WO2009088256A2 - 배큘로바이러스-기반 백신 - Google Patents

배큘로바이러스-기반 백신 Download PDF

Info

Publication number
WO2009088256A2
WO2009088256A2 PCT/KR2009/000136 KR2009000136W WO2009088256A2 WO 2009088256 A2 WO2009088256 A2 WO 2009088256A2 KR 2009000136 W KR2009000136 W KR 2009000136W WO 2009088256 A2 WO2009088256 A2 WO 2009088256A2
Authority
WO
WIPO (PCT)
Prior art keywords
promoter
antigen
virus
gene
hpv
Prior art date
Application number
PCT/KR2009/000136
Other languages
English (en)
French (fr)
Other versions
WO2009088256A8 (ko
WO2009088256A9 (ko
WO2009088256A3 (ko
Inventor
Young-Bong Kim
Hee Jung Lee
Nuri Park
Yu Kyoung Oh
Original Assignee
Konkuk University Industrial Cooperation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konkuk University Industrial Cooperation Corp filed Critical Konkuk University Industrial Cooperation Corp
Priority to US12/812,053 priority Critical patent/US20100285056A1/en
Priority to BRPI0906946-1A priority patent/BRPI0906946A2/pt
Priority to EP09700761.1A priority patent/EP2241626B1/en
Priority to CN2009801019712A priority patent/CN101952436B/zh
Priority to JP2010542174A priority patent/JP5309159B2/ja
Publication of WO2009088256A2 publication Critical patent/WO2009088256A2/ko
Publication of WO2009088256A3 publication Critical patent/WO2009088256A3/ko
Publication of WO2009088256A8 publication Critical patent/WO2009088256A8/ko
Publication of WO2009088256A9 publication Critical patent/WO2009088256A9/ko
Priority to US14/447,341 priority patent/US9555091B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • C12N15/866Baculoviral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • A61P31/22Antivirals for DNA viruses for herpes viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5256Virus expressing foreign proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/14011Baculoviridae
    • C12N2710/14111Nucleopolyhedrovirus, e.g. autographa californica nucleopolyhedrovirus
    • C12N2710/14141Use of virus, viral particle or viral elements as a vector
    • C12N2710/14143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/14011Baculoviridae
    • C12N2710/14111Nucleopolyhedrovirus, e.g. autographa californica nucleopolyhedrovirus
    • C12N2710/14141Use of virus, viral particle or viral elements as a vector
    • C12N2710/14145Special targeting system for viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/14011Baculoviridae
    • C12N2710/14111Nucleopolyhedrovirus, e.g. autographa californica nucleopolyhedrovirus
    • C12N2710/14171Demonstrated in vivo effect
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/20011Papillomaviridae
    • C12N2710/20034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/10022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/22Vectors comprising a coding region that has been codon optimised for expression in a respective host
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2810/00Vectors comprising a targeting moiety
    • C12N2810/50Vectors comprising as targeting moiety peptide derived from defined protein
    • C12N2810/60Vectors comprising as targeting moiety peptide derived from defined protein from viruses
    • C12N2810/6045RNA rev transcr viruses
    • C12N2810/6054Retroviridae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/60Vector systems having a special element relevant for transcription from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/80Vector systems having a special element relevant for transcription from vertebrates
    • C12N2830/85Vector systems having a special element relevant for transcription from vertebrates mammalian

Definitions

  • the present invention relates to recombinant (chimeric) baculovirus and vaccine compositions comprising the same.
  • the HPV L1 protein has a unique feature of self-assembly into virus like particles (VLPs), which does not have a viral genome but only forms an outer coat. Injecting these VLPs has been reported to result in a sufficient immune response to induce high titer neutralizing antibodies ( Journal of Virology 81 (24); 13927-13931 (2007), Virology 321: 205-). 216 (2004); Journal of Medical Virology 80: 841846 (2008).
  • VLPs virus like particles
  • Viral vectors using retroviruses and adenoviruses have been used to deliver HPV16L1 genes to animal hosts for gene therapy purposes ( Science 260 (5110): 926-932 (1993)).
  • the use of such viruses has problems such as the generation of replication dependent viruses, cytotoxicity, early immune responses and unwanted expression of viral genes.
  • baculovirus delivery vectors are capable of inserting relatively large foreign genes and post-translational processing due to the use of higher eukaryotic insect cells, resulting in prokaryotic Escherichia coli.
  • the biological and immunological activity of the expressed recombinant protein has the important advantage that the same effect as the original protein.
  • baculovirus is known as animal cells, because replication is not within the impossible and cause cell toxicity and safe biological virus (Virology 125: 107-117 (1983) ; Hum Gene Ther 7:.. 1937-1945 ( 1996); Proc. Natl. Acad. Sci. USA 96 : 127-132 (1999); Trends Biotechnol. 20: 173-180 (2002)).
  • Autographa californica nuclear polyhedrosis virus (AcNPV), a member of the insect virus group, is known to be able to transfer genes because it cannot replicate in various animal cells but can enter cells ( Proc. Natl. Acad. Sci. USA 92: 10099-). 10103 (1995); Proc. Natl. Acad. Sci. USA 93: 2348-2352 (1996). It has already been reported that when genes in the Autographa californica multiple nuclear polyhedrosis virus (AcMNPV) genome are regulated by animal promoters, they can be expressed at high levels in animal cells ( Journal of Virology , 76 (11): 5729-5736 (2002); Vaccine 26 (20): 2451-2456 (2008).
  • the vesicular stomatitis virus envelope G protein may be present on the surface of the baculovirus ( Journal of Virology , 78 (16): 8663-8672 (2004); Journal of Urology 250 (2): 276-283) 2006); Biochemical and Biophysical Research Communications 289 (2): 444-450 (2001); Journal of Virology 75 (6): 2544-2556 (2001)), adding gp64 protein to the virus surface to enhance gene transfer effects has been reported ( Human Gene Therapy , 14 (1): 67-77 (2003)). In addition, it has been reported to induce an immune response against hemagglutinin glycoprotein of influenza virus by vaccinating with baculovirus vector ( Journal of Immunology , 171: 1133-1139 (2003)).
  • the present inventors have tried to develop a vaccine that can induce an improved immune response against various pathogens based on baculovirus.
  • the present inventors have combined the nucleotide sequence encoding the antigenic gene with the foreign envelope protein of the virus to prepare an expression construct and recombinant baculovirus and immunization using the same.
  • the present invention has been completed.
  • an object of the present invention is to provide a recombinant baculovirus.
  • Another object of the present invention is to provide a vaccine composition.
  • Another object of the present invention is to provide a method for inducing an immune response against a specific antigen.
  • Another object of the present invention is to provide a nucleic acid molecule encoding the envelope protein of human endogenous retrovirus (HERV).
  • HERV human endogenous retrovirus
  • Another object of the present invention is to provide a recombinant vector comprising a HERV envelope protein-encoding nucleic acid molecule.
  • Another object of the present invention is to provide a baculovirus-based gene carrier comprising a HERV envelope protein-encoding nucleic acid molecule.
  • the present invention provides a kit comprising: (a) a nucleotide sequence encoding a foreign envelope protein of a virus; (b) a first promoter operably linked to said envelope-coding sequence; (c) a nucleotide sequence encoding an antigenic protein; And (d) a second promoter operably linked to the antigen-coding sequence.
  • the present invention provides a vaccine composition comprising the recombinant baculovirus of the present invention as an active ingredient.
  • the present invention provides a method of inducing an immune response against a specific antigen in vivo, comprising administering the vaccine composition of the present invention to a subject.
  • the present inventors have tried to develop a vaccine capable of inducing an improved immune response against various pathogens based on baculovirus.
  • the present inventors have combined the nucleotide sequence encoding the antigenic gene with the foreign envelope protein of the virus to prepare an expression construct and recombinant baculovirus and immunization using the same.
  • the greatest feature of the present invention is the use of a combination of antigen genes and nucleotide sequences encoding viruses (most preferably human endogenous retroviruses (HERV)) foreign envelope proteins.
  • viruses most preferably human endogenous retroviruses (HERV)
  • the recombinant baculovirus of the present invention can be used for the transport of various antigen genes.
  • antigen gene or “nucleotide sequence encoding an antigen protein” refers to a sequence encoding an antigenic protein (eg, a cell or viral surface antigenic protein) that can be recognized by the immune system.
  • the antigen is a viral pathogen antigen, a bacterial pathogen antigen, a parasitic antigen or a cancer antigen, more preferably a viral pathogen antigen or a cancer antigen, most preferably a viral pathogen antigen.
  • viral pathogen antigens examples include Orthomyxoviruses such as influenza viruses; Retroviruses such as respiratory syncytial virus (RSV), simian immunodeficiency virus (SIV), and HIV; Herpesviruses such as Epistein-Barr Virus (EBV); Cytomegalovirus (CMV) or herpes simplex virus (HSV); Lentiviruses; Rhabdoviruses such as rabies; Picomoviruses such as polioviruses; Poxviruses such as vaccinia; Rotavirus; And antigens derived from Parvoviruses.
  • Orthomyxoviruses such as influenza viruses
  • Retroviruses such as respiratory syncytial virus (RSV), simian immunodeficiency virus (SIV), and HIV
  • Herpesviruses such as Epistein-Barr Virus (EBV); Cytomegalovirus (CMV) or herpes simplex virus (HSV); Lentiviruses
  • examples of viral pathogen antigens include, but are not limited to, HPV antigens, such as the L1, L2, E6 or E7 proteins of HPV;
  • examples of antigens of HIV include T cell and B cell epitopes of nef, p24, gp120, gp41, tat, rev, pol, env and gp120 (Palker et al, J. Immunol. , 142: 3612-3619 (1989)). Include. Examples of surface antigens of HBV are described by Wu et al, Proc. Natl. Acad. Sci., USA , 86: 4726-4730 (1989).
  • antigens of rotaviruses are VP4 (Mackow et al, Proc. Natl. Acad. Sci., USA , 87: 518-522 (1990)) and VP7 (Green et al, J. Virol. , 62: 1819-1823).
  • influenza virus antigens include hemagglutinin (HA) and nucleoproteins
  • HSV antigens include thymidine kinase (Whitley et al, In: New Generation Vaccines, pages 825-854)
  • avian influenza virus antigens include hemagglutidine; swine cholera virus antigens envelope; foot-and-mouth virus antigens envelope; and Newcastle virus antigens HN (Hemagglutinin-neuraminidase), F (Fusion protein) Include.
  • bacterial pathogen antigens examples include Mycobacterium spp., Helicobacter pylori, Salmonella spp., Shigella spp., E. coli, Rickettsia spp., Listeria spp., Legionella pneumoniae, Pseudomonas spp., Vibrio spp. And Borellia burgdorferi Antigens derived from.
  • examples of bacterial pathogen antigens that may be used in the present invention are Shigella sonnei of form-1 antigen (Formal et al, Infect. Immun. 34: 746-750 (1981); V. cholerae of O-antigen (Forrest et al, J.
  • Examples of parasitic antigens that may be used in the present invention include Plasmodium spp., Trypanosome spp., Giardia spp., Boophilus spp., Babesia spp., Entamoeba spp., Eimeria spp., Laishmania spp., Schistosome spp., Brugia spp. , Fascida spp., Dirofilaria spp., Wuchereria spp., And Onchocerea spp.
  • examples of parasitic antigens that can be used in the present invention include circumsporozoite antigens of Plasmodium bergerii and circumsporozoite antigens of Plasmodium spp.
  • circumsporozoite antigens of P. falciparum Sadoff et al, Sci. , 240: 336-337 ( 1988); Merozoite surface antigen of Plasmodium spp. (Spetzler et al, Int. J. Pept. Prot. Res. , 43: 351-358 (1994)); Galactose specific lectins of Entamoeba histolytica (Mann et al, Proc. Natl. Acad.
  • cancer antigens examples include prostate specific antigens (Gattuso et al, Human Pathol. , 26: 123-126 (1995)), TAG-72 and carcinoembryonic antigens (CEA) (Guadagni et al, Int. J. Biol.Markers , 9: 53-60 (1994)), MAGE-1 and tyrosinase (Coulie et al, J. Immunothera.
  • the antigen used in the present invention is a viral pathogen antigen or a cancer antigen, most preferably a viral pathogen antigen.
  • the antigen gene used in the present invention is a viral pathogen antigen
  • the antigen is preferably a human papilloma virus (HPV) antigen, a hepatitis B virus (HBV) antigen, a hepatitis C virus (HCV) antigen, a human immunodeficiency virus (HIV).
  • HPV human papilloma virus
  • HBV hepatitis B virus
  • HCV hepatitis C virus
  • HAV human immunodeficiency virus
  • the antigen is an HPV antigen, even more preferably an L1, L2, E6 or E7 protein of HPV, most preferably L1 of HPV.
  • HPV L1 has a unique feature of self-assembly into virus like particles (VLPs) in or out of the body.
  • L1 protein is the most conserved of HPV proteins.
  • the L1 sequence used in the present invention is HPV type 1, 2, 3a, 4, 5, 6b, 7, 8, 9, 10, 11a, 12, 13, 58, 16 and 18 It is derived from HPV selected from the group consisting of, even more preferably derived from HPV derived from HPV type 16 or 18.
  • the nucleotide sequence encoding the L1 protein is described, for example, in GenBank accession No. EU118173 ( J. Virol. 67 (12): 6929-6936 (1993)), AY383628 and AY383629 ( Virology 321 (2): 205-216 (2004)).
  • the nucleotide sequence encoding the foreign envelope protein of the virus used in the present invention may be derived from various viruses except baculovirus.
  • the envelope protein is derived from a virus comprising a human cell as a host cell, more preferably a virus having a corresponding receptor on the surface of the human cell, and most preferably a receptor mediated pagocytoin of the human cell. It is possible to induce cis.
  • the nucleotide sequence encoding the envelope protein of the virus used in the present invention is alphavirus, paramyxovirus, labidoviride, myxovirus, coronavirus, retrovirus, filovirus or It is derived from an arenavirus, even more preferably from a retrovirus, most preferably from a human endogenous retrovirus (HERV).
  • HERV is actually an endogenous virus that exists in humans, and most of it is inactivated and is present on human genomes.
  • Envelope proteins are expressed on the surface of recombinant viruses, which interact with receptors in human cells to induce pagocytosis. do.
  • the sequence encoding the envelope of HERV is a nucleotide sequence coating the amino acid sequence of SEQ ID NO: 2, more preferably the nucleotide sequence of SEQ ID NO: 1.
  • the nucleotide sequence of the first sequence of the sequence listing is optimized to express the HERV surface protein (Env) in insect cells.
  • the chimeric virus of the present invention is based on baculovirus.
  • Baculoviruses are rod-shaped viruses that do not express their genes from insect-specific promoters in human cells. For this reason, baculovirus has attracted attention as a basic system of gene therapy since baculovirus does not induce an immune response by viral gene expression. However, under the control of mammalian promoters, high levels of expression of foreign genes in baculovirus vectors occur. Infections with baculoviruses do not trigger the replication of endogenous human viruses. Unlike other gene therapy viruses, baculoviruses can grow well in serum-free medium, which has the advantage of being suitable for mass production.
  • a HERV Env gene and a HPV L1 gene chimera baculovirus containing the virus is then transformed with a transfer vector carrying a HERV Env gene and a HPV L1 gene into a cell.
  • Expression constructs comprising the HERV Env gene and the HPV L1 gene are flanked with transposon sequences such as Tn7.
  • This transition vector is transformed into a cell, such as E. coli , containing a backmid (baculovirus shuttle vector) with a mini-attTn7 target position and a helper plasmid with a transposase gene.
  • a transposition occurs to produce a recombinant bacmid.
  • Insect cells suitable for the present invention are not particularly limited, and for example, Sf9 ( Spodoptera frugiperda ), Spodoptera exiaua, Choristoneura fumiferana, Trichoplusia ni and Spodoptera littoralis and Drosophila may be used as insect cells.
  • the nucleotide sequence encoding the envelope protein of the virus and the nucleotide sequence coating HPV L1 are preferably present in a suitable expression construct.
  • the nucleotide sequence encoding the envelope protein and the nucleotide sequence coating the HPV L1 are preferably operably linked to a promoter.
  • operably linked refers to the functional binding between a nucleic acid expression control sequence (eg, an array of promoters, signal sequences, or transcriptional regulator binding sites) and other nucleic acid sequences, whereby such regulation The sequence will control the transcription and / or translation of said other nucleic acid sequence.
  • a promoter linked to a nucleotide sequence encoding an envelope protein or a nucleotide sequence coating HPV L1 may use various promoters.
  • the first promoter operably linked to the envelope-coding sequence is a promoter that operates in insect cells, more preferably the baculovirus IE-1 promoter, the IE-2 promoter, the p35 promoter. , p10 promoter, gp64 promoter or polyhedrin promoter, most preferably the polyhedrin promoter.
  • the second promoter operably linked to the HPV L1-coating sequence is a promoter derived from the genome of a mammalian cell or a promoter derived from a mammalian virus, more preferably the second promoter is U6 promoter, H1 promoter, cytomegalo virus (CMV) promoter, adenovirus late promoter, Bexonia virus 7.5K promoter, SV40 promoter, tk promoter of HSV, RSV promoter, human extender 1 ⁇ (hEF1 ⁇ ) promoter, metallothionine promoter , Beta-actin promoter, promoter of human IL-2 gene, promoter of human IFN gene, promoter of human IL-4 gene, promoter of human lymphotoxin gene, promoter of human GM-CSF gene, TERT promoter, PSA promoter, PSMA Promoter, CEA promoter, E2F promoter AFP promoter or albumin promoter, most preferred It is a human elong
  • the expression construct used in the present invention comprises a poly anenylation sequence.
  • a poly anenylation sequence for example, human elongate factor 1 ⁇ (hEF1 ⁇ ) polyA, striated hormone hormone terminator (Gimmi, ER, et al., Nucleic Acids Res. 17: 6983-6998 (1989)), SV40 derived polyadenylation sequence (Schek, N , et al., Mol. Cell Biol. 12: 5386-5393 (1992)), HIV-1 polyA (Klasens, BIF, et al., Nucleic Acids Res.
  • the envelope-coding sequence and the HPV L1-coding sequence are expressed in the form of a first promoter-envelope-coding sequence-poly A sequence and a second promoter-HPV L1-coding sequence-poly A sequence, respectively. It can be included. It may also be included in the form of a first promoter-envelope-coding sequence-second promoter-HPV L1-coding sequence-poly A sequence.
  • the recombinant virus of the present invention further comprises a gene of interest to be expressed.
  • the gene of interest expressed by the recombinant virus of the present invention is not particularly limited.
  • the gene of interest is, for example, a cancer therapeutic gene that induces death of cancer cells and ultimately degrades tumors, and includes tumor suppressor genes, immune regulatory genes such as cytokine genes, chemokine genes, and costimulatory factor (B7). .1 and auxiliary molecules required for T cell activity such as B7.2)], suicide genes, cytotoxic genes, cytostatic genes, pro-apoptotic genes and anti-angiogenic genes. .
