WO2009093422A1 - 分析装置 - Google Patents

分析装置 Download PDF

Info

Publication number
WO2009093422A1
WO2009093422A1 PCT/JP2009/000120 JP2009000120W WO2009093422A1 WO 2009093422 A1 WO2009093422 A1 WO 2009093422A1 JP 2009000120 W JP2009000120 W JP 2009000120W WO 2009093422 A1 WO2009093422 A1 WO 2009093422A1
Authority
WO
WIPO (PCT)
Prior art keywords
position detection
signal
measurement spot
rotation
mark
Prior art date
Application number
PCT/JP2009/000120
Other languages
English (en)
French (fr)
Inventor
Masatake Hyoudou
Takuya Suzuki
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to US12/863,914 priority Critical patent/US8289529B2/en
Priority to EP09703534.9A priority patent/EP2241894B1/en
Publication of WO2009093422A1 publication Critical patent/WO2009093422A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/07Centrifugal type cuvettes

Definitions

  • the present invention relates to an analyzer for analyzing a device for analysis containing a sample solution collected from a living organism or the like by a centrifugal force toward a measurement spot.
  • a method for analyzing using a device for analysis in which a liquid channel is formed is known.
  • the analytical device can control the fluid using a rotating device, and utilizes centrifugal force to dilute the sample liquid, measure the solution, separate the solid component, transfer and distribute the separated fluid, Since a solution and a reagent can be mixed, various biochemical analyzes can be performed.
  • the analytical device 50 described in Patent Document 1 that transfers a solution using centrifugal force injects a sample liquid as a specimen into the measuring chamber 52 from an injection port 51 with an insertion instrument such as a pipette. After the sample liquid is held by the capillary force of the measuring chamber 52, the sample liquid is transferred to the separation chamber 53 by the rotation of the analyzing device.
  • An analytical device that uses such centrifugal force as a power source for liquid feeding can be used as a preferred shape because microchannels for liquid feeding control can be arranged radially by using a disk shape, and no wasted area is generated. It is done.
  • the mixing and stirring of the sample solution and the diluent are performed by accelerating / decelerating or rotating forward and backward in the same rotation direction of the turntable on which the analysis device 50 is set.
  • the measurement position detecting means for reading the analysis signal by accessing the mixed liquid of the sample liquid and the diluted liquid transferred to the measurement spot is composed of a light source and a light receiving section.
  • a configuration using three sensors that is, a sensor that detects the origin position of the analytical device and a sensor that detects the trigger mark, can be considered in addition to the sensor that reads the measurement spot.
  • a configuration in which the origin of the analyzing device and the trigger mark are arranged on the same circumference and the shapes of both are clearly different can be used in common.
  • a signal processing part for performing the difference between the two in real time while the analysis device is rotating is necessary.
  • a configuration in which a rotary encoder is attached to the turntable instead of the trigger mark is conceivable.
  • the analysis device is small, a high-resolution one is required.
  • the sensor that reads the measurement spot and the sensor that detects the position of the measurement spot are different sensors. For this reason, a deviation occurs in the detection of the position of the measurement spot due to the mounting error of each sensor and the backlash between the analytical device and the turntable.
  • the present invention solves the above-described conventional problems, and an object thereof is to provide an analysis apparatus and a position detection method capable of realizing a reliable reading process without adding the number of sensors or parts for position detection. .
  • the analysis apparatus of the present invention includes an analysis device having a microchannel structure for transferring a sample solution toward a measurement spot by centrifugal force, a rotation drive unit that rotates the set analysis device, and the set A light source and a photo detector arranged opposite to each other with an analysis device interposed therebetween are provided, and a reading means is configured to detect output light transmitted through the measurement spot of the analysis device with the photo detector, and the analysis device Is provided with a position detection mark having any one of a reflection surface, a refraction surface, and a light shielding surface that blocks output light incident on the photodetector from the light source when reaching the rotation detection position immediately before or immediately after the measurement spot,
  • the reading means includes a rotation detection of the analytical device obtained from the rotation driving means.
  • a signal processing apparatus is provided that extracts the output light at a timing when it passes through the measurement spot of the analysis device based on a signal and a detection signal of the photodetector, and calculates a component of the sample liquid. .
  • the analysis device is provided with an origin position mark indicating the origin position in the direction of rotation, and the signal processing device includes the origin position mark, the rotation detection signal, and the origin position mark. And a component of the sample liquid is calculated by extracting a signal at a predetermined timing in the analysis signal based on the position reading signal of the position detection mark.
  • the position detection marks are provided on the upper side and the lower side of the measurement spot with respect to the rotation direction
  • the signal processing device includes a trigger width of the first position detection mark and a second position detection mark.
  • the trigger width and the interval between the first position detection mark and the second position detection mark are within an allowable range, the reading between the first position detection mark and the second position detection mark is performed.
  • the present invention is characterized in that an analysis signal is extracted.
  • the position detection mark is provided on one of the upper side and the lower side of the measurement spot with respect to the rotation direction, and the signal processing device is configured based on the trigger width of the position detection mark and the rotation detection signal.
  • the analysis signal is extracted by determining the position of the measurement spot.
  • the position detection method of the analysis apparatus of the present invention includes an analysis device having a microchannel structure for transferring a sample solution toward a measurement spot by centrifugal force, and a rotation driving means for rotating the set analysis device, A light source and a photodetector arranged opposite to each other with the set analysis device interposed therebetween, and a reading unit configured to detect output light transmitted through the measurement spot of the analysis device with the photodetector,
  • the analysis device has a position detection having any one of a reflection surface, a refraction surface, and a light shielding surface that blocks output light incident on the photodetector from the light source when reaching a rotation detection position immediately before or after the measurement spot.
  • the reading means is provided with an analytical data obtained from the rotation driving means.
  • An analysis provided with a signal processing device that extracts the output light at a timing when it passes through the measurement spot of the analysis device based on a rotation detection signal of a chair and a detection signal of the photodetector and calculates a component of the sample liquid
  • the analysis device is rotated by the rotation driving means, the rotation detection signal is counted from the origin position mark, the light source is turned on when a predetermined number is reached, and the analysis device is operated by the photodetector.
