WO2009093332A1 - 受信処理方法および受信装置 - Google Patents

受信処理方法および受信装置 Download PDF

Info

Publication number
WO2009093332A1
WO2009093332A1 PCT/JP2008/051093 JP2008051093W WO2009093332A1 WO 2009093332 A1 WO2009093332 A1 WO 2009093332A1 JP 2008051093 W JP2008051093 W JP 2008051093W WO 2009093332 A1 WO2009093332 A1 WO 2009093332A1
Authority
WO
WIPO (PCT)
Prior art keywords
subcarrier
propagation path
weighting
signal
subcarriers
Prior art date
Application number
PCT/JP2008/051093
Other languages
English (en)
French (fr)
Inventor
Daisuke Ogawa
Takashi Dateki
Hideto Furukawa
Atsuhiko Sugitani
Naoto Egashira
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to JP2009550410A priority Critical patent/JP5083330B2/ja
Priority to CN200880122822.XA priority patent/CN101911557B/zh
Priority to PCT/JP2008/051093 priority patent/WO2009093332A1/ja
Publication of WO2009093332A1 publication Critical patent/WO2009093332A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only

Definitions

  • the present invention relates to a reception processing method and a reception device.
  • the present invention can also be used for multi-carrier communication such as OFDM (Orthogonal Frequency Division Multiplexing) and OFDMA (Orthogonal Frequency Division Multiple Access).
  • OFDM Orthogonal Frequency Division Multiplexing
  • OFDMA Orthogonal Frequency Division Multiple Access
  • a signal transmitted from a transmitter reaches a receiver via a plurality of propagation paths (multipath).
  • the signal observed by the receiver may be a waveform whose amplitude and phase are distorted due to the influence of multipath fading.
  • One means for correcting such distortion is synchronous detection using a pilot signal (also referred to as a reference signal) that is a known signal between a transmitter and a receiver.
  • a pilot signal is transmitted from a transmitter, and a receiver estimates a channel response (channel value) using this known received signal, and estimates the channel.
  • Data signal propagation path compensation is performed using the value. Therefore, a large error in the propagation path estimation value affects the data signal propagation path compensation, leading to an increase in the data signal error rate.
  • OFDM (or OFDMA) is a technique for transmitting a signal using a plurality of orthogonal subcarriers.
  • a propagation path estimation value is generated for each subcarrier, and a data signal propagation path compensation (equalization) is performed on the data signal mapped to the subcarrier using the propagation path estimation value.
  • an OFDM receiver detects an effective symbol component from a received signal, and performs FFT processing on the effective symbol using the detection timing as an FFT (Fast Fourier Transform) timing.
  • FFT Fast Fourier Transform
  • the OFDM receiver detects a pilot signal (mapped subcarrier) from the frequency domain signal after the FFT processing, performs propagation path estimation using the pilot signal, and performs propagation path compensation of the data signal.
  • a pilot signal mapped subcarrier
  • the OFDM receiver obtains a log likelihood ratio (LLR: Log ⁇ ⁇ Likelihood Ratio), which is one of the reliability information of the received signal symbol used for error correction, for the data signal subjected to propagation path compensation, The information is used for error correction of the received signal symbol.
  • LLR Log ⁇ ⁇ Likelihood Ratio
  • the number of pilot signals that can be used to obtain the propagation path estimation value in the communication band is smaller than others, and the accuracy of the obtained propagation path estimation value is likely to deteriorate compared to other subcarriers. It does not take into account the presence of (for example, the end of the communication band and subcarriers in the vicinity thereof).
  • One of the objects of the present invention is to improve the error rate characteristics of a received signal in consideration of the presence of such subcarriers.
  • the present invention is not limited to the above-described object, and is an operational effect derived from each configuration shown in the best mode for carrying out the invention described later, and has an operational effect that cannot be obtained by conventional techniques. Can be positioned as one of the purposes.
  • a first subcarrier group corresponding to a plurality of subcarriers each transmitting a known signal used to obtain a propagation path estimation value, and a propagation path based on the propagation path estimation value obtained using the known signal A reception processing method in a receiving apparatus corresponding to multicarriers, which receives a second subcarrier group corresponding to a plurality of subcarriers to which a data signal to which compensation is applied is transmitted, and belongs to the first subcarrier group
  • the frequency of the signal after propagation path compensation for the first subcarrier belonging to the second subcarrier group has a frequency outside the frequency band sandwiched between the highest frequency and the lowest frequency among the subcarrier frequencies.
  • the reliability is a second subcarrier having a frequency within the frequency band and belonging to the second subcarrier group. Control for lowering the reliability of the signal after propagation path compensation is performed for the first subcarrier and the second subcarrier after the propagation path compensation based on the controlled reliability. A reception processing method that performs error correction processing on the signal can be used.
  • a propagation path estimated value for each subcarrier is generated based on a known received signal in a predetermined communication band, and the received data signal mapped to any subcarrier using the propagation path estimated value Propagation path compensation is performed, reliability information of the reception data signal compensated for the propagation path is obtained, and the number of known reception signals used for obtaining the propagation path estimation value is obtained for subcarriers smaller than others. It is also possible to use a reception processing method in which weighting control is performed to make the weighting of reliability information smaller than others, and error correction of the received data signal is performed using the reliability information after the weighting control.
  • the object of the weighting control may be reliability information obtained for a subcarrier at the end of the communication band or the subcarrier and a subcarrier in the vicinity thereof.
  • the weighting control may be a control in which a subcarrier closer to a subcarrier at the end of the communication band is set to a smaller weighting.
  • the weighting control may be a control in which a subcarrier group closer to a subcarrier at the end of the communication band is set to a smaller weighting.
  • the number of subcarriers to be subjected to the weighting control may be controlled according to the measurement result of the multipath delay dispersion amount of the received signal.
  • the weighting factor used for the weighting control may be controlled according to the measurement result of the multipath delay dispersion amount of the received signal.
  • the weighting factor used for the weighting control may be controlled according to the measurement result of the reception quality information of the received signal.
  • the weighting control may be performed for each subcarrier group.
  • a control unit that performs control to lower the reliability of the signal after propagation path compensation, and after propagation path compensation for the first subcarrier and the second subcarrier based on the reliability of the control.
  • a receiving apparatus can be used that includes an error correction unit that performs error correction processing on the above signals.
  • a propagation path estimation unit that generates a propagation path estimation value for each subcarrier based on a known received signal in a predetermined communication band, and is mapped to any subcarrier using the propagation path estimation value
  • a propagation path compensation unit that performs propagation path compensation of the received data signal, a reliability information generation unit that obtains reliability information of the reception data signal compensated for the propagation path, and a propagation path estimation value
  • a weight control unit that performs weight control for reducing the weight of reliability information obtained for subcarriers having a smaller number of known received signals than others, and the data using the reliability information after the weight control. It is possible to use a receiving apparatus that includes an error correction unit that performs error correction of a signal.
  • the weighting control unit may set the weighting control target as reliability information obtained for a subcarrier at the end of the communication band or a subcarrier in the vicinity of the subcarrier. Good.
  • the weighting control unit may perform control such that the subcarrier closer to the subcarrier at the end of the communication band is weighted smaller.
  • the weighting control unit may perform control such that the subcarrier group closer to the subcarrier at the end of the communication band has a smaller weighting.
  • the weighting control unit may control the number of subcarriers to be subjected to the weighting control according to the measurement result of the multipath delay dispersion amount of the received signal.
  • the weighting control unit may control a weighting factor used for the weighting control according to a measurement result of a multipath delay dispersion amount of the received signal.
  • the weighting control unit may control a weighting factor used for the weighting control according to a measurement result of reception quality information of a received signal.
  • the weighting control unit when the subcarrier to which the known received signal is mapped changes with time, the weighting control unit, according to each mapping mode, One or both of the weighting factors used for the weighting control may be controlled.
  • the weighting control unit performs the weighting control for each subcarrier group when there are a plurality of subcarrier groups via one or a plurality of subcarriers that are not transmitted in the communication band. It is good.
  • FIG. 1 It is a block diagram which shows the structural example of the OFDM receiver which concerns on 1st Embodiment. It is a schematic diagram explaining an example of the LLR weighting process by the LLR correction
  • OFDM receiver 11 Receiving antenna 12 Radio unit 13 ADC (Analog to Digital Converter) 14 Timing synchronization unit 15 FFT (Fast Fourier Transformer) DESCRIPTION OF SYMBOLS 16 Propagation path estimation part 17 Propagation path compensation part 18 LLR calculation part 19 LLR correction part 20 Error correction part 21 Delay dispersion
  • pilot signals may be mapped and transmitted limited to some subcarriers (frequency).
  • FIG. 17 shows that a pilot signal is mapped every two subcarriers in a predetermined communication band (in order to distinguish it from a data signal, the pilot signal is marked with an arrow. The same applies hereinafter). It shows a state of being multiplexed with a data signal not included (no arrow). In such a case, a data signal may be mapped to a subcarrier at the end of the communication band instead of a pilot signal.
  • Such a multiplexed signal is received by the receiver through the multipath fading channel from the transmitter as a signal whose phase and amplitude have changed as shown in FIG. 18, for example.
  • FIG. 19 shows a state in which a propagation path of a data signal (without an arrow) is estimated based on the pilot signal (arrow) shown in FIG.
  • the propagation path estimation value of the subcarrier to which the data signal is mapped can be obtained, for example, by linearly interpolating the propagation path estimation value obtained from two pilot signals mapped to adjacent subcarriers. It is.
  • the propagation path estimated value of this subcarrier can be obtained by extrapolation, for example. is there.
  • the accuracy of the propagation path estimation value is likely to deteriorate because the number of pilot signals used is smaller than in the interpolation. Therefore, when a data signal is mapped to the subcarrier at the end of the communication band, a result of using a propagation path estimation value that is less accurate than others is used for the propagation path compensation. As a result, the accuracy of the LLR of the data signal after propagation path compensation also deteriorates, and the error rate increases in error correction, so that sufficient reception performance may not be obtained.
  • propagation path estimation may be performed by averaging pilot signals of neighboring subcarriers.
  • the accuracy of the propagation path estimation values for the subcarriers at both ends of the communication band is likely to be deteriorated as compared with others. Therefore, even in this case, the error rate of the data signal may increase, and sufficient reception performance may not be obtained.
  • the LLR obtained for subcarriers with a smaller number of pilot signals used to determine the propagation path estimation value is more likely to deteriorate in accuracy than others.
  • mapping is performed to subcarriers that cause the number of pilot signals used for propagation path estimation to be less than a predetermined number, such as the end of the communication band or subcarriers at the end of the communication band and in the vicinity thereof.
  • Weighting control is performed to weaken the reliability information (LLR) of the received data signal as compared with the others.
  • a subcarrier group corresponding to a plurality of subcarriers to which a pilot signal used for obtaining a propagation path estimation value is transmitted is defined as a first subcarrier group, and the propagation path estimation value obtained using the pilot signal.
  • the second subcarrier group is a subcarrier group corresponding to a plurality of subcarriers to which the data signal subjected to propagation path compensation is transmitted, the object to be subjected to the weighting control belongs to the first subcarrier group This is the reliability of the signal after propagation path compensation for a subcarrier having a frequency outside the frequency band sandwiched between the highest frequency and the lowest frequency among the subcarriers and belonging to the second subcarrier group. It can be said.
  • the first subcarrier having a frequency outside the frequency band sandwiched between the highest frequency and the lowest frequency among the subcarriers belonging to the first subcarrier group and belonging to the second subcarrier group The reliability of the signal after propagation path compensation for the second subcarrier having the frequency within the frequency band and belonging to the second subcarrier group is compared with the reliability of the signal after propagation path compensation. Control to lower.
  • the end of the communication band may mean a subcarrier having the lowest or highest frequency in the communication band, or may include one or more subcarriers in the vicinity of the subcarrier. There is also.
  • FIG. 1 is a block diagram illustrating a configuration example of an OFDM receiver according to a first embodiment.
  • 1 includes, for example, a receiving antenna 11, a radio unit 12, an ADC (Analog to Digital Converter) 13, a timing synchronization unit 14, an FFT (Fast Fourier), and the like. Transformer) 15, propagation path estimation section 16, propagation path compensation section 17, LLR calculation section 18, LLR correction section 19, and error correction section 20.
  • the OFDM receiver 10 may be applied to a radio base station reception system or a radio terminal (mobile station) reception system.
  • the receiving antenna 11 receives a signal (OFDM symbol) transmitted by a multicarrier from an OFDM transmitter (not shown).
  • the radio unit 12 performs reception processing such as low noise amplification, frequency conversion to a baseband frequency (downcoversion), band limitation using a roll-off filter, etc., on the signal received by the receiving antenna 11.
  • the ADC 13 converts the reception signal subjected to the reception process by the wireless unit 12 into a digital signal.
  • the obtained digital signal is input to the timing synchronization unit 14 and the FFT 15.
  • the timing synchronization unit 14 detects an effective symbol component from the digital signal received by the ADC 13 and supplies the detected timing to the FFT 15 as an FFT timing.
  • the FFT 15 converts a digital signal (time domain signal) from the ADC 13 into a frequency domain signal by performing an FFT process at the FFT timing given from the timing synchronization unit 14.
  • the propagation path estimation unit 16 detects a mapped subcarrier frequency component of a pilot signal, which is a known reception signal, from the frequency domain signal after the FFT processing, and propagates to the OFDM transmitter based on the pilot signal.
  • a path estimation value is obtained for each subcarrier by performing path estimation. Note that propagation path estimation values for subcarriers to which no pilot signal is mapped can be obtained by interpolation or extrapolation.
  • the propagation path estimated value can also be obtained by averaging a plurality of pilot signals as described above.
  • the propagation path compensation unit 17 uses the propagation path estimation value for each subcarrier obtained by the propagation path estimation unit 16 for the data signal component mapped to one of the subcarriers of the frequency domain signal after the FFT processing. Thus, propagation path compensation is performed.
