WO2009096596A1 - 高強度鋼板およびその製造方法 - Google Patents

高強度鋼板およびその製造方法 Download PDF

Info

Publication number
WO2009096596A1
WO2009096596A1 PCT/JP2009/051915 JP2009051915W WO2009096596A1 WO 2009096596 A1 WO2009096596 A1 WO 2009096596A1 JP 2009051915 W JP2009051915 W JP 2009051915W WO 2009096596 A1 WO2009096596 A1 WO 2009096596A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
martensite
temperature range
strength
Prior art date
Application number
PCT/JP2009/051915
Other languages
English (en)
French (fr)
Inventor
Hiroshi Matsuda
Reiko Mizuno
Yoshimasa Funakawa
Yasushi Tanaka
Tatsuya Nakagaito
Saiji Matsuoka
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Priority to CA2713181A priority Critical patent/CA2713181C/en
Priority to MX2010008227A priority patent/MX2010008227A/es
Priority to CN2009801038287A priority patent/CN101932746B/zh
Priority to US12/865,527 priority patent/US20110030854A1/en
Priority to EP09706046.1A priority patent/EP2246456B9/en
Priority to KR1020107017843A priority patent/KR101225321B1/ko
Publication of WO2009096596A1 publication Critical patent/WO2009096596A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0468Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment between cold rolling steps