  • Suicide genes are nucleic acid sequences that express substances that cause cells to be killed by external factors or cause toxic conditions to cells.
  • suicide genes are the thymidine kinase (TK) genes (US Pat. Nos. 5,631,236 and 5,601,818).
  • TK thymidine kinase
  • Tumor suppressor genes refer to genes encoding polypeptides that inhibit tumor formation. Tumor suppressor genes are naturally occurring genes in mammals, and it is believed that deletion or inactivation of these genes is an essential prerequisite for tumor development.
  • tumor suppressor genes include APC, DPC4, NF-1, NF-2, MTS1, WT1, BRCA1, BRCA2, VHL, p53, Rb, MMAC-1, MMSC-2, retinoblastoma genes (Lee et al. Nature , 329: 642 (1987)), adenomatous polyposis coli protein (US Pat. No. 5,783,666), and a throat disease suppressor gene located on chromosome 3p21.3 (Cheng et al. Proc. Nat. Acad. Sci.
  • members of the INK4 family of tumor suppressor genes including the missing colon tumor (DCC) gene, MTS1, CDK4, VHL, p110Rb, p16 and p21, and therapeutically effective fragments thereof (Eg, p56Rb, p94Rb, etc.).
  • DCC missing colon tumor
  • MTS1 MTS1, CDK4, VHL
  • p110Rb p16 and p21
  • therapeutically effective fragments thereof Eg, p56Rb, p94Rb, etc.
  • cytotoxic gene refers to a nucleotide sequence that is expressed in a cell and exhibits a toxic effect.
  • examples of such cytotoxic genes include nucleotide sequences encoding Pseudomonas exotoxin, lysine toxin, diphtheria toxin, and the like.
  • cytostatic gene refers to a nucleotide sequence that is expressed intracellularly and stops the cell cycle during the cell cycle.
  • cell proliferation inhibitory genes include p21, retinoblastoma gene, E2F-Rb fusion protein gene, genes encoding cyclin-dependent kinase inhibitors (eg, p16, p15, p18 and p19), growth stop specific homeo Growth arrest specific homeobox (GAX) genes (WO 97/16459 and WO 96/30385), and the like.
  • cytokines eg interferon-alpha, -beta, -delta and -gamma
  • interleukins eg IL-1, IL-2, IL-4, IL-6, IL-7, IL-10
  • Genes encoding IL-12, IL-19 and IL-20 and colony stimulating factors (eg, GM-CSF and G-CSF)
  • chemokine groups monocyte chemotactic protein 1 (MCP-1), monocyte chemotaxis) Protein 2 (MCP-2), monocyte chemotactic protein 3 (MCP-3), monocyte chemotactic protein 4 (MCP-4), macrophage inflammatory protein 1 ⁇ (MIP-1 ⁇ ), macrophage inflammatory protein 1 ⁇ (MIP-1 ⁇ ), Macrophage inflammatory protein 1 ⁇ (MIP-1 ⁇ ), macrophage inflammatory protein 3 ⁇ (MIP-3 ⁇ ), macrophage inflammatory protein 1 ⁇ (MIP-1 ⁇ ), macrophage inflammatory protein 3 ⁇ (MIP-3 ⁇ ), macrophage inflammatory
  • tissue plasminogen activator tPA
  • urokinase urokinase
  • LAL lipid-like lipid-like lipid-like lipid-like lipid-like lipid-like lipid-like lipid-like lipid-like lipid-like lipid-like lipid-like lipid-like lipid-like lipid-like lipid-like lipid-like lipid-like lipid-like lipid-like lipid-containing lipid-derived lipid lipid-derived lipid lipid-derived lipid lipid-phosphate, and adenosine deaminase deficiency, and AIDS.
  • tPA tissue plasminogen activator
  • urokinase urokinase
  • LAL LAL generating genes that provide sustained thrombotic effects to prevent cholesterol hyperemia.
  • polynucleotides are known for treating viral, malignant and inflammatory diseases and conditions such as cystic fibrosis, adenosine deaminas
  • pro-apoptotic gene refers to a nucleotide sequence that is expressed and induces programmed cell death.
  • pro-apoptotic genes include p53, adenovirus E3-11.6K (derived from Ad2 and Ad5) or adenovirus E3-10.5K (derived from Ad), adenovirus E4 gene, Fas ligand, TNF-, TRAIL, p53 pathway gene and gene encoding caspase are included.
  • anti-angiogenic gene refers to a nucleotide sequence that is expressed and releases an anti-angiogenic factor extracellularly.
  • Anti-angiogenic factors include angiostatin, inhibitors of vascular endothelial growth factor (VEGF) such as Tie 2 (PNAS, 1998, 95,8795-800), endostatin and the like.
  • VEGF vascular endothelial growth factor
  • nucleotide sequence of the gene of interest described above can be obtained from DNA sequence databanks such as GenBank or EMBL.
  • the recombinant virus of the present invention can induce receptor mediated pagocytosis of human cells by the envelope protein on the surface, and induce an immune response to the antigenic protein in vivo injected by the expressed antigenic protein. Moreover, the recombinant baculovirus of the present invention exerts excellent cellular immune responses as well as humoral immunity. As a result, the recombinant baculovirus of the present invention can exert prophylactic efficacy against various diseases by this action. As demonstrated in the examples below, the recombinant baculovirus of the present invention, compared with the conventional HPV vaccine Gardasil, has almost the same humoral immune inducing ability against HPV as well as HPV which does not have Gardasil. Cellular immune inducing ability against, it can exert the efficacy of HPV vaccine better than gardasil.
  • the vaccine composition of the present invention comprises (a) a pharmaceutically effective amount of the recombinant baculovirus described above; And (b) a pharmaceutically acceptable carrier.
  • the recombinant baculovirus included in the vaccine composition of the present invention exhibits immune inducing ability against various antigens.
  • the recombinant baculovirus comprises an HPV antigen gene and the vaccine composition is an HPV vaccine composition.
  • the HPV vaccine composition of the present invention can be used for the prevention or treatment, preferably prevention of various diseases caused by HPV infection, preferably cervical cancer, rectal cancer, vulvar cancer, penile cancer or head and neck cancer. Most preferably, the present invention can be used for the prevention or treatment of cervical cancer, preferably for the prevention.
  • pharmaceutically effective amount means an amount sufficient to achieve a prophylactic or therapeutic, preferably prophylactic effect, for the above-mentioned diseases.
  • Pharmaceutically acceptable carriers included in the vaccine of the present invention are conventionally used in the preparation, lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia rubber, calcium phosphate, alginate, gelatin, calcium silicate , Microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, mineral oil, and the like, but are not limited thereto. no.
  • the pharmaceutical composition of the present invention may further include a lubricant, a humectant, a sweetener, a flavoring agent, an emulsifier, a suspending agent, a preservative, and the like.
  • the vaccine of the present invention is preferably parenteral, and may be administered using, for example, intravenous administration, intraperitoneal administration, intramuscular administration, subcutaneous administration or topical administration.
  • Suitable dosages of the vaccines of the invention vary depending on factors such as the formulation method, mode of administration, age, weight, sex of the patient, degree of disease symptom, food, time of administration, route of administration, rate of excretion and response to reaction, Usually an experienced physician can easily determine and prescribe a dosage effective for the desired treatment.
  • the vaccine of the present invention is 1 x 10 3 - and a recombinant virus of 1 x 10 15 pfu / ml.
  • the vaccine of the present invention may be prepared in unit dose form by being formulated with a pharmaceutically acceptable carrier and / or excipient according to a method which can be easily carried out by those skilled in the art. It can be prepared by incorporation into a multi-dose container.
  • the formulation may be in the form of a solution, suspension or emulsion in an oil or an aqueous medium, or may be in the form of extracts, powders, granules, tablets or capsules, and may further include a dispersant or stabilizer.
  • the invention provides an antibody comprising (a) a nucleotide sequence encoding a foreign envelope protein of a virus; (b) a first promoter operably linked to said envelope-coding sequence; (c) a nucleotide sequence that coats L1 of human papilloma virus (HPV); And (d) provides a recombinant baculovirus comprising a second promoter operably linked to the L1-coding sequence.
  • the recombinant baculovirus of the present invention is the same as the recombinant baculovirus included in the above-mentioned vaccine, the contents common between the two are omitted in order to avoid excessive complexity of the present specification.
  • the present invention provides a nucleic acid molecule encoding the envelope protein of human endogenous retrovirus (HERV) and comprising the nucleotide sequence of SEQ ID NO: 1.
  • HERV human endogenous retrovirus
  • the present inventors can greatly improve the delivery system of the gene delivery system when introducing a surface protein of an endogenous retrovirus which is present in the target cell to which the gene is to be carried and which is not toxic to the cell, into the gene delivery system. It was confirmed.
  • the present inventors first modified the nucleic acid molecule encoding the envelope protein of HERV introduced into the gene delivery system to optimize expression in insect cells that are host cells of baculovirus.
  • the envelope gene introduced into the gene carrier in the present invention is derived from HERV.
  • HERV is inserted in the human genome, but it does not have a complete gene and is not expressed.
  • the present invention is to modify the natural-occurring HERV envelope gene to express the non-expression gene of HERV in insect cells with high efficiency.
  • nucleic acid molecule preferably means a DNA molecule.
  • HERV envelope-encoding nucleic acid molecules of the invention are also construed to include sequences that exhibit substantial identity with the sequences set forth in the Sequence Listing. Such substantial identity is preferably minimal when the sequence of the present invention is aligned with the maximal correspondence with any other sequence described above, and the aligned sequence is analyzed using algorithms commonly used in the art. A sequence exhibiting 80% homology, more preferably at least 85% homology, even more preferably at least 90% homology, most preferably at least 95% homology. Alignment methods for sequence comparison are known in the art. Various methods and algorithms for alignment are described in Smith and Waterman, Adv. Appl. Math. 2: 482 (1981) ; Needleman and Wunsch, J. Mol. Bio.
  • the present invention provides a recombinant vector comprising the above nucleic acid molecule encoding the envelope protein of HERV.
  • the vector of the present invention includes the envelope-coding sequence of the HERV, the contents common between the two are omitted in order to avoid excessive complexity of the present specification.
  • the vector system of the present invention may be constructed through various methods known in the art, and specific methods thereof are disclosed in Sambrook et al., Molecular Cloning, A Laboratory Manual , Cold Spring Harbor Laboratory Press (2001), This document is incorporated herein by reference.
  • the vector of the present invention is an expression vector and the eukaryotic cell is a host
  • a promoter derived from the genome of the mammalian cell a promoter derived from a mammalian virus, or a baculovirus derived promoter (for example, a polyhedrin promoter).
  • a polyhedrin promoter for example, a polyhedrin promoter.
  • Vectors of the present invention include antibiotic resistance genes commonly used in the art as optional markers, for example ampicillin, gentamicin, carbenicillin, chloramphenicol, streptomycin, kanamycin, geneticin, neomycin and tetra There is a resistance gene for cyclin.
  • the vector of the invention has the genetic map of FIG. That is, the vector of Figure 11 is that the expression of the envelope gene of HERV is regulated by the polyhedrin promoter, the expression of the target gene (most preferably, 16L1 gene of HPV) is regulated by the hEF1 ⁇ promoter, hEF1 ⁇ poly as a termination signal A signal and two arms of transposon 7 are located on both sides of the expression cassette.
  • the invention provides a baculovirus-based gene carrier comprising said nucleic acid molecule encoding the envelope protein of HERV.
  • the gene carrier of the present invention is derived from a virus obtained by infecting the aforementioned recombinant vector with an insect cell, the description common to the recombinant vector is omitted in order to avoid excessive complexity of the present specification.
  • viruses are used as gene delivery systems using adenoviruses, retroviruses, lentiviruses, and vaccinia. Most of these viruses are new infections or risks to humans, and their use is limited. However, baculoviruses are known to be biologically safe because they can replicate only in limited insects. Virus-mediated gene delivery systems occur through viral infection, which is determined by interaction of the surface proteins of the virus with receptors in the cells of interest and animals.
  • the present invention provides an improved gene delivery system by recombining and inserting the surface proteins of the endogenous virus present in the animal to be applied to the baculovirus surface in view of the advantages of the baculovirus.
  • Endogenous viruses are known to be widely distributed in humans and all mammals including pigs, mice, cats and dogs.
  • the gene carrier of the present invention since the envelope protein of human endogenous retrovirus is bound to the surface, it is possible to transport the desired gene into human cells with high efficiency and safety. Therefore, the gene carrier of the present invention can be usefully used for the development of gene therapeutics for various diseases and diseases.
  • the vaccine of the present invention comprises a recombinant baculovirus comprising an nucleotide sequence encoding an antigen gene and a foreign envelope protein of the virus.
  • the recombinant baculovirus of the present invention can induce receptor mediated pagocytosis of human cells by surface envelope proteins, and in vivo immune response injected by the expressed antigenic proteins (eg HPV L1). Cause.
  • the recombinant baculovirus of the present invention exerts excellent cellular immune responses as well as humoral immunity.
  • the recombinant virus of the present invention can exert its preventive effect against various diseases (eg, cervical cancer) caused by specific antigens by this action.
  • the recombinant baculovirus of the present invention compared with the conventional HPV vaccine Gardasil, has almost the same humoral immunity to HPV as well as cellular immunity to HPV that Gadazil does not have. In addition, it can exert HPV vaccine efficacy better than gadashile.
  • Figure 1 is a schematic diagram showing the manufacturing process of the transition vector pAc-hEF1 ⁇ 16L1 used in the present invention.
  • the black arrow represents the polyhedrin promoter
  • the white arrow represents the hEF1 ⁇ promoter
  • the small black square represents the hEF1 ⁇ poly A signal.
  • Figure 2 is a schematic diagram showing the manufacturing process of the transition vector pAcHERV env -hEF1 ⁇ 16L1 used in the present invention.
  • the black arrow represents the polyhedrin promoter
  • the white arrow represents the hEF1 ⁇ promoter
  • the small black square represents the hEF1 ⁇ poly A signal.
  • FIG. 3 is a schematic diagram of chimeric baculovirus transfer vectors and viruses comprising the prepared pAc-hEF1 ⁇ 16L1 and pAcHERV env -hEF1 ⁇ 16L1.
  • the black arrow represents the polyhedrin promoter
  • the white arrow represents the hEF1 ⁇ promoter
  • the small black square represents the hEF1 ⁇ poly A signal.
  • NM 014590 is the GenBank accession number of the gene of the HERV surface protein.
  • FIG. 8 is a photograph of RT-PCR results analyzing the expression level of HPV 16L1 gene in Huh7 cells infected with Ac-hEF1 ⁇ 16L1 and AcHERV env -hEF1 ⁇ 16L1.
  • NTC refers to the control without template.
  • AcHERV env- hEF1 ⁇ 16L1 contains an envelope protein of porcine endogenous retroviruses, and it can be confirmed that it is hardly infected with Huh7 human cells.
  • FIG. 9 is a photograph of HPV 16L1 expression in Huh7 cells infected with Ac-hEF1 ⁇ 16L1 and AcHERV env -hEF1 ⁇ 16L1 and normal Huh7 cells by immunocytochemistry.
  • AcHERV env- hEF1 ⁇ 16L1 contains an envelope protein of porcine endogenous retroviruses, and it can be confirmed that it is hardly infected with Huh7 human cells.
  • FIG. 10 shows the results of quantitative analysis by real-time PCR to quantify HPV 16L1 mRNA expression level in Huh7 cells infected with Ac-hEF1 ⁇ 16L1 and AcHERV env -hEF1 ⁇ 16L1.
  • AcHERV env- hEF1 ⁇ 16L1 contains an envelope protein of porcine endogenous retroviruses, and it can be confirmed that it is hardly infected with Huh7 human cells.
  • Polh promoter polyhedrin promoter
  • HERVenv the envelope gene of HERV
  • Tn7R and Tn7L are the right and left cancers of transposon 7, respectively.
  • the 16L1 gene of HPV is located at the position of the target gene.
  • Fig. 12 shows ELISA analysis results showing IgG antibody responses in serum immunized with chimeric baculovirus of the present invention.
  • Samples were diluted 1: 100 and anti-mouse IgG was diluted 1: 2,000.
  • Each group corresponds to 1, 3, 5, 9, and 14 weeks from the left bar to the right.
  • Figure 13 shows the results of the IgA antibody response in the vaginal lavage solution immunized with the chimeric baculovirus of the present invention.
  • Samples were diluted 1:50 and anti-mouse IgA was diluted 1: 1,000.
  • the y axis is the absorbance value at 405 nm.
  • Each group corresponds to 1, 3, 5, 9, and 14 weeks from the left bar to the right.
  • Figure 14 shows neutralization responses to HPV16 PVs (pseudoviruses) by antiserum of mice immunized with chimeric baculovirus of the present invention.
  • FIG. 15 shows ELISPOT assay results for measuring cellular immune responses.
  • the splenocytes were examined for expression of IFN- ⁇ by ELISPOT analysis.
  • CD8 + T cells were stimulated with HPV 16 PVs or HPV18 PVs.
  • C the control group.
  • Insect cells Sf9 (ATCC CRL-1711) were cultured in TC-100 medium (Welgene) containing 27 ° C, 10% FBS (fetal bovine serum, Gibco BRL) and 1% penicillin / streptomycin (Gibco BRL). 293TT cells (Schiller Lab, NCI) were cultured in DMEM (Dulbecco's modified minimal essential medium) supplemented with 10% FBS and hygromycin B (400 ⁇ g / ml) (Invitrogen Corp.).
  • TC-100 medium Welgene
  • FBS fetal bovine serum
  • Gibco BRL penicillin / streptomycin
  • Human liver cancer cell line Huh7 (JCRB0403) was cultured in DMEM medium containing 10% FBS (Gibco BRL) and 1% penicillin / streptomycin (Gibco BRL) at 5% CO 2 and 37 ° C.
  • HeLa cells (ATCC) were cultured in DMEM medium containing 10% FBS, 100 U penicillin / ml and 100 ⁇ g streptomycin / ml.
  • HERV human endogenous retrovirus
  • HERV human endogenous retrovirus
  • a gene encoding the HERV surface protein was directly synthesized, and at the time of synthesis, the base sequence of the gene was optimized to be suitable for expression in insect cells (GeneScript).
  • the gene encoding the self-synthesized HERV surface protein was inserted into the EcoR V position of the pUC57 vector (GeneScript) to prepare pUC57-HERV env .
  • Preparation of recombinant baculovirus including cloning the transfer vector was carried out using the Bac-to-Bac TM baculovirus expression system according to the manufacturer's protocol.
  • human elongation factor 1 ⁇ promoter (hEF1 ⁇ ) and HPV 16L1 gene were inserted into an AcMNPV (Autographa californica multiple nuclear polyhedrosis virus) transfer vector.
