WO2009100643A1 - 运动装置 - Google Patents

运动装置 Download PDF

Info

Publication number
WO2009100643A1
WO2009100643A1 PCT/CN2009/000101 CN2009000101W WO2009100643A1 WO 2009100643 A1 WO2009100643 A1 WO 2009100643A1 CN 2009000101 W CN2009000101 W CN 2009000101W WO 2009100643 A1 WO2009100643 A1 WO 2009100643A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
casing
inlet
fluid passage
outlet
Prior art date
Application number
PCT/CN2009/000101
Other languages
English (en)
French (fr)
Inventor
Xiaoyi Zhu
Original Assignee
Xiaoyi Zhu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2008100659954A external-priority patent/CN101224790B/zh
Priority claimed from CN2008100653341A external-priority patent/CN101229822B/zh
Priority claimed from CN2008100672253A external-priority patent/CN101580127B/zh
Priority claimed from CN 200810142732 external-priority patent/CN101638112A/zh
Application filed by Xiaoyi Zhu filed Critical Xiaoyi Zhu
Publication of WO2009100643A1 publication Critical patent/WO2009100643A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K3/00Arrangement or mounting of steam or gaseous-pressure propulsion units
    • B60K3/04Arrangement or mounting of steam or gaseous-pressure propulsion units of turbine type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L8/00Electric propulsion with power supply from forces of nature, e.g. sun or wind
    • B60L8/006Converting flow of air into electric energy, e.g. by using wind turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C21/00Influencing air flow over aircraft surfaces by affecting boundary layer flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/06Aircraft not otherwise provided for having disc- or ring-shaped wings
    • B64C39/062Aircraft not otherwise provided for having disc- or ring-shaped wings having annular wings
    • B64C39/064Aircraft not otherwise provided for having disc- or ring-shaped wings having annular wings with radial airflow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/10Drag reduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • This invention relates to an exercise device that is capable of moving in a fluid, and more particularly to a motion device that is powered by power and that can move in the ground, in the air, in the water (surface and under water).
  • the moving body drives the large fluid pressure negative pressure zone to move together, instantaneously hits the fluid wall, creates a fluid hole, and closes the fluid hole. This process instantaneously occurs, disappears instantly, and repeats.
  • the moving body always runs in an environment with very high energy consumption. This is why it is difficult to improve the speed of movement of all sports today, and it is also the reason for high energy consumption.
  • the fluid wall is a longitudinal force
  • the fluid hole is a lateral force and a lift
  • the fluid hole is a small negative pressure zone at the rear.
  • the above resistance is the main reason for the high energy consumption of all sports.
  • through the concept of fluid wall to accurately and vividly describe the fluid distribution state of the moving body during the movement, and propose that the fluid body formed by the movement of the fluid wall, the fluid hole, and the fluid hole is closed. In the nip, as long as it can block the sealing of the fluid hole, all the resistance problems will be solved, thus creating a new source of lift and power.
  • the technical solution adopted by the present invention to solve the technical problem thereof is: a motion device driven by a power device
  • the front portion having at least one fluid introduction port for receiving pressure of the forward fluid wall
  • the rear portion is provided with at least one outlet for ejecting fluid, and the inlet and the outlet are communicated through the fluid layer passage to allow the movement device to pass back and forth, so that the introduction port receives the movement device encountered during the movement.
  • the fluid is forwarded and the received forward fluid is discharged from the outlet through the fluid layer channel.
  • the casing comprises a casing and a sealed inner casing wrapped by the casing, the fluid passage separating the casing and the inner casing by a certain distance, the inlet is provided at the front of the casing, and the lateral introduction is arranged at the side of the casing, and the balance inlet is provided At the bottom of the casing, the outlet is provided at the rear of the casing. At least one of the inlet port, the outlet port, the balance inlet port, and the side guide inlet is provided with a flow regulator that can adjust a fluid passage angle.
  • a negative pressure generator is disposed in the fluid passage, so that the negative pressure generator operates, and the external fluid is sucked from the inlet and discharged from the outlet through the fluid passage.
  • the rotating head and the fluid contact surface have concave and convex lines for facilitating the cutting of the forward fluid pressure
  • the rotating head shape may be a semicircular shape, a conical shape, a flying saucer shape, a streamline shape or the like.
  • the fluid passage fluid passing through the bottom of the moving body passes through a path greater than at least equal to the upper path, and a pressure difference is generated between the upper and lower portions, and the lift resistance is reduced or disappeared, thereby changing the fluid distribution state, and the upper portion is slightly larger than the lower air pressure, and is stable. Stabilize the upper casing, the faster the speed, the more energy-saving, the smoother and safer, and the moving body obtains the first source of power.
  • the fluid body on the surface of the moving body and the fluid passage communicating therewith flow at least two layers of fluid which move faster than the speed of the moving body, forming a relatively negative pressure zone on the surface of the casing such that the fluid wall and the fluid cavity When the resistance is encountered, it is naturally avoided or minimized, so that the moving body obtains the second source of power.
  • the fluid passage communicated with the surrounding body of the moving body is under the action of power, so that the moving body generates a huge air pressure difference from the inside to the outside and the ambient air pressure, so that the moving device obtains the third source of lift.
  • the at least one centrifuge provided on the moving device sucks the fluid in the moving direction, and then rotates through the rotating drum at a high speed, and then presses a certain angle to a certain angle to form a rotating, high-speed moving fluid curtain. Then, a relatively vacuum is formed on the moving device to obtain a fourth source of lift; a certain distance between the fluid and the moving body casing forms a relative vacuum, and the moving body obtains a fourth source of power.
  • the outer casing of the moving device and the internal fluid passage that penetrates the front and the rear can block the fluid hole seal, thereby generating three power sources.
  • the first source of power has changed for a hundred years.
  • the ground moving body can only overcome the lift resistance by increasing its own weight.
  • the second source of power changes the concept of how fast the movement speed and the fluid resistance are in the past 100 years.
  • a relatively negative pressure zone is formed at the front end and the periphery of the casing to minimize the fluid resistance of the fluid wall and the fluid hole; the third power source is blocked by the fluid opening, thereby eliminating the small negative pressure zone at the rear and avoiding the large negative pressure zone Forming, forcing the fluid resistance of the fluid cavity to surround the fluid exiting the rear outlet, jointly changing the negative pressure zone to the positive pressure zone and even forming the positive power zone, and the power-driven motion body appears for 100-200 years.
  • the fluid distribution is a positive fluid pressure zone in front and around, and a negative pressure resistance zone in the rear, which is completely changed to a relatively negative pressure zone at the front end and the periphery, and a relatively positive pressure zone at the rear (as if the moving body has no fluid resistance). In space driving, the moving body can travel fast with little pushing force.
  • FIG. 1 is a schematic view showing a distribution of fluid resistance of a motor vehicle
  • Figure 2 is a bottom view of a car
  • Figure 3 is a schematic structural view of the centrifuge of Figure 2;
  • Figure 4 is a schematic diagram of the internal structure of a flying saucer
  • Figure 5 is a bottom view of Figure 4.
  • Figure 6 is a schematic structural view of an aircraft
  • Figure 7 is a front elevational view of Figure 6;
  • Figure 8 is a schematic view of the internal structure of a ring-plane aircraft
  • Figure 10 is a schematic view of the internal structure of a flight suit
  • Figure 13 is a front elevational view of Figure 10;
  • Figure 12 is a schematic structural view of a load handler
  • Figure 14 is a schematic view of the internal structure of a train
  • Figure 16 is a bottom view of Figure 15;
  • Figure 17 is a rear elevational view of Figure 15.
  • the motion device is a car.
  • the front face (front) hits the fluid wall 711 with the greatest resistance.
  • the reaction force forms a fluid hole 712 tightly wrapped around the car.
  • the fluid hole fluid maintains the continuity of the fluid, and the left and right sides are the same.
  • the port 7, the fluid passage 4, and the outlet 801 are connected forward and backward.
  • a centrifuge 9 driven by a motor 904 is provided in the introduction port 7.
  • At least one strip window introduction port 701 is disposed around the vehicle body, and a bottom and outer spoiler 201 is disposed at the bottom of the outer casing 2, and the spoiler 201 is provided with at least one balance introduction port 702 communicating with the fluid passage 4, and the spoiler 2 01 has a concave-convex spoiler surface.
  • the same pressure also greatly reduces the negative pressure resistance of the large negative pressure zone 715, and then, the fluid around the inlet port 7 of the fluid wall 711 instantly forms a fluid hole 712 which tightly wraps around the body.
  • the bottom of the outer casing 2 is a concavo-shaped spoiler 201, and the inner and outer fluids pass through a path at least equal to the path through the top of the outer casing, so that the fluid passes through the spoiler 201, and the velocity of the fluid passing through the inner and outer surfaces of the spoiler is accelerated.
  • the centrifuge 9 accelerates the flow rate in the fluid passage 4. Therefore, the fluid in the fluid passage 4 is faster than the fluid velocity outside the fluid passage, and the balance introduction port 702 at the bottom of the spoiler introduces the fluid at the bottom into the fluid passage 4, so that the fluid flow rate inside and outside the fluid passage is approximately balanced.
  • the ⁇ car has obtained the third source of power, and instantly fills the small negative pressure zone 713 in the rear, so that the large negative pressure zone 715 disappears, and the rear negative pressure zone is changed to the relative positive pressure zone, so that the automobile is in an ideal fluid distribution. status.
  • the front and the periphery are relatively negative pressure zones, and the rear is a relatively positive pressure zone, which requires only a small amount of driving force to propel the car fast.
  • the surface When the car is driving at 100 km/h, the surface is hit with a fluid wall at 28 m/s, that is, the relatively static fluid is compressed by 28 m in one second, and the reaction fluid is instantaneously formed to form a moving fluid at a speed of 28 m/s.
  • the hole is tightly wrapped around the car to bring resistance.
  • the crucible centrifuge 9 drives the high speed rotation of the motor 904, and after moving at a speed of 28 m/s, that is, after the vehicle speed is inhaled, the discharge port 902 of the controllable angle and flow rate is taken out from the outer casing outlet port 201 (the angle with the outer casing is less than or equal to 90 degrees).
  • High-speed jetting which converts the fluid wall resistance into a high-speed rotating semi-circular fluid curtain 716 (closed at the bottom outlet 201) having a certain thickness and a moving speed greater than the vehicle speed, and moving at a speed of 28 m/s.
  • the fluid curtain that moves at a speed greater than 28 m/s is unable to block the fluid wall with a large pressure and bends the fluid curtain.
  • the moment of the process is even 1/7 second, which is enough for 4 meters. The long left and right cars just passed.
  • the fluid wall formed by the fluid wall 711 at a speed of 28 m/sec is always 1/7 second later to form a fluid hole 712 at the rear of the car, which unfortunately hits a velocity of more than 28 m/sec from the discharge port 802.
  • the fluid, fluid curtain and fluidic fluid can only surround it, filling the small negative pressure zone in the rear, making the large negative pressure zone impossible to form, changing the rear part to the relative positive pressure zone.
  • a relative vacuum zone is formed between the fluid curtain 716 and the outer casing 2, and the barrier fluid does not pass through at least the surface of the outer casing to minimize the resistance of the fluid wall and the fluid cavity, so that the automobile is in an ideal motion state, thereby obtaining the automobile.
  • the high power speed of the centrifuge 9 is the above state. If the speed of the centrifuge is slow, the fluid curtain 716 cannot be supported for 1/7 second.
  • the fluid wall presses the fluid curtain on the rear part of the car to form a fluid hole.
  • the longitudinal fluid wall resistance which accounts for at least 80% of the total vehicle resistance, translates into the friction of the streamlined outer casing in the rear of the car, and the fluid resistance is also greatly reduced.
  • the fluid wall resistance is converted into a higher-speed fluid curtain.
  • the fluid hole is formed at the rear to minimize the various fluid resistance and obtain the fourth power source.
  • the fourth source of power is suitable for all types of moving bodies that move quickly in the water, in the air, and on the ground.
  • the solution to the fluid resistance is to prevent the fluid opening 714 from closing.
  • the first power source completely eliminates the lift resistance
  • the second source of power eliminates most of the vertical from the inlet 7 by 80%.
  • the resistance of the left and right fluid walls 711, the strip window inlet eliminates the resistance of most of the fluid holes 712 of about 13%, and forms a relatively negative pressure zone near each inlet, thereby forming a relatively negative pressure zone at the front end and the body