  • the output light transmitted through the light source is detected and a predetermined time elapses after the light source is turned on or the rotation detection signal reaches a predetermined number, the light source is turned off and the position detection mark is extracted from the detected signal.
  • the positional relationship between the extracted position detection mark and the previously stored position detection mark and the measurement spot And identifies the measurement spot position from the broadcast.
  • the measurement spot position is determined from the extracted position detection mark, the number of rotations of the analysis device obtained from the rotation detection signal, and the positional relationship between the position detection mark and the measurement spot stored in advance. It is characterized by specifying.
  • the reading device is configured to detect the output light transmitted through the measurement spot of the analysis device with the photodetector, and the analysis device has a rotation detection position immediately before or immediately after the measurement spot. Since a position detection mark having any of a reflection surface, a refracting surface, or a light shielding surface that blocks output light incident on the photodetector from the light source is provided, the position of the measurement spot is determined from the output signal of the sensor that reads the measurement spot, The target analysis signal can be accurately extracted.
  • FIG. 1 is a schematic plan view of a device for analysis in the analyzer according to the first embodiment of the present invention, its surroundings, and a block diagram of a signal processor Flowchart diagram of the microcomputer of the embodiment Timing chart of the same embodiment
  • the perspective view of the state which opened the door of the analyzer of the embodiment Cross-sectional view of the relevant part with the analysis device set in the analyzer
  • External perspective view of the analytical device of the same embodiment with the protective cap opened Exploded perspective view of the analysis device of the same embodiment AA sectional view of FIG. 7A of the same embodiment BB sectional view of FIG. 7A of the same embodiment CC sectional view of FIG.
  • Embodiment 1 1 to 9A, 9B, 9C, 9D, and 13 show Embodiment 1 of the present invention.
  • FIG. 7A and 7B show a state where the protective cap 2 of the analytical device 1 is closed and a state where it is opened.
  • FIG. 8 shows an exploded state with the lower side in FIG. 7A facing upward.
  • 9A is an AA cross-sectional view of FIG. 7A
  • FIG. 9B is a BB cross-sectional view of FIG. 7A
  • FIG. 9C is a CC cross-sectional view of FIG. 7A
  • FIG. 9A is an AA cross-sectional view of FIG. 7A
  • FIG. 9B is a BB cross-sectional view of FIG. 7A
  • FIG. 9C is a CC cross-sectional view of FIG. 7A
  • this analytical device 1 includes a base substrate 3 having a microchannel structure having a fine concavo-convex shape on one surface, a cover substrate 4 covering the surface of the base substrate 3, and In addition, it is composed of four parts including a diluent container 5 holding the diluent and a protective cap 2 for preventing sample liquid scattering.
  • the base substrate 3 and the cover substrate 4 are joined with the diluent container 5 and the like set therein, and a protective cap 2 is attached to the joined substrate.
  • the opening 5a of the diluent container 5 is sealed with an aluminum foil (not shown) after the diluent is added.
  • the outline of the analysis process using this analysis device 1 is as follows.
  • the sample solution is spotted on the inlet 6 of the analysis device 1 in which the dilution solution is set in advance, and the diluent container 5 is moved by closing the protective cap 2.
  • the aluminum foil in the opening 5a is broken by the protrusions 14, and the diluted solution flows out.
  • the sample liquid that has flowed out is to be measured after being diluted with the diluent.
  • FIG. 4 shows a state in which the door 103 of the analysis apparatus 100 is opened
  • FIG. 5 shows a state in which the analysis device 1 is set on the turntable 101 and the door 103 is closed.
  • a groove 102 is formed on the upper surface of the turntable 101 of the analysis apparatus 100, and the rotation support formed on the cover substrate 4 and the protective cap 2 of the analysis device 1 when the analysis device 1 is set on the turntable 101. Portions 15 and 16 engage with the groove 102 to accommodate it.
  • FIG. 6 shows the configuration of the analyzer 100.
  • the analysis apparatus 100 includes a rotation drive unit 106 for rotating the turntable 101, an optical measurement unit 108 for optically measuring the solution in the analysis device 1, and a rotation speed and a rotation direction of the turntable 101. And a control means 109 for controlling the measurement timing of the optical measurement means, a calculation part 110 for processing a signal obtained by the optical measurement means 108 and calculating a measurement result, and a result obtained by the calculation part 110 are displayed. And a display unit 111 for doing so.
  • the rotation driving means 106 not only rotates the analyzing device 1 around the rotation axis 107 in a predetermined direction at a predetermined rotation speed via the turntable 101 but also centers the rotation axis 107 at a predetermined stop position.
  • the analyzing device 1 can be swung by reciprocating left and right in a predetermined amplitude range and cycle.
  • the optical measurement means 108 includes the light source 112 for irradiating the measurement spot of the analysis device 1 with detection light, and the amount of transmitted light that has passed through the analysis device 1 as a reading means for accessing the measurement spot and reading the signal. And a photodetector 113 for detection.
  • the analysis device 1 is rotationally driven by the turntable 101 to rotate the analysis device 1 around the rotation axis 107 located on the inner periphery of the injection port 6 with the sample liquid taken in from the injection port 6.
  • the solution is transferred inside the analysis device 1 using the centrifugal force generated in this way and the capillary force of the capillary channel provided in the analysis device 1.
  • FIG. 1 to 3 show a signal processing device 120 in which the rotation driving means 106, the control means 109, the arithmetic unit 110, and the display unit 111 in FIG. 6 are realized by a microcomputer.
  • the first to third measurement spots 17a, 17b, and 17c are formed on the same radius of the analysis device 1.
  • Position detection marks 18 are provided on the upper and lower sides of the first to third measurement spots 17a, 17b, and 17c, respectively.
  • the position detection mark 18 has an inclined surface 18a that totally reflects toward the outer periphery of the analysis device 1 so that the detection light Ph emitted from the light source 112 does not enter the photodetector 113. It is comprised by the rib 18b which has.
  • the protrusions 17bb and 17cc provided at positions symmetrical to the measurement spots 17b and 17c with respect to the axis 107 are the base substrate 3 as a balance weight for balancing the rotation of the analyzing device 1. Is formed.
  • an origin sensor 19 is provided to detect the absolute position of the set analysis device 1.
  • the origin sensor 19 outputs an origin signal 22 to the microcomputer 21 at the timing when the origin position mark 20 of the through hole formed in the analyzing device 1 is detected as shown in FIGS. 7A and 7B.
  • the brushless motor 23 that rotationally drives the turntable 101 includes a plurality of stator coils, an outer rotor, and a magnet that is provided on the stator side and detects the magnetized state of the outer rotor that passes forward.
  • a synchronized FG signal 24 (see FIG. 3B) is obtained. More specifically, the cycle of the FG signal is a cycle that is inversely proportional to the rotational speed of the outer rotor.
  • FIG. 13 shows the wavelength spectrum of the light emitting diode.
  • the broken line is a wavelength spectrum at a low temperature.
  • the solid line is the wavelength spectrum at high temperature.
