WO2009093332A1 - 受信処理方法および受信装置 - Google Patents
受信処理方法および受信装置 Download PDFInfo
- Publication number
- WO2009093332A1 WO2009093332A1 PCT/JP2008/051093 JP2008051093W WO2009093332A1 WO 2009093332 A1 WO2009093332 A1 WO 2009093332A1 JP 2008051093 W JP2008051093 W JP 2008051093W WO 2009093332 A1 WO2009093332 A1 WO 2009093332A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- subcarrier
- propagation path
- weighting
- signal
- subcarriers
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2647—Arrangements specific to the receiver only
Definitions
- the present invention relates to a reception processing method and a reception device.
- the present invention can also be used for multi-carrier communication such as OFDM (Orthogonal Frequency Division Multiplexing) and OFDMA (Orthogonal Frequency Division Multiple Access).
- OFDM Orthogonal Frequency Division Multiplexing
- OFDMA Orthogonal Frequency Division Multiple Access
- a signal transmitted from a transmitter reaches a receiver via a plurality of propagation paths (multipath).
- the signal observed by the receiver may be a waveform whose amplitude and phase are distorted due to the influence of multipath fading.
- One means for correcting such distortion is synchronous detection using a pilot signal (also referred to as a reference signal) that is a known signal between a transmitter and a receiver.
- a pilot signal is transmitted from a transmitter, and a receiver estimates a channel response (channel value) using this known received signal, and estimates the channel.
- Data signal propagation path compensation is performed using the value. Therefore, a large error in the propagation path estimation value affects the data signal propagation path compensation, leading to an increase in the data signal error rate.
- OFDM (or OFDMA) is a technique for transmitting a signal using a plurality of orthogonal subcarriers.
- a propagation path estimation value is generated for each subcarrier, and a data signal propagation path compensation (equalization) is performed on the data signal mapped to the subcarrier using the propagation path estimation value.
- an OFDM receiver detects an effective symbol component from a received signal, and performs FFT processing on the effective symbol using the detection timing as an FFT (Fast Fourier Transform) timing.
- FFT Fast Fourier Transform
- the OFDM receiver detects a pilot signal (mapped subcarrier) from the frequency domain signal after the FFT processing, performs propagation path estimation using the pilot signal, and performs propagation path compensation of the data signal.
- a pilot signal mapped subcarrier
- the OFDM receiver obtains a log likelihood ratio (LLR: Log ⁇ ⁇ Likelihood Ratio), which is one of the reliability information of the received signal symbol used for error correction, for the data signal subjected to propagation path compensation, The information is used for error correction of the received signal symbol.
- LLR Log ⁇ ⁇ Likelihood Ratio
- the number of pilot signals that can be used to obtain the propagation path estimation value in the communication band is smaller than others, and the accuracy of the obtained propagation path estimation value is likely to deteriorate compared to other subcarriers. It does not take into account the presence of (for example, the end of the communication band and subcarriers in the vicinity thereof).
- One of the objects of the present invention is to improve the error rate characteristics of a received signal in consideration of the presence of such subcarriers.
- the present invention is not limited to the above-described object, and is an operational effect derived from each configuration shown in the best mode for carrying out the invention described later, and has an operational effect that cannot be obtained by conventional techniques. Can be positioned as one of the purposes.
- a first subcarrier group corresponding to a plurality of subcarriers each transmitting a known signal used to obtain a propagation path estimation value, and a propagation path based on the propagation path estimation value obtained using the known signal A reception processing method in a receiving apparatus corresponding to multicarriers, which receives a second subcarrier group corresponding to a plurality of subcarriers to which a data signal to which compensation is applied is transmitted, and belongs to the first subcarrier group
- the frequency of the signal after propagation path compensation for the first subcarrier belonging to the second subcarrier group has a frequency outside the frequency band sandwiched between the highest frequency and the lowest frequency among the subcarrier frequencies.
- the reliability is a second subcarrier having a frequency within the frequency band and belonging to the second subcarrier group. Control for lowering the reliability of the signal after propagation path compensation is performed for the first subcarrier and the second subcarrier after the propagation path compensation based on the controlled reliability. A reception processing method that performs error correction processing on the signal can be used.
- a propagation path estimated value for each subcarrier is generated based on a known received signal in a predetermined communication band, and the received data signal mapped to any subcarrier using the propagation path estimated value Propagation path compensation is performed, reliability information of the reception data signal compensated for the propagation path is obtained, and the number of known reception signals used for obtaining the propagation path estimation value is obtained for subcarriers smaller than others. It is also possible to use a reception processing method in which weighting control is performed to make the weighting of reliability information smaller than others, and error correction of the received data signal is performed using the reliability information after the weighting control.
- the object of the weighting control may be reliability information obtained for a subcarrier at the end of the communication band or the subcarrier and a subcarrier in the vicinity thereof.
- the weighting control may be a control in which a subcarrier closer to a subcarrier at the end of the communication band is set to a smaller weighting.
- the weighting control may be a control in which a subcarrier group closer to a subcarrier at the end of the communication band is set to a smaller weighting.
- the number of subcarriers to be subjected to the weighting control may be controlled according to the measurement result of the multipath delay dispersion amount of the received signal.
- the weighting factor used for the weighting control may be controlled according to the measurement result of the multipath delay dispersion amount of the received signal.
- the weighting factor used for the weighting control may be controlled according to the measurement result of the reception quality information of the received signal.
- the weighting control may be performed for each subcarrier group.
- a control unit that performs control to lower the reliability of the signal after propagation path compensation, and after propagation path compensation for the first subcarrier and the second subcarrier based on the reliability of the control.
- a receiving apparatus can be used that includes an error correction unit that performs error correction processing on the above signals.
- a propagation path estimation unit that generates a propagation path estimation value for each subcarrier based on a known received signal in a predetermined communication band, and is mapped to any subcarrier using the propagation path estimation value
- a propagation path compensation unit that performs propagation path compensation of the received data signal, a reliability information generation unit that obtains reliability information of the reception data signal compensated for the propagation path, and a propagation path estimation value
- a weight control unit that performs weight control for reducing the weight of reliability information obtained for subcarriers having a smaller number of known received signals than others, and the data using the reliability information after the weight control. It is possible to use a receiving apparatus that includes an error correction unit that performs error correction of a signal.