  • the three-power source completely eliminates the resistance of the negative and negative pressure zones, and changes the rear part to the relative positive pressure zone (the general fluid resistance is divided into 80% of the longitudinal force and 20% of the lateral force and the lift).
  • the fluid state of the car is completely changed to a relative negative pressure zone at the front and the periphery of the car, and the rear is a relatively positive pressure zone; when the lift resistance is eliminated, the fluid state is completely changed to a pressure slightly higher than the lower portion. , firmly press the upper housing. Therefore, the car is in an ideal state of motion, the faster the speed, the smoother, the safer the more energy-saving.
  • the second source of power greatly reduces the fluid resistance of the fluid wall and fluid cavity, changing the front end and the surrounding area of the car to a relatively negative pressure zone.
  • the third source of power completely eliminates the small negative pressure zone at the rear, making the fluid hole have a large negative pressure. The zone cannot be formed, changing the rear to a relatively positive pressure zone. This process is to use the centrifuge to assist most or most of the longitudinal fluid resistance of 80% of the resistance; the lateral force of about 13% of the resistance is mostly absorbed into the fluid channel (7 in motion) % lift has been eliminated) and then as a power source to eject from the spout at high speed to minimize various fluid resistances.
  • the motion device is a car.
  • the front end of the car 1 is provided with an introduction port 7 through the inner casing
  • the fluid passage 4 at a certain distance from the outer casing 2 communicates with the rear discharge port 801.
  • the centrifuge 9 is installed in the inlet port 7.
  • the centrifuge 9 drives the rotating shaft 907 by the motor 904.
  • the upper end of the rotating shaft 907 fixes the impeller 908, and the lower end of the rotating shaft has a sleeve 906.
  • the sleeve 906 is controlled by the clutch 905 to be reliably combined with the rotating shaft 907 as needed. And quickly and completely separated.
  • a rotating sleeve 901 is fixed on the sleeve 906.
  • the rotating sleeve 901 has a curved surface 903.
  • the rotating sleeve 901 has an angle-controlled discharge port 902.
  • the curved surface 903 facilitates smooth passage of fluid.
  • Each end of the rotating shaft 603 is provided with a generator 601.
  • the electric energy generated by the generator 601 is not less than one fuel cell.
  • the 604 is charged to provide energy for the car.
  • There are two partitions 5 in the fluid passage 4 which divide the fluid passage 4 into three streamlined surface fluid passages 401, 402, 403 for accelerating movement of the fluid within the respective streamlined fluid passages.
  • Each channel has vents that can communicate with each other, sharing an inlet 7 and a outlet 801, or each channel is fully enclosed with separate inlets and outlets (not shown).
  • the guide cylinder 8 is disposed at the rear of the automobile, and has a discharge port 801 disposed at the rear of the guide cylinder 8 and a movable plate 802 installed in front of the outlet 801. By controlling the angle of the movable plate 802, the fluid can be directed at different angles and flows. ejection.
  • the centrifuge 9 rotates at a high speed, sucking the fluid wall and the fluid hole resistance and throwing the high-speed flowing fluid into the fluid passage 4, so that the fluid in the fluid passage 4 moves at a rapid speed, thereby forming the inner and outer layers close to the casing.
  • the moving device is a flying saucer.
  • the overall shape of the flying saucer housing 1 is a shape in which the upper and lower disc surfaces are interlocked, that is, the housing 1 is formed by the upper disc-shaped upper housing 5 and The lower casing 6 is formed to be interlocked.
  • the casing 1 comprises a casing 2 and an inner casing 3, and a space at a distance between the casing 2 and the inner casing 3 forms an internal fluid passage 4, and at least one strip-shaped window inlet of the casing 2 at a controllable angle and communicating with the fluid passage 4 701, the inner casing 3 is a closed structure.
  • the strip window introduction port 701 is similar to a louver, which can arbitrarily adjust and control the inlet angle and the intake air amount, and introduces the fluid of the UFO body into the internal fluid passage 4 during the flying saucer flight, which can reduce most of the fluid resistance.
  • the angle adjustment is used to match the various functional needs of the flying saucer.
  • the flying saucer has two fluid layers in the upper part of the flight, which are respectively a layer on the outer surface of the outer casing 2 and a layer in the inner circulation passage.
  • the two layers are separated from each other, and communicate with each other through the fluid introduction port 7 and the strip window inlet port 701, such as
  • the feathers of the bird's wings are a layer of feathers that are pressed against the next layer of feathers, gradually covering from the front of the wings to the body part of the bird, flying at low speed and leaning back.
  • the flying feathers open in the corners, the air passes between each layer of feathers, and the multi-layered feathers permeate the upper and lower layers of fluids.
  • the air lift generated by the turbulence allows the birds to fly freely, thus allowing the flying saucers to fly in the air. It is easy to form an isolated spin on the upper part of the flying saucer.
  • the flying saucer has a low speed or an elevation angle of 60° to 70° and will not stall.
  • the fluid has a very high velocity through the internal path, a large area, a high flow rate, and a low air pressure.
  • This generates lift inside the flying saucer.
  • This source of lift is produced by the passage of fluid from the internal passageway a number of times greater than the surface of the lower casing 6 by the turbofan engine 801 creating a strong suction force in the fluid passage. In this state, a longer path has little effect on fluid flow, but has a large effect on the flow rate, much greater than the natural state of the fluid velocity.
  • This extremely lift generated from the inside fills the inside of the flying saucer and then extends to the surface of the upper casing 5 to jointly form a large air pressure difference with the surface of the lower casing 6, thereby obtaining a second source of lift.
  • This source of lift is far greater than the lift generated by ordinary aircraft through wings and propellers. The new generation of aircraft can achieve faster speeds, greater capacity, and the lowest energy consumption.
  • each strip window introduction port 701 a large air pressure difference between the surface of the entire upper casing 5 and the fluid passage 4 forming at least two fluid layers faster than the flying saucer speed and the surrounding fluid is formed.
  • the relative negative pressure region thereby obtaining a second source of power, minimizes various resistances of the fluid wall and fluid holes.
  • the turbofan engine 801 uses all kinds of fluid resistances sucked from the respective inlets as a power source, and ejects from the discharge port 805 at a high speed, thereby obtaining a third power source, forcing the fluid hole equivalent to the flying saucer speed to instantaneously
  • the helium reaches the lower part to close the fluid resistance of the fluid hole.
  • the fluid ejected from the discharge port 805 at a higher speed is incapable of closing the fluid hole, it can only surround it and generate a larger driving force to eliminate the negative pressure.
  • the rear part is changed to the positive power zone, so that the flying saucer runs in the ideal negative state of the front end with a relatively negative pressure zone and the rear part of the positive power.
  • the jet engine is replaced by a suction motor, the three sources of lift are combined with the jet outlets to make the flying saucer move in the water and move back and forth and left and right more conveniently and flexibly; if the wheel and jet engine are added, it can be in the water. UFO in the air, ground, and ground.
  • FIG. 7 A type of aircraft. As shown in Fig. 6 and Fig. 7, there is an inlet port 7 at the front end of the aircraft, and the upper portion 211 of the fuselage has at least one annular window introduction port 701 and a rear outlet port 8.
  • a circumferentially annular fluid passage 4 is formed through the outer casing 2 and the inner casing 3 to communicate with the inlet 7 and the outlet 8 .
  • a rotating head 704 is driven by the motor 705 to rotate at a high speed, and the fluid resistance of the fluid wall which is the largest in the forward direction is thrown into the surrounding fluid passage 4, and the resistance of the forward fluid directly hitting the inner casing 3 is prevented.
  • the rear end has a turbofan engine or a jet engine 801 that communicates with the front end inlet port 7 and the fluid passage 4.
  • a turbofan engine or a jet engine 801 that communicates with the front end inlet port 7 and the fluid passage 4.
  • the horizontal wing, and the rear of the empennage are very thin edges.
  • the fluid that avoids high-speed flow forms a negative pressure zone at the rear.
  • the upper surface of the wing has a two-layer structure, including an upper layer 203 and a lower layer 201.
  • the upper surface of the lower layer is a paraboloid, and the lower surface is a plane, which is convenient for generating lift.
  • the upper layer 203 is located above the lower layer 201, and the area covering the lower layer can be enlarged or reduced as needed.
  • a fluid layer 204 is formed between the upper layer 203 and the lower layer 201.
  • the fluid layer is a spacer layer that communicates between the upper layer 203 and the lower layer 201.
  • the fluid layer 204 has an air inlet and an air outlet. The air inlet is located at the front end of the wing and the air outlet is located at the rear end of the wing.
  • At least one strip window inlet 203 communicates with the fluid layer 204, and the fluid layer 204 communicates with the fluid passage 4 to accelerate the fluid flow rate of the upper and lower layers of the wing.
  • the feathers are covered by a layer of feathers. The angle of the flying feathers is changed.
  • Each layer of feathers has fluids that penetrate each other to form eddy currents.
  • the two-layer wing and fuselage on the upper surface of the wing form two layers of fluid passages, which together form a large pressure difference between the large wing and the lower surface of the wing and the surrounding fluid, so that the aircraft obtains the first source of lift, through
  • the angled opening and closing of the strip window inlets 701, 702 forms an upper and lower fluid layer which can be separated from each other and communicate with each other through a plurality of layers of fluid to form a vortex, when the aircraft is flying slowly or the wing angle of attack is 60-90.
  • the wing does not pose a danger of fluid leaving the wing like a smooth, smooth surface, making the flight safer and more stable.
  • the large wing formed by the upper wing, the lower wing and the fuselage is several times larger than the conventional wing area, and the path through which the fluid passes becomes longer, the speed becomes faster, and the lift naturally increases greatly.
  • the rotary head 704 is rotated at a high speed by the motor 705, the fluid resistance of the fluid wall is thrown into the fluid passage 4 to avoid the resistance caused by the collision of the inner casing.
  • the inlet port 7 is large enough to smoothly suck the maximum fluid resistance of the fluid wall into the fluid channel 4, because the fluid velocity in the channel is greater than the fluid velocity in the natural state under the same conditions, and because the rear turbofan engine is strong The inhalation greatly accelerates the fluid flow rate in the fluid passage 4.
  • the fluid flow rate in the fluid passage 4 is much larger than the airplane speed, and the fluid passage resistance and the viscous fluid flowing close to the upper portion of the casing are sucked through the at least one strip-shaped introduction port 701 on the upper casing 211 of the aircraft at a speed faster than the speed of the aircraft.
  • a relatively negative pressure zone is formed in the vicinity of each of the inlet ports, thereby forming a relatively negative pressure zone inside and outside the entire upper portion 211 of the fuselage.
  • the fluid hole fluid hits the fluid layer on the surface of the casing.
  • the turbofan engine then injects the fluid resistance of the inhaled fluid wall and the fluid hole as positive power from the discharge port 8 to instantly fill the space of the small negative pressure zone and eliminate it.
  • the negative pressure resistance makes the large negative pressure zone of the fluid hole around the fuselage unable to form, so that the aircraft obtains the third power source, forcing the negative resistance fluid hole to seal the fluid to change into positive power, which is sprayed around the discharge port 8 Strong fluids around, together create a huge push to propel the aircraft to fly quickly.
  • the lower casings 211, 212 are provided with at least one introduction port 701 communicating with the fluid passage 4, so that the entire aircraft casing and the fluid passages form a relatively large negative pressure zone and a large upper surface of the wing.
  • the wing has a huge pressure difference with the surrounding fluid and the lower surface of the wing. Under the rear power, the aircraft obtains a third source of lift.
  • the entire fuselage Since the surface area of the entire fuselage is much larger than the lower surface area of the wing, the entire fuselage
  • the two layers of fast-moving fluid inside and outside form a large wing with the upper surface of the wing, which is several times larger than the area of the lower surface of the wing, which will generate a larger lift and power source, which will greatly increase the aircraft's load capacity and aircraft speed. ⁇ also saves more energy.
  • the opening and closing of the inlet of the strip window By controlling the opening and closing of the inlet of the strip window, the first lift and the third lift are mutually converted, and it is more convenient to fly in different states.
  • the motion device is a kind of ring-wing aircraft, as shown in Figure 8 and Figure 9.
  • the wing of the aircraft includes an outer ring wing 5, an inner ring wing 505, and a lower portion of the outer ring wing 5 surrounds the lower portion of the aircraft 1 and is integral with the fuselage.