  • FIG. 2 shows the configuration of the microcomputer 21.
  • the microcomputer 21 instructs the brushless motor 23 to start rotation driving via the motor driving unit 25 in step S1.
  • step S2 When the generation of the origin signal 22 is detected in step S2 (timing T1 in FIG. 3A), counting of the FG signal 24 is started in step S3. In step S4, when it is detected that the count value of the FG signal 24 has reached the specified value, the light source 112 is switched to the lighting state via the light source driving unit 26 (timing T2 in FIG. 3C).
  • the light source 112 is turned on and the rib 18b on the upper side of the first measurement spot 17a passes through the front position of the photodetector 113, the first measurement spot 17a passes, and then the rib 18b on the lower side of the first measurement spot 17a.
  • the detection signal of the photodetector 113 is captured via the A / D converter (analog / digital converter) 27 as shown in FIG.
  • the data of FIG. 3D is recorded in the memory 28 in association with the occasional count value of the FG signal 24 that started counting in step S3.
  • step S6 when it is detected that the predetermined time has elapsed or the count value of the FG signal 24 has reached a specified value, the light source 112 is turned off.
  • steps S4 to S6 are repeated for the second measurement spot 17b and the third measurement spot 17c as in the case of the first measurement spot 17a, and the second and third measurement spots 17b, 17b, Data is collected in the memory 28 until the data collection of 17c is completed.
  • the description of the signal processing will be continued by taking the case of the first measurement spot 17a as an example.
  • step S7 as shown in FIG. 3B, the timing T31 at which the level of the photodetector 113 becomes dark across the threshold A immediately after the origin signal 22 is specified. Further, the timing T32 at which the level of the photodetector 113 becomes brighter across the threshold A immediately after the origin signal 22 is specified, and the interval B1 between the timing T31 and T32 from the FG signal 24 is the known width of the first rib 18b. It is determined whether it is.
  • the timing T33 at which the level of the photodetector 113 becomes dark across the threshold A is specified. Further, the timing T34 at which the level of the photodetector 113 becomes brighter across the threshold A is specified, and it is determined from the FG signal 24 whether the interval B2 between the timings T33 and T34 is a known width of the second rib 18b. To do.
  • the interval C1 between the center TC1 at timings T31 and T32 and the center TC3 at timings T33 and T34. Is a known interval between the first and second ribs 18b. If this condition is satisfied, in step S8, the relative positions of the interval C1 and the first and second ribs 18b and the first measurement spot 17a defined by the physical arrangement of the analysis device 1 are determined.
  • step 9 From the distance D1 from the center TC1 of the timings T31 and T32 and the center of the first measurement spot 17a obtained from (ratio), or from the distance D2 from the center TC3 of the timings T33 and T34 to the center of the first measurement spot 17a. The position of the first measurement spot 17a is determined.
  • the detection value S of the photodetector 113 is read from the data collected in the memory 28 based on the determined position, and the component amount is calculated from the amount of transmitted light.
  • the first measurement spot 17a is programmed to repeatedly execute steps S2 to S8 a predetermined number of times, and even if the number of repetitions reaches the upper limit, the condition is satisfied. If not satisfied, a measurement error is output for the first measurement spot 17a.
  • the second and third measurement spots 17b and 17c are processed in the same manner as the first measurement spot 17a.
  • the rib 18b is provided on the analysis device as the position detection mark 18, the position immediately before and after the measurement spot is detected using the sensor that reads the measurement spot, and the target analysis signal is accurately obtained. Can be extracted.
  • the position of the measurement spot is approximated by counting the FG signal 24 and is calculated by analyzing the data including the position detection mark 18, components for position detection such as a high-resolution rotary encoder are provided. A relatively good measurement result can be obtained even if it is not provided separately.
  • FIG. 10 shows a second embodiment of the present invention.
  • the analysis device is provided with a rib 18b having a shape having an inclined surface 18a as the position detection mark 18, and when the rotation detection position immediately before and immediately after the measurement spot is reached, the light detector 112 detects the photo detector.
  • the output light incident on 113 is configured to be shielded by the inclined surface 18a acting as a reflecting surface
  • the shape of the rib 18b is changed as shown in FIG. A light shielding film 18c that is difficult to be formed is formed.
  • the input signal of each part of the signal processing device 120 is the same as in FIG. 3, and the position immediately before and after the measurement spot is detected using a sensor that reads the measurement spot.
  • the target analysis signal can be accurately extracted.
  • FIG. 11 shows a third embodiment of the present invention.
  • the inclined surface 18a acts as a reflection surface so that the detection light Ph emitted from the light source 112 does not enter the photodetector 113.
  • the detection light Ph emitted from the light source 112 as shown in FIG.
  • the inclined surface 18a acts as a refracting surface, and the detection light Ph emitted from the light source 112 does not enter the photodetector 113 at the position of the position detection mark 18. The rest is the same as in the first embodiment.
  • FIG. 12 shows a fourth embodiment of the present invention.
  • the position detection mark 18 is provided on both the upper side and the lower side of the measurement spot with respect to the direction of rotation, and the signal processing device 120 is connected to the trigger width B1 of the upper side position detection mark 18.
  • the analysis signal read between the position detection mark 18 on the upper side and the position detection mark 18 on the lower side is extracted from the above.
  • the upper and lower sides of the measurement spot are extracted. Even when the position detection mark 18 is provided on only one of them, a necessary analysis signal can be extracted from the analysis signals written in the memory 28.
  • FIG. 12 shows an input signal of the signal processing device 120 when the position detection mark 18 is provided only on the upper side of the measurement spot.
  • the signal processing device 120 measures the actual number of revolutions of the analyzing device when the received light data is acquired, and binarizes the received light data with the threshold value A. Then, it is confirmed whether the width B1 of the light reception data of the position detection mark 18 is within the specified value. If the width B1 of the light reception data is within the specified value, it is recognized as the position detection mark 18.
  • the distance D1 distance from the center of the position detection mark to the center of the measurement spot
  • the specified rotation speed, and the sampling speed of the A / D converter 27 Using the actual number of revolutions of the analyzing device when the light reception data is actually acquired, the distance on the light reception data written in the memory 28 is recalculated, the position of the measurement spot is determined, and the necessary light reception data is obtained. Extract.
  • a specific calculation example is shown below.
  • the present invention can perform mixing and stirring of an analysis device used for component analysis of a liquid collected from a living organism or the like in a short time, maintaining analysis accuracy and contributing to improvement in analysis efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