- the weighting control unit may set the weighting control target as reliability information obtained for a subcarrier at the end of the communication band or a subcarrier in the vicinity of the subcarrier. Good.
- the weighting control unit may perform control such that the subcarrier closer to the subcarrier at the end of the communication band is weighted smaller.
- the weighting control unit may perform control such that the subcarrier group closer to the subcarrier at the end of the communication band has a smaller weighting.
- the weighting control unit may control the number of subcarriers to be subjected to the weighting control according to the measurement result of the multipath delay dispersion amount of the received signal.
- the weighting control unit may control a weighting factor used for the weighting control according to a measurement result of a multipath delay dispersion amount of the received signal.
- the weighting control unit may control a weighting factor used for the weighting control according to a measurement result of reception quality information of a received signal.
- the weighting control unit when the subcarrier to which the known received signal is mapped changes with time, the weighting control unit, according to each mapping mode, One or both of the weighting factors used for the weighting control may be controlled.
- the weighting control unit performs the weighting control for each subcarrier group when there are a plurality of subcarrier groups via one or a plurality of subcarriers that are not transmitted in the communication band. It is good.
- FIG. 1 It is a block diagram which shows the structural example of the OFDM receiver which concerns on 1st Embodiment. It is a schematic diagram explaining an example of the LLR weighting process by the LLR correction
- OFDM receiver 11 Receiving antenna 12 Radio unit 13 ADC (Analog to Digital Converter) 14 Timing synchronization unit 15 FFT (Fast Fourier Transformer) DESCRIPTION OF SYMBOLS 16 Propagation path estimation part 17 Propagation path compensation part 18 LLR calculation part 19 LLR correction part 20 Error correction part 21 Delay dispersion
- pilot signals may be mapped and transmitted limited to some subcarriers (frequency).
- FIG. 17 shows that a pilot signal is mapped every two subcarriers in a predetermined communication band (in order to distinguish it from a data signal, the pilot signal is marked with an arrow. The same applies hereinafter). It shows a state of being multiplexed with a data signal not included (no arrow). In such a case, a data signal may be mapped to a subcarrier at the end of the communication band instead of a pilot signal.
- Such a multiplexed signal is received by the receiver through the multipath fading channel from the transmitter as a signal whose phase and amplitude have changed as shown in FIG. 18, for example.
- FIG. 19 shows a state in which a propagation path of a data signal (without an arrow) is estimated based on the pilot signal (arrow) shown in FIG.
- the propagation path estimation value of the subcarrier to which the data signal is mapped can be obtained, for example, by linearly interpolating the propagation path estimation value obtained from two pilot signals mapped to adjacent subcarriers. It is.
- the propagation path estimated value of this subcarrier can be obtained by extrapolation, for example. is there.
- the accuracy of the propagation path estimation value is likely to deteriorate because the number of pilot signals used is smaller than in the interpolation. Therefore, when a data signal is mapped to the subcarrier at the end of the communication band, a result of using a propagation path estimation value that is less accurate than others is used for the propagation path compensation. As a result, the accuracy of the LLR of the data signal after propagation path compensation also deteriorates, and the error rate increases in error correction, so that sufficient reception performance may not be obtained.
- propagation path estimation may be performed by averaging pilot signals of neighboring subcarriers.
- the accuracy of the propagation path estimation values for the subcarriers at both ends of the communication band is likely to be deteriorated as compared with others. Therefore, even in this case, the error rate of the data signal may increase, and sufficient reception performance may not be obtained.
- the LLR obtained for subcarriers with a smaller number of pilot signals used to determine the propagation path estimation value is more likely to deteriorate in accuracy than others.
- mapping is performed to subcarriers that cause the number of pilot signals used for propagation path estimation to be less than a predetermined number, such as the end of the communication band or subcarriers at the end of the communication band and in the vicinity thereof.
- Weighting control is performed to weaken the reliability information (LLR) of the received data signal as compared with the others.
- a subcarrier group corresponding to a plurality of subcarriers to which a pilot signal used for obtaining a propagation path estimation value is transmitted is defined as a first subcarrier group, and the propagation path estimation value obtained using the pilot signal.
- the second subcarrier group is a subcarrier group corresponding to a plurality of subcarriers to which the data signal subjected to propagation path compensation is transmitted, the object to be subjected to the weighting control belongs to the first subcarrier group This is the reliability of the signal after propagation path compensation for a subcarrier having a frequency outside the frequency band sandwiched between the highest frequency and the lowest frequency among the subcarriers and belonging to the second subcarrier group. It can be said.
- the first subcarrier having a frequency outside the frequency band sandwiched between the highest frequency and the lowest frequency among the subcarriers belonging to the first subcarrier group and belonging to the second subcarrier group The reliability of the signal after propagation path compensation for the second subcarrier having the frequency within the frequency band and belonging to the second subcarrier group is compared with the reliability of the signal after propagation path compensation. Control to lower.
- the end of the communication band may mean a subcarrier having the lowest or highest frequency in the communication band, or may include one or more subcarriers in the vicinity of the subcarrier. There is also.
- FIG. 1 is a block diagram illustrating a configuration example of an OFDM receiver according to a first embodiment.
- 1 includes, for example, a receiving antenna 11, a radio unit 12, an ADC (Analog to Digital Converter) 13, a timing synchronization unit 14, an FFT (Fast Fourier), and the like. Transformer) 15, propagation path estimation section 16, propagation path compensation section 17, LLR calculation section 18, LLR correction section 19, and error correction section 20.
- the OFDM receiver 10 may be applied to a radio base station reception system or a radio terminal (mobile station) reception system.
- the receiving antenna 11 receives a signal (OFDM symbol) transmitted by a multicarrier from an OFDM transmitter (not shown).
- the radio unit 12 performs reception processing such as low noise amplification, frequency conversion to a baseband frequency (downcoversion), band limitation using a roll-off filter, etc., on the signal received by the receiving antenna 11.
- the ADC 13 converts the reception signal subjected to the reception process by the wireless unit 12 into a digital signal.
- the obtained digital signal is input to the timing synchronization unit 14 and the FFT 15.