  • the balance wing 506 is a beveled cross inner structure that connects the fuselage, outer ring wing 5, inner ring wing 505 into a single, large wing, and the large wing is strong.
  • the outer ring wing 5, the inner ring wing 505 and the balancing wing 506 each have a casing 501 and an inner casing 502, and the inner casing 502 and the outer casing 501 are annular holes 503 communicating with each other at a certain distance.
  • the outer casing 501 of the outer ring wing 5 is provided with an air guiding port 703, and at least one strip window inlet port 702 with an adjustable intake angle allows the external environment fluid to communicate with the annular hole 503.
  • the fuselage has a casing 2 and an inner casing 3, the inner casing 3 and the casing 2 being separated by a fluid passage 4 at a certain distance, the inner casing 3 being hermetically sealed, the fluid passage 4 comprising a substantially linear first fluid passage 4 surrounding the inner casing 3. It is in communication with the spiral second fluid passage 401 at the rear.
  • An exhaust passage 8b is fixed in a lower portion of the aircraft fuselage, and a turbofan engine 801b is fixed in the exhaust passage 8b, and a jet end thereof communicates with the discharge port 803b; and an intake end and a fluid passage 4 and an outer ring wing 5
  • the inner annular hole 5 03 communicates.
  • the inner and outer two-layered airfoil area is much larger than any ordinary aircraft wing; the circular wing path is also much longer, and the ring is very conducive to the fluid passing through the ⁇ speed, making the fluid ring flow up to 180 degrees
  • the velocity of the fluid flowing in the channel is much greater than the velocity of the bottom of the aircraft in the natural state; the upper part of the fuselage, the inner and outer rings and the balanced wing, the large wing, the area and path ratio of the fluid passing through the large wing
  • the lower part of the fuselage is much larger, especially under the huge suction force of the turbofan engine, the fluid moves at a high speed, generating huge lift from the inside, filling the interior and then expanding to the outer casing, forming the air pressure and the lower casing together.
  • the obtained third power source causes the small negative pressure region generated during the running to disappear, the large negative pressure region of the fluid hole cannot be formed, and the fluid that forces the same fluid hole has to be sprayed around the high-speed fluid around the discharge port 803a. Together, they will generate greater impetus to promote aircraft flight. If the bottom engine 801b is removed, the flight can also take off after the flight.
  • the front end and the fluid passage are surrounded by a relatively negative pressure zone, which minimizes the resistance of the fluid wall and the fluid hole, and the rear is the positive power propulsion area. Flying in an ideal state with little fluid resistance, you can fly quickly with very little push.
  • the motion device is a flight suit.
  • the flight suit body 1 includes an inner layer suit 3 and an outer layer matte 2, and the space between the inner layer suit 3 and the outer layer suit 2 is The inner fluid passage 4 completely separates the inner layer 3 from the outer layer 2.
  • the inner layer of clothing 3 is not breathable for full sealing, to avoid contact with external fluids.
  • At least one strip window inlet 701 and at least one air vent 702 are provided in the outer garment 2 to communicate with the inner fluid passage 4.
  • the outer garment 2 is provided with an engine sleeve 8a at the back, which is provided with a jet (or turbofan) engine 801a having a greater power than the engine 801b, and is connected to the internal fluid passage 4 at the suction end of the jet engine 801a, and the end of the jet It communicates with the discharge ports 803, 805, and 807.
  • a jet (or turbofan) engine 801a having a greater power than the engine 801b
  • the fluid flows around the body at an extremely fast speed in the internal fluid passage 4, thereby passing through the respective fluid introduction ports 7, the strip windows 701, and the air guiding holes 702, 705 in the outer layer.
  • the outer surface of 2 also forms a fluid that flows at a high velocity close to the outer layer 2, thereby forming a fluid layer of two layers of high-speed flow inside and outside, thereby obtaining a second source of power, forming a relatively vacuum around the body, and a fluid wall and fluid.
  • the fluid resistance of the hole is minimized and a large pressure difference is created with the surrounding fluid, thereby obtaining a third source of lift.
  • the jet engine 801a sprays the hot fluid from the fluid discharge port 803 to generate a reaction force thrust, so that the body rises.
  • the discharge port 807 can be opened to fly forward, so that the flight suit obtains the third power source, and the fluid hole is merged.
  • the fluid to the rear cannot be sealed, it has to be sprayed around the hot fluid around the discharge port to jointly eliminate the size of the negative pressure zone, generating more power to make the flight suit fly fast.
  • opening different fluid outlets in the air can fly in different directions, ie, front and left.
  • the flight suit can be equipped with an oxygen cylinder for breathing.
  • the front engine 801b and the conduit 704 can also be removed in specific use, with only the rear jet engine 801a being powered.
  • the fluid ejection port further includes a waistband 808 at the waist, and a plurality of fluid ejection ports 803, 804, 805, 807 are disposed on the waistband 808, and the fluid ejection ports can be closed or opened. Achieve flight in all directions.
  • the engine 801a has a smaller power selection or the engine 801b is removed.
  • the specific embodiment can be made into a security product. After wearing the flight suit, the power will be driven to jump very fast, which can greatly improve the anti-terrorism or combat effectiveness of the police and the soldiers. But can't fly.
  • the engine power is smaller, and the headgear can be used to become a fitness and health care product to help exercise.
  • the engine is a water-absorbent engine, it can be a power-driven diving suit. For example, the engine can be used for both water absorption and suction.
  • the flight suit can fly in the air or as a diving suit with power in the water.
  • a motion device such as a heavy-duty helicopter, as shown in Figure 12, with a centrifuge 6 above the propeller, A centrifuge 6a is arranged in the middle of the bottom to form a negative pressure zone.
  • the centrifuge 6 includes a drum 601 having at least one spray port 602 that can change the angle of the nozzle. When the helicopter is operated, the screw centrifuge 6 rotates at different speeds in different directions, the rear fan can be removed, and the centrifuge is arranged above the propeller.
  • the centrifuge forms a circular, constant thickness, high-speed moving and high-speed rotating circular fluid curtain around the center. Since the centrifuge rotates faster than the propeller, the high-speed moving and rotating fluid curtain is not sucked in by the propeller. It can only be sucked into the propeller at the weak edge of the circular fluid curtain, forming a semi-circular flow rate.
  • the blocking fluid hole is sealed in the middle of the bottom, forcing the fluid resistance of the fluid hole not to surround the fluid curtain, so that the size negative pressure zone disappears, and the bottom is changed into the positive power zone, which together generate more power and propel the aircraft. Helicopter lifting is very convenient.
  • the suction port of the centrifuge can also be connected to the fluid passage between the inner casing of the fuselage. If there are helicopters with propellers on the front and rear of the helicopter, a centrifuge is placed above the front and rear propellers to increase the weight of the helicopter.
  • the lateral force that is, the inwardly applied force, is easily introduced by the side guide inlet 701, and the fluid tightly wrapped around the fluid hole around the side of the submarine is naturally squeezed into the internal fluid passage 4
  • the circular casing gathers around the discharge port 803 and cannot close the fluid hole. It has to surround the fluid which is sprayed at the discharge port and is faster than the submarine speed, and instantly fills the small negative pressure zone at the rear, so that the large negative pressure zone of the fluid hole cannot be Forming, together, produces a greater reaction force that pushes the submarine to travel in an ideal state with little fluid resistance.
  • the movable sleeve 802 is controlled, the fluid is sprayed at a certain angle according to a certain angle, and the submarine is more flexible.
  • the side guide entrance 701 is equipped with a first flow regulator that opens and closes and adjusts the angle like a fish scale to make the submarine more flexible in the water.
  • the submarine Opening the inlet 701 on the upper half of the casing, the surface of the casing in the fluid passage and the surface of the casing communicating with it, and generating a great pressure difference with the lower casing under the great suction force of the suction motor to obtain the source of the first lift, the submarine rises Three sources of lift make it easier to control the submarine in the water.
  • the water suction motor 801 can be reversed.
  • the fluid discharge port 803 is the inlet port
  • the forward guide port 7 is the fluid discharge port. After the fluid is introduced, it is discharged from the inlet port 7, and the submarine is pushed backward.
  • the fluid passage 4 forms a submersible storage tank, which can reduce and cancel the original submersible storage tank to save valuable space.
  • the motion device is a high speed train.
  • the train 1 includes an inner casing 3 and a casing 2, and an inner fluid passage 4 is formed between the casing 2 and the inner casing 3.
  • the front end of the fluid passage 4 has an introduction port 7, the guide inlet 7 has a rotary head driven by a motor 703, and the rear end has a turbofan engine 801 communicating with the fluid discharge port 8, and the side surface of the outer casing 2 and the roof are provided with at least one side guide inlet. 701;
  • the bottom of the outer casing 2 has at least one adjustable angle strip window inlet 704 communicating with the fluid passage 4.
  • the turbofan engine 801 Since the turbofan engine 801 generates a great suction force, the suction force in the pipeline is extremely strong, and the flow rate is extremely fast.
  • the turbofan engine turns the resistance of the fluid wall and the fluid hole sucked from each inlet into a positive power, and slams out from the fluid outlet 803, thereby obtaining a third source of power, forcing the fluid resistance of the fluid hole.
  • the seal has to be changed to positive power. It is sprayed around the high-speed fluid around the discharge port 803 to generate more power to make the negative pressure zone disappear, and the rear part is changed into the positive power zone, so that the train is at the front and the periphery (ie The front and side sections are driven in a relatively negative pressure zone, in the ideal fluid distribution state of the rear positive power zone.
  • the bottom casing can also be as shown in Fig. 1, with a bumpy spoiler to increase the path through which the fluid passes.
  • the motion device is a high speed, energy efficient hull as shown in Figures 15, 16 and 17.
  • the casing 1 around the hull comprises a fluid passage 4 spaced apart by a distance between the outer casing 2 and the inner casing 3 at a distance.
  • the internal fluid passage 4 communicates with a strip window 701 and an introduction hole 703 provided in the outer casing 2.
  • the hull is divided into an underwater part, a water part and an upper part of the ship. Accordingly, the internal fluid passage 4 is divided by the partition 5 into an underwater fluid passage 401, a water fluid passage 402 and an onboard fluid passage 403.
  • the underwater guide cylinder 8a has a water suction motor 801a, the water suction port communicates with the underwater fluid passage 401, and the water spray port communicates with the air outlet 803a;
  • the water guide cylinder 8b has an air suction motor 801b, and the air suction port thereof
  • the water fluid passage 402 is in communication with the air outlet;
  • the air outlet is connected to the air outlet 803b;
  • the air intake guide 8c is provided with an air suction motor 801c, and the air inlet is connected to the ship fluid passage 403, and the air outlet is communicated with the air outlet 803c.
  • the fluid injected from the motor 801d into the annular passage 404 and the underwater annular introduction port 708 are strongly sucked, and the fluids of the inlet ports 71, 702, and 703 are fluidized between the fluid layers.
  • the fluid has a fast flow rate in the channel under the strong suction of the water absorbing motor 801a, so the flow rate of the fluid in the fluid channel 401 and the annular fluid channel 404 is fast, and the fluid around the inlet is tightly attached to the housing to accelerate the flow rate. , thus obtaining the second source of power.
  • the flow rate but greater than the speed of the ship, minimizes the hull and the bottom shell 2 and the external surface resistance, and the fluid on the annular fluid passage 404 moves at a high speed, and communicates with the main passage 405 through the inner casing 3, so that the annular passage 404 and Two layers of high-speed flowing fluid layers are formed on the inner casing 3 to drive the fluid in the main passage 405 from the main inlet 7 to receive the positive maximum fluid resistance pressure to accelerate the fluid resistance and friction in the main passage 405 to a minimum.
  • the velocity of the fluid in the main channel 405 is increased.
  • the ship's outer casing is divided into water and underwater parts, and the fluid contact surface or part of the contact surface is a two-layered shell that is hollow inside and outside, the other is the same as above,
  • the ship can be upgraded by simply having a double-layered casing that communicates with the outside in the underwater part or a channel that communicates with the stern in the ship's bottom casing or outside, or an inlet that communicates with the outside of the channel.
  • the power part can be driven by the water flow of the water suction motor or air propulsion or propeller.
  • a double-layer hollow housing or pipe that communicates with the outside world minimizes fluid resistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Description