 分析用デバイス1の測定スポット17a,17b,17cの直前または直後の回転検出位置に到達したときに光源12からセンサ113に入射する出力光を遮る反射面,屈折面あるいは遮光面の何れかを有する位置検出マーク18を設け、測定スポット17a,17b,17cを読み取るセンサ113の出力信号をメモリ28に蓄積して、このメモリ28に蓄積した受光データから測定スポット17a,17b,17cの位置を判定して目的の分析信号だけを抽出することによって、測定スポットの数が増えても部品を追加することなく各測定スポットを読みとれる。

Description

分析装置
 本発明は、生物などから採取した試料液が入った分析用デバイスを、遠心力によって測定スポットに向かって移送して分析する分析装置に関する。
 従来、生物などから採取した液体を分析する方法として、液体流路を形成した分析用デバイスを用いて分析する方法が知られている。分析用デバイスは、回転装置を使って流体の制御をすることが可能であり、遠心力を利用して、試料液の希釈、溶液の計量、固体成分の分離、分離された流体の移送分配、溶液と試薬の混合等を行うことができるため、種々の生物化学的な分析を行うことが可能である。
 遠心力を利用して溶液を移送する特許文献1に記載の分析用デバイス50は、図14に示すように注入口51からピペットなどの挿入器具によって検体としての試料液を計量室52へ注入し、計量室52の毛細管力で試料液を保持した後、分析用デバイスの回転によって、試料液を分離室53へ移送するように構成されている。このような遠心力を送液の動力源とする分析用デバイスは、円盤形状にすることで送液制御を行うためのマイクロチャネルを放射状に配置でき、無駄な面積が発生しないため好ましい形状として用いられる。
 試料液と希釈液の混合攪拌は、この分析用デバイス50をセットしたターンテーブルを、同一回転方向に加減速あるいは正転、逆転することで行っている。また、測定スポットに移送された試料液と希釈液の混合液にアクセスして分析信号を読み出す測定位置検出手段は、光源と受光部とで構成されている。
 また、ターンテーブルに取り付けられたロータリーエンコーダによって検出されたり、分析用デバイスに設けられたトリガーマークを検出した信号に基づいて測定位置のタイミングであると判定して、前記光源を点灯させて前記受光部によって読み取っている。
特表平7-500910号公報
 このような場合、前記測定スポットの読み取りを実施するセンサとは別に、前記分析用デバイスの原点位置を検出するセンサと、前記トリガーマークを検出するセンサの3つのセンサを使った構成が考えられる。または、前記分析用デバイスの原点と前記トリガーマークを同一円周上に配置し、両者の形状を明らかに異なるものにすることで、センサを共通化するといった構成も可能である。但し、この場合は両者の違いを分析用デバイスの回転中にリアルタイムに行う信号処理部分が必要である。また、前記トリガーマークの代わりにターンテーブルにロータリーエンコーダを取り付けた構成も考えられるが、分析用デバイスが小型の場合には、高分解能のものが必要となる。しかし、いずれの方法でも、前記測定スポットの読み取りを実施するセンサと前記測定スポットの位置を検出するセンサは別のセンサである。このため、各々のセンサの取り付け誤差や分析用デバイスと前記ターンテーブルの嵌合ガタによって、前記測定スポットの位置検出にずれが発生する。
 本発明は、前記従来の課題を解決するもので、センサの数または位置検出用の部品を追加しなくても確実な読み取り処理を実現できる分析装置及び位置検出方法を提供することを目的とする。
 本発明の分析装置は、試料液を遠心力によって測定スポットに向かって移送するマイクロチャネル構造を有する分析用デバイスと、セットされた前記分析用デバイスに回転を与える回転駆動手段と、セットされた前記分析用デバイスを挟んで対向して配置された光源とフォトディテクタとを設け、前記分析用デバイスの前記測定スポットを透過した出力光を前記フォトディテクタで検出するよう読み取り手段を構成するとともに、前記分析用デバイスには、前記測定スポットの直前または直後の回転検出位置に到達したときに前記光源から前記フォトディテクタに入射する出力光を遮る反射面,屈折面あるいは遮光面の何れかを有する位置検出マークを設け、前記読み取り手段には、前記回転駆動手段から得られる分析用デバイスの回転検出信号と前記フォトディテクタの検出信号に基づいて、前記分析用デバイスの前記測定スポットを透過したタイミングの前記出力光を抽出して前記試料液の成分を計算する信号処理装置を設けたことを特徴とする。
 また、前記分析用デバイスには、位置検出マークとは別に前記回転の方向の原点位置を示す原点位置マークを設け、前記信号処理装置を、前記原点位置マークと前記回転検出信号と前記原点位置マークと前記位置検出マークの位置読み取り信号とに基づいて前記分析信号中の所定のタイミングの信号を抽出して前記試料液の成分を計算するよう構成したことを特徴とする。
 また、前記位置検出マークを前記回転の方向に対して前記測定スポットの上手側と下手側に設け、前記信号処理装置を、第1の位置検出マークのトリガ幅と、第2の位置検出マークのトリガ幅と、前記第1の位置検出マークと前記第2の位置検出マークの間隔が許容範囲内の場合に、前記第1の位置検出マークと前記第2の位置検出マークの間で読み取った前記分析信号を抽出するよう構成したことを特徴とする。
 また、前記位置検出マークを前記回転の方向に対して前記測定スポットの上手側と下手側の一方に設け、前記信号処理装置を、位置検出マークのトリガ幅と前記回転検出信号とに基づいて前記測定スポットの位置を判定して前記分析信号を抽出するよう構成したことを特徴とする。
 本発明の分析装置の位置検出方法は、試料液を遠心力によって測定スポットに向かって移送するマイクロチャネル構造を有する分析用デバイスと、セットされた前記分析用デバイスに回転を与える回転駆動手段と、セットされた前記分析用デバイスを挟んで対向して配置された光源とフォトディテクタとを設け、前記分析用デバイスの前記測定スポットを透過した出力光を前記フォトディテクタで検出するよう読み取り手段を構成するとともに、前記分析用デバイスには、前記測定スポットの直前または直後の回転検出位置に到達したときに前記光源から前記フォトディテクタに入射する出力光を遮る反射面,屈折面あるいは遮光面の何れかを有する位置検出マークを設け、前記読み取り手段には、前記回転駆動手段から得られる分析用デバイスの回転検出信号と前記フォトディテクタの検出信号に基づいて、前記分析用デバイスの前記測定スポットを透過したタイミングの前記出力光を抽出して前記試料液の成分を計算する信号処理装置を設けた分析装置において、前記回転駆動手段により前記分析用デバイスを回転させ、前記原点位置マークから前記回転検出信号をカウントし、所定の数に達した時点で前記光源を点灯させ、前記フォトディテクタで前記分析用デバイスを透過した出力光を検出し、前記光源を点灯させてから所定の時間が経過若しくは前記回転検出信号が所定の数に達したら前記光源を消灯させ、前記検出した信号から前記位置検出マークを抽出し、前記抽出した位置検出マークと、予め記憶されていた前記位置検出マークと前記測定スポットの位置関係の情報から前記測定スポット位置を特定することを特徴とする。
 また、前記抽出した位置検出マークと、前記回転検出信号から得られる前記分析用デバイスの回転数と、予め記憶されていた前記位置検出マークと前記測定スポットの位置関係の情報から前記測定スポット位置を特定することを特徴とする。
 この構成によれば、分析用デバイスの測定スポットを透過した出力光をフォトディテクタで検出するよう読み取り手段を構成するとともに、分析用デバイスには、測定スポットの直前または直後の回転検出位置に到達したときに光源から前記フォトディテクタに入射する出力光を遮る反射面,屈折面あるいは遮光面の何れかを有する位置検出マークを設けたため、測定スポットを読み取るセンサの出力信号から測定スポットの位置を判定して、目的の分析信号を的確に抽出できる。