  • AcMNPV Autographa californica multiple nuclear polyhedrosis virus
  • telomere sequence was cloned into pGEM-Teasy vector (Promega), hEF1 ⁇ 16L1 was digested with Eco RI in pGEM-Teasy / hEF1 ⁇ 16L1, and inserted into the Eco RI site of pFastBac TM 1 (Invitrogen) transition vector to prepare pAc-hEF1 ⁇ 16L1 vector. (See FIG. 1).
  • pUC57-HERV env was cut with Sal I to insert HERV surface protein gene into pFastBac TM 1, hEF1 ⁇ 16L1 cut pGEM-Teasy / hEF1 ⁇ 16L1 into Not I and then inserted into pFastBac TM 1-HERV env transfer vector, pAcHERV env -hEF1 ⁇ 16L1 vector was prepared (see FIG. 1B). Gene sequences were analyzed using an ABI gene sequence analyzer (ABI) to confirm the open reading frame (ORF) of the cloned transition vectors.
  • ABSI ABI gene sequence analyzer
  • the cloned recombinant transfer vectors were transformed into DH10Bac (Invitrogen) to produce recombinant bacmids (baculovirus shuttle vector).
  • the distinction of the recombinant baekmid was confirmed by PCR using M13 primer (Invitrogen).
  • Three identified bacmids were transfected into Sf9 cells using lipofectin (Invitrogen) to produce recombinant baculovirus. After 4 days, viruses generated from infected cells were collected and repeatedly infected with new Sf9 cells to produce high titers of virus.
  • the selected recombinant viruses were named AcHERV env -hEF1 ⁇ 16L1 and Ac-hEF1 ⁇ 16L1, respectively (see FIG. 1C).
  • a recombinant baculovirus carrying a HPV 18L1 gene is HPV 18L1 gene to be used (GenBank accession No.AY383629) and the recombinant baculovirus for the above HPV 16L1 (env -hEF1 ⁇ 16L1 AcHERV except for It was prepared in the same manner as).
  • Huh7 cells were cultured at 37 ° C. in aliquots of 1 ⁇ 10 5 cells / well in 24-well plates. After 12 hours of culture, the cells were washed with PBS and infected with Ac-hEF1 ⁇ 16L1 and AcHERV env -hEF1 ⁇ 16L1 virus at 100 MOI. After incubation for 10 hours at 37 °C was replaced with fresh DMEM medium containing 10% FBS and 1% penicillin / streptomycin and incubated for 48 hours. The expression level of HPV 16L1 expressed in each virus was examined through the following experiment.
  • the primers used for the reaction are sense primer 5-CAGGGCCACAACAACGGCATCTGCTGGG-3, antisense primer 5-GGCTGCAGGCCGAAGTTCCAGTCCTCCA-3, and an amplification product of about 275 bp can be expected.
  • a housekeeping gene 18S rRNA (ribosomal RNA) gene, was used. PCR products were identified on a 1.5% agarose gel.
  • Q-PCR Quantitative analysis by real time PCR
  • the primer consists of 16L1 sense primer 5'-CAGCGAGACCACCTACAAGA-3 and antisense primer 5-GCTGTTCATGCTGTGGATGT-3 and an expected amplification product of about 138 bp can be expected.
  • Initial DNA denaturation was carried out for 45 minutes at 95 ° C for 5 minutes, 94 ° C for 10 seconds, 62 ° C for 20 seconds, and 72 ° C for 20 seconds to obtain PCR amplification products. After PCR, copy number and melting curve analysis of the target molecules were performed.
  • Software Roter-Gene ver. 6.0 (Roter Gene 3000, Corbett Research, Australia) program was used.
  • Huh7 cells were dispensed on glass slides and transfected with Ac-hEF1 ⁇ 16L1 and AcHERV env -hEF1 ⁇ 16L1 virus at 100 MOI, respectively. After 48 hours of infection, the cells were fixed with 4% formaldehyde at 4 ° C for 12 hours, washed with PBS (Phosphate Buffered Saline), and incubated at 37 ° C for 10 minutes with PBS containing 0.5% Triton X-100. Next, the cells were washed with PBS and then blocked with PBS containing 5% normal goat serum at 37 ° C. for 30 minutes. It was then reacted with HPV 16L1 monoclonal antibody (Camvir-1) in a 4 ° C. environment for one day.
  • PBS Phosphate Buffered Saline
  • the cells were washed with PBS for 30 minutes, then reacted with mouse IgG-horseradish peroxidase antibody for 1 hour, washed with PBS and then confocal laser scanning microscope (FV-1000 spectral, Olympus, Japan) was used to determine the presence of HPV 16L1 protein.
  • Gadacil TM (MERCK & CO, USA, MSD, Korea) is an HPV Quadadrivalent (Type 6, 11, 16 and 18) vaccine and was used as a positive immunoreactive control in this experiment.
  • Magnetic 4-week old BALB / c mice were purchased from Orient-Bio (South Korea) and bred with free access to water and feed under filter tip conditions.
  • Recombinant baculovirus was diluted in sterile PBS to a total volume of 100 ⁇ l and then immunized by injection into the lower leg muscles of mice in an amount of 10 7 PFU (plaque forming unit).
  • 24 BALB / c mice were divided into 8 groups (Table 1). Mice of each group were injected according to the selected prime / boost regime. Immunization was performed three times at two week intervals, and blood and vaginal washes were collected one week after each immunization. Prior to analysis, anti-serum was heat denatured.
  • MBP-L1 (Bioprogenen, Korea), bound to HPV16 L1 and maltose binding protein (MBP), was added at 60 ⁇ l at 1 ⁇ g / ml to each well of the ELISA plate and treated at 4 ° C. for 14-16 hours. .
  • Scheme milk wells in PBS (blocking buffer) containing 0.1% Tween-20 were blocked at 37 ° C. for 2 hours. After washing with PBS containing 0.05% Tween-20 and 0.05% NP-40, serum samples diluted 1: 100 with blocking buffer were added to the wells and allowed to react for 1 hour at room temperature.
  • IgG detection anti-mouse IgG-HRP (SC-2030, Santa Cruz Biotechnology, Inc., Santa Cruz, Calif.) was diluted 1: 2,000 with blocking buffer and added to the wells.
  • Anti-mouse IgA-HRP (SC-3791, Santa Cruz Biotechnology, Inc., Santa Cruz, Calif.) was diluted 1: 1,000 with blocking buffer for IgA detection and added to the wells.
  • O -phenylenediamine substrate in 0.1 M citrate buffer (pH 4.7) was added to the wells and the absorbance at 450 nm was measured.
  • PVs pseudoviruses
  • 293TT cells were seeded into 25 T flasks 16 hours before transformation and transformed with Lipofectin (Invitrogen) with a mixture of L1 / L2-plasmid and pfwB plasmid (expressing enhanced green fluorescence protein (GFP)).
  • Lipofectin Invitrogen
  • L1 / L2-plasmid a mixture of L1 / L2-plasmid and pfwB plasmid (expressing enhanced green fluorescence protein (GFP)
  • HPV16 PVs For the production of HPV16 PVs, cells were transformed with 9 ug of pfwB and p16L1 / L2, respectively.
  • HPV18 PVs cells were transformed with 9 ug each of pfwB and p18L1 / L2. After 4-6 hours, the medium of transformed cells was replaced. Cells were collected 48 hours after transformation. The supernatant was fractionated and stored at -80 ° C until the next experiment.
  • a mixture of diluted serum and PVs of the immunized mice was incubated for 1 hour at room temperature.
  • the mixture was inoculated with 1 x 10 4 seeded HeLa cells 16 hours prior to inoculation, and then incubated for 2 days, and GFP expression was observed under a fluorescence microscope.
  • Neutralizing titers are shown as the reciprocal of the maximum dilution of serum, which reduces GFP expression levels by one half of samples treated with normal mouse serum.
  • IFN- ⁇ enzyme-linked immunospot assay ELISPOT
  • 96 well plates were coated overnight at 4 ° C. with 200 ng of anti-mouse gamma interferon (IFN- ⁇ ) capture antibody (BD Bioscience) in 100 ⁇ l of PBS. Plates were blocked with 100 ⁇ l of medium (RPMI 1640 with 10% FBS) at 37 ° C. for 2 hours, and two splenocytes were seeded at 1 ⁇ 10 6 cell density per well. Then, PVs were inoculated with 2 ⁇ 10 6 IFU and incubated at 37 ° C. for 24 hours. Cells were removed by washing three times with PBS0.05% Tween 20.
  • IFN- ⁇ anti-mouse gamma interferon
  • the reaction was stopped by washing the plate with distilled water. Spots were quantified with an ELISPOT reader (AID ElispotReader ver. 4, Germany). Wells that had only embryos and were not treated with splenocytes were used as negative controls. The count of background wells was subtracted from the sample.
  • HERV Surface Protein (Env) for Transition Vector Construction Genes were produced through self-synthesis and optimized genes for insect gene codes to be effectively expressed in insect cells. The amino acid sequence of the HERV surface protein synthesized as described above was partially changed while only maintaining the amino acid sequence of the previously reported HERV surface protein. Sequence Listings 1 and 2 sequence of 1617 bp HERV surface protein synthesized for use in this experiment. Gene sequence and amino acid sequence. In addition, the gene sequence of the present invention synthesized with the gene sequence of the existing HERV surface protein was compared with Figures 4-7. As can be seen in Figure 4-7 it can be seen that the gene sequence of about 73.5% had homology.
  • pAc-hEF1 ⁇ 16L1 and pAcHERV env -hEF1 ⁇ 16L1 planned the production of two transition vectors and predicted the expected baculovirus morphology ( Figure 3).
  • the gene of HERV surface protein (Env) was inserted after the polyhedrin promoter, and the HPV 16L1 gene was It was configured to regulate expression by hEF1 ⁇ .
  • Env of HERV induces receptor mediated pagocytosis of human cells.
  • Figure 1 shows the pAc-hEF1 ⁇ 16L1 cloning method
  • Figure 2 pAcHERV env -hEF1 ⁇ 16L1 cloning method is shown briefly. PAcHERV in the same way env -hEF1 ⁇ 18L1 cloning was performed.
  • the HERV surface protein which is subject to the control of insect virus promoters, has a very high expression level in insect cells but does not function properly in animal cells.
  • HPV 16L1 protein has a human promoter, human promoter 1 ⁇ promoter (hEF1 ⁇ ), expression is efficiently activated in animal cells, but only in very small expressions in insect cells.
  • hEF1 ⁇ human promoter 1 ⁇ promoter
  • HPV 16L1 mRNA expression levels were first confirmed by RT-PCR. As shown in FIG. 8, HPV 16L1 amplification products of about 275 bp were confirmed in cells infected with Ac-hEF1 ⁇ 16L1 and AcHERV env -hEF1 ⁇ 16L1. However, the degree of amplification of the HPV 16L1 gene was different. AcHERV env -hEF1 ⁇ 16L1 with HERV surface protein on the baculovirus surface had higher amounts of HPV 16L1 gene amplification products than baculovirus without surface modification.
  • Quantitative analysis by real-time PCR was performed to reliably quantify the delivery efficiency of HPV 16L1 gene through infection.
  • the accuracy of the Q-PCR analysis was confirmed by specifying a standard curve.
  • the experiment was carried out through four iterations, as shown in Figure 10, Roter-Gene ver.
  • Relative quantification was performed using the Delta-Delta CT method using 6.0. As shown in Table 1, when the copy number of cells infected with Ac-hEF1 ⁇ 16L1 virus was 1, it was confirmed that the gene copy number in cells infected with AcHERV env- hEF1 ⁇ 16L1 virus was 4.17 times higher.
  • AcHERVenv, AcHERV env -hEF1 ⁇ 16L1, or AcHERV env -hEF1 ⁇ 18L1 10 7 PFU were injected intramuscularly, and the immune response of each experimental group was compared by dividing the Gadsac group as a positive control group, the AcHERVenv group as a negative control group, and the PBS group as a negative control group.
  • ELISA assays were performed to determine HPV16L1-specific IgG antibodies or HPV18L1-specific IgG antibodies from immunized mouse serum. Prior to immunization, significantly lower levels of IgG antibodies were observed in the serum of AcHERVenv-only and PBS-only groups as expected. As shown in FIG.
  • IgG antibody response increased threefold (HPV16) or two-fold (HPV18) than at the first immunization and AcHERV env -hEF1 ⁇ 16L1 or AcHERV env -hEF1 ⁇ 18L1
  • the third immunization increased 1.1-fold (HPV16) or 1.1-fold (HPV18) than the second, about 3.3-fold (HPV16) or 2.4-fold (HPV18) than the first (Group 2).
  • the serum IgG antibody responses in the injected env -hEF1 ⁇ 16L1 or AcHERV AcHERV env -hEF1 ⁇ 18L1 mice are found to be similar to when the injection Gardasil.
  • IgG antibody response was observed after 9 and 14 weeks after the first immunization, indicating that immunity was maintained.
  • the secretory IgA response was measured by ELISA using vaginal lavage of immunized mice, and it was confirmed that IgA antibody was secreted not only in the experimental group injected with Gadsac, but also in the group injected with AcHERV env -hEF1 ⁇ 16L1 or AcHERV env -hEF1 ⁇ 18L1 (Fig. 13).
  • IgA antibody secretion was increased after the second and third immunizations.
  • IgA antibody response was observed after 9 and 14 weeks after the first immunization. Therefore, the env -hEF1 ⁇ 16L1 or AcHERV AcHERV env -hEF1 ⁇ 18L1 immunization it can be seen that it is possible to induce a mucosal immune response in mouse.
  • the neutralizing activity of antiserum was determined by the extent to which GFP expressing plasmids in HeLa cells inhibit the infection of infectious HPV16 or HPV18 PVs.
  • Neutralizer antibody titers were diluted to the maximum (5-fold serum dilution) and expressed as the reciprocal when the GFP expression level was reduced by 50% or 90% compared to the non-serum treated samples.
  • Neutralizing activity of HPV16 or HPV18 PVs of the diluted serum of each experimental group is shown in FIG. 14. 14 is a neutralizing titer when 50% neutralized, and the neutralizing antibody titer after the second and third immunization after the first immunization was high in all experimental groups.
  • the neutralizing antibody titers in Groups 1 and 2 were 156,250, and in B-cell humoral immunity in the group treated with Gardasil and the group treated with AcHERV env -hEF1 ⁇ 16L1 or AcHERV env -hEF1 ⁇ 18L1 developed in the present invention. It could be seen that there was no significant difference.
  • group 3 and 4 based on 50% of the neutralizing activity, after priming with AcHERV env -hEF1 ⁇ 16L1 or AcHERV env -hEF1 ⁇ 18L1, the neutralizing titer when boosted with Gadashi was found to be high from 234,375 to 312,500. .
  • ELISPOT analysis was performed. Secretion of AcHERV env -hEF ⁇ 16L1 env -hEF1 ⁇ 18L1 or AcHERV were observed 3 times a Group 2 immune mouse spleen cells 1 X 10 6 to about 500 gae of spots is generated in, the immune Gardasil Group 1 or a negative control IFN- ⁇ Due to the spot could not be observed.
  • AcHERV env -hEF ⁇ 16L1 or AcHERV env -hEF1 ⁇ 18L1 chimera baculovirus is by giving the humoral immune deliver efficiency allows the animal in vivo safety of DNA vaccines represents an almost identical effect as the existing vaccine Gardasil, AcHERV env -hEF ⁇ 16L1 or AcHERV env - Vaccination with hEF1 ⁇ 18L1 chimeric baculovirus and Gardasil showed higher neutralizing antibody titer than Gardasil alone.
  • Baculovirus gp64 envelope glycoprotein is sufficient to mediate pH-dependent membrane fusion. J Virol 66 , 6829-6835.
  • Daftarian P Mansour M, Benoit AC, Pohajdak B, Hoskin DW, Brown RG, Kast WM. (2006) Eradication of established HPV 16-expressing tumors by a single administration of a vaccine composed of a liposome-encapsulated CTL-T helper fusion peptide in a water-in-oil emulsion.V accine. 24 (24): 5235-44.
  • Facciabene A Aurisicchio L, La Monica N. (2004) Baculovirus vectors elicit antigen-specific immune responses in mice. Journal of Virology, 78 (16): 8663-8672.
  • the GP64 envelope fusion protein is an essential baculovirus protein required for cell-to-cell transmission of infection. J Virol 70 , 4607-4616.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • AIDS & HIV (AREA)
  • Pulmonology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

본 발명은 (a) 바이러스의 외래 엔벨로프 단백질을 코딩하는 뉴클레오타이드 서열; (b) 상기 엔벨로프-코딩 서열에 작동적으로 연결된 제1프로모터; (c) 항원 단백질을 코딩하는 뉴클레오타이드 서열; 및 (d) 상기 항원-코딩 서열에 작동적으로 연결된 제2프로모터를 포함하는 재조합 배큘로바이러스; 상기 재조합 배큘로바이러스를 포함하는 백신 조성물에 관한 것이다. 본 발명의 재조합 배큘로바이러스는 특정 항원(예컨대, HPV의 L1)에 대한 체액성 면역 유도능이 우수할 뿐만 아니라, 세포성 면역 유도능도 우수하여 향상된 백신 효능을 발휘할 수 있다.

Description

[규칙 제26조에 의한 보정] 배큘로바이러스-기반 백신
본 발명은 재조합(키메라) 배큘로바이러스 및 이를 포함하는 백신 조성물에 관한 것이다.
HPV(Human papillomavirus)가 발생의 주요 원인인 자궁경부암은 전세계 여성 암 중에서 12%를 차지하고 있으며, 전세계에서 2분에 1명씩 사망에 이를 만큼 발생 빈도와 사망률이 높은 질병이다(Vaccine 24:5235-5244(2006)). HPV는 현재까지 약 100여종이 분리 되었으며 이들 중 고위험(high risk)으로 구분되어 있는 HPV 타입 16과 HPV 타입 18은 70% 이상이 자궁경부암 조직에서 발견되고 있다(Vaccine 22:3004-3007(2004)).
자궁경부암을 조절하기 위해서 HPV 감염에 대한 효과적인 백신 개발이 이루어지고 있으며, 특히 자궁경부암 예방을 위한 예방백신 개발이 매우 중요하다 할 수 있다.
HPV L1 단백질은 바이러스 유사 입자(virus like particles: VLPs)로 자가조립 하는 고유의 특징을 가지고 있어 바이러스 유전체는 가지지 않고 외부피막만을 형성한다. 이러한 VLP를 주사 할 경우 이에 대한 충분한 면역 반응이 일어나 높은 타이터의 중화 항체를 유도할 수 있다는 결과들이 보고되어 있다(Journal of Virology 81(24);13927-13931(2007), Virology 321:205-216(2004); Journal of Medical Virology 80:841846(2008)).