运动装置
技术领域
本发明是关于一种能够在流体中运动的运动装置, 尤其是关于一种由动力驱动 并能在地面、 空气中、 水中 (水面和水下) 运动的运动装置。
[3] 背景技术
[4] 自从由动力推动的在流体中高速运动的运动体出现以来, 汽车、 火车、 船舶、 潜艇、 飞行器已有 100— 200年历史, 百年来其结构和理论没有根本性变化和突 破, 单靠改进百年来的理论和方法, 已跟不上吋代发展的需要, 必须从根本上 改变在流体中的各种运动体的结构和方法, 寻找一种新的升力来源和动力来源 , 彻底改变运动体在高速运动中的流体分布状态, 从而使运动体处于理想的运 动状态, 只需很少推动力, 就能使运动体快速运动。
[5] 发明内容
[6] 本发明要解决的技术问题是首次提出一切在流体中运动的运动体, 都被困在流 体墙、 流体洞和流体洞口封口后形成的大小负压区内, 要提高运动体的运动速 度和减少流体阻力的影响, 就必须使流体洞口不能封口, 也不能形成大小负压 区, 由此彻底改变运动体在快速运动中的流体分布为前端和周围为相对负压区 , 后部为相对正压区, 同吋还产生一种全新的动力来源和升力来源。
[7] 一切在流体中快速运动的运动体 (如: 火车、 汽车、 飞机、 导弹、 轮船、 潜艇 等)都需要消耗大量的能源来克服阻力。 运动体在流体中快速运动吋, 都需要消 耗极大的能量来撞开档在前面的厚厚的流体墙 (如空气和水), 瞬间撞开流体墙后 , 运动速度越快, 流体墙就越厚, 阻力就越大。 以其反作用力以同样的能量和 速度又瞬间形成流体洞, 紧紧包裹着运动体四周, 运动速度越快流体洞就相应 变厚, 阻力就越大。 为保持流体的连续性, 流体洞的流体包裹着运动体在后部 同吋到达, 然后封闭流体洞口, 在运动体后部与流体洞口之间距离形成后部小 负压区, 运动速度越快, 后部负压区面积就越大, 负压阻力就越大, 实际上更 为严重, 后部小负压区不但吸住运动体后部, 经研究观察还发现, 运动体高速 行驶吋, 紧裹运动体的流体洞与周围流体形成巨大的压力差, 把整个流体洞变 为一个流体洞大负压区, 即运动体在流体墙、 流体洞和流体洞口封口后共同形 成的流体洞大负压区内, 把整个运动体装在里面, 要付出极大能耗才能前进。 运动体带动大的流体洞负压区一起运动, 瞬间撞击流体墙, 产生流体洞, 封闭 流体洞口, 这一过程瞬间产生、 瞬间又消失、 周而复始, 运动体始终在能耗非 常大的环境中运行, 这就是今天所有运动体运动速度很难提高, 同吋又是高耗 能的原因所在。
[8] 流体墙为纵向力, 流体洞为侧向力和升力, 流体洞口为后部小负压区。 为减少 这些阻力, 多年来人们想尽各种办法, 效果不大, 至今以上阻力还是所有运动 体高能耗的主要原因。 为此, 通过流体墙的概念来准确和形象的叙述运动体在 运动过程中的流体分布状态, 并提出运动体被运动吋困在流体墙、 流体洞、 流 体洞口封闭后形成的流体洞大负压区内, 只要能阻档流体洞口封口, 一切阻力 问题就迎刃而解, 由此产生出新的升力和动力来源。
[9] 本发明解决其技术问题所釆用的技术方案是: 一种运动装置, 由动力装置驱动
, 其具有壳体, 壳体具有相对应的前部和后部及位于前、 后部之间的底部和侧 部, 该前部开有至少一个用于接收正向流体墙压力的流体导入口, 该后部开有 至少一个用于喷出流体的导出口, 导入口和导出口通过流体层通道连通而使该 运动装置前后贯通, 使导入口接收所述运动装置在运动过程中遇到的正向流体 , 并将接收的正向流体通过所述流体层通道从所述导出口排出。
[10] 所述底部设有至少一个与流体通道连通的平衡导入口, 运动吋, 底部流体通过 平衡导入口在壳体内外相对平衡后进入流体通道内, 并通过导出口排出。 所述 侧部设有至少一个与流体通道连通的侧向导入口, 运动吋, 侧向流体通过侧向 导入口进入流体通道, 并通过导出口排出。 所述壳体包括外壳及由外壳包裹的 密闭内壳, 流体通道将该外壳和内壳分隔开一定距离, 导入口设于外壳前部, 侧向导入设于外壳侧部, 平衡导入口设于外壳底部, 导出口设于外壳后部。 所 述导入口、 导出口、 平衡导入口、 侧向导入口中至少有一个装设有可以调节流 体通过角度的流量调节器。 所述流体通道内设有负压发生器, 使得负压发生器 工作吋, 从导入口吸入外界流体并经流体通道后从导出口喷出流体。 [11] 所述流体通道内装有风力器及由风力器驱动的发电机, 流体带动风力器, 发电 机与推进器连接。 所述负压发生器选自: 离心机、 螺旋桨、 风扇、 涡扇发动机 、 吸水马达。
所述旋转头与流体接触面有凹凸线条便于划开正向流体压力, 旋转头形状可为 半圆形、 圆锥形、 飞碟形、 流线型等形状。 所述的运动体底部与之相通的流体 通道流体经过的路径大于至少等于上部路径, 上下部产生压力差, 升力阻力减 少或消失, 由此改变了流体分布状态, 上部略大于下部的气压, 稳稳的压住上 部壳体, 速度越快就越节能越平稳安全, 使运动体获得第一动力来源。
[12] 所述的运动体表面上和与之相通的流体通道内流动至少两层其运动速度快于运 动体速度的流体层, 在壳体表面形成相对负压区使得流体墙和流体洞的阻力碰 到后自然避开或减到最小, 使运动体获得第二动力来源。
[13] 所述的流体通道从各导入口吸入的流体墙、 流体洞的流体阻力, 统统从导出口 喷出, 瞬间填充后部小负压区, 使流体洞大负压区不能形成, 迫使流体洞口不 能封闭, 共同形成后部相对正压区, 由此获第三动力来源。 所述的运动体上部 与之相通的流体通道在动力作用下, 流体经过的路径大于或等于底部, 上下部 形成压力差, 产生升力。 上部流体经过的路径越长, 升力越大, 由此, 运动装 置获得一升力来源。
[14] 所述的运动体上部与之相通的流体通道在动力作用下, 流体在内部经过的路径 远大于底部, 使得运动体由内到上部共同与底部产生巨大的压力差, 由此运动 装置获得第二升力来源。
[15] 所述的运动体周围壳体与之相通的流体通道在动力作用下, 使得运动体由内到 外共同与周围环境气压产生巨大的气压差, 使运动装置获得第三升力来源。
[16] 所述的在运动装置上设有至少一个离心机把运动方向的流体吸入后通过转筒高 速旋转再按可控制一定角度抛向四周形成一定厚度的、 旋转的、 高速运动的流 体幕, 于是在运动装置上形成相对真空状从而获得第四升力来源; 流体与运动 体壳体夹角之间有一定距离形成相对真空状, 运动体获得第四动力来源。
[17] 本发明可以实现以下有益效果中的至少一个:
[18] 1、 运动装置的壳体与之前后贯通的内部流体通道可阻档流体洞封口, 由此产 生出三个升力来源, 由此改变百年来飞行器只能通过机翼和螺旋桨产生升力来 源, 出现不用机翼和螺旋桨的各类新一代飞行器, 任何形状的物体都能飞上天 。 对现有各类飞机改造可使升力大大提高, 运载量提高, 飞行速度提高, 同吋 能耗也大大减少, 同吋还产生各类同吋在水中、 空中、 地面上运动的运动体。
[19] 2、 运动装置外壳及与之前后贯通的内部流体通道可阻档流体洞封口, 由此产 生三个动力来源。 第一动力来源改变百年来地面运动体只能通过增加自重来克 服升力阻力; 第二动力来源, 改变百年来运动速度有多快、 流体阻力有多大的 概念。 在壳体前端和周围形成相对负压区, 把流体墙和流体洞的流体阻力减到 最低; 第三动力来源阻档流体洞口封闭, 由此消除后部小负压区, 避免大负压 区形成, 迫使流体洞口的流体阻力只能围绕在后部导出口喷出流体周围, 共同 改变负压区为相对正压区甚至还形成正向动力区, 由动力推动的运动体出现 100- 200年来的流体分布为前面和周围是正向流体压力区, 后部是负压阻力区, 于是 彻底改变为前端及周围为相对负压区, 后部为相对正压区 (犹如运动体在无流 体阻力的太空行驶) , 只需很少推动力, 运动体就可快速行驶。
[20] 3、 尤其是消除升力阻力后, 就对地面运动体来说哪怕是一个很轻的薄壳小汽 车, 与现有 2吨左右的小汽车相比, 在同样大小和速度下, 速度越快, 上部略大 于下部气压稳稳的压住上部壳体, 越平稳、 越安全和节油。 现有小汽车为 1.3吨 一 2吨以上重量, 按汽车所需基本功能和结构, 实际上 300公斤左右就可以。 众 所周知, 一分重量一分能耗, 为现有 1.5吨汽车的 1/5重量就可节约能耗 80% , 由 此可省掉 80%的重量的材料, 减少 50%以上的生产成本。 除此之外, 第二、 第三 动力来源把流体阻力降至最低, 同吋运动速度还会大大提高。 以上三个动力来 源适用于任何地面、 空中、 水中的运动体。
[21] 4、 离心机设在运动体上产生的流体幕可获得第四升力来源, 运载力和升力都 大大提高。 另外, 流体幕还能阻档流体洞一瞬间, 由此获得第四动力来源。 流 体阻力只能在后部形成, 使运动体在阻力很小的理想状态中行驶。
[22] 附图说明
[23] 图 1是表示一种汽车运动吋流体阻力分布情况的示意图;
[24] 图 2是一种汽车的仰视图; [25] 图 3是图 2中的离心机的结构示意图;
[26] 图 4是一种飞碟的内部结构示意图;
[27] 图 5是图 4的仰视图;
[28] 图 6是一种飞机的结构示意图;
[29] 图 7是图 6的正视图;
[30] 图 8是一种环翼飞机的内部结构示意图;
[31] 图 9是图 8的正视图;
[32] 图 10是一种飞行服的内部结构示意图;
[33] 图 11是图 10的正视图;
[34] 图 12是一种载重飞机的结构示意图;
[35] 图 13是一种潜艇的内部结构示意图;
[36] 图 14是一种火车的内部结构示意图;
[37] 图 15是一种轮船的内部结构示意图;
[38] 图 16是图 15的仰视图; 以及
[39] 图 17是图 15的后视图。
[40] 具体实施方式
[41] 实施方式一
[42] 如图 1所示, 运动装置为汽车。 当汽车快速行驶吋, 迎面 (正面)撞上最大阻力的 流体墙 711, 瞬间其反作用力又形成流体洞 712在周围紧紧包裹着汽车, 流体洞 流体为保持流体的连续性, 上下左右同吋到达后部来封闭流体洞口 714, 在汽车 后部和流体洞口之间形成后部小负压区 713, 紧紧在后部拉住汽车, 给汽车带来 负压阻力, 运动速度越快, 后部小负压区阻力就越大, 其负压区 713面积就越大 , 经观察发现, 实际上要严重得多, 一旦流体洞口 714封闭, 汽车高速行驶中, 与周围流体产生巨大的压力差, 汽车被困在流体墙 711、 流体洞 712、 流体洞口 7 14内形成的流体洞大负压区 715内, 肩负着沉重的负担, 艰难行驶, 这就是现有 运动装置速度很难提升且能耗很高的主要原因, 所以不让流体洞口 714封口是提 高运动装置速度、 减低能耗的关键所在。 在汽车前端设导入口 7, 后端设导出口 801, 与外壳 2和内壳 3之间一定距离形成环绕车身一周的环形流体通道 4, 导入 口 7、 流体通道 4、 导出口 801前后贯通。 在导入口 7内设有由电机 904带动的离心 机 9。 在车身周围设有至少一个条形窗导入口 701, 外壳 2底部设有凹凸相间的扰 流板 201, 扰流板 201上设有至少一个平衡导入口 702与流体通道 4相通, 扰流板 2 01具有凹凸形扰流面。
[43] 在汽车快速行驶吋, 迎面撞上正向最大的流体墙 711的流体阻力, 瞬间外壳前 端与流体墙 711直接碰撞部位产生出的阻力大约占流体阻力的 80%左右, 此吋, 通过前端离心机 9的高速旋转, 在离心力作用下把正向最大的流体墙阻力强烈吸 入后再抛向四周流体通道 4内, 使流体通道 4内的流速远大于车速, 便于通过外 壳 2上的导入口 701把流体洞 712阻力吸入流体通道 4内, 同吋开出瞬间通道, 使 汽车在阻力极小的状态中行驶。 同吋与车同宽度的足够大的导入口 7顺畅的、 无 阻碍的把流体墙与壳体接触面的流体导入流体通道 4内, 把流体墙 711阻力消于 无形。 同吋也使大负压区 715的负压阻力大大降低, 紧接着, 流体墙 711在导入 口 7周围的流体, 瞬间形成流体洞 712, 紧紧包裹着车身周围。 此吋, 外壳 2底部 为凹凸形扰流板 201, 它的内外面流体经过的路径至少等于经过外壳顶部的路径 , 使流体经过扰流板 201吋, 经过扰流板内外表面的流体的速度加快, 又因为在 同等条件下流体通道内的流体流速快于自然状态, 离心机 9又加快了流体通道 4 内的流速。 所以流体通道 4内的流体快于流体通道外的流体速度, 扰流板底部的 平衡导入口 702把底部的流体导入流体通道 4内, 使得流体通道内外流体流速大 概平衡。 车身获得第一动力来源, 升力阻力消失; 流体包裹车身左右两侧及底 部的流体洞 712为侧向阻力, 即四周紧裹车身的流体一起向车身中心线施加的力 , 所以很容易把紧贴壳体上的流体洞流体阻力源源不断地从外侧壳体上从四面 通过条形窗导入口 701向内挤压进流体通道 4内。 由此汽车又获得第二动力来源 , 把流体墙 711和流体洞 712的阻力降至最小, 流体洞 712的流体为保持流体连续 性, 从上下左右四周同吋到达后部来封闭流体洞口 714, 如流体洞口 714能封闭 , 汽车就会被困在流体墙、 流体洞、 流体洞口形成的流体洞大负压区 715内, 艰 难行驶。 当导入口 7把流体墙阻力大量吸入吋, 大负压区 715负压阻力大大降低 , 又遇到从导出口 801喷出大量的高于汽车运动速度的流体碰到等同于汽车运动 速度的流体洞口 714的流体阻力, 流体洞口 714就不能封闭洞口, 不得不改变为 正向动力来源来围绕在它周围。 此吋汽车又获得第三动力来源, 瞬间填充后部 小负压区 713, 使流体洞大负压区 715消失, 把后部负压区改变为相对正压区, 使汽车处于理想的流体分布状态。 前端和周围为相对负压区, 后部为相对正压 区, 只需很少的推动力就能推动汽车快速行驶。
