶剂制备得到的平滑膜对 水的静态接触角小于 5° 。
2、 疏水性聚合物的制备
各组分如下: 全氟辛酰氧基丙烯酸乙酯 10g, 甲基丙烯酸甲酯 20g, 丙烯 酸六氟丁酯 15g, 丙烯酸丁酯 10g。
按照上述配方将全氟辛酰氧基丙烯酸乙酯、 甲基丙烯酸甲酯、 丙烯酸六 氟丁酯和丙烯酸丁酯混合, 得到混合单体 Bl。 在带有回流冷凝器、 搅拌器、 滴液漏斗的容器中加入 60ml醋酸丁酯, 在通入氮气的条件下先加入 31.5g的 上述混合单体 B1 , 升温至 70°C, 加入 O.lg的引发剂过氧化苯甲酰, 余下的 混合单体 B1在 10分钟内滴加完; 反应 4小时后, 加入 0.05g的引发剂过氧 化苯甲酰, 继续反应 2小时, 反应结束后, 产物脱溶剂后再真空干燥得疏水 性聚合物。采用 GPC方法测得数均分子量为 9.7xl04。其平滑膜对水的静态接 触角为 96.4°。
3、 防冰霜涂料的使用与亲水 /超疏水复合结构调控
称取 30克的上述亲水性聚合物、 10克的上述疏水性聚合物混合均匀, 在 70°C温度下溶解于 Ν,Ν-二甲基甲酰胺中, 配成亲水性聚合物和疏水性聚合物 总浓度为 1重量%的防冰霜涂料,用喷枪将该防冰霜涂料喷涂在金属铝片表面 上。 将喷涂后的铝片置于 30°C、 10Pa环境中减压干燥固化。 得到表面具有防 冰霜涂层的铝片, 其中防冰霜涂层的内层为亲水性丙烯酸钠 /甲基丙烯酸 -2-羟 基乙酯的共聚物、 表层为疏水性全氟辛酰氧基丙烯酸乙酯 /甲基丙烯酸甲酯 / 丙烯酸六氟丁酯共聚物, 防冰霜涂层的总厚度为 0.4mm。
4、 防冰霜涂料的效果测试如下
1 ) 测试设备: 接触角测量仪采用德国 Dataphysics OCA20 Contact Angle system; 冷却装置采用低温智能恒温循环槽 (北京东方精锐 X30— D) 与换热 器; 多路巡检仪购自北京中仪华世技术有限公司。
2)测试方法:将上述表面具有防冰霜涂层的铝片置于换热器的翅片中间, 采用铂电阻片连接的多路巡检仪测量铝片表面以及霜层的温度; 利用上述接 触角测量仪自带的数码相机、 CCD、 显微系统、 图像处理软件及计算机记录 结霜过程。 图 1 是表面具有防冰霜涂层的铝片对水的静态接触角照片, 接触角为 159°。 从照片可以看出, 表面具有防冰霜涂层的铝片表面显示出超疏水特性。
图 2A和图 2B分别为环境湿度保持在 40%,壁面温度为 -15°C时, 没有防 冰霜涂层和有防冰霜涂层的铝片表面结霜结果测量对比结果。图 2A为没有涂 层的铝片, 图 2B为上述表面具有防冰霜涂层的铝片, 从两张图片可以看出, 在 4小时后, 没有防冰霜涂层的铝片表面结霜明显, 霜层厚度达 3.15mm, 而 有防冰霜涂层的铝片的表面几乎没有出现冰晶, 尤其没有出现大面积冰霜层 生长的情况。
以上结果表明, 本发明所述的防冰霜涂料较好的抑制了霜层的生长, 在 壁面温度大于 -15°C,环境湿度小于 50%的条件下,霜层出现时间大于 4小时, 防冰霜效果明显。 实施例 2
1、 选择商购的聚丙烯酸 (数均分子量为 l.OlxlO7)和聚甲基丙烯酸 -2-羟 基乙酯(数均分子量为 1.3xl05),亲水性聚合物为聚丙烯酸和聚甲基丙烯酸 -2- 羟基乙酯的混合物。 由该混合物制备的平滑膜对水的静态接触角小于 5°。
2、 疏水性聚合物的制备
将 15g的丙烯酸六氟丁酯和 20g的甲基丙烯酸甲酯混合, 得到混合单体
B2 o
在带有回流冷凝器、 搅拌器、 滴液漏斗的容器中加入 60ml醋酸丁酯, 在 通入氮气的条件下先加入 24.5g的上述混合单体 B2,升温至 70 °C,加入 0.07g 的引发剂过氧化苯甲酰, 余下的混合单体 B2在 10分钟内滴加完; 反应 4小 时后, 加 0.03g的引发剂过氧化苯甲酰, 继续反应 2小时, 反应结束后, 产物 脱溶剂后再真空干燥得疏水性聚合物。 采用 GPC 方法测得数均分子量为 8.4xl04。 由这种疏水性共聚物制备的平滑膜对水的静态接触角为 94.8°。
