WO2009092217A1 - 流体运动装置 - Google Patents

流体运动装置 Download PDF

Info

Publication number
WO2009092217A1
WO2009092217A1 PCT/CN2008/073367 CN2008073367W WO2009092217A1 WO 2009092217 A1 WO2009092217 A1 WO 2009092217A1 CN 2008073367 W CN2008073367 W CN 2008073367W WO 2009092217 A1 WO2009092217 A1 WO 2009092217A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
inlet
fluid layer
outlet
casing
Prior art date
Application number
PCT/CN2008/073367
Other languages
English (en)
French (fr)
Inventor
Xiaoyi Zhu
Original Assignee
Xiaoyi Zhu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2007101861559A external-priority patent/CN101468713B/zh
Priority claimed from CN2007101861563A external-priority patent/CN101468662B/zh
Priority claimed from CN2008100003023A external-priority patent/CN101195348B/zh
Priority claimed from CN2008100081304A external-priority patent/CN101224709B/zh
Priority claimed from CNA2008100683794A external-priority patent/CN101314324A/zh
Application filed by Xiaoyi Zhu filed Critical Xiaoyi Zhu
Publication of WO2009092217A1 publication Critical patent/WO2009092217A1/zh
Priority to US12/559,543 priority Critical patent/US8113569B2/en
Priority to US13/335,913 priority patent/US8408635B2/en
Priority to US13/786,413 priority patent/US8684446B2/en
Priority to US14/176,141 priority patent/US9278719B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D35/00Vehicle bodies characterised by streamlining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61DBODY DETAILS OR KINDS OF RAILWAY VEHICLES
    • B61D17/00Construction details of vehicle bodies
    • B61D17/02Construction details of vehicle bodies reducing air resistance by modifying contour ; Constructional features for fast vehicles sustaining sudden variations of atmospheric pressure, e.g. when crossing in tunnels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D35/00Vehicle bodies characterised by streamlining
    • B62D35/02Streamlining the undersurfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/32Other means for varying the inherent hydrodynamic characteristics of hulls
    • B63B1/34Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction
    • B63B1/36Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction using mechanical means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/82Elements for improving aerodynamics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/88Optimized components or subsystems, e.g. lighting, actively controlled glasses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Definitions