当汽车以 100公里 /小吋行驶吋, 迎面以 28米 /秒碰上流体墙, 即把相对静止的流 体一秒内压缩 28米, 瞬间以其反作用力形成 28米 /秒速度的运动的流体洞紧裹汽 车周围带来阻力。 此吋离心机 9在马达 904带动高速旋转, 把 28米 /秒速度运动的 即大于车速吸入后, 从可控制角度和流量的喷出口 902从外壳导出口 201 (与外 壳夹角小于等于 90度) 高速喷出, 此吋把流体墙阻力转化为有一定厚度的、 运 动速度大于车速的高速旋转的半圆形流体幕 716 (底部导出口 201封闭) , 把以 2 8米 /秒速度运动的流体墙阻档瞬间, 以大于 28米 /秒速度运动的流体幕无力阻档 具有巨大压力的流体墙而把流体幕压弯, 这一过程的一瞬间哪怕是 1/7秒, 也足 够 4米长的左右的汽车刚好经过。 流体墙 711以 28米 /秒速度形成的流体洞总是晚 了 1/7秒才能在汽车后部形成流体洞 712, 不巧的是碰上从喷出口 802喷出大于 28 米 /秒速度的流体, 流体幕和流体洞的流体只能围绕在它周围, 共同填充后部小 负压区, 使大负压区不能形成, 把后部改变为相对正压区。 另外, 流体幕 716与 外壳 2之间形成相对真空区, 阻档流体不经过至少为少经过外壳表面, 把流体墙 和流体洞阻力减到最小, 使汽车处于理想运动状态, 由此汽车获得第四动力来 源。
[45] 离心机 9功率大速度快吋就是以上状态, 如离心机速度慢吋流体幕 716连 1/7秒 都无法支撑, 流体墙把流体幕在汽车中后部压向外壳上形成流体洞, 至少占总 汽车阻力 80%的纵向流体墙阻力转化为汽车中后部流线形外壳的摩擦力, 流体阻 力也大大减少。 用离心机很小的能耗, 把流体墙阻力转化为更高速度的流体幕 阻档流体洞一瞬间在后部形成把各种流体阻力减到最小, 获第四动力来源。
[46] 第四动力来源适合在水中、 空中、 地面快速运动的各类运动体。
[47] 由此可见: 真正解决流体阻力的办法是不让流体洞口 714封闭。 为此第一动力 来源彻底消除的升力阻力, 第二动力来源从导入口 7消除绝大部分纵向的占 80% 左右流体墙 711的阻力, 条形窗导入口消除 13%左右的大部分的流体洞 712的阻力 , 并在各导入口附近形成相对负压区, 从而在前端和车身形成相对负压区, 第 三动力来源彻底消除了大小负压区阻力, 把后部改变为相对正压区 (一般流体 阻力分为纵向力占 80%侧力和升力共占 20%
左右。 没有计算负压区阻力所占比例。 而实际上只有彻底消除大小负压区才谈 得上真正消除其他流体阻力) 。
[48] 由此, 汽车的流体状态彻底改变为在汽车前端及周围为相对负压区, 后部为相 对正压区; 当升力阻力消除后, 流体状态又彻底改变为上部略大于下部的气压 , 稳稳的压住上部壳体。 此吋, 汽车处于理想的运动状态, 速度越快, 越平稳 , 越安全, 越节能。
[49] 一直以来, 地面运动装置都是以重量来克服升力。 实际上根本不可能, 大部分 车祸都因为车速过快无法克服升力而引起。 第一动力来源消除升力后, 在同等 条件下, 大小相同的一个空壳轻质铁皮也比 2吨重的高档车在同等条件下高速行 驶还要平稳安全。 所以, 汽车按其所需基本要求为 300公斤左右重量, 而现有小 车为 1.3-2吨以上重量, 即为现有小车的 1/5左右, 众所周知, 一分重量一分能耗 , 所以可比现有汽车节能 80%以上的能源, 而这部分能源为人们天经地义的认为 是以重量来克服升力阻力必须要付出的。 另外, 由于少消耗 80%重量的材料, 汽 车的生产成本至少可节约 50%以上。
[50] 第二动力来源大大减少流体墙和流体洞的流体阻力, 把汽车的前端和周围改变 为相对负压区, 第三动力来源彻底消除后部小负压区, 使流体洞大负压区不能 形成, 把后部改变为相对正压区。 这一过程是从导入口在离心机协助下, 把占 阻力 80%的纵向流体阻力大部分或绝大部分; 占阻力 13%左右的侧力大部分都统 统吸入流体通道内 (运动中产生 7%升力已消除) , 然后作为动力来源从喷出口 高速喷出, 把各种流体阻力降至最低。
[51] 以上汽车阻档流体洞口封闭减少流体阻力的结构和装置, 适合于一切在流体中 由动力推动的在空中、 地面、 水中快速运动的运动体。
[52] 实施方式二
[53] 如图 1至图 3所示, 运动装置为汽车。 汽车 1的前端设有导入口 7, 通过介于内壳 3和外壳 2之间一定距离空间的流体通道 4与后部喷出口 801前后相通。 在导入口 7 内装有的离心机 9, 离心机 9由马达 904带动转轴 907, 转轴 907上端固定叶轮 908 , 转轴下端有轴套 906, 轴套 906由离合器 905控制根据需要与转轴 907可靠的结 合和迅速彻底的分离。 轴套 906上固定有转筒 901, 转筒 901内有弧形面 903, 转 筒 901外壳上有可控制角度的喷出口 902。 弧形面 903便于流体能顺畅通过。
[54] 在外壳 2底部至少有一个作为可控制角度和流量的底部平衡导入口 702, 外壳 2 的底部设有凹凸流线型扰流板 201, 平衡导入口 702设于该扰流板 201, 通过该平 衡导入口 702方便把底部流体导入流体通道 4内, 使得流体经过扰流板 201内外的 路径不小于汽车顶部流体经过的路径, 从而加快底部流体速度, 获得第一动力 来源, 消除升力阻力。 在流体通道 4内有不少于一个风力器 6, 由流体驱动叶轮 6 02来带动转轴 603, 转轴 603两端各带一个发电机 601, 发电机 601产生的电能为 不少于一个的燃料电池 604充电, 为汽车提供能源。 在流体通道 4内有两个隔板 5 把流体通道 4分为三个的流线型面流体通道 401、 402、 403 , 以便流体在各个流 线型流体通道内加速运动。 各通道有通气口可彼此相通, 共用一个导入口 7和导 出口 801, 也可各通道为全封闭有各自独立的导入口和导出口 (未示出)。 导筒 8设 置在汽车后部, 其具有设于导筒 8后部的导出口 801及安装在导出口 801前方的活 动板 802, 通过控制活动板 802的角度, 可以把流体按不同角度和流量喷出。
[55] 离心机 9高速转动, 把流体墙和流体洞阻力吸入并把高速流动的流体抛入流体 通道 4内, 使流体通道 4内流体很快速度运动, 从而形成内外两层紧贴壳体流动 的流体层, 由此获得第二动力来源, 把流体墙和流体洞阻力降到最小, 然后把 吸入的各种流体阻力统统从导出口 801以大于汽车速度喷出, 由此获得第三动力 来源, 迫使流体洞口的流体不能封闭流体洞口, 不得不围绕在它周围, 共同产 生更大力量来消除大小负压区, 把后部改变为相对正压区, 使汽车处于理想状 态中行驶。
[56] 当不用离心机 9吋, 离合器 905分离轴套 906, 叶轮 908连接转轴 907在马达 904带 动下高速转动, 把运动方向的流体墙阻力吸入后从喷出口 902吸入流体通道 4内 速转动, 从而带动电机 904转动, 产生的电输入不少于一个燃料电池 604为汽车 提供能源。
[57] 对现有各种动力的汽车改造, 只需在汽车底部加凹凸型或平底型的外壳 2(即在 原有外壳的底部再加装一个外壳, 原有外壳和加装的外壳视为本实施方式汽车 的外壳), 使得在外壳 2上的底部平衡导入 702与流体通道 4相通, 流体通道与前面 导入口和后面导出口前后贯通就可节约大量能源。 由于改造后的汽车大大的节 约了能源, 尤其适合釆用燃料电池或压缩气体作为动力的汽车。
[58] 实施方式三
[59] 运动装置为一种飞碟, 如图 4、 图 5所示, 飞碟壳体 1的整体形状为上下两个盘 面相扣的形状, 即壳体 1由上盘状的上壳体 5和下壳体 6相扣形成。 壳体 1包括外 壳 2和内壳 3, 在外壳 2和内壳 3之间一定距离的空间形成内部流体通道 4, 外壳 2 上至少一个可控制角度且与流体通道 4相通的条形窗导入口 701, 内壳 3为密闭结 构。 流体通道 4分为设置在上壳体 5内的上部流体通道 401和设置在下壳体 6内的 下部流体通道 402, 上、 下部流体通道 401、 402通过连通口 704连接相通。 上部 流体通道 401在飞碟的顶面上设有流体导入口 7(导入口 7开在外壳 2上)。 在流体导 入口 7处的内壳 3上设有由电机 703带动的离心机 705, 离心机 705上有转筒 706, 转筒 706上设有排气口 708。 离心机 705的吸气一端与流体导入口 7相通, 工作吋 在飞碟顶部形成负压区, 便于飞碟上升和飞行, 离心机 705的吹气一端与上部流 体通道 401相通, 离心机 705抛出大量高速流动的流体均匀分布在上部流体通道 4 01内高速流动。
[60] 在流体通道 4内设有不少于一个风力器 503, 由流体通道 4内流动的流体驱动叶 轮 501带动发电机 502工作, 从而为飞碟提供辅助能源。
[61] 条形窗导入口 701类似百叶窗, 其可任意调节控制进气口角度和进气量, 在飞 碟飞行吋把飞碟周身的流体导入内部流体通道 4, 可减少大部分流体阻力。 另外 还通过角度调节, 配合飞碟飞行中的各种功能需要。 飞碟在飞行中上部有两层 流体层, 分别为外壳 2外表面一层、 内部流通通道内一层, 两层相互分开, 通过 流体导入口 7和条形窗导入口 701又相互相通, 就如鸟类翅膀的羽毛是一层羽毛 覆压着下一层羽毛, 从翅膀前端层层覆盖逐步到鸟身体部分, 在低速飞行和仰 角飞行吋羽毛张开, 每层羽毛之间有空气经过, 多层羽毛上、 下多层流体间相 互渗透, 形成湍流产生的空气升力使飞鸟可灵活的自由飞翔, 从而使得飞碟在 空中飞行吋, 很容易在飞碟上部形成离体旋, 飞碟低速或仰角为 60°~70°吋不会 失速。
[62] 当飞碟工作吋, 离心机 705的转筒 706高速转动, 产生极强的吸力把正向最大阻 力的流体墙吸入, 使运动方向成为相对真空区, 便于飞碟飞行, 同吋又把吸入 的流体阻力高速抛入流体通道 4内, 使其流体快速运动。 此吋, 后部涡扇发动机 801更高速的转动, 产生巨大的吸力, 从上壳 5上的条形窗导入口 701和离心机 70 5抛出的流体都强烈吸入上部流体通道 401, 经连接口 704进入下部流体通道 402 。 流体极高速的经过内部的路径长, 面积大, 流速高, 气压低。 由此在飞碟内 部产生升力。 这种升力来源是从内部通道流体经过的路径大于下壳体 6表面若干 倍, 通过涡扇发动机 801在流体通道里产生强大吸力的情况下产生的。 在此状态 中, 长一点的路径对流体流量影响不大, 但对流速影响很大, 远远大于自然状 态的流体速度。 这种从内部产生的极大升力充盈飞碟内部, 再扩展到上壳体 5的 表面, 共同与下壳体 6的表面形成巨大的气压差, 就获得第二升力来源。 这种升 力来源远远比普通飞机通过机翼和螺旋桨产生的升力大得多。 使新一代的各类 飞行器获得更快的速度, 更大的运载量, 同吋又是最低的能耗。
[63] 与此同吋, 在各条形窗导入口 701附近, 从而整个上壳体 5表面与流体通道 4内 形成快过飞碟速度的至少两层流体层与周围流体形成的巨大的气压差的相对负 压区, 由此获得第二动力来源, 把流体墙、 流体洞的各种阻力减到最小。 此吋 , 涡扇发动机 801把从各导入口吸入的各种流体阻力统统作为动力来源, 从喷出 口 805高速喷出, 由此又获得第三动力来源, 迫使等同于飞碟速度的流体洞瞬间 同吋到达下部来封闭流体洞口的流体阻力, 碰到更高速度从喷出口 805喷出的流 体, 就没能力封闭流体洞口, 只能围绕在它周围, 共同产生更大的推动力, 消 除大小负压区, 把后部改变为正向动力区, 使飞碟在前端为相对负压区, 后部 为正向动力的理想状态中行驶。
[64] 若飞碟上壳体 5和下壳体 6的条形窗导入口 701都开启与流体通道 4相通, 整个飞 碟内外形成相对负压区, 与周围流体形成巨大的压力差, 由此在发动机推动下 获得第三升力来源。
[65] 在空中可关闭其他喷出口 803、 804、 805、 806 , 只开启喷出口 802, 飞碟向前 飞行。 同理, 开启不同的喷出口, 飞碟可以向不同的方向飞行。
[66] 使用吋, 也可去掉上部离心机 205, 涡扇发动机也能推动飞碟飞行。
[67] 在另一种结构中, 由内壳 2、 外壳 3环绕飞碟一周形成流体通道 4 (没有中间隔 板及连通口 704) , 离心机 705把高速流动的流体高速抛向上部外壳 2的外表面上
。 经导入口 701更高速的吸入流体通道 4内, 喷气发动机从下部流体喷出口强烈 喷出, 推动飞碟运动。
[68] 如把喷气发动机换为吸水马达, 三种升力来源再配合各喷出口使飞碟在水中升 降及前后左右运动都更为方便和灵活; 如加上车轮及喷气发动机后, 就是可以 在水中、 空中、 地面运动的飞碟。