  • the LLR calculation unit (reliability information generation unit) 18 is one piece of reliability information used for error correction (soft decision decoding) in the error correction unit 20 for the data signal after propagation path compensation by the propagation path compensation unit 17. The LLR for each bit is obtained.
  • the LLR correction unit (weighting control unit) 19 corrects the LLR for each bit obtained by the LLR calculation unit 18 by performing weighting control according to the subcarrier. For example, when there is a subcarrier with a smaller number of pilot signals used to obtain the propagation path estimation value due to occurrence of extrapolation, such as at the end of the communication band, the LLR correction unit 19 For that subcarrier, the LLR is weighted lower than the LLR obtained for the other subcarriers.
  • the error correction unit 20 performs error correction of the received signal using the LLR for each bit corrected (weighted) by the LLR correction unit 19.
  • the LLR of the data signal subjected to the propagation path compensation using the propagation path compensation value by the extrapolation interpolation which is generally less accurate than the case by the interpolation interpolation, is the propagation path compensation value by the interpolation interpolation in the LLR correction unit 19. Is weighted so as to be lower than the LLR of the data signal compensated for the propagation path, it is possible to suppress the deterioration of the error rate characteristic as a whole and obtain the desired reception performance.
  • N c number the number of sub-carrier communication band
  • the propagation path estimation value at a subcarrier #k (However, 0 ⁇ k ⁇ Nc-1 )
  • the received data of subcarrier #k (data after FFT processing) at the receiver 10 is represented as r (k).
  • the propagation path compensation unit 17 compensates the distortion received from the propagation path for the received data r (k) of each subcarrier #k as shown in the following equation (1).
  • the LLR calculation unit 18 the signal subjected to propagation path compensation For each bit. For example, Is represented by N bits, the nth bit The LLR is expressed by the following equation (2), and the LLR calculation unit 18 obtains the LLR.
  • Y) expressed as the equation (2) means a conditional probability of X in Y.
  • the LLR correction unit 19 multiplies the LLR for each bit obtained by the above equation (2) by a weighting factor (hereinafter also referred to as an LLR weighting factor) corresponding to the subcarrier #k.
  • a weighting factor hereinafter also referred to as an LLR weighting factor
  • the propagation path estimated value for the subcarrier data signal is obtained by extrapolation, for example.
  • the LLR correction unit 19 performs processing represented by the following equation (3).
  • Each of the LLRs is multiplied by a weighting factor ⁇ 3 , and a frequency region that is not the extrapolation interval, for example, a frequency region in which a propagation path estimation value by interpolation is obtained (hereinafter also referred to as an interpolation interval).
  • the LLR of the sub-carrier #k contained multiplies the weight coefficient alpha 2.
  • the frequency outside the frequency band (extrapolated section) sandwiched between the highest frequency and the lowest frequency among the frequencies of the subcarriers belonging to the first subcarrier group to which the pilot signals are transmitted.
  • the reliability of the signal after propagation path compensation that is, the signal in the extrapolation section for the first subcarrier belonging to the second subcarrier group to which the data signal subjected to propagation path compensation based on the pilot signal is transmitted.
  • the degree of reliability with respect to the reliability of the signal after channel compensation for the second subcarriers having a frequency within the frequency band (in a band excluding the extrapolation section) and belonging to the second subcarrier group This is equivalent to performing control to lower.
  • the weighting factor alpha 1 for between outer ⁇ , alpha 3 (where, 0 ⁇ ⁇ 1, 0 ⁇ ⁇ 3) and the weighting factor alpha 2 for between inner ⁇ (where, 0 ⁇ alpha 2) Relationship For example, ⁇ 1 ⁇ 2 and ⁇ 3 ⁇ 2 . That is, the LLR for the extrapolation interval is multiplied by weighting factors ⁇ 1 and ⁇ 2 that are smaller than the weighting factor ⁇ 2 for the interpolation interval.
  • the upper limit value of ⁇ 2 may not be 1.
  • ⁇ 2 (b n (k)) obtained by weighting the LLR ⁇ 1 (b n (k)) obtained by the LLR calculation unit 18 by the LLR correction unit 19 is input to the error correction unit 20. It is possible to improve the error rate characteristics.
  • the extrapolation section it may be preferable to perform not only the extrapolation section but also the weighting process equivalent to the extrapolation section for a part of the interpolation section (the section closer to the communication band center than the extrapolation section). For example, as shown in FIG. 3, with respect to the section including the portion between the inner near between the outer ⁇ , small weight coefficient alpha 1 than alpha 2, it may be multiplied by alpha 2.
  • the above example is a case where extrapolation occurs at both ends of the communication band.
  • the extrapolation is performed only at one end of the communication band. Interpolation may occur.
  • a weighting factor ⁇ 1 ( ⁇ 2 ) smaller than the other is applied only to subcarrier #k on one side of the communication band where extrapolation occurs. What is necessary is just to multiply.
  • the LLR weight coefficients ⁇ 1 and ⁇ 3 for the extrapolation section are constant (same) in the section, but the extrapolation section differs for each of one or a plurality of subcarriers.
  • the LLR weight coefficient ⁇ may be multiplied.
  • the LLR correction unit 19 may include, for example, a plurality of extrapolation sections.
  • the data is divided into subcarrier blocks (groups), and different weighting is performed on the LLR in some or all blocks.
  • extrapolation for three subcarriers occurs at both ends of the communication band, and three LLR weight coefficients ⁇ 1 and ⁇ that differ for each subcarrier at the left end (low frequency side). 2 and ⁇ 3 are used.
  • the right end (high frequency side) is divided into 1 subcarrier and 2 subcarriers, and different LLR weight coefficients ⁇ 5 and ⁇ 6 are used for each.
  • the subcarrier closer to the end of the communication band has a smaller LLR weight coefficient ( ⁇ 1 ⁇ 2 ⁇ 3 ⁇ 4 , ⁇ 4 > ⁇ 5 > ⁇ 6 ).
  • the same LLR weighting factor may be applied to some subcarriers instead of changing the LLR weighting factor for each subcarrier.
  • the section length (number of subcarriers) multiplied by the LLR weight coefficient in the LLR correction unit 19 is set to L 1 on the left end side of the communication band and L r on the right end side.
  • L l and L r it is assumed that extrapolation occurs in these section lengths L l and L r .
  • the values of M l , N l (1) to N l (M l ), M r , N r (1) to N r (M r ) may be predetermined values.
  • the LLR weight coefficient applied in the section of N l (1) is ⁇ 1
  • the LLR weight coefficient applied in the section of N l (2) is applied in the section of ⁇ 2 and N l (3).
  • the LLR weighting coefficient is ⁇ 3
  • the LLR weighting coefficient applied in the section of N r (1) is ⁇ 5
  • the LLR weighting coefficient applied in the section of N r (2) is ⁇ 6
  • the band center side against the LLR weighting coefficient ⁇ 4, (0 ⁇ ) ⁇ 1 ⁇ 2 ⁇ 3 ⁇ 4, is set to (1 ⁇ ) ⁇ 4> ⁇ 5> ⁇ 6.
  • the LLR correction unit 19 sets (controls) the LLR weighting coefficient applied to the subcarrier closer to the end of the communication band to a smaller value. This makes it possible to effectively improve the error rate characteristics even in the case where the propagation path estimation value obtained for the subcarrier closer to the end of the communication band tends to deteriorate.
  • the LLR correction unit 19 determines the values of M l , N l (1) to N l (M l ), M r , N r (1) to N r (M r ) (that is, It is preferable to adaptively change the division number of the extrapolation section and the number of subcarriers included in the division section in accordance with the delay dispersion amount.
  • the OFDM receiver 10 of the present embodiment is provided with a delay dispersion measuring unit 21 that measures the delay dispersion amount based on the propagation path estimation value obtained by the propagation path estimation unit 16, for example, as shown in FIG.
  • the LLR correction unit 19 adaptively controls the LLR weighting coefficient to be applied based on the measurement result of the delay dispersion measuring unit 21.
  • the delay dispersion amount is larger than the threshold value, the fluctuation of the propagation path value between the subcarriers is large, so that the accuracy of the propagation path estimation value is likely to be deteriorated closer to the band edge of the extrapolation section. Therefore, in the extrapolation section in the case where the delay dispersion is large, it is preferable to increase the number of divisions in the section and apply a different LLR weight coefficient to the division sections.
  • the target section for weakening the LLR weighting may be reduced.
  • M l , N l (1) to N l (M l ), M r , N for cases where the delay dispersion amount measured by the delay dispersion measuring unit 21 is smaller than or larger than a certain threshold value.
  • the values of r (1) to N r (M r ) are stored in advance in a memory or the like in the LLR correction unit 19, and the LLR correction unit 19 adaptively compares these values by comparing the delay dispersion amount with the threshold value. Switch to.
  • the values held in the memory are not limited to the two types.
  • FIG. 8 An example is shown in FIG. Note that (1) in FIG. 8 represents a case where a pilot signal is mapped every 5 subcarriers in the communication band, and extrapolation occurs in each of the section lengths L 1 and L r at both ends of the communication band. Yes. Further, (2) in FIG. 8 shows the LLR weighting when the delay dispersion measured by the delay dispersion measuring unit 21 is larger than the threshold, and (3) in FIG. The state of LLR weighting when the measured delay dispersion amount is equal to or less than the threshold is shown.
  • this example is based on the delay dispersion amount, the same processing can be performed alternatively or additionally based on the fluctuation amount of the propagation path estimation value between adjacent subcarriers.
  • FIG. 9 represents a case where a pilot signal is mapped every three subcarriers in the communication band, and extrapolation occurs in each of the sections at both ends of the communication band.
  • FIG. 9 (2) shows the LLR weighting when the delay dispersion measured by the delay dispersion measuring unit 21 is larger than the threshold, and (3) in FIG. The state of LLR weighting when the measured delay dispersion amount is equal to or less than the threshold is shown.
  • a 1 (1) , A 2 (1) , A 3 (1) , A 1 (2) , A 2 (2) , A 3 (2) may be preset values.
  • the LLR correction unit 19 when the delay dispersion amount ⁇ s 2 is smaller than the threshold value, the LLR correction unit 19 has a large ratio between the LLR weight coefficient on both ends of the communication band and the LLR weight coefficient on the band center side, and the delay dispersion amount ⁇ If s 2 is above the threshold value, such that the ratio becomes smaller, and controls the LLR weighting factor. That is, for example, it can be expressed by the following equation (5).
  • the LLR weighting factor may be determined as a function of the quantity ⁇ s 2 .
  • the above weighting processing can be performed on the basis of the fluctuation amount of the propagation path estimation value between adjacent subcarriers instead of or in addition to the delay dispersion amount.
  • the OFDM receiver 10 of the present embodiment is provided with an SNR measurement unit 22 that measures the received SNR based on the propagation path estimation value obtained by the propagation path estimation unit 16. It is preferable to adaptively control the LLR weighting factor applied by the LLR correction unit 19 according to the SNR measured by the SNR measurement unit 22.
  • FIG. 11 An example is shown in FIG. Note that (1) in FIG. 11 represents a case where a pilot signal is mapped every three subcarriers in the communication band, and extrapolation occurs in each of the sections at both ends of the communication band. Further, (2) in FIG. 11 shows the LLR weighting when the SNR ( ⁇ ) measured by the SNR measuring unit 22 is less than the threshold, and (3) in FIG. 11 is measured by the SNR measuring unit 22. This shows how the LLR is weighted when the measured SNR ( ⁇ ) is equal to or greater than the threshold value.
  • ⁇ 1 (1) , ⁇ 2 (1) , ⁇ 3 (1) , ⁇ 1 (2) , ⁇ 2 (2) , and ⁇ 3 (2) may be preset values.
  • the LLR correction unit 19 when the reception SNR is less than the threshold, the LLR correction unit 19 has a large ratio between the LLR weight coefficient on both ends of the communication band and the LLR weight coefficient on the communication band center side, and the reception SNR is equal to or greater than the threshold.
  • the LLR weighting coefficient to be applied is controlled so that the ratio becomes small. That is, it can be expressed by the following equation (6).
  • the LLR correction unit 19 can also control the applied LLR weighting factor based on the measurement results of both the delay dispersion amount and the received SNR.
  • the OFDM receiver 10 in this case additionally includes a delay dispersion measuring unit 21 shown in FIG. 7 and an SNR measuring unit 22 shown in FIG. 10 in addition to the configuration shown in FIG.
  • the LLR weight coefficients ( ⁇ 1 , ⁇ 2 , ⁇ 3 ) to be applied are defined as follows for the above four determination results.
  • the LLR weight coefficient in the extrapolation section on the communication band edge side is set to a value slightly smaller than the LLR weight coefficient on the communication band center side.
  • the measured delay dispersion amount and SNR are both larger than the threshold value, the LLR weight coefficient in the extrapolation section on the communication band edge side is smaller than the LLR weight coefficient on the communication band center side.
  • the arrangement (mapping) of pilot signals to subcarriers may change over time, or the arrangement of pilot signals may vary from cell to cell.
  • FIG. 13 shows an example when the arrangement of pilot signals changes with time.
  • pilot signals are mapped at both ends of the communication band
  • pilot signals are not mapped at both ends of the communication band
  • the pilot signals are not mapped at both ends of the communication band, and the arrangement interval of the pilot signals is different from the times T1 and T2.
  • the LLR correction unit 19 in each case, as described above, the LLR weight coefficient and the section length to which the LLR weight coefficient is applied. It is preferable to determine (control) one or both.
  • the LLR weight coefficient is constant for all subcarriers in the communication band, and time T2 and T3 in (2) and (3). Then, a different LLR weighting factor is applied to each subcarrier for each extrapolation section.
  • the center band is increased for more subcarriers at time T3 than at time T2.
  • the LLR weighting coefficient smaller than the side is applied.
  • one or both of the LLR weighting factor and the section length to which the LLR weighting factor is applied may be determined (controlled) in the same manner as described above.
  • [H] Seventh Embodiment For example, as shown in FIG. 14, in the communication band, there are one or a plurality of subcarriers that are not transmitted from the OFDM transmitter, and a plurality of subcarrier groups (blocks) exist via the subcarriers. When it exists, the accuracy of the propagation path estimation value is likely to be deteriorated as compared with the other also at the end of each subcarrier block.
  • the LLR correction unit 19 may apply the determination (control) of one or both of the above-described LLR weighting coefficient and the section length to which the LLR weighting coefficient is applied individually for each subcarrier block. Is possible.
  • FIG. 16 shows an example of the result of measuring the error rate characteristics by the above-described LLR correction using computer simulation.
  • the OFDM symbol means a signal unit in which a part of an effective symbol is cyclically copied and added to the effective symbol as a guard interval (GI) (also referred to as a cyclic prefix (CP)).
  • GI guard interval
  • CP cyclic prefix
  • the interval in which extrapolation occurs is 1 subcarrier on the left side (low frequency side) of the communication band, and 5 subcarriers on the right side (high frequency side) of the communication band.
  • the symbol it is assumed that 4 subcarriers are generated on the left side of the communication band and 2 subcarriers are generated on the right side of the communication band.
  • LLR weighting by the LLR correction unit 19 described above was performed on the band left 4 subcarriers and the band left 5 subcarriers.
  • the LLR weighting coefficient is 1 on the band center side and 0.3 on both ends.
  • the same LLR weighting factor is used for OFDM symbols into which pilot signals are not inserted (second to fourth, sixth, sixth, and seventh OFDM symbols in the slot) because the propagation path estimation accuracy on the communication band edge side is similarly poor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 既知信号がそれぞれ送信される第1サブキャリアグループに属するサブキャリアの周波数の中で最も高い周波数と最も低い周波数とにより挟まれる周波数帯域外の周波数を有し、かつ、前記既知信号を基に伝播路補償が施されるデータ信号がそれぞれ送信される第2サブキャリアグループに属する第1サブキャリアについての伝播路補償後の信号の信頼度を、前記周波数帯域内の周波数を有し、かつ、前記第2サブキャリアグループに属する第2サブキャリアについての伝播路補償後の信号の信頼度に対して低くする制御を行ない、前記制御がなされた信頼度に基づいて、前記第1及び第2サブキャリアについての伝播路補償後の信号の誤り訂正処理を行なう。