本発明の実施の形態1の分析装置における分析用デバイスとその周辺の概略平面図と信号処理装置の構成図 同実施の形態のマイクロコンピュータのフローチャート図 同実施の形態のタイミング図 同実施の形態の分析装置のドアを開放した状態の斜視図 分析用デバイスを分析装置にセットした状態の要部断面図 同実施の形態の分析装置のブロック図 同実施の形態の分析用デバイスの保護キャップを閉じた状態の外観斜視図 同実施の形態の分析用デバイスの保護キャップを開いた状態の外観斜視図 同実施の形態の分析用デバイスの分解斜視図 同実施の形態の図7AのA-A断面図 同実施の形態の図7AのB-B断面図 同実施の形態の図7AのC-C断面図 同実施の形態の図7AのD-D断面図 実施の形態2の分析用デバイスの要部断面図 実施の形態3の分析用デバイスの要部断面図 実施の形態4のタイミング図 実施の形態1の光源としての発光ダイオードのスペクトル図 特許文献1の分析用デバイスの一部切り欠き斜視図
 以下、本発明の分析装置の各実施の形態を図1~図13に基づいて説明する。
  (実施の形態1)
 図1~図9A,図9B,図9C,図9Dと図13は本発明の実施の形態1を示す。
 図7A,図7B~図9A,図9B,図9C,図9Dは分析用デバイスを示す。
 図7A,図7Bは分析用デバイス1の保護キャップ2を閉じた状態と開いた状態を示している。図8は図7Aにおける下側を上に向けた状態で分解した状態を示す。図9Aは図7AのA-A断面図,図9Bは図7AのB-B断面図,図9Cは図7AのC-C断面図,図9Dは図7AのD-D断面図である。
 図7A,図7Bと図8に示すこの分析用デバイス1は、微細な凹凸形状を表面に有するマイクロチャネル構造が片面に形成されたベース基板3と、ベース基板3の表面を覆うカバー基板4と、希釈液を保持している希釈液容器5と、試料液飛散防止用の保護キャップ2とを合わせた4つの部品で構成されている。
 ベース基板3とカバー基板4は、希釈液容器5などを内部にセットした状態で接合され、この接合されたものに保護キャップ2が取り付けられている。希釈液容器5の開口5aは、希釈液を入れた後にアルミ箔(図示せず)によって封止されている。
 ベース基板3の上面に形成されている数個の凹部の開口をカバー基板4で覆うことによって、複数の測定スポット17a,17b,17cとその間を接続するマイクロチャネル構造の流路などが形成されている。
 この分析用デバイス1を使用した分析工程の概要は、希釈液が予めセットされた分析用デバイス1の注入口6に試料液を点着し、保護キャップ2を閉じることによって希釈液容器5が移動して図9Bに示すように開口5aの前記アルミ箔が突起14によって破られて希釈液が流れ出す。この流れ出した試料液を前記希釈液で希釈した後に測定しようとするものである。
 図4は分析装置100のドア103を開放した状態を示し、ターンテーブル101にこの分析用デバイス1をセットしてドア103を閉じた状態を図5に示す。
 分析装置100のターンテーブル101の上面には溝102が形成されており、分析用デバイス1をターンテーブル101にセットした状態では分析用デバイス1のカバー基板4と保護キャップ2に形成された回転支持部15,16が溝102に係合してこれを収容している。
 ターンテーブル101に分析用デバイス1をセットして、ターンテーブル101を回転させる前に分析装置のドア103を閉じると、セットされた分析用デバイス1は、ドア103の側に設けられた可動片104によって、ターンテーブル101の回転軸心上の位置がバネ105の付勢力でターンテーブル101の側に押さえられて、分析用デバイス1は、回転駆動手段106によって回転駆動されるターンテーブル101と一体に回転する。107はターンテーブル101の回転中の軸心を示している。
 図6は分析装置100の構成を示す。
 この分析装置100は、ターンテーブル101を回転させるための回転駆動手段106と、分析用デバイス1内の溶液を光学的に測定するための光学測定手段108と、ターンテーブル101の回転速度や回転方向および光学測定手段の測定タイミングなどを制御する制御手段109と、光学測定手段108によって得られた信号を処理し測定結果を演算するための演算部110と、演算部110で得られた結果を表示するための表示部111とで構成されている。
 回転駆動手段106は、ターンテーブル101を介して分析用デバイス1を回転軸心107の回りに任意の方向に所定の回転速度で回転させるだけではなく、所定の停止位置で回転軸心107を中心に所定の振幅範囲、周期で左右に往復運動をさせて分析用デバイス1を揺動させることができるように構成されている。
 光学測定手段108には、分析用デバイス1の測定スポットに検出光を照射するための光源112と、測定スポットにアクセスして信号を読み取る読み取り手段として分析用デバイス1を通過した透過光の光量を検出するフォトディテクタ113とを備えている。
 分析用デバイス1をターンテーブル101によって回転駆動して、注入口6から内部に取り込んだ試料液を、注入口6よりも内周にある前記回転軸心107を中心に分析用デバイス1を回転させて発生する遠心力と、分析用デバイス1内に設けられた毛細管流路の毛細管力を用いて、分析用デバイス1の内部で溶液を移送していくよう構成されている。
 図1~図3は図6における回転駆動手段106と制御手段109と演算部110および表示部111とをマイクロコンピュータで実現した信号処理装置120を示している。
 この分析装置100の分析用デバイス1では、第1~第3の測定スポット17a,17b,17cは分析用デバイス1の同一の半径上に形成されている。この第1~第3の測定スポット17a,17b,17cの上手側と下手側にはそれぞれ位置検出マーク18が設けられている。位置検出マーク18は、図9A,図9B,図9Cに示すように光源112から出射した検出光Phがフォトディテクタ113へ入射しないように分析用デバイス1の外周へ向かって全反射させる傾斜面18aを有するリブ18bで構成されている。
 なお、図7Aにおいて軸心107に対して測定スポット17b,17cと点対称の位置に設けられた突部17bb,17ccは、分析用デバイス1の回転のバランスを取るためのバランスウェイトとしてベース基板3に形成されている。
 この分析装置100ではセットした分析用デバイス1の絶対位置を検出するために原点センサ19が設けられている。この原点センサ19は、図7A,図7Bに示すように分析用デバイス1に形成されている貫通孔の原点位置マーク20を検出したタイミングにマイクロコンピュータ21に原点信号22を出力する。
 なお、図1,図5においてターンテーブル101を回転駆動するブラシレスモータ23は、複数のステータコイルと、アウターロータと、ステータ側に設けられ前方を通過する前記アウターロータの着磁状態を検出するマグネットダイオードと、前記マグネットダイオードの検出に基づいて前記複数のステータコイルへの通電を切り換えて前記アウターロータを回転駆動する通電切換部を有しており、前記マグネットダイオードの出力からはアウターロータの回転に同期したFG信号24(図3(b)参照)が得られる。さらに詳しくは、FG信号の周期は、アウターロータの回転速度に反比例した周期である。
 図13は発光ダイオードの波長スペクトルを示す。
 発光ダイオードは長寿命で低消費電力、小型で安価なため、近年様々な光源として使用されている。図13において破線は低温時の波長スペクトルである。実線が高温時の波長スペクトルである。このように発光ダイオードを測定用光源に使用した場合、温度によって波長スペクトルが変化するため、試料の濃度と試料の吸収するスペクトルに変化がなくてもフォトディテクタ113で受光する光量が変化する。すなわち、光源112に発光ダイオードを使用した場合、常時点灯させておくと発光の熱によって発光ダイオード自身の温度が上昇して波長が変化するため、パルス点灯させて発光ダイオード自身の発熱を抑える制御が必要である。
 図2はマイクロコンピュータ21の構成を示す。