[69] 实施方式四
[70] —种飞机。 如图 6、 图 7所示, 在飞机前端有导入口 7, 机身上部 211至少有一个 环形窗导入口 701, 后部有导出口 8。 通过外壳 2和内壳 3形成环绕一周的环形的 流体通道 4与导入口 7和导出口 8前后相通。 在前端导入口 7内有旋转头 704通过电 机 705带动高速转动, 把正向最大的流体墙的流体阻力抛进周围流体通道 4内, 又避免正向流体直接撞上内壳 3带来阻力。 后端有涡扇发动机或喷气发动机 801 与前端导入口 7与流体通道 4相通。 在机翼, 水平翼, 尾翼的后部为很薄的边缘 , 如 A- A所示避免高速流动的流体在其后部形成负压区。
[71] 机翼上表面为两层结构, 包括上层 203和下层 201。 下层的上表面为抛物面, 下 表面为平面, 便于产生升力, 上层 203位与下层 201的上方, 其覆盖下层的面积 可根据需要放大或缩小。 上层 203和下层 201之间形成流体层 204, 流体层是介于 上层 203和下层 201之间前后相通的间隔层, 流体层 204具有进气口和出气口。 进 气口位于机翼的前端, 出气口位于机翼的后端。 上层 203上设有至少一个条形窗 导入口 702与流体层 204相通, 各条形窗导入口 702大致类似于百叶窗。 通过控制 可调进气口角度的调节板 703, 从而使上层 203和下层 201通过流体层 204相通和 隔断。 流体层 204与机身上的环形流体通道 4相通, 因为环形流体通道 4环绕机身 并与外壳 2上至少一个条形窗导入口 702相通, 条形窗导入口 701、 702上装有至 少一个可调进气口角度的调节板 703, 机翼上层 203至少有一个条形窗导入口与 流体层 204相通, 流体层 204与流体通道 4相通, 加快了机翼上下层的流体流速, 从而形成多层流体层的大机翼。 犹如飞鸟翅膀和背部羽毛组成的大翅膀, 由一 层羽毛覆盖下一层羽毛, 飞行吋羽毛开合的角度变化, 每层羽毛之间都有流体 经过相互渗透, 形成涡流, 在空中飞翔吋非常方便和灵活, 所以机翼上表面的 双层机翼和机身形成两层流体通道, 共同形成大机翼与机翼下表面和周围流体 形成巨大压力差, 由此飞机获得第一升力来源, 通过条形窗导入口 701, 702内 的角度可控的开合形成上下两层流体层彼此可隔断又彼此相通多层流体相互渗 透形成涡流, 当飞机慢速飞行或机翼迎角在 60— 90度吋, 机翼不会像传统光滑 流畅表面那样出现流体脱离机翼的现象而产生危险, 使飞机飞行更安全、 更稳 定。 此吋上层机翼、 下层机翼和机身共同形成的大机翼比传统的机翼面积大若 干倍, 流体经过的路径变长, 速度变快, 升力自然大大增加。
[72] 当飞机高速飞行吋, 机身和机翼迎面撞上正面最大流体墙的阻力, 流体墙被高 速碰撞后, 以其同等的能量和速度, 其反作用力瞬间形成流体洞紧紧包裹机身 给飞机带来阻力, 为保持流体的连续性又瞬间同吋到达后部形成更大流体洞口 封口, 流体洞口封口后在飞机后部和流体洞口之间形成后部小负压区紧紧拉飞 机, 同吋飞机又在流体墙、 流体洞、 流体洞口封闭后形成的流体洞大负压区内 艰难飞行。 为此飞机为克服流体阻力几乎耗能 90%以上来克服。 该方式中, 由于 旋转头 704在电机 705带动下高速转动, 把流体墙流体阻力抛进流体通道 4内避免 碰撞内壳带来阻力。 足够大的导入口 7无阻碍的顺畅的把流体墙最大的流体阻力 吸入流体通道 4内, 由于在同等条件下通道内的流体流速大于自然状态下的流体 流速, 又因为后部涡扇发动机强烈的吸气, 大大加快流体通道 4内的流体流速。 所以流体通道 4内的流体流速远大于飞机速度, 此吋通过飞机上部壳体 211上至 少一个条形导入口 701把紧贴壳体上部流动的流体洞阻力以及粘性流体以快于飞 机速度吸入通道内, 获得第二动力来源。 在各导入口附近形成相对负压区, 从 而在整个机身上部 211内外形成相对负压区。 由此形成壳体上部 211的流体层内 高速流动的两层运动速度快过流体洞速度的流体层, 在上部壳体 211内外形成相 对负压区。 当等同于飞机速度的流体墙、 流体洞流体碰到壳体表面流体层吋自 然避开而不能产生太大影响; 涡扇发动机再把吸入的流体墙和流体洞的流体阻 力, 统统作为正向动力从喷出口 8强烈喷出瞬间填充后部小负压区空间并消除其 负压阻力, 使围绕机身的流体洞大负压区不能形成, 使飞机获得第三动力来源 , 迫使负面阻力的流体洞来封口的流体改变为正向动力, 围绕在喷出口 8 喷出的强烈的流体周围, 共同产生巨大的推动力推动飞机快速飞行。 此吋, 流 体墙阻力减少大半, 流体洞阻力减少大半, 大、 小负压区完全消失, 前端及机 身形成相对负压区, 后部为正向动力区使飞机处于飞行的理想状态, 只用很少 推动力就使飞机快速飞行。
[73] 在机身上、 下部壳体 211、 212都设有至少一个导入口 701与流体通道 4相通, 使 整个飞机壳体和流体通道内外形成相对负压区与机翼上表面共同形成大机翼, 与周围环境流体及机翼下表面产生巨大的压力差, 在后部动力作用下, 飞机获 得第三升力来源, 由于整个机身的表面积比机翼的下表面积大得多, 整个机身 内外两层快速流动的流体与机翼上表面共同形成大机翼, 比机翼下表面的面积 大若干倍, 会产生出更大的升力和动力来源, 使飞机载重量及飞机速度大大提 升, 同吋也节约更多的能源。 通过控制条形窗导入口的开合, 使第一升力和第 三升力互为转换, 在不同状态中飞行更为方便。
[74] 尾部中间也可不设发动机, 机翼下左右两个发动机 802推动飞机行驶。 各导入 口吸入的流体从喷出口喷出, 也能阻档流体洞口封闭, 还可大大节约能源和提 高速度。
[75] 实施方式五
[76] 运动装置为一种环翼飞机, 如图 8、 图 9所示。 飞机的环翼包括外环机翼 5、 内 环机翼 505, 外环机翼 5的下部围绕飞机 1下部, 与机身连为整体。 平衡机翼 506 为斜面十字内空结构, 把机身、 外环机翼 5、 内环机翼 505连接为一个整体的大 机翼, 而且大机翼很牢固。 外环机翼 5、 内环机翼 505和平衡机翼 506都具有外壳 501和内壳 502, 内壳 502与外壳 501之间为有一定距离的彼此相通的环形洞 503。 外环机翼 5的外壳 501上设有导气口 703、 至少一条进气角度可调节的条形窗导入 口 702使得外界环境流体与环形洞 503连通。
[77] 飞机后部有排气筒 8a, 排气筒 8a内设涡扇发动机 801a, 涡扇发动机吸气一端与 螺旋形第二流体通道 401a相通 (第二流体通道 401a可增长流体经过的路径) , 涡 扇发动机喷气一端与喷出口 803相通。 机身具有外壳 2和内壳 3, 内壳 3和外壳 2被 流体通道 4隔开一定的距离, 内壳 3密闭, 该流体通道 4包括环绕内壳 3的大致呈 线性的第一流体通道 4和位于后部的螺旋形第二流体通道 401相通。
[78] 在飞机机身下部固定有排气通道 8b, 排气通道 8b内固定有涡扇发动机 801b, 其 喷气一端与喷出口 803b相通; 其吸气一端与流体通道 4及外环机翼 5内的环形洞 5 03相通。 当涡扇发动机 801b工作吋, 巨大的吸力通过导气口 7、 703和条形窗导 入口 701、 702把大量流体高速吸进, 内部流体通道 4、 内外环机翼的环形洞 503 、 平衡机翼 506内的流体运动速度加快。 由于通道内吸力产生的流速远比底部流 体的流速快得多。 此吋: 内、 外两层环形机翼面积比任何普通飞机机翼大得多 ; 环形机翼路径也长得多, 而且是环形非常利于流体经过吋速度变快, 使得流 体环流量达 180度; 流体在通道内流动的速度远比飞机底部在自然状态中流速大 得多; 机身上部、 内外环翼及平衡机翼共同组成的大机翼, 大机翼内流体经过 的面积、 路径比机身下部大得多, 特别是在涡扇发动机巨大的吸力作用下, 流 体极高速运动, 从内部产生巨大升力, 充盈内部再扩展到与之相通的外壳上, 共同形成的气压与下部壳体产生巨大气压差, 使飞机获得第二升力来源。 所以 使得环形机翼产生巨大升力, 再通过流体喷出口 803b把流体强烈喷出, 又获得 第三动力来源, 使上升过程中产生的底部小负压区消失, 大负压区不能形成, 迫使流体洞口的流体阻力改变为正向动力, 共同产生更大的反作用力使环翼飞 机垂直上升。 在空中可先开启飞机后部涡扇发动机 801a, 再关闭下部涡扇发动机 801b , 此吋后部涡扇发动机 801a产生的强大吸力把大量流体阻力从正向流体墙的 阻力导入口 7、 侧向流体洞的阻力从导入口 701、 702, 703经外环形机翼 5和内环 形机翼 505的环形洞 503、 平衡机翼的流体层 507导入后, 经过内部流体通道 4及 其螺旋形第二流体通道 401, 以增加流体经过的路径, 再经过排气筒 8a进入涡扇 发动机 801a, 在涡扇发动机强大吸力作用下, 使得各导入口附近流体以高于飞机 速度, 强烈的吸入形成相对负压区, 从而在壳体和与之相通的流体通道共同形 成相对负压区, 使飞机获得第二动力来源使流体墙、 流体洞的流体阻力碰到后 自然避开, 然后把吸入的各种阻力统统作为动力, 从流体喷出口 803a强烈喷出, 获得的第三动力来源使行驶过程中产生的后部小负压区消失, 流体洞大负压区 不能形成, 并汇迫使同流体洞的流体, 不得不围绕在喷出口 803a喷出高速流体周 围, 共同产生更大的推动力, 推动飞机飞行。 若去掉底部发动机 801b, 飞行经 过跑到后也能起飞。 由于彻底改变了飞机运动中流体的分布状态, 前端和流体 通道相通的壳体周围为相对负压区, 把流体墙和流体洞的阻力减到最小, 后部 为正向动力推动区, 使飞机处于流体阻力很小的理想状态中飞行, 只需很少推 动就能快速飞行。
[79] 环翼飞机具有独特的机翼结构, 是未来运输机和大型客机的发展方向, 若釆用 本实施方式, 把内外环机翼作为升力和动力的一部分, 则制造环翼飞机就变得 容易实施; 还可在环翼内设发动机以增加动力。
[80] 把环翼放大或缩小, 或改变为其它形状, 安装在各类大小飞机上, 使其成为升 力和动力来源的一部分。
[81] 实施方式六
[82] 运动装置为一种飞行服, 如图 10、 图 11所示, 飞行服本体 1包括内层服 3和外层 月艮 2, 在内层服 3和外层服 2的间隔空间为内部流体通道 4, 把内层服 3和外层服 2 完全分开。 内层服 3不能透气为全密闭, 避免外界流体接触身体。 在外层服 2上 设有至少一个条形窗导入口 701和至少一个导气孔 702与内部流体通道 4相通。
[83] 外层服 2前面有发动机套筒 8b, 内装有能吸气和吹气的发动机 801b。 外界的流 体经过流体导入口 7进入发动机 801b, 通过若干导管 704在内部流体通道 4内围绕 全身, 导管 704上有若干导气口 705与内部流体通道 4相通, 方便使发动机 801b喷 出的高速压缩流体均匀的通向全身。
[84] 外层服 2背部设有发动机套筒 8a, 其内装有喷气 (或涡扇) 发动机 801a, 其功 率大于发动机 801b, 在喷气发动机 801a的吸气一端与内部流体通道 4相通, 喷气 一端与喷出口 803、 805、 807相通。
[85] 发动机 801b工作吋, 从流体墙的流体导入口 7吸入大量的流体, 通过导管 704上 若干导气口 705均匀的进入内部流体通道 4内高速流动。 喷气发动机 801a工作吋产 生巨大吸力, 把流体墙、 流体洞的流体阻力通过条形窗 701和导气孔 702将周身 的外界流体洞的流体吸入内部流体通道 4内。 外层服 2与内层服 3之间设有不影响 流体在流体通道 4内间隔物, 防止在吸力作用下内壳 3和外壳 2合在一起阻塞内部 流体通道 4。 当发动机 801a产生极强的吸力足够大吋, 流体在内部流体通道 4内围 绕身体四周以极快的速度流动, 从而通过各个流体导入口 7、 条形窗 701和导气 孔 702、 705在外层服 2的外表面也形成紧贴外层服 2高速流动的流体, 由此形成 内外两层高速流动的流体层, 由此获得第二动力来源, 在身体四周形成相对真 空状, 把流体墙和流体洞的流体阻力减到最低, 与周围流体产生极大的压力差 , 由此获得第三升力来源。 再通过喷气发动机 801a从流体喷出口 803喷出灼热流 体产生反作用力的推力, 使身体上升, 在空中可只开启喷出口 807则向前飞行, 使飞行服获得第三动力来源, 与流体洞口汇到后面的流体因不能封口而不得不 围绕在喷出口喷出灼热的流体周围, 共同消除大小负压区, 产生更大的动力使 飞行服快速飞行。 同理, 在空中开启不同的流体喷出口则可向不同的方向飞行 , 即前左右飞行。 飞行服可配备氧气瓶, 以供呼吸使用。 在具体使用中也可去 掉前面发动机 801b和导管 704, 只用后部喷气发动机 801a为动力。