  • the present invention relates to an exercise device capable of moving in a fluid.
  • the resistance of the moving device is: 1) the fluid pressure on the front side; 2) the fluid pressure on the sides and the upper and lower sides
  • the technical problem to be solved by the present invention is to overcome the deficiencies of the prior art and to provide a fluid motion device capable of effectively reducing motion resistance, thereby effectively saving energy and increasing the speed of movement.
  • a fluid motion device driven by a power unit having opposite front and rear portions and a bottom and side between the front and rear portions
  • the portion is characterized in that: the front portion is provided with at least one inlet for receiving a forward pressure fluid, and the rear portion is provided with at least one outlet for guiding the fluid, and the inlet and the outlet are communicated through the fluid layer passage
  • the moving device is passed back and forth so that the inlet receives the fluid encountered by the moving device during the movement, and the received fluid is discharged from the outlet through the fluid layer passage.
  • the bottom is provided with at least one balanced inlet for receiving the bottom pressure fluid, and the balanced inlet is passed through the flow
  • the body passage communicates with the outlet port such that the balance inlet receives the bottom fluid encountered during the movement and discharges the received bottom fluid from the outlet through the fluid layer passage.
  • the side portion is provided with at least one side guide inlet for receiving lateral pressure fluid, and the side guide inlet communicates with the outlet port through the fluid layer passage, so that the side guide inlet receives the lateral fluid encountered during the movement, and receives the received Lateral fluid exits the outlet through the fluid layer channel.
  • the fluid moving device comprises a casing and a closed inner casing wrapped by the outer casing, the fluid layer channel separating the inner casing and the outer casing, the guiding inlet is arranged at the front of the casing, and the side guiding inlet is arranged at the side of the casing, and the balance inlet is It is located at the bottom of the casing, and the outlet is provided at the rear of the casing.
  • the fluid layer channel includes a first fluid layer channel and a second fluid layer channel, wherein the first fluid layer channel communicates with the inlet, the second fluid layer channel communicates with the outlet, and the second fluid layer channel
  • the cross section is a curved shape that extends the length of the fluid passage path.
  • the cross section of the second fluid layer channel is elliptical, circular, square, serpentine, and annular.
  • the fluid layer channel is provided with a rotary head adjacent to the inlet, and the rotary head is driven by a motor.
  • the swivel head has lines that facilitate the cutting of positive pressure fluid. By setting the rotary head, the forward fluid resistance can be reduced.
  • At least one of the front, top, and side has a longitudinal spoiler that increases the fluid flow rate.
  • the longitudinal spoiler surface reduces the effect of fluid resistance on the motion device.
  • the bottom is provided with a spoiler for extending the passage of the fluid.
  • the path through which the fluid passes through the spoiler is not less than the path through which the fluid passes.
  • At least one of the outlets is provided with a motor for accelerating the flow rate of the fluid.
  • a vehicle having a front portion that receives a forward airflow pressure, a rear portion opposite the front portion, and a side portion and a bottom portion between the front and rear portions, and the bottom portion is provided with a front wheel and a rear driven by a power unit
  • the wheel is characterized in that: the front portion is provided with at least one introduction port, and the rear portion is provided with at least one outlet port, and the inlet port and the outlet port are connected through the fluid layer channel to penetrate the automobile front and rear, so that the airflow received by the inlet port passes through the fluid layer
  • the passage is discharged from the outlet.
  • the bottom portion is provided with at least one balanced introduction port for receiving the bottom pressure air flow, and the balance introduction port communicates with the outlet port through the fluid layer channel.
  • the side portion is provided with at least one side guide inlet that receives a lateral pressure air flow, and the side guide inlet communicates with the outlet port through the fluid layer passage.
  • the car includes a casing and is packaged by the casing a closed inner casing, the fluid layer passage separates the inner casing from the outer casing, the inlet is provided at the front of the casing, the side guide inlet is provided at the side of the casing, the balance inlet is provided at the bottom of the casing, and the outlet is provided at the rear of the casing .
  • the power unit includes a gas storage device and a pneumatic motor connected to the compressed gas, and two wheels of at least one of the front wheel and the rear wheel are respectively electrically connected to the two air motors through two differentials, two pneumatic The motor is connected to the same gas storage device.
  • the power device further includes at least one of the front wheel or the rear wheel driving the motor through the fuel cell, and the motor drives the two wheels through the reducer, the differential, and the two halves, wherein the fluid driven impeller drives the generator Or the air pump supplements the fuel cell or the gas storage device.
  • At least one of the top, bottom, and front portions of the automobile has a spoiler that extends the fluid passage path.
  • a train comprising a locomotive and at least one compartment connected thereto, the locomotive comprising an outer casing, a closed inner casing wrapped by the outer casing, and a fluid layer passage separating the inner and outer casings, the front portion of the locomotive casing being provided with at least An inlet for receiving a forward pressure airflow, the rear portion of the locomotive casing is provided with at least two outlets for discharging the airflow, and the inlet is communicated with the outlet through the fluid layer passage, and the carriage has an inlet at the front, The outlet port at the rear and the fluid layer passage connecting the inlet and the outlet, a discharge port of the locomotive casing communicates with the inlet of the car through a conduit, and the other outlet of the locomotive casing is in direct communication with the ambient air pressure.
  • a vessel comprising an outer casing under a water line and a closed inner casing surrounded by an outer casing, the outer casing and the inner casing being separated by a fluid layer passageway, the outer casing being provided with at least one for receiving positive water flow pressure
  • the inlet port and the at least one outlet for discharging the water flow, the fluid layer channel communicating with the inlet port and the outlet port, so that the forward pressure water flow received by the inlet port is discharged from the outlet port through the fluid layer channel.
  • the present invention can achieve at least one of the following advantageous effects:
  • the outlet rushes out suddenly, filling the negative pressure zone in the back and changing to the positive fluid zone to facilitate the car. Therefore, the fluid distribution around the moving device is fundamentally changed.
  • the front end and the side are negative pressure zones (near each inlet) and the rear end is a positive pressure zone, which reduces the influence of the resistance on the moving device and achieves the purpose of energy saving.
  • [23] 2) Set the spoiler surface at the bottom and or at least one balance inlet, and introduce the bottom fluid into the fluid layer channel so that the bottom fluid passes through the path not less than the upper path, the bottom fluid velocity and flow.
  • the fluid velocity in the body channel is relatively balanced (the fluid velocity in the fluid layer channel is greater than the fluid velocity at the top of the motion device) and is discharged from the outlet.
  • the fluid velocity at the bottom of the vehicle is slightly greater than (at least equal to) the upper fluid velocity. That is, the upper air pressure is slightly higher (at least equal to) at the bottom, which increases the adhesion of the car wheel to the ground, increases the stability and safety, and reduces the fuel consumption, thereby solving the problem that the existing car simply increases the weight of the chassis.
  • Unsafe and wasteful fuel problem Since the lift resistance has been eliminated, the basic function of the car is only about 300 kg, while the existing ordinary car weighs 1.3_2 tons, using only 1/5 of the existing car. It can also save about 80%.
  • Figure 1 is a cross-sectional structural view showing a first embodiment of the present invention
  • Figure 2 is a side elevational view showing the first embodiment
  • Figure 3 is a front view showing the second embodiment of the present invention.
  • Figure 4 is a cross-sectional structural view of a second embodiment
  • Figure 5 is a front elevational view showing the second embodiment
  • FIG. 6 and FIG. 7 are schematic structural views of a streamlined surface and a refractive surface of a second embodiment
  • Figure 8 is a cross-sectional structural view showing a third embodiment of the present invention.
  • FIGS. 9, 10, and 11 are schematic structural views of three spoiler surfaces of the third embodiment
  • Figure 12 is a cross-sectional structural view showing a front view angle according to a fourth embodiment of the present invention.
  • Figure 13 is a cross-sectional structural view showing a bottom view angle of a fourth embodiment of the present invention.
  • FIG. 14 is a schematic structural view of a front view angle according to a fifth embodiment of the present invention.
  • Figure 15 is a schematic structural view of a bottom view angle according to a fifth embodiment of the present invention.
  • Figure 16 is a schematic structural view of a sixth embodiment of the present invention.
  • FIG. 17 is a schematic structural view of a front view angle of a seventh embodiment of the present invention.
  • FIG. 18 is a schematic structural view of a bottom view angle of a seventh embodiment.
  • Fluid motion device is a car, in The airflow introduction port 1 is opened at the front end of the automobile 2, and the airflow introduction port 1 is opened at the rear end of the automobile.
  • the airflow introduction port 1 and the airflow outlet port 11 pass through the fluid layer passage to form a gas flow hole 3.
  • the air introduction port 1 has a small outer and inner structure, and the inner wall of the air flow hole 3 is a streamlined paraboloid, and the inner wall is smooth and smooth.
  • Side guide inlets 4, 5, 12 for receiving lateral pressure are provided on the left and right sides of the vehicle.
  • balance inlet 18 there is not less than one balance inlet 18 at the bottom of the car, and a decorative window can be installed on the balance inlet 18, and the side guide inlet and the balance inlet 18 are all connected with the airflow hole 3, under the windshield of the front end of the automobile.
  • An auxiliary airflow introduction port 21 communicating with the airflow hole 3 is opened in the vehicle body.
  • the airflow outlet 11 of the airflow hole 3 is provided with a first decorative window 23
  • the airflow introduction port 1 for receiving the forward pressure is provided with a second decorative window 19, and the sides receiving the lateral pressure are respectively mounted on the guide inlets 4, 12.
  • each of the lateral airflow introduction ports 5, 14 receiving the lateral pressure is provided with a fourth decorative window 22, and the decorative windows 23, 19, 20, 22 have smooth surfaces and smooth lines.
  • the side guides that receive the lateral pressure through the two sides of the front end of the car 2
  • the inlets 4, 12, the side guide inlets 5, 14 which receive the lateral pressure on both sides of the rear end of the vehicle, introduce the airflow around the sides of the vehicle into the side guide entrances 4, 12, 5, 14 for rapid movement of the car.
  • the front end and the surrounding fluid resistance are squeezed into the respective inlets to form a relatively negative pressure zone at the front end of the automobile and the surrounding inlet, and then the airflow is led out of the airflow hole 3 from the airflow outlet 11 so that the vehicle 2
  • the wind resistance around the body is greatly reduced.
  • each inlet 1, 4, 5, 12, 14 presses the fluid resistance equal to the speed of the vehicle.
  • the fluid passes through the airflow hole of the streamline parabola 3 ⁇ , the fluid flow rate has passed the vehicle speed, and the airflow ejected from the outlet port 11 instantly fills the negative pressure zone behind the tail, even making the negative pressure zone For the relative positive pressure zone, it is beneficial to the car 2 to drive and fully save energy.
  • the pressure on the front or side of the existing car is the positive pressure zone, and the rear of the car is the negative pressure zone.
  • an airflow outlet is opened at the rear end or the middle of the vehicle, and a gas flow hole is formed between the airflow introduction port and the airflow outlet.
  • it can receive the positive pressure airflow that the car encounters during the movement from the airflow inlet and discharge it from the airflow outlet provided at the middle or the back of the car, avoiding the need for the car to collide with the airflow in the forward direction.
  • the negative pressure is reduced or eliminated, energy consumption can be reduced, and the rational design can be completely achieved.
  • the rear end of the car is changed from a negative pressure zone to a relatively positive pressure zone, thereby facilitating the car to travel.
  • the fluid velocity at the bottom of the vehicle is greater than or equal to the velocity of the upper fluid, thereby fundamentally eliminating the resistance and unsafeness caused by the lift, and the weight of the vehicle is lightened, and the energy consumption is greatly reduced. Driving is faster, smoother, safer and more energy efficient.
  • a side guide inlet is opened on both sides of the car, a balance inlet is opened at the bottom, and an auxiliary air inlet is opened under the front windshield, and a huge airflow around the car is introduced into the airflow hole and then discharged through the airflow outlet, thereby reducing The airflow brings most of the resistance to the car's outer casing for energy savings.
  • FIG. 3 to FIG. 7 it is a second embodiment of the present invention.
  • the fluid moving device is a car, and the car has an inner casing 8 and an outer casing 7.
  • the annular fluid layer channel between the inner casing 8 and the outer casing 7 is divided into four separate fluid layer channels, wherein:
  • the front left side inlet port 601, the fluid layer channel 402 and the rear side outlet port 903 are connected to each other;
  • the upper inlet ports 608, 603, 605, 607 and the rear central outlet 905 are connected forward and backward.
  • side introduction ports 607, 601, 604 are in communication with the annular fluid layer passage 4.
  • the outer casing 7 and the inner casing 8 are separated by a fluid layer passage, wherein the lower fluid layer passage includes fluid layer passages 402, 4, 401, and the upper fluid layer passage communicates with the upper inlet ports 608, 603, 605 and Rear central outlet 905.
  • the fluid layer channels 4, 401, 402 are separated by the two channel plates 403 between the outer casing 7 and the inner casing 8 to form three separate fluid layers.
  • the channel plate 403 may also not completely block the fluid layer channels 4, 401, 402, so that the three fluid layer channels become a large fluid layer that are separated from each other and communicate with each other.
  • the fluid flow rate is different for each fluid layer and can be used as appropriate.
  • the side introduction ports 607, 604, 601 introduce the side fluid resistance into the fluid layer passage 4, and the balance introduction port 26 is interposed between the bottom of the vehicle and the fluid layer passage to form an open state, and the fluid velocity at the bottom of the vehicle is less than 27 m/sec. Thereafter, a large amount of vehicle bottom fluid is introduced into the fluid layer passages 4, 402, 4 from the balance introduction port 26.
  • the bottom fluid is relatively balanced with the fluid in the fluid layer passage and is discharged from the outlets 9, 903, 904 at a rate greater than (at least equal to) 27 meters per second. It can be seen that the fluid velocity of the vehicle bottom is at least equal to 27 m/s, which is equal to the speed of the roof fluid, which is equivalent to the vehicle speed, and the lift resistance is mostly or completely eliminated. Drive the car in an ideal state without lift resistance.
  • the upper inlet ports 608, 603, 605, 607 introduce the upper fluid into the fluid layer passage 4 and are discharged from the rear middle outlet 905.
  • the two rear side outlets 903, 904 can be placed in the middle or lower part of the two sides of the car according to the situation, the decorative window 10 can be prepared for each inlet and the outlet, and the upper part of the fluid layer passages 4, 401, 402 is a concave hole. 5, in order to make the interior space larger, the three independent fluid layer channels 4, 401, 402 may also be semi-independent fluid layers.
  • FIGS. 8 to 11 it is a third embodiment of the present invention.
  • the fluid motion device is a high speed train 28.
  • An air introduction port 6 is opened in front of the locomotive, and the air introduction port 6 communicates with the air flow outlet 9 at the rear of the vehicle.
  • An inner casing 8 is provided in the outer casing 7 of the train 28.
  • the spacer layer having a certain distance between the outer casing 7 and the inner casing 8 is an annular fluid layer passage 4, and the upper, lower, left and right sides of the outer casing 7 and the inner casing 8 are separated by the fluid layer passage 4 by a certain distance, and the gas is allowed to flow smoothly.
  • the front end of the fluid layer passage 4 communicates with the introduction port 6, and the rear end of the fluid layer passage communicates with the outlet port 9.
  • the bottom of the fluid layer channel 4 can be divided into three semi-independent fluid layer channels (refer to Figure 4 ) which share an inlet 6 and a outlet 9 .
  • a portion of the outer casing 7 having fluid resistance is provided with not less than one introduction port 601 communicating with the fluid layer passage 4, and the outer decorative window 10 is matched with the inlet port 601 of different sizes to separate the foreign matter, and the inlet of the decorative window can be unobstructed.
  • the introduction of fluid The short hollow strip 607 having a short length fixed in the glass window of the compartment is hollow.
  • the hollow portion can suck the fluid around the glass window, and the outer surface is decorated with the decorative window 10 for ventilation, and the short hollow strip 607 is longer than the length.
  • the long long hollow strips 607 are in communication, and the long hollow strips 607 and the short hollow strips 607 are configured to communicate with the fluid layer channels 4.
  • the effect of the fluid resistance on the inner casing 8 is reduced, and the fluid of the fluid hole at a speed of 56 m/sec is introduced through the inlet port 601 having different resistances around the compartment and the decorative window 10 and the hollow strip 607 of the fixed glass.
  • a relatively negative pressure zone is formed at the inlet end of the train and the surrounding inlet.
  • the bottom of the compartment is also provided with a balance inlet 26, in order to balance the slow flow of the bottom of the train, and the fluid velocity in the fluid layer passage 4 is fast, and the balance introduction port 26 reduces or eliminates the resistance and unsafeness caused by the lift, and simultaneously The grounding force of the train has greatly increased.
  • the fluid introduced by each inlet increases the velocity in the annular fluid layer passage 4, and the fluid velocity in the fluid layer passage is faster than the natural state, so the fluid is greater than 56 m/
  • the speed of seconds is ejected at a high speed from the fluid outlet 903; another portion of the fluid is connected from the outlet 9 through the conduit 901 to the next compartment, and the next compartment is also in the above configuration until exiting from the outlet 9 at the rear of the last compartment.
  • the instantaneous filling of the negative pressure zone is a relative positive pressure zone. It is also possible to close the fluid outlet 903 in the lower part of each car and open an outlet 904 on the roof to derive the gas.
  • the embodiment can also be applied to the underground iron by changing the direction of movement of the fluid, greatly reducing the influence of the wind resistance of the high-speed train and achieving energy saving.
  • FIG. 12 and FIG. 13 it is a fourth embodiment of the present invention.
  • the fluid moving device is a ship 33.
  • a fluid layer passage 4 is formed between the outer casing 7 and the inner casing 8 under the water line of the ship 33, and the front end introduction port 6, the fluid layer passage 4, and the rear end outlet 9 are connected forward and backward.
  • the fluid layer channels 4 are in communication.
  • the outlet 9 is at the rear end, and there are not less than two side guide outlets 903, 904 on both sides of the rear end.
  • the fluid moving device (such as a car) has a fluid introduction port 7 at the front end thereof, and the fluid introduction port 7 communicates with the fluid layer passage and the two outlet ports 803 on both sides of the rear end, and the fluid layer passage is between the outer layer 3 and the inner layer 2 It is located in the channel formed by the closed sides.
  • the fluid layer channel includes a linear first fluid layer channel 4 and a second fluid layer channel 401 that are in communication.
  • a rotary head 703 driven by a motor 704.
  • the shape of the rotary head 703 can be a conical shape, a flying saucer shape, a hemispherical shape, an impeller shape, etc., and the rotating head 703 rotates at a high speed to facilitate fluid introduction under the action of centrifugal force.
  • the rotating head 703 In a fluid layer channel 4, thereby avoiding the resistance caused by the direct maximum fluid resistance directly colliding with the inner layer 2, the rotating head 703 has concave lines or convex lines on the contact surface of the rotating head 703 and the fluid to facilitate the drawing. Break the fluid.
  • the second fluid layer channel 401 is an elliptical ring hole formed by bending a channel of a metal material, and the fluid outlet port 803 of the second fluid layer channel 401 is at a lower portion of both sides of the rear end of the automobile, thereby being formed by the inlet port 7, the first