유전자의 효율적인 체내 전달을 위하여, 여러 가지 바이러스 벡터를 이용한 유전자전달 시스템이 개발되고 있다. 레트로바이러스 및 아데노바이러스 등을 이용한 바이러스 벡터가 유전자 치료의 목적으로 HPV16L1 유전자를 동물 숙주에 전달하기 위해 이용되고 있다 (Science 260(5110):926-932(1993)). 그러나, 이러한 바이러스의 사용은 복제 의존성 바이러스의 발생, 세포독성, 초기면역반응 및 원하지 않은 바이러스 유전자의 발현 등의 문제점을 가지고 있다.
한편, 배큘로바이러스 전달 벡터는 비교적 큰 크기의 외래유전자를 삽입할 수 있다는 점과 고등 진핵 세포인 곤충 세포를 이용하기 때문에 해독 후 변형 과정(post-translational processing)이 일어나, 원핵생물인 대장균에서 생성된 단백질과는 달리 발현된 재조합 단백질의 생물학적 및 면역학적 활성이 원래의 단백질과 같은 효과를 나타낸다는 중요한 장점을 지니고 있다. 이 외에도 배큘로바이러스는 동물세포 내에서는 복제가 불가능하고 세포독성을 일으키지 않기 때문에, 생물학적으로 안전한 바이러스로 알려져 있다(Virology 125:107-117(1983); Hum. Gene Ther. 7:1937-1945(1996); Proc. Natl. Acad. Sci. USA 96:127-132(1999); Trends Biotechnol. 20:173-180(2002)). 곤충 바이러스 그룹에 속하는 AcNPV(Autographa californica nuclear polyhedrosis virus)는 다양한 종류의 동물세포에서 복제는 불가능하나 세포내로 들어갈 수 있어 유전자를 전달할 수 있다고 알려져 있다(Proc. Natl. Acad. Sci. USA 92:10099-10103(1995); Proc. Natl. Acad. Sci. USA 93:2348-2352(1996)). 이미 AcMNPV(Autographa californica multiple nuclear polyhedrosis virus) 유전체 내에 특정 유전자가 동물 프로모터에 의해 조절 될 경우 특정 유전자가 동물세포 내에서 높은 수준으로 발현 될 수 있다고 보고된 바 있다(Journal of Virology, 76(11):5729-5736(2002); Vaccine 26(20):2451-2456(2008)).
최근, 배큘로바이러스 표면에 다른 바이러스의 Env를 도입하여, 유전자 전달 효율을 높이기 위한 연구들이 시도되고 있다. 예를 들면 VSV(vesicular stomatitis virus) 엔벨로프 G 단백질을 배큘로바이러스 표면에 존재하도록 하거나(Journal of Virology, 78(16):8663-8672(2004); Journal of Urology 250(2): 276-283(2006); Biochemical and Biophysical Research Communications 289(2):444-450(2001); Journal of Virology 75(6):2544-2556(2001)), gp64 단백질을 바이러스 표면에 더 첨가하여 유전자 전달 효과를 높였다는 보고가 있었다(Human Gene Therapy, 14(1):67-77(2003)). 또한 배큘로바이러스 벡터로 백신화 하여 인플루엔자 바이러스의 헤마글루티닌 당단백질(hemagglutinin glycoprotein)에 대한 면역 반응을 유도한다는 보고가 있었다(Journal of Immunology, 171: 1133-1139(2003)).
본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.
본발명자들은 배큘로바이러스에 기반 한 다양한 병원체에 대하여 보다 향상된 면역반응을 유도할 수 있는 백신을 개발하고자 노력하였다. 그 결과, 본 발명자들은 항원 유전자와 바이러스의 외래 엔벨로프 단백질을 코딩하는 뉴클레오타이드 서열을 조합(combination) 하여 발현 컨스트럭트 및 재조합 배큘로바이러스를 제조하고 이를 이용하여 면역화 하는 경우에는 면역반응이 크게 향상될 뿐만 아니라 안전하고 경제적인 백신을 제공할 수 있음을 확인함으로써, 본 발명을 완성하게 되었다.
따라서, 본 발명의 목적은 재조합 배큘로바이러스를 제공하는 데 있다.
본 발명의 다른 목적은 백신 조성물을 제공하는 데 있다.
본 발명의 다른 목적은 특정 항원에 대한 면역반응을 유도하는 방법을 제공하는 데 있다.
본 발명의 또 다른 목적은 인간 내인성 레트로바이러스(Human Endogenous Retrovirus: HERV)의 엔벨로프 단백질을 코딩하는 핵산 분자를 제공하는 데 있다.
본 발명의 다른 목적은 HERV 엔벨로프 단백질-코딩 핵산분자를 포함하는 재조합 벡터를 제공하는 데 있다.
본 발명의 또 다른 목적은 HERV 엔벨로프 단백질-코딩 핵산분자를 포함하는배큘로바이러스-기반 유전자 전달체를 제공하는 데 있다.
본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.
본 발명의 일 양태에 따르면, 본 발명은 (a) 바이러스의 외래 엔벨로프 단백질을 코딩하는 뉴클레오타이드 서열; (b) 상기 엔벨로프-코딩 서열에 작동적으로 연결된 제1프로모터; (c) 항원 단백질을 코딩하는 뉴클레오타이드 서열; 및 (d) 상기 항원-코딩 서열에 작동적으로 연결된 제2프로모터를 포함하는 재조합 배큘로바이러스를 제공한다.
본 발명의 다른 양태에 따르면, 본 발명은 상기 본 발명의 재조합 배큘로바이러스를 유효성분으로 포함하는 백신 조성물을 제공한다.
본 발명의 또 다른 양태에 따르면, 본 발명은 상기 본 발명의 백신 조성물을 객체(subject)에 투여하는 단계를 포함하는 생체 내에서 특정 항원에 대한 면역반응을 유도하는 방법을 제공한다.
본 발명자들은 배큘로바이러스에 기반 한 다양한 병원체에 대하여 보다 향상된 면역반응을 유도할 수 있는 백신을 개발하고자 노력하였다. 그 결과, 본 발명자들은 항원 유전자와 바이러스의 외래 엔벨로프 단백질을 코딩하는 뉴클레오타이드 서열을 조합(combination) 하여 발현 컨스트럭트 및 재조합 배큘로바이러스를 제조하고 이를 이용하여 면역화 하는 경우에는 면역반응이 크게 향상될 뿐만 아니라 안전하고 경제적인 백신을 제공할 수 있음을 확인하였다.
본 발명의 가장 큰 특징은 항원 유전자와 바이러스(가장 바람직하게는, 인간 내인성 레트로바이러스(HERV)) 외래 엔벨로프 단백질을 코딩하는 뉴클레오타이드 서열의 조합을 이용하는 것이다.
본 발명의 재조합 배큘로바이러스는 다양한 항원 유전자의 운반에 이용될 수 있다. 본 명세서에서 용어 “항원 유전자” 또는 “항원 단백질을 코딩하는 뉴클레오타이드 서열”은, 면역 시스템에 의해 인식될 수 있는 항원성 단백질(예컨대, 세포 또는 바이러스 표면 항원성 단백질)을 코딩하는 서열을 의미한다.
본 발명의 바람직한 구현예에 따르면, 상기 항원은 바이러스 병원체 항원, 박테리아 병원체 항원, 기생충(parasitic) 항원 또는 암 항원이며, 보다 바람직하게는 바이러스 병원체 항원 또는 암 항원이고, 가장 바람직하게는 바이러스 병원체 항원이다.
본 발명에서 이용될 수 있는 바이러스 병원체 항원의 예는 인플루엔자 바이러스와 같은 Orthomyxoviruses; RSV(respiratory syncytial virus), SIV(simian immunodeficiency virus) 및 HIV와 같은 레트로바이러스; EBV(Epstein-Barr Virus)와 같은 Herpesviruses; CMV(cytomegalovirus) 또는 HSV(herpes simplex virus); Lentiviruses; 광견병(rabies)와 같은 Rhabdoviruses; 폴리오바이러스와 같은 Picomoviruses; 백시니아와 같은 Poxviruses; Rotavirus; 및 Parvoviruses로부터 유래된 항원을 포함한다. 보다 구체적으로, 바이러스 병원체 항원의 예는 HPV 항원의 예는 HPV의 L1, L2, E6 또는 E7 단백질; HIV의 항원의 예는 nef, p24, gp120, gp41, tat, rev, pol, env 및 gp120의 T 세포와 B 세포 에피토프(Palker et al, J. Immunol., 142:3612-3619(1989))을 포함한다. HBV의 표면 항원의 예는 Wu et al, Proc. Natl. Acad. Sci., USA, 86:4726-4730(1989)에 개시되어 있다. 로타바이러스의 항원의 예는 VP4(Mackow et al, Proc. Natl. Acad. Sci., USA, 87:518-522(1990)) 및 VP7(Green et al, J. Virol., 62:1819-1823(1988)를 포함하며;, 인플루엔자 바이러스 항원은 헤마글루티딘(hemagglutinin: HA) 및 뉴클레오단백질을 포함하고; HSV 항원은 티미딘 키나아제를 포함하며(Whitley et al, In: New Generation Vaccines, pages 825-854); 조류 인플루엔자 바이러스 항원은 헤마글루티딘을 포함하고; 돼지 콜레라 바이러스 항원은 엔벤로프; 구제역 바이러스 항원은 엔벨로프; 그리고 뉴캐슬바이러스 항원은 HN(Hemagglutinin-neuraminidase), F (Fusion protein)을 포함한다.
본 발명에 이용될 수 있는 박테리아 병원체 항원의 예는 Mycobacterium spp., Helicobacter pylori, Salmonella spp., Shigella spp., E. coli, Rickettsia spp., Listeria spp., Legionella pneumoniae, Pseudomonas spp., Vibrio spp. 및 Borellia burgdorferi으로부터 유래된 항원을 포함한다. 구체적으로, 본 발명에 이용될 수 있는 박테리아 병원체 항원의 예는 Shigella sonnei form-1 항원(Formal et al, Infect. Immun., 34:746-750(1981)); V. cholerae O-항원(Forrest et al, J. Infect. Dis. 159:145-146(1989); E. coli의 FA/I 섬모항원(fimbrial antigen)(Yamamoto et al, Infect. Immun., 50:925-928(1985))과 열민감성 독소의 비독성 B-서브유니트(Klipstein et al, Infect. Immun., 40:888-893 (1983)); Bordetella pertussis의 퍼택틴(pertactin)(Roberts et al, Vacc., 10:43-48(1992)); B. pertussis의 아데닐레이트 사이클라아제-헤모라이신(Guiso et al, Micro. Path., 11:423431(1991)); 및 Clostridium tetani의 테타너스 독소의 단편 C(Fairweather et al, Infect. Immun., 58:1323-1326(1990))을 포함한다.
본 발명에 이용될 수 있는 기생충 항원의 예는 Plasmodium spp., Trypanosome spp., Giardia spp., Boophilus spp., Babesia spp., Entamoeba spp., Eimeria spp., Laishmania spp., Schistosome spp., Brugia spp., Fascida spp., Dirofilaria spp., Wuchereria spp., 및 Onchocerea spp.으로부터 유래된 항원을 포함한다. 보다 구체적으로, 본 발명에 이용될 수 있는 기생충 항원의 예는 Plasmodium bergerii의 circumsporozoite 항원 및 P. falciparum의 circumsporozoite 항원과 같은 Plasmodium spp.의 circumsporozoite 항원(Sadoff et al, Sci., 240:336-337 (1988)); Plasmodium spp.의 merozoite 표면 항원(Spetzler et al, Int. J. Pept. Prot. Res., 43:351-358 (1994)); Entamoeba histolytica의 갈락토오스 특이 렉틴(Mann et al, Proc. Natl. Acad. Sci., USA, 88:3248-3252 (1991)); Leishmania spp.의 gp63(Russell et al, J. Immunol., 140:1274-1278 (1988)); Brugia malayi의 파라마이오신(Li et al, Mol. Biochem. Parasitol., 49:315-323 (1991)); 및 Schistosoma mansoni의 트리오스-포스페이트 이소머라아제(Shoemaker et al, Proc. Natl. Acad. Sci. USA, 89:1842-1846 (1992))를 포함한다.
본 발명에 이용될 수 있는 암 항원의 예는 전립선 특이 항원(Gattuso et al, Human Pathol., 26:123-126 (1995)), TAG-72 및 CEA(carcinoembryonic antigen) (Guadagni et al, Int. J. Biol. Markers, 9:53-60 (1994)), MAGE-1 및 티로시나아제(Coulie et al, J. Immunothera., 14:104-109 (1993)), p53(WO 94/02167), NY-ESO1(cancer- testis antigen), AFP(α-feto protein) 및 암 항원 125(CA-125), EPCA(Early Prostate Cancer Antigen)를 포함한다.
보다 바람직한 구현예에 따르면, 본 발명에서 이용되는 항원은 바이러스 병원체 항원 또는 암 항원이고, 가장 바람직하게는 바이러스 병원체 항원이다.
본 발명에서 이용되는 항원 유전자가 바이러스 병원체 항원인 경우, 상기 항원은 바람직하게는 HPV(human papilloma virus) 항원, HBV(hepatitis B virus) 항원, HCV(hepatitis C virus) 항원, HIV(human immunodeficiency virus) 항원, 로타바이러스 항원, 인플루엔자 바이러스 항원, HSV(herpes simplex virus) 항원, 조류 인플루엔자 바이러스 항원, 돼지 콜레라 바이러스 항원, 구제역 바이러스 항원 또는 뉴캐슬바이러스 항원이다.
보다 바람직하게는, 상기 항원은 HPV 항원이며, 보다 더 바람직하게는 HPV의 L1, L2, E6 또는 E7 단백질이고, 가장 바람직하게는 HPV의 L1이다.
HPV L1은 체내 또는 체외에서 바이러스 유사 입자(virus like particles: VLPs)로 자가조립 하는 고유의 특징을 가지고 있다. L1 단백질은 HPV 단백질 중에서 가장 보존된 단백질이다. 본 발명의 바람직한 구현 예에 따르면, 본 발명에서 이용되는 L1 서열은 HPV 타입 1, 2, 3a, 4, 5, 6b, 7, 8, 9, 10 , 11a, 12, 13, 58, 16 및 18로 구성된 군으로부터 선택되는 HPV로부터 유래된 것이고, 보다 더 바람직하게는 HPV 타입 16 또는 18로부터 유래된 HPV로부터 유래된 것이다. L1 단백질을 코딩하는 뉴클레오타이드 서열은 예컨대, GenBank accession No. EU118173( J. Virol. 67(12):6929-6936(1993)), AY383628 및 AY383629(Virology 321(2): 205-216(2004))에 기재되어 있다.
본 발명에서 이용되는 바이러스의 외래 엔벨로프 단백질을 코딩하는 뉴클레오타이드 서열은 배큘로바이러스를 제외한 다양한 바이러스로부터 유래될 수 있다. 바람직하게는, 엔벨로프 단백질은 인간세포를 숙주 세포로 하는 바이러스로부터 유래된 것이며, 보다 바람직하게는 인간세포의 표면에 해당 수용체가 있는 바이러스로부터 유래된 것이고, 가장 바람직하게는 인간 세포의 수용체 매개 파고사이토시스를 유도할 수 있는 것이다.
본 발명의 바람직한 구현예에 따르면, 본 발명에서 이용되는 바이러스의 엔벨로프 단백질을 코딩하는 뉴클레오타이드 서열은 엔벨로프는 알파바이러스, 파라믹소바이러스, 랩도비리데, 믹소바이러스, 코로나바이러스, 레트로바이러스, 필로바이러스 또는 아레나바이러스로부터 유래된 것이고, 보다 더 바람직하게는 레트로바이러스로부터 유래된 것이며, 가장 바람직하게는 인간 내인성 레트로바이러스(Human Endogenous Retrovirus: HERV)로부터 유래된 것이다. HERV는 실제 인간에게 존재하는 내인성 바이러스로 대부분은 불활성화 된 상태로 사람의 지놈 상에 존재하고 있다 엔벨로프 단백질은 재조합 바이러스의 표면에 발현되며, 이는 인간 세포의 수용체와 상호작용 하여 파고사이토시스를 유도한다.
본 발명의 바람직한 구현예에 따르면, HERV의 엔벨로프를 코딩하는 서열은 서열목록 제2서열의 아미노산 서열을 코팅하는 뉴클레오타이드 서열이고, 보다 바람직하게는 서열목록 제1서열의 뉴클레오타이드 서열이다. 서열목록 제1서열의 뉴클레오타이드 서열은 곤충세포에서 HERV 표면단백질(Env)가 잘 발현되도록 최적화 한 것이다.
본 발명의 키메라 바이러스는 배큘로바이러스에 기반한다.배큘로바이러스는 막대 모양의 바이러스로서 인간 세포에서 곤충-특이 프로모터로부터 자신의 유전자를 발현하지 않는다. 이러한 이유 때문에, 배큘로바이러스는 바이러스 유전자 발현에 의한 면역반응을 유발하지 않기 때문에, 유전자 치료제의 기본 시스템으로서 주목을 받고 있다. 그러나, 포유동물 프로모터의 조절 하에 있으면 배큘로바이러스 벡터에 있는 외래 유전자의 발현이 높은 수준으로 일어난다. 배큘로바이러스에 의한 감염은 내인성 인간 바이러스의 복제를 촉발하지 않는 장정도 있다. 다른 유전자 치료제용 바이러스와 다르게, 배큘로바이러스는 혈청-부재 배지에서 잘 성장할 수 있어, 대량 생산에 적합한 이점이 있다.
재조합 배큘로바이러스의 구축 및 곤충세포의 배양은 Summers and Smith. 1986. A Manual of Methods for Baculovirus Vectors and Insect Culture Procedures, Texas Agricultural Experimental Station Bull. No. 7555, College Station, Tex.; Luckow. 1991. In Prokop et al., Cloning and Expression of Heterologous Genes in Insect Cells with Baculovirus Vectors' Recombinant DNA Technology and Applications, 97-152; U.S. Pat. No. 4,745,051; 및 EP0340359에 상세하게 기재되어 있으며, 상기 문헌은 본 명세서에 참조로서 삽입된다.