3、 防冰霜涂料的使用及亲水 /超疏水复合结构调控
称取 20g的聚丙烯酸、 20g的聚甲基丙烯酸 -2-羟基乙酯、 10g的疏水性聚 合物混合均匀, 在 80°C温度下溶解于体积比为 3: 1的 DMF与二噁垸的混合 溶剂中, 配成聚合物浓度为 3重量%的防冰霜涂料, 冷却至 60°C后喷涂在金 属铝片表面。 将喷涂后的铝片置于 20°C、 lOOPa环境中减压干燥固化。 得到 表面具有防冰霜涂层的铝片, 其中防冰霜涂层的内层为亲水性聚丙烯酸 /甲基 丙烯酸 -2-羟基乙酯的共聚物、 表层为疏水性全氟辛酰氧基丙烯酸乙酯 /甲基丙 烯酸甲酯 /丙烯酸六氟丁酯共聚物, 防冰霜涂层的总厚度为 0.6mm。 防冰霜涂 层对水的静态接触角为 155.6°, 测试过程同实施例 1。
4、 霜层厚度测量结果: 在实验环境温度 18°C、 铝片表面温度 -15.3°C、 环 境湿度 50%条件下 2 小时后, 表面没有防冰霜涂料的铝片表面霜层厚度为 2.05mm, 表面有防冰霜涂料的铝片表面霜层厚度为 0.22mm (见图 3 )。 实施例 3
1、 选择外购的聚丙烯酸为亲水性聚合物。 该亲水性聚合物的平滑膜对水 的静态接触角小于 5°。
2、 选择外购的聚丙烯为疏水性聚合物。 该疏水性聚合物的平滑膜对水的 静态接触角为 102.5°。
3、 防冰霜涂料的使用及亲水 /超疏水复合结构调控
称取 20克聚丙烯酸(数均分子量为 8xl06)、 10克聚丙烯(数均分子量为 4.95X106)混合均匀, 在 120°C温度下溶解于体积比为 2: 1的二噁垸与二甲苯 的混合溶剂中, 配成聚合物浓度为 10重量%的防冰霜涂料, 采用自然流平技 术涂覆在金属铝片表面。 将喷涂后的铝片置于 40°C、 lOOOPa环境中减压干燥 固化。 得到表面具有防冰霜涂层的铝片, 其中防冰霜涂层的内层为亲水性丙 烯酸钠 /甲基丙烯酸 -2-羟基乙酯的共聚物、 表层为疏水性全氟辛酰氧基丙烯酸 乙酯 /甲基丙烯酸甲酯 /丙烯酸六氟丁酯共聚物, 防冰霜涂层的总厚度为 0.82mm。 防冰霜涂层对水的静态接触角为 158.2° , 测试过程同实施例 1。
4、 霜层厚度测量结果: 在实验环境温度 19°C、 铝片表面温度 -14.8°C、 环 境湿度 50%条件下 4小时后, 没有防冰霜涂料的表面霜层厚度 3.42mm, 有防 冰霜涂料的铝片表面霜层厚度为 0.74mm (见图 4)。 实施例 4
1、 亲水性聚合物的制备
各组分如下: 丙烯酸 10g, 丙烯酸钠 15g, 甲基丙烯酸 -2-羟基乙酯 10g。 按照上述配方将丙烯酸、 丙烯酸钠和甲基丙烯酸 -2-羟基乙酯混合, 得到 混合单体 A4。 在带有回流冷凝器、 搅拌器、 滴液漏斗的容器中加入 200g的 水, 在通入氮气的条件下先加入 24.5g的上述混合单体 A4, 升温至 60°C, 加 入 0.3g的引发剂过硫酸铵和 0.22g的 pH调节剂碳酸氢钠, 余下的混合单体 A4在 10分钟内滴加完; 反应 4小时后, 加 0.05g的引发剂过硫酸铵, 继续反 应 2小时, 反应结束后, 产物脱水后再真空干燥得亲水性聚合物。 采用 GPC 方法测得数均分子量为 5.2xl03。 该亲水性聚合物的平滑膜对水的接触角小于
2、 选择外购的聚甲基丙烯酸甲酯, 疏水性聚合物为聚甲基丙烯酸甲酯和 聚丙烯酸六氟丁酯的混合物。
聚丙烯酸六氟丁酯的制备如下:
在带有回流冷凝器、 搅拌器、 滴液漏斗的容器中加入 30ml的醋酸丁酯, 在通入氮气的条件下先加入 15g的丙烯酸六氟丁酯单体, 升温至 70°C, 加入 O.lg的引发剂过氧化苯甲酰, 反应 30分钟后, 再加入 10g的丙烯酸六氟丁酯 单体并在 10分钟内滴加完; 反应 4小时后, 加 0.05g的引发剂过氧化苯甲酰, 继续反应 2小时, 反应结束后, 产物脱溶剂后再真空干燥得疏水性的聚丙烯 酸六氟丁酯。 采用 GPC方法测得数均分子量为 1.0 X 104。 该亲水性聚合物的 平滑膜对水的接触角为 97.2°。
3、 防冰霜涂料的使用及亲水 /超疏水复合结构调控
称取 30克的上述亲水性聚合物、 10克的聚甲基丙烯酸甲酯(数均分子量 4.3xl06)和 5g的上述制备的聚丙烯酸六氟丁酯混合均匀,在 70°C温度下溶解 于体积比为 1 : 3的 Ν,Ν-二甲基乙酰胺与甲醇的混合溶剂中, 配成聚合物浓度 为 10重量%的溶液, 采用旋涂的方法在铝片表面涂覆防冰霜涂料, 旋涂时转 速为 3000转 /秒。将旋涂后的铝片置于 50°C、 500Pa环境中进一步减压干燥固 化。 得到表面具有防冰霜涂层的铝片, 其中防冰霜涂层的内层为聚丙烯酸钠 / 甲基丙烯酸 -2-羟基乙酯 /丙烯酸的共聚物、 表层为疏水性聚甲基丙烯酸甲酯和 聚丙烯酸六氟丁酯混合物, 防冰霜涂层的总厚度为 0.35mm。 防冰霜涂层对水 的静态接触角为 153.8°, 测试过程同实施例 1。
4、 霜层厚度测量结果: 在实验环境温度 20°C, 铝片表面温度 -16°C, 环 境湿度 40%条件下 2小时后, 没有防冰霜涂料的表面霜层厚度 2.31mm, 有防 冰霜涂料的铝片表面霜层厚度为 0.33mm。 实施例 5
1、 亲水性聚合物的制备同实施例 1。
2、 选择外购的聚甲基丙烯酸甲酯和聚丙烯酸丁酯, 疏水性聚合物为聚甲 基丙烯酸甲酯、 聚丙烯酸丁酯、 聚丙烯酸六氟丁酯和聚全氟辛酰氧基丙烯酸 乙酯的混合物。
聚丙烯酸六氟丁酯的制备同实施例 4。
聚全氟辛酰氧基丙烯酸乙酯的制备如下:
在带有回流冷凝器、 搅拌器、 滴液漏斗的容器中加入 30ml的醋酸丁酯, 在通入氮气的条件下先加入 10g 的全氟辛酰氧基丙烯酸乙酯单体, 升温至 80°C, 加入 O.lg的引发剂过氧化苯甲酰, 反应 30分钟后, 再加入 5g的全氟 辛酰氧基丙烯酸乙酯单体并在 10分钟内滴加完; 反应 4小时后, 加 0.05g的 引发剂过氧化苯甲酰, 继续反应 2小时, 反应结束后, 产物脱溶剂后再真空 干燥得疏水性的聚全氟辛酰氧基丙烯酸乙酯。 采用 GPC方法测得数均分子量 为 2.6xl04。 由这种疏水性聚合物制得的平滑膜对水的静态接触角为 105.4°。
3、 表面具有防冰霜涂层的防冰霜材料的制备
称取 30g的上述亲水性聚合物、 5g的聚甲基丙烯酸甲酯 (数均分子量为 4.3xl06)、 2g的聚丙烯酸丁酯(数均分子量为 6.4xl04)、 2.5g的聚丙烯酸六氟 丁酯和 2.5g的聚全氟辛酰氧基丙烯酸乙酯混合均匀, 在 80 °C温度下溶解于体 积比为 1 : 4 的 Ν,Ν-二甲基乙酰胺与甲醇的混合溶剂中, 配成聚合物浓度为 10 重量%的溶液, 采用自然流平方法涂覆在铝片表面。 将涂覆后的铝片置于 60°C、 750Pa环境中减压干燥固化。得到表面具有防冰霜涂层的铝片, 其中防 冰霜涂层的内层为亲水性丙烯酸钠 /甲基丙烯酸 -2-羟基乙酯共聚物, 表层为疏 水性聚甲基丙烯酸甲酯、 聚丙烯酸丁酯、 聚丙烯酸六氟丁酯和聚全氟辛酰氧 基丙烯酸乙酯的混合物, 防冰霜涂层的总厚度为 0.72mm。 防冰霜涂层对水的 静态接触角为 156.2°, 测试过程同实施例 1。
4、 霜层厚度测量结果: 在实验环境温度 18.2 °C、 铝片表面温度 -14.4 °C、 环境湿度 55%条件下 2小时后, 没有防冰霜涂料的表面霜层厚度 2.51mm, 有 防冰霜涂料的铝片表面霜层厚度为 0.42mm。
以上实施例说明本发明所述的防冰霜涂料在防冰霜方面具有较好的效 果, 可以应用于制冷行业以及温度较低的我国北方地区室外空调防霜。