Definitions

  • the present invention relates to a high strength steel plate having a tensile strength of 900 MPa or more and excellent in formability used in industrial fields such as automobiles and electricity.
  • the high-strength steel sheet of the present invention includes a steel sheet surface that has been subjected to hot dip galvanization or alloyed hot dip galvanization. Background art
  • Patent Document 1 specifies the component composition, hot rolling and annealing conditions, and has a high tensile strength: 588 to 882 MPa.
  • Tensile steel sheet and method for producing the same Patent Document 2 discloses a method for producing a high-tensile cold-rolled steel sheet having excellent bendability by prescribing conditions for hot rolling, cold rolling and annealing of steel having a predetermined composition. Proposed.
  • Patent Document 3 describes a steel plate excellent in collision safety and formability by specifying a martensite fraction, its particle size, and mechanical characteristics, and a manufacturing method thereof.
  • Patent Document 5 a high-strength steel sheet with excellent stretch freezing properties and shape freezing properties and impact resistance properties is defined by defining the component composition, the ferrite particle size, the texture and the martensite fraction, High-strength hot-dip galvanized steel sheet Hot-dip galvanized steel sheet and its manufacturing method, Patent Document 6 proposes a high-strength steel sheet with excellent mechanical properties and its manufacturing method by specifying the composition of ingredients and the manufacturing method of martensite amount Has been.
  • Patent Documents 7 and 8 include high-strength hot-dip galvanized steel sheets and high-strength hot-dip zinc, which are excellent in stretch flangeability and bendability by specifying the composition of the components and the production conditions in the hot-dip galvanizing line. A method and equipment for producing steel plates have been proposed.
  • Patent Document 9 defines the component, particle size, hardness ratio, etc., with the hard second phase as martensite and / or vinyl.
  • Patent Document 10 discloses a steel sheet with excellent stretch flangeability by defining the composition and hardness ratio thereof mainly with the bait or parlite as the second base. Proposed.
  • Patent Document 11 describes a high strength, high ductility hot-dip galvanized steel plate with excellent hole expansibility consisting of bainite and martensite as a hard second phase and a manufacturing method thereof, and Patent Document 1 2 describes a hard second phase.
  • Patent Documents 13 and 13 define high-tensile steel sheets that are excellent in ductility and hole expandability by specifying the composition of components and the amount of retained austenite, and Patent Documents 14 and 14 describe the contents of beanite and retained austenite and / or martensite.
  • a high-strength cold-rolled steel sheet with excellent workability has been proposed by prescribing the component composition and the fraction of each phase, etc., in a steel sheet containing steel.
  • Patent Document 15 describes the distribution of hard second-phase grains in ferrite and the existence ratio of grains composed of tempered martensite and bainite, thereby providing high strength with excellent workability.
  • a steel plate and a manufacturing method thereof have been proposed.
  • Patent Document 16 describes the ultrahigh tensile cold-rolled steel with excellent delayed fracture resistance with a tensile strength of l lSOMPa or more by specifying the component composition and manufacturing process.
  • Patent Document 17 describes the manufacturing method of the ultra-high-tensile cold-rolled steel plate that has excellent bendability with a tensile strength of 980 MPa or more by specifying the component composition and the manufacturing method
  • Patent Document 18 proposes an ultra-high strength thin steel plate with a tensile strength of 9S0MPa or more and its manufacturing method that prevents hydrogen embrittlement by limiting the number of iron-based carbides in tempered martensite to a certain number. Has been.
  • Patent Documents 1-7, 9- No. 10 1 to 14 are inventions for steel sheets with a tensile strength of less than 900 MPa, and workability cannot often be ensured if the strength is further increased. Further, Patent Document 1 stipulates that annealing is performed in a single-phase region and the subsequent cooling is performed at 6 to 20 ° C / second to 400 ° C. In addition, it is necessary to raise the temperature before plating in order to cool to 400 ° C or less, so it is necessary to raise the temperature before plating. Cannot be produced with a continuous hot dip galvanized line.
  • Patent Documents 7 and 8 since it is necessary to generate tempered martensite during the heat treatment in the hot dip galvanizing line, equipment for reheating after cooling to the Ms point or lower is required.
  • the phase composition of the hard second phase is defined as the bainite and martensite, and the fraction is specified, but in the specified range, the characteristic variation is large, and in order to suppress the variation Therefore, precise control of operating conditions is required.
  • Patent Document 15 in order to cool to the Ms point or lower in order to generate martensite before the transformation, it is necessary to provide reheating equipment. Since precise control is indispensable, the cost of equipment and operation increases.
  • Patent Documents 16 and 17 it is necessary to keep the structure in the temperature range where the bainite is formed after annealing in order to make the structure mainly composed of bainite, and it is difficult to ensure ductility. In this case, it is necessary to re-ripe more than the bath temperature.
  • Patent Document 18 shows only an improvement in hydrogen embrittlement of a steel sheet, and hardly any consideration is given to workability except for a few studies of bending workability.
  • the ratio of the hard second phase In general, in order to increase the strength of a steel sheet, it is necessary to increase the ratio of the hard second phase to the entire structure. However, if the ratio of the hard second phase is increased, the workability of the steel sheet will be hard second. It is strongly influenced by the workability of the phase. This is because, when the proportion of the hard second phase is small, the ferrite itself, which is the parent phase, is deformed, so that the minimum additivity is ensured even when the additivity of the hard second phase is not sufficient. However, when the ratio of the hard second phase is large, the deformability of the hard second phase itself directly affects the formability of the steel sheet, not the deformation of the ferrite, and the workability is not sufficient. This is because the moldability deteriorates significantly.
  • martensite is produced by water quenching by adjusting the fraction of ferrite and hard second phase in a continuous annealing facility with a water quenching function. After the formation, the workability of the hard phase has been improved by maintaining the temperature rise and tempering the martensite.
  • ferritic is used as the parent phase
  • the hard second phase containing carbide containing carbide is used as a hard phase. Workability has been secured and stretch flangeability has been secured, but in this case sufficient ductility could not be secured.
  • the second phase is martensite or residual austenite (including the vein containing residual austenite), in order to ensure stretch flangeability at the same time as ductility, for example, the second phase structure Consideration has been made such as making a mixed organization of martensite and bainto.
  • Patent Document 1 Japanese Patent No. 1853389
  • Patent Document 2 Japanese Patent No. 3610883
  • Patent Document 3 Japanese Patent Laid-Open No. 11-61327
  • Patent Document 4 Japanese Patent Laid-Open No. 2003-213369
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2003-213370
  • Patent Document 6 Special Table 2003-505604
  • Patent Document 7 JP-A-6-93340
  • Patent Document 8 JP-A-6-108152
  • Patent Document 9 Japanese Patent Laid-Open No. 7-11383
  • Patent Document 10 Japanese Patent Laid-Open No. 10-60593
  • Patent Document 1 1 JP-A-2005-281854
  • Patent Document 1 2 Japanese Patent No. 3231204 Patent Document 1 3 Japanese Patent Laid-Open No. 2001-207234
  • Patent Document 1 Japanese Patent Laid-Open No. 7-207413
  • Patent Document 1 JP 2005-264328 A
  • Patent Document 1 Japanese Patent No. 2616350
  • Patent Document 1 Japanese Patent No. 2621744
  • Patent Document 1 Japanese Patent No. 2826058 Disclosure of Invention
  • the present invention advantageously solves the above-mentioned problems, minimizes the generation of the strength that tends to vary in properties such as strength and formability, and can achieve both high strength and excellent formability.
  • the purpose is to supply high-strength steel sheets of 900MPa or more together with their advantageous manufacturing method.
  • TS X T. is indicative of the EL and stretch flangeability, and shall be evaluated by a value, in the present invention, TS X T. El ⁇ 14500MPa ⁇ %, tut ⁇ 1 5% of target characteristics And
  • the inventors studied the process of martensite formation, particularly the effect of steel sheet cooling conditions on the martensite.
  • the martensite after transformation is tempered at the same time as the martensite transformation, and the auto-tempered martensite generated by this treatment is brought to a predetermined ratio.
  • the excellent formability and tensile strength targeted by the present invention High strength steel with high strength of 900 MPa or more The knowledge that a board is obtained was acquired.
  • the present invention has been completed based on the above findings and has been further studied.
  • the gist of the present invention is as follows.
  • Mn 0.5% or more 3.0% or less
  • the balance consists of Fe and inevitable impurities, and the area ratio of steel structure is 5% to 80% ferrite, 15% auto tempered martensite, and 10% bainite residue.
  • Austenite is 5% or less
  • as-quenched martensite is 40% or less
  • the average hardness of the auto-tempered martensite is HV ⁇ 700, and 5 nm or more and 0.5 i Di or less in the auto-tempered martensite
  • a high-strength steel sheet characterized in that the average number of precipitations of iron-based carbide is 5 x 10 4 or more per 1 mm 2 and the tensile strength is 900 MPa or more.
  • the steel sheet is further mass%
  • V 0.005% to 1.0%
  • the steel sheet is further mass%
  • Nb 0.01% or more and 0.1% or less
  • Ni 0.05% or more and 2.0% or less
  • the steel sheet is further mass%
  • iron tempered martensite iron system of 0.1 zm or more and 0.5 ⁇ or less
  • the ratio of the auto-tempered martensite in which the number of precipitated carbides is 5 ⁇ 10 2 or less per 1 mm 2 is 3% or more in terms of the area ratio with respect to the whole auto-tempered martensite. 5.
  • the steel slab having the composition described in any one of 1 to 4 above is hot-rolled and then cold-rolled into a cold-rolled steel sheet, and then the cold-rolled steel sheet is at least 700 ° C and 950 ° C.
  • the cooling conditions in the second temperature range from the first temperature range to 420 ° C are changed from the first temperature range to 550 ° C.
  • the average cooling rate is 3 ° C / second or more
  • the time required for cooling from 550 ° C to 420 ° C is 600 seconds or less
  • the third temperature range from 250 ° C to 420 ° C is 50 ° C / second.
  • the temperature range of at least (Ms point one 50) ° C or less is 1.0. Cooling at a rate of not less than ° C / sec and not more than 50 ° C / sec, causing martensite transformation in the third temperature range, and at the same time performing auto-tempering treatment to temper the martensite after transformation 9.
  • the martensite transformation start point Ms is approximated by M represented by the following equation (1), which is 300 ° C or higher, and is described in the above 8 or 9 Manufacturing method of high strength steel sheet.
  • the [X%] is mass 0/0 of component element X of the steel strip
  • Non%] is polygonal Blow wells area ratio (%).
  • an appropriate amount of auto-tempered martensite is contained in the steel sheet, and the distribution state of carbides in the auto-tempered martensite is appropriately controlled, thereby achieving high strength and excellent performance.
  • Tensile strength with both workability and excellent ductility A high-strength steel sheet with a strength of 900 MPa or more can be obtained. Therefore, it greatly contributes to reducing the weight of automobile bodies.
  • Fig. 1 is a schematic diagram showing a quenching and tempering process for obtaining a normal tempered martensite.
  • FIG. 2 is a schematic diagram showing a phototempering process for obtaining a phototempered martensite according to the present invention.
  • the ratio of ferrite to the hard phase described below is important, and the ferrite area ratio must be 5% or more and 80% or less. . If the area ratio of the ferrite is less than 5%, ductility cannot be secured. On the other hand, if the ferrite area ratio exceeds 80%, the area ratio of the hard phase cannot be secured and the strength becomes insufficient.
  • Preferred Fuwerai DOO area ratio is in the range of more than 10% 6 5% or less.
  • the phototempered martensite is not a so-called tempered martensite obtained by quenching and tempering as in the prior art, but is obtained by simultaneously proceeding martensite transformation and tempering by autotempering.
  • the structure is not a uniform tempered structure formed by heating and tempering after completion of the martensite transformation by quenching, as in normal quenching / tempering treatment, but in the region below the Ms point.
  • This is a structure in which martensite with different tempering conditions is mixed by controlling the cooling process of the steel and proceeding through the martensite transformation and tempering step by step.
  • This auto temper martensite is a hard phase for increasing strength. If the area ratio of auto-tempered martensite is less than 15%, strength cannot be secured and work hardening of the ferrite cannot be accelerated. Therefore, the area ratio of auto-tempered martensite must be 15% or more. Preferably it is 30% or more.
  • the steel sheet structure is preferably composed of ferrite and autotempered martensite in the above-described range.
  • other phases such as vanite, residual austenite, and as-quenched martensite may be formed, but if these are within the allowable ranges described below, Even if a phase is formed, there is no problem. These allowable ranges are described below.
  • Veneer area ratio 10% or less (including 0%)
  • Venite is a hard phase that contributes to high strength. However, it is desirable that the steel structure does not contain as much as possible because the characteristics may change greatly depending on the temperature range of formation and increase the material variation. Is acceptable up to 10%. Preferably it is 5% or less.
  • Residual austenite area ratio 5% or less (including 0%)
  • Residual austenite is transformed during processing to become hard martensite, which reduces elongation flangeability. For this reason, it is desirable to have as little as possible in the steel structure, but up to 5% is acceptable. Preferably it is 3% or less.
  • Quenched martensite area ratio 40% or less (including 0%)
  • Quenched martensite is extremely inferior in workability, so it is desirable that it is as small as possible in the steel structure, but up to 40% is acceptable. Preferably, it is 30% or less. Quenched martensite can be distinguished from autotempered martensite by the fact that carbides are not observed by observation with a scanning electron microscope (SEM) or transmission electron microscope (TEM). Average hardness of auto-tempered manoleite sites: HV ⁇ 700
  • HV 700 is set.
  • Iron-based carbides in hot tempered martensite Iron-based carbides in hot tempered martensite:
  • Autotempered martensite is a manotenite site that has been heat-treated (autotempered) by the method of the present invention. However, even when the average hardness of auto-tempered martensite is HV ⁇ 700, if auto-tempering is not appropriate, the workability is reduced. The degree of auto-tempering can be confirmed by the production status (distribution state) of iron-based carbides in auto-tempered martensite.
  • iron-based carbides those with a size of 5 nm or more and 0.5 ⁇ or less and the average number of precipitates are 5 ⁇ 10 4 or more per 1 mm 2 , the desired autotempering treatment is applied It can be judged. The reason why iron carbide is less than 5 nm is not considered because it does not affect the workability of autotempered martensite. On the other hand, iron-based carbides with a size exceeding 0.5 ⁇ may not reduce the strength of auto-tempered martensite, but have a minor effect on workability and are not subject to judgment.
  • the preferred number of iron-based carbides is in the range of 1 ⁇ 10 5 or more and 1 ⁇ 10 6 or less per 1 mm 2 , more preferably 4 ⁇ 10 5 or more and 1 ⁇ 10 6 or less.
  • the iron-based carbide mentioned here is mainly Fe 3 C, but may include other ⁇ carbides.
  • Carbide identification can be performed by, for example, SEM-EDS (energy dispersive X-ray analysis), EPMA (electron beam microanalyzer), FE-AES (field emission-Auger electron spectroscopy) of cross-section polished samples.
  • SEM-EDS energy dispersive X-ray analysis
  • EPMA electron beam microanalyzer
  • FE-AES field emission-Auger electron spectroscopy
  • the amount of the autotempered martensite further limiting the size and number of iron-based carbides precipitated in the autotempered martensite is appropriately determined. As below can do.
  • Ductility is further improved by increasing the proportion of iron tempered martensite with an iron carbide content of not less than 0 and not more than 0.5 ⁇ at 5 ⁇ 10 2 per 1 mm 2 .
  • the ratio of auto-tempered martensite in which the number of precipitates of iron carbide of 0.1 lm or more and 0.5 / im or less is 5 ⁇ 10 2 or less per 1 mm 2 is determined by auto-tempered martensite. It is preferable to set the area ratio to 3% or more with respect to the whole.
  • deposition numbers of 0.5 ⁇ m following iron-based carbide or 0.5 is lmm 2 per 5X10 2 or less auto-tempered - Domarutensai DOO is, to significantly degrade the workability to be present in multiple quantities in the steel sheet, It is preferable that the ratio of such auto-tempered martensite is 40% or less in terms of the area ratio with respect to the entire auto-tempered martensite. More preferably, it is 30% or less.
  • the ratio of auto-tempered martensite where the number of precipitates of iron-based carbides from 0. to 0.5 111 or less is 5X10 2 or less per lmm 2 is 3% or more in terms of the area ratio with respect to the entire auto-tempered martensite.
  • the iron-based carbides contained in the autotempered martensite increase in fine iron-based carbides, so that the average number of iron carbide precipitates in the entire auto-tempered martensite increases. Therefore, it is preferable that the average number of iron carbide precipitates of 5 nm or more and 0.5 m or less in the auto-tempered martensite be in the range of 1 ⁇ 10 5 or more and 5 ⁇ 10 6 or less per 1 mm 2 .
  • the autotempered martensite structure is a structure in which a portion containing a relatively large amount of iron-based carbide and a portion containing a relatively large amount of iron-based carbide are mixed.
  • the portion with relatively small iron-based carbides contains hard iron-tempered martensite because it contains a lot of fine iron-based carbides.
  • a lot of relatively large iron-based carbides The part that contains it is soft auto-tempered martensite.
  • % showing the following component composition shall mean the mass%.
  • the C is an indispensable element for increasing the strength of steel sheets. If the C content is less than 0.1%, it is difficult to ensure both the strength of the steel sheet and workability such as ductility and stretch flangeability. On the other hand, if the amount of c exceeds 0.3%, the weld zone and the heat-affected zone are hardened, and the weldability deteriorates. Therefore, in the present invention, the C content is in the range of 0.1% to 0.3%. Preferably, it is in the range of 0.12% or more and 0.223% or less.
  • Si is an effective element for strengthening the solid solution of ferrite, and it is preferable to contain 0.1% or more in order to ensure ductility and hardness of the ferrite. Occurrence causes deterioration of surface properties, plating adhesion and adhesion. Therefore, the Si content is 2.0% or less. Preferably, it is 1.6% or less.
  • Mn 0.5% or more 3.0% or less
  • Mn is an effective element for strengthening steel. It is an element that stabilizes austenide and is an element necessary to secure the area ratio of the hard phase. For this purpose, Mn should be added in an amount of 0.5% or more. On the other hand, if Mn exceeds 3.0% and is added excessively, it causes deterioration of forgeability. Therefore, the Mn content should be 0.5% or more and 3.0% or less. The range is preferably 1.5% or more and 2.5% or less.