예를 들어, HERV Env 유전자 및 HPV L1 유전자를 포함하는 키메라 배큘로바이러스는 HERV Env 유전자 및 HPV L1 유전자를 운반하는 전이벡터를 세포에 형질전환 시킨다. HERV Env 유전자 및 HPV L1 유전자를 포함하는 발현 컨스트럭트는 트랜스포존 서열, 예컨대 Tn7으로 플랭킹 된다. 이러한 전이벡터를 미니-attTn7 타겟 위치를 갖는 백미드(배큘로바이러스 셔틀벡터) 및 트랜스포자아제(transposase) 유전자를 갖는 헬퍼 플라스미드를 포함하는 세포, 예컨대 E. coli에 형질전환 시킨다. 전이벡터가 상기 E. coli 세포에 형질전환 되면, 트랜스포지션이 발생하여 재조합 백미드가 만들어진다. 이어, 재조합 백미드를 분리하고 이를 적합한 곤충세포에 형질전환시켜 키메라 배큘로바이러스를 생성시킨다. 본 발명에 적합한 곤충세포는 특별하게 제한되지 않으며, 예를 들어, Sf9(Spodoptera frugiperda), Spodoptera exiaua, Choristoneura fumiferana, Trichoplusia ni 및 Spodoptera littoralis Drosophila 등이 곤충세포로 이용될 수 있다.
본 발명의 재조합 배큘로바이러스에서 바이러스의 엔벨로프 단백질을 코딩하는 뉴클레오타이드 서열 및 HPV L1을 코팅하는 뉴클레오타이드 서열은 적합한 발현 컨스트럭트(expression construct) 내에 존재하는 것이 바람직하다. 상기 발현 컨스트럭트에서, 엔벨로프 단백질을 코딩하는 뉴클레오타이드 서열 및 HPV L1을 코팅하는 뉴클레오타이드 서열은 프로모터에 작동적으로 연결되는 것이 바람직하다. 본 명세서에서, 용어 “작동적으로 연결된”은 핵산 발현 조절 서열(예: 프로모터, 시그널 서열, 또는 전사조절인자 결합 위치의 어레이)과 다른 핵산 서열사이의 기능적인 결합을 의미하며, 이에 의해 상기 조절 서열은 상기 다른 핵산 서열의 전사 및/또는 해독을 조절하게 된다. 본 발명에 있어서, 엔벨로프 단백질을 코딩하는 뉴클레오타이드 서열 또는 HPV L1을 코팅하는 뉴클레오타이드 서열에 연결된 프로모터는 다양한 프로모터가 이용될 수 있다.
본 발명의 바람직한 구현 예에 따르면, 상기 엔벨로프-코딩 서열에 작동적으로 연결된 제1프로모터는 곤충 세포에서 작동하는 프로모터이며, 보다 바람직하게는 배큘로바이러스 IE-1 프로모터, IE-2 프로모터, p35 프로모터, p10 프로모터, gp64 프로모터 또는 폴리헤드린 프로모터이고, 가장 바람직하게는 폴리헤드린 프로모터이다.
본 발명의 바람직한 구현예에 따르면, HPV L1-코팅 서열에 작동적으로 연결된 제2프로모터는 포유동물 세포의 지놈으로부터 유래된 프로모터 또는 포유동물 바이러스로부터 유래된 프로모터이고, 보다 바람직하게는 제2프로모터는 U6 프로모터, H1 프로모터, CMV(cytomegalo virus) 프로모터, 아데노바이러스 후기 프로모터, 벡시니아 바이러스 7.5K 프로모터, SV40 프로모터, HSV의 tk 프로모터, RSV 프로모터, 인간 연장인자 1α(hEF1α) 프로모터, 메탈로티오닌 프로모터, 베타-액틴 프로모터, 인간 IL-2 유전자의 프로모터, 인간 IFN 유전자의 프로모터, 인간 IL-4 유전자의 프로모터, 인간 림포톡신 유전자의 프로모터, 인간 GM-CSF 유전자의 프로모터, TERT 프로모터, PSA 프로모터, PSMA 프로모터, CEA 프로모터, E2F 프로모터 AFP 프로모터 또는 알부민 프로모터이고, 가장 바람직하게는 인간 연장인자 1α(hEF1α) 프로모터이다.
바람직하게는, 본 발명에 이용되는 발현 컨스트럭트는 폴리 아네닐화 서열을 포함한다. 예를 들어, 인간 연장인자 1α(hEF1α) polyA, 소성장 호르몬 터미네이터(Gimmi, E. R., et al., Nucleic Acids Res. 17:6983-6998(1989)), SV40 유래 폴리 아데닐화 서열(Schek, N, et al., Mol. Cell Biol. 12:5386-5393(1992)), HIV-1 polyA(Klasens, B. I. F., et al., Nucleic Acids Res. 26:1870-1876(1998)), β-글로빈 polyA(Gil, A., et al, Cell 49:399-406(1987)), HSV TK polyA(Cole, C. N. and T. P. Stacy, Mol. Cell. Biol. 5:2104-2113(1985)) 또는 폴리오마바이러스 polyA(Batt, D. B and G. G. Carmichael, Mol. Cell. Biol. 15:4783-4790(1995))를 포함하나, 이에 한정되는 것은 아니다.
본 발명의 재조합 바이러스에서 엔벨로프-코딩 서열 및 HPV L1-코딩 서열은 각각 제1프로모터-엔벨로프-코딩 서열-폴리 A 서열 및 제2프로모터-HPV L1-코딩 서열-폴리 A 서열의 형태의 발현 컨스트럭트로 포함될 수 있다. 또한, 제1프로모터-엔벨로프-코딩 서열-제2프로모터-HPV L1-코딩 서열-폴리 A 서열의 형태로 포함될 수도 있다.
본 발명의 바람직한 구현예에 따르면, 본 발명의 재조합 바이러스는 발현 하고자 하는 목적 유전자를 추가적으로 포함한다. 본 발명의 재조합 바이러스에 의해 발현되는 목적 유전자는 특별히 제한되지 않는다. 본 발명에서 목적 유전자는 예컨대, 암세포의 사멸을 유도하고 궁극적으로 종양을 퇴화시키는 암 치료 유전자로서, 종양 억제 유전자, 면역 조절 유전자 [예: 사이토카인 유전자, 케모카인 유전자 및 조자극 인자 (costimulatory factor: B7.1과 B7.2와 같은 T 세포 활성에 필요한 보조 분자)], 자살 유전자, 세포독성 유전자, 세포증식 억제 유전자, 친-세포사멸 유전자 및 항-신생 혈관 생성 유전자가 포함되며 이에 한정되는 것은 아니다.
자살 유전자는 세포가 외부 인자에 의해 살상되기 쉽도록 유도하는 물질을 발현하거나 세포에 독성 조건을 유발하는 핵산 서열이다. 이러한 자살 유전자로 잘 알려진 것은 티미딘 키나제(TK) 유전자이다 (미국특허 제5,631,236호 및 제5,601,818호). TK 유전자 산물을 발현하는 세포는 간사이클로비르 (gancyclovir)의 투여에 의해 선택적인 사멸에 민감하다. 종양 억제 유전자는 종양의 형성을 억제하는 폴리펩타이드를 암호화하는 유전자를 가리킨다. 종양 억제 유전자는 포유동물에서 자연발생 유전자이며, 이 유전자의 결실 또는 불활성화는 종양 발생에 필수 전제인 것으로 믿어지고 있다. 종양 억제 유전자의 예로는 APC, DPC4, NF-1, NF-2, MTS1, WT1, BRCA1, BRCA2, VHL, p53, Rb, MMAC-1, MMSC-2, 망막아세포종 유전자 (Lee et al. Nature, 329:642(1987)), 선종양 폴립증 장 단백질 (adenomatous polyposis coli protein; 미국특허 제 5,783,666 호), 염색체 3p21.3에 위치한 비인후 종양 억제인자 유전자 (Cheng et al. Proc. Nat .Acad. Sci., 95:3042-3047(1998)), 결손된 결장 종양 (DCC) 유전자, MTS1, CDK4, VHL, p110Rb, p16 및 p21을 포함한 종양 억제 유전자의 INK4 계열의 일원 및 이의 치료학적으로 유효한 단편 (예, p56Rb, p94Rb 등)이 포함된다. 당업자는 상기 예시된 유전자 외에 기타 알려진 항종양 유전자 모두가 본 발명에 사용될 수 있다는 것을 이해할 것이다.
본 명세서에서 용어 "세포독성 유전자 (cytotoxic gene)"는 세포내에서 발현되어 독성 효과를 나타내는 뉴클레오타이드 서열을 의미한다. 이러한 세포독성 유전자의 예에는 슈도모나스 외독소 (exotoxin), 리신 독소, 디프테리아 독소 등을 코딩하는 뉴클레오타이드 서열이 포함된다.
본 명세서에서 용어 "세포증식 억제 유전자 (cytostatic gene)"는 세포내에서 발현되어 세포 주기 도중에 세포 주기를 정지시키는 뉴클레오타이드 서열을 의미한다. 이러한 세포증식 억제 유전자의 예에는 p21, 망막아세포종 유전자, E2F-Rb 융합 단백질 유전자, 사이클린-종속성 키나아제 억제인자를 코딩하는 유전자 (예를 들면, p16, p15, p18 및 p19), 성장 중지 특이성 호메오박스 (growth arrest specific homeobox, GAX) 유전자 (WO 97/16459 및 WO 96/30385) 등이 있으며, 이에 한정되는 것은 아니다.
또한, 각종 질환을 치료하는데 유용하게 사용될 수 있는 많은 치료 유전자도 본 발명의 시스템에 의해 운반된다. 예를 들면, 사이토카인 (예, 인터페론-알파, -베타, -델타 및 -감마), 인터루킨 (예, IL-1, IL-2, IL-4, IL-6, IL-7, IL-10, IL-12, IL-19 및 IL-20) 및 콜로니 자극 인자 (예, GM-CSF 및 G-CSF)를 암호화하는 유전자, 케모카인 그룹 (단핵구 화학 주성단백질 1 (MCP-1), 단핵구 화학 주성 단백질 2 (MCP-2), 단핵구 화학 주성단백질 3 (MCP-3), 단핵구 화학 주성 단백질 4 (MCP-4), 대식구 염증성 단백질 1α(MIP-1α), 대식구 염증성 단백질 1β (MIP-1β), 대식구 염증성 단백질 1γ (MIP-1γ), 대식구 염증성 단백질 3α (MIP-3α), 대식구 염증성 단백질 3β(MIP-3β), 케모카인 (ELC), 대식구 염증성 단백질 4 (MIP-4), 대식구 염증성 단백질 5 (MIP-5), LD78β, RANTES, SIS-엡실론 (p500), 흉선 활성화-조절되는 케모카인 (TARC), 에오탁신, I-309, 인간 단백질 HCC-1/NCC-2, 인간 단백질 HCC-3, 마우스 단백질 C10 등)이 포함된다. 또한, 조직 플라스미노겐 활성화제(tPA) 또는 우로키나제를 발현하는 유전자 및 지속적인 혈전 효과를 제공하여 콜레스테롤 과다혈증을 예방하는 LAL 생성 유전자가 포함된다. 또한, 낭성 섬유증, 아데노신 데아미나제 결핍증 및 AIDS와 같은 바이러스, 악성 및 염증 질환 및 상태를 치료하기 위한 많은 폴리뉴클레오타이드가 알려져 있다.
본 명세서에서 용어 "친-세포사멸 유전자 (pro-apoptotic gene)"는 발현되어 프로그램된 세포 소멸을 유도하는 뉴클레오타이드 서열을 의미한다. 이러한 친-세포사멸 유전자의 예에는 p53, 아데노바이러스 E3-11.6K (Ad2 및 Ad5에서 유래) 또는 아데노바이러스 E3-10.5K (Ad에서 유래), 아데노바이러스 E4 유전자, Fas 리간드, TNF-, TRAIL, p53 경로 유전자 및 카스파아제를 코딩하는 유전자가 포함된다.
본 발명의 명세서에서 용어 "항-신생혈관생성 유전자 (anti-angiogenic gene)"는 발현되어 항-신생혈관 생성 인자를 세포밖으로 방출하는 뉴클레오타이드 서열을 의미한다. 항-신생혈관 생성 인자에는, 안지오스타틴, Tie 2 (PNAS, 1998, 95,8795-800)와 같은 혈관 내피 성장 인자 (VEGF)의 억제 인자, 엔도스타틴 등이 포함된다.
상술한 목적 유전자의 뉴클레오타이드 서열은 GenBank 또는 EMBL과 같은 DNA 서열 데이터뱅크로부터 입수할 수 있다.
본 발명의 재조합 바이러스는 표면의 엔벨로프 단백질에 의해 인간 세포의 수용체 매개 파고사이토시스를 유도할 수 있으며, 발현되는 항원 단백질에 의해 주입되는 생체 내에서 항원 단백질에 대한 면역반응을 유발한다. 더욱이, 본 발명의 재조합 배큘로바이러스는 체액성 면역뿐만 아니라 세포성 면역 반응도 우수하게 유발한다. 결국, 본 발명의 재조합 배큘로바이러스는 이러한 작용에 의해 다양한 질환에 대한 예방 효능을 잘 발휘할 수 있다. 하기의 실시예에서 입증한 바와 같이, 종래의 HPV 백신인 가다실(Gardasil)과 비교하여 본 발명의 재조합 배큘로바이러스는 HPV에 대한 체액성 면역 유도능이 거의 동일할 뿐만 아니라, 가다실이 가지고 있지 않은 HPV에 대한 세포성 면역 유도능을 가지고 있어, 가다실보다 우수한 HPV 백신 효능을 발휘할 수 있다.
본 발명의 백신 조성물은 (a) 상술한 재조합 배큘로바이러스의 약제학적 유효량; 및 (b) 약제학적으로 허용되는 담체를 포함한다.
본 발명의 백신 조성물에 포함되는 재조합 배큘로바이러스는 다양한 항원에 대하여 면역 유도능을 나타낸다.
본 발명의 바람직한 구현예에 따르면, 본 발명의 백신 조성물에서 재조합 배큘로바이러스는 HPV 항원 유전자를 포함하며 상기 백신 조성물은 HPV 백신 조성물인 것을 특징으로 하는 백신 조성물.
본 발명의 HPV 백신 조성물은 HPV 감염에 의해 유발되는 다양한 질환, 바람직하게는 자궁경부암, 직장암, 외음부암, 음경암 또는 두경부암의 예방 또는 치료, 바람직하게는 예방에 이용될 수 있다. 가장 바람직하게는, 본 발명은 자궁경부암의 예방 또는 치료, 바람직하게는 예방에 이용될 수 있다. 본 명세서에서 용어 “약제학적 유효량”은 상기한 질환에 대한 예방 또는 치료, 바람직하게는 예방 효과를 달성하는 데 충분한 양을 의미한다.
본 발명의 백신에 포함되는 약제학적으로 허용되는 담체는 제제시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다. 본 발명의 약제학적 조성물은 상기 성분들 이외에 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다.
본 발명의 백신은 비경구 투여가 바람직하고, 예컨대 정맥내 투여, 복강내 투여, 근육내 투여, 피하 투여 또는 국부 투여를 이용하여 투여할 수 있다.
본 발명의 백신의 적합한 투여량은 제제화 방법, 투여 방식, 환자의 연령, 체중, 성, 질병 증상의 정도, 음식, 투여 시간, 투여 경로, 배설 속도 및 반응 감응성과 같은 요인들에 의해 다양하며, 보통으로 숙련된 의사는 목적하는 치료에 효과적인 투여량을 용이하게 결정 및 처방할 수 있다. 바람직하게는, 본 발명의 백신은 1 x 103 - 1 x 1015 pfu/㎖의 재조합 바이러스를 포함한다.
본 발명의 백신은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있는 방법에 따라, 약제학적으로 허용되는 담체 및/또는 부형제를 이용하여 제제화 됨으로써 단위 용량 형태로 제조되거나 또는 다용량 용기내에 내입시켜 제조될 수 있다. 이때 제형은 오일 또는 수성 매질중의 용액, 현탁액 또는 유화액 형태이거나 엑스제, 분말제, 과립제, 정제 또는 캅셀제 형태일 수도 있으며, 분산제 또는 안정화제를 추가적으로 포함할 수 있다.
본 발명의 다른 양태에 따르면, 본 발명은 (a) 바이러스의 외래 엔벨로프 단백질을 코딩하는 뉴클레오타이드 서열; (b) 상기 엔벨로프-코딩 서열에 작동적으로 연결된 제1프로모터; (c) HPV(human papilloma virus)의 L1을 코팅하는 뉴클레오타이드 서열; 및 (d) 상기 L1-코딩 서열에 작동적으로 연결된 제2프로모터를 포함하는 재조합 배큘로바이러스를 제공한다.
본 발명의 재조합 배큘로바이러스는 상술한 백신에 포함되는 재조합 배큘로바이러스와 동일하기 때문에, 이 둘 사이에 공통된 내용은 본 명세서의 과도한 복잡성을 피하기 위하여, 그 기재를 생략한다.
본 발명의 또 다른 양태에 따르면, 본 발명은 인간 내인성 레트로바이러스(Human Endogenous Retrovirus: HERV)의 엔벨로프 단백질을 코딩하며 서열목록 제1서열의 뉴클레오타이드 서열을 포함하는 핵산 분자를 제공한다.
본 발명자들은 배큘로바이러스에 기반 한 보다 향상된 유전자 전달 시스템을 구축하기 위하여 노력하였다. 그 결과, 본 발명자들은 유전자를 운반하고자 하는 목적 세포에 존재하여 이 세포에 독성을 지니지 않는 내인성 레트로바이러스의 표면 단백질을 유전자 전달 시스템에 도입시키는 경우, 유전자 전달 시스템의 전달 시스템을 크게 향상시킬 수 있음을 확인하였다.
개선된 유전자 전달 시스템을 개발하기 위하여, 본 발명자들은 우선 유전자 전달 시스템에 도입되는 HERV의 엔벨로프 단백질을 코딩하는 핵산 분자를 변형시켜 배큘로바이러스의 숙주세포인 곤충세포에서의 발현을 최적화 시켰다.
본 발명에서 유전자 전달체에 도입되는 엔벨로프 유전자는 HERV로부터 유래된 것이다. HERV는 인체 지놈 내에 삽입되어 있으나, 전체적으로 완벽한 유전자를 갖고 있지 않아 발현이 되지 않는다. 본 발명은 HERV의 비 발현 유전자를 곤충세포에서 높은 효율로 발현되도록 천연(natural-occurring)의 HERV 엔벨로프 유전자를 변형시킨 것이다.
본 명세서에서 용어 핵산 분자는 바람직하게는 DNA 분자를 의미한다.
