WO2009096193A1 - エコノマイザ - Google Patents

エコノマイザ Download PDF

Info

Publication number
WO2009096193A1
WO2009096193A1 PCT/JP2009/000365 JP2009000365W WO2009096193A1 WO 2009096193 A1 WO2009096193 A1 WO 2009096193A1 JP 2009000365 W JP2009000365 W JP 2009000365W WO 2009096193 A1 WO2009096193 A1 WO 2009096193A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
liquid
expansion valve
tank
gas
Prior art date
Application number
PCT/JP2009/000365
Other languages
English (en)
French (fr)
Inventor
Yasutaka Takada
Nobuhiro Umeda
Kenji Kinokami
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to US12/865,580 priority Critical patent/US9027363B2/en
Priority to CN2009801034360A priority patent/CN101932890B/zh
Publication of WO2009096193A1 publication Critical patent/WO2009096193A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/315Expansion valves actuated by floats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/053Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator

Definitions

  • the present invention relates to an economizer used in a multistage compression refrigeration apparatus.
  • this two-stage compression refrigeration apparatus has been used.
  • this two-stage compression refrigeration apparatus separates the gas refrigerant from the gas-liquid two-phase refrigerant and guides the gas refrigerant to the intermediate pressure portion of the two-stage compressor.
  • An economizer is used (see, for example, Patent Document 1).
  • the economizer described in FIG. 2 of Patent Document 1 includes an introduction part for introducing a refrigerant, a gas outlet part for introducing the separated gas refrigerant to the two-stage compressor, and a liquid outlet for introducing the separated liquid refrigerant to the evaporator. And a tank formed with a portion. The tank is provided with a float expansion valve that is attached to the liquid outlet and adjusts the amount of throttling in accordance with the liquid level of the liquid refrigerant.
  • Japanese Patent Laid-Open No. 11-344265 Japanese Patent Laid-Open No. 11-344265
  • the conventional economizer has only one liquid outlet, and a large amount of liquid refrigerant flows out from one liquid outlet. For this reason, the conventional economizer has to use a large float expansion valve, which increases the cost.
  • a large float expansion valve which increases the cost.
  • a larger float expansion valve is required, and thus the problem is serious.
  • the present invention has been made in view of such a point, and an object thereof is to provide an economizer used in a multistage compression refrigeration apparatus at a low cost.
  • the first invention includes a refrigerant circuit (20) in which a multistage compressor (21), a condenser (22), a multistage expansion mechanism (23, 25), and an evaporator (26) are sequentially connected.
  • gas-liquid two-phase refrigerant is separated into gas and liquid, the gas refrigerant is guided to the intermediate pressure part of the multistage compressor (21), and the liquid refrigerant is fed to the evaporator (26
  • the economizer includes an introduction part (24d) for introducing the refrigerant of the refrigerant circuit (20), a liquid outlet part (24b) for leading the liquid refrigerant to the evaporator (26), and the multistage compressor (21
  • the liquid refrigerant flows out from the tank (24a) through the plurality of liquid outlet portions (24b), and the amount of the liquid refrigerant flowing out is the plurality of float expansion valves (25). Controlled by. Therefore, the control amount required for each float expansion valve (25) is smaller than when the outflow amount is controlled by one float expansion valve (25). Therefore, a small float expansion valve (25) can be used.
  • the second invention is the first invention, wherein the liquid outlet part (24b) and the float expansion valve (25) are provided two by two.
  • the outflow amount of the liquid refrigerant flowing out from the tank (24a) is controlled by the two float expansion valves (25).
  • required by one float expansion valve (25) becomes a half of the past, a float expansion valve (25) smaller than before can be used.
  • the tank (24a) is a horizontally long tank
  • the introduction portion (24d) is formed at a central portion in the longitudinal direction of the tank (24a)
  • the liquid outlet portion (24b) and the float expansion valve (25) are arranged one by one on both sides of the introduction part (24d) in the longitudinal direction of the tank (24a).
  • the float expansion valve (25) is arranged on both sides of the introduction part (24d) in the longitudinal direction of the tank (24a). Thereby, each float expansion valve (25) is arrange
  • the tank (24a) is crossed between the introduction part (24d), the two liquid outlet parts (24b) and the float expansion valve (25). Baffles (24e, 24f) extending in the surface direction are provided.
  • the baffle plates (24e, 24f) are provided between the introduction part (24d) and the float expansion valve (25), the refrigerant introduced from the introduction part (24d) is used as the float expansion valve (25). Direct spraying is avoided.
  • the liquid outlet portion is longer than the baffle plates (24e, 24f) in the longitudinal direction of the tank (24a). It is arranged on the (24b) side.
  • the gas refrigerant is not concentrated to the gas refrigerant from one gas outlet (24c) but is sucked by being distributed to the two gas outlets (24c). Therefore, compared with the case where only one gas outlet part (24c) is provided, the force at which each gas outlet part (24c) sucks the gas refrigerant is halved. Thereby, the rise in the liquid refrigerant level caused by the suction of the gas refrigerant near the gas outlet (24c) is suppressed. As a result, a so-called liquid return in which a part of the liquid refrigerant is sucked from the gas outlet (24c) to the multistage compressor (21) side is avoided.
  • a small float expansion valve (25) can be used.
  • the unit price of the float expansion valve (25) can be significantly reduced, and the cost can be reduced.
  • the present invention since a plurality of float expansion valves (25) are provided, even if one float expansion valve (25) does not operate due to a malfunction, the other float expansion valve (25) causes liquid refrigerant to flow. Pressure reduction and liquid level control in the tank (24a) can be performed. Therefore, even when a malfunction occurs in the float expansion valve (25), the operation can be continued by partial load operation or the like without immediately stopping the operation of the multistage compression refrigeration apparatus (1).
  • the unit price of the float expansion valve (25) can be significantly reduced, and the number of float expansion valves (25) can be reduced to two. The cost for the entire economizer can be reduced.
  • each float expansion valve (25) is disposed at a distance from the introduction portion (24d)
  • the refrigerant introduced from the introduction portion (24d) is used as the float expansion valve (25).
  • the baffle plates (24e, 24f) are provided, so that the gas-liquid separation is reliably performed when the gas-liquid two-phase refrigerant collides with the baffle plates (24e, 24f). be able to. Furthermore, it is possible to prevent the refrigerant introduced from the introduction part (24d) from directly blowing on the float expansion valve (25) and affecting the operation of the float expansion valve (25).
  • the fifth aspect of the invention it is possible to suppress an increase in the liquid refrigerant level caused by the suction of the gas refrigerant near the gas outlet (24c). Therefore, it is possible to prevent so-called liquid return that a part of the liquid refrigerant is sucked from the gas outlet (24c) to the multistage compressor (21) side.
  • FIG. 1 is a piping system diagram illustrating a schematic configuration of a multistage turbo chiller according to an embodiment.
  • FIG. 2 is a longitudinal sectional view of the economizer.
  • 3A is a cross-sectional view taken along line IIIA-IIIA in FIG. 2
  • FIG. 3B is a cross-sectional view taken along line IIIB-IIIB in FIG.
  • Two-stage turbo refrigerator (multistage compression refrigeration system) 20 Refrigerant circuit 21 Two-stage turbo compressor (multistage compressor) 22 Condenser 23 High-stage expansion valve (multi-stage expansion mechanism) 24 economizer 24a tank 24b liquid outlet 24c gas outlet 24d introduction part 24e first partition (baffle plate) 24f 2nd partition wall (binder plate) 25 Float expansion valve (multistage expansion mechanism) 25a Valve body 25b Float 26 Evaporator 28 Gas piping
  • a two-stage turbo chiller including a two-stage turbo compressor will be described as a multistage compression refrigeration apparatus using the economizer according to the present invention.