- the timing synchronization unit 14 detects an effective symbol component from the digital signal received by the ADC 13 and supplies the detected timing to the FFT 15 as an FFT timing.
- the FFT 15 converts a digital signal (time domain signal) from the ADC 13 into a frequency domain signal by performing an FFT process at the FFT timing given from the timing synchronization unit 14.
- the propagation path estimation unit 16 detects a mapped subcarrier frequency component of a pilot signal, which is a known reception signal, from the frequency domain signal after the FFT processing, and propagates to the OFDM transmitter based on the pilot signal.
- a path estimation value is obtained for each subcarrier by performing path estimation. Note that propagation path estimation values for subcarriers to which no pilot signal is mapped can be obtained by interpolation or extrapolation.
- the propagation path estimated value can also be obtained by averaging a plurality of pilot signals as described above.
- the propagation path compensation unit 17 uses the propagation path estimation value for each subcarrier obtained by the propagation path estimation unit 16 for the data signal component mapped to one of the subcarriers of the frequency domain signal after the FFT processing. Thus, propagation path compensation is performed.
- the LLR calculation unit (reliability information generation unit) 18 is one piece of reliability information used for error correction (soft decision decoding) in the error correction unit 20 for the data signal after propagation path compensation by the propagation path compensation unit 17. The LLR for each bit is obtained.
- the LLR correction unit (weighting control unit) 19 corrects the LLR for each bit obtained by the LLR calculation unit 18 by performing weighting control according to the subcarrier. For example, when there is a subcarrier with a smaller number of pilot signals used to obtain the propagation path estimation value due to occurrence of extrapolation, such as at the end of the communication band, the LLR correction unit 19 For that subcarrier, the LLR is weighted lower than the LLR obtained for the other subcarriers.
- the error correction unit 20 performs error correction of the received signal using the LLR for each bit corrected (weighted) by the LLR correction unit 19.
- the LLR of the data signal subjected to the propagation path compensation using the propagation path compensation value by the extrapolation interpolation which is generally less accurate than the case by the interpolation interpolation, is the propagation path compensation value by the interpolation interpolation in the LLR correction unit 19. Is weighted so as to be lower than the LLR of the data signal compensated for the propagation path, it is possible to suppress the deterioration of the error rate characteristic as a whole and obtain the desired reception performance.
- N c number the number of sub-carrier communication band
- the propagation path estimation value at a subcarrier #k (However, 0 ⁇ k ⁇ Nc-1 )
- the received data of subcarrier #k (data after FFT processing) at the receiver 10 is represented as r (k).
- the propagation path compensation unit 17 compensates the distortion received from the propagation path for the received data r (k) of each subcarrier #k as shown in the following equation (1).
- the LLR calculation unit 18 the signal subjected to propagation path compensation For each bit. For example, Is represented by N bits, the nth bit The LLR is expressed by the following equation (2), and the LLR calculation unit 18 obtains the LLR.
- Y) expressed as the equation (2) means a conditional probability of X in Y.
- the LLR correction unit 19 multiplies the LLR for each bit obtained by the above equation (2) by a weighting factor (hereinafter also referred to as an LLR weighting factor) corresponding to the subcarrier #k.
- a weighting factor hereinafter also referred to as an LLR weighting factor
- the propagation path estimated value for the subcarrier data signal is obtained by extrapolation, for example.
- the LLR correction unit 19 performs processing represented by the following equation (3).
- Each of the LLRs is multiplied by a weighting factor ⁇ 3 , and a frequency region that is not the extrapolation interval, for example, a frequency region in which a propagation path estimation value by interpolation is obtained (hereinafter also referred to as an interpolation interval).
- the LLR of the sub-carrier #k contained multiplies the weight coefficient alpha 2.
- the frequency outside the frequency band (extrapolated section) sandwiched between the highest frequency and the lowest frequency among the frequencies of the subcarriers belonging to the first subcarrier group to which the pilot signals are transmitted.
- the reliability of the signal after propagation path compensation that is, the signal in the extrapolation section for the first subcarrier belonging to the second subcarrier group to which the data signal subjected to propagation path compensation based on the pilot signal is transmitted.
- the degree of reliability with respect to the reliability of the signal after channel compensation for the second subcarriers having a frequency within the frequency band (in a band excluding the extrapolation section) and belonging to the second subcarrier group This is equivalent to performing control to lower.
- the weighting factor alpha 1 for between outer ⁇ , alpha 3 (where, 0 ⁇ ⁇ 1, 0 ⁇ ⁇ 3) and the weighting factor alpha 2 for between inner ⁇ (where, 0 ⁇ alpha 2) Relationship For example, ⁇ 1 ⁇ 2 and ⁇ 3 ⁇ 2 . That is, the LLR for the extrapolation interval is multiplied by weighting factors ⁇ 1 and ⁇ 2 that are smaller than the weighting factor ⁇ 2 for the interpolation interval.
- the upper limit value of ⁇ 2 may not be 1.
- ⁇ 2 (b n (k)) obtained by weighting the LLR ⁇ 1 (b n (k)) obtained by the LLR calculation unit 18 by the LLR correction unit 19 is input to the error correction unit 20. It is possible to improve the error rate characteristics.
- the extrapolation section it may be preferable to perform not only the extrapolation section but also the weighting process equivalent to the extrapolation section for a part of the interpolation section (the section closer to the communication band center than the extrapolation section). For example, as shown in FIG. 3, with respect to the section including the portion between the inner near between the outer ⁇ , small weight coefficient alpha 1 than alpha 2, it may be multiplied by alpha 2.
- the above example is a case where extrapolation occurs at both ends of the communication band.
- the extrapolation is performed only at one end of the communication band. Interpolation may occur.
- a weighting factor ⁇ 1 ( ⁇ 2 ) smaller than the other is applied only to subcarrier #k on one side of the communication band where extrapolation occurs. What is necessary is just to multiply.
- the LLR weight coefficients ⁇ 1 and ⁇ 3 for the extrapolation section are constant (same) in the section, but the extrapolation section differs for each of one or a plurality of subcarriers.
- the LLR weight coefficient ⁇ may be multiplied.
- the LLR correction unit 19 may include, for example, a plurality of extrapolation sections.