  • the P causes embrittlement due to grain boundary segregation and degrades impact resistance, but is acceptable up to 0.1%. Also, when alloying hot dip galvanizing, a p content exceeding 0.1% significantly delays the alloying rate. Therefore, the P content is 0.1% or less. Preferably it is 0.05% or less. S: 0.07% or less
  • S is an inclusion such as MnS, and it is preferable to reduce it as much as possible because it causes deterioration of impact resistance and cracks along the metal flow of the weld. Permissible. A preferable amount of S is 0.04% or less.
  • A1 is a ferritic element and is an effective element for controlling the amount of ferrite generated during manufacturing.
  • the amount of A1 is 1.0% or less. Preferably, it is 0.5% or less. It should be noted that if the content of A1 is too small, deoxidation may become difficult, so the amount of A1 is preferably 0.01% or more.
  • N is an element that causes the most deterioration in the aging resistance of steel. The smaller the amount, the better. If it exceeds 0.008%, the deterioration of aging resistance becomes significant. Therefore, the N content is 0.008% or less. Preferably it is 0.006% or less.
  • the steel plate of the present invention can appropriately contain the components described below as necessary.
  • Cr, V, and Mo have an action of suppressing the formation of pearlite during cooling from the annealing temperature, and can be added as necessary.
  • the effect is obtained with Cr: 0.05% or more, V: 0.005% or more, and Mo: 0.005% or more.
  • Cr if Cr is added in excess of 5.0%, V: 1.0%, Mo: 0.5%, the area ratio of the hard phase becomes excessive, resulting in an increase in strength more than necessary. Therefore, when these elements are contained, it is preferable that Cr: 0.005% to 5.0%, V: 0.005% to 1.0%, Mo: 0.005% to 0.5%.
  • Ti, Nb, B, Ni and Cu can contain one or more selected from these, and the reasons for limiting the range of inclusion are as follows.
  • Ti and Nb are effective for precipitation strengthening of steel. On the other hand, if it exceeds 0.1%, the workability and the shape freezing property decrease. Accordingly, the content of Ti and Nb is preferably in the range of 0.01% to 0.1%. B: 0.003% or more 0.005% or less
  • B has an action of suppressing the formation and growth of ferrite from the austenite grain boundary, and can be contained as necessary.
  • the effect is obtained with 0.000 to 3% or more, while the workability and exceeds 0.0050% decreases. Therefore, when B is contained, the content is preferably in the range of 0.0003% or more and 0.0050% or less.
  • B when B is included, it is preferable to suppress the formation of BN in order to obtain the above-mentioned effect. For this reason, it is preferable to include B in combination with Ti.
  • Ni and Cu promote internal oxidation and improve plating adhesion when hot-dip zinc plating is applied. The effect is obtained at 0.05% or more respectively. On the other hand, if the content exceeds 2.0%, the workability of the steel sheet is lowered. Ni and Cu are effective elements for strengthening steel. Therefore, the contents of Ni and Cu are preferably in the range of 0.05% or more and 2.0% or less, respectively.
  • Ca 0.001% or more and 0.005% or less.
  • REM 0.001% or more and 0.005% or less.
  • Ca and REM are effective elements for spheroidizing the shape of the sulfide and improving the adverse effect of the sulfide on the stretch flangeability.
  • the effect is obtained at 0.001% or more for each.
  • a content exceeding 0.005% leads to an increase in inclusions, etc., and causes internal defects on the surface. Therefore, when Ca and REM are contained, the content is preferably in the range of 0.001% to 0.005%.
  • the components other than the above are Fe and inevitable impurities. However, as long as the effects of the present invention are not impaired, the inclusion of components other than those described above is not rejected.
  • the composition of the steel sheet of the present invention satisfies M ⁇ 300 ° C, which is a relational expression with the area ratio of polygonal ferrite, that is, manufacturing. This is preferable for suppressing variation in characteristics due to variation in conditions.
  • the surface of the steel sheet may be provided with a molten zinc plated layer or an alloyed molten zinc plated layer.
  • a steel slab adjusted to the above-mentioned preferred component composition is manufactured, hot-rolled, and then cold-rolled to obtain a cold-rolled steel sheet.
  • these treatments are not particularly limited, and may be performed according to ordinary methods.
  • preferable manufacturing conditions are as follows. After the billet was heated to 1 3 00 ° C or less than 1100 ° C, 870 ° C or higher 950T:. The following finishing hot rolling at a temperature, i.e. hot pressure a rolling finish temperature 870 ° C or higher 950 ° C The obtained hot-rolled steel sheet is rolled up at a temperature of 350 ° C or higher and 720 ° C or lower. Next, after pickling the hot-rolled steel sheet, it is cold-rolled at a rolling reduction of 40% or more and 90% or less to obtain a cold-rolled steel sheet.
  • hot-rolled steel sheets are manufactured through normal steelmaking, forging, and hot rolling processes. For example, some or all of the hot rolling process is performed by thin forging. It may be omitted and manufactured.
  • the obtained cold-rolled steel sheet is used for 15 seconds in the first temperature range of 700 ° C or more and 950 ° C or less, specifically in the austenite single-phase region or in the two-phase region of the austenite phase and ferrite phase.
  • Annealing is performed for 600 seconds or less. If the annealing temperature is less than 700 ° C, or if the annealing time is less than 15 seconds, the carbide in the steel sheet will not dissolve sufficiently, or the recrystallization of the fly will not be completed, and the target ductility will be reduced. Stretch flangeability may not be obtained.
  • the annealing temperature and annealing time should be in the range of 700 ° C to 950 ° C and 15 seconds to 600 seconds, respectively.
  • Preferable annealing temperature and annealing time are 760 ° C to 920 ° C and 30 seconds to 400 seconds, respectively.
  • the cold-rolled steel sheet after annealing is in the second temperature range from the first temperature range to 420 ° C.
  • Cooling conditions in the second temperature range from the first temperature range to 420 ° C are important in order to suppress the precipitation of phases other than the intended ferritic tempered martensite phase.
  • the temperature range from the first temperature range to 550 ° C is a temperature range where pearlite transformation is likely to occur.
  • the average cooling rate from the first temperature range that is, from 700 ° C to 550 ° C, which is the lower limit temperature of the first temperature range, is less than 3 ° C / sec, perlite, etc. is deposited, and the target and Therefore, a cooling rate of 3 t / sec or more is necessary. Preferably, it is 5 ° C / second or more.
  • the upper limit of the cooling rate is not particularly defined, a special cooling facility is required to obtain a cooling rate of 200 ° C / second or higher, and therefore 200 ° C / second or lower is preferable.
  • the temperature range from 550 ° C to 420 ° C is the temperature range where the bainitic transformation proceeds by holding for a long time. If the time required for cooling from 520 ° C to 420 ° C exceeds 600 seconds, the targeted transformation may progress and the target structure may not be obtained. For this reason, the time required for cooling from 550 ° C to 420 ° C should be 600 seconds or less. A more preferable time is 400 seconds or less.
  • the treatment in this second temperature range it leads to the third temperature range.
  • the martensite transformation is generated, and at the same time, the tempering process is performed to temper the martensite after transformation, and the precipitation state of carbide in the interior is optimally controlled.
  • Obtaining a martensite is the greatest feature of the present invention. Normal martensite is obtained by quenching with water cooling after annealing. This martensite is a hard phase and contributes to increasing the strength of the steel sheet but is inferior in workability. Therefore, in order to make this martensite a tempered martensite with good workability, it is common practice to reheat the tempered steel sheet for tempering.
  • Figure 1 schematically shows the above process. In such a normal quenching / tempering process, after the martensite transformation is completed by quenching, the structure is tempered uniformly by raising the temperature and tempering.
  • the autotempering process is a process that cools the third temperature range at a constant speed as shown in Fig. 2, and is extremely productive without quenching and tempering by reheating. It is a high method.
  • a steel plate containing auto-tempered martensite obtained by this auto-tempering treatment has strength and workability equivalent to or higher than the steel plate tempered by quenching / reheating shown in Fig. 1.
  • the auto-tempering process continuously and gradually advances the martensite transformation and its tempering by performing continuous cooling (including stepwise cooling and holding) in the third temperature range. It is possible to obtain a structure in which martensites with different tempering conditions are mixed.
  • martensite with different tempering conditions has different properties such as strength and workability
  • autotempering is not accompanied by rapid cooling to a low temperature range that completes all martensitic transformations, so that the residual stress in the steel sheet is small and it is advantageous to obtain a steel sheet with an excellent plate shape. It is.
  • the third temperature range is 250 ° C. or more and 420 or less. In the temperature range above 420 ° C, the bainitic transformation is likely to occur as described above. On the other hand, in the temperature range below 250, autotempering takes a long time, so continuous annealing line or continuous molten zinc plating line. In this process, the progress of the autotemper is insufficient. In this third temperature range, martensite transformation occurs, and at the same time, the tempered martensite is tempered to make it a hot tempered martensite. Must be less than ° C / sec. If the cooling rate exceeds 50 ° C / sec, the autotempering process may be insufficient and the workability of martensite may not be ensured.
  • the cooling rate is preferably 0.1 ° C / second or more.
  • At least the temperature range of (Ms point 50) ° C or less is 1.0 ° C. It is preferable to cool at a cooling rate in the range of not less than 50 / C and not more than 50 ° C / second. This is because the precipitation of carbides in autotempered martensite is more appropriately controlled in the third temperature range, and the number of precipitations of iron-based carbides between ⁇ .
  • ⁇ ⁇ ⁇ and 0.5 ⁇ is 1 This is because the ratio of the auto tempered martensite, which is 5 x 10 2 or less per mm 2 , is 3% or more in terms of the area ratio with respect to the entire auto tempered martensite.
  • the cooling rate exceeds 50 ° C / sec, the progress of the phototemper is insufficient and the desired autotempered martensite cannot be obtained, and the workability of the martensite may not be ensured.
  • the cooling rate should be 1.0 ° C / second or more.
  • the Ms point can be obtained by measurement of thermal expansion during cooling or measurement of electrical resistance, as is usually done. Alternatively, M obtained by an approximate expression (1) of the Ms point described later may be used.
  • the auto-tempering treatment can be performed stably.
  • [X%] is the mass of alloy element X. / 0
  • [ «%] is the area ratio (%) of polygonal ferrite.
  • the ⁇ ⁇ ⁇ expressed by the above equation (1) is an approximate expression of the Ms point at which the martensitic transformation that is empirically determined starts.
  • This M is greatly related to the precipitation behavior of iron carbide from the martensite. it is conceivable that. Therefore, M can be used as an indicator that can stably obtain a wheat tempered martensite containing 5 ⁇ 10 4 or more iron-based carbides of 5 nm or more and 0.5 ⁇ ⁇ ⁇ or less per lmm 2 .
  • the area ratio of polygonal ferrite is measured by, for example, image processing analysis of SEM photographs of 1000 to 3 000 times. Polygonal ferrite is observed in the steel sheet after annealing and cooling under the above conditions. In order to increase the M to 300 ° C or more, after manufacturing a cold-rolled steel sheet having a desired component composition, the area ratio of polygonal ferrite is determined, and the alloy element content determined from the component composition of the steel sheet is combined with (1 Find the value of M from the formula.
  • the polygonal ferrite In order to reduce the area ratio, for example, the annealing temperature in the first temperature range is set to a higher temperature, the average cooling rate from the first temperature range to 550 ° C is increased, and the desired heat treatment conditions are adjusted as appropriate. M may be obtained, and the content of the component composition in the formula (1) may be adjusted.
  • the steel sheet of the present invention can be subjected to hot dip zinc alloying and galvannealing.
  • the hot dip galvanizing and alloyed hot dip galvanizing treatments are preferably carried out in a continuous hot dip galvanizing line, satisfying the annealing and cooling conditions under the conditions described above.
  • the hot dip galvanizing treatment and the alloying treatment are preferably performed in a temperature range of 420 ° C. or higher and 550 ° C. or lower.
  • the temperature is 550 ° C.
  • the time required for cooling from C to 420 ° C, that is, the holding time in the temperature range of 420 ° C to 550 ° C should be 600 seconds or less.
  • the method of galvanizing and galvanizing hot dip galvanizing is as follows. First, let the steel plate enter the squeeze bath and adjust the amount of adhesion by gas wiping.
  • the amount of dissolved A1 in the plating bath is in the range of 0.12% to 0.22% in the case of hot dip zinc, and in the range of 0.08% to 0.18% in the case of alloyed hot dip galvanizing.
  • the temperature of the plating bath may be in the range of 450 ° C or higher and 500 ° C or lower.
  • the temperature during alloying is preferably in the range of 450 ° C to 550 ° C.
  • alloying temperature exceeds 550 ° C, carbides may precipitate excessively from the untransformed austenite or, in some cases, may become perlite, and the desired strength and ductility may not be obtained. In addition, powdering properties are also degraded. On the other hand, when the temperature during alloying is less than 450 ° C, alloying does not proceed.
  • the plating adhesion amount is preferably 20 to 150 g / m 2 per side. If the amount of plating deposition is less than 20 g / m 2, the corrosion resistance is degraded. On the other hand, even if the plating adhesion amount exceeds 150 g / m 2 , the corrosion resistance is saturated, which only increases costs.
  • the alloying degree is preferably 7 to 1 ⁇ % by mass in terms of Fe content in the plating layer. If the degree of alloying is less than 7% by mass, unevenness in alloying will occur and the appearance will deteriorate, or the so-called ⁇ phase will be generated and the slidability will deteriorate. On the other hand, if the degree of alloying exceeds 15% by mass, a large amount of hard and brittle ⁇ phase is formed and the plating adhesion deteriorates.
  • the holding temperature in the first temperature range, the second temperature range, etc. must be set. However, it does not have to be constant, and even if it fluctuates within the specified range, the gist of the present invention is not impaired. The same applies to the cooling rate. Moreover, as long as the thermal history is satisfied, the steel sheet may be annealed and treated with an automatic tempering treatment by any equipment. Further, the present invention also includes temper rolling the steel plate of the present invention for shape correction after autotempering. Example
  • the test was carried out under the conditions of (double-sided). In addition, galvannealed alloying was further alloyed under the condition that the Fe% (iron content) in the adhesion layer was 9% by mass.
  • the obtained steel sheet was subjected to temper rolling at a rolling rate (elongation rate) of 0.3% regardless of the presence or absence of plating.
  • As-quenched martensite (untempered martensite) and residual austenite were obtained using a sample that had been heat-treated at 200 ° C for 2 hours.
  • the reason for preparing the sample that was heat-treated at 200 ° C for 2 hours was to distinguish martensite that was not tempered and residual austenite during SEM observation. In SEM observation, it is difficult to distinguish martensite that has not been tempered from residual austenite.
  • iron-based carbides are formed in the martensite. The presence of these iron-based carbides makes it possible to distinguish from residual austenite.
  • the heat treatment at 200 ° CX for 2 hours can temper the martensite without affecting the area other than the martensite, that is, without changing the area ratio of each phase. This makes it possible to distinguish from residual austenite.
  • As a result of comparing SEM observations of both the polished sample and the sample heat-treated at 200 ° C for 2 hours it was confirmed that there was no change in the phases other than martensite.
  • the size and number of iron carbides in the hot tempered martensite were measured by SEM observation. Needless to say, the sample was the same as that observed above, but the sample was not heat-treated at 200 ° C. for 2 hours. Depending on the precipitation state and size of the iron-based carbide, it was observed in the range of 10,000 to 30,000 times.
  • the size of the iron-based carbide is evaluated by the average value of the major axis and minor axis of each precipitate, and the number of those whose size is 5 mn or more and 0.5 ⁇ ⁇ or less is counted. The number per 1 mm 2 was obtained. Observation was performed in 5 to 20 fields, and the average value was calculated from the total number of all fields in each sample to obtain the number of iron-based carbides in each sample (number per 1 mm 2 of autotempered martensite).
  • JIS No. 5 test piece was cut out from the direction parallel to the rolling direction of the steel sheet, and the tensile test was conducted in accordance with JIS Z2241.
  • Tensile strength (TS), yield strength (YS) and total elongation (T.E1) were measured, and the product of tensile strength and total elongation (TSXT.E1) to evaluate the balance between strength and elongation was calculated.
  • TSXT.E1 ⁇ 14500 MPa-%) was determined to be good.
  • the stretch flangeability was evaluated in accordance with Japan Iron and Steel Federation Standard JFST1001. After cutting each steel plate into lOOmmXIOOmm, clearance: punching out a 10mm diameter hole with 12% of the plate thickness, then using a 75mm diameter die, wrinkle holding force: 88.2kN, 60 ° Insert a conical punch into the hole, measure the hole diameter at the crack initiation limit, obtain the critical hole expansion rate (%) from the equation (2), and determine the stretch flangeability from this critical hole expansion rate value. evaluated. In the present invention, ⁇ 15% is considered good.
  • Limit hole expansion rate ⁇ (%) ⁇ (D f -D 0 ) / D. ⁇ X100 ⁇ ⁇ '(2)
  • D f is the hole diameter D when the crack occurs. Is the initial hole diameter.
  • the steel sheet of the present invention pull ⁇ Strength: This is 900MPa or more, or, TS X T. E1 ⁇ 1 45 00 - shows the (MPa%) Oyopi Shinpi flangeability Since the average value is 15 % or more, it can be confirmed that both high strength and good workability are achieved.
  • those having M of 300 ° C or higher are particularly excellent in that the stretch flangeability, particularly when the strength is increased, does not deteriorate.
  • Sample Nos. 6 and 7 have a martensite hardness of 700 and HV, and the number of iron-based carbides in the strong martensite is less than 5 ⁇ 10 4 per mm 2 or contains iron-based carbides. Therefore, tensile strength: 900MPa or more is satisfactory, but the value is less than 15% and the workability is poor. This is because the cooling rate in the third temperature range of Sample Nos. 6 and 7 is high and does not satisfy the condition of 50 ° C / sec. In samples No. 3 and 8, the martensite hardness satisfies HV ⁇ 700, but the number of iron carbides in the martensite is less than 5 X 10 4 per mm 2 , indicating the tensile strength.
  • the auto-tempered martensite with sufficient martensite hardness HV ⁇ 700 and the number of iron-based carbides in martensite being 5 x 10 4 or more per 1 mm 2 is sufficiently treated. It can be confirmed that the steel sheet of the present invention includes both high strength and workability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