  • FIG. 1 is a piping system diagram schematically showing the configuration of a two-stage turbo chiller (1) according to an embodiment of the present invention.
  • the two-stage turbo refrigerator (1) includes a two-stage turbo compressor (21), a condenser (22), a high stage side expansion valve (23), and a float stage expansion valve (25) that is a low stage side expansion valve.
  • an evaporator (26) are sequentially connected by a refrigerant pipe to provide a refrigerant circuit (20) for performing a vapor compression refrigeration cycle.
  • an economizer (24) including the float expansion valve (25) is provided between the high-stage expansion valve (23) and the evaporator (26) of the refrigerant circuit (20).
  • the high-stage expansion valve (23) and the float expansion valve (25) constitute a multistage expansion mechanism.
  • the two-stage turbo compressor (21) includes a low stage impeller (21a) and a high stage impeller (21b).
  • the low stage impeller (21a) and the high stage impeller (21b) are connected in series.
  • the two-stage turbo compressor (21) is provided with a suction capacity control mechanism (21c) for controlling the suction capacity and a discharge capacity control mechanism (21d) for controlling the discharge capacity.
  • the low-stage impeller (21a) sucks low-pressure (PL) refrigerant, compresses it to an intermediate pressure (PM), and supplies it to the high-stage impeller (21b).
  • the high stage impeller (21b) sucks an intermediate pressure (PM) refrigerant, compresses it to a high pressure (PH), and discharges a high pressure (PH) gas refrigerant.
  • the condenser (22) is a so-called shell-and-tube condenser including a shell (cylindrical copper) and a plurality of cooling pipes arranged in the shell.
  • a high-pressure (PH) gas refrigerant compressed in the two-stage turbo compressor (21) is introduced into the shell, and the gas refrigerant is cooled by cooling water flowing in the cooling pipe.
  • PH high-pressure
  • the high-stage expansion valve (23) is formed by a temperature-sensitive automatic expansion valve that controls the suction refrigerant superheat degree to a constant level by adjusting the amount of decompression according to the suction refrigerant superheat degree.
  • the liquid refrigerant condensed in the condenser (22) is decompressed to the intermediate pressure (PL) by the high stage side expansion valve (23) and introduced into the economizer (24).
  • the economizer (24) is connected to a gas pipe (28) connected to the intermediate pressure part of the two-stage turbo compressor (21).
  • the intermediate pressure (PL) gas refrigerant is led to the intermediate pressure portion of the two-stage turbo compressor (21) via the gas pipe (28), while the liquid refrigerant is led to the evaporator (26). It is burned.
  • the float expansion valve (25) is configured to adjust the throttle amount in accordance with the liquid level of the liquid refrigerant in the economizer (24), and is built in the economizer (24). That is, the economizer (24) reduces the pressure by the float expansion valve (25) when the gas-liquid separated liquid refrigerant flows out toward the evaporator (26).
  • the evaporator (26) is constituted by a full liquid evaporator, and in this embodiment, is constituted by a so-called shell and tube type evaporator.
  • the liquid refrigerant that has been gas-liquid separated in the economizer (24) is supplied by being decompressed by the float expansion valve (25).
  • a heat transfer tube is provided in the shell, and water as an object to be cooled flows in the heat transfer tube.
  • the liquid refrigerant supplied into the shell absorbs heat from the water in the heat transfer tube, evaporates, and is converted into a gas that is led to the suction side of the two-stage turbo compressor (21).
  • the economizer (24) is a horizontally long tank composed of a cylindrical body portion and closed portions that close both ends of the body portion ( 24a).
  • the tank (24a) has an introduction part (24d) for introducing the refrigerant of the refrigerant circuit (20), a liquid outlet part (24b) for guiding the internal liquid refrigerant to the evaporator (26), and an internal gas refrigerant And a gas outlet part (24c) for guiding the gas to the intermediate pressure part of the two-stage turbo compressor (21).
  • the introduction part (24d) is formed in the central part in the longitudinal direction of the tank (24a). As shown in FIG. 3A, the introduction portion (24d) is configured by a cylindrical body that penetrates the inside and outside of the tank (24a), curves in the tank (24a), and opens upward.
  • liquid outlet portions (24b) are provided as shown in FIG.
  • the two liquid outlet portions (24b) are formed at both ends in the longitudinal direction of the tank (24a).
  • the liquid outlet part (24b) is formed by a cylindrical body that penetrates the inside and outside of the tank (24a), curves in the tank (24a), and opens downward.
  • the two gas outlet portions (24c) are arranged one on each side of the introduction portion (24d) in the longitudinal direction of the tank (24a).
  • the gas outlet (24c) is formed of a cylindrical body, extends downward from the upper side of the tank (24a), and has a tip that penetrates the upper surface of the tank (24a) and opens at the upper part of the tank (24a). Yes.
  • the float expansion valve (25) described above is attached to the inflow side end of the liquid outlet (24b).
  • the float expansion valve (25) includes a valve body (25a) formed at an inflow side end of a liquid outlet portion (24b) made of a cylindrical body, and a valve body ( And a float (25b) connected to 25a).
  • the valve body (25a) moves in the direction of expanding the flow path in the liquid outlet (24b), and when the float (25b) descends, the flow in the liquid outlet (24b) It is configured to move in the direction of narrowing the road.
  • the float expansion valve (25) has its throttle amount reduced when the liquid level in the tank (24a) rises, and increases when the liquid level falls, The outflow amount of the liquid is controlled in accordance with the circulation amount of the refrigerant.
  • the introduction part (24d), the two liquid outlet parts (24b) and the float expansion valve (25) two kinds of partition walls (24e, 24e, extending in the cross-sectional direction of the tank (24a)) are provided.
  • 24f) is provided.
  • the first partition wall (24e) provided on the introduction part (24d) side is formed of a substantially circular plate-like body, and is formed with a substantially T-shaped notch.
  • the 2nd partition (24f) provided in the liquid outlet part (24b) side is formed with the plate-shaped body formed in reverse T shape.
  • the said 1st partition (24e) and the 2nd partition (24f) are provided in parallel at predetermined intervals, and comprise the baffle plate.
  • the inside of the tank (24a) is divided into three spaces by the first partition wall (24e) and the second partition wall (24f). Specifically, the inside of the tank (24a) is formed in a central space where the introduction part (24d) is located and on both sides of the central space, and the liquid outlet part (24b) and the float expansion valve (25) It is partitioned into a side space. As shown in FIG. 3B, when the side space on the introduction portion (24d) side is viewed from the central space of the liquid outlet portion (24b), most of the cross section of the tank (24a) is the first. It is covered with a partition wall (24e) and a second partition wall (24f). With such a configuration, it is possible to prevent the refrigerant introduced from the introduction part (24d) from directly spraying on the float (25b) of the float expansion valve (25).
  • the two gas outlets (24c) described above are disposed closer to the liquid outlet (24b) than the first partition (24e) and the second partition (24f). That is, the gas outlet portion (24c) is a central space in which the introduction portion (24d) is provided among the three spaces defined in the tank (24a) by the first partition wall (24e) and the second partition wall (24f). Instead, it is provided in each side space provided with the liquid outlet part (24b). By arranging the gas outlet part (24c) in the side space in this way, the gas-liquid two-phase refrigerant introduced from the introduction part (24d) is directly sucked into the gas outlet part (24c). Can be prevented.
  • the low-stage and high-stage impellers (21a, 21b) of the two-stage turbo compressor (21) rotate, and the low-pressure (in the refrigerant circuit (20) ( PL) refrigerant is inhaled.
  • the refrigerant capacity to be sucked is adjusted by the suction capacity control mechanism (21c).
  • the low-pressure (PL) refrigerant sucked into the low-stage impeller (21a) is compressed to the intermediate pressure (PM) and supplied to the high-stage impeller (21b).
  • the high-stage impeller (21b) compresses intermediate pressure (PM) refrigerant into high pressure (PH) gas refrigerant and discharges it to the refrigerant circuit (20).