- the data is divided into subcarrier blocks (groups), and different weighting is performed on the LLR in some or all blocks.
- extrapolation for three subcarriers occurs at both ends of the communication band, and three LLR weight coefficients ⁇ 1 and ⁇ that differ for each subcarrier at the left end (low frequency side). 2 and ⁇ 3 are used.
- the right end (high frequency side) is divided into 1 subcarrier and 2 subcarriers, and different LLR weight coefficients ⁇ 5 and ⁇ 6 are used for each.
- the subcarrier closer to the end of the communication band has a smaller LLR weight coefficient ( ⁇ 1 ⁇ 2 ⁇ 3 ⁇ 4 , ⁇ 4 > ⁇ 5 > ⁇ 6 ).
- the same LLR weighting factor may be applied to some subcarriers instead of changing the LLR weighting factor for each subcarrier.
- the section length (number of subcarriers) multiplied by the LLR weight coefficient in the LLR correction unit 19 is set to L 1 on the left end side of the communication band and L r on the right end side.
- L l and L r it is assumed that extrapolation occurs in these section lengths L l and L r .
- the values of M l , N l (1) to N l (M l ), M r , N r (1) to N r (M r ) may be predetermined values.
- the LLR weight coefficient applied in the section of N l (1) is ⁇ 1
- the LLR weight coefficient applied in the section of N l (2) is applied in the section of ⁇ 2 and N l (3).
- the LLR weighting coefficient is ⁇ 3
- the LLR weighting coefficient applied in the section of N r (1) is ⁇ 5
- the LLR weighting coefficient applied in the section of N r (2) is ⁇ 6
- the band center side against the LLR weighting coefficient ⁇ 4, (0 ⁇ ) ⁇ 1 ⁇ 2 ⁇ 3 ⁇ 4, is set to (1 ⁇ ) ⁇ 4> ⁇ 5> ⁇ 6.
- the LLR correction unit 19 sets (controls) the LLR weighting coefficient applied to the subcarrier closer to the end of the communication band to a smaller value. This makes it possible to effectively improve the error rate characteristics even in the case where the propagation path estimation value obtained for the subcarrier closer to the end of the communication band tends to deteriorate.
- the LLR correction unit 19 determines the values of M l , N l (1) to N l (M l ), M r , N r (1) to N r (M r ) (that is, It is preferable to adaptively change the division number of the extrapolation section and the number of subcarriers included in the division section in accordance with the delay dispersion amount.
- the OFDM receiver 10 of the present embodiment is provided with a delay dispersion measuring unit 21 that measures the delay dispersion amount based on the propagation path estimation value obtained by the propagation path estimation unit 16, for example, as shown in FIG.
- the LLR correction unit 19 adaptively controls the LLR weighting coefficient to be applied based on the measurement result of the delay dispersion measuring unit 21.
- the delay dispersion amount is larger than the threshold value, the fluctuation of the propagation path value between the subcarriers is large, so that the accuracy of the propagation path estimation value is likely to be deteriorated closer to the band edge of the extrapolation section. Therefore, in the extrapolation section in the case where the delay dispersion is large, it is preferable to increase the number of divisions in the section and apply a different LLR weight coefficient to the division sections.
- the target section for weakening the LLR weighting may be reduced.
- M l , N l (1) to N l (M l ), M r , N for cases where the delay dispersion amount measured by the delay dispersion measuring unit 21 is smaller than or larger than a certain threshold value.
- the values of r (1) to N r (M r ) are stored in advance in a memory or the like in the LLR correction unit 19, and the LLR correction unit 19 adaptively compares these values by comparing the delay dispersion amount with the threshold value. Switch to.
- the values held in the memory are not limited to the two types.
- FIG. 8 An example is shown in FIG. Note that (1) in FIG. 8 represents a case where a pilot signal is mapped every 5 subcarriers in the communication band, and extrapolation occurs in each of the section lengths L 1 and L r at both ends of the communication band. Yes. Further, (2) in FIG. 8 shows the LLR weighting when the delay dispersion measured by the delay dispersion measuring unit 21 is larger than the threshold, and (3) in FIG. The state of LLR weighting when the measured delay dispersion amount is equal to or less than the threshold is shown.
- this example is based on the delay dispersion amount, the same processing can be performed alternatively or additionally based on the fluctuation amount of the propagation path estimation value between adjacent subcarriers.
- FIG. 9 represents a case where a pilot signal is mapped every three subcarriers in the communication band, and extrapolation occurs in each of the sections at both ends of the communication band.
- FIG. 9 (2) shows the LLR weighting when the delay dispersion measured by the delay dispersion measuring unit 21 is larger than the threshold, and (3) in FIG. The state of LLR weighting when the measured delay dispersion amount is equal to or less than the threshold is shown.
- a 1 (1) , A 2 (1) , A 3 (1) , A 1 (2) , A 2 (2) , A 3 (2) may be preset values.
- the LLR correction unit 19 when the delay dispersion amount ⁇ s 2 is smaller than the threshold value, the LLR correction unit 19 has a large ratio between the LLR weight coefficient on both ends of the communication band and the LLR weight coefficient on the band center side, and the delay dispersion amount ⁇ If s 2 is above the threshold value, such that the ratio becomes smaller, and controls the LLR weighting factor. That is, for example, it can be expressed by the following equation (5).
- the LLR weighting factor may be determined as a function of the quantity ⁇ s 2 .
- the above weighting processing can be performed on the basis of the fluctuation amount of the propagation path estimation value between adjacent subcarriers instead of or in addition to the delay dispersion amount.
- the OFDM receiver 10 of the present embodiment is provided with an SNR measurement unit 22 that measures the received SNR based on the propagation path estimation value obtained by the propagation path estimation unit 16. It is preferable to adaptively control the LLR weighting factor applied by the LLR correction unit 19 according to the SNR measured by the SNR measurement unit 22.
- FIG. 11 An example is shown in FIG. Note that (1) in FIG. 11 represents a case where a pilot signal is mapped every three subcarriers in the communication band, and extrapolation occurs in each of the sections at both ends of the communication band. Further, (2) in FIG. 11 shows the LLR weighting when the SNR ( ⁇ ) measured by the SNR measuring unit 22 is less than the threshold, and (3) in FIG. 11 is measured by the SNR measuring unit 22. This shows how the LLR is weighted when the measured SNR ( ⁇ ) is equal to or greater than the threshold value.