Description

受信処理方法および受信装置
 本発明は、受信処理方法および受信装置に関する。本発明は、例えば、OFDM(Orthogonal Frequency Division Multiplexing)やOFDMA(Orthogonal Frequency Division Multiple Access)といった、マルチキャリア通信に用いることもできる。
 無線通信において、送信機から送信された信号は、複数の伝播路(マルチパス)を経て、受信機に到達する。そのため、受信機で観測される信号は、マルチパスフェージングの影響を受けて振幅や位相が歪んだ波形となる場合がある。このような歪みを補正する手段の一つに、送信機と受信機との間で既知の信号であるパイロット信号(リファレンス信号とも呼ばれる)を用いた同期検波がある。
 同期検波を行なう無線通信システムでは、パイロット信号が送信機から送信され、受信機では、この既知の受信信号を用いて伝播路応答(伝播路値)を推定(チャネル推定)し、その伝播路推定値を用いてデータ信号の伝播路補償を行なう。そのため、伝播路推定値の誤差が大きいとデータ信号の伝播路補償に影響を与え、データ信号の誤り率増加につながる。
 ところで、近年の無線通信システムの一つとして、高い周波数利用効率を実現できるOFDMやOFDMAといった、マルチキャリア伝送を行なうシステムが知られている。
 OFDM(又はOFDMA)は、複数の直交したサブキャリアを用いて信号を伝送する技術である。OFDMでは、サブキャリア毎に伝播路推定値を生成し、サブキャリアにマッピングされているデータ信号に対して、この伝播路推定値を用いてデータ信号の伝播路補償(等化)を行なう。
 例えば、OFDMにおける受信機(以下、OFDM受信機ともいう)では、受信信号から有効シンボル成分を検出し、その検出タイミングをFFT(Fast Fourier Transform)タイミングとして有効シンボルをFFT処理する。これにより、受信信号は、時間領域から周波数領域の信号に変換される。
 OFDM受信機は、このFFT処理後の周波数領域信号から、パイロット信号(のマッピングされたサブキャリア)を検出し、当該パイロット信号を用いて伝播路推定を行ない、データ信号の伝播路補償を行なう。
 その後、OFDM受信機は、前記伝播路補償されたデータ信号に関し、例えば、誤り訂正に用いられる受信信号シンボルの信頼度情報の一つである対数尤度比(LLR:Log Likelihood Ratio)を求め、その情報を用いて受信信号シンボルの誤り訂正を行なう。
 ここで、伝播環境がマルチパス環境であると、周波数選択性フェージングにより、伝播路推定値の位相と振幅は、サブキャリア毎に異なるのが通常である。下記の特許文献1では、マルチパスの遅延分散量が大きい場合に関して、隣接するサブキャリア間のフェージング変動が大きくなることを指摘し、そのような場合には、そのサブキャリアの受信データの対数尤度比(LLR)を弱める重み付けを行なうことで、誤り訂正の効果を高めることができる、としている。
特許第3594828号公報
 上述した従来技術では、通信帯域において、伝播路推定値を求めるのに用いることのできるパイロット信号数が他に比べて少なく、得られる伝播路推定値の精度が他に比べて劣化しやすいサブキャリア(例えば、通信帯域の端及びその近傍のサブキャリア)が存在することを考慮していない。
 本発明の目的の一つは、このようなサブキャリアの存在を考慮して、受信信号の誤り率特性を改善することにある。
 なお、前記目的に限らず、後述する発明を実施するための最良の形態に示す各構成により導かれる作用効果であって、従来の技術によっては得られない作用効果を奏することも本発明の他の目的の一つとして位置付けることができる。
 例えば、以下の手段を用いる。
 (1)伝播路推定値を得るのに用いられる既知信号がそれぞれ送信される複数のサブキャリアに対応する第1サブキャリアグループと、前記既知信号を用いて求めた伝播路推定値に基づく伝播路補償が施されるデータ信号がそれぞれ送信される複数のサブキャリアに対応する第2サブキャリアグループとを受信する、マルチキャリアに対応した受信装置における受信処理方法において、前記第1サブキャリアグループに属するサブキャリアの周波数の中で最も高い周波数と最も低い周波数とにより挟まれる周波数帯域外の周波数を有し、かつ、前記第2サブキャリアグループに属する第1サブキャリアについての伝播路補償後の信号の信頼度を、該周波数帯域内の周波数を有し、かつ、前記第2サブキャリアグループに属する第2サブキャリアについての伝播路補償後の信号の信頼度に対して低くする制御を行ない、前記制御がなされた信頼度に基づいて、前記第1サブキャリア及び前記第2サブキャリアについての伝播路補償後の信号について誤り訂正処理を行なう、受信処理方法を用いることができる。
 (2)また、所定の通信帯域における既知の受信信号を基にサブキャリア毎の伝播路推定値を生成し、前記伝播路推定値を用いていずれかのサブキャリアにマッピングされた受信データ信号の伝播路補償を行ない、前記伝播路補償された前記受信データ信号の信頼度情報を求め、前記伝播路推定値を求めるのに用いた前記既知の受信信号数が他よりも少ないサブキャリアに関して得られた信頼度情報の重み付けを他よりも小さくする重み付け制御を行ない、前記重み付け制御後の信頼度情報を用いて前記受信データ信号の誤り訂正を行なう、受信処理方法を用いることもできる。
 (3)ここで、前記重み付け制御の対象は、前記通信帯域の端のサブキャリア又は当該サブキャリアとその近傍のサブキャリアについて得られた信頼度情報である、こととしてもよい。
 (4)また、前記重み付け制御は、前記通信帯域の端のサブキャリアに近いサブキャリアほど小さな重み付けとする制御である、こととしてもよい。
 (5)さらに、前記重み付け制御は、前記通信帯域の端のサブキャリアに近いサブキャリアグループほど小さな重み付けとする制御である、こととしてもよい。
 (6)また、前記重み付け制御の対象とするサブキャリア数は、受信信号のマルチパスの遅延分散量の測定結果に応じて制御される、こととしてもよい。
 (7)さらに、前記重み付け制御に用いる重み係数は、受信信号のマルチパスの遅延分散量の測定結果に応じて制御される、こととしてもよい。
 (8)また、前記重み付け制御に用いる重み係数は、受信信号の受信品質情報の測定結果に応じて制御される、こととしてもよい。
 (9)さらに、前記既知の受信信号のマッピングされるサブキャリアが時間的に変化する場合において、それぞれのマッピング態様に応じて、前記重み付け制御の対象とするサブキャリア及び前記重み付け制御に用いる重み係数のいずれか一方又は双方が制御される、こととしてもよい。
 (10)また、前記通信帯域において送信されない1又は複数のサブキャリアを介して複数のサブキャリア群が存在する場合に、前記重み付け制御は、前記サブキャリア群別に実施される、こととしてもよい。
 (11)さらに、伝播路推定値を得るのに用いられる既知信号がそれぞれ送信される複数のサブキャリアに対応する第1サブキャリアグループと、前記既知信号を用いて求めた伝播路推定値に基づく伝播路補償が施されるデータ信号がそれぞれ送信される複数のサブキャリアに対応する第2サブキャリアグループとを受信する、マルチキャリアに対応した受信装置において、前記第1サブキャリアグループに属するサブキャリアの周波数の中で最も高い周波数と最も低い周波数とにより挟まれる周波数帯域外の周波数を有し、かつ、前記第2サブキャリアグループに属する第1サブキャリアについての伝播路補償後の信号の信頼度を、該周波数帯域内の周波数を有し、かつ、前記第2サブキャリアグループに属する第2サブキャリアについての伝播路補償後の信号の信頼度に対して低くする制御を行なう制御部と、前記制御がなされた信頼度に基づいて、前記第1サブキャリア及び前記第2サブキャリアについての伝播路補償後の信号について誤り訂正処理を行なう誤り訂正部と、をそなえる、受信装置を用いることができる。
 (12)また、所定の通信帯域における既知の受信信号を基にサブキャリア毎の伝播路推定値を生成する伝播路推定部と、前記伝播路推定値を用いていずれかのサブキャリアにマッピングされた受信データ信号の伝播路補償を行なう伝播路補償部と、前記伝播路補償された前記受信データ信号の信頼度情報を求める信頼度情報生成部と、前記伝播路推定値を求めるのに用いた前記既知の受信信号数が他よりも少ないサブキャリアに関して得られた信頼度情報の重み付けを他よりも小さくする重み付け制御を行なう重み付け制御部と、前記重み付け制御後の信頼度情報を用いて前記データ信号の誤り訂正を行なう誤り訂正部と、をそなえる、受信装置を用いることができる。
 (13)ここで、前記重み付け制御部は、前記重み付け制御の対象を、前記通信帯域の端のサブキャリア又は当該サブキャリアとその近傍のサブキャリアについて得られた信頼度情報とする、こととしてもよい。
 (14)また、前記重み付け制御部は、前記通信帯域の端のサブキャリアに近いサブキャリアほど小さな重み付けとする制御を行なう、こととしてもよい。
 (15)さらに、前記重み付け制御部は、前記通信帯域の端のサブキャリアに近いサブキャリアグループほど小さな重み付けとする制御を行なう、こととしてもよい。
 (16)また、前記重み付け制御部は、前記重み付け制御の対象とするサブキャリア数を、受信信号のマルチパスの遅延分散量の測定結果に応じて制御する、こととしてもよい。
 (17)さらに、前記重み付け制御部は、前記重み付け制御に用いる重み係数を、受信信号のマルチパスの遅延分散量の測定結果に応じて制御する、こととしてもよい。
 (18)また、前記重み付け制御部は、前記重み付け制御に用いる重み係数を、受信信号の受信品質情報の測定結果に応じて制御する、こととしてもよい。
 (19)さらに、前記重み付け制御部は、前記既知の受信信号のマッピングされるサブキャリアが時間的に変化する場合において、それぞれのマッピング態様に応じて、前記重み付け制御の対象とするサブキャリア及び前記重み付け制御に用いる重み係数のいずれか一方又は双方を制御する、こととしてもよい。
 (20)また、前記重み付け制御部は、前記通信帯域において送信されない1又は複数のサブキャリアを介して複数のサブキャリア群が存在する場合に、前記サブキャリア群別に前記重み付け制御を実施する、こととしてもよい。
 受信信号の誤り率特性を改善することが可能となる。
第1実施形態に係るOFDM受信機の構成例を示すブロック図である。 図1に示すLLR補正部によるLLR重み付け処理の一例を説明する模式図である。 図1に示すLLR補正部によるLLR重み付け処理の第1変形例を説明する模式図である。 図1に示すLLR補正部によるLLR重み付け処理の第2変形例を説明する模式図である。 図1に示すLLR補正部によるLLR重み付け処理の第3変形例を説明する模式図である。 図1に示すLLR補正部によるLLR重み付け処理の第4変形例を説明する模式図である。 第2実施形態に係るOFDM受信機の構成例を示すブロック図である。 図7に示すLLR補正部によるLLR重み付け処理の一例を説明する模式図である。 図7に示すLLR補正部によるLLR重み付け処理の第1変形例を説明する模式図である。 第3実施形態に係るOFDM受信機の構成を示すブロック図である。 図10に示すLLR補正部によるLLR重み付け処理の一例を説明する模式図である。 第4実施形態に係るLLR重み付け処理の一例を説明する模式図である。 第6実施形態に係るLLR重み付け処理の一例を説明する模式図である。 第7実施形態に係るLLR重み付け処理の一例を説明する模式図である。 シミュレーションの一例を説明する模式図である。 シミュレーション結果の一例を示すグラフである。 通信帯域においてパイロット信号とデータ信号とがサブキャリアにマッピングされる様子を示す模式図である。 図17に示す送信信号に対応する受信信号の一例を示す模式図である。 図17に示すパイロット信号を基にデータ信号の伝播路推定を行なう様子を示す模式図である。 通信帯域の周波数領域において複数サブキャリアのパイロット信号を平均化して伝播路推定を行なう様子を示す模式図である。