  • the refrigerant capacity discharged by the discharge capacity control mechanism (21d) is adjusted.
  • the high-pressure (PH) refrigerant discharged from the two-stage turbo compressor (21) to the refrigerant circuit (20) is cooled and condensed in the condenser (22).
  • the condensed liquid refrigerant is decompressed to the intermediate pressure (PL) by the high stage side expansion valve (23) and introduced into the economizer (24).
  • the decompression amount of the high stage side expansion valve (23) is adjusted according to the degree of superheat of the suction refrigerant.
  • the refrigerant circulation amount is controlled so that the suction refrigerant superheat degree becomes a predetermined value.
  • the introduced gas-liquid two-phase refrigerant is gas-liquid separated.
  • the gas refrigerant after the gas-liquid separation is led to the intermediate pressure part of the two-stage turbo compressor (21) via the gas pipe (28), while the liquid refrigerant is led to the evaporator (26) side.
  • the intermediate pressure (PM) gas refrigerant introduced to the intermediate pressure section of the two-stage turbo compressor (21) is compressed by the low pressure impeller (21a) of the two-stage turbo compressor (21) ( PM) and mixed into the higher stage impeller (21b) for compression.
  • the low-pressure (PL) refrigerant thus depressurized by the float expansion valve (25) and supplied to the evaporator (26) absorbs heat from the water in the heat transfer pipe and evaporates to become a gas, which is a two-stage turbocharger. Guided to the suction side of the compressor (21). The gas refrigerant is compressed by the two-stage turbo compressor (21).
  • the refrigerant introduced from the introduction part (24d) into the central space in the tank (24a) flows from the central space to the side spaces on both sides in the tank (24a).
  • the refrigerant collides with both the partition walls (24e, 24f) and the inner wall surface of the tank (24a), whereby the gas and liquid are separated.
  • the separated liquid refrigerant flows down along both the partition walls (24e, 24f) and the inner wall surface of the tank (24a), and accumulates at the bottom of the tank (24a).
  • the gas refrigerant passes through both partition walls (24e, 24f) and flows into the side space on the liquid outlet (24b) side.
  • the liquid refrigerant flows from the liquid outlet (24b) to the evaporator (26).
  • the flow path formed in the liquid outlet part (24b) is throttled by the valve body (25a) of the float expansion valve (25). Therefore, the liquid refrigerant is decompressed by the float expansion valve (25).
  • the throttle amount of the float expansion valve (25) is adjusted according to the liquid level of the liquid refrigerant in the tank (24a). That is, when the liquid level rises, the float (25b) rises and the valve body (25a) moves in a direction in which the flow path in the liquid outlet part (24b) further expands. As a result, the throttle amount decreases and the outflow amount of the liquid refrigerant increases, and the rising speed of the liquid level is slowed or the liquid level is lowered. On the other hand, when the liquid level is lowered, the float (25b) is lowered, and the valve body (25a) moves in a direction to further restrict the flow path of the liquid outlet part (24b).
  • the throttle amount increases and the outflow amount of the liquid refrigerant decreases, and the descending speed of the liquid level is slowed or the liquid level rises.
  • the float expansion valve (25) controls the throttling amount of the liquid refrigerant in the tank (24a) according to the refrigerant circulation amount.
  • the gas refrigerant is sucked from the gas outlet part (24c) into the intermediate pressure part of the two-stage turbo compressor (21).
  • the gas refrigerant is not intensively sucked from one gas outlet portion (24c), but is drawn into the two gas outlet portions (24c). Dispersed and sucked. Therefore, when the gas refrigerant is sucked, the vicinity of the gas outlet (24c) is lower in pressure than the other parts in the tank (24a), but compared with the case where there is only one gas outlet (24c), The degree of low pressure can be reduced.
  • the economizer (24) is provided with two liquid outlet portions (24b) and two float expansion valves (25), which are conventionally provided only one. Therefore, liquid refrigerant flows out from the tank (24a) through the two liquid outlet portions (24b), and the outflow amount of the liquid refrigerant is controlled by the two float expansion valves (25). Become. Thereby, compared with the case where the outflow amount is controlled by one float expansion valve (25), the control amount required for each float expansion valve (25) is reduced. Therefore, the economizer (24) can use a small float expansion valve (25), and can greatly reduce the unit price of the float expansion valve (25). Therefore, the cost of the economizer (24) can be reduced.
  • the economizer (24) is provided with two float expansion valves (25). Therefore, even if one float expansion valve (25) does not operate due to a malfunction, the pressure reduction of the liquid refrigerant and the liquid level control in the tank (24a) can be performed by the other float expansion valve (25). Therefore, even when a malfunction occurs in one float expansion valve (25), the operation of the two-stage turbo chiller (1) can be continued by partial load operation or the like without immediately stopping the operation. .
  • the number of the liquid outlet part (24b) and the float expansion valve (25) is two, but three or more liquid outlet parts (24b) and the float expansion valve (25) may be provided. Good. Even in this case, the float expansion valve (25) can be downsized, and the economizer (24) can be manufactured at low cost. On the other hand, in this embodiment, the number of float expansion valves (25) is set to two, so that the size of the float expansion valve (25) is reduced and the unit price is greatly reduced, and the cost of the economizer (24) is further reduced. Can be reduced.
  • each float expansion valve (25) is arranged on both sides of the introduction part (24d) in the longitudinal direction of the tank (24a). Therefore, each float expansion valve (25) is arranged with a space from the introduction part (24d). Thereby, it can be avoided that the refrigerant introduced from the introduction part (24d) is sprayed on the float (25b) of the float expansion valve (25). Therefore, it is possible to prevent the introduced refrigerant from affecting the operation of the float expansion valve (25).
  • the economizer (24) has a plate-like shape extending in the cross-sectional direction of the tank (24a) between the introduction part (24d), the two liquid outlet parts (24b), and the float expansion valve (25). Body partition walls (24e, 24f) are provided. Thereby, the gas-liquid two-phase gas-liquid is separated, and the refrigerant introduced from the introduction part (24d) directly blows on the float (25b) of the float expansion valve (25) to float the float expansion valve (25). It is possible to prevent the operation from being affected.
  • the economizer (24) is provided with two gas outlets (24c), and is arranged one on each side of the introduction part (24d) in the longitudinal direction of the tank (24a).
  • the gas refrigerant is not intensively sucked from one gas outlet part (24c) but is sucked by being distributed to two gas outlet parts (24c). Therefore, compared with the case where only one gas outlet part (24c) is provided, the force at which each gas outlet part (24c) sucks the gas refrigerant is halved. Thereby, the rise of the liquid refrigerant surface caused by the suction of the gas refrigerant in the vicinity of the gas outlet (24c) can be suppressed. As a result, a so-called liquid return in which part of the liquid refrigerant is sucked from the gas outlet (24c) to the two-stage turbo compressor (21) side can be avoided.
  • the number of the liquid outlet part (24b) and the float expansion valve (25) is two, but three or more liquid outlet parts (24b) and the float expansion valve (25) may be provided. Even in this case, the float expansion valve (25) can be downsized, and the economizer (24) can be manufactured at low cost.
  • the introduction part (24d), the liquid outlet part (24b), and the gas outlet part (24c) are formed by the cylindrical body, but these may be formed by simple openings.
  • the two-stage compression / two-expansion refrigeration apparatus has been described as the multistage compression refrigeration apparatus including the economizer (24) according to the present invention. You may apply to a multistage compression refrigerating apparatus. At that time, a plurality of the economizers are arranged in series.
  • the present invention is useful for a turbo refrigerator.