- ⁇ 1 (1) , ⁇ 2 (1) , ⁇ 3 (1) , ⁇ 1 (2) , ⁇ 2 (2) , and ⁇ 3 (2) may be preset values.
- the LLR correction unit 19 when the reception SNR is less than the threshold, the LLR correction unit 19 has a large ratio between the LLR weight coefficient on both ends of the communication band and the LLR weight coefficient on the communication band center side, and the reception SNR is equal to or greater than the threshold.
- the LLR weighting coefficient to be applied is controlled so that the ratio becomes small. That is, it can be expressed by the following equation (6).
- the LLR correction unit 19 can also control the applied LLR weighting factor based on the measurement results of both the delay dispersion amount and the received SNR.
- the OFDM receiver 10 in this case additionally includes a delay dispersion measuring unit 21 shown in FIG. 7 and an SNR measuring unit 22 shown in FIG. 10 in addition to the configuration shown in FIG.
- the LLR weight coefficients ( ⁇ 1 , ⁇ 2 , ⁇ 3 ) to be applied are defined as follows for the above four determination results.
- the LLR weight coefficient in the extrapolation section on the communication band edge side is set to a value slightly smaller than the LLR weight coefficient on the communication band center side.
- the measured delay dispersion amount and SNR are both larger than the threshold value, the LLR weight coefficient in the extrapolation section on the communication band edge side is smaller than the LLR weight coefficient on the communication band center side.
- the arrangement (mapping) of pilot signals to subcarriers may change over time, or the arrangement of pilot signals may vary from cell to cell.
- FIG. 13 shows an example when the arrangement of pilot signals changes with time.
- pilot signals are mapped at both ends of the communication band
- pilot signals are not mapped at both ends of the communication band
- the pilot signals are not mapped at both ends of the communication band, and the arrangement interval of the pilot signals is different from the times T1 and T2.
- the LLR correction unit 19 in each case, as described above, the LLR weight coefficient and the section length to which the LLR weight coefficient is applied. It is preferable to determine (control) one or both.
- the LLR weight coefficient is constant for all subcarriers in the communication band, and time T2 and T3 in (2) and (3). Then, a different LLR weighting factor is applied to each subcarrier for each extrapolation section.
- the center band is increased for more subcarriers at time T3 than at time T2.
- the LLR weighting coefficient smaller than the side is applied.
- one or both of the LLR weighting factor and the section length to which the LLR weighting factor is applied may be determined (controlled) in the same manner as described above.
- [H] Seventh Embodiment For example, as shown in FIG. 14, in the communication band, there are one or a plurality of subcarriers that are not transmitted from the OFDM transmitter, and a plurality of subcarrier groups (blocks) exist via the subcarriers. When it exists, the accuracy of the propagation path estimation value is likely to be deteriorated as compared with the other also at the end of each subcarrier block.
- the LLR correction unit 19 may apply the determination (control) of one or both of the above-described LLR weighting coefficient and the section length to which the LLR weighting coefficient is applied individually for each subcarrier block. Is possible.
- FIG. 16 shows an example of the result of measuring the error rate characteristics by the above-described LLR correction using computer simulation.
- the OFDM symbol means a signal unit in which a part of an effective symbol is cyclically copied and added to the effective symbol as a guard interval (GI) (also referred to as a cyclic prefix (CP)).
- GI guard interval
- CP cyclic prefix
- the interval in which extrapolation occurs is 1 subcarrier on the left side (low frequency side) of the communication band, and 5 subcarriers on the right side (high frequency side) of the communication band.