Claims

权利要求书
1、 一种防冰霜涂料, 其特征在于, 该防冰霜涂料涂覆在基材上后形成的 涂层具有亲水与超疏水复合结构, 所述防冰霜涂料含有疏水性聚合物和亲水 性聚合物。
2、 根据权利要求 1所述的防冰霜涂料, 其中, 所述防冰霜涂料还含有溶 剂。
3、 根据权利要求 2所述的防冰霜涂料, 其中, 所述疏水性聚合物和亲水 性聚合物的总量与所述溶剂的重量比为 (0.01-0.5 ): 1。
4、 根据权利要求 1-3中任意一项所述的防冰霜涂料, 其中, 以所述疏水 性聚合物和亲水性聚合物的总量为基准, 所述疏水性聚合物的含量为 20-50 重量%, 所述亲水性聚合物的含量为 50-80重量%。
5、 根据权利要求 1-4中任意一项所述的防冰霜涂料, 其中, 所述亲水性 聚合物为平滑膜对水的静态接触角小于 90° 的聚合物, 所述疏水性聚合物为 平滑膜对水的接触角不小于 90° 的聚合物, 所述平滑膜是指由该聚合物溶解 在良溶剂中或者由该聚合物熔融后形成的膜。
6、 根据权利要求 1-5中任意一项所述的防冰霜涂料, 其中, 所述亲水性 聚合物的数均分子量为 5xl03-2xl07, 所述疏水性聚合物的数均分子量为 1χ104-5χ107
7、 根据权利要求 1-6中任意一项所述的防冰霜涂料, 其中, 所述疏水性 聚合物选自聚丙烯酸酯、 聚含氟丙烯酸酯、 聚烯烃或它们的混合物; 或者 选自丙烯酸酯与含氟丙烯酸酯的共聚物。
8、 根据权利要求 7所述的防冰霜涂料, 其中, 所述丙烯酸酯是丙烯酸甲 酯、 丙烯酸乙酯、 丙烯酸丁酯、 丙烯酸辛酯、 丙烯酸戊酯、 甲基丙烯酸甲酯、 甲基丙烯酸乙酯、 甲基丙烯酸丁酯、 甲基丙烯酸辛酯、 甲基丙烯酸戊酯或它 们的混合物;
所述含氟丙烯酸酯是丙烯酸六氟丁酯、 全氟辛酰氧基丙烯酸乙酯、 全氟 辛基丙烯酸酯、 丙烯酸五氟丁酯、 丙烯酸七氟戊酯、 丙烯酸九氟己酯、 丙烯 酸十二氟辛酯、 甲基丙烯酸五氟丁酯、 甲基丙烯酸七氟戊酯、 甲基丙烯酸九 氟己酯、 甲基丙烯酸十二氟辛酯、 全氟辛基甲基丙烯酸酯、 全氟辛酰氧基甲 基丙烯酸乙酯或它们的混合物;
所述聚丙烯酸酯是聚丙烯酸甲酯、 聚甲基丙烯酸甲酯、 聚丙烯酸丁酯、 聚丙烯酸乙酯、 聚丙烯酸辛酯、 聚丙烯酸戊酯、 聚甲基丙烯酸乙酯、 聚甲基 丙烯酸丁酯、 聚甲基丙烯酸辛酯、 聚甲基丙烯酸戊酯或它们的混合物;
所述聚含氟丙烯酸酯是聚丙烯酸六氟丁酯、 聚全氟辛酰氧基丙烯酸乙酯、 聚全氟辛基丙烯酸酯、 聚丙烯酸五氟丁酯、 聚丙烯酸七氟戊酯、 聚丙烯酸九 氟己酯、 聚丙烯酸十二氟辛酯、 聚甲基丙烯酸五氟丁酯、 聚甲基丙烯酸七氟 戊酯、 聚甲基丙烯酸九氟己酯、 聚甲基丙烯酸十二氟辛酯、 聚全氟辛基甲基 丙烯酸酯、 聚全氟辛酰氧基甲基丙烯酸乙酯或它们的混合物;
所述聚烯烃是聚丙烯和 /或聚乙烯。
9、 根据权利要求 1-6中任意一项所述的防冰霜涂料, 其中, 所述亲水性 聚合物选自聚丙烯酸钠、 聚丙烯酸、 聚甲基丙烯酸 -2-羟基乙酯、 聚甲基丙烯 酸 -2-羟基丙酯、 聚甲基丙烯酸缩水甘油酯、 聚丙烯酰胺或它们的混合物; 或 者