  • the main structure and appearance of the automobile 1 composed of a fluid layer passage 4, a second fluid layer passage 401 and an outlet 803, and a fitting portion for installing the windshield 5 and the door 6 is also reserved.
  • the door 6 is a two-layer hollow structure, and a windshield 5 of different forms is installed between the inlet port 7 and the second fluid layer channel 401, and a hollow door 6 is also connected to the second fluid layer channel 401 through the inlet port 701. After the door 6 is added to the second fluid layer passage 401, various beautiful and beautiful cars are formed, and the main structure thereof is simpler and more practical than the existing automobile, and the cost is greatly saved.
  • each The decorative entrance is provided with decorative windows 703 of different sizes.
  • the decorative window 703 can be in the shape of a strip, a square shape, a honeycomb shape, etc.
  • the decorative window has a smooth surface and smooth lines, and does not affect the suction except for blocking the opening and preventing foreign matter from entering. Exhaust, also plays a decorative role
  • the wind turbine 9 has a rotating shaft 901, the generator shaft 903 is fixed at both ends of the rotating shaft 90 1 , and the impeller 902 is arranged on the rotating shaft 901 to generate electricity.
  • the electric power generated by the machine 903 is not less than one fuel cell 904, and the fuel cell 904 is supplied to the motor 10.
  • the gear 101 on the rotating shaft of the motor 10 cooperates with the gear 103 on the rotating shaft of the speed reducer 102 to drive the speed reducer 102 to operate because of the motor. 10 slow turn Dynamically, the torque is large, which is not conducive to the operation of the motor. Therefore, the deceleration of the speed reducer 102 can facilitate the rotation of the wheel 107.
  • the speed reducer 102 drives the differential 104 to work, and the torque transmitted from the speed reducer 102 is evenly distributed to the two half shafts 105.
  • the shaft 105 is in turn connected and fixed to the hub 106 in the wheel 107, respectively.
  • the rotation control of the motor 10 through the control panel 11 can also be set on the control panel 1 1 corresponding to the fourth gear of the conventional automobile and its function, or the transmission gear shift corresponding to the fourth gear and its function as in the conventional automobile, and the accelerator pedal can be removed.
  • a stepless speed regulating knob 111 for adjusting the rotational speed of the motor 10 is disposed on the steering wheel, and the speed of the motor 10 is controlled by the stepless speed regulating knob 111.
  • the wheel 107 is rotated, including forward rotation and reverse rotation.
  • slow turning, fast turning such as a motor 10 in front is front wheel drive, such as a motor 10 in the rear wheel is the rear wheel drive, such as the front and rear wheels have a motor that is four-wheel drive.
  • Only the brake pedal is controlled at the foot, and the conventional hydraulic or pneumatic brake system can be used, which is safer because many accidents are caused by improper handling of the brake pedal and the accelerator pedal.
  • the crease line 802 on the guide tube 8 can adjust the direction of the outlet 803 so that the outlet port 80 3 can eject the fluid in the upper, middle, and lower directions.
  • the maximum fluid resistance is introduced into the fluid layer passage 4 at a speed of 27 m/sec through the introduction port 7, and since the rotary head 703 is rotated at a high speed by the motor 704, it is easy to reduce the fluid resistance and introduce the fluid more easily.
  • the fluid passes through the second fluid layer passage 401 and is discharged from the outlet 803. Since the velocity of the fluid in the channel is faster than the natural state, both the outer layer 3 and the inner layer 2 are parabolic, the velocity of the fluid is faster than 27 m/sec, and the inlet 701 and the bottom balance inlet 702 are fluid holes.
  • the ambient fluid resistance is introduced into the first fluid layer channel 4 and the second fluid layer channel 401.
  • the bottom fluid of the vehicle passes through not less than one balance introduction port 702 since the flow velocity in the first fluid layer passage 4 and the second fluid layer passage 401 is already greater than 27 m/sec, which is faster than the flow velocity in the upper portion of the vehicle body, the bottom fluid is Introducing into the first fluid layer channel 4 and the second fluid layer channel 401 such that the bottom fluid accelerates and the flow velocity in the fluid layer channel 4 is relatively balanced, It is a fluid velocity of more than 27 m/s, and because the path in the first fluid layer passage 4 and the second fluid layer passage 40 1 to the outlet 803 is longer than the path through which the upper fluid passes, the fluid is in the first fluid layer passage. The speed has to be increased in the channel of the second fluid layer to maintain fluid continuity.
  • the positive maximum fluid resistance is mostly introduced into the fluid layer passage 4 through the introduction port 7, and the fluid resistance through-in ports 701, 702 which are laterally wrapped around the vehicle body are also mostly introduced into the first fluid layer passage 4.
  • the second fluid layer passage 401 is such that fluid is introduced into the first fluid layer passage 4 and the second fluid layer passage 401 in the vicinity of the respective introduction ports. Since the fluid in the passage is faster than the speed of the vehicle, the flow velocity of the fluid close to the surface of the vehicle is also faster than the speed of the vehicle. The driving force of the vehicle is minimized by the fluid resistance equivalent to the speed of the vehicle.
  • the path in the tunnel is larger than the path on the vehicle body, so the vehicle
  • the flow velocity at the bottom is already greater than the fluid flow velocity in the upper part of the vehicle body, thereby substantially eliminating the lift resistance, thereby causing an ideal state in which the flow velocity at the bottom of the vehicle is faster than the flow velocity at the upper portion of the vehicle.
  • the second fluid layer channel 401 is a circular hole having three outlets, one of the outlets 804 is in the middle of the rear portion of the vehicle, and the other two outlets are both sides of the rear of the vehicle.
  • the lower outlet 803 and the lower outlet 803 are provided with a motor 801 (of course, no motor) for increasing the fluid flow rate in the fluid layer passage.
  • a motor 801 of course, no motor for increasing the fluid flow rate in the fluid layer passage.
  • three semi-separated channels are formed by the channel plate from the front to the back.
  • the car structure thus formed is made of metal material on the outer periphery.
  • the inner layer 2 and the outer layer 3 in the frame are made of engineering plastics, which can reduce the weight of the car body and ensure the strength of the car body.
  • the windshield glass 5 forms a shape.
  • the fluid motion device is a car 1, the car 1 is located on the dashboard of the driver's seat, and the driving control panel 906 is disposed.
  • the driving control panel 906 is provided with a motor speed control knob 907, and the knob 907 controls a stepless governor to control the driving mechanism to control the automobile.
  • Drive horse Speed regulation
  • the automobile 1 has a casing 2 and an inner casing 3, and the casing 2 and the inner casing 3 are spaced apart from each other to form at least one fluid layer passage 4; the front end of the casing 2 is provided with a fluid introduction port 7, and the fluid introduction port 7 is usually provided with a decorative window.
  • the fluid introduction port 7 is for receiving the forward fluid pressure of the vehicle, and the fluid is introduced through the fluid introduction port 7, the at least one side introduction port 70 1 and the bottom balance introduction port 702. Then, under the action of pressure, the fluid layer passage 4 formed between the inner and outer casings 3 and 2 flows at a high speed, and finally the fluid guide sleeve 8 at the rear end of the outer casing 2 moves the sleeve 802 (the movable sleeve 802 can change the discharge direction of the fluid) Further, the fluid outlet 801 is ejected at a high speed, and a spoiler surface 201 is disposed at the bottom of the outer casing 2.
  • the spoiler surface 201 communicates with the fluid layer passage 4 through not less than one introduction port 702, and is increased by the spoiler surface 201.
  • the surface of the spoiler surface 201 has a streamlined shape of the concavity and convexity to increase the path of the fluid flowing through the spoiler surface 201, because the velocity of the fluid passing through the concave and convex streamline surface is greater than the plane, thereby increasing the velocity of the fluid passing through the bottom crucible, thereby eliminating the high speed of the automobile.
  • the problem of lift due to the difference in fluid flow rates between the upper and lower surfaces.
  • the spoiler surface is a streamlined surface between the concavities and convexities, and the velocity of the fluid passing through the concavo-convex paraboloid is greater than the velocity through the plane.
  • the flow velocity at the bottom is at least equal to or greater than
  • the upper fluid flow rate causes the bottom of the car to form two layers of fast-flowing fluid layers at the same level as the upper part, naturally making the fluid flow rate of the upper and lower parts of the vehicle approximately equal, or the bottom fluid flow rate is greater than the upper part, thus forming an ideal fluid pattern for vehicle movement, the bottom of the vehicle.
  • the flow rate is slightly faster than the upper flow rate, that is, the air pressure at the bottom of the car is slightly smaller than the upper part of the car.
  • the slightly upper air pressure can be stably regulated in the upper car casing.
  • the shell material of the car is the same as the existing one. Metal, carbon fiber, glass steel and plastic materials can be used.
  • the lower frame of the car is made of metal
  • the surface of the outer casing is made of metal
  • the other is plastic or glass steel
  • the car is formed by the gas storage device.
  • the weight of the body does not exceed 300 kg, which is about 1/5 of that of a normal car. One point of weight is one point of energy consumption. Therefore, the empty car of the present invention is only one-fifth the weight of a conventional car.
  • the car saves 80% of its energy, which greatly increases the energy utilization rate inside the car. At the same time, the production cost of the car is greatly reduced.
  • the fluid introduction port 7, the fluid layer passage 4 and the fluid outlet port 8 of the forward fluid pressure are penetrated back and forth, and the maximum forward fluid resistance of the oncoming surface is smoothly introduced into the fluid layer passage 4, on the side of the periphery.
  • the fluid is introduced into the fluid layer passage 4 through the strip window introduction port 701, so that the forward and lateral fluid resistance are greatly reduced, and a relatively negative pressure region is formed at the front end of the moving device and the surrounding inlet, and finally higher than
  • the rate at which the vehicle exercises speed flows to the fluid outlet 801 at the tail to be strongly ejected, and the huge fluid instantly fills the negative pressure region at the rear of the vehicle and changes to a relatively positive pressure region.
  • This ideal state is advantageous for the vehicle to travel.
  • the automobile of the present embodiment further includes a pneumatic motor for driving the movement of the wheel, and the air motor is throttle-controlled by the multi-way electromagnetic valve to drive the vehicle to travel.
  • the main gas storage device 5 is arranged at the front of the automobile 1, and the auxiliary gas storage device 50 is provided at the rear.
  • the two gas storage devices are provided with an injection port 502 for conveniently injecting compressed gas into the gas storage device, and generally
  • the air pressure meter 503 for conveniently observing the pressure state of the gas storage device is further provided, and the pressure regulating valve 504 and the pressure regulating valve 504 capable of conveniently adjusting the pressure of the compressed gas flowing out of the gas storage device are connected to the output port of the gas storage device.
  • the flow valve 505 is connected to the flow valve 505, and the multi-way valve 506 is connected to the air motor 603 of the drive mechanism through the conduit 507.
  • the multi-way valve 506 connected to the flow valve 505 of the main gas storage device 5 is a five-way solenoid valve.
  • the four outputs are directly connected to the air motor 603 located on the four driving wheels of the automobile, and the three-way valve 508 is disposed on the flow valve 505 of the auxiliary gas storage device 501, and the two outputs are only connected to the two cars.
  • the wheel is mounted on a pneumatic motor 603.
  • the conduit 507 feeds the compressed gas into the air motor 603, and passes through the reducer 604.
  • the shaft 602 of the air motor is fixed in the hub 601 to drive the drive wheel 6 to rotate.
  • At least one wind turbine 9 is disposed in the fluid layer passage 4 between the fluid introduction port 7 and the rear end fluid outlet port 8.
  • the fluid enters the fluid layer channel 4 to drive the impeller 902 and the rotating shaft 901.
  • a generator 903 (or an air pump) is connected to each end of the rotating shaft 901, and the generator 903 stores the generated electric energy to One less fuel cell 904 or directly used to drive the air compressor 905 to re-inflate the gas storage device 5, the fuel cell 904 is powered by the light, sound, and control circuit board 906 required by the vehicle body.
  • four-wheel drive is realized by a pneumatic motor, and the air motor can also drive only the front or rear wheels.
  • the motors of Figures 14 and 15 can also be replaced with air motors for front or rear wheel drive.
  • This embodiment is a car designed according to the characteristics of compressed gas. Because the compressed gas is inexhaustible, it is a very low-cost energy source, and the gas storage tank is bulky, and the kinetic energy generated by the compressed gas is limited. Therefore, it is generally necessary to satisfy: 1) the car body is light and safe; 2) the effective use of compressed gas. Since the present embodiment eliminates the lift resistance of the automobile, the weight required for the automobile function is about 300 kg, and since the air motor directly acts on the wheel and the front wheel or the rear wheel drive, the injection of the compressed gas into the engine is avoided, and the transmission system is ineffective. Energy waste. In addition, the wind turbine is constantly replenishing energy while the car is running, so it can produce a practical car driven by compressed gas, and can also produce a real fuel cell-powered car.
  • a fluid motion device it may have an outer casing and an inner casing, and a space at a distance between the outer casing and the inner casing forms at least one fluid layer passage, and at least one fluid introduction port is provided at the front of the outer casing.
  • the rear part has at least one fluid outlet, and the inlet and the outlet are connected to the fluid layer.
  • adjacent fluid layer channels may be separated by channel plates, each fluid layer channel may be completely independent (ie, completely disconnected from each other without communication), or may be semi-independent (ie, The channel plates are separated but still connected, ie half separated.
  • the wall of the fluid layer channel is a smooth streamlined paraboloid to increase the path of the fluid and accelerate the fluid flow rate.
  • At least one fluid-driven wind turbine can be provided in the fluid layer channel to drive the generator to supplement the fuel cell.
  • the outer casing encloses the inner casing, and the fluid layer passage is a space between the outer casing and the inner casing, which is dedicated to fluid communication. Over.
  • the inner casing is a sealed body.
  • the fluid flows through the fluid layer passage and cannot enter the inner casing, and the outer casing is a ventilation layer, so that the fluid around the moving device can be discharged from the outlet after entering the fluid layer passage.
  • a large hole is opened at the front part of the outer casing of the moving device and directly hits the fluid resistance as an introduction port, and an outlet is opened at the rear part as an outlet, and the fluid layer penetrates front and rear.
  • the lower part of the inner shell in the fluid layer may have a concave hole, and the concave hole penetrates forward and backward with the introduction port and the outlet, and the concave hole wall is streamlined.
  • the inner and outer casings are also streamlined to facilitate unimpeded passage of fluid through the fluid layer channels and then exit the outlet.
  • the side with the largest fluid resistance can open a number of side guide inlets, and the side guides are fitted with decorative windows.
  • the strip-shaped air inlet through an inlet angle of less than 90 degrees is introduced into the fluid layer passage and then discharged through the outlet, which instantaneously fills and eliminates the resistance formed by the rear negative pressure region.
  • the fluid at the bottom is introduced into the fluid layer passage, so that the fluid velocity at the bottom of the vehicle and the fluid velocity in the fluid layer are relatively balanced and then discharged from the outlet.
  • a rotating head can be installed between the concave hole of the inner casing and the inlet of the outer casing, and the contact surface of the rotating head and the fluid has several concave or convex lines for facilitating the flow of the fluid, and the rotating head can be UFO shape, conical shape, spherical shape, blade shape, etc.
  • the rotating head is driven by the motor.
  • the moving equipment moves quickly and hits the fluid resistance ⁇
  • the front side fluid is thrown away by the high-speed rotation of the rotating head under the centrifugal force.
  • the instantaneous passage avoids the resistance of the fluid directly colliding with the casing and facilitates the introduction of fluid into the fluid layer passage.
  • the outer casing may also have longitudinal spoiler surfaces and spoiler strips (most of the existing cars are laterally concave and convex lines, which have less effect on reducing fluid resistance), and when the fast flowing fluid abuts the spoiler of the outer casing, Because the fluid flows through the paraboloid faster than the plane, the fluid passes through the concave-convex spoiler, and the fluid velocity suddenly becomes faster, the contact surface becomes less, and the residence time becomes shorter, which reduces the resistance of the fluid to the casing.
  • spoiler surfaces such as concave streamlined and convex streamlined faces, and concave and convex streamlined faces, which are concave or convex streamlined faces.
  • the combination in addition to the strip-shaped refractive surface, is a concave or convex paraboloid behind or in front of various transversely elongated concave or convex lines.
  • the above spoiler and spoiler can be pressed on the housing or made of metal or plastic or fiberglass material.
  • the accelerator pedal can be removed from the car. There is only one brake pedal. It is convenient and safe to install the stepless speed control knob on the steering wheel to control the motor speed. This is because many accidents are against the throttle. And the brakes are not handled properly.
  • the above vehicle structure has become very simple and practical, and thus a new way for environmentally friendly fuel cells to find a short day and difficulty in charging.
  • each of the fluid layer channels is respectively connected with an introduction port and an outlet port, and the inlet is selected from the group consisting of: an inlet at the front, a side guide at the side, and
  • the bottom balance inlet for each fluid layer channel may include a linear first fluid layer channel and a second fluid layer channel that may extend the fluid passage path, ie, at the same distance length, the fluid flows through the first fluid
  • the path length of the layer channel is smaller than the path length of the channel flowing through the second fluid layer, the first fluid layer channel and the second fluid layer channel are in communication, the inlet is in communication with the first fluid layer channel, and the outlet is in communication with the second fluid layer channel.
  • the cross section of the second fluid layer channel has a curved shape such as a circular, square, elliptical, serpentine, toroidal shape or the like.
  • a curved shape such as a circular, square, elliptical, serpentine, toroidal shape or the like.
  • it can all be a linear structure.
  • At least one of the front, side, top, and bottom of the fluid moving device may be provided with a spoiler surface that accelerates the fluid flow rate.
  • the spoiler surface or the spoiler surface with the balanced inlet can be added to the bottom of the car.
  • the fluid layer channel communicates with the inlet and the outlet, which also achieves a very significant energy saving effect.
  • the spoiler surface not less than the top path of the car accelerates the balance of the fluid in the fluid layer channel and the bottom of the car (between the spoiler surface and the ground), so that the inner and outer layers meet at the rear of the vehicle.
  • the lift resistance can be completely eliminated.
  • only the spoiler surface at the bottom of the car can eliminate the lift resistance most or completely.
  • you can set the spoiler at the bottom of the car to eliminate lift or you can eliminate the lift by setting the balance inlet at the bottom of the car to the same as the fluid layer channel, or you can set the spoiler and balance inlet simultaneously.
  • the weight of a car that achieves the required functions can be about one-fifth of the weight of an existing car, saving 80% of energy, and the production cost of the same car is greatly reduced.
  • the fluid motion device of the present invention can change the distribution of the automobile fluid, that is, the front and the periphery form a relatively negative pressure region.
  • the rear end forms a relatively positive pressure zone, and the fluid at the bottom of the brake is equal to and faster than the fluid flow velocity in the upper part of the vehicle, so the upper fluid can stably press the vehicle body, and the vehicle is stable and safe after driving, and the same energy can save a lot of energy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Ocean & Marine Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Body Structure For Vehicles (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