 マイクロコンピュータ21は、ステップS1でモータ駆動部25を介してブラシレスモータ23に回転駆動の開始を指示する。
 ステップS2で原点信号22の発生を検出(図3(a)のタイミングT1)すると、ステップS3ではFG信号24の計数を開始する。そしてステップS4では、FG信号24の計数値が規定値になったことを検出すると、光源駆動部26を介して光源112を点灯状態に切り換える(図3(c)のタイミングT2)。
 光源112が点灯しフォトディテクタ113の前方位置を第1の測定スポット17aの上手側のリブ18bが通過し、第1の測定スポット17aが通過し、次いで第1の測定スポット17aの下手側のリブ18bが通過すると、ステップS5では、フォトディテクタ113の検出信号は、A/D変換部(アナログ/デジタル変換部)27を介して図3(d)に示すように取り込まれる。この図3(d)のデータはステップS3で計数を開始したFG信号24の時々の計数値と対応づけてメモリ28に記録される。
 ステップS6では、所定時間が経過またはFG信号24の計数値が規定値になったことを検出すると、光源112を消灯させる。
 実際には、第2の測定スポット17b,第3の測定スポット17cについても第1の測定スポット17aの場合と同様にステップS4~S6を繰り返し実行して、第2,第3の測定スポット17b,17cのデータ収集が完了するまでデータをメモリ28に収集するが、ここでは第1の測定スポット17aの場合を例に挙げて信号処理の説明を続ける。
 ステップS7では、図3(b)に示すように原点信号22の直後にフォトディテクタ113のレベルが閾値Aを横切って暗くなったタイミングT31を特定する。また、原点信号22の直後にフォトディテクタ113のレベルが閾値Aを横切って明るくなったタイミングT32を特定して、FG信号24とからタイミングT31とT32の間隔B1が、最初のリブ18bの既知の幅であるかを判定する。
 また、次いでフォトディテクタ113のレベルが閾値Aを横切って暗くなったタイミングT33を特定する。また、フォトディテクタ113のレベルが閾値Aを横切って明るくなったタイミングT34を特定して、FG信号24とからタイミングT33とT34の間隔B2が、2番目のリブ18bの既知の幅であるかを判定する。
 最初のリブ18bの既知の幅であってさらに2番目のリブ18bの既知の幅であると判定した場合には、タイミングT31とT32のセンターTC1と、タイミングT33とT34のセンターTC3との間隔C1が、1番目と2番目のリブ18bの既知の間隔であるのかを判定する。この条件を満足した場合には、ステップS8において、間隔C1と、分析用デバイス1の物理的な配置から規定される第1番目と2番目のリブ18b,第1の測定スポット17aとの相対位置(比率)から求められるタイミングT31とT32のセンターTC1から第1の測定スポット17aの中心までの距離D1から、またはタイミングT33とT34のセンターTC3から第1の測定スポット17aの中心までの距離D2から、第1の測定スポット17aの位置を割り出す。ステップ9では、割り出した位置に基づいてメモリ28に収集済みのデータからフォトディテクタ113の検出値Sを読み出して、透過光の量から成分量を計算する。
 ステップS8において条件が満足しなかった場合には、第1の測定スポット17aについて所定回数だけステップS2~ステップS8を繰り返し実行するようにプログラムされており、繰り返し回数が上限値になっても条件を満足しない場合には、第1の測定スポット17aについて測定エラーを出力する。
 第2,第3の測定スポット17b,17cについても第1の測定スポット17aと同様に処理される。
 このように、位置検出マーク18として分析用デバイスにリブ18bを設けたので、測定スポットを読み取るセンサを利用して測定スポットの直前位置と直後位置とを検出して、目的の分析信号を的確に抽出できる。
 さらに、測定スポットの位置をFG信号24を計数することで概算し、位置検出マーク18を含むデータを分析することで精算するように構成したため、高分解能のロータリーエンコーダ等の位置検出用の部品を別途に設けなくても比較的良好な測定結果を得ることが出来る。
  (実施の形態2)
 図10は本発明の実施の形態2を示す。
 実施の形態1では、分析用デバイスに位置検出マーク18として分析用デバイスに傾斜面18aを有する形状のリブ18bを設け、測定スポットの直前、直後の回転検出位置に到達したときに光源112からフォトディテクタ113に入射する出力光を反射面として作用する傾斜面18aによって遮るように構成したが、この実施の形態2では図10に示すようにリブ18bの形状を変更すると共に、その端面に光が透過しにくい遮光膜18cが形成されている。
 このように構成した場合であっても、信号処理装置120の各部の入力信号は図3と同じであって、測定スポットを読み取るセンサを利用して測定スポットの直前位置と直後位置とを検出して、目的の分析信号を的確に抽出できる。
  (実施の形態3)
 図11は本発明の実施の形態3を示す。
  実施の形態1では、光源112から出射した検出光Phがフォトディテクタ113へ入射しないよう傾斜面18aが反射面として作用したが、図11に示すように光源112から出射した検出光Phがベース基板3の側からリブ18bに入射する場合には、傾斜面18aが屈折面として作用して、位置検出マーク18の位置では光源112から出射した検出光Phがフォトディテクタ113へ入射しない。その他は実施の形態1と同じである。
  (実施の形態4)
 図12は本発明の実施の形態4を示す。
 上記の各実施の形態では、位置検出マーク18を回転の方向に対して測定スポットの上手側と下手側の両方に設け、信号処理装置120を、上手側の位置検出マーク18のトリガ幅B1と、下手側の位置検出マーク18のトリガ幅B2と、上手側の位置検出マーク18と下手側の位置検出マーク18の間隔C1が許容範囲内の場合に、メモリ28に書き込まれている前記分析信号の内から、上手側の位置検出マーク18と下手側の位置検出マーク18の間で読み取った前記分析信号を抽出するよう構成したが、この実施の形態4では、測定スポットの上手側と下手側の一方だけに位置検出マーク18を設けた場合であっても、メモリ28に書き込まれている前記分析信号の内から、必要な分析信号を抽出することもできる。
 ここでは測定スポットの上手側にだけ位置検出マーク18を設けた場合の信号処理装置120の入力信号を図12に示す。この場合、信号処理装置120では、受光データ取得時の分析用デバイスの実回転数を測定し、受光データを前記閾値Aで二値化する。そして位置検出マーク18の受光データの幅B1が規定値内か確認し、受光データの幅B1が規定値内であれば、それを位置検出マーク18と認識する。分析用デバイスの物理的な配置と規定回転数およびA/D変換部27のサンプリング速度から予め求められる測定スポットまでの距離D1(位置検出マークの中心から測定スポットの中心までの距離)に対して、実際に受光データを取得したときの分析用デバイスの実回転数を用いて、メモリ28に書き込まれている受光データ上の距離を再計算し、測定スポットの位置を割り出して必要な受光データを抽出する。具体的な計算例を下記に示す。
 ここでは、位置検出マーク18の中心と測定スポットの中心との角度が3.6°、規定回転数が1500rpm、A/D変換部27のサンプリング速度が1MSPSである時、前記距離D1は、
 ((60〔秒〕÷1500〔rpm〕×3.6〔deg〕)/360〔deg〕)×1M〔Sample〕
 =400〔Sample〕
である。受光データを取得したときの分析用デバイスの実回転数2000rpmとすると、信号処理装置120に予め格納されている。実際の測定スポット距離D1は、
  400〔Sample〕×1500〔rpm〕÷2000〔rpm〕
 =300〔Sample〕
となる。
 本発明は、生物などから採取した液体の成分分析に使用する分析用デバイスの混合攪拌を短時間で行うことができ、分析精度を維持して分析効率の向上に寄与する。