高い強度と優れた成形性を両立できる引張強さが900MPa以上の高強度鋼板を提供する。質量%で、C:0.1%以上0.3%以下、Si:2.0%以下、Mn:0.5%以上3.0%以下、P:0.1%以下、S:0.07%以下、Al:1.0%以下およびN:0.008%以下を含有させ、残部はFeおよび不可避不純物の組成にし、鋼組織は、面積率で、フェライトを5%以上80%以下、オートテンパードマルテンサイトを15%以上有するとともに、ベイナイトが10%以下、残留オーステナイトが5%以下、焼入れままのマルテンサイトが40%以下とし、該オートテンパードマルテンサイトの平均硬さがHV≦700、かつ該オートテンパードマルテンサイト中における5nm以上0.5μm以下の鉄系炭化物の平均析出個数を1mm2あたり5×104個以上とする。

Description

明細書 高強度鋼板およぴその製造方法 技術分野
本発明は、 自動車、 電気等の産業分野で使用される成形性に優れた引張強さが 900MPa以上の髙強度鋼板おょぴその製造方法に関するものである。 なお、 本発明 の高強度鋼板には、 鋼板の表面に溶融亜鉛めつきまたは合金化溶融亜鉛めつきを 施したものを含むものとする。 背景技術
近年、地球環境保全の見地から、 自動車の燃費向上が重要な課題となっている。 このため、 車体材料の高強度化により薄肉化を図り、 車体そのものを軽量化しよ うとする動きが活発である。 しかしながら、 鋼板の高強度化は成形加工性の低下 を招くことから、 髙強度と高加工性を併せ持つ材料の開発が望まれている。 この ような要求に対して、 これまでにフヱライ ト一マルテンサイト二相鋼 (DP鋼) や 残留オーステナイ トの変態誘起塑性を利用した TRIP鋼など、 種々の複合組織鋼板 が開発されてきた。
例えば、 DjP鋼について、 特許文献 1には、 成分組成と熱間圧延およぴ焼鈍条件 を規定することにより、表面性状と曲げ加工性に優れた引張強さ: 588〜882MPaの 低降伏比高張力鋼板およびその製造方法、 特許文献 2には、 所定の成分組成の鋼 を熱間圧延、 冷間圧延および焼鈍条件を規定することにより、 曲げ性に優れた高 張力冷延鋼板の製造方法が提案されている。 また、 特許文献 3には、 マルテンサ ィ ト分率とその粒径および機械的特性を規定することにより衝突安全性と成形性 に優れた鋼板およびその製造方法、 特許文献 4には、 成分組成とマルテンサイ ト 分率おょぴその粒径を規定することにより伸びフランジ性と耐衝突特性に優れた 高強度鋼板、 高強度溶融亜鉛めつき鋼板およぴ高強度合金化溶融亜鉛めつき鋼板 とその製造方法、 特許文献 5には、 成分組成とフユライ ト粒径とその集合組織お よびマルテンサイ ト分率を規定することにより、 伸びフランジ性ゃ形状凍結性と 耐衝突特性に優れた高強度鋼板、 高強度溶融亜鉛めつき鋼板おょぴ高強度合金化 溶融亜鉛めつき鋼板とその製造方法、 特許文献 6には、 成分組成とマルテンサイ ト量おょぴ製造方法を規定することにより、 優れた機械的性質を有する髙強度鋼 板およびその製造方法が提案されている。 さらに、 特許文献 7および 8には、 成 分組成と溶融亜鉛めつきラインでの製造条件を規定することにより伸ぴフランジ 性や曲げ性に優れた高強度溶融亜鉛めつき鋼板や高強度溶融亜鉛めつき鋼板の製 造方法およぴ設備が提案されている。
硬質第二相にマルテンサイ ト以外を含む組織も有する鋼板としては、 特許文献 9には、硬質第二相をマルテンサイ トおよび/またはべィナイ トとし、成分と粒径、 硬さ比などを規定することにより疲労特性に優れた鋼板、 特許文献 1 0には、 第 ニ枏をべイナィ トまたはパーライ トを主体とし成分組成とその硬さ比を規定する ことにより、伸びフランジ性に優れた鋼板が提案されている。特許文献 1 1には、 硬質第二相としてべィナイ トとマルテンサイ トからなる穴広げ性に優れた高強度 高延性溶融亜鉛めつき鋼板とその製造方法、 特許文献 1 2には、 硬質第二相にベ イナイ トとマルテンサイトをともに含有し、 各構成相の分率、 粒径と硬さおょぴ 硬質相全体の平均自由行程を規定することにより、 疲労特性に優れた複合組織鋼 板、特許文献 1 3には、成分組成と残留オーステナイ ト量を規定することにより、 延性および穴広げ性に優れる高張力鋼板、 特許文献 1 4には、 べィナイ トと残留 オーステナイ トおよび/またはマルテンサイ トを含む鋼板で成分組成と各相の分 率などを規定することにより加工性に優れた高強度複合組織冷延鋼板が提案され ている。 また、 特許文献 1 5には、 フェライ ト中の硬質第二相粒の分布状態とそ の中で焼戻しマルテンサイ トとべイナィ トからなる粒の存在比率を規定すること により、 加工性に優れる高強度鋼板とその製造方法が提案されている。 さらに、 べィナイ ト主体の組織として、 特許文献 1 6には、 成分組成と製造工程を規定す ることにより、 引張強さが l lSOMPa以上の耐遅れ破壊性に優れた超高張力冷延鋼 板おょぴその製造方法、 特許文献 1 7には、 成分組成と製造方法を規定すること により引張強さが 980MPa以上の曲げ性に優れた超高張力冷延鋼板おょぴその製造 方法、 特許文献 1 8には、 焼戻しマルテンサイ ト中の鉄系炭化物の個数を一定数 量に制限することによって水素脆化を防止する引張強さが 9S0MPa以上の超高強度 薄肉鋼板とその製造方法が提案されている。
しかしながら、 上述した発明は次に述べる課題がある。 特許文献 1〜 7、 9〜 1 0ぉょぴ1 2〜 1 4は、 引張強さ : 900MPa未満の鋼板に対する発明であり、 さ らなる高強度化を進めると加工性を確保できない場合が多い。 また、 特許文献 1 では、 単相域で焼鈍し、 その後の冷却は 6~20°C/秒で 400°Cまで冷却することが 規定されているが、 溶融亜鉛めつき鋼板の場合、 めっき密着性を考慮する必要が あること、 また 400°Cまでの冷却はめつき浴温以下まで冷却するため、 めっき前に 昇温する必要があり、 めつ.き浴前に昇温設備を有さない連続溶融亜鉛めつきライ ンでは製造できない。 さらに、 特許文献 7および 8では、 溶融亜鉛めつきライン 内での熱処理中に焼戻しマルテンサイ トを生成させる必要があるため、 Ms点以下 までの冷却後に再加熱する設備が必要である。 特許文献 1 1では、 硬質第二相の 相構成をべイナィ トおよびマルテンサイ トとしてその分率を規定しているが、 規 定の範囲では特性のばらつきが大きく、 かつばらつきを抑制するためには、 操業 条件の精密制御が必要となる。 特許文献 1 5においても、 べィナイ ト変態の前に マルテンサイ トを生成させるために Ms点以下まで冷却するため、再加熱する設備 が必要であり、 また安定した特性を得るためには操業条件の精密制御が必須とな るため、 設備 ·操業面でのコス ト高が生じる。 特許文献 1 6および 1 7では、 ベ ィナイ トを主体とした組織とするために焼鈍後にべィナイ ト生成温度域で保持す る必要があり、 延性の確保が困難であり、 溶融亜鉛めつき鋼板の場合にはめつき 浴温以上に再加熟する必要が生じる。 特許文献 1 8では、 単に鋼板の水素脆化の 改善が示されているだけで、 曲げ加工性の若干の検討を除けば、 加工性について はほとんど考慮されていない。
一般に、 鋼板の高強度化を図るためには、 全組織に対する硬質第二相の割合を 増加させる必要があるが、 硬質第二相の割合を増加させた場合、 鋼板の加工性は 硬質第二相の加工性の影響を強く受けるようになる。 これは、 硬質第二相の割合 が少ない場合には、 母相であるフェライ ト自身が変形することにより、 硬質第二 相の加ェ性が十分でない場合においても最低限の加ェ性は確保されたが、 硬質第 二相の割合が多い場合には、 フェライ トの変形ではなく硬質第二相の変形能自体 が鋼板の成形性に直接影響するようになり、 その加工性が十分でない場合には、 成形性の劣化が著しくなるためである。
このため、 例えば、 冷延鋼板の場合には、 水焼入れ機能を有する連続焼鈍設備 でフェライ トと硬質第二相の分率を調整して水焼入れによりマルテンサイ トを生 成させた後、 昇温 '保持してマルテンサイ トを焼戻すことにより、 硬質第 相の 加工性を向上させてきた。
しかしながら、 このようなマルテンサイ トを生成させた後に、 昇温や高温保持 によって焼戻しすることが不可能な設備の場合には、 強度の確保は可能なものの、 マルテンサイ トなど硬質第二相の加工性の確保が困難であった。
マルテンサイ ト以外の硬質相の活用による伸びフランジ性の確保を目的として、 フェライ トを母相とし、 硬質第二相に炭化物を含むべィナイ トゃパーライ トとす ることにより、 硬質第二相の加工性を確保し、 伸ぴフランジ性の確保が図られて きたが、 この場合は十分な延性が確保できなかった。
また、 べィナイ トを活用す.る場合にはべイナィ ト生成域での温度と保持時間の ばらつきにより特性が大きく変化することが問題であった。 また、 第二相をマル テンサイ トまたは残留オーステナイ ト (残留オーステナイ トを含むべィナイ トも 含む) とした場合においても、 延性と同時に伸ぴフランジ性を確保するために、 例えば、 第二相組織をマルテンサイ トとべイナィ トの混在組織とするなどの検討 が行われてきた。
しかしながら、 第二相を種々の相の混在組織とし、 かつその分率などを高精度 で制御するためには、 熱処理条件の精密な制御が必要であり、 製造安定性などに 問題を生じる場合が多かった。
特許文献 1 :特許第 1853389号公報
特許文献 2 :特許第 3610883号公報
特許文献 3 :特開平 11- 61327号公報
特許文献 4 :特開 2003- 213369号公報
特許文献 5 :特開 2003- 213370号公報
特許文献 6 :特表 2003-505604号公報
特許文献 7 :特開平 6- 93340号公報
特許文献 8 :特開平 6-108152号公報
特許文献 9 :特開平 7- 11383号公報
特許文献 1 0 :特開平 10-60593号公報
特許文献 1 1 :特開 2005- 281854号公報
特許文献 1 2 :特許第 3231204号公報 特許文献 1 3 特開 2001-207234号公報
特許文献 1 4 特開平 7-207413号公報
特許文献 1 5 特開 2005-264328号公報
特許文献 1 6 特許第 2616350号公報
特許文献 1 7 特許第 2621744号公報
特許文献 1 8 特許第 2826058号公報 発明の開示
本発明は、 上記の課題を有利に解決するもので、 強度や成形性等の特性がばら つき易いべィナイ トの生成を最小限とし、 高強度化と優れた成形性を両立できる 引張強さが 900MPa以上の高強度鋼板を、 その有利な製造方法と共に供給すること を目的とする。
なお、 成形性については、 TS X T. EL および伸びフランジ性の指標である; 値で 評価するものとし、 本発明では、 TS X T. El≥14500MPa · %、 ぇ≥15%を目標特性 とする。
上記の課題を解決すべく、 発明者らは、 マルテンサイ トの生成過程、 特に鋼板 の冷却条件がマルテンサイ トに与える影響について研究を行った。
その結果、 冷間圧延後の熱処理条件を最適に制御すれば、 マルテンサイ ト変態 と同時に、 変態後のマルテンサイ トが焼戻しされ、 この処理により生成されるォ ートテンパードマルテンサイ トを所定の割合に制御し、 またオートテンパードマ ルテンサイ ト内の鉄系炭化物の分布状態を適切に制御することにより、 本発明で 目標とする優れた成形性と引張強さ : 900MPa以上の高強度を兼ね備える高強度鋼 板が得られることの知見を得た。
本発明は、 上記の知見に基づき、 さらに検討を重ねて完成されたもので、 その 要旨構成は、 次のとおりである。
1 . 質量。/。で、
C : 0. 1%以上 0. 3%以下、
Si: 2. 0%以下、
Mn: 0. 5%以上 3. 0%以下、
P : 0. 1 % 下、 S : 0.07%以下、
Al: 1.0%以下および
N : 0.008%以下
を含有し、 残部は Feおよび不可避不純物からなり、 鋼組織として面積率で、 フエ ライ トを 5%以上 80%以下、 オートテンパードマルテンサイ トを 15%以上有する とともに、 ベイナイトが 10%以下、 残留オーステナイ トが 5 %以下、 焼入れまま のマルテンサイトが 40%以下であり、 該ォートテンパードマルテンサイ トの平均 硬さが HV≤700で、 かつ該ォートテンパードマルテンサイ ト中における 5nm以上 0.5 i Di以下の鉄系炭化物の平均析出個数が 1mm2あたり 5 X 104個以上であり、引張 強さが 900MPa以上であることを特徴とする高強度鋼板。
2. 前記鋼板がさらに、 質量%で、
Cr: 0.05%以上 5.0%以下、 ·
V : 0.005%以上 1.0%以下および
Mo: 0.005%以上 0.5%以下
のうちから選ばれる 1種または 2種以上の元素を含有することを特徴とする上記 1に記載の高強度鋼板。
3. 前記鋼板がさらに、 質量%で、
Ti: 0.01%以上 0.1%以下、
Nb: 0.01%以上 0.1%以下、
B : 0.0003%以上 0.0050%以下、
Ni: 0.05%以上 2.0%以下およぴ
Cu: 0.05%以上 2.0%以下
のうちから選ばれる 1種または 2種以上の元素を含有することを特徴とする上記 1または 2に記載の高強度鋼板。
4. 前記鋼板がさらに、 質量%で、
Ca: 0.001%以上 0.005%以下および
REM: 0.001%以上 0.005%以下
のうちから選ばれる 1種または 2種の元素を含有することを特徴とする上記 1乃 至 3のいずれかに記載の高強度鋼板。
5 · 前記ォートテンパードマルテンサイ トのうち、 0.1 zm以上 0.5μηι以下の鉄系 炭化物の析出個数が 1mm2あたり 5X102個以下であるオートテンパードマルテンサ ィ トの割合が、 前記オートテンパードマルテンサイ ト全体に対して面積率で 3 % 以上であることを特徴とする上記 1乃至 4のいずれかに記載の高強度鋼板。
6, 前記鋼板の表面に、 溶融亜鉛めつき層をそなえることを特徴とする上記 1乃 至 5のいずれかに記載の高強度鋼板。
7. 前記銅板の表面に、 合金化溶融亜鉛めつき層をそなえることを特徴とする上 記 1乃至 5のいずれかに記載の高強度鋼板。
8. 上記 1乃至 4のいずれか 1項に記載の成分組成になる鋼片を、 熱間圧延後、 冷間圧延により冷延鋼板とし、 ついで該冷延鋼板を、 700°C以上 950°C以下の第一 温度域で 15秒以上 600秒以下の焼鈍を施した後、 該第一温度域から 420°Cまでの 第二温度域における冷却条件を、 該第一温度域から 550°Cまでの平均冷却速度を 3°C/秒以上、 550°Cから 420°Cまでの冷却に要する時間を 600秒以下とし、 250°C 以上 420°C以下の第三温度域を 50°C/秒以下の速度で冷却し、 該第三温度域内にお いてマルテンサイ ト変態を生じさせると同時に、 変態後のマルテンサイ トを焼戻 しするオートテンパ処理を行うことを特徴とする高強度鋼板の製造方法。
9. 前記 250°C以上 420°C以下の第三温度域において 50°C/秒以下の冷却速度で鋼 板を冷却するに際し、少なく とも(Ms点一 50) °C以下の温度域を 1.0°C/秒以上 50°C /秒以下の速度で冷却し、 該第三温度域内においてマルテンサイ ト変態を生じさせ ると同時に、 変態後のマルテンサイ トを焼戻しするォートテンパ処理を行うこと を特徴とする上記 8に記載の高強度鋼板の製造方法。
1 0. 前記鋼片において、 マルテンサイ ト変態開始点 Msが下記 (1) 式で表され る Mで近似され、該 が 300°C以上であることを特徴とする上記 8または 9に記载 の高強度鋼板の製造方法。
M(°C)=540-361X {[C%]/(l-[a%]/100)}-6X [Si%]-40X [Μη%] + 30Χ [Al%]
- 20 X [Cr % ] - 35 X [ V % ] - 10 X [Mo % ]一 17 X [Ni % ]一 10 X [Cu%] · · · (1)
ただし、 [X%]は鋼片の成分元素 Xの質量0 /0、 [ひ%]はポリゴナルフェライ ト の面積率 (%) とする。 本発明によれば、 適正量のオートテンパードマルテンサイ トを鋼板中に含有さ せ、 かつそのオートテンパードマルテンサイ ト内の炭化物の分布状態を適切に制 御することによって、高強度化と優れた加工性を両立し、延性に優れた引張強さ : 900MPa以上の高強度鋼板を得ることができる。 従って、 特に自動車車体の軽量化 に大きく寄与する。
また、 本発明の高強度鋼板の製造方法では、 焼入れ後の鋼板の再加熱を要しな いことから、 特別な製造設備を必要とせず、 さらには溶融亜鉛めつき、 あるいは 合金化溶融亜鉛めっきプロセスにも容易に適用可能であるため、 省工程おょぴコ スト低減に貢献する。 図面の簡単な説明 '
図 1は、 通常の焼戻しマルテンサイ トを得る、 焼入れ '焼戻し工程を示した模式 図である。
図 2は、 本発明に従い、 ォートテンパードマルテンサイ トを得るォートテンパ処 理工程を示した模式図である。 発明を実施するための最良の形態
以下、 本発明を具体的に説明する。
まず、 本発明において、 鋼板の 織を上記のように限定した理由について述べ る。
フェライ ト面積率: 5 %以上 80%以下
加工性と引張強さ : 900MPa以上を両立するためには、 フェライ トと以下で述べ る硬質相との比率が重要であり、 フェライ ト面積率は、 5 %以上 80%以下とする 必要がある。 フェライ トの面積率が 5 %未満の場合、延性が確保できない。 一方、 フェライ ト面積率が 80%を超えると、 硬質相の面積率が確保できず強度不足とな る。 好ましいフヱライ ト面積率は、 10%以上65%以下の範囲である。
ォートテンパードマルテンサイ トの面積率: 15%以上
本発明において、 ォートテンパードマルテンサイ トとは、従来のように焼入れ · 焼戻し処理により得られるいわゆる焼戻しマルテンサイ トではなく、 ォートテン パ処理によりマルテンサイ ト変態とその焼戻しを同時に進行させることにより得 られる組織を意味する。 その組織は、 通常の焼入れ ·焼戻し処理のように、 焼入 れによるマルテンサイ ト変態完了後に昇温して焼戻しすることにより生成する均 一に焼戻された組織ではなく、 Ms点以下の領域での冷却過程を制御し、 マルテン サイ ト変態とその焼戻しを段階的に進めて焼戻し状況の異なるマルテンサイ トを 混在させた組織である。 - このオートテンパーマルテンサイ トは、 高強度化のための硬質相である。 ォー トテンパードマルテンサイ トの面積率が 15%未満の場合、 強度確保とフェライ ト の加工硬化促進ができないため、 オートテンパードマルテンサイ トの面積率は 15%以上必要である。 好ましくは 30%以上である。