说明书 流体运动装置
[1] 技术领域
[2] 本发明是关于一种能够在流体中运动的运动装置。
[3] 背景技术
[4] 一切在流体中快速运动的运动体 (如: 汽车、 火车、 火箭、 导弹、 轮船、 潜艇 等)都需要消耗大量的能源来克服阻力。 运动体在流体中快速运动吋, 都需要消 耗极大的能量来撞开档在前面的厚厚的流体阻力 (如空气和水)
、 侧面的流体阻力和底部的流体升力, 另外, 高速运动的运动装置必然会在后 部形成负压力, 紧紧在运动装置的后部拉住运动装置, 给运动装置行驶带来阻 力 (负压力), 克服负压力构成仅次于克服正压力的另一主要能源消耗。
[5] 运动装置行驶吋的阻力包括: 1)正面的流体压力; 2)两侧及上下侧的流体压力
; 3)底部产生的升力阻力; 4)尾后的负压力产生的阻力。 所以, 运动装置的速度 有多快, 阻力就有多大, 速度和阻力成正比。
[6] 为了克服以上四种阻力: 人们设计出各种各样的流线型运动装置, 但是遗憾的 是, 至今还是克服阻力成为最大的能源消耗, 所以有必要寻找一种能真正减少 阻力的有效方法。
[7] 发明内容
[8] 本发明所要解决的技术问题是, 克服现有技术的不足, 提供一种能够有效减少 运动阻力, 从而能够有效节省能源和提升运动速度的流体运动装置。
[9] 本发明解决其技术问题所釆用的技术方案是: 一种流体运动装置, 其由动力装 置驱动, 其具有相对的前部和后部及位于前、 后部之间的底部和侧部, 其特征 在于: 该前部开有至少一个用于接收正向压力流体的导入口, 该后部开有至少 一个用于导出流体的导出口, 导入口和导出口通过流体层通道连通而使该运动 装置前后贯通, 使导入口接收运动装置在运动过程中遇到的流体, 并将接收的 流体通过流体层通道从导出口排出。
[10] 该底部设有至少一个用于接收底部压力流体的平衡导入口, 平衡导入口通过流 体层通道连通导出口, 使平衡导入口接收运动过程中遇到的底部流体, 并将所 接收的底部流体通过流体层通道从导出口排出。 该侧部设有至少一个用于接收 侧向压力流体的侧向导入口, 侧向导入口通过流体层通道连通导出口, 使侧向 导入口接收运动过程中遇到的侧向流体, 并将所接收的侧向流体通过流体层通 道从导出口排出。
[11] 该流体层通道有至少两个, 相邻流体层通道被通道板隔开, 导入口、 侧向导入 口、 平衡导入口均通过流体层通道与对应的导出口连通。
[12] 该流体运动装置包括外壳及由外壳包裹的封闭内壳, 流体层通道将内壳和外壳 分隔开, 导入口设于外壳前部, 侧向导入口设于外壳侧部, 平衡导入口设于外 壳底部, 导出口设于外壳后部。
[13] 该流体层通道包括相连通的第一流体层通道和第二流体层通道, 第一流体层通 道与导入口连通, 第二流体层通道与导出口连通, 第二流体层通道的横截面为 可以延长流体通过路径长度的弯曲形状。 第二流体层通道的横截面为椭圆形、 圆形、 方形、 蛇形、 环形。 流体层通道邻近导入口的位置设有旋转头, 旋转头 由电机驱动。 旋转头具有便于划开正向压力流体的线条。 通过设置该旋转头可 以减少正向的流体阻力。
[14] 前部、 顶部、 侧部中至少之一具有可以提高流体流速的纵向扰流面。 通过该纵 向扰流面可以减少流体阻力对运动装置的影响。
[15] 该底部设有用于延长流体通过路径的扰流面。 通过该扰流面使流体经过的路径 不少于流体经过上部的路径。
[16] 该导出口中至少有一个设有用于加速流体流速的马达。
[17] 一种汽车, 具有接收正向气流压力的前部、 与前部相对的后部及位于前、 后部 之间的侧部和底部, 底部装有由动力装置驱动的前轮和后轮, 其特征在于: 前 部设有至少一个导入口, 后部设有至少一个导出口, 导入口和导出口通过流体 层通道连接而前后贯穿该汽车, 使导入口接收到的气流通过流体层通道从导出 口排出。 该底部设有至少一个接收底部压力气流的平衡导入口, 平衡导入口通 过流体层通道与导出口连通。 该侧部设有至少一个接收侧向压力气流的侧向导 入口, 侧向导入口通过流体层通道与导出口连通。 该汽车包括外壳及由外壳包 裹的封闭内壳, 流体层通道将内壳和外壳分隔开, 导入口设于外壳前部, 侧向 导入口设于外壳侧部, 平衡导入口设于外壳底部, 导出口设于外壳后部。
[18] 该动力装置包括连接压缩气体的储气设备和气动马达, 前轮和后轮中至少之一 的两个车轮均分别通过两个差速器与两个气动马达动力连接, 两个气动马达连 接同一储气设备。 该动力装置还包括前轮或后轮中至少之一通过燃料电池为能 源来带动马达, 马达通过减速器、 差速器、 两半轮再带动两个车轮, 其中由流 体驱动的叶轮带动发电机或气泵为燃料电池或储气设备补充能源。 该汽车的顶 部、 底部、 前部中至少之一具有延长流体通过路径的扰流面。
[19] 一种火车, 包括火车头及与其连接的至少一节车厢, 该火车头包括外壳、 由外 壳包裹的封闭内壳及分隔开内、 外壳的流体层通道, 火车头外壳的前部设有至 少一个用于接收正向压力气流的导入口, 火车头外壳的后部设有至少两个用于 排出气流的导出口, 导入口通过流体层通道与导出口连通, 车厢具有位于前部 的导入口、 位于后部的导出口及连通该导入口和导出口的流体层通道, 火车头 外壳的一个导出口与车厢的导入口通过导管连通, 火车头外壳的另一个导出口 与环境气压直接连通。
[20] 一种船舶, 包括水位线下的外壳及由外壳包裹的封闭内壳, 该外壳和内壳被流 体层通道分隔开一定距离, 该外壳设有至少一个用于接收正向水流压力的导入 口及至少一个排出水流的导出口, 该流体层通道连通该导入口和导出口, 使导 入口接收的正向压力水流通过流体层通道从导出口排出。
[21] 本发明可以实现以下有益效果中的至少一种:
[22] 1)通过设置导入口、 流体层通道及导出口形成前后贯穿运动装置, 这样就可把 运动装置前方及周围的流体阻力导入流体层通道后, 流体以大于运动装置速度 的流速再从导出口猛然冲出, 瞬间填充后面的负压区, 改变为正向流体区利于 汽车行驶。 从而根本上改变了运动装置周围的流体分布, 前端和侧面为负压区 (各导入口附近) 后端为正压区, 减少阻力对运动装置的影响, 达到节能的目 的。
[23] 2)在底部设置扰流面和或至少有一个平衡导入口, 把底部的流体导入流体层通 道内, 使得底部流体经过的路径不少于经过上部的路径, 在底部流体速度和流 体层通道内流体速度相对平衡 (流体层通道内的流体流速大于运动装置顶部的流 体速度)后从导出口排出, 对于汽车而言, 使汽车底部流体速度略大于 (至少等于 )上部流体速度, 即上部气压略高 (至少等于)于底部, 使汽车车轮与地面的附着 力增加, 稳定性和安全性同吋增加, 并减少了油耗, 解决了现有汽车简单靠增 加底盘重量而带来的不安全和浪费燃料的问题; 由于已消除升力阻力, 这种汽 车所需基本功能的重量只有 300公斤左右, 而现有普通汽车重量为 1.3_2吨, 只 用现有汽车的 1/5重量, 也就可以节能 80%左右。
[24] 3)在流体导入口中间有电机带动的旋转头, 当旋转头高速旋转吋, 在离心力作 用下, 把正面流体抛开, 开出一条瞬间通道, 避开流体直接碰上壳体, 便于把 流体引进导入口, 比与流体直接硬碰的方式省能源。
[25] 附图说明
[26] 图 1是本发明第一具体实施方式的剖视结构示意图;
[27] 图 2是第一具体实施方式的侧视结构示意图;
[28] 图 3是本发明第二具体实施方式的主视结构示意图;
[29] 图 4是第二具体实施方式的剖视结构示意图;
[30] 图 5是第二具体实施方式的正视结构示意图;
[31] 图 6、 图 7是第二具体实施方式的流线型面、 折射面的结构示意图;
[32] 图 8是本发明第三具体实施方式的剖视结构示意图;
[33] 图 9、 10、 11是第三具体实施方式的三个扰流面的结构示意图;
[34] 图 12是本发明第四具体实施方式的正视角度的剖视结构示意图;
[35] 图 13是本发明第四具体实施方式的仰视角度的剖视结构示意图;
[36] 图 14是本发明第五具体实施方式的正视角度的结构示意图;
[37] 图 15是本发明第五具体实施方式的仰视角度的结构示意图;
[38] 图 16是本发明第六具体实施方式的结构示意图;
[39] 图 17是本发明第七具体实施方式的主视角度的结构示意图; 以及
[40] 图 18是第七具体实施方式的仰视角度的结构示意图。
[41] 具体实施方式
[42] 如图 1及图 2所示, 其为本发明的第一具体实施方式。 流体运动装置为汽车, 在 汽车 2的前端风阻最大处开设有气流导入口 1, 在汽车的后端开设有气流导出口 1 1, 气流导入口 1与气流导出口 11通过流体层通道前后贯通, 形成气流洞 3。 气流 导入口 1为外大内小的结构, 气流洞 3的内壁为流线型抛物面, 内壁光滑流畅。 在汽车左、 右两侧开设有用于接收侧向压力的侧向导入口 4、 5、 12、
14, 在汽车的底部开设有不少于一个平衡导入口 18, 平衡导入口 18上可装设装 饰窗, 侧向导入口和平衡导入口 18均与气流洞 3相通, 在汽车前端档风玻璃下的 车体上开设有与气流洞 3相通的辅助气流导入口 21。 另外, 气流洞 3的气流导出 口 11上装有第一装饰窗 23, 接收正向压力的气流导入口 1上装有第二装饰窗 19, 接收侧向压力的各侧向导入口 4、 12上均装有第三装饰窗 20, 接收侧向压力的各 侧向气流导入口 5、 14上均装有第四装饰窗 22, 各装饰窗 23、 19、 20、 22表面光 滑, 线条流畅, 除档住洞口、 防止异物进入和不影响吸气排气外, 还起到装饰 的作用。
[43] 当汽车以较高速度行驶吋, 一方面, 通过汽车 2前端的气流导入口 1将正向施压 的风阻气流引入气流洞 3, 然后从气流导出口 11把气流引出气流洞 3外。 此吋, 进入气流洞 3内的气流阻力远远小于正面撞开气流吋的阻力。 另一方面, 由于还 有部分被汽车前端撞开的气流仍然会紧紧裹在汽车 2周围的侧面形成侧向压力, 因此, 通过靠近汽车 2前端两侧面的两个接收侧向压力的侧向导入口 4、 12、 靠 近汽车后端两侧的接收侧向压力的侧向导入口 5、 14, 把紧裹住车身两侧的气流 引入侧向导入口 4、 12、 5、 14内, 汽车快速运动吋, 把前端和周围的流体阻力 挤压进各导入口, 从而在汽车的前端和周围的导入口处形成相对负压区, 然后 从气流导出口 11把气流引出气流洞 3外, 使得在汽车 2车身周围的风阻大大减少 。 再一方面, 由于汽车底部的气流通过平衡导入口 18引入气流洞 3, 然后从气流 导出口 11把气流引出气流洞 3外, 使得汽车底部的压力减少, 升力减少, 从而增 强了汽车对地面的附着力。 又一方面, 由于汽车档风玻璃前面的风阻通过辅助 气流导入口 21吸入气流洞 3并从气流导出口 11排出, 进一步减少了风阻。 另外, 由于气流洞 3为光滑流线抛物面型, 流体经过吋速度大大提高, 在同等条件下, 流体洞内的流体流速快于自然状态的流体流速, 所以流体在流体洞内再次加速 , 当汽车快速行驶吋, 各导入口 1、 4、 5、 12、 14把流体阻力以等同于车速挤压 进气流洞 3, 流体经过流线抛物面的气流洞 3吋, 流体流速已快过车速, 再从导 出口 11喷出的气流瞬间填补了车尾后的负压区, 甚至使该负压区变为相对正压 区, 利于汽车 2行驶, 充分节约能源。 现有汽车正面或侧面的压力为正压区, 车 后部为负压区。
[44] 由本实施方式可知:
[45] 1)通过在汽车的前端开设接收正向压力的气流导入口, 在汽车的后端或中间开 设气流导出口, 气流导入口与气流导出口之间前后贯通形成气流洞。 一方面, 能够将汽车在运动过程中所遇到的正向压力的气流从气流导入口接收并从设置 在汽车的中间或后端的气流导出口排出, 避免了汽车正向迎面撞开气流所需的 巨大能量消耗; 另一方面, 由于将汽车前端接收的大量气流从汽车的中间或后 端的气流导出口排出, 不但可以减少或消除负压, 减少能源消耗, 而且, 完全 可以通过合理的设计, 将汽车的后端由负压区改变为相对正压区, 从而利于汽 车行驶。
[46] 2)通过在汽车的侧面开设接收侧向压力的侧向导入口, 使得汽车能够将紧压两 侧的气流及吋地引入接收侧向压力的侧向导入口, 从而减小了侧面的压力, 相 应减小了侧面的运动阻力, 从而在汽车前端和周围的导入口处形成相对负压区 , 达到节能的目的。
[47] 3)通过在汽车底部开设接收底部压力的平衡导入口, 使得汽车能够将底部的气 流及吋的通过平衡导入口引入气流洞内, 再从导出口排出。 因此, 汽车的底部 压强减少, 升力减少, 汽车对地面的附着力增强, 汽车行驶更平稳、 更安全。 另外, 当汽车高速行驶吋, 由于汽车对地面的附着力增强, 提高了动力, 更加 节能。 由此改变了现有汽车因底部流体速度慢于汽车上部流体速度而产生升力 阻力、 汽车对地面的附着力差等带来的汽车行驶不安全及浪费燃料的问题。 而 且, 可以通过合理的参数设计, 使汽车底部流体速度大于和等于上部流体速度 , 从而从根本上消除升力带来的阻力和不安全性, 同吋汽车重量变轻, 能耗大 大减少。 行驶会更快捷、 平稳、 安全和节能。
[48] 综上所述, 由于从汽车的前端到后端设置前后贯通的气流洞, 当快速运动的汽 车迎面撞上气流吋, 通过贯穿汽车前后的大洞, 改变气流方向, 把巨大的气流 阻力中的大部分通过气流洞的气流导入口引入, 然后通过气流导出口排出, 并 通过填补汽车尾后的负压区使其改变为相对正压区。 另外, 通过汽车两侧开设 侧向导入口和在底部开设平衡导入口, 以及在正面档风玻璃下开设辅助气流导 入口, 把汽车周围的巨大气流引入气流洞后通过气流导出口排出, 从而减少了 气流给汽车外壳带来的大部分阻力, 达到节约能源的目的。
[49] 如图 3至图 7所示, 其为本发明的第二具体实施方式。 流体运动装置为汽车, 汽 车具有内壳 8和外壳 7。 汽车内壳 8和外壳 7之间的环形流体层通道分为四个独立 的流体层通道, 其中:
[50] 前端导入口 6、 流体层通道 4和导出口 9前后贯通;
[51] 前端左侧导入口 601、 流体层通道 402及后侧导出口 903前后贯通;
[52] 前端右侧导入口 601、 流体层通道 401及后侧导出口 904前后贯通;
[53] 上部导入口 608、 603、 605、 607和后中部导出口 905前后贯通。
[54] 另外, 侧面导入口 607、 601、 604与环形流体层通道 4相通。
[55] 外壳 7和内壳 8被流体层通道分隔开一定距离, 其中, 下部流体层通道包括流体 层通道 402、 4、 401, 上部流体层通道则连通上部导入口 608、 603、 605和后中 部导出口 905。
[56] 其中, 流体层通道 4、 401、 402被两条通道板 403在外壳 7和内壳 8之间隔断, 成 为三个独立流体层。 当然, 通道板 403也可不完全隔断流体层通道 4、 401、 402 , 使该三个流体层通道成为一个彼此相隔又彼此相通的大流体层。 每种流体层 流体流量流速都不太一样, 可根据情况具体使用。
[57] 不少于一个平衡导入口 26设在外壳 7的底部, 当汽车以 100公里 /小吋行驶吋, 即 27米 /秒速度撞向正向最大的流体阻力, 通过导入口 6、 前端左侧导入口 601、 前端右侧导入口 601把流体阻力以 27米 /秒引入流体层通道 4、 402、 401内, 由于 流体层通道为抛物面, 流体速度被加速, 又因为流体层通道内的流体流速快于 自然状态的流体流速, 所以流体以大于 27米 /秒的速度分别从导出口 9、 903、 904 排出。 侧面导入口 607、 604、 601把侧面流体阻力引入流体层通道 4内, 平衡导 入口 26介于车底部和流体层通道之间, 形成开放状态, 而车底部的流体速度小 于 27米 /秒, 此吋, 大量的车底部流体从平衡导入口 26引入流体层通道 4、 402、 4 01内, 底部流体与流体层通道内的流体相对平衡, 以大于 (至少等于) 27米 /秒的速 度从导出口 9、 903、 904排出。 由此可见, 车底流体速度至少等于 27米 /秒, 与车 顶流体速度相等, 等同于车速, 此吋升力阻力就大部分或完全消除。 使汽车在 没有升力阻力的理想状态中行驶。
[58] 上部导入口 608、 603、 605、 607把上部流体导入流体层通道 4后, 从后中部导 出口 905排出。 另外, 两后侧导出口 903、 904可根据情况放在汽车两侧中部或中 下部, 装饰窗 10可为各导入口和导出口配制, 流体层通道 4、 401、 402上部为内 凹形洞 5, 是为了使车内空间变大, 三个独立的流体层通道 4、 401、 402也可为 半独立流体层。 车顶上有凹凸流线型扰流面 115, 车两侧有凹形长条扰流面 116 , 如图 6及图 7所示。
[59] 由于设置扰流面 115、 116, 当高速流动的流体经过扰流面 115、 116吋, 顺着凹 或凸的扰流面 115、 116经过吋, 使流体在壳体外壳 7上的接触面积变小, 速度变 快, 停留吋间变短, 从而减少流体阻力对汽车的影响。
[60] 如图 8至图 11所示, 其为本发明的第三具体实施方式。 流体运动装置为高速火 车 28。 在火车头前面开有气流导入口 6, 气流导入口 6与车厢尾部的气流导出口 9 相通, 在火车 28的外壳 7内有一层内壳 8。 外壳 7和内壳 8之间有一定距离的间隔 层为环形流体层通道 4, 外壳 7与内壳 8之间上下左右四周被该流体层通道 4隔开 一定距离, 而可供气体畅通流动。 流体层通道 4前端与导入口 6相通, 流体层通 道后端与导出口 9相通。 流体层通道 4的底部可以被分为三个半独立流体层通道( 参考图 4), 其共用一个导入口 6和一个导出口 9。 在外壳 7四周有流体阻力的部位 开设有不少于一个导入口 601与流体层通道 4相通, 外面用装饰窗 10配合大小不 同的导入口 601来隔开异物, 装饰窗的进口又能畅通无阻的导入流体。 在车厢玻 璃窗固定的长度较短的短中空条 607为中空, 除固定玻璃外, 该中空部分可以吸 入玻璃窗四周的流体, 外面用装饰窗 10装上便于通气, 短中空条 607与长度较长 的长中空条 607相通, 长中空条 607和短中空条 607—样结构, 都与流体层通道 4 相通。
[61] 在导入口 6中间有流线形旋转头 2, 通过电机 3带动高速旋转, 在离心力作用下 , 把正面流体抛开, 开出一条瞬间通道, 避免流体直接碰撞内壳 8带来阻力, 便 于把流体阻力 (即火车正面的流体)从导入口 6导入到流体层通道 4中, 在导出口 9 下侧具有一个流体导出口 903, 流体导出口 903的角度小于 90度。 导出口 9通过导 管 901与下一节车厢相通, 导管 901具有便于车厢转弯的折皱线 902。 其它车厢的 结构也与上述结构一样, 一直到最后一节车厢与导出口 9相通。
[62] 当高速火车 28以 200公里 /小吋行驶吋, 即 56米 /秒行驶, 因为车轮与铁轨为线接 触, 所以车轮与铁轨的摩擦力已经很小, 主要耗能一大半为空气阻力。 当火车 2 8以 56米 /秒撞上正向最大流体阻力吋, 给火车行驶带来巨大阻力, 所以行驶有多 快, 阻力就有多大。 此吋, 导入口 6中间有旋转头 2, 由电机 3带动高速旋转, 在 旋转头 2附近形成相对真空, 便于 56米 /秒速度把流体从导入口 6弓 I入流体层通道 4 内, 而减少流体阻力对内壳 8的影响, 再通过车厢周围各有阻力处有大小不一的 导入口 601及装饰窗 10与固定玻璃的中空条 607, 把 56米 /秒速度的流体洞的流体 引入流体层通道 4内, 使火车前端和周围的导入口处形成相对负压区。 另外, 车 厢底部还设有平衡导入口 26, 为了平衡火车底部流体慢, 而流体层通道 4内流体 速度快, 通过平衡导入口 26减少或消除升力带来的阻力和不安全性, 同吋使火 车的附地力大大增加。 由于内壳 8和外壳 7都为流线型抛物面, 所以各导入口导 入的流体在环形的流体层通道 4内加快速度, 而流体层通道内的流体流速快于自 然状态, 所以流体以大于 56米 /秒的速度从流体导出口 903高速喷出; 另外一部分 流体从导出口 9通过导管 901连接又进入下一节车厢, 下一节车厢也是上述结构 , 直到从最后一节车厢尾部的导出口 9出去, 瞬间填充负压区为相对正压区。 也 可封闭各节车厢下部的流体导出口 903, 在车顶上再开一个导出口 904来导出气 体。 在火车 28车厢顶上有凸形流线型若干扰流面 113, 车前方两侧有两个凸形流 线型扰流面 114, 火车头前面有扰流条 111、 112, 车厢两侧有若干个凸形长条型 扰流面 117, 以减少流体对火车的影响。 该扰流条也可视为扰流面。
[63] 综上所述, 由于改变了流体的运动方向, 大大减少了高速火车风阻带来的影响 , 能达到节能的目的, 该实施方式也可用于地下铁。
[64] 如图 12及图 13所示, 其为本发明的第四具体实施方式。 该流体运动装置为船舶 33。 在轮船 33水位线下外壳 7和内壳 8之间有流体层通道 4, 前端导入口 6、 流体 层通道 4及后端的导出口 9前后贯通。 在外壳 7上有不少于一个侧向导入口 601与 流体层通道 4相通。 导出口 9在后端, 在后端两侧面有不少于两个侧向导出口 903 、 904。 当船舶行驶吋, 最大的耗能来自于流体阻力, 以上结构可大大减少流体 阻力的影响, 同吋提高速度, 节约能源。
[65] 如图 14及图 15所示, 其为本发明流体运动装置的第五具体实施方式。 流体运动 装置 (如汽车)前端有流体导入口 7, 该流体导入口 7与流体层通道及后端两侧的两 个导出口 803前后贯通, 流体层通道在外层 3和内层 2之间一定距离两侧封闭形成 的通道内。 流体层通道包括相连通的线性第一流体层通道 4及环形的第二流体层 通道 401。 前端导入口 7中间有电机 704带动的旋转头 703, 旋转头 703形状可以为 圆锥形、 飞碟形、 半球形、 叶轮形等形状, 通过旋转头 703高速旋转, 在离心力 作用下, 便于流体导入第一流体层通道 4内, 从而避开了正向最大的流体阻力直 接碰撞内层 2带来的阻力, 在旋转头 703与流体的接触面上, 旋转头 703具有凹线 条或凸线条以便于划破流体。 第二流体层通道 401是由金属材料的通道弯曲而形 成的椭圆形环洞, 第二流体层通道 401的流体导出口 803在汽车后端两侧的下部 , 由此形成由导入口 7、 第一流体层通道 4、 第二流体层通道 401和导出口 803组 成的汽车1的主体结构及外观造型, 并且还预留了安装档风玻璃 5、 门 6的配合部
, 以方便安装。 门 6为两层中空结构, 在导入口 7和第二流体层通道 401之间装上 不同形式的档风玻璃 5, 还有中空的门 6, 通过导入口 701与第二流体层通道 401 相通, 在第二流体层通道 401内加上门 6后就形成各种形象美观大方的汽车, 它 的主体结构与现有汽车相比, 更为简单实用, 并大大节约了成本。
[66] 在第一流体层通道 4和第二流体层通道 401两侧及上下, 有不少于一个导入口 70 1、 702, 使第一、 二流体层通道 4、 401与外界连通, 各导入口安装有大小不一 的装饰窗 703, 装饰窗 703可以为条形、 方格形、 蜂窝形等形状, 装饰窗表面光 滑、 线条流畅, 除档住洞口和防止异物进入外, 不影响吸排气, 还起装饰作用
[67] 在第一流体层通道 4内有不少于一个风力器 9, 风力器 9内有转轴 901, 该转轴 90 1的两端均固定有发电机 903, 转轴 901上有叶轮 902, 发电机 903发出的电为不少 于一个燃料电池 904充电, 燃料电池 904又供给马达 10, 马达 10转轴上的齿轮 101 与减速器 102的转轴上的齿轮 103配合, 带动减速器 102工作, 因为马达 10慢速转 动吋, 扭矩较大, 不利于马达工作, 所以通过减速器 102减速后才能方便自如的 带动车轮 107转动。 减速器 102带动差速器 104工作, 把减速器 102传来的转矩平 均分配给两半轴 105; 在汽车转弯或不平道路行驶吋, 能自动使两侧驱动轮以不 同转速滚动, 两半轴 105又分别与车轮 107内的车毂 106连接并固定。 通过控制板 11对马达 10进行转动控制, 也可与传统汽车四档及其功能相对应设置在控制板 1 1上, 或与传统汽车一样用变速器变速对应四档及其功能, 油门踏板可以去掉, 另在方向盘上顺手处设置一个对马达 10转速进行调节的无级调速旋钮 111, 通过 无级调速旋钮 111来控制马达 10的速度, 经过传动后带动车轮 107转动, 包括正 转、 反转、 慢转、 快转, 如一个马达 10在前面即为前轮驱动, 如一个马达 10在 后轮即为后轮驱动, 如前、 后轮都有一个马达即为四轮驱动。 脚下只控制刹车 踏板, 可用传统汽车液压或气压刹车系统, 这样更为安全, 因为很多车祸是对 刹车踏板和油门踏板处理不当引起的。
[68] 对马达转速控制是现有技术, 在此不再赞述, 而减速器、 差速器及两半轴可以 为现有汽车配件。 导筒 8上的折皱线 802可以调节导出口 803的方向, 使导出口 80 3可以按上中下三个方向把流体喷出。
[69] 当汽车以 100公里 /小吋行驶吋, 即汽车以 27米 /秒速度撞上正向最大的流体阻力 吋, 侧向的流体阻力紧紧裹在汽车四周给汽车 1带来阻力, 同吋, 由于升力阻力 作用使汽车 1车轮的附地能力减少, 同吋还有车后形成负压区给汽车行驶带来阻 力。
[70] 通过导入口 7把最大的流体阻力以 27米 /秒的速度引入流体层通道 4内, 由于旋 转头 703在电机 704带动下高速旋转, 便于减少流体阻力而把流体更容易的导入 第一流体层通道 4内, 流体经过第二流体层通道 401后从导出口 803排出。 由于流 体在通道内的速度比自然状态要快, 外层 3和内层 2都为抛物面形, 流体此吋的 速度已经快过 27米 /秒, 导入口 701、 底部平衡导入口 702把流体洞四周流体阻力 导入第一流体层通道 4和第二流体层通道 401内。 当车底部流体经过不少于一个 平衡导入口 702吋, 由于第一流体层通道 4和第二流体层通道 401内的流速已经大 于 27米 /秒, 也快于车身上部的流速, 底部流体被引入第一流体层通道 4和第二流 体层通道 401内, 使得底部流体加快速度和流体层通道 4内的流速相对平衡, 也 是大于 27米 /秒流体速度流过, 又因为在第一流体层通道 4内和第二流体层通道 40 1到导出口 803的路径长于车身上部流体经过的路径, 流体在第一流体层通道和 第二流体层通道内不得不加快速度, 才能保持流体的连续性。 以大于 27米 /秒的 速度瞬间填充并消除尾后负压力区的阻力。 导筒 8上的折皱线 802可使导出口 803 按需要把流体从上中下方向喷出。 所有导入口和导出口都可以装上有装饰窗 703
[71] 由此可见, 正向最大流体阻力大部分通过导入口 7导入流体层通道 4内, 侧向紧 裹车身四周的流体阻力通导入口 701、 702也大部分导入第一流体层通道 4和第二 流体层通道 401内, 使得在各个导入口附近, 把流体导入第一流体层通道 4和第 二流体层通道 401内。 由于通道内流体快于车速, 所以紧贴汽车表面的流体流速 也快于车速, 汽车行驶吋把等同于车速的流体阻力减到最小, 此吋通道内的路 径又大于车身上的路径, 所以车底部的流速已大于车身上部的流体流速, 从而 根本上消除升力阻力, 由此出现车底部流速快于车上部流速的理想状态, 当高 速流动的流体以大于汽车运动速度猛然从导出口喷出, 瞬间填充并消除尾后负 压力区阻力, 通过合理设计, 甚至可以使负压区改变为相对正压区, 以利于汽 车行驶。