符号の説明
 10 OFDM受信機
 11 受信アンテナ
 12 無線部
 13 ADC(Analog to Digital Converter)
 14 タイミング同期部
 15 FFT(Fast Fourier Transformer)
 16 伝播路推定部
 17 伝播路補償部
 18 LLR演算部
 19 LLR補正部
 20 誤り訂正部
 21 遅延分散測定部
 22 SNR(Signal to Noise Ratio)測定部
 以下、図面を参照して本発明の実施の形態を説明する。ただし、以下に説明する実施形態は、あくまでも例示であり、以下に明示しない種々の変形や技術の適用を排除する意図はない。即ち、本発明は、その趣旨を逸脱しない範囲で種々変形(各実施例を組み合わせる等)して実施することができる。
 〔A〕概要説明
 OFDM(又はOFDMA)のようにマルチキャリアを利用する無線通信システムでは、一部のサブキャリア(周波数)に制限してパイロット信号をマッピングして送信する場合がある。例えば、図17は、所定の通信帯域において、2サブキャリア毎にパイロット信号(データ信号と区別するために、パイロット信号には矢印を付して表記。以降において同様)がマッピングされ、パイロット信号を含まないデータ信号(矢印無し)と多重される様子を示している。このような場合、通信帯域の端のサブキャリアには、パイロット信号ではなくデータ信号がマッピングされる場合がある。
 そのような多重信号は、送信機からマルチパスフェージングチャネルを経て、例えば図18に示すような、位相や振幅が変化した信号として受信機にて受信される。
 受信機では、既述のように、データ信号の伝播路補償を行なうために、パイロット信号を用いて伝播路推定を行なう。その一例として、図19に、図17に示すパイロット信号(矢印)を基に、データ信号(矢印無し)の伝播路推定を行なう様子を示す。
 データ信号がマッピングされているサブキャリアの伝播路推定値は、例えば、隣接するサブキャリアにマッピングされている2つのパイロット信号から得られた伝播路推定値を線形補間することで、求めることが可能である。
 ここで、図19に示すように、通信帯域の端のサブキャリアにマッピングされているのがパイロット信号でない場合、このサブキャリアの伝播路推定値は、例えば、外挿補間によって求めることが可能である。
 しかし、外挿補間では、内挿補間の場合と比べて、用いるパイロット信号数が少ないために伝播路推定値の精度が劣化しやすい。そのため、通信帯域の端のサブキャリアにデータ信号がマッピングされている場合、その伝播路補償には、他よりも精度の悪い伝播路推定値を用いる結果となる。結果として、伝播路補償後のデータ信号のLLRの精度も劣化し、誤り訂正において、誤り率が増加してしまい、十分な受信性能を得ることができない場合がある。
 さらに、通信帯域内の全サブキャリアにパイロット信号をマッピングした場合であっても、通信帯域の端のサブキャリアについて他に比べて、十分な受信性能を得られない場合がある。
 例えば、図20に示すように、通信帯域の全サブキャリアにパイロット信号がマッピングされた受信信号を考える。あるサブキャリアの伝播路推定を行なう際、周辺サブキャリアのパイロット信号を平均化することで、伝播路推定を行なう場合がある。
 これは、マルチパスの遅延分散量が小さな場合には、周辺サブキャリアの伝播路推定値の相関が高くなる傾向を利用して、複数パイロット信号を平均化することで、高精度な伝播路推定値を得ることを目的としている。
 例えば、伝播路推定対象となるサブキャリアを中心に両側1サブキャリアずつを平均化の対象とする(つまり、合計3サブキャリアの平均をとる)ことを考える。この場合、通信帯域の中心に関しては、3サブキャリアの平均を行なうことができるが、通信帯域の両端については、2サブキャリアのみの平均化となる。
 この場合、通信帯域の両端のサブキャリアに関する伝播路推定値の精度は、他に比べて劣化しやすい。したがって、この場合にも、データ信号の誤り率が増加して、十分な受信性能を得ることができないことがある。
 換言すれば、伝播路推定値を求めるのに用いたパイロット信号数が他よりも少ないサブキャリアに関して得られたLLRは、他に比べて精度が劣化しやすい。
 そこで、本実施形態では、通信帯域の端、又は、通信帯域の端及びその近傍のサブキャリアのように、伝播路推定に用いるパイロット信号数が所定数よりも不足することとなるサブキャリアにマッピングされた受信データ信号の信頼度情報(LLR)を、他に比べて弱める重み付け制御を行なう。
 ここで、伝播路推定値を得るのに用いられるパイロット信号がそれぞれ送信される複数のサブキャリアに対応するサブキャリアグループを第1サブキャリアグループ、前記パイロット信号を用いて求めた伝播路推定値に基づく伝播路補償が施されるデータ信号がそれぞれ送信される複数のサブキャリアに対応するサブキャリアグループを第2サブキャリアグループとすると、前記重み付け制御を行なう対象は、前記第1サブキャリアグループに属するサブキャリアの中で最も高い周波数と最も低い周波数とにより挟まれる周波数帯域外の周波数を有し、かつ、前記第2サブキャリアグループに属するサブキャリアについての伝播路補償後の信号の信頼度である、ということができる。
 つまり、前記第1サブキャリアグループに属するサブキャリアの中で最も高い周波数と最も低い周波数とにより挟まれる周波数帯域外の周波数を有し、かつ、前記第2サブキャリアグループに属する第1サブキャリアについての伝播路補償後の信号の信頼度を、前記周波数帯域内の周波数を有し、かつ、前記第2サブキャリアグループに属する第2サブキャリアについての伝播路補償後の信号の信頼度に対して低くする制御を行なう。
 これにより、精度の低いLLRが誤り訂正に用いられることを抑制して、誤り訂正後のデータ信号の誤り率特性を改善することができる。なお、以下において、「通信帯域の端」とは、通信帯域において最も低いあるいは高い周波数のサブキャリアを意味する場合もあるし、当該サブキャリア近傍の1又は複数のサブキャリアを含む意味である場合もある。
 〔B〕第1実施形態
 図1は、第1実施形態に係るOFDM受信機の構成例を示すブロック図である。
 この図1に示すOFDM受信機(以下、単に「受信機」ともいう)10は、例えば、受信アンテナ11、無線部12、ADC(Analog to Digital Convertor)13、タイミング同期部14、FFT(Fast Fourier Transformer)15、伝播路推定部16、伝播路補償部17、LLR演算部18、LLR補正部19、および、誤り訂正部20をそなえる。なお、このOFDM受信機10は、無線基地局の受信系に適用してもよいし、無線端末(移動局)の受信系に適用してもよい。
 ここで、受信アンテナ11は、OFDM送信機(図示省略)からマルチキャリアにて送信された信号(OFDMシンボル)を受信するものである。
 無線部12は、この受信アンテナ11で受信された信号について、低雑音増幅、ベースバンド周波数への周波数変換(ダウンコーバージョン)、ロールオフフィルタ等による帯域制限等の受信処理を施すものである。
 ADC13は、無線部12で前記受信処理を施された受信信号をデジタル信号に変換するものである。得られたデジタル信号は、タイミング同期部14とFFT15とに入力される。
 タイミング同期部14は、ADC13で得られたデジタル信号の受信信号から有効シンボル成分を検出して、その検出タイミングをFFTタイミングとしてFFT15に与えるものである。
 FFT15は、タイミング同期部14から与えられた前記FFTタイミングにてADC13からのデジタル信号(時間領域信号)をFFT処理することにより周波数領域信号に変換するものである。
 伝播路推定部16は、前記FFT処理後の周波数領域信号から既知の受信信号であるパイロット信号のマッピングされたサブキャリア周波数成分を検出し、そのパイロット信号を基にOFDM送信機との間の伝播路推定を行なってサブキャリア毎の伝播路推定値を求めるものである。なお、パイロット信号がマッピングされていないサブキャリアについての伝播路推定値については、内挿補間あるいは外挿補間によって求めることができる。また、伝播路推定値は、先に述べたように複数のパイロット信号の平均化により求めることも可能である。
 伝播路補償部17は、前記FFT処理後の周波数領域信号のサブキャリアのいずれかにマッピングされているデータ信号成分について、伝播路推定部16で得られたサブキャリア毎の伝播路推定値を用いて伝播路補償を行なうものである。
 LLR演算部(信頼度情報生成部)18は、伝播路補償部17による伝播路補償後のデータ信号について、誤り訂正部20での誤り訂正(軟判定復号)に用いられる信頼度情報の一つである、ビット毎のLLRを求めるものである。
 LLR補正部(重み付け制御部)19は、LLR演算部18で得られた前記ビット毎のLLRについて、サブキャリアに応じた重み付け制御を行なって補正するものである。例えば、通信帯域の端のように、外挿補間が発生する等して伝播路推定値を求めるのに用いたパイロット信号数が他よりも少ないサブキャリアが存在する場合、LLR補正部19は、そのサブキャリアについて、LLRの重み付けを他のサブキャリアに関して得られたLLRよりも低くする。
 誤り訂正部20は、LLR補正部19で前記補正(重み付け)されたビット毎のLLRを用いて、受信信号の誤り訂正を行なうものである。ここで、内挿補間による場合よりも一般に精度の低い外挿補間による伝播路補償値を用いて伝播路補償されたデータ信号のLLRは、LLR補正部19において、内挿補間による伝播路補償値を用いて伝播路補償されたデータ信号のLLRよりも低くなるように重み付けされているから、全体としての誤り率特性の劣化を抑制して、所期の受信性能を得ることが可能となる。
 以下、上述のごとく構成された本例のOFDM受信機10の動作について、伝播路補償部17、LLR演算部18及びLLR補正部19に着目して詳述する。
 通信帯域のサブキャリア数をNc個、サブキャリア#k(ただし、0≦k≦Nc-1)における伝播路推定値を
Figure JPOXMLDOC01-appb-I000001
と表し、受信機10でのサブキャリア#kの受信データ(FFT処理後のデータ)をr(k)と表す。
 伝播路補償部17では、各サブキャリア#kの受信データr(k)について、以下の(1)式に示すように伝播路から受けた歪みを補償する。
Figure JPOXMLDOC01-appb-M000002
 次に、LLR演算部18では、伝播路補償した信号
Figure JPOXMLDOC01-appb-I000003
について、ビット毎のLLRを求める。例えば、
Figure JPOXMLDOC01-appb-I000004
がNビットで表され、そのnビット目を
Figure JPOXMLDOC01-appb-I000005
と表すとすると、そのLLRは、以下の(2)式で表され、LLR演算部18ではこれを求める。