본 발명의 HERV 엔벨로프-코딩 핵산 분자는 서열목록에 기재된 서열과 실질적인 동일성(substantial identity)을 나타내는 서열도 포함하는 것으로 해석된다. 상기의 실질적인 동일성은, 상기한 본 발명의 서열과 임의의 다른 서열을 최대한 대응되도록 얼라인하고, 당업계에서 통상적으로 이용되는 알고리즘을 이용하여 얼라인된 서열을 분석한 경우에, 바람직하게는 최소 80%의 상동성, 보다 바람직하게는 최소 85%의 상동성, 보다 더 바람직하게는 최소 90%의 상동성, 가장 바람직하게는 최소 95%의 상동성을 나타내는 서열을 의미한다. 서열비교를 위한 얼라인먼트 방법은 당업계에 공지되어 있다. 얼라인먼트에 대한 다양한 방법 및 알고리즘은 Smith and Waterman, Adv. Appl. Math. 2:482(1981); Needleman and Wunsch, J. Mol. Bio. 48:443(1970); Pearson and Lipman, Methods in Mol. Biol. 24: 307-31(1988); Higgins and Sharp, Gene 73:237-44(1988); Higgins and Sharp, CABIOS 5:151-3(1989); Corpet et al., Nuc. Acids Res. 16:10881-90(1988); Huang et al., Comp. Appl. BioSci. 8:155-65(1992) and Pearson et al., Meth. Mol. Biol. 24:307-31(1994)에 개시되어 있다. NCBI Basic Local Alignment Search Tool (BLAST) (Altschul et al., J. Mol. Biol. 215:403-10(1990))은 NBCI (National Center for Biological Information) 등에서 접근 가능하며, 인터넷 상에서 blastp, blasm, blastx, tblastn and tblastx와 같은 서열 분석 프로그램과 연동되어 이용할 수 있다. BLSAT는 http://wwww.ncbi.nlm.nih.gov/BLAST/에서 접속 가능하다. 이 프로그램을 이용한 서열 상동성 비교 방법은 http://wwww.ncbi.nlm.nih.gov/BLAST/blast_help.html에서 확인할 수 있다.
본 발명의 다른 양태에 따르면, 본 발명은 HERV의 엔벨로프 단백질을 코딩하는 상기의 핵산분자를 포함하는 재조합 벡터를 제공한다.
본 발명의 벡터는 상기 HERV의 엔벨로프-코딩 서열을 포함하기 때문에, 이 둘 사이에 공통된 내용은 본 명세서의 과도한 복잡성을 피하기 위하여, 그 기재를 생략한다.
본 발명의 벡터 시스템은 당업계에 공지된 다양한 방법을 통해 구축될 수 있으며, 이에 대한 구체적인 방법은 Sambrook et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press(2001)에 개시되어 있으며, 이 문헌은 본 명세서에 참조로서 삽입된다.
한편, 본 발명의 벡터가 발현 벡터이고, 진핵 세포를 숙주로 하는 경우에는, 포유동물 세포의 지놈으로부터 유래된 프로모터, 포유동물 바이러스로부터 유래된 프로모터 또는 배큘로바이러스 유래된 프로모터(예컨대, 폴리헤드린 프로모터)가 이용될 수 있으며, 전사 종결 서열로서 폴리아데닐화 서열을 일반적으로 갖는다.
본 발명의 벡터는 선택표지로서, 당업계에서 통상적으로 이용되는 항생제 내성 유전자를 포함하며, 예를 들어 암피실린, 겐타마이신, 카베니실린, 클로람페니콜, 스트렙토마이신, 카나마이신, 게네티신, 네오마이신 및 테트라사이클린에 대한 내성 유전자가 있다.
본 발명의 바람직한 구현예에 따르면, 본 발명의 벡터는 첨부한 도 11의 유전자 지도를 갖는다. 즉, 도 11의 벡터는 HERV의 엔벨로프 유전자의 발현은 폴리헤드린 프로모터에 의해 조절되며, 목적 유전자(가장 바람직하게는, HPV의 16L1 유전자)의 발현은 hEF1α 프로모터에 의해 조절되고, 종결신호로서 hEF1α 폴리 A 신호를 가지며, 발현 카세트 양쪽에 트랜스포존 7의 두 암이 위치해 있다.
본 발명의 또 다른 양태에 따르면, 본 발명은 HERV의 엔벨로프 단백질을 코딩하는 상기 핵산분자를 포함하는 배큘로바이러스-기반 유전자 전달체(gene carrier)를 제공한다.
본 발명의 유전자 전달체는 상술한 재조합 벡터를 곤충세포에 감염시켜 얻은 바이러스로부터 유래되기 때문에, 상기 재조합 벡터와 공통된 내용은 본 명세서의 과도한 복잡성을 피하기 위하여, 그 기재를 생략한다.
최근 유전자 전달 시스템으로는 바이러스를 이용한 방법이 주를 이루고 있다. 바이러스를 이용한 유전자 전달 시스템으로는 아데노바이러스, 레트로바이러스, 렌티바이러스 및 벡시니아 등 많은 바이러스들이 사용된다. 대부분 이들 바이러스는 사람에 새로운 감염 또는 위험을 주는 바이러스로 인체 사용에 제한을 두고 있는 반면, 배큘로바이러스는 인체 감염능이 없이 제한된 곤충에서만이 복제가 가능하여 생물학적으로 안전한 바이러스로 알려져 있다. 바이러스를 매개로한 유전자 전달 시스템은 바이러스의 감염을 통하여 이루어지는데, 이 감염은 바이러스의 표면 단백질과 목적 세포 및 동물의 수용체와의 상호작용을 통하여 결정이 된다.
본 발명은 이러한 배큘로바이러스의 이점에 착안하여 배큘로바이러스 표면에 적용 하고자 하는 동물에 존재하는 내인성 바이러스의 표면 단백질을 재조합하여 삽입시킴으로써, 보다 향상된 유전자 전달 시스템을 제공한다. 내인성 바이러스는 사람을 비롯하여 돼지, 쥐, 고양이 및 개 등을 비롯한 모든 포유류를 비롯하여 넓게 분포 하고 있는 것으로 알려져 있다.
본 발명의 유전자 전달체의 경우, 인간의 내인성 레트로바이러스의 엔벨로포 단백질이 표면에 결합되어 있기 때문에, 인간 세포 내로 원하는 유전자를 높은 효율로 그리고 안전하게 운반할 수 있다. 따라서, 본 발명의 유전자 전달체는 다양한 질환 및 질병에 대한 유전자 치료제의 개발에 유용하게 이용될 수 있다.
본 발명의 특징 및 이점을 요약하면 다음과 같다:
(ⅰ) 본 발명의 백신은 항원 유전자와 바이러스의 외래 엔벨로프 단백질을 코딩하는 뉴클레오타이드 서열을 포함하는 재조합 배큘로바이러스를 포함한다.
(ⅱ) 본 발명의 재조합 배큘로바이러스는 표면의 엔벨로프 단백질에 의해 인간 세포의 수용체 매개 파고사이토시스를 유도할 수 있으며, 발현되는 항원 단백질(예컨대, HPV L1)에 의해 주입되는 생체 내에서 면역반응을 유발한다.
(ⅲ) 더욱이, 본 발명의 재조합 배큘로바이러스는 체액성 면역뿐만 아니라 세포성 면역 반응도 우수하게 유발한다.
(ⅳ) 결국, 본 발명의 재조합 바이러스는 이러한 작용에 의해 특정 항원에 의해 유발되는 다양한 질환(예컨대, 자궁경부암)에 대한 예방 효능을 잘 발휘할 수 있다.
(ⅴ) 종래의 HPV 백신인 가다실과 비교하여 본 발명의 재조합 배큘로바이러스는 HPV에 대한 체액성 면역 유도능이 거의 동일할 뿐만 아니라, 가다실이 가지고 있지 않은 HPV에 대한 세포성 면역 유도능을 가지고 있어, 가다실보다 우수한 HPV 백신 효능을 발휘할 수 있다.
(ⅵ) 본 발명에 따르면 안전하고 경제적인 백신을 제공할 수 있다.
도 1은 본 발명에서 이용된 전이 벡터 pAc-hEF1α16L1의 제작 과정을 대략적으로 나타낸 모식도이다. 도 1에서, 검은 화살표는 폴리헤드린 프로모터, 백색 화살표는 hEF1α 프로모터, 그리고 작은 검은 사각형은 hEF1α 폴리 A 시그널을 나타낸다.
도 2는 본 발명에서 이용된 전이 벡터 pAcHERVenv-hEF1α16L1의 제작 과정을 대략적으로 나타낸 모식도이다. 도 1b에서, 검은 화살표는 폴리헤드린 프로모터, 백색 화살표는 hEF1α 프로모터, 그리고 작은 검은 사각형은 hEF1α 폴리 A 시그널을 나타낸다.
도 3은 제작된 pAc-hEF1α16L1 및 pAcHERVenv-hEF1α16L1을 포함하는 키메라 배큘로바이러스 전이 벡터 및 바이러스의 예상 모식도이다. 도 1c에서, 검은 화살표는 폴리헤드린 프로모터, 백색 화살표는 hEF1α 프로모터, 그리고 작은 검은 사각형은 hEF1α 폴리 A 시그널을 나타낸다.
도 4-7은 본 발명에서 합성한 HERV 표면 단백질의 유전자 서열과 기존의 HERV 표면 단백질의 유전자 서열의 상동성을 비교한 도면이다. NM 014590은 HERV 표면 단백질의 유전자의 GenBank 접근번호(accession no.)이다.
도 8은 Ac-hEF1α16L1 및 AcHERVenv-hEF1α16L1을 감염시킨 Huh7 세포에서 HPV 16L1 유전자의 발현 정도를 분석한 RT-PCR 결과 사진이다. "NTC"는 템플레이트를 넣지 않은 대조군을 나타낸다. AcHERVenv-hEF1α16L1은 돼지 내인성 레트로바이러스의 엔벨로프 단백질을 포함하는 것으로서, Huh7 인간세포에 거의 감염되지 않은 것을 확인할 수 있다.
도 9는 Ac-hEF1α16L1 및 AcHERVenv-hEF1α16L1을 감염시킨 Huh7 세포와 정상 Huh7세포에서의 HPV 16L1 발현을 면역세포화학법을 통하여 분석한 사진이다. AcHERVenv-hEF1α16L1은 돼지 내인성 레트로바이러스의 엔벨로프 단백질을 포함하는 것으로서, Huh7 인간세포에 거의 감염되지 않은 것을 확인할 수 있다.
도 10은 Ac-hEF1α16L1 및 AcHERVenv-hEF1α16L1을 감염시킨 Huh7 세포 내에서의 HPV 16L1 mRNA 발현수준을 정량하기 위하여 실시간 PCR에 의한 정량분석을 Delta-Delta CT 법으로 수행한 결과이다. AcHERVenv-hEF1α16L1은 돼지 내인성 레트로바이러스의 엔벨로프 단백질을 포함하는 것으로서, Huh7 인간세포에 거의 감염되지 않은 것을 확인할 수 있다.
도 11은 본 발명의 일 실시예에서 구축한 벡터의 유전자 지도이다. Polh 프로모터, 폴리헤드린 프로모터; HERVenv, HERV의 엔벨로프 유전자; 그리고, Tn7R 및 Tn7L은 각각 트랜스포존 7의 오른쪽 암 및 왼쪽 암. AcHERVenv-hEF1α16L1의 경우, 목적 유전자의 위치에 HPV의 16L1 유전자가 위치한다.
도 12는 본 발명의 키메라 배큘로바이러스로 면역화한 혈청에서의 IgG 항체 반응을 나타내는 ELISA 분석 결과이다. 시료는 1:100으로 희석, 항-마우스 IgG는 1:2,000으로 희석하여 사용하였다. 각 그룹에서 왼쪽 막대부터 오른쪽으로 각각 1주, 3주, 5주, 9주 및 14주에 해당되는 것이다.
도 13은 본 발명의 키메라 배큘로바이러스로 면역화한 질 세척액에서의 IgA 항체 반응 측정 결과를 나타낸다. 시료는 1:50으로 희석, 항-마우스 IgA는 1:1,000으로 희석하여 사용하였다. y 축은 405 nm에서의 흡광도 값이다. 각 그룹에서 왼쪽 막대부터 오른쪽으로 각각 1주, 3주, 5주, 9주 및 14주에 해당되는 것이다.
도 14는 본 발명의 키메라 배큘로바이러스로 면역화된 마우스의 항혈청에 의한 HPV16 PVs(pseudoviruses)에 대한 중화 반응을 보여준다.
도 15는 세포성 면역반응을 측정하기 위한 ELISPOT 분석 결과이다. 비장세포에 대하여 ELISPOT 분석으로 IFN-γ을 발현하는 지 여부를 조사하였다. CD8+ T 세포를 HPV 16 PVs 또는 HPV18 PVs로 자극하였다. (A)는 가다실로 면역화 한 실험군, (B)는 AcHERVenv-hEF1α16L1 또는 AcHERVenv-hEF1α18L1으로 면역화 한 실험군, (C)는 대조군.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
실시예
재료 및 방법
세포 준비
곤충세포인 Sf9(ATCC CRL-1711)은 27℃, 10% FBS(fetal bovine serum, Gibco BRL)과 1% 페니실린/스트렙토마이신(Gibco BRL)이 들어 있는 TC-100 배지(Welgene)에서 배양 하였다. 293TT 세포(Schiller Lab, 미국 NCI)는 10% FBS 및 하이그로마이신 B(400 ㎍/ml)(Invitrogen Corp.)로 보충된 DMEM(Dulbecco's modified minimal essential medium)에서 배양하였다. 인간 간암 세포주인 Huh7(JCRB0403)은 5% CO2와 37℃ 온도 하에서 10% FBS (Gibco BRL)와 1% 페니실린/스트렙토마이신(Gibco BRL) 이 들어 있는 DMEM 배지에서 배양 하였다. HeLa 세포(ATCC)는 10% FBS, 100 U 페니실린/ml 및 100 ㎍ 스트렙토마이신/ml이 들어 있는 DMEM 배지에서 배양 하였다.
HERV 표면 단백질을 암호화 하는 유전자 합성
HERV(human endogenous retrovirus)는 실제 사람에게 존재하는 내인성 바이러스로 대부분은 불활성화 된 상태로 사람의 지놈 상에 존재하고 있다. HERV의 표면 단백질을 획득하기 위하여, HERV 표면 단백질을 코딩하는 유전자를 직접 합성하였으며, 합성 시에 유전자의 염기서열을 곤충세포에서의 발현에 적합하도록 최적화 하였다(GeneScript). 자체 합성된 HERV 표면 단백질을 코딩하는 유전자를 pUC57 벡터(GeneScript)의 EcoRV 위치에 삽입하여 pUC57-HERVenv를 제작 하였다.
전이벡터의 클로닝
전이벡터(transfer vector)의 클로닝 과정을 포함하는 재조합 배큘로바이러스의 제조는 제조사(Invitrogen)의 프로토콜에 따라 Bac-to-BacTM 배큘로바이러스 발현 시스템을 이용하여 실시하였다. 재조합 배큘로바이러스 시스템을 이용하여 동물세포에서 HPV 16L1 단백질을 발현시키기 위하여, AcMNPV(Autographa californica multiple nuclear polyhedrosis virus) 전이벡터에 인간 연장인자 1α 프로모터(hEF1α)와 HPV 16L1 유전자를 삽입시켰다. 우선, hEF1α프로모터 뒤로 HPV 16L1 유전자와 hEF1a 폴리 A 시그널이 연결된 유전자 부분을 플라스미드 DNA인 p16L1L2(Schiller Lab, 미국 NCI; Christopher B. Buck et al., J. Virol. 82(11):51905197(2008))를 주형으로 하여 PCR 증폭 시켰다. 사용된 프라이머의 서열은 다음과 같다: 센스 프라이머 5-GGCTCCGGTGCCCGTCAGTGGGCA-3; 안티센스 프라이머 5 -TTAATTAACCCACGTTTCAACATG-3'.
PCR 증폭산물을 pGEM-Teasy 벡터(Promega)에 클로닝하고, pGEM-Teasy/hEF1α16L1에서 hEF1α16L1을 EcoRI으로 절단하고, pFastBacTM1(Invitrogen) 전이벡터의 EcoRI 부위에 삽입 하여 pAc-hEF1α16L1 벡터를 제조하였다(참조: 도 1). pUC57-HERVenv에서 SalI으로 절단하여 HERV 표면 단백질 유전자를 pFastBacTM1에 삽입 시키고, hEF1α16L1은 pGEM-Teasy/hEF1α16L1을 NotI으로 절단 한 후 pFastBacTM1-HERVenv 전이벡터에 삽입하여, pAcHERVenv-hEF1α16L1 벡터를 제조하였다(참조: 도 1b). 클로닝한 전이벡터들의 ORF(open reading frame)를 확인하기 위하여 ABI 유전자 서열 분석기(ABI)를 이용하여 유전자 서열을 분석 하였다.
재조합 배큘로바이러스의 제작
클로닝한 재조합 전이벡터를 각각 DH10Bac(Invitrogen)에 형질전환 시켜 재조합 백미드(bacmid, baculovirus shuttle vector)를 생산하였다. 재조합 된 백미드의 구별은 M13 프라이머(Invitrogen)를 이용하여 PCR을 통해 확인하였다. 확인된 세 종류의 백미드는 재조합 배큘로바이러스를 제작하기 위하여 리포펙틴(Invitrogen)을 이용하여 Sf9 세포에 형질 감염 시켰다. 4일 후 감염된 세포에서 생성된 바이러스는 수집하여 새로운 Sf9 세포에 반복적으로 감염시켜 높은 역가의 바이러스를 생산하였다. 그리고 선발된 재조합 바이러스를 각각 AcHERVenv-hEF1α16L1 및 Ac-hEF1α16L1이라고 명명하였다(참조: 도 1c). 최종적으로 준비된 재조합 배큘로바이러스들의 역가는 Sf9 세포에서 플라크 확인 법을 통하여 확인 하였다. 한편, HPV 18L1 유전자를 운반하는 재조합 배큘로바이러스(AcHERVenv-hEF1α18L1)는 이용되는 HPV 18L1 유전자(GenBank accession No.AY383629)을 제외하고는 상술한 HPV 16L1에 대한 재조합 배큘로바이러스(AcHERVenv-hEF1α16L1)과 동일한 방법으로 제조하였다.
재조합 배큘로바이러스를 이용한 Huh7 세포로의 유전자 도입
Huh7 세포를 24-웰 플레이트에 1 x 105 세포/웰로 분주하여 37℃에 배양하였다. 배양 12시간 후 PBS로 세척해 주고, 100 MOI로 Ac-hEF1α16L1 및 AcHERVenv-hEF1α16L1 바이러스를 감염 시켰다. 37℃에서 10시간 배양한 뒤 10% FBS와 1% 페니실린/스트렙토마이신이 함유된 새로운 DMEM 배지로 교체하고 48시간 배양 하였다. 각각의 바이러스에서 발현되는 HPV 16L1의 발현 정도는 다음의 실험을 통해 알아보았다.