[72] 如图 16所示, 其为本发明的第六具体实施方式。 该实施方式与第五实施方式的 区别有: 第二流体层通道 401为圆环形洞, 有三个导出口, 一个导出口 804在车 后部中间, 另外两个导出口为车后部两侧下部导出口 803, 下部导出口 803内设 有可以提高流体层通道内流体流速的电机 801(当然也可没有电机)。 在导入口、 第一流体层通道、 环洞和三个导出口之间由通道板从前到后为半隔断形成三个 半独立的通道, 由此形成的汽车结构为外面四周用金属材料做成结实牢固的边 框, 边框内的内层 2和外层 3用工程塑料, 这样即能减轻车体重量, 又保证车体 有强度, 在环洞内为档风玻璃 5, 这样就形成一辆造型新颖、 结构简单、 重量很 轻、 安全可靠的具有折叠顶棚 602的跑车或赛车。
[73] 如图 17及图 18所示, 其为本发明的第七具体实施方式。 流体运动装置为汽车 1 , 汽车 1位于驾驶座前仪表盘上设置有驾驶控制板 906, 驾驶控制板 906上设置有 马达调速旋钮 907, 该旋钮 907操控一无极调速器控制驱动机构控制汽车驱动马 达调速,
如此一来, 驾驶位上司机的脚下就只会刹车踏板, 因为很多车祸是紧急情况吋 踏错油门和刹车踏板所致, 将油门控制改为旋钮式即可避免此类认为失误发生 , 保证了汽车行驶安全。 汽车 1具有外壳 2和内壳 3, 外壳 2及内壳 3间有一定间距 并形成至少一个流体层通道 4; 外壳 2前端设有流体导入口 7, 流体导入口 7上通 常设置有装饰窗, 起到装饰及过滤流体中杂质的作用, 该流体导入口 7是用于接 收汽车行使吋的正向流体压力, 流体经由流体导入口 7、 至少一个侧面导入口 70 1和底部平衡导入口 702导入后在压力的作用下高速流经内、 外壳 3、 2间形成的 流体层通道 4, 并最终由外壳 2后端的流体导筒 8活动套 802 (活动套 802可改变流 体不同的喷出方向) , 再从流体导出口 801高速喷出, 此外于外壳 2的底部设有 扰流面 201, 扰流面 201通过不少于一个导入口 702与流体层通道 4相通, 通过扰 流面 201来增加流体流经路径的长度。 该扰流面 201表面成凹凸相间的流线型, 以增加流体流经该扰流面 201的路径, 因为流体经过凹凸流线型面的速度大于平 面, 从而提高流体经过底部吋的速度, 从而达到消除汽车高速运动吋由于上下 表面流体流速不同导致的升力问题。
[74] 众所周知, 普通小汽车重量为 1.3— 2吨左右, 如高级车仅底盘重量就有 1吨以上 , 如此重的底盘仅为汽车快速行驶吋能相对平稳, 这是因为汽车行驶中车上部 的流体快于车下部流体流速, 由此产生升力阻力, 必须通过增加重量来保持相 对平稳, 实际大多数车祸就是升力所造成。 而通过本发明设计的新型车主体结 构, 其底部增加了一个扰流面 201并通过导入口 702与流体层通道 4相通, 因为流 体在通道内的速度大于自然状态, 而汽车上部流体流速等于汽车运动速度, 所 以底部流速大于或至少等于上部流速。 该扰流面为凹凸相间的流线型面, 流体 经过凹凸型抛物面速度又大于经过平面速度, 当流体经过该底部流线型面吋的 路径至少等于或大于流体经过汽车上部的路径, 底部流速至少等于和大于上部 流体流速, 使得汽车底部与上部同吋形成两层快速流动的流体层, 自然使汽车 上下部流体流速大约相等, 或底部流体流速大于上部, 这样就形成理想的汽车 运动的流体模式, 车底部流速略快于上部流速, 即车底部气压略小于车上部, 上部略大的气压能稳稳压在上部汽车壳体, 在转弯或快速行驶吋, 汽车行驶就 平稳、 安全和节能。 由于升力阻力消除, 安全性能大大提高, 汽车自身重量就 可以大大减轻。 汽车的壳体材料与现有一样, 可用金属、 碳纤维、 玻璃钢及塑 料材料, 如车下部框架为金属, 外壳表面一层为金属材料, 其他为塑料或玻璃 钢, 再加上储气设备形成的车体重量不超过 300公斤, 即为普通小汽车的 1/5左右 , 一分重量就一分能耗, 所以本发明的空车比只是传统汽车的 1/5的重量, 换句 话说: 比传统汽车节约 80%的能源, 从而大大增加了汽车内的能量利用率, 同吋 , 汽车生产成本大大降低。 除此之外, 在汽车行驶中, 其正向流体压力的流体 导入口 7、 流体层通道 4和流体导出口 8前后贯通, 把迎面最大正向流体阻力顺畅 导入流体层通道 4中, 四周侧向流体则通过条形窗导入口 701引入流体层通道 4内 , 使得正向和侧向流体阻力都大大降低, 在运动装置前端及周围的导入口处形 成相对负压区, 并最终以高于汽车行使速度的速率流至尾部的流体导出口 801强 烈喷出, 同吋巨大的流体瞬间填充汽车后部的负压区, 改变为相对正压区, 这 种理想的状态有利于汽车行驶。
[75] 本实施方式汽车还包括用于驱动车轮运动的气动马达, 通过多路电磁阀门对气 动马达进行节流控制, 从而驱动汽车行驶。 于汽车 1前部设有主储气设备 5, 后 部设有备用储气设备 501, 两储气设备上均设有注入口 502, 以方便将压缩气体 注入储气设备内, 此外通常其上还设置有方便观察储气设备压力状态的气压表 5 03, 其储气设备的输出口上接有能方便调节从储气设备流出压缩气体的气压压 力的调压阀 504、 与调压阀 504相通的流量阀 505, 流量阀 505接有多路阀门 506并 通过导管 507连接至驱动机构的气动马达 603上, 其中主储气设备 5流量阀 505上 接的多路阀门 506为五通电磁阀, 其四路输出均直接连至位于汽车四驱动轮的气 动马达 603上, 而备用储气设备 501流量阀 505上则设置的是一个三通阀 508, 其 两路输出只连接至汽车两后轮的气动马达 603上。 导管 507把压缩气体输入带动 气动马达 603, 经过减速器 604, 气动马达的转轴 602固定在车毂 601内, 从而带 动驱动轮 6转动。
[76] 此外于流体导入口 7与后端流体导出口 8间的流体层通道 4中还设置至少一个风 力器 9, 当车辆行使过程中, 流体进入流体层通道 4中带动叶轮 902和转轴 901, 转轴 901两端各连接有一发电机 903(或气泵), 发电机 903将发出的电能储存于至 少一个燃料电池 904内或者直接用于带动空气压缩机 905重新为储气设备 5充气, 燃料电池 904供电于车体所需的灯光、 音响以及控制电路板 906等设备。
[77] 本实施方式中, 通过气动马达实现四轮驱动, 也可使气动马达仅驱动前轮或后 轮。 另外, 图 14、 图 15中的马达也可替换为气动马达作为前轮或后轮驱动。
[78] 本实施方式是根据压缩气体的特点而设计的汽车, 由于压缩气体取之不尽用之 不竭, 是价格非常低廉的能源, 而储气罐体积大, 压缩气体产生的动能又有限 , 所以一般需要满足: 1)汽车本体轻且安全; 2)有效使用压缩气体。 由于本实施 方式消除汽车升力阻力后, 汽车功能所需重量为 300公斤左右, 又因为气动马达 直接作用于车轮及前轮或后轮驱动, 避免了将压缩气体注入发动机后再带动传 动系统的无效能源浪费。 另外汽车在行驶中风力器又不断补充能源, 所以就可 以生产实用的由压缩气体驱动的汽车, 也能生产真正的燃料电池驱动的汽车。
[79] 对于流体运动装置, 其可以具有外壳和内壳, 外壳和内壳之间及四周有一定距 离的空间而形成至少一个流体层通道, 在外壳前部至少有一个流体导入口, 在 外壳后部至少有一个流体导出口, 导入口、 导出口与流体层前后贯通。 在外壳 四周的侧部还可以有至少一个侧向导入口, 在外壳底部可以至少一个平衡导入 口与流体层通道相通。 在内壳和外壳之间的流体层通道可以有一个或一个以上
, 对于一个以上的流体层通道, 相邻流体层通道可以用通道板隔开, 每个流体 层通道可完全独立 (即相互完全隔断而不连通), 或有相通而为半独立 (即虽有通 道板分隔但仍相通, 即半隔开)。 流体层通道的壁面为光滑流线型抛物面, 以增 加流体经过的路径和加快流体流速, 流体层通道内可以至少设有一个受流体驱 动的风力器来带动发电机工作, 为燃料电池补充能源。
[80] 现在的运动装置运动吋, 因为前端及侧面为最大的流体阻力, 后端为负压区, 所以要耗费大量能源。 正向压力的阻力流体和侧向压力的阻力从导入口进入流 体层通道, 在汽车前端和侧面导入口附近形成相对负压区, 再通过导出口把这 两部分最大流体阻力以快于运动装置的速度猛然从尾后喷出, 瞬间填充并消除 负压区的阻力, 形成相对流体正压区, 从根本上改变了流体的运动模式, 利于 汽车在相对理想状态中行驶, 可大大节约能源和提高运动速度。
[81] 外壳包裹着内壳, 流体层通道为外壳和内壳之间的间隔空间, 其专用于流体通 过。 内壳为密封体, 流体在流体层通道流过吋不能进入内壳, 外壳则为通风层 , 方便让运动装置周围的流体进入流体层通道后从导出口排出去。 首先在运动 装置的外壳最前部直接撞向流体阻力的部位开一大洞为导入口, 在后部开一出 口为导出口, 与流体层前后贯通。
[82] 流体层内的内壳下部可以有一凹形洞, 凹形洞与导入口和导出口前后贯通, 凹 形洞洞壁为流线型。 内壳及外壳也为流线型便于流体在流体层通道中无阻碍的 快速通过, 然后从导出口排出。 导出口上有可调节方向的活动套, 方便流体从 上中下三个方向流出。
[83] 在外壳两侧及上部 (即外壳左侧部、 右侧部及顶侧部)流体阻力最大的地方可开 若干侧向导入口, 侧向导入口上安装装饰窗, 装饰窗可把流体阻力通过小于 90 度的进口角度的条形进气口导入流体层通道内, 然后经过导出口排出, 可瞬间 填补并消除后端负压区形成的阻力。
[84] 在外壳底部可以至少有一个平衡导入口, 把底部的流体导入流体层通道内, 使 得汽车底部流体速度和流体层内流体速度相对平衡后从导出口排出。 由此改变 了底部流体速度慢于上部流体速度而产生的升力阻力、 给运动装置行驶带来不 安全性和浪费燃料的问题, 从而产生一种全新的流体运动方式, 即: 底部流体 速度大于 (至少等于)上部流体速度, 这样行驶才会快捷、 安全、 平稳和节油。
[85] 在内壳的凹形洞与外壳的导入口中间可装上一个旋转头, 旋转头与流体的接触 面上有几条凹或凸形状的线条, 便于划开流体, 旋转头可为飞碟形、 圆锥形、 球面形、 叶片形等形状, 旋转头通过电机带动, 当运动设备快速运动, 撞上流 体阻力吋, 通过旋转头高速转动在离心力作用下, 把正面流体抛开, 开出条瞬 间通道, 避开了流体直接碰撞壳体带来的阻力, 又便于把流体导进流体层通道 内。
[86] 外壳还可具有纵向的扰流面和扰流条 (现有汽车大部分为横向凹凸线条, 减少 流体阻力效果较差) , 当快速流动的流体紧贴外壳的扰流条经过吋, 因为流体 流过抛物面的速度要比平面快, 所以流体经过凹凸型扰流条吋流体速度突然变 快, 接触面变少, 停留吋间变短, 就减少了流体对壳体产生的阻力。 还有各种 扰流面, 如凹型流线型面和凸型流线型面, 凹凸流线型面, 是凹或凸流线型面 的结合, 另外还有长条型折射面, 是在各种横向长条型的凹或凸的线条后面或 前面用纵向凹或凸的抛物面。 以上扰流面和扰流条可在壳体上压制, 也可用金 属或塑料或玻璃纤维材料制成。
[87] 对于汽车, 可以在汽车上可去掉油门踏板, 只有一个刹车踏板, 在方向盘上方 便顺手处安装无级调速旋钮来控制马达转速, 这样更为方便和安全, 因为很多 事故是对油门和刹车处理不当造成的。 综上所述, 以上汽车结构已变得非常简 单实用和可靠, 从而为环保的燃料电池因为使用吋间短、 充电困难寻找到一种 新的途径。
[88] 对于流体运动装置, 流体层通道可以有一个, 也可以有一个以上。 对于一个以 上的流体层通道, 每个流体层通道的两端均分别连接有导入口和导出口, 导入 口选自: 设在前部的导入口、 设在侧部的侧向导入口、 设在底部的平衡导入口 对于每个流体层通道, 其可以包括线性的第一流体层通道和可以延长流体通过 路径的第二流体层通道, 即在同等距离长度的情况下, 流体流经第一流体层通 道的路径长度小于流经第二流体层通道的路径长度, 第一流体层通道和第二流 体层通道相通, 导入口与第一流体层通道相通, 导出口与第二流体层通道相通 。 第二流体层通道的横截面为弯曲形状, 如圆形、 方形、 椭圆形、 蛇形、 环形 等几何形状。 当然, 对于每个流体层通道, 其可以都为线性结构。 流体运动装 置的前部、 侧部、 顶部、 底部中至少之一可以设有加快流体流速的扰流面。
[89] 对现有汽车改造吋, 可以在汽车底部增加扰流面或有平衡导入口的扰流面上面 有流体层通道与导入口和导出口相通, 也会达到非常显著的节能效果。 不少于 汽车顶部路径的扰流面通过平衡导入口加快、 平衡了流体层通道内和汽车底部( 扰流面与地面之间)流体的运动速度, 使得内外两层在车后部交汇的流体运动速 度一致, 就可完全消除升力阻力, 如在汽车底部只有扰流面也能大部分或完全 消除升力阻力。 对于汽车, 可以在汽车底部设置扰流面来消除升力, 也可通过 在汽车底部设置平衡导入口与流体层通道相同来消除升力, 也可以同吋设置扰 流面和平衡导入口。
[90] 由于已消除了升力阻力, 实现所需功能的汽车的重量可以为现有汽车重量的 1/5左右, 可节约 80%能源, 同吋汽车生产成本大大降低。
[91] 本发明流体运动装置可以改变汽车流体的分布, 即前端和周围形成相对负压区
, 后端形成相对正压区, 同吋车底部流体等于和快于车上部流体流速, 所以上 部流体可稳稳的压住车体, 汽车行驶吋就平稳和安全, 同吋可节约大量能源。
[92] 以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明, 不能认 定本发明的具体实施只局限于这些说明。 对于本发明所属技术领域的普通技术 人员来说, 在不脱离本发明构思的前提下, 还可以做出若干简单推演或替换, 都应当视为属于本发明的保护范围。