选自丙烯酸钠、 丙烯酸、 甲基丙烯酸、 甲基丙烯酸 -2-羟基乙酯、 甲基丙 烯酸缩水甘油酯丙烯酰胺、 甲基丙烯酸 -2-羟基乙酯中的两者或两者以上组合 的共聚物。
10、 根据权利要求 2或 3所述的防冰霜涂料, 其中, 所述溶剂是二噁垸、 二甲苯、 Ν,Ν-二甲基甲酰胺、 Ν,Ν-二甲基乙酰胺、 甲醇中的一种或大于一种 的混合物。
11、 权利要求 1-10中任意一项所述的防冰霜涂料的使用方法, 其特征在 于: 该方法包括将所述亲水性聚合物和所述疏水性聚合物溶解在溶剂中形成 均相溶液, 然后涂覆在基材上成膜, 干燥固化, 得到具有疏水表层和亲水内 层的亲水与疏水复合结构的防冰霜涂层。
12、 根据权利要求 11所述的方法, 其中, 所述亲水性聚合物和疏水性聚 合物是在温度为 60-130°C下溶解在同一种溶剂中的。
13、 根据权利要求 11或 12所述的方法, 其中, 所述溶剂是二噁垸、 二 甲苯、 Ν,Ν-二甲基甲酰胺、 Ν,Ν-二甲基乙酰胺、 甲醇中的一种或大于一种的 混合物。
14、根据权利要求 11所述的方法,其中,所述干燥固化的温度为 20-60 °C。
15、 根据权利要求 11 所述的方法, 其中, 所述干燥固化的压力为
Figure imgf000019_0001
PCT/CN2009/070233 2008-01-31 2009-01-21 防冰霜涂料及其使用方法 WO2009097790A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09709215A EP2236573A4 (en) 2008-01-31 2009-01-21 ANTIFROST COATING AND APPLICATION METHOD THEREFOR
JP2010544565A JP5112521B2 (ja) 2008-01-31 2009-01-21 防氷霜塗料及びその使用方法
US12/864,607 US8372484B2 (en) 2008-01-31 2009-01-21 Anti-frost coating and the application method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810057287.6 2008-01-31
CN200810057287A CN100593557C (zh) 2008-01-31 2008-01-31 防冰霜涂料及其使用方法

Publications (1)

Publication Number Publication Date
WO2009097790A1 true WO2009097790A1 (zh) 2009-08-13

Family

ID=39857483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/070233 WO2009097790A1 (zh) 2008-01-31 2009-01-21 防冰霜涂料及其使用方法

Country Status (5)