Figure JPOXMLDOC01-appb-M000006
なお、この(2)式のように表されるPr(X|Y)は、YにおけるXの条件付き確率を意味する。
 LLR補正部19は、上記(2)式により得られたビット毎のLLRに対して、サブキャリア#kに応じた重み係数(以下、LLR重み係数ともいう)を乗算する。
 例えば、図2の(1)に示すように、通信帯域においてパイロット信号が3サブキャリア毎にマッピングされ、通信帯域の両端の3サブキャリア分にデータ信号がマッピングされている場合、この両端の3サブキャリア分のデータ信号についての伝播路推定値は、例えば外挿補間によって求められる。
 そこで、LLR補正部19では、以下の(3)式で表される処理を行なう。
Figure JPOXMLDOC01-appb-M000007
 上記の(3)式は、例えば図2の(2)に示すように、通信帯域を周波数領域においてサブキャリア#k=K1及びK2(>K1)で分割した3つの区間において、それぞれ重み係数α1,α2,α3を、前記の(2)式で求められたLLR〔λ1(bn(k))〕に乗算することを意味している。
 即ち、図2の(2)に示す例では、外挿補間が発生する低周波数側の周波数領域(以下、外挿区間ともいう)に含まれる3サブキャリア#k=0,1,2(K1)のLLRには、それぞれ重み係数α1を乗算し、高周波数側の外挿区間に含まれる3サブキャリア#k=Nc-3(K2),Nc-2,Nc-1のLLRには、それぞれ重み係数α3を乗算し、残りの外挿区間でない周波数領域、例えば、内挿補間による伝播路推定値が得られる周波数領域(以下、これを内挿区間ともいう)に含まれるサブキャリア#kについてのLLRには、重み係数α2を乗算する。
 これはつまり、パイロット信号がそれぞれ送信される第1サブキャリアグループに属するサブキャリアの周波数の中で最も高い周波数と最も低い周波数とにより挟まれる周波数帯域外(外挿区間)の周波数を有し、かつ、パイロット信号を基に伝播路補償が施されるデータ信号がそれぞれ送信される第2サブキャリアグループに属する第1サブキャリアについての伝播路補償後の信号(つまり外挿区間の信号)の信頼度を、前記周波数帯域内(外挿区間を除く帯域内)の周波数を有し、かつ、前記第2サブキャリアグループに属する第2サブキャリアについての伝播路補償後の信号の信頼度に対して低くする制御を行なうことに相当する。
 ここで、外挿区間についての重み係数α1,α3(ただし、0≦α1,0≦α3)と、内挿区間についての重み係数α2(ただし、0<α2)との関係については、例えば、α1<α2,α3<α2とする。つまり、外挿区間についてのLLRには、内挿区間についての重み係数α2よりも小さな重み係数α1,α2を乗算する。一例として、α1=0.4,α2=1,α3=0.3という値を予め決めておく。なお、α2の上限値は、1でなくてもよい。本例では、α1=0.4,α2=1,α3=0.3という値を予め決めているが、これらを例えば2倍したα1=0.8,α2=2,α3=0.6としてもよい。
 このように、LLR演算部18で得られたLLRλ1(bn(k))をLLR補正部19で重み付け処理したλ2(bn(k))を、誤り訂正部20に入力することで、誤り率特性を改善することが可能となる。
 なお、上記の例では、α3<α1としているが、α3=α1としてもよいし、α3>α1としてもよい。
 (b1)第1変形例
 図2の(2)では、外挿区間に対してのみ内挿区間よりも小さな重み係数を乗算しているが、図20にて前述したように複数サブキャリア分のパイロット信号を周波数方向に平均化する場合には、外挿区間のサブキャリア#kについてのLLRが含まれ得る。
 そこで、外挿区間だけでなく内挿区間の一部(外挿区間よりも通信帯域中心側の区間)に対しても外挿区間と同等の重み付け処理を行なったほうが好ましい場合もある。例えば図3に示すように、外挿区間近傍の内挿区間の一部を含めた区間に対して、α2よりも小さな重み係数α1,α2を乗算してもよい。
 なお、本例では、伝播路推定値を求める際に外挿補間、内挿補間が発生する場合について説示したが、図20にて前述したように、複数サブキャリアについての伝播路推定値を平均化する場合についても、上述のLLR補正部19による重み付け処理は同様に適用することができ、この点は、以降の説明においても同様である。
 (b2)第2変形例
 また、上記の例は、通信帯域の両端において外挿補間が発生する場合であるが、例えば図4に示すように、パイロット信号のマッピング(配置)方法によっては通信帯域の片側の端にだけ外挿補間が発生する場合もある。このような場合は、下記の(4)式に示すように、外挿補間が発生する、通信帯域の片側のサブキャリア#kについてのみ、他よりも小さな重み係数α1(<α2)を乗算することとすればよい。
Figure JPOXMLDOC01-appb-M000008
 (b3)第3変形例
 上述した例では、外挿区間についてのLLR重み係数α1,α3を当該区間では一定(同じ)としているが、外挿区間について1又は複数のサブキャリア毎に異なるLLR重み係数αを乗じることとしてもよい。
 例えば図5に示すように、外挿区間が周波数方向にある程度長い場合を考える。既述のように、外挿補間によって求められた伝播路推定値の精度は、通信帯域の端に近いほど劣化しやすい傾向にあるから、LLR補正部19は、例えば、外挿区間を複数のサブキャリアブロック(グループ)に分割し、一部又は全部のブロックで異なる重み付けをLLRに対して行なう。
 図5の例では、通信帯域の両端でそれぞれ3サブキャリア分の外挿補間が発生しており、左端(低周波数側)については、1サブキャリア毎に異なる3つのLLR重み係数α1,α2,α3を用いている。一方、右端(高周波数側)については、1サブキャリアと2サブキャリアとに分けて、それぞれについて異なるLLR重み係数α5,α6を用いている。ただし、通信帯域の端に近いサブキャリアほど、LLR重み係数は小さい(α1<α2<α3<α4,α4>α5>α6)。
 (b4)第4変形例
 また、外挿区間では、サブキャリア毎にLLR重み係数を変えるのではなく、一部の複数サブキャリアについては同じLLR重み係数を適用することとしてもよい。例えば、図6に示すように、LLR補正部19においてLLR重み係数を乗算する区間長(サブキャリア数)を、通信帯域の左端側でLl、右端側でLrとする。本例では、これらの区間長Ll,Lrで外挿補間が発生すると仮定している。
 そして、LlをMl個(Mlは2以上の整数)に分割し、Ml個の各区間のサブキャリア数をそれぞれNl(1)~Nl(Ml)(いずれも1以上の整数)と表し、同様に、LrをMr個(Mrは2以上の整数)に分割し、Mr個の各区間のサブキャリア数をそれぞれNr(1)~Nr(Mr)(いずれも1以上の整数)と表す。
 ここで、Ml,Nl(1)~Nl(Ml),Mr,Nr(1)~Nr(Mr)の値は、予め決めた値としてよい。例えば図6中に示すように、Ml=3、Nl(1)=2、Nl(2)=2、Nl(3)=1、Mr=2、Nr(1)=2、Nr(2)=2、といったような値を予め決めておくことが可能である。
 この例では、Nl(1)の区間で適用されるLLR重み係数はα1、Nl(2)の区間で適用されるLLR重み係数はα2、Nl(3)の区間で適用されるLLR重み係数はα3、Nr(1)の区間で適用されるLLR重み係数はα5、Nr(2)の区間で適用されるLLR重み係数はα6、であり、帯域中心側のLLR重み係数α4に対して、(0≦)α1<α2<α3<α4,(1≧)α4>α5>α6としている。
 つまり、本例において、LLR補正部19は、通信帯域の端に近いサブキャリアほど適用するLLR重み係数を小さな値に設定(制御)する。これにより、通信帯域の端に近いサブキャリアほど得られる伝播路推定値が劣化しやすいような場合でも、効果的に誤り率特性の改善を図ることが可能となる。
 〔C〕第2実施形態
 マルチパスの遅延分散量が大きい場合は、サブキャリア間の伝播路値の変動が大きいため、外挿補間による伝播路推定値の精度が劣化しやすい。この点を考慮して、LLR補正部19は、前記Ml,Nl(1)~Nl(Ml),Mr,Nr(1)~Nr(Mr)の値(つまり、外挿区間の分割数、分割区間に含まれるサブキャリア数)を遅延分散量に応じて適応的に変えるとよい。
 そこで、本実施形態のOFDM受信機10には、例えば図7に示すように、伝播路推定部16で得られた伝播路推定値を基に遅延分散量を測定する遅延分散測定部21を設け、LLR補正部19は、この遅延分散測定部21での測定結果を基に、適用するLLR重み係数を適応的に制御する。
 例えば、遅延分散量が閾値よりも大きい場合は、サブキャリア間の伝播路値の変動が大きいため、外挿区間の帯域端に近いほど伝播路推定値の精度が劣化しやすい。そこで、遅延分散が大きい場合の外挿区間においては、当該区間の分割数を増やして分割区間に対して異なるLLR重み係数を適用するのが好ましい。
 一方、遅延分散量が小さい場合には、外挿補間による伝播路推定値の精度は、遅延分散が大きい場合ほど悪くはないため、遅延分散量が大きい場合よりも外挿区間の分割数を減らして(あるいは分割しないで)、LLRの重み付けを弱める対象区間を減らしてよい。
 例えば、遅延分散測定部21で測定された遅延分散量がある閾値よりも小さい場合と大きい場合とについて、2種類のMl,Nl(1)~Nl(Ml),Mr,Nr(1)~Nr(Mr)の値をLLR補正部19に予めメモリ等に保持しておき、LLR補正部19は、前記遅延分散量と前記閾値との比較によって、これらを適応的に切り替える。ただし、前記メモリに保持する値は前記2種類に限定されない。
 その一例を、図8に示す。なお、図8の(1)は、通信帯域において、5サブキャリア毎にパイロット信号がマッピングされ、通信帯域の両端の区間長Ll,Lrのそれぞれで外挿補間が発生する場合を表している。また、図8の(2)は、遅延分散測定部21で測定された遅延分散量が閾値よりも大きな場合のLLRの重み付けの様子を示し、図8の(3)は遅延分散測定部21で測定された遅延分散量が閾値以下である場合のLLRの重み付けの様子を示している。
 即ち、遅延分散量が閾値よりも小さい場合は、例えばMl=1,Mr=1としてLLR重み係数を適用する区間数を少なくする。一方、遅延分散が閾値以上の場合は、Ml=3,Mr=2のように、外挿区間を分割して、それぞれの分割区間で異なるLLR重み係数を適用する。
 なお、本例は遅延分散量を基準にしているが、代替的あるいは付加的に、隣接サブキャリア間の伝播路推定値の変動量を基準にしても同様な処理を行なうことが可能である。
 (c1)第1変形例
 既述のように、外挿補間が発生する場合の伝播路推定値の精度は遅延分散量が大きいほど劣化する傾向にある。上述した第2実施形態では、遅延分散量に応じてLLR重み係数の適用対象区間を適応的に制御する例について示した。本変形例では、遅延分散測定部21で測定された遅延分散量に応じてLLR補正部19が適用するLLR重み係数を適応的に制御する例について示す。
 その一例を図9に示す。なお、図9の(1)は、通信帯域において、3サブキャリア毎にパイロット信号がマッピングされ、通信帯域の両端の区間のそれぞれで外挿補間が発生する場合を表している。また、図9の(2)は、遅延分散測定部21で測定された遅延分散量が閾値よりも大きな場合のLLRの重み付けの様子を示し、図9の(3)は遅延分散測定部21で測定された遅延分散量が閾値以下である場合のLLRの重み付けの様子を示している。