Abstract

  エコノマイザ(24)は、多段圧縮機と、凝縮器と、多段膨張機構と、蒸発器とが順次接続された冷媒回路を備えた多段圧縮式冷凍装置に設けられている。エコノマイザ(24)は、冷媒回路の冷媒を導入する導入部(24d)と、蒸発器に液冷媒を導出するための液出口部(24b)と、多段圧縮機の中間圧力部にガス冷媒を導入するためのガス出口部(24c)とが形成されたタンク(24a)と、多段膨張機構の一部を構成する膨張弁であって、液出口部(24b)に取り付けられ、タンク(24a)内の液冷媒の液面高さに応じて絞り量が調整されるフロート膨張弁(25)とを備えている。液出口部(24b)及びフロート膨張弁(25)は複数設けられている。

Description

エコノマイザ
  本発明は、多段圧縮式冷凍装置に用いられるエコノマイザに関する。
  従来より、二段圧縮機と、凝縮器と、二段膨張手段と、蒸発器とが順次接続された冷媒回路を備えた二段圧縮式冷凍装置が用いられている。この二段圧縮式冷凍装置は、成績係数(COP)の高い運転を行うために、気液二相状態の冷媒からガス冷媒を分離し、該ガス冷媒を二段圧縮機の中間圧力部に導くエコノマイザが用いられている(例えば、特許文献1参照)。
  特許文献1の図2に記載されたエコノマイザは、冷媒を導入する導入部と、分離後のガス冷媒を二段圧縮機に導くガス出口部と、分離後の液冷媒を蒸発器に導く液出口部とが形成されたタンクを備えている。また、タンク内には、液出口部に取り付けられた膨張弁であって、液冷媒の液面の高さに応じて絞り量を調整するフロート膨張弁が設けられている。
特開平11-344265号公報
  しかしながら、従来のエコノマイザは、液出口部が1つしか設けられておらず、1つの液出口部から多量の液冷媒が流出する。そのため、従来のエコノマイザは、大型のフロート膨張弁を用いなければならず、コストが増大するという問題があった。特に、大容量の多段ターボ冷凍機に用いられるエコノマイザにおいては、フロート膨張弁前後の差圧が小さい為にさらに大型のフロート膨張弁が必要とされるため、問題は深刻であった。
  本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、多段圧縮式冷凍装置に用いられるエコノマイザを安価に提供することにある。
  第1の発明は、多段圧縮機(21)と、凝縮器(22)と、多段膨張機構(23,25)と、蒸発器(26)とが順次接続された冷媒回路(20)を備えた多段圧縮式冷凍装置(1)に設けられ、気液二相状態の冷媒を気液分離し、ガス冷媒を上記多段圧縮機(21)の中間圧力部に導くと共に液冷媒を上記蒸発器(26)に導くエコノマイザである。該エコノマイザは、上記冷媒回路(20)の冷媒を導入する導入部(24d)と、上記蒸発器(26)に液冷媒を導出するための液出口部(24b)と、上記多段圧縮機(21)の中間圧力部にガス冷媒を導入するためのガス出口部(24c)とが形成されたタンク(24a)と、上記多段膨張機構(23,25)の一部を構成する膨張弁であって、上記液出口部(24b)に取り付けられ、上記タンク(24a)内の液冷媒の液面高さに応じて絞り量が調整されるフロート膨張弁(25)とを備えている。そして、上記液出口部(24b)及び上記フロート膨張弁(25)は複数設けられている。
  上記第1の発明では、タンク(24a)内からは、複数の液出口部(24b)を介して液冷媒が流出することとなり、その液冷媒の流出量は、複数のフロート膨張弁(25)によって制御される。そのため、1つのフロート膨張弁(25)によって流出量を制御する場合に比べ、各フロート膨張弁(25)に求められる制御量が小さくなる。そのため、小型のフロート膨張弁(25)を用いることができる。
  第2の発明は、第1の発明において、上記液出口部(24b)及び上記フロート膨張弁(25)は2つずつ設けられている。
  上記第2の発明では、液出口部(24b)が2つ設けられているため、2つのフロート膨張弁(25)によってタンク(24a)内から流出する液冷媒の流出量が制御される。これにより、1つフロート膨張弁(25)に求められる制御量は従来の半分となるため、従来よりも小型のフロート膨張弁(25)を用いることができる。
  ところで、導入部(24d)から導入される冷媒がフロート膨張弁(25)に直接吹きかかると、フロート膨張弁(25)の動作に影響を及ぼしてしまうことがある。
  第3の発明は、第2の発明において、上記タンク(24a)は横長のタンクであり、上記導入部(24d)は上記タンク(24a)の長手方向の中央部に形成され、上記液出口部(24b)及び上記フロート膨張弁(25)は、上記タンク(24a)の長手方向において、上記導入部(24d)の両側方に1つずつ配置されている。
  上記第3の発明では、フロート膨張弁(25)は、タンク(24a)の長手方向において導入部(24d)の両側に配置されている。これにより、各フロート膨張弁(25)が導入部(24d)と間隔をなして配置される。
  第4の発明は、第3の発明において、上記導入部(24d)と2つの上記液出口部(24b)及びフロート膨張弁(25)とのそれぞれの間には、上記タンク(24a)の横断面方向に延びるじゃま板(24e,24f)が設けられている。
  上記第4の発明では、導入部(24d)から導入された気液二相状態の冷媒は、液出口部(24b)及びフロート膨張弁(25)側に流動する際にじゃま板(24e,24f)に衝突し、気液が分離される。また、該じゃま板(24e,24f)は導入部(24d)とフロート膨張弁(25)との間に設けられているため、導入部(24d)から導入された冷媒がフロート膨張弁(25)に直接吹きかかることが回避される。
  ところで、ガス出口部(24c)からガス冷媒が吸引される際、ガス出口部(24c)付近はタンク(24a)内の他の部分より低圧となる。そのため、ガス出口部(24c)が1つしか設けられていない場合、低圧の度合いが大きくなり、タンク(24a)内の液冷媒の液面がガス出口部(24c)付近で大きく上昇してしまう。そのため、ガス出口部(24c)から液冷媒の一部が多段圧縮機(21)側へ吸引される所謂液戻りが生じる虞があった。
  第5の発明は、第4の発明において、上記ガス出口部(24c)は2つ設けられ、上記タンク(24a)の長手方向において、それぞれ上記じゃま板(24e,24f)よりも上記液出口部(24b)側に配置されている。
  上記第5の発明では、ガス冷媒は、1つのガス出口部(24c)から集中的にガス冷媒が吸引されるのではなく、2つのガス出口部(24c)に分散されて吸引される。そのため、ガス出口部(24c)が1つしか設けられていない場合に比べ、各ガス出口部(24c)がガス冷媒を吸引する力は半減する。これにより、ガス出口部(24c)付近でガス冷媒の吸引によって生じる液冷媒の液面の上昇は抑制される。その結果、ガス出口部(24c)から液冷媒の一部が多段圧縮機(21)側へ吸引される所謂液戻りが回避される。
  本発明によれば、複数のフロート膨張弁(25)を設けるようにしているので、小型のフロート膨張弁(25)を用いることができる。この結果、フロート膨張弁(25)の単価を大幅に抑えることができ、コストを削減することができる。
  また、本発明によれば、フロート膨張弁(25)を複数備えているので、1つのフロート膨張弁(25)が不具合により作動しなくなっても、他のフロート膨張弁(25)によって液冷媒の減圧及びタンク(24a)内の液面制御を行うことができる。従って、フロート膨張弁(25)に不具合が生じた場合であっても、多段圧縮式冷凍装置(1)の運転を直ちに停止させることなく部分負荷運転等により運転を継続させることができる。
  また、第2の発明によれば、小型のフロート膨張弁(25)を用いることでフロート膨張弁(25)の単価を大幅に抑えると共に、フロート膨張弁(25)の個数を2つとすることでエコノマイザ全体にかかるコストを削減することができる。
  また、第3の発明によれば、各フロート膨張弁(25)は導入部(24d)と間隔をなして配置されるため、導入部(24d)から導入された冷媒がフロート膨張弁(25)に吹きかかることを回避することができる。その結果、導入された冷媒がフロート膨張弁(25)の動作に影響を及ぼしてしまうことを防止することができる。
  また、第4の発明によれば、じゃま板(24e,24f)を設けているので、気液二相状態の冷媒がじゃま板(24e,24f)に衝突することにより気液分離を確実に行うことができる。更に、上記導入部(24d)から導入された冷媒がフロート膨張弁(25)に直接吹きかかってフロート膨張弁(25)の動作に影響を及ぼしてしまうことを防止することができる。
  また、第5の発明によれば、ガス出口部(24c)付近でのガス冷媒の吸引によって生じる液冷媒の液面の上昇を抑制することができる。そのため、ガス出口部(24c)から液冷媒の一部が多段圧縮機(21)側へ吸引される所謂液戻りを防止することができる。
図1は、実施形態に係る多段ターボ冷凍機の概略構成を示す配管系統図である。 図2は、エコノマイザの縦断面図である。 図3(A)は図2のIIIA-IIIA線断面図であり、図3(B)は図2のIIIB-IIIB線断面図である。
符号の説明