역전사중합효소연쇄반응(RT-PCR) 분석
유전자 도입이 된 Huh7 세포로부터 RNeasy mini 키트(Qiagen, Valencia, CA)를 이용하여 총 RNA를 정제하고 디옥시리보뉴클레아제I(DNaseI, Promega, Madison, WI)을 처리하여 DNA를 제거 하였다. 정제된 RNA는 M-MuLV 역전사효소(Bioneer, USA)를 이용하여 cDNA를 합성 하였다. 2.5 ㎕ 의 cDNA를 7.5 ㎕의 중합효소연쇄반응의 반응혼합물(PCR reaction mixture)에 첨가하여 Thermal Cycler PCR(GeneAmp PCR system 9700, Perkin-Elmer Cetus, USA)을 이용하여 PCR을 하였다. PCR 조건은 94℃에서 3분으로 핫 스타트를 1 회 수행한 후, 94℃에서 30초간 변성반응을 시킨 후, 62℃에서 20초간 어닐링 반응, 그리고 72℃에서 20초간 연장 반응 30 사이클이다. 반응에 이용된 프라이머는 센스 프라이머 5-CAGGGCCACAACAACGGCATCTGCTGGG-3, 안티센스 프라이머 5 -GGCTGCAGGCCGAAGTTCCAGTCCTCCA-3이며, 약 275 bp의 증폭산물을 기대할 수 있다. 시료들 사이의 RT-PCR 효율을 보정하기 위해 하우스킵핑 유전자인 18S rRNA (ribosomal RNA) 유전자를 이용 하였다. PCR 산물들을 1.5% 아가로즈 겔에서 확인 하였다.
실시간 PCR에 의한 정량분석 (Q-PCR).
감염된 세포들 내에서의 HPV 16L1 mRNA 발현 수준을 정량하기 위하여 이전에 보고(Dhar et al., 2001)된 대로 실시간 PCR에 의한 정량분석(Q-PCR)을 수행 하였다. 총 HPV 16L1 mRNA 발현 수준은 실시간 PCR(Roter Gene 3000, Corbett Research, Australia) 기기를 이용하여 4회 반복 실험을 하여 확인하였다. PCR 반응 혼합액에는 5 ㎕의 DyNAmoTM HS SYBRTM Green qPCR 키트 반응 액과 5 ㎕의 샘플 용액(프라이머와 주형)이 첨가 되어 있다. 프라이머는 16L1 센스 프라이머 5’-CAGCGAGACCACCTACAAGA-3 와 안티센스 프라이머 5-GCTGTTCATGCTGTGGATGT-3 로 구성 되었으며 약 138 bp의 증폭산물을 기대할 수 있다. 초기 DNA 변성과정을 95℃에서 5분, 94℃에서 변성 반응 10초, 62℃에서 어닐링 20초, 그리고 72℃에서 20초간 연장 반응을 45 사이클 실시하여 PCR 증폭 산물을 얻었다. PCR을 마친 후 표적 분자들의 카피수와 멜팅 커브 분석(melting curve analysis)을 하였고, 소프트웨어 Roter-Gene ver. 6.0(Roter Gene 3000, Corbett Research, Australia) 프로그램을 이용하였다.
면역세포화학법(Immunocytochemistry)
Huh7 세포를 유리 슬라이드에 분주하고 Ac-hEF1α16L1와 AcHERVenv -hEF1α16L1 바이러스를 각각 100 MOI로 형질감염 시켰다. 감염 된지 48 시간이 되는 세포들을 4% 포름알데하이드로 4℃에서 12시간 고정 시키고 PBS(Phosphate Buffered Saline)로 세척한 후 0.5% Triton X-100이 든 PBS를 넣어 37℃에서 10분간 배양시켰다. 그 다음으로는 PBS 로 세척한 후 5% 정상 염소 혈청이 든 PBS로 37℃에서 30분간 블록킹 하였다. 이 후 HPV 16L1 단일클론 항체(Camvir-1)와 함께 하루 동안 4℃ 환경에서 반응시켰다. 반응시킨 세포를 PBS로 30분간 세척 후 마우스 IgG-호스래디쉬 퍼옥시다아제 항체를 사용하여 1시간 반응시킨 뒤 PBS로 세척 한 후 공초점 레이저 주사 현미경(confocal laser scanning microscope, FV-1000 spectral, Olympus, Japan) 기기를 이용하여 HPV 16L1 단백질의 존재 여부를 확인 하였다.
가다실
가다실TM(MERCK & CO, USA, MSD, Korea)은 HPV 쿼드리밸런트(Quadrivalent, 타입 6, 11, 16 및 18) 백신으로서, 본 실험에서는 면역반응 양성 대조군으로 이용하였다.
마우스
자성의 4주령 BALB/c 마우스를 오리엔트-바이오(대한민국)로부터 구입하고 필터 팁 조건 하에서 물과 사료에 자유롭게 접근할 수 있도록 하면서 사육 하였다.
마우스의 면역화
재조합 배큘로바이러스를 멸균 PBS에 총 부피 100 ㎕로 희석한 다음, 107 PFU(plaque forming unit)의 양으로 마우스의 하단 다리 근육에 주사하여 면역화 시켰다. 24 마리의 BALB/c 마우스를 8개의 군으로 나누었다(표 1). 선택된 프라임/부스트 레짐에 따라 각각의 군의 마우스에 주사하였다. 면역화는 2주 간격으로 3번씩 실시하였고, 각각의 면역화 후 1주째에 혈액 및 질 세척액(vaginal washes)을 수집하였다. 분석 전에, 항-혈청을 열 변성시켰다.
표 1
실험군 면역화(2주 간격)
1차 2차 3차
1군 가다실 가다실 가다실
2군 AcHERVenv-hEF1α16L1또는 AcHERVenv-hEF1α18L1 AcHERVenv-hEF1α16L1또는 AcHERVenv-hEF1α18L1 AcHERVenv-hEF1α16L1또는 AcHERVenv-hEF1α18L1
3군 AcHERVenv-hEF1α16L1또는 AcHERVenv-hEF1α18L1 AcHERVenv-hEF1α16L1또는 AcHERVenv-hEF1α18L1 가다실
4군 AcHERVenv-hEF1α16L1또는 AcHERVenv-hEF1α18L1 가다실 가다실
5군 AcHERV 가다실 가다실
6군 AcHERV AcHERV 가다실
7군 AcHERV AcHERV AcHERV
8군 PBS PBS PBS
ELISA
HPV16 L1과 말토오스 결합 단백질(MBP)이 결합된 MBP-L1(바이오프로젠, 한국)을 1 ㎍/ml로 60 ㎕를 ELISA 플레이트의 각각의 웰에 첨가하고, 4℃에서 14-16시간 동안 처리하였다. 0.1% Tween-20를 포함하는 PBS(블록킹 완충액) 내의 5% 스킴 밀크로 웰을 37℃에서 2시간 동안 블록킹하였다. 0.05% Tween-20 및 0.05% NP-40을 포함하는 PBS로 세척한 다음, 블록킹 완충액으로 1:100 희석된 혈청 시료를 웰에 첨가하고 실온에서 1시간 동안 반응시켰다. IgG 검출을 위하여 항-마우스 IgG-HRP(SC-2030, Santa Cruz Biotechnology, Inc., Santa Cruz, CA)를 블록킹 완충액로 1:2,000으로 희석하고, 웰에 첨가하였다. IgA 검출을 위하여 항-마우스 IgA-HRP(SC-3791, Santa Cruz Biotechnology, Inc., Santa Cruz, CA)를 블록킹 완충액로 1:1,000으로 희석하고, 웰에 첨가하였다. 0.1 M 시트레이트 완충액(pH 4.7) 내의 o-페닐렌디아민 기질을 웰에 첨가하고 450 nm에서의 흡광도를 측정하였다.
슈도바이러스의 제조
Schiller (J. Virol. 78(2):751757(2004))가 제안한 방법에 따라 293TT 세포의 공동형질전환을 실시하여 PVs(pseudoviruses)를 제조하였다. 우선, 형질전환 16시간 전에 293TT 세포를 25 T 플라스크에 씨딩하고, L1/L2-플라스미드 및 pfwB 플라스미드(강화 녹색형광단백질(GFP)을 발현)의 혼합물로 Lipofectin(Invitrogen)을 이용하여 형질전환 시켰다. 사용된 플라스미드의 뉴클레오타이드 맵은 “http://ccr.cancer.gov/Staff/links.asp?profileid=5637”에서 확인할 수 있다. HPV16 PVs의 제조를 위하여, pfwB 및 p16L1/L2 각각 9 ug으로 세포를 형질전환 시켰다. 또한 HPV18 PVs의 제조를 위하여, pfwB 및 p18L1/L2 각각 9 ug으로 세포를 형질전환 시켰다. 4-6시간 후, 형질전환 세포의 배지를 교체 하였다. 형질전환 48시간 후 세포를 수집 하였다. 상등액을 분획하고 다음 실험 전까지 -80℃에서 보관 하였다.
중화반응 분석
면역 주사한 마우스의 희석 혈청 및 PVs의 혼합물을 실온에서 1시간 동안 인큐베이션 시켰다. 접종 16시간 전에 1 x 104 개로 씨딩된 HeLa 세포에 혼합물을 접종하여 2일간 인큐베이션 후, 형광현미경 하에서 GFP 발현을 관찰하였다. GFP 발현 수준을 정상 마우스 혈청으로 처리한 시료의 1/2까지 감소시키는 혈청의 최대 희석도의 역수로서 중화 타이터를 나타내었다.
IFN-γ효소-연결 면역스팟 분석(enzyme-linked immunospot: ELISPOT)
PBS 100 ㎕ 내의 항-마우스 감마 인터페론(IFN-γ) 포획 항체(BD Bioscience) 200 ng으로 96 웰 플레이트를 4℃에서 하룻밤 동안 코팅 하였다. 플레이트를 배지(RPMI 1640 with 10% FBS) 100 ㎕로 2시간 동안 37℃에서 블록킹 하고, 비장세포를 웰 당 1 X 106 세포 밀도로 두 개씩 씨딩 하였다. 이어, 2 x 106 IFU로 PVs를 접종 하고 37℃에서 24시간 동안 인큐베이션 하였다. PBS0.05% Tween 20로 3회 세척하여 세포를 제거하였다. 이어, PBS10% FBS 100 ㎕ 내의 멸균-필터링된 바이오틴화 항-마우스 IFN-γ 검출항체 20 ng을 각각의 웰에 첨가하고, 플레이트를 실온에서 2시간 동안 방치 하였다. PBS0.01% Tween 20으로 플레이트를 3회 세척한 다음, 스트렙타비딘-알칼린 포스파타아제 1:1,000 희석액 100 ㎕를 첨가하였다. 그런 다음, 플레이트를 실온에서 1시간 동안 인큐베이션 하고 PBS0.01% Tween 20으로 3회 세척하고, PBS로 3회 세척하였다. 플레이트에 AEC 기질 시약(BD Biosciences, CA, USA) 100 ㎕를 첨가하고 10분 동안 반응시켰다. 플레이트를 증류수로 세척하여 반응을 정지시켰다. 스팟을 ELISPOT 리더(AID ElispotReader ver.4, Germany)로 정량화 하였다. 배지만 있고 비장세포가 처리되지 않은 웰을 음성 대조군으로 이용하였다. 백그라운드 웰의 카운트를 시료로부터 감가하였다.
실험 결과
HERV 표면 단백질의 유전자 합성.
전이 벡터 제작에 이용할 HERV 표면 단백질(Env) 유전자는 자체적으로 유전자 합성을 통해 제작 되었으며, 곤충 세포 내에서 효과적으로 발현 할 수 있도록 곤충 유전자 암호에 맞게 유전자를 최적화 시켰다. 이와 같이 합성된 HERV 표면 단백질의 아미노산 서열은 기존 보고된 HERV 표면 단백질의 아미노산 서열을 그대로 유지 하도록 하면서 유전자 서열 일부분만 일부 변경을 하였다. 서열목록 제1서열 및 제2서열은 본 실험에 사용하기 위하여 합성시킨 1617 bp의 HERV 표면 단백질의 유전자 서열과 아미노산 서열이다. 또한 도 4-7을 통하여 기존의 HERV 표면 단백질의 유전자 서열과 합성시킨 본 발명의 유전자 서열을 비교하였다. 도 4-7에서 볼 수 있듯이 약 73.5%의 유전자 서열이 상동성을 가졌음을 알 수 있다.
재조합 배큘로바이러스의 제작
재조합 배큘로바이러스를 제조하기 위하여, pAc-hEF1α16L1 및 pAcHERVenv-hEF1α16L1 두 가지의 전이 벡터의 제작을 계획 하였으며 예상되는 배큘로바이러스의 형태를 예상해 보았다(도 3). 배큘로바이러스 표면의 단백질을 추가하기 위하여 폴리헤드린 프로모터(polyhedrin promoter) 뒤로는 HERV 표면 단백질(Env)의 유전자를 삽입 하였고, HPV 16L1 유전자는 hEF1α에 의해 발현을 조절 받도록 구성 하였다. HERV의 Env는 인간 세포의 수용체 매개 파고사이토시스를 유도한다. 도 1은 pAc-hEF1α16L1 클로닝 방법을 나타낸 것이고, 도 2는 pAcHERVenv-hEF1α16L1 클로닝 방법을 간략히 나타낸 것이다. 동일한 방법으로 pAcHERVenv-hEF1α18L1 클로닝을 하였다.
곤충 바이러스 프로모터의 조절을 받게 만든 HERV 표면 단백질의 경우에 곤충 세포에서는 매우 높은 발현 양을 나타내지만 동물 세포에서는 발현이 제대로 일어나지 못하는 특징을 가지게 된다. 이와 반대로 HPV 16L1 단백질의 경우에는 인간 프로모터인 인간 연장인자 1α 프로모터(hEF1α)를 갖기 때문에 동물세포에서는 효율적으로 발현이 활성화 되지만 곤충세포에서는 아예 발현을 못하거나 매우 미세한 발현만이 가능하다. 클로닝된 각각의 플라스미드를 이용하여 재조합 백미드를 만들어 Sf9 세포에 형질 감염시켜 높은 역가의 바이러스를 생산 하였다.
Huh7로의 HPV 16L1 유전자의 형질 도입 효율 측정
배큘로바이러스 표면이 변형됨에 따른 HPV 16L1 유전자의 전달 효율을 알아보기 위하여, Ac-hEF1α16L1 및 AcHERVenv-hEF1α16L1 바이러스를 Huh7 세포에 각각 100 MOI로 감염 시켰다. HPV 16L1 mRNA 발현 수준을 먼저 RT-PCR로 확인하였다. 도 8과 같이 전기영동을 통해Ac-hEF1α16L1 및 AcHERVenv-hEF1α16L1을 감염시킨 세포에서 약 275 bp의 HPV 16L1 증폭산물을 확인 할 수 있었다. 그러나 HPV 16L1 유전자의 증폭 정도는 차이가 있었다. 배큘로바이러스 표면에 HERV 표면 단백질을 가진 AcHERVenv-hEF1α16L1 경우 표면을 변형시키지 않은 배큘로바이러스에 비해 HPV 16L1 유전자 증폭 산물의 양이 높았다.
다음은 Ac-hEF1α16L1 및 AcHERVenv-hEF1α16L1 바이러스가 감염된 Huh7 세포에서의 HPV 16L1 발현을 현미경 상으로 확인하기 위하여 면역세포화학 분석을 수행 하였다. 감염 된지 48 시간이 되는 세포들을 가지고 HPV 16L1 단일클론 항체(Camvir-1)와 마우스 IgG-호스래디쉬 퍼옥시다아제 항체로 염색하여 공초점 레이저 주사 현미경을 통하여 HPV 16L1 단백질의 존재 여부를 확인 하였다. 도 9에서 볼 수 있듯이, 바이러스를 감염시키지 않은 Huh7 세포와 비교 하였을 때 HERVenv-hEF1α16L1 및 Ac-hEF1α16L1 바이러스로 감염 시킨 세포에서 전반적으로 형광을 띄는 것을 확인 할 수 있었다. 그러나, 두 가지 시료에서 HPV 16L1의 발현을 통한 형광 정도의 차이를 확실하게 구별을 할 수 없어서 다음과 같은 추가적인 실험을 하였다.
감염을 통한 HPV 16L1 유전자의 전달 효율을 확실하게 수치화하기 위하여 실시간 PCR에 의한 정량분석(Q-PCR)을 수행하였다. Q-PCR 분석의 정확성은 표준곡선를 지정해 줌으로써 확인 하였다. 실험은 4회 반복을 통해 이루어 졌으며 도 10과 같이, Roter-Gene ver. 6.0을 이용하여 Delta-Delta CT 법으로 상대 정량을 하였다. 하기 표 1에서 볼 수 있듯이, Ac-hEF1α16L1 바이러스를 감염시킨 세포의 카피수를 1로 보았을 때 AcHERVenv-hEF1α16L1 바이러스로 감염 시킨 세포에서의 유전자 카피수가 4.17 배 높은 것을 확인할 수 있었다.
표 2
바이러스명 GOI CT GOI 카운트 Norm.CT ΔCT Δ-ΔCT 상대적 농도 보정
AcHERVenv-hEF1α16L1 22.89 2 19.45 3.44 -2.06 4.17 -
AcPERVenv-hEF1α16L1 25.85 2 18.24 7.61 2.11 0.23 -
AchEF1α16L1 23.93 2 18.44 5.5 0 1 Yes
마우스에서의 면역반응
AcHERVenv, AcHERVenv-hEF1α16L1, 또는 AcHERVenv-hEF1α18L1 107 PFU를 근육내 주사하였으며, 양성 대조군으로서 가다실 투여군, 음성 대조군으로서 AcHERVenv 투여군과 PBS 투여군을 나누어 각 실험군의 면역반응을 비교하였다. ELISA 분석을 수행하여 면역화 마우스 혈청으로부터 HPV16L1-특이 IgG 항체 또는 HPV18L1-특이 IgG 항체를 측정하였다. 면역화 하기 전, AcHERVenv만을 주사한 군, 그리고 PBS만을 주사한 군의 혈청에서는 예상한 대로, 현저히 낮은 수준의 IgG 항체가 관찰되었다. 도 12에서 보는 바와 같이, 첫 번째 면역화 후에는 가다실투여군(Group1) 만이 IgG 항체 반응을 보였고, AcHERVenv-hEF1α16L1 또는 AcHERVenv-hEF1α18L1 투여군(Group 2)에서는 명확한 IgG 항체 반응을 보이지 않았다. 가다실을 두 번 면역화 하여 얻은 혈청에서는 IgG 항체 반응이 첫 번째 면역화 때 보다 약 2.7배(HPV16) 또는 2배(HPV18) 증가하였으며, 가다실을 세 번째 면역화 하였을 때는 두 번째 보다 1.3배(HPV16) 또는 1.3배(HPV18), 첫 번째 보다 약 3.5배 (HPV16) 또는 2.5배(HPV18) 증가하였다(Group 1). AcHERVenv-hEF1α16L1 또는 AcHERVenv-hEF1α18L1을 두 번 면역화 하여 얻은 혈청에서는 IgG 항체 반응이 첫 번째 면역화 때 보다 3배(HPV16) 또는 2배(HPV18) 증가하였으며, AcHERVenv-hEF1α16L1 또는 AcHERVenv-hEF1α18L1을 세 번째 면역화 하였을 때는 두 번째 보다 1.1배(HPV16) 또는 1.1배(HPV18), 첫 번째 보다 약 3.3배(HPV16) 또는 2.4배(HPV18) 증가하였다(Group 2). 따라서 AcHERVenv-hEF1α16L1 또는 AcHERVenv-hEF1α18L1를 주사한 마우스의 혈청에서의 IgG 항체 반응은 가다실을 주사했을 경우와 비슷함을 알 수 있다. 또한 첫 면역화 후, 9주째와 14주 이후에도 IgG 항체 반응이 관찰된 것으로 보아 면역력이 유지됨을 알 수 있었다.