Claims

权利要求书
1.
一种流体运动装置, 其由动力装置驱动, 其具有相对的前部和后部及位于 前、 后部之间的底部和侧部, 其特征在于: 该前部开有至少一个用于接收 正向压力流体的导入口, 该后部开有至少一个用于导出流体的导出口, 导 入口和导出口通过流体层通道连通而使该运动装置前后贯通, 使导入口接 收所述运动装置在运动过程中遇到的流体, 并将接收的流体通过所述流体 层通道从所述导出口排出。
2.根据权利要求 1
所述的流体运动装置, 其特征在于: 所述底部设有至少一个用于接收底部 压力流体的平衡导入口, 平衡导入口通过流体层通道连通导出口, 使平衡 导入口接收运动过程中遇到的底部流体, 并将所接收的底部流体通过所述 流体层通道从所述导出口排出。
3.根据权利要求 2
所述的流体运动装置, 其特征在于: 所述侧部设有至少一个用于接收侧向 压力流体的侧向导入口, 侧向导入口通过流体层通道连通导出口, 使侧向 导入口接收运动过程中遇到的侧向流体, 并将所接收的侧向流体通过所述 流体层通道从所述导出口排出。
4.根据权利要求 3
所述的流体运动装置, 其特征在于: 所述流体层通道有至少两个, 相邻流 体层通道被通道板隔开, 导入口、 侧向导入口、 平衡导入口均通过流体层 通道与对应的导出口连通。
5.根据权利要求 3
所述的流体运动装置, 其特征在于: 所述流体运动装置包括外壳及由外壳 包裹的封闭内壳, 流体层通道将内壳和外壳分隔开, 导入口设于外壳前部 , 侧向导入口设于外壳侧部, 平衡导入口设于外壳底部, 导出口设于外壳 后部。
6.根据权利要求 5 所述的流体运动装置, 其特征在于: 所述流体层通道包括相连通的第一流 体层通道和第二流体层通道, 第一流体层通道与导入口连通, 第二流体层 通道与导出口连通, 第二流体层通道的横截面为可以延长流体通过路径长 度的弯曲形状。
7.根据权利要求 6
所述的流体运动装置, 其特征在于: 所述第二流体层通道的横截面为椭圆 形、 圆形、 方形、 蛇形或环形。
8.根据权利要求 1
所述的流体运动装置, 其特征在于: 所述流体层通道邻近导入口的位置设 有旋转头, 旋转头由电机驱动, 该旋转头具有用于划开正向压力流体的凸 或凹的线条。
9.根据权利要求 8
所述的流体运动装置, 其特征在于: 所述的流体层通道内至少设有一个由 流体驱动的叶轮, 叶轮带动用于补充能源的发电机。
10.根据权利要求 1
所述的流体运动装置, 其特征在于: 所述前部、 顶部、 侧部中至少之一具 有可以提高流体流速的纵向扰流面。
11.根据权利要求 10
所述的流体运动装置, 其特征在于: 所述底部设有用于延长流体通过路径 的扰流面。
12.根据权利要求 1
所述的流体运动装置, 其特征在于: 所述导出口中至少有一个设有用于加 速流体流速的电机。
13.
一种汽车, 具有接收正向气流压力的前部、 与前部相对的后部及位于前、 后部之间的侧部和底部, 底部装有由动力装置驱动的前轮和后轮, 其特征 在于: 所述前部设有至少一个导入口, 后部设有至少一个导出口, 导入口 和导出口通过流体层通道连接而前后贯穿该汽车, 使导入口接收到的气流 通过流体层通道从导出口排出。
14.根据权利要求 13
所述的汽车, 其特征在于: 所述底部设有至少一个接收底部压力气流的平 衡导入口, 平衡导入口通过流体层通道与导出口连通。
15.根据权利要求 14
所述的汽车, 其特征在于: 所述侧部设有至少一个接收侧向压力气流的侧 向导入口, 侧向导入口通过流体层通道与导出口连通。
16.根据权利要求 15
所述的汽车, 其特征在于: 所述汽车包括外壳及由外壳包裹的封闭内壳, 流体层通道将内壳和外壳分隔开, 导入口设于外壳前部, 侧向导入口设于 外壳侧部, 平衡导入口设于外壳底部, 导出口设于外壳后部。
17.根据权利要求 16
所述的汽车, 其特征在于: 所述动力装置包括连接压缩气体的储气设备和 气动马达, 前轮和后轮中之一的两个车轮均分别通过两个差速器与两个气 动马达动力连接, 两个气动马达连接同一储气设备, 前轮和后轮中之另一 的两个车轮顺次通过两半轴、 差速器、 减速器与马达连接。
18.根据权利要求 17
所述的汽车, 其特征在于: 所述汽车的驾驶方向盘设有调速旋钮, 该调速 旋钮与无级调速器连接, 无级调速器连接马达并控制马达的转速。
19.
一种火车, 包括火车头及与其连接的至少一节车厢, 其特征在于: 所述火 车头包括外壳、 由外壳包裹的封闭内壳及分隔开内、 外壳一定距离的流体 层通道, 火车头外壳的前部设有至少一个用于接收正向压力气流的导入口 , 火车头外壳的后部设有至少两个用于排出气流的导出口, 导入口通过流 体层通道与导出口连通, 车厢具有位于前部的导入口、 位于后部的导出口 及连通该导入口和导出口的流体层通道, 火车头外壳的一个导出口与车厢 的导入口通过导管连通, 火车头外壳的另一个导出口与环境气压直接连通
20.
一种船舶, 包括水位线下的外壳及由外壳包裹的封闭内壳, 该外壳和内壳 被流体层通道分隔开一定距离, 该外壳设有至少一个用于接收正向水流压 力的导入口及至少一个排出水流的导出口, 该流体层通道连通该导入口和 导出口, 使导入口接收的正向压力水流通过流体层通道从导出口排出。
PCT/CN2008/073367 2007-12-27 2008-12-08 流体运动装置 WO2009092217A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/559,543 US8113569B2 (en) 2007-12-27 2009-09-15 Energy-saving vehicle
US13/335,913 US8408635B2 (en) 2007-12-27 2011-12-22 Energy-saving vehicle
US13/786,413 US8684446B2 (en) 2007-12-27 2013-03-05 Energy-saving vehicle
US14/176,141 US9278719B2 (en) 2007-12-27 2014-02-09 Vehicle