1       二段ターボ冷凍機(多段圧縮式冷凍装置)
20      冷媒回路
21      二段ターボ圧縮機(多段圧縮機)
22      凝縮器
23      高段側膨張弁(多段膨張機構)
24      エコノマイザ
24a     タンク
24b     液出口部
24c     ガス出口部
24d     導入部
24e     第1隔壁(じゃま板)
24f     第2隔壁(じゃま板)
25      フロート膨張弁(多段膨張機構)
25a     弁体
25b     フロート
26      蒸発器
28      ガス配管
  以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本実施形態では、本発明に係るエコノマイザが用いられた多段圧縮式冷凍装置として、二段ターボ圧縮機を備えた二段ターボ冷凍機について説明する。
  図1は、本発明の実施形態に係る二段ターボ冷凍機(1)の構成を模式的に示す配管系統図である。二段ターボ冷凍機(1)は、二段ターボ圧縮機(21)と、凝縮器(22)と、高段側膨張弁(23)と、低段側膨張弁であるフロート膨張弁(25)と、蒸発器(26)とが順次冷媒配管によって順次接続されて蒸気圧縮式冷凍サイクルを行う冷媒回路(20)を備えている。また、上記冷媒回路(20)の高段側膨張弁(23)と蒸発器(26)との間には、上記フロート膨張弁(25)を備えたエコノマイザ(24)が設けられている。そして、上記高段側膨張弁(23)とフロート膨張弁(25)とが多段膨張機構を構成している。
  上記二段ターボ圧縮機(21)は、低段側の羽根車(21a)と高段側の羽根車(21b)とを備えている。低段側の羽根車(21a)と高段側の羽根車(21b)とは直列に接続されている。また、二段ターボ圧縮機(21)には、吸入容量を制御するための吸入容量制御機構(21c)と、吐出容量を制御するための吐出容量制御機構(21d)とが設けられている。上記低段側の羽根車(21a)は、低圧(PL)の冷媒を吸入して中間圧(PM)まで圧縮し、高段側の羽根車(21b)に供給する。上記高段側の羽根車(21b)は、中間圧(PM)の冷媒を吸入して高圧(PH)に圧縮し、高圧(PH)のガス冷媒を吐出する。
  上記凝縮器(22)は、シェル(円筒銅)と、シェル内に配置された複数の冷却管とを備える所謂シェルアンドチューブ型凝縮器によって構成されている。シェル内には、二段ターボ圧縮機(21)において圧縮された高圧(PH)のガス冷媒が導入され、該ガス冷媒は、冷却管内を流れる冷却水によって冷却される。これにより、ガス冷媒は、冷却管の外側で凝縮し、液となってシェルに溜まる。
  上記高段側膨張弁(23)は、吸入冷媒過熱度に応じて減圧量を調整することで吸入冷媒過熱度を一定に制御する感温式自動膨張弁によって形成されている。上記凝縮器(22)において凝縮した液冷媒は、高段側膨張弁(23)によって中間圧(PL)まで減圧され、エコノマイザ(24)に導入される。
  上記エコノマイザ(24)には、二段ターボ圧縮機(21)の中間圧力部に接続されたガス配管(28)が接続されている。エコノマイザ(24)は、気液二相状態の冷媒を気液分離する。そして、中間圧(PL)のガス冷媒は、上記ガス配管(28)を介して上記二段ターボ圧縮機(21)の中間圧力部に導かれる一方、液冷媒は、蒸発器(26)に導かれる。
  上記フロート膨張弁(25)は、エコノマイザ(24)内の液冷媒の液面高さに応じて絞り量を調整するように構成され、上記エコノマイザ(24)に内蔵されている。つまり、上記エコノマイザ(24)は、気液分離された液冷媒を蒸発器(26)に向かって流出する際に、フロート膨張弁(25)によって減圧する。
  上記蒸発器(26)は、満液式蒸発器によって構成され、本実施形態では、所謂シェルアンドチューブ型蒸発器によって構成されている。蒸発器(26)内には、エコノマイザ(24)において気液分離された液冷媒がフロート膨張弁(25)によって減圧されて供給される。シェル内には伝熱管が設けられ、伝熱管内には被冷却物としての水が流れている。シェル内に供給された液冷媒は、伝熱管内の水から吸熱して蒸発し、ガスとなって二段ターボ圧縮機(21)の吸入側に導かれる。
  次に、本発明に係るエコノマイザ(24)について詳述する。
  図2及び図3(A)、(B)に示すように、エコノマイザ(24)は、円筒形状の胴部と、該胴部の両端部を閉塞する閉塞部とによって構成された横長のタンク(24a)を備えている。タンク(24a)には、冷媒回路(20)の冷媒を導入する導入部(24d)と、内部の液冷媒を蒸発器(26)に導くための液出口部(24b)と、内部のガス冷媒を二段ターボ圧縮機(21)の中間圧力部に導くためのガス出口部(24c)とが形成されている。
  上記導入部(24d)は、タンク(24a)の長手方向中央部に形成されている。図3(A)に示すように、導入部(24d)は、タンク(24a)の内外を貫き、タンク(24a)内において湾曲して上方に向かって開口する筒状体によって構成されている。
  上記液出口部(24b)は、図2に示すように、本実施形態では2つ設けられている。2つの液出口部(24b)は、タンク(24a)の長手方向両端部に形成されている。液出口部(24b)は、タンク(24a)の内外を貫き、タンク(24a)内において湾曲して下向きに開口する筒状体によって構成されている。
  上記ガス出口部(24c)は、本実施形態では2つ設けられている。2つのガス出口部(24c)は、タンク(24a)の長手方向において、導入部(24d)の両側方に1つずつ配置されている。また、ガス出口部(24c)は筒状体からなり、タンク(24a)の上方から下方に向かって延び、先端がタンク(24a)の上面を貫いてタンク(24a)内の上部において開口している。
  上述したフロート膨張弁(25)は、上記液出口部(24b)の流入側端部に取り付けられている。具体的には、上記フロート膨張弁(25)は、図2に示すように、筒状体からなる液出口部(24b)の流入側端に形成された弁体(25a)と、弁体(25a)に接続されたフロート(25b)とを備えている。上記弁体(25a)は、フロート(25b)が上昇すると、液出口部(24b)内の流路を拡げる方向に移動し、フロート(25b)が下降すると、液出口部(24b)内の流路を絞る方向に移動するように構成されている。このような構成により、フロート膨張弁(25)は、タンク(24a)内の液面が上昇するとその絞り量が低下し、液面が下降するとその絞り量が増大し、タンク(24a)内の液の流出量を冷媒の循環量に合わせて制御する。
  また、上記導入部(24d)と、2つの液出口部(24b)及びフロート膨張弁(25)とのそれぞれの間には、タンク(24a)の横断面方向に延びる2種類の隔壁(24e,24f)が設けられている。導入部(24d)側に設けられた第1隔壁(24e)は、図3(A)に示すように、略円形の板状体で形成され、略T字状の切り欠きが形成されている。一方、液出口部(24b)側に設けられた第2隔壁(24f)は、逆T字状に形成された板状体で形成されている。そして、上記第1隔壁(24e)と第2隔壁(24f)は、所定間隔を存して並行に設けられ、じゃま板を構成している。
  上記タンク(24a)の内部は、第1隔壁(24e)及び第2隔壁(24f)によって、3つの空間に区画されている。具体的に、上記タンク(24a)の内部は、導入部(24d)が位置する中央空間と、該中央空間の両側方に形成され、上記液出口部(24b)及びフロート膨張弁(25)が位置する側部空間とに区画されている。また、図3(B)に示すように、液出口部(24b)の中央空間から導入部(24d)側の側部空間を視たときに、タンク(24a)の横断面のほとんどが第1隔壁(24e)及び第2隔壁(24f)によって覆われている。このような構成により、導入部(24d)から導入された冷媒がフロート膨張弁(25)のフロート(25b)に直接吹きかかることを防止できる。
  なお、上述した2つのガス出口部(24c)は、第1隔壁(24e)及び第2隔壁(24f)よりも液出口部(24b)側に配置されている。つまり、ガス出口部(24c)は、第1隔壁(24e)及び第2隔壁(24f)によってタンク(24a)内に区画される3つの空間のうち、導入部(24d)が設けられた中央空間ではなく、液出口部(24b)が設けられた側部空間にそれぞれ設けられている。このようにガス出口部(24c)が側部空間に配置されることで、導入部(24d)から導入された気液二相状態の冷媒が、直接ガス出口部(24c)に吸入されることを防止することができる。
  次に、二段ターボ冷凍機(1)の動作について説明する。
  まず、運転が開始されると、二段ターボ圧縮機(21)の低段側及び高段側の羽根車(21a,21b)が回転し、低段側から冷媒回路(20)内の低圧(PL)の冷媒が吸入される。このとき、吸入容量制御機構(21c)によって吸入される冷媒容量が調節される。そして、低段側の羽根車(21a)に吸入された低圧(PL)の冷媒は、中間圧(PM)まで圧縮され、高段側の羽根車(21b)に供給される。該高段側の羽根車(21b)は、中間圧(PM)の冷媒を高圧(PH)のガス冷媒に圧縮して冷媒回路(20)に吐出する。このとき、吐出容量制御機構(21d)によって吐出される冷媒容量が調節される。