本発明において、 鋼板組織は、 上記した範囲のフェライ トおよびオートテンパ ードマルテンサイ トからなるものとすることが好ましい。 また、 これらの組織を 形成する上で、 べィナイ ト、 残留オーステナイ ト、 焼入れままのマルテンサイ ト といったその他の相が形成される場合があるが、'以下に述べる許容範囲内であれ ば、 これらの相が形成されていても、 問題はない。 以下、 これらの許容範囲につ いて述べる。
べィナイ トの面積率: 10%以下 (ただし 0 %を含む)
べィナイ トは高強度化に寄与する硬質相であるが、 その生成温度域によって特 性が大きく変化して材質のバラツキを増加させる場合があるため、 鋼組織中に極 力含有させない方が望ましいが 10%までは許容できる。 好ましくは 5 %以下であ る。
残留オーステナイ ト面積率: 5 %以下 (ただし 0 %を含む)
残留オーステナィ トは加工時に変態して硬質なマルテンサイ トとなり、 伸びフ ランジ性を低下させる。 このため、鋼組織中に極力少ないほうが望ましいが、 5 % までは許容できる。 好ましくは 3 %以下である。
焼入れままのマルテンサイ トの面積率: 40%以下 (ただし 0 %を含む)
焼入れままのマルテンサイ トは、 加工性が著しく劣るため、 鋼組織中で極力少 ない方が望ましいが、 40%までは許容できる。 好ましくは、 30 %以下である。 な お、 焼入れままのマルテンサイ トは、 走査型電子顕微鏡 (SEM) や透過型電子顕微 鏡 (TEM) による観察で炭化物が観察されないことによってオートテンパードマル テンサイ トと区別することができる。 オートテンパードマノレテンサイ トの平均硬さ : HV≤700
オートテンパードマルテンサイ トの平均硬さが 700 < HV の場合、 伸びフランジ 性が著しく劣化するため HV 700とする。 好ましくは HV≤630である。
ォートテンパードマルテンサイ ト中の鉄系炭化物:
大きさ : 5 ηπι以上 0. 5 πι以下、 平均析出個数: 1 mm2あたり 5 X 104個以上 オートテンパードマルテンサイ トは、 本発明の方法で熱処理 (オートテンパ処 理) されたマノレテンサイ トであるが、 オートテンパードマルテンサイ トの平均硬 さが HV≤700 の場合においても、 オートテンパ処理が不適切である場合には加工 性が低下する。 オートテンパ処理の程度は、 オートテンパードマルテンサイ ト中 の鉄系炭化物の生成状況 (分布状態) により確認することができる。 この鉄系炭 化物のうち、 その大きさが 5 nm以上 0· 5 μ πι以下のものの平均析出個数が 1 mm2あ たり 5 X 104個以上のとき、 所望のォートテンパ処理が施されていると判断するこ とができる。 鉄系炭化物の大きさが 5 nm未満のものを判断の対象としないのは、 オートテンパードマルテンサイ トの加工性には影響しないからである。 一方、 0. 5 μ πιを超える大きさの鉄系炭化物は、ォートテンパードマルテンサイ トの強度を低 下させる場合はあるものの、 加工性には影響が軽微であるため、 判断の対象とし ない。 鉄系炭化物の個数が 1 nun2あたり 5 X 104個未満の場合は、加工性、 特に伸ぴ フランジ性の向上の効果が得られないため、 ォートテンパ処理が不適切であると 判断される。 鉄系炭化物の好ましい個数は、 l mm2あたり 1 X 105個以上 1 X 106個 以下の範囲であり、 より好ましくは 4 X 105個以上 1 X 106個以下の範囲である。 な お、 ここでいう鉄系炭化物とは、 主に Fe3Cであるが、 その他 ε炭化物などが含ま れる場合もある。
炭化物の生成状況を確認するためには、鏡面研摩したサンプルを SEM (走查型電 子顕微鏡) または ΤΕΜ (透過型電子顕微鏡) 観察することが.有効である。 炭化物の 同定は、例えば、断面研摩サンプルの SEM- EDS (エネルギー分散型 X線分析)、 EPMA (電子線マイクロアナライザー)、 FE-AES (電界放射型ーォージェ電子分光) など で行うことができる。
また、 本発明の鋼板では、 上記のオートテンパードマルテンサイ トにおいて、 このォートテンパードマルテンサイ ト中に析出する鉄系炭化物の大きさおよび個 数をさらに限定したォートテンパードマルテンサイ トの量を、 適宜以下のように することができる。
0. Ιμπι以上 0. 以下の鉄系炭化物の析出個数が lnrni2あたり 5X102個以下であ るォートテンパードマルテンサイ ト :ォートテンパードマルテンサイ ト全体に対 して面積率で 3 %以上
ォートテンパードマルテンサイ トのうち、 0. 以上 0.5 μπι以下の鉄系炭化物 の析出個数が 1mm2あたり 5X102個以下のものの割合を高めることにより、延性は さらに向上する。 このような効果を得るためには、 0. l m以上 0.5/im以下の鉄系 炭化物の析出個数が 1mm2あたり 5X102個以下であるオートテンパードマルテンサ ィ トの割合を、 オートテンパードマルテンサイ ト全体に対する面積率で 3 %以上 とすることが好ましい。 なお、 0. 以上 0.5^m以下の鉄系炭化物の析出個数が lmm2あたり 5X102個以下であるオートテンパ―ドマルテンサイ トが、 鋼板中に多 量に存在すると加工性を著しく劣化させるため、 かようなォートテンパードマル テンサイ トの割合は、 ォートテンパードマルテンサイ ト全体に対する面積率で 40%以下とすることが好ましい。 より好ましくは、 30%以下である。
また、 0. 以上 0.5 111以下の鉄系炭化物の析出個数が lmm2あたり 5X102個 以下であるォートテンパードマルテンサイ トの割合を、 ォートテンパードマルテ ンサイ ト全体に対する面積率で 3 %以上とした場合、 オートテンパードマルテン サイ ト中に含まれる鉄系炭化物においては微細な鉄系炭化物が多くなるため、 ォ ートテンパードマルテンサイ ト全体の鉄系炭化物の平均析出個数は増加する。 従 つて、ォートテンパードマルテンサイ ト中における 5nm以上 0.5 m以下の鉄系炭 化物の平均析出個数は、 1 mm2あたり 1 X105個以上 5 X 106個以下の範囲とするこ とが好ましい。 さらに好ましくは、 4 X105個以上 5 X106個以下の範囲である。 上記したように延性がさらに向上する理由の詳細は明らかではないが、 次のと おりと考えられる。 0.1/im以上 0. 以下の比較的大きな鉄系炭化物の析出個数 が lmm2あたり 5 X102個以下であるオートテンパードマルテンサイ トの割合を、 ォ ートテンパードマルテンサイ ト全体に対する面積率で 3 %以上存在させた場合、 オートテンパードマルテンサイ ト組織は、 比較的大きな鉄系炭化物を多く含む部 分と、 比較的大きな鉄系炭化物が少ない部分とが混在する組織となる。 比較的大 きな鉄系炭化物が少ない部分は、 微細な鉄系炭化物を多く含むため硬質なォート テンパードマルテンサイ トとなっている。 一方、 比較的大きな鉄系炭化物を多く 含む部分は、 軟質なォ一トテンパードマルテンサイ トとなっている。 この硬質な オートテンパードマルテンサイ トを軟質なオートテンパードマルテンサイ トに囲 まれた状態で存在させることで、 オートテンパードマルテンサイ ト内での硬度差 により生じる伸びフランジ性の劣化が抑制でき、 かつ軟質なォートテンパードマ ルテンサイ ト中に硬質なマルテンサイ トを分散して存在させることにより、 加工 硬化能が高まり延性が向上するものと考えられる。
次に、 本発明の鋼板において、 成分組成を上記の範囲に設定した理由について 述べる。 なお、 以下の成分組成を表す%は質量%を意味するものとする。
C : 0. 1%以上 0. 3%以下
Cは鋼板の高強度化に必要不可欠な元素であり、 C量が 0. 1 %未満では、鋼板の 強度の確保と延性ゃ伸ぴフランジ性等の加工性との両立が困難である。 一方、 c 量が 0. 3%を超えると溶接部おょぴ熱影響部の硬化が著しく溶接性が劣化する。そ こで、 本発明では、 C量は 0. 1 %以上 0. 3%以下の範囲とする。 好ましくは 0. 12% 以上 0. 23 %以下の範囲である。
Si: 2. 0%以下
Si はフェライ トの固溶強化に有効な元素であり、 延性確保とフェライ トの硬度 確保のためは 0. 1 %以上含有させることが好ましいが、 Si の過剰な添加は、 赤ス ケール等の発生により表面性状の劣化や、 めっき付着 ·密着性の劣化を引き起こ す。 従って、 Si量は 2. 0%以下とする。 好ましくは、 1. 6%以下である。
Mn: 0. 5%以上 3. 0%以下
Mn は、 鋼の強化に有効な元素である。 また、 オーステナイ ドを安定化させる元 素であり、 硬質相の面積率確保に必要な元素である。 このためには、 Mn は 0. 5% 以上の添加が必要である。 一方、 Mn が 3. 0%を超えて過剰に添加されると、 鎳造 性の劣化などを引き起こす。 従って、 Mn量を 0. 5%以上 3. 0%以下とする。 好まし くは 1. 5%以上 2. 5%以下の範囲である。
P : 0. 1%以下
Pは、 粒界偏析により脆化を引き起こし、 耐衝撃性を劣化させるが、 0. 1%まで は許容できる。 また、 合金化溶融亜鉛めつきを施す場合、 0. 1 %を超える p量は、 合金化速度を大幅に遅延させる。 従って、 P量を 0. 1 %以下とする。 好ましくは 0. 05%以下である。 S : 0.07%以下
Sは、 MnSなどの介在物となって、 耐衝撃性の劣化や溶接部のメタルフローに沿 つた割れの原因となるので極力低減することが好ましいが、 製造コストの観点か ら 0.07%までは許容される。 好ましい S量は 0.04%以下である。
A1: 1.0%以下
A1 は、 フェライ ト生成元素であり、 製造時におけるフェライ ト生成量をコント ロールするのに有効な元素である。 しかしながら、 A1 の過剰な含有は製鋼時にお けるスラブ品質を劣化させる。 従って、 A1 量は 1.0%以下とする。 好ましくは、 0.5%以下である。 なお、 A1の含有が少なすぎる場合には、 脱酸が困難となること があるので、 A1量は 0· 01%以上が好ましい。
N : 0.008%以下
Nは、 鋼の耐時効性を最も大きく劣化させる元素であり、 少ないほどよく、 0.008%を超えると耐時効性の劣化が顕著となる。 従って、 N量は 0.008%以下と する。 好ましくは 0.006%以下である。
また、 本発明の鋼板では、 上記した基本成分のほか、 以下に述べる成分を必要 に応じて適宜含有.させることができる。
Cr: 0.05%以上 5.0%以下、 V : 0.005%以上 1.0%以下おょぴ Mo: 0.005%以上 0.5%以下のうちから選んだ 1種または 2種以上
Cr、 Vおよび Moは、 焼鈍温度からの冷却時にパーライ トの生成を抑制する作用 を有するので必要に応じて添加することができる。 その効果は、 Cr: 0.05%以上、 V : 0.005%以上、 Mo : 0.005%以上で得られる。 一方、 Cr: 5.0%、 V : 1.0%、 Mo: 0.5%を超えて過剰に添加すると、 硬質相の面積率が過大になることによる必 要以上の強度上昇などを招く。 従って、 これらの元素を含有させる場合には、 Cr: 0.005%以上 5.0%以下、 V: 0.005%以上 1.0%以下、 Mo: 0.005%以上 0.5%以下 の範囲とすることが好ましい。
また、 Ti、 Nb、 B、 Niおよぴ Cuについては、 これらのうちから選んだ 1種また は 2種以上を含有させることができるが、 その含有範囲の限定理由は次の通りで ある。
Ti: 0.01%以上 0.1%以下および Nb: 0.01%以上 0.1%以下
Tiおよび Nbは、 鋼の析出強化に有効で、 その効果はそれぞれ 0.01%以上で得 られ、 一方、 0. 1 %を超えると加工性おょぴ形状凍結性が低下する。 従って、 Tiお ょぴ Nbの含有量は、それぞれ 0. 01%以上 0. 1%以下の範囲とすることが好ましい。 B : 0. 0003%以上 0. 0050%以下
Bは、 オーステナイ ト粒界からのフェライ トの生成 ·成長を抑制する作用を有 するので必要に応じて含有させることができる。 その効果は、 0. 0003%以上で得 られ、 一方、 0. 0050%を超えると加工性が低下する。 従って、 Bを含有させる場 合には、 0. 0003%以上 0. 0050%以下の範囲とすることが好ましい。 なお、 Bを含 有させるにあたっては、 上記効果を得る上で B Nの生成を抑制することが好まし く、 このため Tiと複合含有させることが好ましい。
Ni: 0. 05%以上 2. 0%以下おょぴ Cu: 0. 05%以上 2. 0%以下
Niおよび Cuは、溶融亜鉛めつきを施す場合には内部酸化を促進して、 めっき密 着性を向上させる。 その効果は、 それぞれ 0. 05%以上で得られる。 一方、 2. 0%を 超える含有は、 鋼板の加工性を低下させる。 また、 Niおよび Cuは、 鋼の強化に有 効な元素である。 従って、 Niおよび Cuの含有については、 それぞれ 0. 05%以上 2. 0%以下の範囲とすることが好ましい。
Ca: 0. 001 %以上 0. 005%以下おょぴ REM: 0. 001 %以上 0. 005%以下のうちから選 んだ 1種または 2種
Caおよび REMは、 硫化物の形状を球状化し、 伸ぴフランジ性への硫化物の悪影 響を改善するために有効な元素である。 その効果は、 それぞれ 0. 001 %以上で得ら れる。 一方、 0. 005%を超える含有は、 介在物等の増加を招き、'表面おょぴ内部欠 陥なども引き起こす。従って、 Ca、 REMを含有させる場合には、 0. 001 %以上 0. 005% 以下の範囲とすることが好ましい。
本発明の鋼板において、 上記以外の成分は Feおよび不可避的不純物である。 た だし、 本発明の効果を損なわない範囲内であれば、 上記以外の成分の含有を拒む ものでない。
また、 後述するように、 本発明鋼板の成分組成は、 ポリゴナルフェライ トの面 積率との関係式である M≥300°Cを満足していることが、 安定した生産上好ましく、 すなわち製造条件のばらつきによる特性ばらつきを抑制する上で好ましい。
また、 本発明においては、 鋼板の表面に溶融亜鉛めつき層あるいは合金化溶融 亜鉛めつき層をそなえるようにしてもよい。 次に、 本発明の鋼板の好適製造方法およぴ条件の限定理由について説明する。 まず、 上記の好適成分組成に調整した鋼片を製造後、 熱間圧延し、 ついで冷間 圧延を施して冷延鋼板とする。本発明において、 これらの処理に特に制限はなく、 常法に従って行えば良い。
ここに、 好適な製造条件は次のとおりである。 鋼片を、 1100°C以上 1300°C以下 に加熱したのち、 870°C以上 950T:以下の温度で仕上げ熱間圧延、 すなわち熱間圧. 延終了温度を 870°C以上 950°C以下とし、 得られた熱延鋼板を 350°C以上 720°C以 下の温度で巻き取る。 ついで、 熱延鋼板を酸洗後、 40%以上 90%以下の圧下率で 冷間圧延を行い冷延鋼板とする。
なお、 熱延鋼板は、 通常の製鋼、 鎳造およぴ熱間圧延の各工程を経て製造する 場合を想定しているが、 例えば薄手鎊造などにより熱間圧延工程の一部もしくは 全部を省略して製造してもよい。
得られた冷延鋼板を、 700°C以上 950°C以下の第一温度域、 具体的には、 オース テナイ ト単相域、 もしくはオーステナイ ト相とフェライ ト相の二相域で、 15秒以 上 600秒以下の焼鈍を施す。 焼鈍温度が 700°C未満の場合や、 焼鈍時間が 15秒未 満の場合には、 鋼板中の炭化物が十分に溶解しなかったり、 フ ライ トの再結晶 が完了せず目標とする延性ゃ伸ぴフランジ性が得られない場合がある。 一方、 焼 鈍温度が 950°Cを超える場合には、 オーステナイ ト粒の成長が著しく、 後の冷却に よって生じる構成相の粗大化を引き起こし、 延性や伸ぴフランジ性を劣化させる 場合がある。 また、 600秒を超える焼鈍は、 多大なエネルギー消費にともなうコス ト増を招く。 このため、 焼鈍温度およぴ焼鈍時間はそれぞれ、 700°C以上 950°C以 下、 15秒以上 600秒以下の範囲とする。 好ましい焼鈍温度おょぴ焼'鈍時間はそれ ぞれ、 760°C以上 920°C以下、 30秒以上 400秒以下である。
焼鈍後の冷延鋼板を、 第一温度域から 420°Cまでの第二温度域において、第一温 度域か
ら 550°Cまでは 3 °C/秒以上の速度で冷却し、 5δ0でから 420°Cまでの冷却に要する 時間を 600秒以下として冷却する。 その後、 250°C以上 420°C以下の第三温度域を 50°C /秒以下の速度で冷却する。
第一温度域から 420°Cまでの第二温度域の冷却条件は、 目的とするフェライ トぉ よぴォートテンパードマルテンサイ ト相以外の相の析出を抑えるために重要であ る。 このうち第一温度域から 550°Cまでの温度域は、パーライ ト変態が起こりやす い温度域である。 第一温度域から、 すなわち第一温度域の下限温度である 700°Cか ら 550°Cまでの平均冷却速度が 3 °C/秒未満の場合にはパーライ ト等が析出し、 目 標とする組織が得られない場合があるため、 3 t /秒以上の冷却速度が必要である。 好ましくは、 5 °C/秒以上である。一方、冷却速度の上限は特に規定しないが、 200°C /秒以上の冷却速度を得るためには、 特別な冷却設備が必要となるため、 200°C/秒 以下が好ましい。
550°Cから 420°Cまでの温度域は、 長時間保持することによりべィナイ ト変態が 進む温度域である。 520°Cから 420°Cまでの冷却に要する時間が 600秒を超える場 合、 べィナイ ト変態等が進行し、 目標とする組織が得られない場合がある。 この ため 550°Cから 420°Cまでの冷却に要する時間は 600秒以下とする。 なお、 より好 ましい時間は、 400秒以下である。
この第二温度域での処理後、 第三温度域に導く。 そして、 この第三温度域にお いて、 マルテンサイ ト変態を生じさせるのと同時に、 変態後のマルテンサイ トを 焼戻すォートテンパ処理を施し、 その内部における炭化物の析出状況を最適に制 御したォートテンパードマルテンサイ トを得ることが本発明の最大の特徴である。 通常のマルテンサイ トは、 焼鈍後に水冷等で焼入れすることよって得られる。 このマルテンサイ トは硬質相であり、 鋼板の高強度化に寄与するが加工性に劣る。 そこで、 このマルテンサイ トを加工性の良い焼戻しマルテンサイ トとするために、 焼入れした鋼板を再度加熱して焼戻しを施すことが通常行われている。 以上のェ 程を模式的に示したものが図 1である。 このような通常の焼入れ ·焼戻し処理で は、 焼入れによりマルテンサイ ト変態を完了させた後に、 昇温して焼戻し処理す ることにより均一に焼戻された組織となる。