- the symbol it is assumed that 4 subcarriers are generated on the left side of the communication band and 2 subcarriers are generated on the right side of the communication band.
- LLR weighting by the LLR correction unit 19 described above was performed on the band left 4 subcarriers and the band left 5 subcarriers.
- the LLR weighting coefficient is 1 on the band center side and 0.3 on both ends.
- the same LLR weighting factor is used for OFDM symbols into which pilot signals are not inserted (second to fourth, sixth, sixth, and seventh OFDM symbols in the slot) because the propagation path estimation accuracy on the communication band edge side is similarly poor.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
11 受信アンテナ
12 無線部
13 ADC(Analog to Digital Converter)
14 タイミング同期部
15 FFT(Fast Fourier Transformer)
16 伝播路推定部
17 伝播路補償部
18 LLR演算部
19 LLR補正部
20 誤り訂正部
21 遅延分散測定部
22 SNR(Signal to Noise Ratio)測定部
OFDM(又はOFDMA)のようにマルチキャリアを利用する無線通信システムでは、一部のサブキャリア(周波数)に制限してパイロット信号をマッピングして送信する場合がある。例えば、図17は、所定の通信帯域において、2サブキャリア毎にパイロット信号(データ信号と区別するために、パイロット信号には矢印を付して表記。以降において同様)がマッピングされ、パイロット信号を含まないデータ信号(矢印無し)と多重される様子を示している。このような場合、通信帯域の端のサブキャリアには、パイロット信号ではなくデータ信号がマッピングされる場合がある。
図1は、第1実施形態に係るOFDM受信機の構成例を示すブロック図である。
この図1に示すOFDM受信機(以下、単に「受信機」ともいう)10は、例えば、受信アンテナ11、無線部12、ADC(Analog to Digital Convertor)13、タイミング同期部14、FFT(Fast Fourier Transformer)15、伝播路推定部16、伝播路補償部17、LLR演算部18、LLR補正部19、および、誤り訂正部20をそなえる。なお、このOFDM受信機10は、無線基地局の受信系に適用してもよいし、無線端末(移動局)の受信系に適用してもよい。
について、ビット毎のLLRを求める。例えば、
がNビットで表され、そのnビット目を
と表すとすると、そのLLRは、以下の(2)式で表され、LLR演算部18ではこれを求める。
図2の(2)では、外挿区間に対してのみ内挿区間よりも小さな重み係数を乗算しているが、図20にて前述したように複数サブキャリア分のパイロット信号を周波数方向に平均化する場合には、外挿区間のサブキャリア#kについてのLLRが含まれ得る。
(b2)第2変形例
上述した例では、外挿区間についてのLLR重み係数α1,α3を当該区間では一定(同じ)としているが、外挿区間について1又は複数のサブキャリア毎に異なるLLR重み係数αを乗じることとしてもよい。
また、外挿区間では、サブキャリア毎にLLR重み係数を変えるのではなく、一部の複数サブキャリアについては同じLLR重み係数を適用することとしてもよい。例えば、図6に示すように、LLR補正部19においてLLR重み係数を乗算する区間長(サブキャリア数)を、通信帯域の左端側でLl、右端側でLrとする。本例では、これらの区間長Ll,Lrで外挿補間が発生すると仮定している。
マルチパスの遅延分散量が大きい場合は、サブキャリア間の伝播路値の変動が大きいため、外挿補間による伝播路推定値の精度が劣化しやすい。この点を考慮して、LLR補正部19は、前記Ml,Nl(1)~Nl(Ml),Mr,Nr(1)~Nr(Mr)の値(つまり、外挿区間の分割数、分割区間に含まれるサブキャリア数)を遅延分散量に応じて適応的に変えるとよい。
既述のように、外挿補間が発生する場合の伝播路推定値の精度は遅延分散量が大きいほど劣化する傾向にある。上述した第2実施形態では、遅延分散量に応じてLLR重み係数の適用対象区間を適応的に制御する例について示した。本変形例では、遅延分散測定部21で測定された遅延分散量に応じてLLR補正部19が適用するLLR重み係数を適応的に制御する例について示す。
OFDM受信機10において、受信信号の信号電力対雑音電力比(SNR:Signal to Noise Ratio)が低い場合、通信帯域全域にわたって伝播路推定値の精度はSNRが高い場合に比べて劣化する傾向にある。このような場合には、LLR重み付けを行なわなくてもよい。
LLR補正部19は、前記の遅延分散量と受信SNRの双方の測定結果を基に、適用するLLR重み係数を制御することも可能である。この場合のOFDM受信機10は、図1に示した構成に対して、図7に示した遅延分散測定部21と、図10に示したSNR測定部22とを付加的にそなえる。
(2-2)(遅延分散,SNR)=(小,大)→(α1,α2,α3)=(A1 (2),A2 (2),A3 (2))
(2-3)(遅延分散,SNR)=(大,小)→(α1,α2,α3)=(A1 (3),A2 (3),A3 (3))
(2-4)(遅延分散,SNR)=(大,大)→(α1,α2,α3)=(A1 (4),A2 (4),A3 (4))
ただし、A1 (i),A2 (i),A3 (i)(i=1,2,3,4のいずれか)の大小関係は、A2 (i)>A1 (i)>A3 (i)(≧0)である。
前述したLLR重み係数を適用する区間を固定/可変とする例のいずれかと、前述したLLR重み係数を固定/可変とする例のいずれかとは、組み合わせて実施してもよい。
OFDM通信システムにおいては、時間的にサブキャリアへのパイロット信号の配置(マッピング)が変化する、あるいは、セル毎にパイロット信号の配置が異なる場合がある。
例えば図14に示すように、通信帯域において、OFDM送信機から送信されない1又は複数のサブキャリアが存在し、当該サブキャリアを介して複数のサブキャリア群(ブロック)が存在するような場合、それぞれのサブキャリアブロックの端についても、伝播路推定値の精度が他に比べて劣化しやすい。
計算機シミュレーションを用いて、上述したLLR補正による誤り率特性の測定した結果の一例を図16に示す。この測定結果は、2×2MIMO(Multi-Input Multi-Output),64QAM,符号化率(Coding Rate)=3/4とし、伝播環境は6-ray Typical Urban Modelとした場合の測定結果である。
Claims (20)
- 伝播路推定値を得るのに用いられる既知信号がそれぞれ送信される複数のサブキャリアに対応する第1サブキャリアグループと、前記既知信号を用いて求めた伝播路推定値に基づく伝播路補償が施されるデータ信号がそれぞれ送信される複数のサブキャリアに対応する第2サブキャリアグループとを受信する、マルチキャリアに対応した受信装置における受信処理方法において、
前記第1サブキャリアグループに属するサブキャリアの周波数の中で最も高い周波数と最も低い周波数とにより挟まれる周波数帯域外の周波数を有し、かつ、前記第2サブキャリアグループに属する第1サブキャリアについての伝播路補償後の信号の信頼度を、該周波数帯域内の周波数を有し、かつ、前記第2サブキャリアグループに属する第2サブキャリアについての伝播路補償後の信号の信頼度に対して低くする制御を行ない、
前記制御がなされた信頼度に基づいて、前記第1サブキャリア及び前記第2サブキャリアについての伝播路補償後の信号について誤り訂正処理を行なう、
ことを特徴とする、受信処理方法。 - マルチキャリア通信における受信処理方法であって、
所定の通信帯域における既知の受信信号を基にサブキャリア毎の伝播路推定値を生成し、
前記伝播路推定値を用いていずれかのサブキャリアにマッピングされた受信データ信号の伝播路補償を行ない、
前記伝播路補償された前記受信データ信号の信頼度情報を求め、
前記伝播路推定値を求めるのに用いた前記既知の受信信号数が他よりも少ないサブキャリアに関して得られた信頼度情報の重み付けを他よりも小さくする重み付け制御を行ない、
前記重み付け制御後の信頼度情報を用いて前記受信データ信号の誤り訂正を行なう、