  そして、二段ターボ圧縮機(21)から冷媒回路(20)に吐出された高圧(PH)の冷媒は、凝縮器(22)において冷却されて凝縮する。この凝縮した液冷媒は、高段側膨張弁(23)によって中間圧(PL)まで減圧され、エコノマイザ(24)に導入される。なお、高段側膨張弁(23)は、吸入冷媒過熱度に応じてその減圧量が調整される。これにより、吸入冷媒過熱度が所定値となるように冷媒循環量が制御される。
  エコノマイザ(24)のタンク(24a)内では、導入された気液二相状態の冷媒が気液分離される。そして、気液分離後のガス冷媒は、ガス配管(28)を介して二段ターボ圧縮機(21)の中間圧力部に導かれる一方、液冷媒は蒸発器(26)側へ導かれる。
  二段ターボ圧縮機(21)の中間圧力部に導かれた中間圧(PM)のガス冷媒は、二段ターボ圧縮機(21)の低圧側の羽根車(21a)で圧縮された中間圧(PM)と混合されて高段側の羽根車(21b)に流入して圧縮される。
  一方、蒸発器(26)へ導かれる液冷媒は、液出口部(24b)から蒸発器(26)に向かって流出する際に、液出口部(24b)に設けられたフロート膨張弁(25)によって低圧(PL)まで減圧されて、蒸発器(26)に供給される。
  このようにしてフロート膨張弁(25)によって減圧されて蒸発器(26)に供給された低圧(PL)の冷媒は、伝熱管内の水から吸熱して蒸発し、ガスとなって二段ターボ圧縮機(21)の吸入側に導かれる。そして、該ガス冷媒は、二段ターボ圧縮機(21)で圧縮される。
  次に、エコノマイザ(24)の動作について詳述する。
  上記導入部(24d)からタンク(24a)内の中央空間に導入された冷媒は、タンク(24a)内において中央空間から両側方の側部空間に流れる。このとき、冷媒は両隔壁(24e,24f)やタンク(24a)内壁面に衝突することにより、気液が分離される。そして、分離した液冷媒は、両隔壁(24e,24f)やタンク(24a)内壁面を伝って流下し、タンク(24a)内の底部に溜まる。一方、ガス冷媒は、両隔壁(24e,24f)を通り、液出口部(24b)側の側部空間に流れる。
  そして、タンク(24a)内の側部空間において、液冷媒は液出口部(24b)から蒸発器(26)に流れる。このとき、液出口部(24b)内に形成される流路は、フロート膨張弁(25)の弁体(25a)によって絞られている。そのため、液冷媒は該フロート膨張弁(25)によって減圧される。
  また、フロート膨張弁(25)は、タンク(24a)内の液冷媒の液面高さに応じてその絞り量が調節される。つまり、液面が上昇すると、フロート(25b)が上昇し、弁体(25a)が液出口部(24b)内の流路がより拡がる方向に移動する。これにより、絞り量が低下して液冷媒の流出量が増加し、液面の上昇速度が緩まるか又は液面が下降する。一方、液面が下降すると、フロート(25b)が下降し、弁体(25a)が液出口部(24b)の流路をより絞る方向に移動する。これにより、絞り量が増加して液冷媒の流出量が減少し、液面の下降速度が緩まるか又は液面が上昇する。この結果、上記フロート膨張弁(25)によって、タンク(24a)内の液冷媒の液面高さは、冷媒循環量に応じた絞り量が制御される。
  一方、液出口部(24b)側の側部空間において、ガス冷媒はガス出口部(24c)から二段ターボ圧縮機(21)の中間圧力部に吸入される。その際、上記ガス出口部(24c)が2つ設けられているため、1つのガス出口部(24c)から集中的にガス冷媒が吸引されるのではなく、2つのガス出口部(24c)に分散されて吸引される。そのため、ガス冷媒が吸引される際、ガス出口部(24c)付近はタンク(24a)内の他の部分よりも低圧となるが、1つしかガス出口部(24c)がない場合に比べて、低圧の度合いを低減することができる。そのため、液冷媒がガス出口部(24c)の下方においてガス出口部(24c)側へ吸引されて上昇したとしても、その上昇高さを抑えることができる。その結果、液冷媒がガス冷媒と共にガス出口部(24c)に吸引されることを抑制することができる。
  -実施形態の効果-
  以上より、本実施形態に係るエコノマイザ(24)は、従来1つしか設けられていなかった液出口部(24b)とフロート膨張弁(25)とが2つずつ設けられている。そのため、タンク(24a)内からは、2つの液出口部(24b)を介して液冷媒が流出することとなり、その液冷媒の流出量は2つのフロート膨張弁(25)によって制御されることとなる。これにより、1つのフロート膨張弁(25)によって流出量を制御する場合に比べ、1つ1つのフロート膨張弁(25)に求められる制御量が小さくなる。従って、上記エコノマイザ(24)は、小型のフロート膨張弁(25)を用いることができ、フロート膨張弁(25)の単価を大幅に抑えることができる。そのため、エコノマイザ(24)のコストを削減することができる。
  また、上記エコノマイザ(24)は、フロート膨張弁(25)が2つ設けられている。そのため、1つのフロート膨張弁(25)が不具合により作動しなくなっても、他のフロート膨張弁(25)によって液冷媒の減圧及びタンク(24a)内の液面制御を行うことができる。従って、1つのフロート膨張弁(25)に不具合が生じた場合であっても、二段ターボ冷凍機(1)の運転を直ちに停止させることなく、部分負荷運転等により運転を継続させることができる。
  なお、本実施形態では、液出口部(24b)及びフロート膨張弁(25)の個数を2つとしていたが、液出口部(24b)及びフロート膨張弁(25)は3つ以上設けることとしてもよい。その場合であっても、フロート膨張弁(25)を小型化することができ、エコノマイザ(24)を安価に製造することができる。その一方、本実施形態では、フロート膨張弁(25)の個数を2つとすることで、フロート膨張弁(25)の小型化を図って単価を大幅に抑えると共に、エコノマイザ(24)のコストをより削減することができる。
  また、上記エコノマイザ(24)は、各フロート膨張弁(25)がタンク(24a)の長手方向において導入部(24d)の両側方に配置されている。そのため、各フロート膨張弁(25)は、導入部(24d)と間隔を存して配置される。これにより、導入部(24d)から導入された冷媒がフロート膨張弁(25)のフロート(25b)に吹きかかることを回避することができる。従って、導入された冷媒がフロート膨張弁(25)の動作に影響を及ぼしてしまうことを防止することができる。
  また、上記エコノマイザ(24)は、導入部(24d)と2つの液出口部(24b)及びフロート膨張弁(25)とのそれぞれの間には、タンク(24a)の横断面方向に延びる板状体からなる隔壁(24e,24f)が設けられている。これにより、気液二相状態の気液が分離されると共に、導入部(24d)から導入された冷媒がフロート膨張弁(25)のフロート(25b)に直接吹きかかってフロート膨張弁(25)の動作に影響を及ぼしてしまうことを防止することができる。
  ところで、ガス出口部(24c)からガス冷媒が吸引される際、ガス出口部(24c)付近は周囲より低圧となる。そのため、ガス出口部(24c)が1つしか設けられていない場合、ガス出口部(24c)付近と周囲との圧力差が大きくなり、タンク(24a)内の液冷媒の液面がガス出口部(24c)付近で大きく上昇してしまう。そのため、ガス出口部(24c)から液冷媒の一部が二段圧縮機(21)に吸引される所謂液戻りが生じる虞があった。
  しかしながら、上記エコノマイザ(24)は、ガス出口部(24c)が2つ設けられ、タンク(24a)の長手方向において、導入部(24d)の両側方に1つずつ配置されている。これにより、ガス冷媒は、1つのガス出口部(24c)から集中的にガス冷媒が吸引されるのではなく、2つのガス出口部(24c)に分散されて吸引される。そのため、ガス出口部(24c)が1つしか設けられていない場合に比べ、各ガス出口部(24c)がガス冷媒を吸引する力は半減する。これにより、ガス出口部(24c)付近でガス冷媒の吸引によって生じる液冷媒の液面の上昇を抑制することができる。その結果、ガス出口部(24c)から液冷媒の一部が二段ターボ圧縮機(21)側へ吸引される所謂液戻りを回避することができる。
  〈その他の実施形態〉
  上記実施形態では、液出口部(24b)及びフロート膨張弁(25)の個数を2つとしていたが、液出口部(24b)及びフロート膨張弁(25)は3つ以上設けることとしてもよい。その場合であっても、フロート膨張弁(25)を小型化することができ、エコノマイザ(24)を安価に製造することができる。
  また、上記実施形態では、導入部(24d)、液出口部(24b)及びガス出口部(24c)を筒状体によって形成していたが、これらを単なる開口によって形成してもよい。
  さらに、上記実施形態では、本発明に係るエコノマイザ(24)を備えた多段圧縮式冷凍装置として、二段圧縮二膨張の冷凍装置について説明したが、本発明は、三段圧縮三段膨張等の多段圧縮式冷凍装置に適用してもよい。その際、上記エコノマイザを複数直列に配置する。
  なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
  以上説明したように、本発明は、ターボ冷凍機に有用である。