これに対し、 オートテンパ処理は、 図 2に示すような、 第三温度域を一定の範 囲の速度で冷却する処理であり、 焼入れおよぴ再加熱による焼戻しを伴わない、 非常に生産性の高い方法である。 このォートテンパ処理によって得られるォート テンパードマルテンサイ トを含む鋼板は、 図 1に示した焼入れ ·再加熱による焼 戻しを施した鋼板と同等もしくはそれ以上の強度と加工性を有する。 また、 ォー トテンパ処理は、 第三温度域において、 連続冷却 (段階的な冷却 ·保持を含む) を行うことにより、 マルテンサイ ト変態とその焼戻しを連続的 ·段階的に進める ことができ、 焼戻し状態の異なるマルテンサイ トが混在する組織を得ることが可 能である。 焼戻し状態の異なるマルテンサイ トは、 強度や加工性等の特性が異な るが、 焼戻し状態の異なるマルテンサイ トの量をオートテンパ処理によって最適 制御することにより、 鋼板全体として所望の特性を得ることが可能である。 さら に、 オートテンパ処理は、 全てのマルテンサイ ト変態を完了させるような低温域 までの急冷を伴わないため、 鋼板内の残留応力も小さく、 板形状に優れた鋼板が 得られることも有利な点である。
本発明において、 第三温度域は 250°C以上 420で以下である。 420°C超えの温度 域では、 前述のようにべィナイ ト変態が起こりやすく、 一方 250で未満の温度域で は、 オートテンパに長時間を要するため、 連続焼鈍ラインや連続溶融亜鉛めつき ラインでの処理ではォートテンパの進行が不十分となる。 この第三温度域におい て、 マルテンサイ ト変態を生じさせると同時に、 変態後のマルテンサイ トを焼戻 し、 ォートテンパードマルテンサイ トとするには、 第三温度域での鋼板の冷却速 度を 50°C/秒以下とする必要がある。 冷却速度が 50°C/秒を超える場合、 オートテ ンパの進行が不十分となりマルテンサイ トの加工性が確保されない場合がある。 一方、 冷却速度が 0. 1°C/秒未満の場合には、 べィナイ ト変態が進行したり、 ォー トテンパが過度に進行したりすることにより、 強度を確保することができない場 合があるため、 冷却速度は 0. 1°C/秒以上とするのが好ましい。
また、 本発明の鋼板の製造方法では、 必要に応じて以下の構成を適宜加えるこ とができる。
250°C以上 420°C以下の第三温度域において 50°C/秒以下の冷却速度で鋼板を冷 却するに際し、 少なくとも (Ms 点一 50) °C以下の温度域を 1. 0°C/秒以上 50°C/ 秒以下の範囲の冷却速度で冷却することが好ましい。 これは、 第三温度域におい て、 オートテンパードマルテンサイ ト中の炭化物の析出状況をさらに適正に制御 して、 Ο. ΐ μ πι以上 0. 5 μ ιη以下の鉄系炭化物の析出個数が 1 mm2あたり 5 X 102個以 下であるォートテンパードマルテンサイ トの割合をォートテンパードマルテンサ ィ ト全体に対する面積率で 3 %以上とするためである。冷却速度が 50°C/秒を超え る場合には、 ォートテンパの進行が不十分となり所望のォートテンパードマルテ ンサイ トが得られず、マルテンサイ トの加工性が確保されないことがある。一方、 冷却速度が 1. 0T /秒未満の場合には、 0. 1 /x m以上 0. 5 /i m以下の鉄系炭化物の析 出個数が l mm2あたり 5 X 102個以下であるォートテンパードマルテンサイ トの割 合をォートテンパードマルテンサイ ト全体に対する面積率で 3 %以上とすること できず、 所望の延性や強度が得られないため、 冷却速度は 1. 0°C/秒以上とする。 なお、 ここで Ms点は、 通常行われているように、 冷却時の熱膨張測定や電気抵抗 測定により求めることができる。 また、 後述する Ms点の近似式 (1 ) により求ま る Mを用いてもよい。
さらに、 本発明の鋼板の製造方法では、 下記 (1 ) 式で示す Mが 300°C以上の場 合に安定してォートテンパ処理を施すことができる。
M (°C) = 540- 361 X { [ C % ] / (1 - [ α %] /100) } - 6 X [Si % ] - 40 X [Mn% ] + 30 X [Al% ]
- 20 X [Cr % ] - 35 X [ V % ] - 10 X [Mo % ] - 17 X [Ni % ]一 10 X [Cu% ] · · · ( 1 )
ただし、 [X %]は合金元素 Xの質量。 /0、 [ « % ]はポリゴナルフェライ トの面積 率 (%) とする。
上掲式 (1 ) であらわされる Μは、 経験的に求められるマルテンサイ ト変態が 開始する Ms点の近似式であり、この Mはマルテンサイ トからの鉄系炭化物の析出 挙動と大きく関係していると考えられる。 従って、 Mは、 5 nm以上 0· 5 μ πι以下の 鉄系炭化物を lmm2あたり 5 X 104個以上含むォートテンパードマルテンサイ トを安 定して得ることができる指標として用いることができる。 Mが 300°C未満であって も、 オートテンパードマルテンサイ トは得られるが、 マルテンサイ ト変態とォー トテンパが進行する温度が低温となるため、 これらの進行が遅くなりやすく、 所 望のオートテンパードマルテンサイ トを得るために M≥300°Cの場合に比べて、 冷 却速度を遅くするまたは長時間の低温保持が必要となり、 製造効率を著しく悪化 させるおそれがあるので、 Mは 300°C以上とすることが好ましい。
なお、 ポリゴナルフェライ トの面積率は、 例えば、 1000〜3000倍の SEM写真の 画像処理 '解析によって測定される。 ポリゴナルフェライ トは、 上記した条件で の焼鈍 ·冷却後の鋼板において観察されるものである。 上記 Mを 300°C以上とする ためには、 所望の成分組成の冷延鋼板を製造後、 ポリゴナルフェライ トの面積率 を求め、 鋼板の成分組成から求まる合金元素の含有量とともに上記 (1 ) 式から Mの値を求めればよい。 Mが 300°C未満となる場合には、 ポリゴナルフェライ トの 面積率がより小さくなるように、例えば、第一温度域の焼鈍温度をより高温とし、 第一温度域から 550°Cまでの平均冷却速度をより速くするなど適宜熱処理条件を 調整して所望の Mを得られるようにすればよく、 また (1 ) 式中の成分組成の含 有量を調整してもよい。
また、 本発明の鋼板には、 溶融亜鉛めつきおよび合金化溶融亜鉛めつきを施す ことができる。 溶融亜鉛めつきおよび合金化溶融亜鉛めつき処理は、 上記した条 件での焼鈍 ·冷却条件を満足して、 連続溶融亜鉛めつきラインにて行うことが好 ましい。 ここで溶融亜鉛めつき処理、 合金化処理は、 420°C以上 550°C以下の温度 域で行うことが好ましく、 この場合、 溶融亜鉛めつき処理あるいはさらに合金化 処理時間を含めて、 550°Cから 420°Cまでの冷却に要する時間、 すなわち 420°C以 上 550°C以下の温度域での保持時間を 600秒以下とすればよい。
溶融亜鉛めつきおょぴ合金化溶融亜鉛めつきの方法は以下のとおりである。 ま ず、 鋼板をめつき浴中に浸入させ、 ガスワイビングなどで付着量を調整する。 め つき浴中の溶解 A1量としては、 溶融亜鉛めつきの場合は 0. 12%以上 0. 22%以下 の範囲、 合金化溶融亜鉛めつきの場合は 0. 08%以上 0. 18%以下の範囲とする。 また、 溶融亜鉛めつきの場合は、 めっき浴の温度としては、 450°C以上 500°C以 下の範囲であれば良く、 さらに合金化処理を施し合金化溶融亜鉛めつきとする場 合は、 合金化時の温度は 450°C以上 550°C以下の範囲が好ましい。 合金化の温度が 550°Cを超えると、 未変態オーステナイ トから炭化物が過剰に析出するか、 場合に よってはパーライ ト化することにより、 所望の強度や延性が得られないことがあ る。 また、 パウダリング性も劣化する。 一方、 合金化時の温度が 450°C未満の場合 は、 合金化が進行しない。
めっき付着量は片面当たり 20〜150g/m2とすることが好ましい。めっき付着量が 20g/m 2未満の場合、 耐食性が劣化する。 一方、 めっき付着量が 150g/m2を超えても 耐食効果は飽和しており、 コストアップを招くだけである。 また、 合金化度は、 めっき層中の Fe含有量で 7〜1δ質量%とすることが好ましい。 合金化度が 7質 量%未満では、 合金化ムラが生じ外観性が劣化したり、 いわゆる ζ相が生成され 摺動性が劣化したりする。 一方、 合金化度が 15質量%を超えると硬質で脆い Γ相 が多量に形成され、 めっき密着性が劣化する。
なお、 本発明において、 第一温度域や第二温度域等における保持温度は必ずし も一定である必要はなく、 規定の範囲内であれば変動しても本発明の趣旨を損な わない。 冷却速度についても同様である。 また、 熱履歴さえ満足すれば、 鋼板は いかなる設備で焼鈍おょぴオートテンパ処理を施してもかまわない。 さらに、 ォ 一トテンパ処理後に、 形状矯正のため本発明の鋼板に調質圧延をすることも本発 明の範囲に含まれる。 実施例
実施例 1
以下、 本発明を実施例によってさらに説明するが、 下記の実施例は本発明を限 定するものではない。また、本発明の要旨構成の範囲内で構成を変更することは、 本発明の範囲に含まれるものとする。
表 1に示す成分組成になる鋼片を、 1250°Cに加熱したのち、 880°Cで仕上げ熱間 圧延した熱延鋼板を 600°Cで卷き取り、 ついで熱延鋼板を酸洗後、 65%の圧延率で 冷間圧延し、 板厚: 1. 2匪の冷延鋼板とした。 得られた冷延鋼板を、 表 2に示す条 件で熱処理を施した。 同表中のいずれのサンプルも焼入れは実施していない。 な お、 表 2中の保持時間は、 表 2中の保持温度での保持時間であり、 表中のいずれ の条件も 700°C以上 950°C以下の第一温度域での焼鈍時間は 600秒以下であった。 溶融亜鉛めつきは、 めっき浴の温度: 463°C、 目付け量 (片面あたり) : 50g/m2
(両面めつき) の条件で行った。 また、 合金化溶融亜鉛めつきは、 さらにめつき 層中の Fe% (鉄含有量) が 9質量%となる条件で合金化処理を行った。 得られた 鋼板は、 めっきの有無にかかわらず圧延率(伸び率): 0. 3%の調質圧延を施した。
表 1
(質量%)
Figure imgf000023_0001
注)下線は適正範囲外を示す。
表 2
Figure imgf000024_0001
*1 )下線は適正範囲外を示す。
*2) GR:めっきなし(冷延鋼板)、 GI:溶融亜鉛めつき、 GA:合金化溶融亜鉛めつき
かくして得られた鋼板の諸特性を以下の方法で評価した。
鋼板の組織を調查するため、 各鋼板から 2つの試料を切出して、 一方はそのま ま研磨、 他方は 200t x 2時間の熱処理を施した後に研磨した。 研磨面は、 圧延方 向に平行な板厚方向断面とした。 研磨面を走査型電子顕微鏡 (SEM) を用いて 3000 倍で鋼組織観察することにより、 各相の面積率を測定し、 各結晶粒の相構造を同 定した。 観察は 10視野行い、 面積率は 10視野の平均値とした。 ォートテンパー ドマルテンサイ ト、 ポリゴナルフェライ トおよびべィナイ トはそのまま研磨した サンプルで面積率を求めた。 焼入れたままのマルテンサイ ト (焼戻しされていな いマルテンサイ ト) と残留オーステナイ トは、 200°C X 2時間の熱処理を施したサ ンプルを用いて面積率を求めた。 200°C X 2時間の熱処理を施した試料を準備した のは、 SEM観察時に焼戻しされていないマルテンサイ トと残留オーステナイ トを区 別するためである。 SEM観察では、焼戻しされていないマルテンサイ トと残留ォー ステナイ トとの区別が困難である。 マルテンサイ トが癀戻しされるとマルテンサ ィ ト中に鉄系炭化物を生成するが、 この鉄系炭化物の存在により残留オーステナ ィ トとの区別が可能となる。 200°C X 2時間の熱処理は、 マルテンサイ ト以外に影 響を与えることなく、 つまり各相の面積率を変化させることなく、 マルテンサイ トを焼戻すことができ、 その結果、 生成した鉄系炭化物によって残留オーステナ イ トとの区別が可能となるのである。 なお、 そのまま研磨した試料と 200°C X 2時 間の熱処理をした試料の両方を SEM観察して比較した結果、 マルテンサイ ト以外 の相に変化がなかったことは確認済である。
次に、 ォートテンパードマルテンサイ ト中の鉄系炭化物の大きさと個数を SEM 観察によって行った。 試料は、 上記の組織観察のものと同一であるが、 200°C X 2 時間の熱処理を行っていないものを観察したのはいうまでもない。 鉄系炭化物の 析出状態と大きさに応じて、 10000〜30000倍の範囲で観察した。 鉄系炭化物の大 きさは、個々の析出物の長径と短径の平均値で評価し、その大きさが 5 mn以上 0. 5 μ αι以下であるものの個数を数え、 ォートテンパードマルテンサイ ト 1 mm2あたり の個数を求めた。 観察は 5〜20視野で行い、 各サンプルにおける全視野の個数の 合計から平均値を算出して各サンプルの鉄系炭化物の個数 (ォートテンパードマ ルテンサイ ト 1 mm 2あたりの個数) とした。
オートテンパードマルテンサイ トの硬さ HV は、 超マイクロビッカースにて荷 重: 0.02Nにて測定し、 その後、 SEMで圧痕を確認することにより鉄系炭化物の析 出しているオートテンパードマルテンサイ トの組織を確認した上で、 10 点以上の 測定値の平均値とした。
強度は、 鋼板の圧延方向に対して平行な方向から JIS5号試験片を切り出し、 引 張試験を JIS Z2241に準拠して行った。 引張強さ (TS)、 降伏強さ (YS) および全 伸び (T.E1) を測定し、 強度と伸びのパランスを評価する引張強さと全伸びの積 (TSXT.E1) を算出した。 なお、 本発明では、 TSXT.E1≥14500 (MPa - %) の場合 を良好と判定した。
伸ぴフランジ性は、 日本鉄鋼連盟規格 JFST1001に準拠して評価した。 得られた 各鋼板を lOOmmXIOOmmに切断後、 クリァランス :板厚の 12%で直径 10mmの穴を 打ち抜いた後、 內径 75mmのダイスを用いて、 しわ押さえ力: 88.2kNで抑えた状態 で、 60° 円錐のポンチを穴に押し込んで亀裂発生限界における穴直径を測定し、 (2) の式から、 限界穴拡げ率 (%) を求め、 この限界穴拡げ率の値から伸ぴフ ランジ性を評価した。 なお、 本発明では、 λ≥ 15%を良好とした。
限界穴拡げ率 λ (%) = {(D f-D0) /D。} X100 · · ' (2)
ただし、 D fは亀裂発生時の穴径 D。は初期穴径 とする。
以上の評価結果を表 3に示す。
Figure imgf000027_0001
下線は適正範囲外を示す。
同表から明らかなように、 本発明の鋼板は、 引^強さ : 900MPa以上であり、 ま た、 TS X T. E1≥14500 (MPa - % ) およぴ伸ぴフランジ性を示すえの値も 15%以上 であることから、高強度と良好な加工性を両立していることが確認できる。なお、 発明例中、 Mが 300°C以上のものは、 とりわけ伸ぴフランジ性、 特に高強度化を図 つた場合にも伸ぴフランジ性が劣化しない点で優れている。
一方、 サンプル No. 6および 7は、 マルテンサイ トの硬さが 700く HVであり、 力 つマルテンサイ ト中の鉄系炭化物の個数が l mm2あたり 5 X 104個未満若しくは鉄 系炭化物を含まないことから、引張強さ:900MPa以上ば満足するが、えの値が 15% 未満で加工性に劣る。 これは、 サンプル No. 6および 7の第三温度域内冷却速度が 高速であり、 50°C/秒の条件を満たさないからである。サンプル No. 3および 8は、 マルテンサイ トの硬さは HV≤700 を満足するが、 マルテンサイ ト中の鉄系炭化物 個数が l mm2あたり 5 X 104個未満であること力ゝら、 引張強さ : 900MPaは満足する が、 λの値が 15%未満で加工性に劣る。 これは、 サンプル No. 3、 8の第三温度 域での冷却速度が 55で/秒であり、 50°C/秒以下の条件を満たさないからである。 特に No. 8のサンプルでは、比較的高 Cであること力 ら、 TS X T. ELも 14500MPa · % 以下となっていた。
以上から、 マルテンサイ トの硬さカ HV≤700 で、 かつマルテンサイト中の鉄系 炭化物個数が l mm2あたり 5 X 104個以上であるォートテンパ処理が十分に施され たオートテンパードマルテンサイ トを含む本発明の鋼板は、 高強度化と加工性を 両立していることが確認できる。
実施例 2 '
ォートテンパードマルテンサイ ト中における鉄系炭化物の分布状態の適切な制 御によるさらなる延性向上の効果を確認するため、第三温度'域において 250°C以上 (Ms点- 50) °C以下の温度域の冷却速度を表 4に示すように変化させた以外は、 表 2に示したサンプルと同様の方法でサンプルを製作した。 なお、 表 4中、 サンプ ル No. 9、 11、 13、 14および 26は、 表 2に示した同じサンプル No.と同一のサン プルについて、 250°C以上(Ms点一50°C )以下の温度域を明確にしたものである。 なお、 Ms点としては M (°C) を用いた。 表 4
Figure imgf000029_0001
*1)CR:めっきなし(冷延鋼板)、 GI:溶融亜鉛めつき、 GA:合金化溶融亜鉛めつき
かく して得られた鋼板の諸特性を実施例 1 と同様の方法で評価した。 なお、 オート テンパードマルテンサイ トのうち、 Ο.ΐμηι以上 0.5/xm以下の鉄系炭化物の析出個数 が lmm2あたり 5X102偭以下であるオートテンパードマルテンサイ トの量は、次の方法 により求 た。
前述のように、 200°CX 2時間の熱処理を行っていないサンプルを 10000〜3000 0倍の範囲で SEM観察し、 鉄系炭化物の大きさを、 個々の析出物の長径と短径の平 均値で評価して、 その大きさが 0. Ιμπι以上 0.5 ;zm以下であるォートテンパード マルテンサイ トの面積率を測定した。 観察は 5〜20視野で行った。
結果を表 5に示す。
表 5より、 250°C以上 (Ms点— 50) °C以下の温度域での冷却速度を 1.0°C/秒以 上 50°C/秒以下の範囲としたサンプル No.11、 26、 27、 29および 30は、 オートテ ンパードマルテンサイ ト中の鉄系炭化物の分布状態が適切に制御され TS XT. EL≥ 17000MPa · %を示し延性が向上していることが確認できる。
表 5
Figure imgf000031_0001