Country Link
US (1) US8372484B2 (zh)
EP (1) EP2236573A4 (zh)
JP (1) JP5112521B2 (zh)
CN (1) CN100593557C (zh)
WO (1) WO2009097790A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9371595B2 (en) 2009-11-10 2016-06-21 Conopco, Inc. Frost free surfaces and method for manufacturing the same

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100593557C (zh) * 2008-01-31 2010-03-10 中国科学院化学研究所 防冰霜涂料及其使用方法
JP2013516526A (ja) * 2010-01-11 2013-05-13 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド 凍結防止特性を有する表面コーティング
CN102277060A (zh) * 2011-08-10 2011-12-14 天津大学 氟硅丙烯酸酯共聚物的疏水防冰雪涂料及涂层制备方法
US9964350B2 (en) 2012-06-12 2018-05-08 Hussmann Corporation Control system for a refrigerated merchandiser
JP2014014769A (ja) * 2012-07-09 2014-01-30 Panasonic Corp 塗膜
WO2014127304A1 (en) * 2013-02-15 2014-08-21 Massachusetts Institute Of Technology Grafted polymer surfaces for dropwise condensation, and associated methods of use and manufacture
US9970699B2 (en) * 2013-08-26 2018-05-15 Whirlpool Corporation Combined refrigerator/freezer appliances with dampers having ice prevention treatments
CN103587189B (zh) * 2013-10-26 2015-09-23 溧阳市哈大成果转化中心有限公司 一种机翼前缘组件
CN103587180B (zh) * 2013-10-30 2015-09-23 溧阳市哈大成果转化中心有限公司 一种机头前缘
CN103625071B (zh) * 2013-10-30 2016-01-06 溧阳市哈大成果转化中心有限公司 防冰垂直尾翼前缘组件
CN103788277B (zh) * 2013-12-26 2016-03-30 齐鲁工业大学 一种苯乙烯-双酚a二缩水甘油醚单丙烯酸酯共聚物及其超疏水表面的制备方法
CN103695906B (zh) * 2013-12-27 2016-08-17 东华大学 一种超疏水铝及铝合金表面的制备方法
US9505942B2 (en) * 2014-06-23 2016-11-29 Eastman Kodak Company Preparation of patterned or electrically-conductive articles
EP3175197B1 (en) 2014-07-31 2019-06-26 Carrier Corporation Coated heat exchanger
EP2990742A1 (en) * 2014-08-28 2016-03-02 ABB Technology AG Method and apparatus for solidifying a polar substance
US20160130462A1 (en) * 2014-11-07 2016-05-12 Rohm And Haas Electronic Materials Llc Topcoat compositions and photolithographic methods
CN104845514B (zh) * 2015-04-15 2017-07-04 宁波奇红电器有限公司 一种防凝露结霜冰柜玻璃及其制备方法
CN105694688B (zh) * 2016-03-16 2017-09-26 曲阜师范大学 一种高强度超疏水涂层的快速制备方法
CN106283390B (zh) * 2016-11-10 2018-11-23 北京航空航天大学 一种防冰双层纺丝膜及其制备方法
JP2021527022A (ja) * 2018-06-08 2021-10-11 ガーディアン・グラス・エルエルシーGuardian Glass, Llc 防曇性を有するコーティングされたガラス
CN109297105A (zh) * 2018-08-28 2019-02-01 珠海格力电器股份有限公司 一种超疏水红外吸收涂层、换热器和空调室外机
US11814540B2 (en) 2019-06-03 2023-11-14 Board Of Trustees Of Michigan State University Biodegradable omniphobic and high-barrier coatings, related articles, and related methods
AU2020288648A1 (en) * 2019-06-05 2022-01-06 Conocophillips Company Two-stage heavies removal in LNG processing
CN112444282A (zh) * 2019-08-29 2021-03-05 浙江三花智能控制股份有限公司 传感器、换热器和换热系统
EP4045859A4 (en) 2019-10-17 2023-11-15 ConocoPhillips Company INDEPENDENT HIGH PRESSURE UNIT FOR THE REMOVAL OF HEAVY COMPONENTS IN LNG PROCESSING
KR102610988B1 (ko) * 2021-04-09 2023-12-06 한국화학연구원 불소계 고분자, 이를 포함하는 불소계 고분자 조성물 및 이를 이용한 불소계 고분자막
CN113249970A (zh) * 2021-04-20 2021-08-13 西安理工大学 环境响应性超疏水-亲水可逆转化材料表面的制备方法
CN113480332A (zh) * 2021-08-12 2021-10-08 浙江省建设工程质量检验站有限公司 一种保温隔热建筑材料及其制备方法
CN114539921B (zh) * 2022-01-17 2022-10-21 上海交通大学 一种基于超亲水涂层和疏水涂层的蒸发器及其制备方法和应用
CN114877570A (zh) * 2022-06-02 2022-08-09 桂林电子科技大学 一种电动汽车热泵型空调车外换热器翅片及其除霜用超疏水涂层的制备方法
CN115466599B (zh) * 2022-09-13 2024-03-12 中科融志国际科技(北京)有限公司 透明防冰涂层以及风机叶片
CN116396681B (zh) * 2023-03-29 2024-03-22 中科融志国际科技(北京)有限公司 防凝露防冰涂层以及风机叶片