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN200710186156.3 2007-12-27
CN200710186155.9 2007-12-27
CN2007101861559A CN101468713B (zh) 2007-12-27 2007-12-27 潜艇或船
CN2007101861563A CN101468662B (zh) 2007-12-27 2007-12-27 汽车的节能方法及汽车
CN200810000302.3 2008-01-07
CN2008100003023A CN101195348B (zh) 2008-01-07 2008-01-07 一种加速和节能的流体运动装置
CN200810008130.4 2008-02-13
CN2008100081304A CN101224709B (zh) 2008-02-13 2008-02-13 一种节能的运动装置
CNA2008100683794A CN101314324A (zh) 2008-07-11 2008-07-11 压缩气体直驱式汽车
CN200810068379.4 2008-07-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/559,543 Continuation-In-Part US8113569B2 (en) 2007-12-27 2009-09-15 Energy-saving vehicle

Publications (1)

Publication Number Publication Date
WO2009092217A1 true WO2009092217A1 (zh) 2009-07-30

Family

ID=40900759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/073367 WO2009092217A1 (zh) 2007-12-27 2008-12-08 流体运动装置

Country Status (2)

Country Link
US (3) US8113569B2 (zh)
WO (1) WO2009092217A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102897177A (zh) * 2012-10-22 2013-01-30 唐山轨道客车有限责任公司 减阻动车组车头

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9370882B2 (en) * 2010-10-22 2016-06-21 Tata Technologies Pte Limited Cost effective and efficient air circulation system for a vehicle having rotomolded body assembly
US8967311B2 (en) * 2011-12-01 2015-03-03 Paccar Inc. Directed gas systems for improving aerodynamics of a vehicle in cross wind conditions
US8950534B2 (en) 2011-12-01 2015-02-10 Paccar Inc Directed air systems for improving aerodynamics of a vehicle
US8573680B2 (en) * 2012-01-13 2013-11-05 Paccar Inc Vehicle trailer with improved aerodynamics
US9550415B2 (en) * 2014-02-21 2017-01-24 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicles incorporating cooling drag reduction systems and methods
WO2017075861A1 (zh) * 2015-11-06 2017-05-11 朱晓义 悬浮汽车
WO2017075860A1 (zh) * 2015-11-06 2017-05-11 朱晓义 悬浮列车及其运行系统
DE102016009971A1 (de) * 2016-08-16 2018-02-22 Daimler Ag Verfahren zum Betreiben einer Verbrennungskraftmaschine, sowie Verbrennungskraftmaschine
IL248771B (en) * 2016-11-06 2018-01-31 Menkin Ptahya Aerodynamic system for a car that can be closed
CN106741231A (zh) * 2016-11-15 2017-05-31 朱晓义 一种汽车
CN107150788A (zh) * 2017-04-26 2017-09-12 朱晓义 一种产生更大升力的固定翼飞行器
US20190144052A1 (en) * 2017-11-16 2019-05-16 Garth L. Magee Trailer skirt and mud flap slanted inwards

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3841258A (en) * 1972-06-28 1974-10-15 C Odawara Hull construction
US4343506A (en) * 1980-08-05 1982-08-10 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Low-drag ground vehicle particularly suited for use in safely transporting livestock
US4460055A (en) * 1980-11-03 1984-07-17 Karl Steiner System to increase vehicle fuel efficiency
FR2613682A1 (fr) * 1987-04-10 1988-10-14 Faux Guy Dispositif permettant aux vehicules d'ameliorer la penetration dans l'air (correction du cx)
US4848701A (en) * 1987-06-22 1989-07-18 Belloso Gregorio M Vertical take-off and landing aircraft
JPH0692268A (ja) * 1990-07-16 1994-04-05 Masanobu Yamazaki 自動車
DE9315363U1 (de) * 1993-10-12 1994-06-09 Strohmann Juergen Aerodynamische Karrosserie mit Diffusorluftaustritt
JPH08175479A (ja) * 1994-12-26 1996-07-09 Mori Seisakusho:Kk 船底補強兼用省力船
JPH1149029A (ja) * 1997-08-08 1999-02-23 Mitsubishi Motors Corp 車体構造
JPH11301472A (ja) * 1998-04-17 1999-11-02 Kawasaki Heavy Ind Ltd 鉄道先頭車両の車体構造
CN2350310Y (zh) * 1998-05-22 1999-11-24 郑石安 设有通水管道的增速船舶
US6138781A (en) * 1997-08-13 2000-10-31 Hakala; James R. System for generating electricity in a vehicle
JP2001180397A (ja) * 1999-12-14 2001-07-03 De Vega Dora Angelca Gericke 自動車用の風力発電機
US6692066B2 (en) * 2001-08-23 2004-02-17 Vacuum Breaker Mile Maker Air channeler for reducing wind resistance and method of use
CN2683438Y (zh) * 2003-12-17 2005-03-09 王有卫 机动车风动力装置
US20070187990A1 (en) * 2004-07-01 2007-08-16 Khosrow Shahbazi Aerodynamic drag reduction systems
CN101138991A (zh) * 2006-09-06 2008-03-12 沈阳航空工业学院 钝尾车辆的空气动力减阻方法
CN101195348A (zh) * 2008-01-07 2008-06-11 朱晓义 一种加速和节能的流体运动装置
CN101224790A (zh) * 2008-01-25 2008-07-23 朱晓义 具有气流通道的飞行器
CN101224709A (zh) * 2008-02-13 2008-07-23 朱晓义 一种节能的运动装置
CN101314324A (zh) * 2008-07-11 2008-12-03 朱晓义 压缩气体直驱式汽车

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3791468A (en) * 1971-09-16 1974-02-12 J Bryan Dynamic load increasing automobile bumper
US4180290A (en) * 1975-11-13 1979-12-25 Drews Hilbert F P Propelled apparatus having surface means for developing increased propulsion efficiencies
US4384630A (en) * 1980-11-03 1983-05-24 Karl Steiner System to increase vehicle fuel efficiency
US5908217A (en) * 1995-07-17 1999-06-01 Georgia Tech Research Corporation Pneumatic aerodynamic control and drag-reduction system for ground vehicles
US20020153178A1 (en) * 2001-04-23 2002-10-24 Paul Limonius Regenerative electric vehicle
US7147069B2 (en) * 2002-05-08 2006-12-12 Maberry Robert L Wind turbine driven generator system for a motor vehicle
US7152908B2 (en) * 2004-07-01 2006-12-26 Khosrow Shahbazi Systems, methods, and media for reducing the aerodynamic drag of vehicles

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3841258A (en) * 1972-06-28 1974-10-15 C Odawara Hull construction
US4343506A (en) * 1980-08-05 1982-08-10 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Low-drag ground vehicle particularly suited for use in safely transporting livestock
US4460055A (en) * 1980-11-03 1984-07-17 Karl Steiner System to increase vehicle fuel efficiency
FR2613682A1 (fr) * 1987-04-10 1988-10-14 Faux Guy Dispositif permettant aux vehicules d'ameliorer la penetration dans l'air (correction du cx)
US4848701A (en) * 1987-06-22 1989-07-18 Belloso Gregorio M Vertical take-off and landing aircraft
JPH0692268A (ja) * 1990-07-16 1994-04-05 Masanobu Yamazaki 自動車
DE9315363U1 (de) * 1993-10-12 1994-06-09 Strohmann Juergen Aerodynamische Karrosserie mit Diffusorluftaustritt
JPH08175479A (ja) * 1994-12-26 1996-07-09 Mori Seisakusho:Kk 船底補強兼用省力船
JPH1149029A (ja) * 1997-08-08 1999-02-23 Mitsubishi Motors Corp 車体構造
US6138781A (en) * 1997-08-13 2000-10-31 Hakala; James R. System for generating electricity in a vehicle
JPH11301472A (ja) * 1998-04-17 1999-11-02 Kawasaki Heavy Ind Ltd 鉄道先頭車両の車体構造
CN2350310Y (zh) * 1998-05-22 1999-11-24 郑石安 设有通水管道的增速船舶
JP2001180397A (ja) * 1999-12-14 2001-07-03 De Vega Dora Angelca Gericke 自動車用の風力発電機
US6692066B2 (en) * 2001-08-23 2004-02-17 Vacuum Breaker Mile Maker Air channeler for reducing wind resistance and method of use
CN2683438Y (zh) * 2003-12-17 2005-03-09 王有卫 机动车风动力装置
US20070187990A1 (en) * 2004-07-01 2007-08-16 Khosrow Shahbazi Aerodynamic drag reduction systems
CN101138991A (zh) * 2006-09-06 2008-03-12 沈阳航空工业学院 钝尾车辆的空气动力减阻方法
CN101195348A (zh) * 2008-01-07 2008-06-11 朱晓义 一种加速和节能的流体运动装置
CN101224790A (zh) * 2008-01-25 2008-07-23 朱晓义 具有气流通道的飞行器
CN101224709A (zh) * 2008-02-13 2008-07-23 朱晓义 一种节能的运动装置
CN101314324A (zh) * 2008-07-11 2008-12-03 朱晓义 压缩气体直驱式汽车

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102897177A (zh) * 2012-10-22 2013-01-30 唐山轨道客车有限责任公司 减阻动车组车头

Also Published As

Publication number Publication date
US20130175825A1 (en) 2013-07-11
US20100007172A1 (en) 2010-01-14
US8684446B2 (en) 2014-04-01
US8113569B2 (en) 2012-02-14
US8408635B2 (en) 2013-04-02
US20120098295A1 (en) 2012-04-26

Similar Documents

Publication Publication Date Title
WO2009092217A1 (zh) 流体运动装置
CN101195348B (zh) 一种加速和节能的流体运动装置
CN101314324A (zh) 压缩气体直驱式汽车
CN101224709B (zh) 一种节能的运动装置
CA2588214C (en) Wind-powered pneumatic engine and a motor vehicle equipped with the engine
CN101962043B (zh) 汽车
CN101229822B (zh) 一种运动装置
WO2008022556A1 (fr) Moteur à gaz et à énergie éolienne combinés
CN102164812A (zh) 配有内部空气流推进系统的陆地车辆
CN101767592A (zh) 高速节能火车
CN101708742A (zh) 一种流体运动装置
CN101758865B (zh) 充气汽车
CN104828202A (zh) 气电混合动力自行车
CN101196203A (zh) 一种用流体洞促使运动体加速和节能的组合装置
CN201056146Y (zh) 海、陆、空三用车
CN201211848Y (zh) 一种节能的运动装置
CN202053881U (zh) 增程式空气动力汽车
CN201520349U (zh) 车辆用喷嘴型减阻结构
CN109606126A (zh) 一种基于冲压利用的电动汽车车头能量回收装置
CN109334790A (zh) 具有顶部空气导流装置的汽车及运行空气导流装置的方法
CN114320605A (zh) 一种车辆
CN101480922A (zh) 一种高效传动的汽车
WO2009100643A1 (zh) 运动装置
Seal Viking 23-zero emissions in the city, range and performance on the freeway
CN103507937B (zh) 动力驱动的运动装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08871358

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08871358

Country of ref document: EP

Kind code of ref document: A1