Claims

請求の範囲
1 . 質量%で、
C : 0. 1%以上 0. 3%以下、
Si: 2. 0%以下、
Mn: 0. 5%以上 3. 0%以下、
P : 0. 1%以下、
S : 0. 07%以下、
A1: 1. 0%以下おょぴ
N: 0. 008%以下
を含有し、 残部は Feおよび不可避不純物からなり、 鋼組織として面積率で、 フエ ライトを 5 %以上 80%以下、 ォートテンパードマルテンサイ トを 15%以上有する とともに、 べィナイ トが 10%以下、 残留オーステナイ トが 5 %以下、 焼入れまま のマルテンサイ トが 40%以下であり、 該オートテンパードマルテンサイ トの平均 硬さが HV≤700で、 かつ該オートテンパードマルテンサイ ト中における 5 nm以上 0. 5 μ πι以下の鉄系炭化物の平均析出個数が 1mm2あたり 5 X 104個以上であり、引張 強さが 900MPa以上であることを特徴とする高強度鋼板。
2 . 前記鋼板がさらに、 質量%で、
Cr: 0. 05%以上 5. 0%以下、
V : 0. 005%以上 1. 0%以下および
Mo: 0. 005%以上 0. 5%以下
のうちから選ばれる 1種または 2種以上の元素を含有することを特徴とする請求 項 1に記載の高強度鋼板。
3 . 前記鋼板がさらに、 質量%で、
Ti: 0. 01 %以上 0. 1%以下、
Nb: 0. 01%以上 0. 1%以下、
B : 0. 0003%以上 0. 0050%以下、
Ni: 0. 05%以上 2. 0%以下おょぴ Cu: 0. 05%以上 2. 0%以下
のうちから選ばれる 1種または 2種以上の元素を含有することを特徴とする請求 項 1または 2に記載の高強度鋼板。
4 . 前記鋼板がさらに、 質量%で、
Ca: 0. 001 %以上 0. 005%以下おょぴ
REM: 0. 001 %以上 0. 005%以下
のうちから選ばれる 1種または 2種の元素を含有することを特徴とする請求項 1 乃至 3のいずれか 1項に記載の高強度鋼板。
5 . 前記ォー卜テンパードマルテンサイ トのうち、 0. Ι μ πι以上 0. 5 /z m以下の鉄 系炭化物の析出個数が 1mm2あたり 5 X 102個以下であるォートテンパードマルテン サイ トの割合が、 前記オートテンパードマルテンサイ ト全体に対して面積率で 3 %以上であることを特徴とする請求項 1乃至 4のいずれか 1項に記載の高強度 鋼板。
6 . 前記鋼板の表面に、 溶融亜鉛めつき層をそなえることを特徴とする請求項 1乃至 5のいずれか 1項に記載の高強度鋼板。
7 . 前記鋼板の表面に、 合金化溶融亜鉛めつき層をそなえることを特徴とする 請求項 1乃至 5のいずれか 1項に記載の髙強度鋼板。
8 . 請求項 1乃至 4のいずれか 1項に記載の成分組成になる鋼片を、 熱間圧延 後、 冷間圧延により冷延鋼板とし、 ついで該冷延鋼板を、 700°C以上 950°C以下の 第一温度域で 15秒以上 600秒以下の焼鈍を施した後、 該第一温度域から 420°Cま での第二温度域における冷却条件を、該第一温度域から 550°Cまでの平均冷却速度 を 3 C/秒以上、 550°Cから 420°Cまでの冷却に要する時間を 600秒以下とし、 250で 以上 420°C以下の第三温度域を 50°C/秒以下の速度で冷却し、 該第三温度域内にお いてマルテンサイ ト変態を生じさせると同時に、 変態後のマルテンサイ トを焼戻 しするオートテンパ処理を行うことを特徴とする高強度鋼板の製造方法。
9. 前記 250^以上 420°C以下の第三温度域において 50°C/秒以下の冷却速度で 鋼板を冷却するに際し、 少なく とも(Ms 点一 50) °C以下の温度域を 1.0°C/秒以上 50 /秒以下の速度で冷却し、 該第三温度域内においてマルテンサイ ト変態を生じ させると同時に、 変態後のマルテンサイ トを焼戻しするォートテンパ処理を行う ことを特徴とする請求項 8に記載の髙強度鋼板の製造方法。
1 0. 前記鋼片において、 マルテンサイト変態開始点 Msが下記 (1) 式で表さ れる Mで近似され、該 が 300¾以上であることを特徴とする請求項 8または 9に 記載の高強度鋼板の製造方法。
M(°C) =540— 361X { [ C %] / (1- [ α %]/100) } - 6 X [Si%] -40 X [Μη%] + 30 X [Α1%]
- 20 X [Cr % ] - 35 X [ V % ] - 10 X [Mo % ]一 17 X [Ni % ]— 10 X [Cu%] · · ■ (1 )
ただし、 [X%]は鋼片の成分元素 Xの質量%、 はポリゴナルフェライ ト の面積率 (%) とする。
PCT/JP2009/051915 2008-01-31 2009-01-29 高強度鋼板およびその製造方法 WO2009096596A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2713181A CA2713181C (en) 2008-01-31 2009-01-29 High strength steel sheet and method for manufacturing the same
MX2010008227A MX2010008227A (es) 2008-01-31 2009-01-29 Lamina de acero de alta resistencia y metodo para su fabricacion.
CN2009801038287A CN101932746B (zh) 2008-01-31 2009-01-29 高强度钢板及其制造方法
US12/865,527 US20110030854A1 (en) 2008-01-31 2009-01-29 High-strength steel sheet and method for manufacturing the same
EP09706046.1A EP2246456B9 (en) 2008-01-31 2009-01-29 High-strength steel sheet and process for production thereof
KR1020107017843A KR101225321B1 (ko) 2008-01-31 2009-01-29 고강도 강판 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008021403 2008-01-31
JP2008-021403 2008-01-31

Publications (1)

Publication Number Publication Date
WO2009096596A1 true WO2009096596A1 (ja) 2009-08-06

Family

ID=40912934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051915 WO2009096596A1 (ja) 2008-01-31 2009-01-29 高強度鋼板およびその製造方法

Country Status (8)

Country Link
US (1) US20110030854A1 (ja)
EP (1) EP2246456B9 (ja)
JP (1) JP5365217B2 (ja)
KR (1) KR101225321B1 (ja)
CN (1) CN101932746B (ja)
CA (1) CA2713181C (ja)
MX (1) MX2010008227A (ja)
WO (1) WO2009096596A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065591A1 (ja) * 2009-11-30 2011-06-03 新日本製鐵株式会社 耐水素脆化特性に優れた引張最大強度900MPa以上の高強度鋼板及びその製造方法
US20130160889A1 (en) * 2010-03-24 2013-06-27 Jfe Steel Corporation High-strength electric resistance welded steel tube and production method therefor
EP2559782A4 (en) * 2010-04-16 2015-10-21 Jfe Steel Corp HIGHLY RESISTANT STEEL PLATE OF EXCELLENT FORMABILITY AND SHOCK STRENGTH, AND METHOD FOR THE PRODUCTION THEREOF
WO2020208979A1 (ja) 2019-04-11 2020-10-15 日本製鉄株式会社 鋼板およびその製造方法
WO2021140893A1 (ja) 2020-01-08 2021-07-15 日本製鉄株式会社 鋼板およびその製造方法
WO2021140901A1 (ja) 2020-01-08 2021-07-15 日本製鉄株式会社 鋼板およびその製造方法
WO2021141006A1 (ja) 2020-01-08 2021-07-15 日本製鉄株式会社 鋼板およびその製造方法
WO2024057669A1 (ja) * 2022-09-15 2024-03-21 Jfeスチール株式会社 鋼板、部材およびそれらの製造方法
WO2024057670A1 (ja) * 2022-09-15 2024-03-21 Jfeスチール株式会社 鋼板、部材およびそれらの製造方法

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010003997A1 (de) * 2010-01-04 2011-07-07 Benteler Automobiltechnik GmbH, 33102 Verwendung einer Stahllegierung
US20120328901A1 (en) * 2010-01-13 2012-12-27 Toshiki Nonaka High tensile steel sheet superior in formability and method of manufacturing the same
KR101420554B1 (ko) * 2010-03-10 2014-07-16 신닛테츠스미킨 카부시키카이샤 고강도 열연 강판 및 그 제조 방법
JP5516057B2 (ja) * 2010-05-17 2014-06-11 新日鐵住金株式会社 高強度溶融亜鉛めっき鋼板およびその製造方法
CN102337478B (zh) * 2010-07-15 2012-11-14 宝山钢铁股份有限公司 强韧性、强塑性优良的100公斤级调质钢板及其制造方法
JP5472531B2 (ja) * 2011-04-27 2014-04-16 新日鐵住金株式会社 ホットスタンプ部材用鋼板およびその製造方法
JP5862051B2 (ja) * 2011-05-12 2016-02-16 Jfeスチール株式会社 加工性に優れる高強度冷延鋼板ならびにその製造方法
EP2746417B1 (en) * 2011-08-17 2016-07-06 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High-strength hot-rolled steel plate
JP6047983B2 (ja) * 2011-08-19 2016-12-21 Jfeスチール株式会社 伸びおよび伸びフランジ性に優れる高強度冷延鋼板の製造方法
KR101344552B1 (ko) * 2011-09-28 2013-12-26 현대제철 주식회사 고강도 강판 및 그 제조 방법
CA2850045C (en) * 2011-09-30 2016-04-12 Nippon Steel & Sumitomo Metal Corporation Galvanized steel sheet and method of manufacturing the same
US20150027594A1 (en) * 2011-11-15 2015-01-29 Jfe Steel Corporation Thin steel sheet and process for producing the same
KR101359238B1 (ko) * 2011-12-20 2014-02-06 주식회사 포스코 도금성과 가공성이 우수한 초고강도 냉연강판 및 그 제조방법
CN102534368B (zh) * 2011-12-21 2014-03-12 舞阳钢铁有限责任公司 一种低合金高强度宽薄钢板
MX2014008428A (es) 2012-01-13 2014-10-06 Nippon Steel & Sumitomo Metal Corp Lamina de acero laminada en frio y metodo para producir lamina de acero laminada en frio.
MX2014008430A (es) * 2012-01-13 2014-10-06 Nippon Steel & Sumitomo Metal Corp Articulo moldeado estampado en caliente y metodo para la produccion de articulo moldeado estampado en caliente.
DE102012002079B4 (de) * 2012-01-30 2015-05-13 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines kalt- oder warmgewalzten Stahlbandes aus einem höchstfesten Mehrphasenstahl
JP5348268B2 (ja) * 2012-03-07 2013-11-20 Jfeスチール株式会社 成形性に優れる高強度冷延鋼板およびその製造方法
JP6001883B2 (ja) * 2012-03-09 2016-10-05 株式会社神戸製鋼所 プレス成形品の製造方法およびプレス成形品
JP5756773B2 (ja) * 2012-03-09 2015-07-29 株式会社神戸製鋼所 熱間プレス用鋼板およびプレス成形品、並びにプレス成形品の製造方法
KR101412365B1 (ko) * 2012-03-29 2014-06-27 현대제철 주식회사 고강도 강판 및 그 제조 방법
EP2690184B1 (de) * 2012-07-27 2020-09-02 ThyssenKrupp Steel Europe AG Kaltgewalztes Stahlflachprodukt und Verfahren zu seiner Herstellung
BR112015002312A2 (pt) * 2012-08-06 2017-07-04 Nippon Steel & Sumitomo Metal Corp chapa de aço laminada a frio e método para produção da mesma, e elememento conformado por estampagem a quente
JP5870874B2 (ja) * 2012-08-14 2016-03-01 Jfeスチール株式会社 引張強度が980MPa以上である合金化溶融亜鉛めっき鋼板の製造方法
JP5867436B2 (ja) * 2013-03-28 2016-02-24 Jfeスチール株式会社 高強度合金化溶融亜鉛めっき鋼板およびその製造方法
PL2982772T3 (pl) 2013-04-02 2019-03-29 Nippon Steel & Sumitomo Metal Corporation Wyrób formowany przez wytłaczanie na gorąco, blacha stalowa cienka walcowana na zimno i sposób wytwarzania wyrobu formowanego przez wytłaczanie na gorąco
ES2636780T3 (es) 2013-08-22 2017-10-09 Thyssenkrupp Steel Europe Ag Procedimiento para la fabricación de un componente de acero
CN103498115A (zh) * 2013-09-29 2014-01-08 苏州市凯业金属制品有限公司 一种高延展性u型金属管
WO2015088523A1 (en) * 2013-12-11 2015-06-18 ArcelorMittal Investigación y Desarrollo, S.L. Cold rolled and annealed steel sheet
JP2015200012A (ja) * 2014-03-31 2015-11-12 株式会社神戸製鋼所 延性、伸びフランジ性、および溶接性に優れた高強度冷延鋼板、高強度溶融亜鉛めっき鋼板、および高強度合金化溶融亜鉛めっき鋼板
US10329636B2 (en) 2014-03-31 2019-06-25 Jfe Steel Corporation High-strength cold-rolled steel sheet with excellent material homogeneity and production method therefor
EP3132063B1 (en) 2014-04-15 2021-01-13 ThyssenKrupp Steel Europe AG Method for producing a cold-rolled flat steel product with high yield strength and flat cold-rolled steel product
DE102015114757A1 (de) * 2014-09-04 2016-03-10 Seoul Viosys Co., Ltd Photokatalytischer filter, verfahren zu dessen herstellung und verfahren zu dessen reaktivierung
RU2727484C2 (ru) * 2014-12-16 2020-07-21 Грир Стил Компани Стальные композиции, способы их получения и их применение в производстве гильз патрона кольцевого воспламенения
JP5958666B1 (ja) * 2014-12-22 2016-08-02 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板およびその製造方法
KR101657842B1 (ko) * 2014-12-26 2016-09-20 주식회사 포스코 버링성이 우수한 고강도 냉연강판 및 그 제조방법
CA2969200C (en) * 2015-01-16 2020-06-02 Jfe Steel Corporation Thick-walled high-toughness high-strength steel plate and method for manufacturing the same
CN107532266B (zh) * 2015-04-22 2020-02-14 日本制铁株式会社 镀覆钢板
WO2017126678A1 (ja) 2016-01-22 2017-07-27 Jfeスチール株式会社 高強度鋼板及びその製造方法
CN105755353A (zh) * 2016-03-31 2016-07-13 苏州睿昕汽车配件有限公司 一种耐腐蚀汽车配件合金钢材料及其制备方法
CN105755382A (zh) * 2016-03-31 2016-07-13 苏州睿昕汽车配件有限公司 一种耐腐蚀汽车配件合金钢材料及其制备方法
CN106119703B (zh) * 2016-06-21 2018-01-30 宝山钢铁股份有限公司 一种980MPa级热轧双相钢及其制造方法
MX2019001600A (es) * 2016-08-10 2019-06-20 Jfe Steel Corp Lamina de acero, y metodo de produccion para la misma.
JP6354919B1 (ja) * 2016-08-30 2018-07-11 Jfeスチール株式会社 薄鋼板およびその製造方法
CN110100030B (zh) * 2016-12-23 2021-04-20 Posco公司 弯曲加工性优异的超高强度热轧钢板及其制造方法
US11186900B2 (en) 2017-03-13 2021-11-30 Jfe Steel Corporation High-strength cold rolled steel sheet and method for manufacturing the same
EP3572546B1 (en) * 2017-03-13 2022-02-09 JFE Steel Corporation High-strength cold-rolled steel sheet and method for manufacturing the same
CN110520550B (zh) * 2017-04-21 2021-08-17 日本制铁株式会社 高强度热浸镀锌钢板及其制造方法
KR101950580B1 (ko) * 2017-05-18 2019-02-20 현대제철 주식회사 굽힘 가공성이 우수한 초고장력 냉연강판 및 그 제조방법
KR101977487B1 (ko) * 2017-11-01 2019-05-10 주식회사 포스코 용접성이 우수한 열연강판 및 이의 제조방법
KR101977488B1 (ko) * 2017-11-01 2019-05-10 주식회사 포스코 확관성이 우수한 열연강판 및 그 제조방법
KR101988764B1 (ko) * 2017-12-21 2019-06-12 주식회사 포스코 확관성이 우수한 열연강판 및 그 제조방법
US10760150B2 (en) 2018-03-23 2020-09-01 General Electric Company Martensitic alloy component and process of forming a martensitic alloy component
CN111971410A (zh) * 2018-03-30 2020-11-20 Ak钢铁产权公司 低合金第三代先进高强度钢和制造方法
WO2020158066A1 (ja) * 2019-01-30 2020-08-06 Jfeスチール株式会社 高強度鋼板およびその製造方法
CN111748745B (zh) * 2019-03-29 2022-03-18 宝山钢铁股份有限公司 780MPa级具有较高成形性的冷轧热镀锌双相钢及其制造方法
CN111748746B (zh) * 2019-03-29 2022-06-28 宝山钢铁股份有限公司 一种780MPa级TRIP型冷轧热镀锌双相钢及其制造方法
JP7235102B2 (ja) * 2019-04-11 2023-03-08 日本製鉄株式会社 鋼板及びその製造方法
CN114207170B (zh) * 2019-08-06 2022-09-13 杰富意钢铁株式会社 高强度薄钢板及其制造方法
KR102457019B1 (ko) * 2020-06-17 2022-10-21 주식회사 포스코 성형성이 우수한 고강도 강판 및 이의 제조방법
KR20220169497A (ko) * 2021-06-18 2022-12-28 주식회사 포스코 굽힘 특성이 우수한 고항복비 초고강도 강판 및 그 제조방법