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4585571A (en) * 1985-03-15 1986-04-29 Michael A. Bloom Deicing compositions
CN1044947A (zh) 1989-02-18 1990-08-29 刘元生 化雾防霜防冻液
CN1048053A (zh) 1990-07-30 1990-12-26 肖振三 汽车风挡玻璃防霜防雾剂
CN1061987A (zh) 1990-12-05 1992-06-17 陈德鲁 玻璃防雾除霜消冰剂
CN1104674A (zh) 1993-12-30 1995-07-05 慈宝禄 高效玻璃防雾防霜洁净剂
US20040194388A1 (en) * 2002-05-02 2004-10-07 Hussmann Corporation Merchandisers having anti-fog coatings and methods for making the same
CN1632014A (zh) 2004-12-17 2005-06-29 北京工业大学 一种亲水性防霜涂料
JP2005177697A (ja) * 2003-12-22 2005-07-07 Nippon Sheet Glass Co Ltd 氷結防止層形成用塗工材料、氷結防止層の形成方法及び氷結防止部材
CN1880396A (zh) 2005-06-13 2006-12-20 联合工艺公司 抗腐蚀防结冰涂层
CN1916094A (zh) 2006-09-04 2007-02-21 北京工业大学 强吸水性抑霜涂料
CN101225272A (zh) * 2008-01-31 2008-07-23 中国科学院化学研究所 防冰霜涂料及其使用方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4049869A (en) * 1975-09-19 1977-09-20 United States Trading International, Inc. Method for preserving porous inorganic substrates
JPS6123657A (ja) 1984-07-11 1986-02-01 Kansai Paint Co Ltd 着氷防止有機樹脂塗料組成物
JPS6195078A (ja) * 1984-10-15 1986-05-13 Kansai Paint Co Ltd 着氷防止有機樹脂塗料組成物
JPH0684496B2 (ja) * 1985-05-31 1994-10-26 神東塗料株式会社 改良された着雪着氷防止用被覆材
US5180760A (en) * 1988-04-28 1993-01-19 Nippon Oil And Fats Company, Limited Anti-fogging resin film-forming composition
JP2614825B2 (ja) * 1994-06-07 1997-05-28 北海道 着雪氷防止塗料組成物
US6168866B1 (en) * 1998-08-19 2001-01-02 3M Innovative Properties Company Abrasion and stain resistant curable fluorinated coating
CA2337946A1 (en) * 1998-09-10 2000-03-23 Ciba Specialty Chemicals Holding Inc. Aqueous fluorinated polymer dispersions capable to protect asphaltic materials
US7976916B2 (en) * 1999-05-25 2011-07-12 Saint-Gobain Vitrage Refrigerated display case having a transparent insulating glazing unit
JP2002220537A (ja) * 2001-01-29 2002-08-09 Hokushin Ind Inc 表面改質樹脂組成物
CN1164683C (zh) * 2001-02-15 2004-09-01 中国科学院化学研究所 一种疏水性含氟端基聚氨酯组合物及其用途
JP2003128980A (ja) * 2001-07-27 2003-05-08 Hokushin Ind Inc 着雪氷防止組成物及び着雪氷防止方法
US20040137155A1 (en) * 2003-01-13 2004-07-15 Exxene Corporation Fog-resistant coatings and methods of making the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4585571A (en) * 1985-03-15 1986-04-29 Michael A. Bloom Deicing compositions
CN1044947A (zh) 1989-02-18 1990-08-29 刘元生 化雾防霜防冻液
CN1048053A (zh) 1990-07-30 1990-12-26 肖振三 汽车风挡玻璃防霜防雾剂
CN1061987A (zh) 1990-12-05 1992-06-17 陈德鲁 玻璃防雾除霜消冰剂
CN1104674A (zh) 1993-12-30 1995-07-05 慈宝禄 高效玻璃防雾防霜洁净剂
US20040194388A1 (en) * 2002-05-02 2004-10-07 Hussmann Corporation Merchandisers having anti-fog coatings and methods for making the same
JP2005177697A (ja) * 2003-12-22 2005-07-07 Nippon Sheet Glass Co Ltd 氷結防止層形成用塗工材料、氷結防止層の形成方法及び氷結防止部材
CN1632014A (zh) 2004-12-17 2005-06-29 北京工业大学 一种亲水性防霜涂料
CN1880396A (zh) 2005-06-13 2006-12-20 联合工艺公司 抗腐蚀防结冰涂层
CN1916094A (zh) 2006-09-04 2007-02-21 北京工业大学 强吸水性抑霜涂料
CN101225272A (zh) * 2008-01-31 2008-07-23 中国科学院化学研究所 防冰霜涂料及其使用方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2236573A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9371595B2 (en) 2009-11-10 2016-06-21 Conopco, Inc. Frost free surfaces and method for manufacturing the same