Claims (6)

  1.  試料液を遠心力によって測定スポットに向かって移送するマイクロチャネル構造を有する分析用デバイスと、
     セットされた前記分析用デバイスに回転を与える回転駆動手段と、
     セットされた前記分析用デバイスを挟んで対向して配置された光源とフォトディテクタとを設け、前記分析用デバイスの前記測定スポットを透過した出力光を前記フォトディテクタで検出するよう読み取り手段を構成するとともに、
     前記分析用デバイスには、前記測定スポットの直前または直後の回転検出位置に到達したときに前記光源から前記フォトディテクタに入射する出力光を遮る反射面,屈折面あるいは遮光面の何れかを有する位置検出マークを設け、
     前記読み取り手段には、
     前記回転駆動手段から得られる分析用デバイスの回転検出信号と前記フォトディテクタの検出信号に基づいて、前記分析用デバイスの前記測定スポットを透過したタイミングの前記出力光を抽出して前記試料液の成分を計算する信号処理装置を設けた
    分析装置。
  2.  前記分析用デバイスには、位置検出マークとは別に前記回転の方向の原点位置を示す原点位置マークを設け、
     前記信号処理装置を、前記原点位置マークと前記回転検出信号と前記位置検出マークの位置読み取り信号とに基づいて前記分析信号中の所定のタイミングの信号を抽出して前記試料液の成分を計算するよう構成した
    請求項1記載の分析装置。
  3.  前記位置検出マークを前記回転の方向に対して前記測定スポットの上手側と下手側に設け、
     前記信号処理装置を、
     第1の位置検出マークのトリガ幅と、
     第2の位置検出マークのトリガ幅と、
     前記第1の位置検出マークと前記第2の位置検出マークの間隔
    が許容範囲内の場合に、前記第1の位置検出マークと前記第2の位置検出マークの間で読み取った前記分析信号を抽出するよう構成した
    請求項1記載の分析装置。
  4.  前記位置検出マークを前記回転の方向に対して前記測定スポットの上手側と下手側の一方に設け、
     前記信号処理装置を、
     位置検出マークのトリガ幅と前記回転検出信号とに基づいて前記測定スポットの位置を判定して前記分析信号を抽出するよう構成した
    請求項1記載の分析装置。
  5.  試料液を遠心力によって測定スポットに向かって移送するマイクロチャネル構造を有する分析用デバイスと、セットされた前記分析用デバイスに回転を与える回転駆動手段と、セットされた前記分析用デバイスを挟んで対向して配置された光源とフォトディテクタとを設け、前記分析用デバイスの前記測定スポットを透過した出力光を前記フォトディテクタで検出するよう読み取り手段を構成するとともに、前記分析用デバイスには、前記測定スポットの直前または直後の回転検出位置に到達したときに前記光源から前記フォトディテクタに入射する出力光を遮る反射面,屈折面あるいは遮光面の何れかを有する位置検出マークを設け、前記読み取り手段には、前記回転駆動手段から得られる分析用デバイスの回転検出信号と前記フォトディテクタの検出信号に基づいて、前記分析用デバイスの前記測定スポットを透過したタイミングの前記出力光を抽出して前記試料液の成分を計算する信号処理装置を設けた分析装置において、
     前記回転駆動手段により前記分析用デバイスを回転させ、前記原点位置マークから前記回転検出信号をカウントし、所定の数に達した時点で前記光源を点灯させ、前記フォトディテクタで前記分析用デバイスを透過した出力光を検出し、前記光源を点灯させてから所定の時間が経過若しくは前記回転検出信号が所定の数に達したら前記光源を消灯させ、前記検出した信号から前記位置検出マークを抽出し、前記抽出した位置検出マークと、予め記憶されていた前記位置検出マークと前記測定スポットの位置関係の情報から前記測定スポット位置を特定する
    分析装置の位置検出方法。
  6.  前記抽出した位置検出マークと、前記回転検出信号から得られる前記分析用デバイスの回転数と、予め記憶されていた前記位置検出マークと前記測定スポットの位置関係の情報から前記測定スポット位置を特定する
    請求項5記載の分析装置の位置検出方法。
PCT/JP2009/000120 2008-01-21 2009-01-15 分析装置 WO2009093422A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/863,914 US8289529B2 (en) 2008-01-21 2009-01-15 Analyzing apparatus
EP09703534.9A EP2241894B1 (en) 2008-01-21 2009-01-15 Analyzing apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008009951 2008-01-21
JP2008-009951 2008-01-21
JP2008-295002 2008-11-19
JP2008295002A JP5174627B2 (ja) 2008-01-21 2008-11-19 分析装置