ことを特徴とする、受信処理方法。 - 前記重み付け制御の対象は、前記通信帯域の端のサブキャリア又は当該サブキャリアとその近傍のサブキャリアについて得られた信頼度情報である、ことを特徴とする、請求項2記載の受信処理方法。
- 前記重み付け制御は、前記通信帯域の端のサブキャリアに近いサブキャリアほど小さな重み付けとする制御である、ことを特徴とする、請求項3記載の受信処理方法。
- 前記重み付け制御は、前記通信帯域の端のサブキャリアに近いサブキャリアグループほど小さな重み付けとする制御である、ことを特徴とする、請求項3記載の受信処理方法。
- 前記重み付け制御の対象とするサブキャリア数は、受信信号のマルチパスの遅延分散量の測定結果に応じて制御される、ことを特徴とする、請求項2~5のいずれか1項に記載の受信処理方法。
- 前記重み付け制御に用いる重み係数は、受信信号のマルチパスの遅延分散量の測定結果に応じて制御される、ことを特徴とする、請求項2~5のいずれか1項に記載の受信処理方法。
- 前記重み付け制御に用いる重み係数は、受信信号の受信品質情報の測定結果に応じて制御される、ことを特徴とする、請求項2~5,7のいずれか1項に記載の受信処理方法。
- 前記既知の受信信号のマッピングされるサブキャリアが時間的に変化する場合において、それぞれのマッピング態様に応じて、前記重み付け制御の対象とするサブキャリア及び前記重み付け制御に用いる重み係数のいずれか一方又は双方が制御される、ことを特徴とする、請求項2記載の受信処理方法。
- 前記通信帯域において送信されない1又は複数のサブキャリアを介して複数のサブキャリア群が存在する場合に、前記重み付け制御は、前記サブキャリア群別に実施される、ことを特徴とする、請求項2記載の受信処理方法。
- 伝播路推定値を得るのに用いられる既知信号がそれぞれ送信される複数のサブキャリアに対応する第1サブキャリアグループと、前記既知信号を用いて求めた伝播路推定値に基づく伝播路補償が施されるデータ信号がそれぞれ送信される複数のサブキャリアに対応する第2サブキャリアグループとを受信する、マルチキャリアに対応した受信装置において、
前記第1サブキャリアグループに属するサブキャリアの周波数の中で最も高い周波数と最も低い周波数とにより挟まれる周波数帯域外の周波数を有し、かつ、前記第2サブキャリアグループに属する第1サブキャリアについての伝播路補償後の信号の信頼度を、該周波数帯域内の周波数を有し、かつ、前記第2サブキャリアグループに属する第2サブキャリアについての伝播路補償後の信号の信頼度に対して低くする制御を行なう制御部と、
前記制御がなされた信頼度に基づいて、前記第1サブキャリア及び前記第2サブキャリアについての伝播路補償後の信号について誤り訂正処理を行なう誤り訂正部と、
をそなえたことを特徴とする、受信装置。 - マルチキャリア通信における受信装置であって、
所定の通信帯域における既知の受信信号を基にサブキャリア毎の伝播路推定値を生成する伝播路推定部と、
前記伝播路推定値を用いていずれかのサブキャリアにマッピングされた受信データ信号の伝播路補償を行なう伝播路補償部と、
前記伝播路補償された前記受信データ信号の信頼度情報を求める信頼度情報生成部と、
前記伝播路推定値を求めるのに用いた前記既知の受信信号数が他よりも少ないサブキャリアに関して得られた信頼度情報の重み付けを他よりも小さくする重み付け制御を行なう重み付け制御部と、
前記重み付け制御後の信頼度情報を用いて前記データ信号の誤り訂正を行なう誤り訂正部と、
をそなえたことを特徴とする、受信装置。 - 前記重み付け制御部は、
前記重み付け制御の対象を、前記通信帯域の端のサブキャリア又は当該サブキャリアとその近傍のサブキャリアについて得られた信頼度情報とする、ことを特徴とする、請求項12記載の受信装置。 - 前記重み付け制御部は、
前記通信帯域の端のサブキャリアに近いサブキャリアほど小さな重み付けとする制御を行なう、ことを特徴とする、請求項13記載の受信装置。 - 前記重み付け制御部は、
前記通信帯域の端のサブキャリアに近いサブキャリアグループほど小さな重み付けとする制御を行なう、ことを特徴とする、請求項13記載の受信装置。 - 前記重み付け制御部は、
前記重み付け制御の対象とするサブキャリア数を、受信信号のマルチパスの遅延分散量の測定結果に応じて制御する、ことを特徴とする、請求項12~15のいずれか1項に記載の受信装置。 - 前記重み付け制御部は、
前記重み付け制御に用いる重み係数を、受信信号のマルチパスの遅延分散量の測定結果に応じて制御する、ことを特徴とする、請求項12~15のいずれか1項に記載の受信装置。 - 前記重み付け制御部は、
前記重み付け制御に用いる重み係数を、受信信号の受信品質情報の測定結果に応じて制御する、ことを特徴とする、請求項12~15,17のいずれか1項に記載の受信装置。 - 前記重み付け制御部は、
前記既知の受信信号のマッピングされるサブキャリアが時間的に変化する場合において、それぞれのマッピング態様に応じて、前記重み付け制御の対象とするサブキャリア及び前記重み付け制御に用いる重み係数のいずれか一方又は双方を制御する、ことを特徴とする、請求項12記載の受信装置。 - 前記重み付け制御部は、
前記通信帯域において送信されない1又は複数のサブキャリアを介して複数のサブキャリア群が存在する場合に、前記サブキャリア群別に前記重み付け制御を実施する、ことを特徴とする、請求項12記載の受信装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009550410A JP5083330B2 (ja) | 2008-01-25 | 2008-01-25 | 受信処理方法および受信装置 |
CN200880122822.XA CN101911557B (zh) | 2008-01-25 | 2008-01-25 | 接收处理方法及接收装置 |
PCT/JP2008/051093 WO2009093332A1 (ja) | 2008-01-25 | 2008-01-25 | 受信処理方法および受信装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2008/051093 WO2009093332A1 (ja) | 2008-01-25 | 2008-01-25 | 受信処理方法および受信装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009093332A1 true WO2009093332A1 (ja) | 2009-07-30 |
Family
ID=40900850
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/051093 WO2009093332A1 (ja) | 2008-01-25 | 2008-01-25 | 受信処理方法および受信装置 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5083330B2 (ja) |
CN (1) | CN101911557B (ja) |
WO (1) | WO2009093332A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009296354A (ja) * | 2008-06-05 | 2009-12-17 | Hitachi Kokusai Electric Inc | 無線通信システム及び受信装置並びに受信信号処理方法 |
JP2015032899A (ja) * | 2013-07-31 | 2015-02-16 | 株式会社Jvcケンウッド | 受信装置、受信方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016129974A1 (en) | 2015-02-13 | 2016-08-18 | Samsung Electronics Co., Ltd. | Transmitting apparatus and receiving apparatus and controlling method thereof |
KR101777215B1 (ko) * | 2015-02-13 | 2017-09-11 | 삼성전자주식회사 | 송신 장치, 수신 장치 및 그 제어 방법 |
CN107104915B (zh) * | 2016-02-22 | 2020-05-19 | 瑞昱半导体股份有限公司 | 接收装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003088538A1 (fr) * | 2002-04-15 | 2003-10-23 | Matsushita Electric Industrial Co., Ltd. | Recepteur et procede de reception associe |
JP2004364094A (ja) * | 2003-06-06 | 2004-12-24 | Keio Gijuku | マルチキャリア受信装置 |
JP2005167594A (ja) * | 2003-12-02 | 2005-06-23 | Matsushita Electric Ind Co Ltd | 信号生成装置および信号生成方法 |