Also Published As

Publication number Publication date
US8372484B2 (en) 2013-02-12
CN101225272A (zh) 2008-07-23
JP2011514392A (ja) 2011-05-06
JP5112521B2 (ja) 2013-01-09
EP2236573A4 (en) 2011-10-05
CN100593557C (zh) 2010-03-10
US20100316806A1 (en) 2010-12-16
EP2236573A1 (en) 2010-10-06

Similar Documents

Publication Publication Date Title
WO2009097790A1 (zh) 防冰霜涂料及其使用方法
Zhu et al. Improvement of anti‐icing properties of low surface energy coatings by introducing phase‐change microcapsules
CN101307208B (zh) 高疏水性防结冰及防结霜涂料及其制备方法
Wang et al. Anti-frosting performance of sprayable superhydrophobic coating suitable for outdoor coil of air source heat pump
JPH0493597A (ja) 撥水性コーティング用組成物及び撥水性コーティング用組成物を塗布した熱交換器
Liu et al. Robust and self-healing superhydrophobic aluminum surface with excellent anti-icing performance
JPH03259975A (ja) 撥水性コーティング用組成物及び撥水性コーティング用組成物を塗布した熱交換器
Liu et al. Robust anti-icing coatings via enhanced superhydrophobicity on fiberglass cloth
Xie et al. Efficient and economical approach for flexible photothermal icephobic copper mesh with robust superhydrophobicity and active deicing property
Wang et al. Effects of frost thickness on dynamic defrosting on vertical hydrophobic and superhydrophobic fin surfaces
He et al. Effect of micro-nano structure on anti-frost and defrost performance of the superhydrophobic fin surfaces
US20120308775A1 (en) Hydrophilic surfaces and process for preparing
CN1317344C (zh) 一种亲水性防霜涂料
Li et al. Effect of surface wettability on dust removal characteristics during frosting cleaning process
CN209763331U (zh) 换热器、空调室外机和空调器
Zhao et al. A New Composite Material with Energy Storage, Electro/Photo‐Thermal and Robust Super‐Hydrophobic Properties for High‐Efficiency Anti‐Icing/De‐Icing
JP7194587B2 (ja) 親水化処理剤、親水皮膜形成方法、および親水皮膜
JPH0445181A (ja) 撥水性コーティング用塗料及びその塗料を塗布した熱交換器
JP2004176980A (ja) 冷凍装置
Wang et al. Effects of contact angle hysteresis on frosting and defrosting characteristics on vertical superhydrophobic surfaces
JPH03244996A (ja) 撥水性コーティング用組成物及び撥水性コーティング用組成物を用いた熱交換器
CN114106604A (zh) 涂层铝箔及其制备方法和应用
JPH03244680A (ja) 撥水性コーティング用組成物及び撥水性コーティング用組成物を用いた熱交換器
JP7337686B2 (ja) 着氷雪防止剤およびそれを被覆した構造物
JP2803798B2 (ja) 熱交換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09709215

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009709215

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010544565

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12864607

Country of ref document: US