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693340A (ja) 1992-09-14 1994-04-05 Kobe Steel Ltd 伸びフランジ性の優れた高強度合金化溶融亜鉛めっき鋼板の製造方法及び製造設備
JPH06108152A (ja) 1992-09-30 1994-04-19 Kobe Steel Ltd 曲げ加工性に優れた高強度溶融亜鉛めっき鋼板の製造方法
JPH0711383A (ja) 1993-06-28 1995-01-13 Kobe Steel Ltd 疲労特性に優れた複合組織鋼板
JPH07207413A (ja) 1994-01-12 1995-08-08 Nippon Steel Corp 加工性に優れた引張強さ45〜65kgf/mm2 の高強度複合組織冷延鋼板とその製造方法
JP2616350B2 (ja) 1992-08-07 1997-06-04 住友金属工業株式会社 超高張力冷延鋼板およびその製造方法
JP2621744B2 (ja) 1992-08-24 1997-06-18 住友金属工業株式会社 超高張力冷延鋼板およびその製造方法
JPH1060593A (ja) 1996-06-10 1998-03-03 Kobe Steel Ltd 強度−伸びフランジ性バランスにすぐれる高強度冷延鋼板及びその製造方法
JP2826058B2 (ja) 1993-12-29 1998-11-18 株式会社神戸製鋼所 水素脆化の発生しない超高強度薄鋼板及び製造方法
JPH1161327A (ja) 1997-08-06 1999-03-05 Nippon Steel Corp 耐衝突安全性と成形性に優れた自動車用高強度鋼板とその製造方法
JP2001207234A (ja) 2000-01-25 2001-07-31 Sumitomo Metal Ind Ltd 高延性高穴拡げ性高張力鋼板およびその製造方法
JP3231204B2 (ja) 1995-01-04 2001-11-19 株式会社神戸製鋼所 疲労特性にすぐれる複合組織鋼板及びその製造方法
JP2003505604A (ja) 1999-07-31 2003-02-12 ティッセンクルップ シュタール アクチェンゲゼルシャフト 高強度鋼帯または鋼板およびその製造方法
JP2003213370A (ja) 2002-01-11 2003-07-30 Nippon Steel Corp 形状凍結性と耐衝突特性に優れた高強度鋼板、高強度溶融亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板とその製造方法
JP2003213369A (ja) 2002-01-11 2003-07-30 Nippon Steel Corp 伸びフランジ性と耐衝突特性に優れた高強度鋼板、高強度溶融亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板とその製造方法
JP2004256872A (ja) * 2003-02-26 2004-09-16 Jfe Steel Kk 伸びおよび伸びフランジ性に優れる高張力冷延鋼板およびその製造方法
JP3610883B2 (ja) 2000-05-30 2005-01-19 住友金属工業株式会社 曲げ性に優れる高張力鋼板の製造方法
JP2005171321A (ja) * 2003-12-11 2005-06-30 Jfe Steel Kk 成形性および曲げ加工性に優れる超高強度鋼板及びその製造方法
JP2005256089A (ja) * 2004-03-11 2005-09-22 Nippon Steel Corp 成形性および穴拡げ性に優れた溶融亜鉛めっき複合高強度鋼板およびその製造方法
JP2005264328A (ja) 2004-02-19 2005-09-29 Jfe Steel Kk 加工性に優れた高強度鋼板およびその製造方法
JP2005281854A (ja) 2004-03-01 2005-10-13 Nippon Steel Corp 穴拡げ性に優れた高強度高延性溶融亜鉛めっき鋼板およびその製造方法
JP2007138262A (ja) * 2005-11-21 2007-06-07 Jfe Steel Kk 機械特性ばらつきの小さい高強度冷延鋼板およびその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DZ2532A1 (fr) * 1997-06-20 2003-02-08 Exxon Production Research Co Procédé de soudage d'un métal de base pour produire un assemblage soudé et cet assemblage soudé.
US6159312A (en) * 1997-12-19 2000-12-12 Exxonmobil Upstream Research Company Ultra-high strength triple phase steels with excellent cryogenic temperature toughness
TNSN99233A1 (fr) * 1998-12-19 2001-12-31 Exxon Production Research Co Aciers de haute resistance avec excellente tenacite de temperature cryogenique
GC0000233A (en) * 2000-08-07 2006-03-29 Exxonmobil Upstream Res Co Weld metals with superior low temperature toughness for joining high strength, low alloy steels
KR20070026882A (ko) * 2001-06-06 2007-03-08 신닛뽄세이테쯔 카부시키카이샤 고가공(高加工)시의 내피로성, 내식성, 연성 및 도금부착성을 갖는 고강도 용융 아연 도금 강판 및 합금화 용융아연 도금 강판
US7597768B2 (en) * 2002-04-02 2009-10-06 Kabushiki Kaisha Kobe Seiko Sho Steel wire for hard drawn spring excellent in fatigue strength and resistance to settling, and hard drawn spring and method of making thereof
JP4470701B2 (ja) * 2004-01-29 2010-06-02 Jfeスチール株式会社 加工性および表面性状に優れた高強度薄鋼板およびその製造方法
US20050199322A1 (en) * 2004-03-10 2005-09-15 Jfe Steel Corporation High carbon hot-rolled steel sheet and method for manufacturing the same
WO2006004228A1 (ja) * 2004-07-07 2006-01-12 Jfe Steel Corporation 高張力鋼板の製造方法
CA2531615A1 (en) * 2004-12-28 2006-06-28 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High strength thin steel sheet having high hydrogen embrittlement resisting property
CN100554479C (zh) * 2006-02-23 2009-10-28 株式会社神户制钢所 加工性优异的高强度钢板
CA2701903C (en) * 2007-10-10 2017-02-28 Nucor Corporation Complex metallographic structured steel and method of manufacturing same

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2616350B2 (ja) 1992-08-07 1997-06-04 住友金属工業株式会社 超高張力冷延鋼板およびその製造方法
JP2621744B2 (ja) 1992-08-24 1997-06-18 住友金属工業株式会社 超高張力冷延鋼板およびその製造方法
JPH0693340A (ja) 1992-09-14 1994-04-05 Kobe Steel Ltd 伸びフランジ性の優れた高強度合金化溶融亜鉛めっき鋼板の製造方法及び製造設備
JPH06108152A (ja) 1992-09-30 1994-04-19 Kobe Steel Ltd 曲げ加工性に優れた高強度溶融亜鉛めっき鋼板の製造方法
JPH0711383A (ja) 1993-06-28 1995-01-13 Kobe Steel Ltd 疲労特性に優れた複合組織鋼板
JP2826058B2 (ja) 1993-12-29 1998-11-18 株式会社神戸製鋼所 水素脆化の発生しない超高強度薄鋼板及び製造方法
JPH07207413A (ja) 1994-01-12 1995-08-08 Nippon Steel Corp 加工性に優れた引張強さ45〜65kgf/mm2 の高強度複合組織冷延鋼板とその製造方法
JP3231204B2 (ja) 1995-01-04 2001-11-19 株式会社神戸製鋼所 疲労特性にすぐれる複合組織鋼板及びその製造方法
JPH1060593A (ja) 1996-06-10 1998-03-03 Kobe Steel Ltd 強度−伸びフランジ性バランスにすぐれる高強度冷延鋼板及びその製造方法
JPH1161327A (ja) 1997-08-06 1999-03-05 Nippon Steel Corp 耐衝突安全性と成形性に優れた自動車用高強度鋼板とその製造方法
JP2003505604A (ja) 1999-07-31 2003-02-12 ティッセンクルップ シュタール アクチェンゲゼルシャフト 高強度鋼帯または鋼板およびその製造方法
JP2001207234A (ja) 2000-01-25 2001-07-31 Sumitomo Metal Ind Ltd 高延性高穴拡げ性高張力鋼板およびその製造方法
JP3610883B2 (ja) 2000-05-30 2005-01-19 住友金属工業株式会社 曲げ性に優れる高張力鋼板の製造方法
JP2003213370A (ja) 2002-01-11 2003-07-30 Nippon Steel Corp 形状凍結性と耐衝突特性に優れた高強度鋼板、高強度溶融亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板とその製造方法
JP2003213369A (ja) 2002-01-11 2003-07-30 Nippon Steel Corp 伸びフランジ性と耐衝突特性に優れた高強度鋼板、高強度溶融亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板とその製造方法
JP2004256872A (ja) * 2003-02-26 2004-09-16 Jfe Steel Kk 伸びおよび伸びフランジ性に優れる高張力冷延鋼板およびその製造方法
JP2005171321A (ja) * 2003-12-11 2005-06-30 Jfe Steel Kk 成形性および曲げ加工性に優れる超高強度鋼板及びその製造方法
JP2005264328A (ja) 2004-02-19 2005-09-29 Jfe Steel Kk 加工性に優れた高強度鋼板およびその製造方法
JP2005281854A (ja) 2004-03-01 2005-10-13 Nippon Steel Corp 穴拡げ性に優れた高強度高延性溶融亜鉛めっき鋼板およびその製造方法
JP2005256089A (ja) * 2004-03-11 2005-09-22 Nippon Steel Corp 成形性および穴拡げ性に優れた溶融亜鉛めっき複合高強度鋼板およびその製造方法
JP2007138262A (ja) * 2005-11-21 2007-06-07 Jfe Steel Kk 機械特性ばらつきの小さい高強度冷延鋼板およびその製造方法

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102639739A (zh) * 2009-11-30 2012-08-15 新日本制铁株式会社 耐氢脆化特性优异的最大拉伸强度为900MPa以上的高强度钢板及其制造方法
KR101445813B1 (ko) 2009-11-30 2014-10-01 신닛테츠스미킨 카부시키카이샤 내수소취화 특성이 우수한 인장 최대 강도가 900 MPa 이상인 고강도 강판 및 그 제조 방법
EP2508640A4 (en) * 2009-11-30 2017-05-17 Nippon Steel & Sumitomo Metal Corporation HIGH-STRENGTH STEEL SHEET HAVING EXCELLENT HYDROGEN EMBRITTLEMENT RESISTANCE AND MAXIMUM TENSILE STRENGTH OF 900 MPa OR MORE, AND PROCESS FOR PRODUCTION THEREOF
US10023947B2 (en) 2009-11-30 2018-07-17 Nippon Steel & Sumitomo Metal Corporation High strength steel plate with ultimate tensile strength of 900 MPa or more excellent in hydrogen embrittlement resistance and method of production of same
WO2011065591A1 (ja) * 2009-11-30 2011-06-03 新日本製鐵株式会社 耐水素脆化特性に優れた引張最大強度900MPa以上の高強度鋼板及びその製造方法
US20130160889A1 (en) * 2010-03-24 2013-06-27 Jfe Steel Corporation High-strength electric resistance welded steel tube and production method therefor
EP2559782A4 (en) * 2010-04-16 2015-10-21 Jfe Steel Corp HIGHLY RESISTANT STEEL PLATE OF EXCELLENT FORMABILITY AND SHOCK STRENGTH, AND METHOD FOR THE PRODUCTION THEREOF
US9617630B2 (en) 2010-04-16 2017-04-11 Jfe Steel Corporation High-strength galvanized steel sheet having excellent formability and crashworthiness and method for manufacturing the same
US9982318B2 (en) 2010-04-16 2018-05-29 Jfe Steel Corporation High-strength galvanized steel sheet having excellent formability and crashworthiness and method of manufacturing the same
KR20210123371A (ko) 2019-04-11 2021-10-13 닛폰세이테츠 가부시키가이샤 강판 및 그 제조 방법
WO2020208979A1 (ja) 2019-04-11 2020-10-15 日本製鉄株式会社 鋼板およびその製造方法
WO2021140893A1 (ja) 2020-01-08 2021-07-15 日本製鉄株式会社 鋼板およびその製造方法
WO2021141006A1 (ja) 2020-01-08 2021-07-15 日本製鉄株式会社 鋼板およびその製造方法
WO2021140901A1 (ja) 2020-01-08 2021-07-15 日本製鉄株式会社 鋼板およびその製造方法
KR20220079609A (ko) 2020-01-08 2022-06-13 닛폰세이테츠 가부시키가이샤 강판 및 그의 제조 방법
KR20220102647A (ko) 2020-01-08 2022-07-20 닛폰세이테츠 가부시키가이샤 강판 및 그 제조 방법
KR20220105670A (ko) 2020-01-08 2022-07-27 닛폰세이테츠 가부시키가이샤 강판 및 그 제조 방법
US11866800B2 (en) 2020-01-08 2024-01-09 Nippon Steel Corporation Steel sheet and method of manufacturing the same
WO2024057669A1 (ja) * 2022-09-15 2024-03-21 Jfeスチール株式会社 鋼板、部材およびそれらの製造方法
WO2024057670A1 (ja) * 2022-09-15 2024-03-21 Jfeスチール株式会社 鋼板、部材およびそれらの製造方法
JP7485240B1 (ja) 2022-09-15 2024-05-16 Jfeスチール株式会社 鋼板、部材およびそれらの製造方法

Also Published As

Publication number Publication date
KR101225321B1 (ko) 2013-01-22
JP5365217B2 (ja) 2013-12-11
EP2246456A4 (en) 2014-04-23
JP2009203550A (ja) 2009-09-10
EP2246456B9 (en) 2016-12-21
MX2010008227A (es) 2010-08-30
CA2713181A1 (en) 2009-08-06
US20110030854A1 (en) 2011-02-10
CN101932746A (zh) 2010-12-29
EP2246456B1 (en) 2015-08-12
CA2713181C (en) 2013-12-10
CN101932746B (zh) 2012-05-09
KR20100101697A (ko) 2010-09-17
EP2246456A1 (en) 2010-11-03

Similar Documents

Publication Publication Date Title
JP5365217B2 (ja) 高強度鋼板およびその製造方法
JP5703608B2 (ja) 高強度鋼板およびその製造方法
JP5365216B2 (ja) 高強度鋼板とその製造方法
JP5418047B2 (ja) 高強度鋼板およびその製造方法
JP5454745B2 (ja) 高強度鋼板およびその製造方法
TWI399442B (zh) 加工性優異之高強度熔融鍍鋅鋼板及其製造方法
JP5251208B2 (ja) 高強度鋼板とその製造方法
WO2009054539A1 (ja) 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
CN107923013B (zh) 高强度钢板及其制造方法
JP6315160B1 (ja) 高強度鋼板およびその製造方法
JP4501699B2 (ja) 深絞り性と伸びフランジ性に優れた高強度鋼板およびその製造方法
JP5326362B2 (ja) 高強度鋼板およびその製造方法
KR102649517B1 (ko) 강판 및 그 제조 방법
WO2017009936A1 (ja) 鋼板、溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
JP6947334B1 (ja) 高強度鋼板およびその製造方法
CN115003833A (zh) 钢板及其制造方法
CN114945690B (zh) 钢板及其制造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980103828.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09706046

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2713181

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2010/008227

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107017843

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 3000/KOLNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009706046

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12865527

Country of ref document: US