Publications (1)

Publication Number Publication Date
WO2009093422A1 true WO2009093422A1 (ja) 2009-07-30

Family

ID=40900934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000120 WO2009093422A1 (ja) 2008-01-21 2009-01-15 分析装置

Country Status (4)

Country Link
US (1) US8289529B2 (ja)
EP (1) EP2241894B1 (ja)
JP (1) JP5174627B2 (ja)
WO (1) WO2009093422A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007030347A1 (de) * 2007-06-29 2009-01-02 Ducrée, Jens, Dr. Integrierter Rotor
CN104657400B (zh) * 2013-11-19 2018-02-02 光宝科技股份有限公司 离心分析系统以及其分析方法
JP6087272B2 (ja) * 2013-12-20 2017-03-01 信越ポリマー株式会社 分析基板
US10574160B2 (en) 2014-06-30 2020-02-25 Phc Holdings Corporation Circuit for detecting rotation angle, method for detecting rotation angle, sample analysis device, and computer program for sample analysis device
EP3086126B1 (de) * 2015-04-23 2020-12-16 Siemens Healthcare Diagnostics Products GmbH Verfahren zur bestimmung der lage von messpositionen in einem messsystem
US11480525B2 (en) 2016-06-30 2022-10-25 Sysmex Corporation Chemiluminescence measurement apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3771878A (en) * 1970-03-25 1973-11-13 Mse Holdings Ltd Centrifugal photometric analyzer
JPH07500910A (ja) 1991-10-29 1995-01-26 アバクシス,インコーポレイテッド 分析ロータの試料計量口
JP2003270128A (ja) * 2002-03-14 2003-09-25 Matsushita Electric Ind Co Ltd 分析装置とそれに使用する分析用ディスク
WO2006011393A1 (ja) * 2004-07-29 2006-02-02 Matsushita Electric Industrial Co., Ltd. 分析装置、分析用ディスクおよびそれらを備えた分析システム
JP2006284409A (ja) * 2005-04-01 2006-10-19 Matsushita Electric Ind Co Ltd 分析ディスク、並びに分析ディスクおよび分析装置の検査方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4837397B1 (ja) * 1968-08-22 1973-11-10
JPS5793236A (en) * 1980-12-02 1982-06-10 Hitachi Koki Co Ltd Data analyzing apparatus for super centrifugal machine
JP2000304688A (ja) * 1999-04-16 2000-11-02 Canon Inc 基板測定方法および装置
WO2001087487A2 (en) * 2000-05-15 2001-11-22 Tecan Trading Ag Bidirectional flow centrifugal microfluidic devices
US20030054563A1 (en) * 2001-09-17 2003-03-20 Gyros Ab Detector arrangement for microfluidic devices
US20040264323A1 (en) * 2002-01-28 2004-12-30 Worthington Mark Oscar Methods and apparatus for logical triggering
US7251210B2 (en) * 2002-01-31 2007-07-31 Burstein Technologies, Inc. Method for triggering through disc grooves and related optical analysis discs and system
AU2003222544A1 (en) * 2002-04-08 2003-10-27 Gyros Ab Homing process
WO2003102559A1 (en) * 2002-05-31 2003-12-11 Gyros Ab Detector arrangement based on surface plasmon resonance
US20070146715A1 (en) * 2003-11-24 2007-06-28 General Electric Company Sensor systems for quantification of physical parameters, chemical and biochemical volatile and nonvolatile compounds in fluids
JP2006047157A (ja) * 2004-08-06 2006-02-16 Matsushita Electric Ind Co Ltd 光学分析装置
JP4710347B2 (ja) * 2005-02-21 2011-06-29 パナソニック株式会社 分析装置およびそれに使用する分析ディスク
KR101410752B1 (ko) * 2007-07-20 2014-06-23 삼성전자 주식회사 광학 검출 장치, 광학 검출 방법, 및 상기 광학 검출장치를 포함하는 미세유동 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3771878A (en) * 1970-03-25 1973-11-13 Mse Holdings Ltd Centrifugal photometric analyzer
JPH07500910A (ja) 1991-10-29 1995-01-26 アバクシス,インコーポレイテッド 分析ロータの試料計量口
JP2003270128A (ja) * 2002-03-14 2003-09-25 Matsushita Electric Ind Co Ltd 分析装置とそれに使用する分析用ディスク
WO2006011393A1 (ja) * 2004-07-29 2006-02-02 Matsushita Electric Industrial Co., Ltd. 分析装置、分析用ディスクおよびそれらを備えた分析システム
JP2006284409A (ja) * 2005-04-01 2006-10-19 Matsushita Electric Ind Co Ltd 分析ディスク、並びに分析ディスクおよび分析装置の検査方法

Also Published As

Publication number Publication date
JP5174627B2 (ja) 2013-04-03
JP2009198489A (ja) 2009-09-03
US20100309487A1 (en) 2010-12-09
EP2241894A1 (en) 2010-10-20
EP2241894B1 (en) 2018-11-21
US8289529B2 (en) 2012-10-16
EP2241894A4 (en) 2014-01-01

Similar Documents

Publication Publication Date Title
JP5174627B2 (ja) 分析装置
FI96637C (fi) Koeastia ja laite biologisten analyysien suorittamiseksi
JP4912096B2 (ja) マイクロチップ検査装置
US20080138247A1 (en) Liquid Detection and Confidence Determination
JP5376429B2 (ja) 分析用デバイスとこれを使用する分析装置および分析方法
JP2009109251A (ja) 分析用デバイスとこれを使用する分析装置および分析方法
US10969336B2 (en) Optical signal detection module
KR20130075119A (ko) 시료분석장치
US8436989B2 (en) Inspection apparatus using a chip
US10031146B2 (en) Sample analysis device
EP2976619A1 (en) Light and shutter for a sample analyzer
JP6087272B2 (ja) 分析基板
KR20100118340A (ko) 측정용 광디스크, 광학적 측정 장치 및 이를 이용한 광학적 측정 방법
US20230273230A1 (en) Biochemical analyzer
EP1063514B1 (en) Method and apparatus for rapid measurement of cell layers
JP2009236504A (ja) 分析装置
US20240069050A1 (en) Testing device, and method and program for information processing
JP2010019761A (ja) 分析装置
TWI397686B (zh) 多光源生化檢測裝置及方法
KR200410029Y1 (ko) 발광다이오드를 이용한 흡광도 측정 장치
CN101229530B (zh) 离心分离装置
JP2006242613A (ja) 試料分析装置
CN116635720A (zh) 检查装置、信息处理方法和程序
JP2009109199A (ja) 位置決め装置及びそれを用いた分析装置
JPS58158537A (ja) 分析用光投射装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09703534

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12863914

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009703534

Country of ref document: EP