Claims (5)

  1.   多段圧縮機(21)と、凝縮器(22)と、多段膨張機構(23,25)と、蒸発器(26)とが順次接続された冷媒回路(20)を備えた多段圧縮式冷凍装置(1)に設けられ、気液二相状態の冷媒を気液分離し、ガス冷媒を上記多段圧縮機(21)の中間圧力部に導くと共に液冷媒を上記蒸発器(26)に導くエコノマイザであって、
      上記冷媒回路(20)の冷媒を導入する導入部(24d)と、上記蒸発器(26)に液冷媒を導出するための液出口部(24b)と、上記多段圧縮機(21)の中間圧力部にガス冷媒を導入するためのガス出口部(24c)とが形成されたタンク(24a)と、
      上記多段膨張機構(23,25)の一部を構成する膨張弁であって、上記液出口部(24b)に取り付けられ、上記タンク(24a)内の液冷媒の液面高さに応じて絞り量が調整されるフロート膨張弁(25)とを備え、
      上記液出口部(24b)及び上記フロート膨張弁(25)は複数設けられている
    ことを特徴とするエコノマイザ。
  2.   請求項1において、
      上記液出口部(24b)及び上記フロート膨張弁(25)は2つずつ設けられている
    ことを特徴とするエコノマイザ。
  3.   請求項2において、
      上記タンク(24a)は横長のタンクであり、
      上記導入部(24d)は上記タンク(24a)の長手方向の中央部に形成され、
      上記液出口部(24b)及び上記フロート膨張弁(25)は、上記タンク(24a)の長手方向において、上記導入部(24d)の両側方に1つずつ配置されている
    ことを特徴とするエコノマイザ。
  4.   請求項3において、
      上記導入部(24d)と2つの上記液出口部(24b)及びフロート膨張弁(25)とのそれぞれの間には、上記タンク(24a)の横断面方向に延びるじゃま板(24e,24f)が設けられている
    ことを特徴とするエコノマイザ。
  5.   請求項4において、
      上記ガス出口部(24c)は2つ設けられ、上記タンク(24a)の長手方向において、それぞれ上記じゃま板(24e,24f)よりも上記液出口部(24b)側に配置されている
    ことを特徴とするエコノマイザ。
PCT/JP2009/000365 2008-02-01 2009-01-30 エコノマイザ WO2009096193A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/865,580 US9027363B2 (en) 2008-02-01 2009-01-30 Economizer having multiple liquid outlets and multiple float expansion valves
CN2009801034360A CN101932890B (zh) 2008-02-01 2009-01-30 经济器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-023356 2008-02-01
JP2008023356A JP4404148B2 (ja) 2008-02-01 2008-02-01 エコノマイザ

Publications (1)

Publication Number Publication Date
WO2009096193A1 true WO2009096193A1 (ja) 2009-08-06