[86] 如果使用涡扇发动机 801a, 流体喷出口还包括位于腰部的腰带 808, 在腰带 808 上设有多个流体喷出口 803、 804、 805、 807, 且各流体喷出口可关闭或开启, 实现各个方向的飞行。 发动机 801a功率选择小一些或去掉发动机 801b, 可将本具 体实施方式制作成安防产品, 穿上飞行服后在动力推动下会跳得远跑得很快, 可大大提高警察和战士的反恐或战斗力, 但不能飞行。 发动机功率再小一些, 可不用头套, 成为健身及保健产品帮助锻炼身体。 如发动机为吸水发动机, 就 可为有动力推动的潜水服, 如发动机可为吸水或吸气两用的发动机, 飞行服即 可在空中飞行, 也可作为在水中有动力推动的潜水服。
[87] 任何形状的物体, 只要获得三种动力升力和来源, 在它壳体周围形成相对真空 区, 与周围流体产生巨大的压力差, 在动力推动下, 就可飞行, 犹如在真空状 态中飞行 (相对) , 因为运动装置壳体内外的流体阻力已被吸入并作为发动机 的动力来源来阻档流体洞封口, 消除大、 小负压区, 并产生更大动力来使运动 装置快速运动。
[88] 实施方式七
[89] 运动装置如一种载重直升飞机, 如图 12所示, 在螺旋桨上方设有离心机 6, 在 底部中间设离心机 6a, 以阻档负压区形成。 离心机 6包括转筒 601, 转筒 601具有 至少一个可改变喷口角度的喷出口 602, 当直升机工作吋螺旋桨离心机 6按不同 方向高速转动, 可去掉后部风扇, 设在螺旋桨上方的离心机 6带动转筒 601高速 转动, 把飞机上方流体墙的流体阻力从导入口 7吸入离心机内的流体经过流线形 的导流条 603顺畅导入至少一个喷出口 602高速喷出, 在螺旋桨上方以离心机为 中心在四周形成一个圆形的、 有一定厚度的、 高速运动的和高速转动的圆形流 体幕。 由于离心机转动速度快于螺旋桨, 所以高速运动和转动的流体幕没被螺 旋桨整体吸入, 只能在圆形流体幕四周边缘力量薄弱处被吸入螺旋桨内, 形成 一个半圆形的流速极快的流体幕, 流体幕上端中心为离心机的导入口 7, 把流体 墙大量流体吸入形成负压区, 流体墙就不能形成阻力, 再转化为半圆形的流体 幕内为相对真空状, 螺旋桨顺着半圆形流体幕的边缘把流体向下吸入吋流体经 过的路径很长, 自然速度很快, 气压很低, 升力大大提高。 离心机同吋高速转 动, 在螺旋桨上部与下部产生极大压力差, 使直升机升力和速度提高, 获得第 四升力来源, 运载量也提高。
[90] 在直升机底部设有离心机 6a, 从导入口 7把壳体两侧及底部流体强烈吸入, 使 周围产生紧贴壳体表面高速流动的流体层, 等同于飞机速度的流体洞碰上后自 然避开, 然后从可改变喷口角度的喷出口 602强烈喷出, 形成高速转动的圆形流 体幕, 使飞机获第三动力来源。 阻档流体洞口在底部中间封口, 迫使流体洞的 流体阻力不得围绕在流体幕周围, 使大小负压区消失, 把底部改变为正向动力 区, 共同产生更大动力, 推动飞机行驶, 同吋直升机升降都很方便。 离心机的 吸入口也可在机身内外壳之间设流体通道与之相通。 若直升机上方前后有螺旋 桨的载重直升机, 在前后螺旋桨的上方各设一个离心机, 可使直升机的载重量 大大提高。
[91] 实施方式八
[92] 运动装置为一种潜艇, 如图 13所示。 潜艇后部圆型壳体中间有排水通道 8。 排 水通道 8内装有吸水马达 801。 吸水马达 801由内贴有消音材料的消音盒 805消音 , 通过吸水管 804吸入内部流体通道 4内的流体, 再通过排水通道 8把吸入的流体 从喷出口 803排出。 [93] 当吸水马达 801工作吋, 其强大的吸水功能, 通过正向导入口 7把潜艇正面的最 大流体墙流体阻力从正向与壳体同宽度足够大的导入口 7顺畅无阻碍的吸入内部 流体通道 4内, 从而大部分消除了正向流体阻力。 通过侧向导入口 701很容易将 侧力即向内施加的力, 表现为紧裹着潜艇侧面四周流体洞的流体自然挤入内部 流体通道 4
内, 在吸水马达的强大吸力作用下使得壳体内外两层流体层高速运动, 其运动 速度大于潜艇速度的流体洞速度, 使得潜艇正向、 侧向的流体阻力大部分消除 , 在潜艇内外形成相对负压区, 把流体墙和流体洞阻力减至最小, 获得第二动 力来源来提高潜艇行驶的效率。 然后把吸入的流体墙、 流体洞的阻力经流体通 道 4统统作为正向的动力从流体喷出口 803强烈的喷出, 潜艇又获得第三动力来 源, 迫使流体洞口来封闭的流体阻力顺后部圆形壳体汇聚在喷出口 803周围而不 能封闭流体洞口, 不得不共同围绕在喷出口喷出的大于潜艇速度的流体周围, 瞬间填充后部小负压区, 使流体洞大负压区不能形成, 共同产生更大反作用力 推动潜艇在流体阻力很小的理想状态中行驶。 活动套 802经控制后按一定角度, 把流体按需要的角度喷出, 潜艇行驶更灵活。 工作吋, 侧向导入口 701设有第一 流量调节器, 就如鱼儿的鳞片一样开、 合以及调节角度, 使潜艇在水中更为灵 活。 开启上半部壳体上的导入口 701, 流体通道内和与之相通的壳体表面上, 在 吸水马达巨大吸力作用下与下部壳体产生极大的压力差获第一升力来源, 潜艇 上升; 三个升力来源使潜艇在水中控制更为方便。 当潜艇需要倒退行驶吋, 吸 水马达 801可反转, 流体喷出口 803此吋为导入口, 正向导入口 7为流体喷出口, 流体导入后从导入口 7排出, 推动潜艇倒退行驶。
[94] 通过对导入口 7、 701的开启和关闭的控制, 使流体通道 4形成潜艇蓄水仓, 可 减少和取消原潜艇蓄水仓, 以节约宝贵的空间。
[95] 由于吸水马达强烈的吸水使前端和周围形成相对负压区, 各种阻力碰上后自然 避开, 再把吸入的各种流体阻力高速喷出, 使得流体洞口不能封闭, 把后部变 为正向动力区, 使潜艇处于理想流体分布状态, 只需很少推动力, 就使潜艇快 速行驶。 如把吸水马达换为喷气发动机, 就是一架新颖的飞行器。
[96] 实施方式九 [97] 运动装置为高速火车, 如图 14所示, 火车 1包括内壳 3和外壳 2, 外壳 2和内壳 3 之间为内部流体通道 4。 流体通道 4的前端有导入口 7, 导入口 7内有电机 703带动 的旋转头, 后端有涡扇发动机 801与流体喷出口 8相通, 外壳 2的侧面和车顶设有 至少一个侧向导入口 701; 外壳 2的底部有至少一个可调角度的条形窗导入口 704 与流体通道 4相通。
[98] 但火车高速行驶吋, 前端壳体与流体墙高速碰撞, 壳体碰撞面产生占总量 80% 的流体阻力, 由于最前端电机带动旋转头 702高速旋转, 在离心力作用下, 把流 体抛进四周流体通道 4内, 还开出一条瞬间通道, 便于火车行驶, 同吋与壳体同 宽度的足够大的导入口 7顺畅的无阻碍的把占总量 80%的流体阻力导入流体通道 4 内, 侧向流体洞占总量流体阻力 13%的阻力通过导入口 701大部分内部流体通道 4 内, 由于涡扇发动机 801产生极大的吸力, 在管道内吸力极强, 流速极快, 围绕 火车四周的侧向导入口 701附近, 从而在壳体上与流体通道 4形成两层高速运动 的流体层, 其运动速度已快过等同于火车速度的流体洞, 从而形成相对负压区 , 由此获得第二动力来源, 把流体墙和流体洞的阻力减至最小, 火车自然会以 极高速度行驶。 涡扇发动机又把从各导入口吸入的流体墙和流体洞的阻力变作 为正向动力, 从流体喷出口 803猛然喷出, 由此又获得第三动力来源, 迫使流体 洞口的流体阻力, 不能封口, 只得改变为正向动力, 围绕在喷出口 803喷出高速 流体周围, 共同产生更大动力使大小负压区消失, 把后部改变为正向动力区, 使火车在前端和周围 (即前部和侧部)为相对负压区, 后部正向动力区的理想流体 分布状态中行驶。
[99] 由于车底流体速度慢于车上面流速, 由此产生升力阻力给火车行驶带来不安全 性, 以及多耗费能源, 通过开启外壳 2车底部的平衡导入口 704把大量的车底部 流体导入内部流体通道 4后, 由于内部流体通道 4内的流体在涡扇发动机 801强大 吸力下, 流体速度极快, 使车底部流体速度也大大加快, 形成与车身上下面流 体的一样速度, 火车获第一动力来源, 此吋升力阻力大大减少或消除, 铁轮与 地面附着力增加, 安全性增加, 能耗降低。 (特别是传统火车每个车厢 40吨以 上的重量可成倍减少, 可节约更多的能源)
[100] 本具体实施方式的装置和方法, 耗能不多, 所以高速铁路不需要花巨资修建沿 线供电装置, 可大大节约成本。 其可用于地下铁路, 但要增加发动机消音措施
[101] 对于传统火车, 按其结构改造后可大大节约能源也适用于各种能源动力, 底部 外壳也可如图 1, 用凹凸型扰流面以增加其流体经过的路径。
[102] 实施方式十
[103] 运动装置为如图 15、 图 16和图 17所示的一种高速的、 节能的船体。 船体四周壳 体 1包括由外壳 2和内壳 3之间围绕四周的一定距离间隔的流体通道 4组成。 内部 流体通道 4与设置在外壳 2上的条形窗 701和导入孔 703相通。 船体分为水下部分 、 水上部分和船上部分三部分, 相应地, 通过隔板 5把内部流体通道 4分为水下 流体通道 401、 水上流体通道 402和船上流体通道 403。 在水下, 由内壳 3和外壳 2 之间一定距离形成的内部环形流体通道 404, 围绕主通道 405四周一圏与水下流 体通道 401相通, 环形导入口 708与环形流体通道 404、 环形导出口 805前后相通 ; 水下主导入口 7与主通道 405、 水下主导出口 802前后相通; 水下环形导入口 70 8与环形通道 404水下流体通道 401、 水下导出口 803a前后相通, 转向头 802a改变 流体喷出方向方便船行驶; 水上导入口 706与水上流体通道 402、 水上导出口 803 b前后相通; 船上导入口 707与船上流体通道 403、 导出口 803c前后相通。
[104] 水下导筒 8a内有吸水马达 801a, 其吸水口与水下流体通道 401相通, 喷水口与 导出口 803a相通; 水上导筒 8b内有吸气马达 801b, 其吸气口与水上流体通道 402 和相通; 喷气口与导出口 803b相通; 船上导筒 8c内设有吸气马达 801c, 其吸气口 与船上流体通道 403相通, 喷气口与导出口 803c相通。
[105] 在水下主通道 405内至少有一个由转轴 602带动、 由流体驱动的叶轮 603的水力 器 6, 转轴 602两端各带一个发电机 601为轮船提供备用能源。 在主导入口 7中间 有导筒 8d, 其吸水面在导入口 7前端, 它的喷水口通过上下左右四条导管 802d把 流体导入环形导入口 708内。 由于吸水马达 801a高速的转动产生强大的吸水力, 强烈吸入从马达 801d喷入环形通道 404内的流体及水下环形导入口 708, 导入口 7 01、 702、 703的流体, 由于流体层之间并不宽, 流体在吸水马达 801a强大吸力下 , 在通道内流速变快, 所以流体在流体通道 401及环形流体通道 404内的流速很 快, 各导入口周围紧贴壳体上的流体加快流速, 由此获第二动力来源。 整个水 下部分紧贴的壳体表面上的流体也加快流速, 形成相对负压区, 把流体墙、 流 体大大减少, 紧贴壳体上的流速大约等于略小于流体通道 401及环形流体通道 40 4内的流速, 但大于船运动速度, 把船体及船底外壳 2与外界水面阻力降到最小 , 同吋环形流体通道 404上的流体高速运动, 通过内壳 3与主通道 405相通, 使得 环形通道 404与内壳 3上形成两层高速流动的流体层, 带动从主导入口 7为接受正 向最大流体阻力压力的主通道 405内的流体加快运动, 使主通道 405内流体阻力 和摩擦力降到最小, 使主通道 405内的流体加快速度, 另外, 在通道内的速度大 于通道外, 在一定吸力作用下通道内的流速更大于通道外, 所以主通道 405流速 以快过轮船的运动速度从主导出口 802和环形导出口 805喷出, 与吸水马达 801a从 各导入口吸入的流体, 经过通道 401后强烈的从导出口 803a喷出, 获第三动力来 源, 与以上三个喷出口喷出流体、 使流体洞口不能封闭、 只能围绕在一起, 此 吋从各导口 802、 803a、 805喷出流体及洞口围绕一起的流体四种不同速度的流体 瞬间填充船后部的负压区, 产生强大的反作用力, 此吋, 水上导入口 706和流体 通道 402、 船上导入口 707和流体通道 403以及与之相通的流体导入口 701、 703, 分别通过涡扇发动机 801b和 801c把流体吸入并喷出, 巨大的流体反作用力推动船 快速行驶, 此吋水上水下壳体前端和周围形成相对负压区、 后部形成相对正压 区, 在水下用水流推动, 水面用气流推动, 促使轮船行驶速度大大提高。
[106] 对各种平底船或尖底船或游艇, 船外壳分为水上和水下部分, 与流体接触面或 部分接触面为内外中空的两层壳体, 其他与上述一样, 对现有船改造, 只需在 水下部分有与外界相通的双层壳体或在船底部壳体内或外有船头与船尾相通的 通道或在通道四周与外界相通的导入口, 就可提高速度, 节约能源, 在此基础 上, 动力部分可为吸水马达的水流推动或空气推动或螺旋桨推动。 与外界相通 的双层中空壳体或管道可把流体阻力降到最小。
[107] 以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明, 不能认 定本发明的具体实施只局限于这些说明。 对于本发明所属技术领域的普通技术 人员来说, 在不脱离本发明构思的前提下, 还可以做
[108] 出若干简单推演或替换, 都应当视为属于本发明的保护范围。