 即ち、遅延分散量に関してある閾値を設け、LLR補正部19は、遅延分散測定部21で測定された遅延分散量σs 2が、この閾値未満であれば、図9の(2)に示すように、(α1,α2,α3)=(A1 (1),A2 (1),A3 (1))とし、閾値以上であれば、図9の(3)に示すように、(α1,α2,α3)=(A1 (2),A2 (2),A3 (2))とする。ただし、(0≦)A3 (1)<A1 (1)<A2 (1),(0≦)A3 (2)<A1 (2)<A2 (2)である。また、A1 (1),A2 (1),A3 (1),A1 (2),A2 (2),A3 (2)は、予め設定された値でよい。
 換言すれば、LLR補正部19は、遅延分散量σs 2が閾値よりも小さい場合は、通信帯域両端側のLLR重み係数と帯域中心側のLLR重み係数との比が大きく、遅延分散量σs 2が前記閾値以上である場合は、前記比が小さくなるように、LLR重み係数を制御する。これはつまり、例えば下記の(5)式で表すことができる。
Figure JPOXMLDOC01-appb-M000009
 なお、LLR補正部19は、(α1,α2,α3)=(f1(σs 2),f2(σs 2),f3(σs 2))というように、遅延分散量σs 2の関数として、LLR重み係数を決定してもよい。
 また、上記の重み付け処理は、遅延分散量とは代替的にあるいは付加的に、隣接サブキャリア間における伝播路推定値の変動量を基準にして行なうことも可能である。
 〔D〕第3実施形態
 OFDM受信機10において、受信信号の信号電力対雑音電力比(SNR:Signal to Noise Ratio)が低い場合、通信帯域全域にわたって伝播路推定値の精度はSNRが高い場合に比べて劣化する傾向にある。このような場合には、LLR重み付けを行なわなくてもよい。
 そこで、本実施形態のOFDM受信機10には、例えば図10に示すように、伝播路推定部16で得られた伝播路推定値を基に受信SNRを測定するSNR測定部22を設け、このSNR測定部22で測定されたSNRに応じてLLR補正部19で適用するLLR重み係数を適応的に制御するのが好ましい。
 その一例を図11に示す。なお、図11の(1)は、通信帯域において、3サブキャリア毎にパイロット信号がマッピングされ、通信帯域の両端の区間のそれぞれで外挿補間が発生する場合を表している。また、図11の(2)は、SNR測定部22で測定されたSNR(γ)が閾値未満である場合のLLRの重み付けの様子を示し、図11の(3)はSNR測定部22で測定されたSNR(γ)が前記閾値以上である場合のLLRの重み付けの様子を示している。
 即ち、受信SNRに関してある閾値を設け、SNR測定部22で測定されたSNR(γ)が、この閾値未満であれば、LLR補正部19は、図11の(2)に示すように、適用するLLR重み係数を(α1,α2,α3)=(Γ1 (1),Γ2 (1),Γ3 (1))とし、前記閾値以上であれば、図11の(3)に示すように、(α1,α2,α3)=(Γ1 (2),Γ2 (2),Γ3 (2))とする。なお、図11に示す例では、Γ2 (1)>Γ1 (1)>Γ3 (1)(≧0)、Γ2 (2)>Γ1 (2)>Γ3 (2)(≧0)である。また、Γ1 (1),Γ2 (1),Γ3 (1),Γ1 (2),Γ2 (2),Γ3 (2)は、予め設定された値でよい。
 換言すれば、LLR補正部19は、受信SNRが閾値未満である場合は、通信帯域の両端側のLLR重み係数と通信帯域中心側のLLR重み係数との比が大きく、受信SNRが閾値以上である場合は、前記比が小さくなるように、適用するLLR重み係数を制御する。これはつまり、下記の(6)式で表すことができる。
Figure JPOXMLDOC01-appb-M000010
 なお、LLR補正部19は、例えば、(α1,α2,α3)=(f1(γ),f2(γ),f3(γ))というように、SNR(γ)の関数として適用するLLR重み係数を決定することも可能である。
 〔E〕第4実施形態
 LLR補正部19は、前記の遅延分散量と受信SNRの双方の測定結果を基に、適用するLLR重み係数を制御することも可能である。この場合のOFDM受信機10は、図1に示した構成に対して、図7に示した遅延分散測定部21と、図10に示したSNR測定部22とを付加的にそなえる。
 そして、LLR補正部19では、例えば、遅延分散量の測定結果の大小判定(閾値判定)、SNRの測定結果の大小判定(閾値判定)をそれぞれ行なうこととし、合計4通り〔(遅延分散,SNR)=(小,小),(小,大),(大,小),(大,大)〕の判定結果に関して、4通りのLLR重み係数(α1,α2,α3)の値を予め決めて、メモリ等に保持しておき、いずれかの判定結果に応じたLLR重み係数をLLRに乗じる。
 その一例を図12に示す。なお、図12の(1)は、通信帯域において、3サブキャリア毎にパイロット信号がマッピングされ、通信帯域の両端の区間のそれぞれで外挿補間が発生する場合を表している。また、図12の(2-1)は、前記判定結果が(遅延分散,SNR)=(小,小)である場合のLLRの重み付けの様子を示し、図12の(2-2)は前記判定結果が(遅延分散,SNR)=(小,大)である場合場合のLLRの重み付けの様子を示している。同様に、図12の(2-3)は、前記判定結果が(遅延分散,SNR)=(大,小)である場合のLLRの重み付けの様子を示し、図12の(2-4)は前記判定結果が(遅延分散,SNR)=(大,大)である場合場合のLLRの重み付けの様子を示している。
 そして、この図12の例では、前記4通りの判定結果に対して、適用するLLR重み係数(α1,α2,α3)を以下のように定義している。
 (2-1)(遅延分散,SNR)=(小,小)→(α1,α2,α3)=(A1 (1),A2 (1),A3 (1)
 (2-2)(遅延分散,SNR)=(小,大)→(α1,α2,α3)=(A1 (2),A2 (2),A3 (2)
 (2-3)(遅延分散,SNR)=(大,小)→(α1,α2,α3)=(A1 (3),A2 (3),A3 (3)
 (2-4)(遅延分散,SNR)=(大,大)→(α1,α2,α3)=(A1 (4),A2 (4),A3 (4)
 ただし、A1 (i),A2 (i),A3 (i)(i=1,2,3,4のいずれか)の大小関係は、A2 (i)>A1 (i)>A3 (i)(≧0)である。
 なお、本例では、測定したSNRが閾値よりも小さい場合、通信帯域端側の外挿区間でのLLR重み係数は、通信帯域中心側のLLR重み係数よりも少しだけ小さい値を設定している。また、測定した遅延分散量及びSNRがいずれも閾値よりも大きい場合は、通信帯域端側の外挿区間でのLLR重み係数は、通信帯域中心側のLLR重み係数に比べてより小さな重み係数としている。
 このように、本例によれば、受信信号の遅延分散量及びSNRの双方を基に、より柔軟できめ細かなLLR重み係数制御を実現することができ、無線通信環境に応じた適切なLLR重み付け制御が可能であり、より効果的に誤り率特性の改善を図ることが可能である。
 〔F〕第5実施形態
 前述したLLR重み係数を適用する区間を固定/可変とする例のいずれかと、前述したLLR重み係数を固定/可変とする例のいずれかとは、組み合わせて実施してもよい。
 〔G〕第6実施形態
 OFDM通信システムにおいては、時間的にサブキャリアへのパイロット信号の配置(マッピング)が変化する、あるいは、セル毎にパイロット信号の配置が異なる場合がある。
 時間的にパイロット信号の配置が変化する場合の一例を図13に示す。この図13には、(1)ある時刻T1では、通信帯域の両端にパイロット信号がマッピングされ、(2)ある時刻T2では、通信帯域の両端にパイロット信号がマッピングされず、(3)ある時刻T3では、通信帯域の両端にパイロット信号がマッピングされず、かつ、パイロット信号の配置間隔も時刻T1,T2とは異なる、様子を示している。
 このように、時間変化に応じて複数のパイロット信号配置が存在する場合、LLR補正部19は、それぞれの場合において、既述のように、LLR重み係数及びLLR重み係数を適用する区間長のいずれか一方又は双方を決定(制御)するのが好ましい。
 例えば図13の例では、(1)の時刻T1では、外挿補間が発生しないため、通信帯域の全サブキャリアについてLLR重み係数は一定値とし、(2)及び(3)の時刻T2とT3とでは、それぞれ外挿区間に対して、1サブキャリア毎に異なるLLR重み係数を適用する。
 図13の例では、時刻T2よりも時刻T3の方が通信帯域におけるパイロット信号数が少なく外挿区間が長いため、時刻T3では、時刻T2の場合よりも多くのサブキャリアに対して、中心帯域側よりも小さなLLR重み係数を適用している。
 なお、セル毎にパイロット信号の配置が異なる場合についても、上記と同様に、セル毎にLLR重み係数及びLLR重み係数を適用する区間長のいずれか一方又は双方を決定(制御)すればよい。
 このように、本例によれば、異なるパイロット信号配置が存在する場合にも、それぞれに適切なLLR重み付け制御を実施することができ、所期の受信性能を容易に確保することが可能である。
 〔H〕第7実施形態
 例えば図14に示すように、通信帯域において、OFDM送信機から送信されない1又は複数のサブキャリアが存在し、当該サブキャリアを介して複数のサブキャリア群(ブロック)が存在するような場合、それぞれのサブキャリアブロックの端についても、伝播路推定値の精度が他に比べて劣化しやすい。
 そこで、LLR補正部19は、このようなサブキャリアブロック単位で個別に、既述のLLR重み係数及びLLR重み係数を適用する区間長のいずれか一方又は双方の決定(制御)を適用することも可能である。
 〔I〕シミュレーション結果
 計算機シミュレーションを用いて、上述したLLR補正による誤り率特性の測定した結果の一例を図16に示す。この測定結果は、2×2MIMO(Multi-Input Multi-Output),64QAM,符号化率(Coding Rate)=3/4とし、伝播環境は6-ray Typical Urban Modelとした場合の測定結果である。
 また、本シミュレーションでは、例えば図15に示すようなパイロット配置とし、6サブキャリア間隔でパイロット信号が挿入されている。また、1スロット(=7OFDMシンボル)内の第1のOFDMシンボルと第5のOFDMシンボルにのみパイロット信号が挿入されている。なお、OFDMシンボルとは、有効シンボルの一部を巡回的にコピーして当該有効シンボルにガードインターバル(GI)(サイクリックプレフィクス(CP)とも呼ばれる)として付加した信号単位を意味する。
 外挿補間が発生する区間は、第1のOFDMシンボルでは、通信帯域の左側(低周波数側)で1サブキャリア、通信帯域の右側(高周波数側)で5サブキャリアであり、第5のOFDMシンボルでは、通信帯域の左側で4サブキャリア、通信帯域の右側で2サブキャリア発生すると仮定している。
 そこで、本シミュレーションでは、帯域左側4サブキャリア、帯域左側5サブキャリアについて、既述のLLR補正部19によるLLR重み付けを行なった。LLR重み係数は、帯域中心側が1に対して、両端側は0.3としている。
 この場合、パイロット信号が挿入されないOFDMシンボル(スロット内の第2~4,6,7OFDMシンボル)についても同様に通信帯域端側の伝播路推定精度が悪いため、同様なLLR重み係数を用いた。
 図16から、本例のLLR補正を適用することによって、FER(Frame Error Rate)=0.1における所要SNRを、従来(符号100参照)よりも約6dB改善できる(符号200参照)ことが分かる。