JP2006246447A (ja) * | 2005-02-03 | 2006-09-14 | Matsushita Electric Ind Co Ltd | 受信装置、受信方法、集積回路 |
WO2007046503A1 (ja) * | 2005-10-21 | 2007-04-26 | Matsushita Electric Industrial Co., Ltd. | キャリア間干渉除去装置及びこれを用いた受信装置 |
JP2007300217A (ja) * | 2006-04-27 | 2007-11-15 | Toshiba Corp | Ofdm信号の送信方法、ofdm送信機及びofdm受信機 |
JP2008017144A (ja) * | 2006-07-05 | 2008-01-24 | Toshiba Corp | 無線受信装置および方法 |
-
2008
- 2008-01-25 WO PCT/JP2008/051093 patent/WO2009093332A1/ja active Application Filing
- 2008-01-25 JP JP2009550410A patent/JP5083330B2/ja not_active Expired - Fee Related
- 2008-01-25 CN CN200880122822.XA patent/CN101911557B/zh not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003088538A1 (fr) * | 2002-04-15 | 2003-10-23 | Matsushita Electric Industrial Co., Ltd. | Recepteur et procede de reception associe |
JP2004364094A (ja) * | 2003-06-06 | 2004-12-24 | Keio Gijuku | マルチキャリア受信装置 |
JP2005167594A (ja) * | 2003-12-02 | 2005-06-23 | Matsushita Electric Ind Co Ltd | 信号生成装置および信号生成方法 |
JP2006246447A (ja) * | 2005-02-03 | 2006-09-14 | Matsushita Electric Ind Co Ltd | 受信装置、受信方法、集積回路 |
WO2007046503A1 (ja) * | 2005-10-21 | 2007-04-26 | Matsushita Electric Industrial Co., Ltd. | キャリア間干渉除去装置及びこれを用いた受信装置 |
JP2007300217A (ja) * | 2006-04-27 | 2007-11-15 | Toshiba Corp | Ofdm信号の送信方法、ofdm送信機及びofdm受信機 |
JP2008017144A (ja) * | 2006-07-05 | 2008-01-24 | Toshiba Corp | 無線受信装置および方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009296354A (ja) * | 2008-06-05 | 2009-12-17 | Hitachi Kokusai Electric Inc | 無線通信システム及び受信装置並びに受信信号処理方法 |
US8413030B2 (en) | 2008-06-05 | 2013-04-02 | Hitachi Kokusai Electric Inc. | Wireless communication system, receiver and signal processing method for received signal |
JP2015032899A (ja) * | 2013-07-31 | 2015-02-16 | 株式会社Jvcケンウッド | 受信装置、受信方法 |
Also Published As
Publication number | Publication date |
---|---|
CN101911557A (zh) | 2010-12-08 |
JP5083330B2 (ja) | 2012-11-28 |
JPWO2009093332A1 (ja) | 2011-05-26 |
CN101911557B (zh) | 2014-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8023526B2 (en) | Adaptive channel prediction apparatus and method for performing uplink pre-equalization depending on downlink channel variation in OFDM/TDD mobile communication system | |
US8064328B2 (en) | Channel estimation device | |
US8867658B2 (en) | Multicarrier-signal receiving apparatus and multicarrier-signal transmitting apparatus | |
US20050259565A1 (en) | Radio communication system, radio transmitter and radio receiver | |
JP2004289475A (ja) | Ofdmシンボルを復調する受信機 | |
Epple et al. | Adaptive threshold optimization for a blanking nonlinearity in OFDM receivers | |
JP3794622B2 (ja) | 受信装置、受信方法、プログラム、ならびに、情報記録媒体 | |
JP5083330B2 (ja) | 受信処理方法および受信装置 | |
US8121216B2 (en) | Channel estimation device, equalization device, and radio system | |
JP3594828B2 (ja) | マルチキャリア変調信号復調器 | |
US8687749B2 (en) | Mobile OFDM receiver | |
KR20100017370A (ko) | 다중경로 채널의 지연 확산을 측정하기 위한 방법 및 장치 | |
WO2016133044A1 (ja) | 受信装置、受信方法 | |
US8503589B2 (en) | Wireless communication apparatus and wireless reception method | |
JPWO2014024369A1 (ja) | 受信機、受信機による伝送路の周波数応答推定方法 | |
US7313180B2 (en) | Receiving device, receiving method, and program | |
US9166841B2 (en) | Receiving apparatus and receiving method | |
US8971431B1 (en) | Channel estimation for OFDM signals | |
JP2012085050A (ja) | 無線受信装置および無線受信方法 | |
Nakamura et al. | Decision feedback channel estimation without prior knowledge of terminal mobility for SC-FDE | |
JP5021509B2 (ja) | マルチキャリア受信装置 | |
JP2009094831A (ja) | シングルキャリアブロック伝送の周波数領域等化方法 | |
Yano et al. | Pre-FFT type MMSE adaptive array antenna to suppress asynchronous interference for OFDM packet transmission | |
JPWO2010038273A1 (ja) | 伝搬路推定装置、受信機、及び伝搬路推定方法 | |
KR20070094317A (ko) | 방송 수신 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880122822.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08703908 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009550410 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08703908 Country of ref document: EP Kind code of ref document: A1 |