Family

ID=40912547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000365 WO2009096193A1 (ja) 2008-02-01 2009-01-30 エコノマイザ

Country Status (4)

Country Link
US (1) US9027363B2 (ja)
JP (1) JP4404148B2 (ja)
CN (1) CN101932890B (ja)
WO (1) WO2009096193A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102032728B (zh) * 2010-12-09 2012-03-14 东南大学 一种自动调节制冷工质流量的装置
JP6056270B2 (ja) * 2012-08-28 2017-01-11 ダイキン工業株式会社 ターボ圧縮機及びターボ冷凍機
JP6001997B2 (ja) * 2012-10-23 2016-10-05 荏原冷熱システム株式会社 ターボ冷凍機
CN103776188B (zh) * 2013-01-21 2017-03-08 摩尔动力(北京)技术股份有限公司 间冷单工质热制冷制热系统
US9890977B2 (en) * 2013-10-03 2018-02-13 Carrier Corporation Flash tank economizer for two stage centrifugal water chillers
JP6313090B2 (ja) * 2014-03-28 2018-04-18 荏原冷熱システム株式会社 ターボ冷凍機の蒸発器、および該蒸発器を備えたターボ冷凍機
CN104154687B (zh) 2014-08-22 2016-08-24 珠海格力电器股份有限公司 闪发器和具有该闪发器的空调
CN104501474B (zh) * 2014-12-16 2017-03-08 麦克维尔空调制冷(武汉)有限公司 一种闪蒸式经济器及采用其的布料方法
CN106352608B (zh) * 2015-07-13 2021-06-15 开利公司 经济器组件及具有其的制冷系统
CN105004047B (zh) * 2015-07-16 2018-02-02 杭州哲达科技股份有限公司 热泵系统余能回收制取高温热水装置
JP6599176B2 (ja) * 2015-08-28 2019-10-30 三菱重工サーマルシステムズ株式会社 ターボ冷凍装置
CN117366922A (zh) * 2015-12-10 2024-01-09 开利公司 一种经济器及具有其的制冷系统
CN105571215B (zh) * 2015-12-21 2018-05-01 重庆美的通用制冷设备有限公司 用于热泵机组的经济器及具有其的热泵机组
US10539350B2 (en) 2016-02-26 2020-01-21 Daikin Applied Americas Inc. Economizer used in chiller system
JP2018151116A (ja) * 2017-03-13 2018-09-27 荏原冷熱システム株式会社 ターボ冷凍機
KR102294500B1 (ko) * 2019-12-31 2021-08-27 엘지전자 주식회사 다단 압축형 냉동장치
KR102294499B1 (ko) * 2019-12-31 2021-08-27 엘지전자 주식회사 다단 압축형 냉동장치
FR3117882B1 (fr) * 2020-12-23 2023-03-17 Soc Ind De Chauffage Sic Dispositif séparateur de sécurité pour une installation de transfert d’énergie
CN116772441A (zh) * 2022-03-10 2023-09-19 开利公司 节流装置以及具有其的制冷系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55103199A (en) * 1979-02-02 1980-08-07 Tlv Co Ltd Float type trap
JPH07332801A (ja) * 1994-06-03 1995-12-22 Takagi Ind Co Ltd 蒸気凝縮装置
JPH11344265A (ja) * 1998-06-02 1999-12-14 Mitsubishi Heavy Ind Ltd 多段圧縮式ターボ冷凍機
JP2002340287A (ja) * 2001-05-15 2002-11-27 Tlv Co Ltd フロート弁
JP2003214729A (ja) * 2002-01-28 2003-07-30 Toshiba Kyaria Kk 空気調和機
JP2003279175A (ja) * 2002-03-22 2003-10-02 Mitsubishi Electric Corp 冷凍空調装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2277647A (en) * 1940-08-01 1942-03-24 Carrier Corp Refrigeration
US3003332A (en) * 1957-10-07 1961-10-10 John E Watkins Control means for refrigerating system
US3349571A (en) * 1966-01-14 1967-10-31 Chemical Construction Corp Removal of carbon dioxide from synthesis gas using spearated products to cool external refrigeration cycle
US4232533A (en) * 1979-06-29 1980-11-11 The Trane Company Multi-stage economizer
JPS60262A (ja) * 1983-06-17 1985-01-05 株式会社日立製作所 冷凍サイクル
EP1034021B1 (en) * 1997-11-18 2006-08-23 Kvaerner Process Systems A.S. Separators
CN1204948C (zh) * 1999-03-05 2005-06-08 国际壳牌研究有限公司 三相分离器
US6851277B1 (en) * 2003-08-27 2005-02-08 Carrier Corporation Economizer chamber for minimizing pressure pulsations
EP2005079B1 (en) * 2006-03-27 2016-12-07 Carrier Corporation Refrigerating system with parallel staged economizer circuits and a single or two stage main compressor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55103199A (en) * 1979-02-02 1980-08-07 Tlv Co Ltd Float type trap
JPH07332801A (ja) * 1994-06-03 1995-12-22 Takagi Ind Co Ltd 蒸気凝縮装置
JPH11344265A (ja) * 1998-06-02 1999-12-14 Mitsubishi Heavy Ind Ltd 多段圧縮式ターボ冷凍機
JP2002340287A (ja) * 2001-05-15 2002-11-27 Tlv Co Ltd フロート弁
JP2003214729A (ja) * 2002-01-28 2003-07-30 Toshiba Kyaria Kk 空気調和機
JP2003279175A (ja) * 2002-03-22 2003-10-02 Mitsubishi Electric Corp 冷凍空調装置

Also Published As

Publication number Publication date
CN101932890A (zh) 2010-12-29
JP2009186034A (ja) 2009-08-20
US9027363B2 (en) 2015-05-12
US20100326130A1 (en) 2010-12-30
JP4404148B2 (ja) 2010-01-27
CN101932890B (zh) 2012-10-10

Similar Documents

Publication Publication Date Title
WO2009096193A1 (ja) エコノマイザ
JP4897298B2 (ja) 気液分離器モジュール
CN100526763C (zh) 节约器回路的扩容箱、分离制冷剂的方法和制冷系统
JP4776438B2 (ja) 冷凍サイクル
US20170167767A1 (en) Ejector Cycle Heat Recovery Refrigerant Separator
JPH0232547B2 (ja)
JP2007040690A (ja) エジェクタ式冷凍サイクル
JP2010127531A (ja) 冷凍空調装置
JP2007155230A (ja) 空気調和機
JP2007155229A (ja) 蒸気圧縮式冷凍サイクル
US6826924B2 (en) Heat pump apparatus
JP2008051344A (ja) 気液分離器及び該気液分離器を備えた冷凍装置
CN105402964A (zh) 气液分离器及具有其的冷冻循环装置、制冷系统
JP5757415B2 (ja) 空気調和機等の冷凍装置
JP6313090B2 (ja) ターボ冷凍機の蒸発器、および該蒸発器を備えたターボ冷凍機
JP2009186033A (ja) 二段圧縮式冷凍装置
JP2016205729A (ja) 冷凍サイクル装置
JP4897464B2 (ja) 蒸気圧縮式冷凍サイクル
CN208059355U (zh) 压缩式制冷机用冷凝器
CN107894112B (zh) 高落差安全控制方法及空调系统
JP2005233470A (ja) 気液分離器
CN205227952U (zh) 气液分离器及具有其的冷冻循环装置、制冷系统
JP7450772B2 (ja) 冷凍サイクル装置
US20210348809A1 (en) Condenser subassembly with integrated flash tank
KR100857315B1 (ko) 공기조화기용 압축기/응축기 유니트

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980103436.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09705589

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12865580

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09705589

Country of ref document: EP

Kind code of ref document: A1