Claims (20)

  1.  伝播路推定値を得るのに用いられる既知信号がそれぞれ送信される複数のサブキャリアに対応する第1サブキャリアグループと、前記既知信号を用いて求めた伝播路推定値に基づく伝播路補償が施されるデータ信号がそれぞれ送信される複数のサブキャリアに対応する第2サブキャリアグループとを受信する、マルチキャリアに対応した受信装置における受信処理方法において、
     前記第1サブキャリアグループに属するサブキャリアの周波数の中で最も高い周波数と最も低い周波数とにより挟まれる周波数帯域外の周波数を有し、かつ、前記第2サブキャリアグループに属する第1サブキャリアについての伝播路補償後の信号の信頼度を、該周波数帯域内の周波数を有し、かつ、前記第2サブキャリアグループに属する第2サブキャリアについての伝播路補償後の信号の信頼度に対して低くする制御を行ない、
     前記制御がなされた信頼度に基づいて、前記第1サブキャリア及び前記第2サブキャリアについての伝播路補償後の信号について誤り訂正処理を行なう、
    ことを特徴とする、受信処理方法。
  2.  マルチキャリア通信における受信処理方法であって、
     所定の通信帯域における既知の受信信号を基にサブキャリア毎の伝播路推定値を生成し、
     前記伝播路推定値を用いていずれかのサブキャリアにマッピングされた受信データ信号の伝播路補償を行ない、
     前記伝播路補償された前記受信データ信号の信頼度情報を求め、
     前記伝播路推定値を求めるのに用いた前記既知の受信信号数が他よりも少ないサブキャリアに関して得られた信頼度情報の重み付けを他よりも小さくする重み付け制御を行ない、
     前記重み付け制御後の信頼度情報を用いて前記受信データ信号の誤り訂正を行なう、
    ことを特徴とする、受信処理方法。
  3.  前記重み付け制御の対象は、前記通信帯域の端のサブキャリア又は当該サブキャリアとその近傍のサブキャリアについて得られた信頼度情報である、ことを特徴とする、請求項2記載の受信処理方法。
  4.  前記重み付け制御は、前記通信帯域の端のサブキャリアに近いサブキャリアほど小さな重み付けとする制御である、ことを特徴とする、請求項3記載の受信処理方法。
  5.  前記重み付け制御は、前記通信帯域の端のサブキャリアに近いサブキャリアグループほど小さな重み付けとする制御である、ことを特徴とする、請求項3記載の受信処理方法。
  6.  前記重み付け制御の対象とするサブキャリア数は、受信信号のマルチパスの遅延分散量の測定結果に応じて制御される、ことを特徴とする、請求項2~5のいずれか1項に記載の受信処理方法。
  7.  前記重み付け制御に用いる重み係数は、受信信号のマルチパスの遅延分散量の測定結果に応じて制御される、ことを特徴とする、請求項2~5のいずれか1項に記載の受信処理方法。
  8.  前記重み付け制御に用いる重み係数は、受信信号の受信品質情報の測定結果に応じて制御される、ことを特徴とする、請求項2~5,7のいずれか1項に記載の受信処理方法。
  9.  前記既知の受信信号のマッピングされるサブキャリアが時間的に変化する場合において、それぞれのマッピング態様に応じて、前記重み付け制御の対象とするサブキャリア及び前記重み付け制御に用いる重み係数のいずれか一方又は双方が制御される、ことを特徴とする、請求項2記載の受信処理方法。
  10.  前記通信帯域において送信されない1又は複数のサブキャリアを介して複数のサブキャリア群が存在する場合に、前記重み付け制御は、前記サブキャリア群別に実施される、ことを特徴とする、請求項2記載の受信処理方法。
  11.  伝播路推定値を得るのに用いられる既知信号がそれぞれ送信される複数のサブキャリアに対応する第1サブキャリアグループと、前記既知信号を用いて求めた伝播路推定値に基づく伝播路補償が施されるデータ信号がそれぞれ送信される複数のサブキャリアに対応する第2サブキャリアグループとを受信する、マルチキャリアに対応した受信装置において、
     前記第1サブキャリアグループに属するサブキャリアの周波数の中で最も高い周波数と最も低い周波数とにより挟まれる周波数帯域外の周波数を有し、かつ、前記第2サブキャリアグループに属する第1サブキャリアについての伝播路補償後の信号の信頼度を、該周波数帯域内の周波数を有し、かつ、前記第2サブキャリアグループに属する第2サブキャリアについての伝播路補償後の信号の信頼度に対して低くする制御を行なう制御部と、
     前記制御がなされた信頼度に基づいて、前記第1サブキャリア及び前記第2サブキャリアについての伝播路補償後の信号について誤り訂正処理を行なう誤り訂正部と、
    をそなえたことを特徴とする、受信装置。
  12.  マルチキャリア通信における受信装置であって、
     所定の通信帯域における既知の受信信号を基にサブキャリア毎の伝播路推定値を生成する伝播路推定部と、
     前記伝播路推定値を用いていずれかのサブキャリアにマッピングされた受信データ信号の伝播路補償を行なう伝播路補償部と、
     前記伝播路補償された前記受信データ信号の信頼度情報を求める信頼度情報生成部と、
     前記伝播路推定値を求めるのに用いた前記既知の受信信号数が他よりも少ないサブキャリアに関して得られた信頼度情報の重み付けを他よりも小さくする重み付け制御を行なう重み付け制御部と、
     前記重み付け制御後の信頼度情報を用いて前記データ信号の誤り訂正を行なう誤り訂正部と、
    をそなえたことを特徴とする、受信装置。
  13.  前記重み付け制御部は、
     前記重み付け制御の対象を、前記通信帯域の端のサブキャリア又は当該サブキャリアとその近傍のサブキャリアについて得られた信頼度情報とする、ことを特徴とする、請求項12記載の受信装置。
  14.  前記重み付け制御部は、
     前記通信帯域の端のサブキャリアに近いサブキャリアほど小さな重み付けとする制御を行なう、ことを特徴とする、請求項13記載の受信装置。
  15.  前記重み付け制御部は、
     前記通信帯域の端のサブキャリアに近いサブキャリアグループほど小さな重み付けとする制御を行なう、ことを特徴とする、請求項13記載の受信装置。
  16.  前記重み付け制御部は、
     前記重み付け制御の対象とするサブキャリア数を、受信信号のマルチパスの遅延分散量の測定結果に応じて制御する、ことを特徴とする、請求項12~15のいずれか1項に記載の受信装置。
  17.  前記重み付け制御部は、
     前記重み付け制御に用いる重み係数を、受信信号のマルチパスの遅延分散量の測定結果に応じて制御する、ことを特徴とする、請求項12~15のいずれか1項に記載の受信装置。
  18.  前記重み付け制御部は、
     前記重み付け制御に用いる重み係数を、受信信号の受信品質情報の測定結果に応じて制御する、ことを特徴とする、請求項12~15,17のいずれか1項に記載の受信装置。
  19.  前記重み付け制御部は、
     前記既知の受信信号のマッピングされるサブキャリアが時間的に変化する場合において、それぞれのマッピング態様に応じて、前記重み付け制御の対象とするサブキャリア及び前記重み付け制御に用いる重み係数のいずれか一方又は双方を制御する、ことを特徴とする、請求項12記載の受信装置。
  20.  前記重み付け制御部は、
     前記通信帯域において送信されない1又は複数のサブキャリアを介して複数のサブキャリア群が存在する場合に、前記サブキャリア群別に前記重み付け制御を実施する、ことを特徴とする、請求項12記載の受信装置。
PCT/JP2008/051093 2008-01-25 2008-01-25 受信処理方法および受信装置 WO2009093332A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009550410A JP5083330B2 (ja) 2008-01-25 2008-01-25 受信処理方法および受信装置
CN200880122822.XA CN101911557B (zh) 2008-01-25 2008-01-25 接收处理方法及接收装置
PCT/JP2008/051093 WO2009093332A1 (ja) 2008-01-25 2008-01-25 受信処理方法および受信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/051093 WO2009093332A1 (ja) 2008-01-25 2008-01-25 受信処理方法および受信装置