Claims

权利要求书
[1] 1.一种运动装置, 其特征在于: 由动力装置驱动, 其
具有壳体, 壳体具有相对应的前部和后部及位于前、 后部之间的底部和侧 部, 该前部开有至少一个用于接收正向流体墙压力的流体导入口, 该后部 开有至少一个用于喷出流体的导出口, 导入口和导出口通过流体通道连通 而使该运动装置前后贯通, 使导入口接收所述运动装置在运动过程中遇到 的正向流体, 并将接收的正向流体通过所述流体通道从所述导出口排出。
2.如权利要求 1
所述的运动装置, 其特征在于: 所述底部设有至少一个与流体通道连通的 平衡导入口, 运动吋, 底部流体通过平衡导入口进入流体通道, 并通过导 出口排出。
3.如权利要求 2
所述的运动装置, 其特征在于: 所述侧部设有至少一个与流体通道连通的 侧向导入口, 运动吋, 侧向流体通过侧向导入口进入流体通道, 并通过导 出口排出。
4.如权利要求 3
所述的运动装置, 其特征在于: 所述壳体包括外壳及由外壳包裹的密闭内 壳, 流体通道将该外壳和内壳分隔开一定距离, 导入口设于外壳前部, 侧 向导入设于外壳侧部, 平衡导入口设于外壳底部, 导出口设于外壳后部。
5.如权利要求 3所述的运动装置, 其特征在于:
所述导入口、 导出口、 平衡导入口、 侧向导入口中至少有一个装设有可以 调节流体通过角度的流量调节器。
6.如权利要求 1
所述的运动装置, 其特征在于: 所述流体通道内设有负压发生器, 使得负 压发生器工作吋, 从导入口吸入外界流体并经流体通道后从导出口喷出流 体。
7.如权利要求 6
所述的运动装置, 其特征在于: 所述运动装置为潜艇, 潜艇壳体 侧部开有至少一个用于接收侧向流体的侧向导入口, 侧向导入口、 导入口 均通过流体通道连通导出口, 流体通道内设有负压发生器, 侧向导入口和 导入口的角度可调节并均具有打开状态和关闭状态, 在升降方向上, 壳体 具有上半部分和底部, 位于上半部分的导入口和侧向导入口均打开吋, 在 负压发生器的吸力下, 上半部分和底部之间产生压力差而产生升力, 不同 部分的导入口的不同状态而产生不同的升力, 流体通道作为潜艇的蓄水仓
8.如权利要求 1所述的运动装置, 其特征在于:
所述运动装置为轮船, 轮船的壳体具有水上部分和水下部分, 该水上部分 和水下部分均具有导入口、 导出口和流体通道, 该水上部分和水下部分的 流体通道内均装有负压发生器。
9.如权利要求 1所述的运动装置, 其特征在于: 所述壳体
侧部开有至少一个用于接收侧向流体的侧向导入口, 侧向导入口、 导入口 均通过流体通道连通导出口, 流体通道内设有负压发生器, 侧向导入口和 导入口的角度可调节并均具有打开状态和关闭状态, 在升降方向上, 壳体 具有上半部分和底部, 位于上半部分的导入口和侧向导入口均打开吋, 在 负压发生器的吸力下, 上半部分和底部之间产生压力差而产生升力, 不同 部分的导入口的不同状态而产生不同的升力。
10.如权利要求 1
所述的运动装置, 其特征在于: 所述运动装置为环翼飞机, 其具有环绕壳 体侧部的环翼, 环翼具有供流体通过的环形洞, 该环形洞通过导气口与环 境气压连通, 流体通道与环形洞连通, 环形洞和流体通道中至少之一与发 动机相通。
11.如权利要求 1
所述的运动装置, 其特征在于: 所述运动装置为具有机翼的飞机, 机翼安 装在壳体上, 机翼至少为两层结构, 每两层之间为机翼流体层, 机翼流体 层具有分别位于机翼前部和后部的进气口和出气口, 使飞机飞行吋, 环境 气体通过进气口进入机翼流体层。
12.如权利要求 11
所述的运动装置, 其特征在于: 所述机翼流体层与流体通道连通, 机翼上 层设有可以通过角度调节流体的流量调节器与机翼流体层相通。
13.如权利要求 1
所述的运动装置, 其特征在于: 所述运动装置为汽车, 汽车的壳体包括外 壳及由外壳包裹的密闭内壳, 流体通道将外壳和内壳隔开, 外壳底部设有 用于接收底部流体的平衡导入口, 该平衡导入口与流体通道连通。
14.如权利要求 13
所述的运动装置, 其特征在于: 所述底部流体通道的内壳和外壳中至少之 一为可以延长流体通过路径的凹凸型扰流面。
15.如权利要求 1
所述的运动装置, 其特征在于: 所述流体通道包括相连通的第一流体通道 和第二流体通道, 第一流体通道与导入口连通, 第二流体通道与导出口连 通, 第二流体通道的横截面为可以延长流体通过路径长度的弯曲形状。
16.如权利要求 1所述的运动装置, 其特征在于
: 所述流体通道内在导入口处设有旋转头, 使得旋转头工作吋, 正向流体被旋转头加速后抛向四周, 通过流体通道从导出口喷出。
17.如权利要求 1所述的运动装置, 其特征在于:
所述壳体前部的外侧设有
第一推进器, 第一推进器具有吸入口和可以改变角度的喷出口, 喷出口的 出口方向朝向壳体表面, 使得第一推进器工作吋,
正向流体被吸入口吸入第一推进器, 经第一推进器加速后从喷出口喷出。
18.如权利要求 1所述的运动装置, 其特征在于:
所述壳体前部的外侧设有
第一推进器, 第一推进器具有吸入口和可以改变角度的喷出口, 喷出口的 出口方向朝向流体通道, 使得第一推进器工作吋,
正向流体被吸入口吸入第一推进器, 经第一推进器加速后从喷出口喷出。
19.如权利要求 18所述的运动装置, 其特征在于: 所述喷出口的出口方向与壳体运动方向具有小于 90
度的夹角, 使得喷出口喷出的流体吹向壳体周围形成与壳体外表面有一定 距离的流体层。
20.如权利要求 1
所述的运动装置, 其特征在于: 所述壳体上设有能形成流体层而产生升力 的离心机, 离心机具有转筒, 喷出口设于转筒且角度可控制。
PCT/CN2009/000101 2008-01-25 2009-01-23 运动装置 WO2009100643A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN200810065995.4 2008-01-25
CN2008100659954A CN101224790B (zh) 2008-01-25 2008-01-25 具有气流通道的飞行器
CN200810065334.1 2008-02-04
CN2008100653341A CN101229822B (zh) 2008-02-04 2008-02-04 一种运动装置
CN2008100672253A CN101580127B (zh) 2008-05-14 2008-05-14 一种运动装置
CN200810067225.3 2008-05-14
CN 200810142732 CN101638112A (zh) 2008-08-01 2008-08-01 一种可瞬间减缓流体洞阻力的运动装置
CN200810142732.9 2008-08-01

Publications (1)

Publication Number Publication Date
WO2009100643A1 true WO2009100643A1 (zh) 2009-08-20

Family

ID=40956643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/000101 WO2009100643A1 (zh) 2008-01-25 2009-01-23 运动装置

Country Status (1)

Country Link
WO (1) WO2009100643A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106608347A (zh) * 2015-10-27 2017-05-03 张连华 一种多功能战舰的设备
FR3050691A1 (fr) * 2016-11-20 2017-11-03 Jonas Popelin Vehicule permettant de circuler dans les airs, sur terre, sur l'eau et sous l'eau
IT201700012265A1 (it) * 2017-02-06 2018-08-06 Dario Vanin Dispositivo per aumentare l'autonomia delle auto elettriche

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5280827A (en) * 1992-12-22 1994-01-25 Cletus L. Taylor Venturi effect charging system for automobile batteries
CN2396995Y (zh) * 1999-09-21 2000-09-20 吴晨钟 运输工具上风力机减阻及泵喷射助推装置
CN2683438Y (zh) * 2003-12-17 2005-03-09 王有卫 机动车风动力装置
WO2006072709A1 (fr) * 2004-12-29 2006-07-13 Maillot Joseph Lucay Vehicule utilisant de l'energie propre
CN2801615Y (zh) * 2003-01-24 2006-08-02 张凤林 设风道的单骑电动车
CN101195348A (zh) * 2008-01-07 2008-06-11 朱晓义 一种加速和节能的流体运动装置
CN101196203A (zh) * 2008-01-07 2008-06-11 朱晓义 一种用流体洞促使运动体加速和节能的组合装置
CN101224709A (zh) * 2008-02-13 2008-07-23 朱晓义 一种节能的运动装置
CN101224790A (zh) * 2008-01-25 2008-07-23 朱晓义 具有气流通道的飞行器
CN101229822A (zh) * 2008-02-04 2008-07-30 朱晓义 一种运动装置
CN101314324A (zh) * 2008-07-11 2008-12-03 朱晓义 压缩气体直驱式汽车
CN201211848Y (zh) * 2008-02-13 2009-03-25 朱晓义 一种节能的运动装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5280827A (en) * 1992-12-22 1994-01-25 Cletus L. Taylor Venturi effect charging system for automobile batteries
CN2396995Y (zh) * 1999-09-21 2000-09-20 吴晨钟 运输工具上风力机减阻及泵喷射助推装置
CN2801615Y (zh) * 2003-01-24 2006-08-02 张凤林 设风道的单骑电动车
CN2683438Y (zh) * 2003-12-17 2005-03-09 王有卫 机动车风动力装置
WO2006072709A1 (fr) * 2004-12-29 2006-07-13 Maillot Joseph Lucay Vehicule utilisant de l'energie propre
CN101195348A (zh) * 2008-01-07 2008-06-11 朱晓义 一种加速和节能的流体运动装置
CN101196203A (zh) * 2008-01-07 2008-06-11 朱晓义 一种用流体洞促使运动体加速和节能的组合装置
CN101224790A (zh) * 2008-01-25 2008-07-23 朱晓义 具有气流通道的飞行器
CN101229822A (zh) * 2008-02-04 2008-07-30 朱晓义 一种运动装置
CN101224709A (zh) * 2008-02-13 2008-07-23 朱晓义 一种节能的运动装置
CN201211848Y (zh) * 2008-02-13 2009-03-25 朱晓义 一种节能的运动装置
CN101314324A (zh) * 2008-07-11 2008-12-03 朱晓义 压缩气体直驱式汽车

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106608347A (zh) * 2015-10-27 2017-05-03 张连华 一种多功能战舰的设备
FR3050691A1 (fr) * 2016-11-20 2017-11-03 Jonas Popelin Vehicule permettant de circuler dans les airs, sur terre, sur l'eau et sous l'eau
WO2018091981A1 (fr) * 2016-11-20 2018-05-24 Jonas Popelin La présente invention est un véhicule, de type aéronef, permettant le transport de personne ou de bien ayant la capacité de se déplacer dans un milieu aérien, terrestre, sous- marin, maritime et fluvial avec la capacité de décoller, d'atterrir et d'amerrir verticalement et horizontalement sur une surface solide et liquide sans provoquer de turbulences autour du véhicule. la présente invention s'applique aux domaines de l'aéronautique, de l'automobile et maritime
IT201700012265A1 (it) * 2017-02-06 2018-08-06 Dario Vanin Dispositivo per aumentare l'autonomia delle auto elettriche

Similar Documents

Publication Publication Date Title
CN101229822B (zh) 一种运动装置
US8448892B2 (en) Aircraft generating a lift from an interior thereof
CN101786414B (zh) 瞬间阻挡流体洞封口来产生升力和动力的运动体
CN102556345B (zh) 飞机动力装置
CN101224790B (zh) 具有气流通道的飞行器
CN105035306B (zh) 喷气式襟翼增升连接翼系统及其飞行器
CN101708742B (zh) 一种流体运动装置
CN103921931A (zh) 涵道机翼系统以及运用该系统的飞行器
US20170320558A1 (en) Flight vehicle generating a lift from an interior thereof
WO2009092217A1 (zh) 流体运动装置
CN105984298A (zh) 一种垂直起降飞行汽车
CN105882942B (zh) 一种高效低速飞行器
WO2016078562A1 (zh) 高速飞行器和具有更大升力的飞行器
CN105134407B (zh) 具有垂直起降功能的喉道偏移式气动矢量喷管及控制方法
WO2018196882A1 (zh) 一种从减少流体阻力中产生更大升力的飞行器
US3077321A (en) Aerodynamically designed amphibious vehicle
RO133664A1 (ro) Aparat personal de zbor cu aterizare şi decolare verticală
CN103419933A (zh) 基于新型增升装置的前后翼布局垂直起降飞行器
CN102765481A (zh) 吸气式升力体飞行器
CN101580127B (zh) 一种运动装置
WO2009100643A1 (zh) 运动装置
CN104290903B (zh) 一种自动防水溅的水上飞机浮筒
CN102120491A (zh) 上翼面循环射流固定翼直升飞机
CN101638112A (zh) 一种可瞬间减缓流体洞阻力的运动装置
CN103241356A (zh) 船舶气动推进系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09711246

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09711246

Country of ref document: EP

Kind code of ref document: A1