Publications (1)

Publication Number Publication Date
WO2009093332A1 true WO2009093332A1 (ja) 2009-07-30

Family

ID=40900850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/051093 WO2009093332A1 (ja) 2008-01-25 2008-01-25 受信処理方法および受信装置

Country Status (3)

Country Link
JP (1) JP5083330B2 (ja)
CN (1) CN101911557B (ja)
WO (1) WO2009093332A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009296354A (ja) * 2008-06-05 2009-12-17 Hitachi Kokusai Electric Inc 無線通信システム及び受信装置並びに受信信号処理方法
JP2015032899A (ja) * 2013-07-31 2015-02-16 株式会社Jvcケンウッド 受信装置、受信方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129974A1 (en) 2015-02-13 2016-08-18 Samsung Electronics Co., Ltd. Transmitting apparatus and receiving apparatus and controlling method thereof
KR101777215B1 (ko) * 2015-02-13 2017-09-11 삼성전자주식회사 송신 장치, 수신 장치 및 그 제어 방법
CN107104915B (zh) * 2016-02-22 2020-05-19 瑞昱半导体股份有限公司 接收装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003088538A1 (fr) * 2002-04-15 2003-10-23 Matsushita Electric Industrial Co., Ltd. Recepteur et procede de reception associe
JP2004364094A (ja) * 2003-06-06 2004-12-24 Keio Gijuku マルチキャリア受信装置
JP2005167594A (ja) * 2003-12-02 2005-06-23 Matsushita Electric Ind Co Ltd 信号生成装置および信号生成方法
JP2006246447A (ja) * 2005-02-03 2006-09-14 Matsushita Electric Ind Co Ltd 受信装置、受信方法、集積回路
WO2007046503A1 (ja) * 2005-10-21 2007-04-26 Matsushita Electric Industrial Co., Ltd. キャリア間干渉除去装置及びこれを用いた受信装置
JP2007300217A (ja) * 2006-04-27 2007-11-15 Toshiba Corp Ofdm信号の送信方法、ofdm送信機及びofdm受信機
JP2008017144A (ja) * 2006-07-05 2008-01-24 Toshiba Corp 無線受信装置および方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003088538A1 (fr) * 2002-04-15 2003-10-23 Matsushita Electric Industrial Co., Ltd. Recepteur et procede de reception associe
JP2004364094A (ja) * 2003-06-06 2004-12-24 Keio Gijuku マルチキャリア受信装置
JP2005167594A (ja) * 2003-12-02 2005-06-23 Matsushita Electric Ind Co Ltd 信号生成装置および信号生成方法
JP2006246447A (ja) * 2005-02-03 2006-09-14 Matsushita Electric Ind Co Ltd 受信装置、受信方法、集積回路
WO2007046503A1 (ja) * 2005-10-21 2007-04-26 Matsushita Electric Industrial Co., Ltd. キャリア間干渉除去装置及びこれを用いた受信装置
JP2007300217A (ja) * 2006-04-27 2007-11-15 Toshiba Corp Ofdm信号の送信方法、ofdm送信機及びofdm受信機
JP2008017144A (ja) * 2006-07-05 2008-01-24 Toshiba Corp 無線受信装置および方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009296354A (ja) * 2008-06-05 2009-12-17 Hitachi Kokusai Electric Inc 無線通信システム及び受信装置並びに受信信号処理方法
US8413030B2 (en) 2008-06-05 2013-04-02 Hitachi Kokusai Electric Inc. Wireless communication system, receiver and signal processing method for received signal
JP2015032899A (ja) * 2013-07-31 2015-02-16 株式会社Jvcケンウッド 受信装置、受信方法

Also Published As

Publication number Publication date
CN101911557A (zh) 2010-12-08
JP5083330B2 (ja) 2012-11-28
JPWO2009093332A1 (ja) 2011-05-26
CN101911557B (zh) 2014-10-22

Similar Documents

Publication Publication Date Title
US8023526B2 (en) Adaptive channel prediction apparatus and method for performing uplink pre-equalization depending on downlink channel variation in OFDM/TDD mobile communication system
US8064328B2 (en) Channel estimation device
US8867658B2 (en) Multicarrier-signal receiving apparatus and multicarrier-signal transmitting apparatus
US20050259565A1 (en) Radio communication system, radio transmitter and radio receiver
JP2004289475A (ja) Ofdmシンボルを復調する受信機
Epple et al. Adaptive threshold optimization for a blanking nonlinearity in OFDM receivers
JP3794622B2 (ja) 受信装置、受信方法、プログラム、ならびに、情報記録媒体
JP5083330B2 (ja) 受信処理方法および受信装置
US8121216B2 (en) Channel estimation device, equalization device, and radio system
JP3594828B2 (ja) マルチキャリア変調信号復調器
US8687749B2 (en) Mobile OFDM receiver
KR20100017370A (ko) 다중경로 채널의 지연 확산을 측정하기 위한 방법 및 장치
WO2016133044A1 (ja) 受信装置、受信方法
US8503589B2 (en) Wireless communication apparatus and wireless reception method
JPWO2014024369A1 (ja) 受信機、受信機による伝送路の周波数応答推定方法
US7313180B2 (en) Receiving device, receiving method, and program
US9166841B2 (en) Receiving apparatus and receiving method
US8971431B1 (en) Channel estimation for OFDM signals
JP2012085050A (ja) 無線受信装置および無線受信方法
Nakamura et al. Decision feedback channel estimation without prior knowledge of terminal mobility for SC-FDE
JP5021509B2 (ja) マルチキャリア受信装置
JP2009094831A (ja) シングルキャリアブロック伝送の周波数領域等化方法
Yano et al. Pre-FFT type MMSE adaptive array antenna to suppress asynchronous interference for OFDM packet transmission
JPWO2010038273A1 (ja) 伝搬路推定装置、受信機、及び伝搬路推定方法
KR20070094317A (ko) 방송 수신 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880122822.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08703908

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009550410

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08703908

Country of ref document: EP

Kind code of ref document: A1