분비성 IgA 반응은 면역화 마우스의 질 세척액을 이용하여 ELISA를 수행하여 측정하였으며, 가다실을 주사한 실험군뿐만 아니라 AcHERVenv-hEF1α16L1 또는 AcHERVenv-hEF1α18L1을 주사한 군에서도 IgA 항체가 분비됨을 확인하였다(도 13). 첫번째 면역화에 이어 두 번째 세 번째 면역화 후 IgA 항체 분비가 증가함을 확인하였으며, 첫 면역화 후, 9주째와 14주 이후에도 IgA 항체 반응이 관찰된 것으로 보아 면역력이 지속됨을 알 수 있었다. 따라서 AcHERVenv-hEF1α16L1 또는 AcHERVenv-hEF1α18L1 면역화가 마우스에서 점막 면역 반응을 유도할 수 있음을 알 수 있다.
마우스 항혈청에 의한 HPV 타입 16, 18 및 BPV PVs의 중화
항혈청의 중화 활성은 HeLa 세포에서 GFP 발현 플라스미드를 감염성 HPV16 또는 HPV18 PVs의 감염을 억제하는 정도에 의해 결정하였다. 중화항체 타이터는 혈청을 최대 희석하고 (5배수 혈청 희석), 혈청 처리되지 않는 시료와 비교하여 GFP 발현 수준이 50% 또는 90% 감소하는 때의 역수로 표현하였다. 각 실험군의 희석된 혈청의 HPV16 또는 HPV18 PVs에 대한 중화 활성은 도 14와 같다. 도 14는 50% 중화 되었을 때의 중화 타이터이며, 첫 번째 면역화 후 두 번째 및 세 번째 면역화 후의 중화항체 타이터가 모든 실험군에서 높게 나타났다. 세 번째 면역화 후, Group 1과 2에서의 중화항체 타이터는 156,250이었으며, 가다실을 투여한 군과 본 발명에서 개발한 AcHERVenv-hEF1α16L1또는 AcHERVenv-hEF1α18L1을 투여한 군에서의 B 세포 체액성 면역에서는 유의한 차이가 없이 높게 나타남을 알 수 있었다. 또한, 중화 활성 50%를 기준으로 Group 3과 4에서, AcHERVenv-hEF1α16L1 또는 AcHERVenv-hEF1α18L1 로 프라이밍 한 후, 가다실로 부스팅 하는 경우의 중화 타이터가 234,375에서 312,500으로 높게 나타남을 확인 할 수 있다. 특히, AcHERVenv-hEF1α16L1 로 프라이밍 한 후, 가다실로 2번 부스팅 하는 경우인 Group4 의 중화 타이터가 312,500으로 가장 높게 나타남을 확인 할 수 있다. 이 결과로써, AcHERVenv-hEF1α16L1의 프라이밍이 가다실의 부스팅 효과를 향상 시킬 수 있음을 기대할 수 있다.
세포성 면역 반응 분석
면역화 마우스에서 T 세포 면역 반응을 확인하기 위하여, ELISPOT 분석을 수행 하였다. AcHERVenv-hEFα16L1 또는 AcHERVenv-hEF1α18L1을 3번 면역한 Group 2의 마우스 비장세포 1 X 106 개에서 약 500개의 스팟이 생성됨을 관찰하였으며, 가다실 면역한 Group 1 또는 음성대조군에서는 IFN-γ의 분비로 인한 스팟을 관찰할 수 없었다. 가다실, AcHERVenv-hEFα16L1 또는 AcHERVenv-hEF1α18L1 그리고 PBS를 주사한 마우스 중에서, AcHERVenv-hEF1α16L1 또는 AcHERVenv-hEF1α18L1으로 면역화 한 마우스에서 강한 HPV16 특이 T 세포 반응(IFN-γ의 분비)이 발생함을 확인하였으며, 가다실로 면역화한 실험군은 전혀 세포성 면역을 일으키지 못하였다(도 15).
결론적으로, AcHERVenv-hEFα16L1 또는 AcHERVenv-hEF1α18L1 키메라 배큘로바이러스는 동물 생체 내 안전하게 DNA 백신을 효율 있게 전달해줌으로써 체액성 면역에서는 기존 백신 가다실과 거의 동일한 효과를 나타내며, AcHERVenv-hEFα16L1 또는 AcHERVenv-hEF1α18L1 키메라 배큘로바이러스와 가다실의 병용 백신 접종을 하는 경우에는 가다실 단독보다는 더 높은 중화 항체가를 보였다. 세포성 면역에서는 가다실은 단백질을 주입함으로 예상된 결과처럼 세포성 면역을 일으키지 못하나, AcHERVenv-hEFα16L1 AcHERVenv-hEF1α18L1 키메라 배큘로바이러스는 APC(antigen presentation cell) 내에서 DNA 백신으로 L1 유전자를 발현함으로써 매우 강한 세포성 면역능을 유도하였기에 백신 효능 면에서는 가다실보다 우수한 새로운 안전하고 경제적인 백신이라 할 수 있다.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.
참조 문헌
Abe T, Takahashi H, Hamazaki H, Miyano-Kurosaki N, Matsuura Y, Takaku H. (2003) Baculovirus induces an innate immune response and confers protection from lethal influenza virus infection in mice. Journal of Immunology, 171: 1133-1139.
Ault KA, Giuliano AR, Edwards RP, Tamms G, Kim LL, Smith JF, Jansen KU, Allende M, Taddeo FJ, Skulsky D, Barr E.(2004) A phase I study to evaluate a human papillomavirus (HPV) type 18 L1 VLP vaccine. Vccine 22(23-24):3004-7.
Baskin LS, Yucel S, Cunha GR, Glickman SE, Place NJ. (2006) A neuroanatomical comparison of humans and spotted hyena, a natural animal model for common urogenital sinus: clinical reflections on feminizing genitoplasty. J Urol. 175(1):276-83.
Barsoum, J., Brown, R., McKee, M. and Boyce, F. M. (1997) Efficient transduction of mammalian cells by a recombinant baculovirus having the vesicular stomatitis virus G glycoprotein. Hum Gene Ther 8, 2011-2018.
Blissard, G. W. and Wenz, J. R. (1992) Baculovirus gp64 envelope glycoprotein is sufficient to mediate pH-dependent membrane fusion. J Virol 66, 6829-6835.
Boyce, F. M. and Bucher, N. L. (1996) Baculovirus-mediated gene transfer into mammalian cells. Proc Natl Acad Sci U S A 93, 2348-2352.
Condreay, J. P., Witherspoon, S. M., Clay, W. C. and Kost, T. A. (1999) Transient and stable gene expression in mammalian cells transduced with a recombinant baculovirus vector. Proc Natl Acad Sci U S A 96, 127-132.
Daftarian P, Mansour M, Benoit AC, Pohajdak B, Hoskin DW, Brown RG, Kast WM.(2006) Eradication of established HPV 16-expressing tumors by a single administration of a vaccine composed of a liposome-encapsulated CTL-T helper fusion peptide in a water-in-oil emulsion.V accine. 24(24):5235-44.
Dhar, A. K., Roux, M. M. and Klimpel, K. R. (2001) Detection and quantification of infectious hypodermal and hematopoietic necrosis virus and white spot virus in shrimp using real-time quantitative PCR and SYBR Green chemistry. J Clin Microbiol 39, 2835-2845.
Facciabene A, Aurisicchio L, La Monica N.(2004) Baculovirus vectors elicit antigen-specific immune responses in mice. Journal of Virology, 78(16):8663-8672.
Gambhira R, Karanam B, Jagu S, Roberts JN, Buck CB, Bossis I, Alphs H, Culp T, Christensen ND, Roden RB. (2007) A protective and broadly cross-neutralizing epitope of human papillomavirus L2.Journal of virology, 81 (24) ;13927-13931.
Hofmann, C., Sandig, V., Jennings, G., Rudolph, M., Schlag, P. and Strauss, M. (1995) Efficient gene transfer into human hepatocytes by baculovirus vectors. Proc Natl Acad Sci U S A 92, 10099-10103.
Kondo K, Ochi H, Matsumoto T, Yoshikawa H, Kanda T. (2008) Modification of human papillomavirus-like particle vaccine by insertion of the cross-reactive L2-epitopes.Journal of Medical Virology 80, 841846.
Kost, T. A. and Condreay, J. P. (2002) Recombinant baculoviruses as mammalian cell gene-delivery vectors. Trends Biotechnol 20, 173-180.
Kumar M, Bradow BP, Zimmerberg J. (2003) Large-scale production of pseudotyped lentiviral vectors using baculovirus GP64. Hum Gene Ther.14(1):67-77.
Lin, S. W., Hensley, S. E., Tatsis, N., Lasaro, M. O. and Ertl, H. C. (2007) Recombinant adeno-associated virus vectors induce functionally impaired transgene product-specific CD8 T cells in mice. J Clin Invest 117, 3958-3970.
Lung O, Westenberg M, Vlak JM, Zuidema D, Blissard GW. (2002) Pseudotyping Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV): F proteins from group II NPVs are functionally analogous to AcMNPV GP64.Journal of Virology, 76(11):5729-5736.
Mangor JT, Monsma SA, Johnson MC, Blissard GW. (2001) A GP64-null baculovirus pseudotyped with vesicular stomatitis virus G protein. Journal of Virology 75(6):2544-2556.
Monahan, P. E., Jooss, K. and Sands, M. S. (2002) Safety of adeno-associated virus gene therapy vectors: a current evaluation. Expert Opin Drug Saf 1, 79-91.
Monsma, S. A., Oomens, A. G. and Blissard, G. W. (1996) The GP64 envelope fusion protein is an essential baculovirus protein required for cell-to-cell transmission of infection. J Virol 70, 4607-4616.
Mulligan RC. (1993) The basic science of gene therapy. Science 260(5110):926-932.
Park SW, Lee HK, Kim TG, Yoon SK, Paik SY. (2001) Hepatocyte-specific gene expression by baculovirus pseudotyped with vesicular stomatitis virus envelope glycoprotein. Biochemical and Biophysical Research Communications 289(2):444-450.
Pastrana DV, Buck CB, Pang YY, Thompson CD, Castle PE, FitzGerald PC, KrKjaer S, Lowy DR, Schiller JT. (2004) Reactivity of human sera in a sensitive, high-throughput pseudovirus-based papillomavirus neutralization assay for HPV16 and HPV18. Virology 321, 205-216.
Ratish Gambhira, Balasubramanyam Karanam, Subhashini Jagu, Jeffrey N. Roberts, Christopher . Buck, Ioannis Bossis, Hannah Alphs, Timothy Culp, Neil D. Christensen,and Richard B. S. Roden (2007) A Protective and Broadly Cross-Neutralizing Epitope of Human Papillomavirus L2. Journal of Virology 81(24) : 13927-13931.
Sandig, V., Hofmann, C., Steinert, S., Jennings, G., Schlag, P. and Strauss, M. (1996) Gene transfer into hepatocytes and human liver tissue by baculovirus vectors. Hum Gene Ther 7, 1937-1945.
Tjia, S. T., zu Altenschildesche, G. M. and Doerfler, W. (1983) Autographa californica nuclear polyhedrosis virus (AcNPV) DNA does not persist in mass cultures of mammalian cells. Virology 125, 107-117.
Vogt, S., Ueblacker,P., Geis, C., Wagner, B., Wexel, G., Tischer, T., Kruger, A., Plank, C., Anton, M., Martinek, V., Imhoff, A. B. and Gansbacher, B. (2008) Efficient and stable gene transfer of growth factors into chondrogenic cells and primary articular chondrocytes using a VSV.G pseudotyped retroviral vector. Biomaterials 29(9):1242-9.
Wilson S, Baird M, Ward VK. (2008) Delivery of vaccine peptides by rapid conjugation to baculovirus particles. Vaccine 26(20):2451-2456.
V Schirrmacher, C Haas, R Bonifer, T Ahlert, R Gerhards and C Ertel. (1999) Human tumor cell modification by virus infection: an efficient and safe way to produce cancer vaccine with pleiotropic immune stimulatory properties when using Newcastle disease virus. Gene Theraphy 6(1) : 63-73.

Claims (19)

  1. (a) 바이러스의 외래 엔벨로프 단백질을 코딩하는 뉴클레오타이드 서열; (b) 상기 엔벨로프-코딩 서열에 작동적으로 연결된 제1프로모터; (c) 항원 단백질을 코딩하는 뉴클레오타이드 서열; 및 (d) 상기 항원-코딩 서열에 작동적으로 연결된 제2프로모터를 포함하는 재조합 배큘로바이러스.
  2. 제 1 항에 있어서, 상기 항원은 바이러스 병원체 항원, 박테리아 병원체 항원, 기생충(parasitic) 항원 또는 암 항원인 것을 특징으로 하는 재조합 배큘로바이러스.
  3. 제 2 항에 있어서, 상기 항원은 HPV(Human papillomavirus) 항원, HBV(hepatitis B virus) 항원, HCV(hepatitis C virus) 항원, HIV(human immunodeficiency virus) 항원, 로타바이러스 항원, 인플루엔자 바이러스 항원, HSV(herpes simplex virus) 항원, 조류 인플루엔자 바이러스 항원, 돼지 콜레라 바이러스 항원, 구제역 바이러스 항원 및 뉴캐슬바이러스 항원으로 구성된 군으로부터 선택되는 바이러스 병원체 항원인 것을 특징으로 하는 재조합 배큘로바이러스.
  4. 제 3 항에 있어서, 상기 항원은 HPV 항원인 것을 특징으로 하는 재조합 배큘로바이러스.
  5. 제 4 항에 있어서, 상기 항원은 HPV의 L1, L2, E6 또는 E7 단백질인 것을 특징으로 하는 재조합 배큘로바이러스.
  6. 제 4 항에 있어서, 상기 HPV의 항원 단백질은 HPV 타입 1, 2, 3a, 4, 5, 6b, 7, 8, 9, 10 , 11a, 12, 13, 16 및 18로 구성된 군으로부터 선택되는 HPV로부터 유래된 것을 특징으로 하는 재조합 배큘로바이러스.
  7. 제 1 항에 있어서, 상기 바이러스의 엔벨로프는 알파바이러스, 파라믹소바이러스, 랩도비리데, 믹소바이러스, 코로나바이러스, 레트로바이러스, 필로바이러스 또는 아레나바이러스로부터 유래된 것을 특징으로 하는 재조합 배큘로바이러스.
  8. 제 7 항에 있어서, 상기 바이러스의 엔벨로프는 레트로바이러스로부터 유래된 것을 특징으로 하는 재조합 배큘로바이러스.
  9. 제 8 항에 있어서, 상기 바이러스의 엔벨로프는 인간 내인성 레트로바이러스(Human Endogenous Retrovirus: HERV)의 엔벨로프인 것을 특징으로 하는 재조합 배큘로바이러스.
  10. 제 9 항에 있어서, 상기 HERV의 엔벨로프를 코딩하는 서열은 서열목록 제2서열의 아미노산 서열을 코팅하는 뉴클레오타이드 서열을 포함하는 것을 특징으로 하는 재조합 배큘로바이러스.
  11. 제 1 항에 있어서, 상기 제1프로모터는 곤충 세포에서 작동하는 프로모터인 것을 특징으로 하는 재조합 배큘로바이러스.
  12. 제 11 항에 있어서, 상기 곤충 세포에서 작동하는 프로모터는 배큘로바이러스 IE-1 프로모터, IE-2 프로모터, p35 프로모터, p10 프로모터, gp64 프로모터 또는 폴리헤드린 프로모터인 것을 특징으로 하는 재조합 배큘로바이러스.
  13. 제 1 항에 있어서, 상기 제2프로모터는 포유동물 세포의 지놈으로부터 유래된 프로모터 또는 포유동물 바이러스로부터 유래된 프로모터인 것을 특징으로 하는 재조합 배큘로바이러스.
  14. 제 13 항에 있어서, 상기 제2프로모터는 U6 프로모터, H1 프로모터, CMV(cytomegalo virus) 프로모터, 아데노바이러스 후기 프로모터, 벡시니아 바이러스 7.5K 프로모터, SV40 프로모터, HSV의 tk 프로모터, RSV 프로모터, 인간 연장인자 1α(hEF1α) 프로모터, 메탈로티오닌 프로모터, 베타-액틴 프로모터, 인간 IL-2 유전자의 프로모터, 인간 IFN 유전자의 프로모터, 인간 IL-4 유전자의 프로모터, 인간 림포톡신 유전자의 프로모터, 인간 GM-CSF 유전자의 프로모터, TERT 프로모터, PSA 프로모터, PSMA 프로모터, CEA 프로모터, E2F 프로모터 AFP 프로모터 또는 알부민 프로모터인 것을 특징으로 하는 재조합 배큘로바이러스.
  15. 상기 제 1 항 내지 제 14 항 중 어느 한 항의 재조합 배큘로바이러스를 유효성분으로 포함하는 백신 조성물.
  16. 제 15 항에 있어서, 상기 재조합 배큘로바이러스는 HPV(Human papillomavirus) 항원 유전자를 포함하며 상기 백신 조성물은 HPV 백신 조성물인 것을 특징으로 하는 백신 조성물.
  17. 상기 제 15 항의 백신 조성물의 약제학적 유효량(pharmaceutically effective amount) 을 객체(subject)에 투여하는 단계를 포함하는 생체 내에서 특정 항원에 대한 면역반응을 유도하는 방법.
  18. 제 17 항에 있어서, 상기 백신 조성물에 포함되어 있는 재조합 배큘로바이러스는 HPV(Human papillomavirus) 항원 유전자를 운반하며 상기 방법은 HPV 감염-유발 암의 예방 또는 치료방법인 것을 특징으로 하는 방법.
  19. 인간 내인성 레트로바이러스(Human Endogenous Retrovirus: HERV)의 엔벨로프 단백질을 코딩하며 서열목록 제1서열의 뉴클레오타이드 서열을 포함하는 핵산 분자.
PCT/KR2009/000136 2008-01-09 2009-01-09 배큘로바이러스-기반 백신 WO2009088256A2 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US12/812,053 US20100285056A1 (en) 2008-01-09 2009-01-09 Baculovirus-Based Vaccines
BRPI0906946-1A BRPI0906946A2 (pt) 2008-01-09 2009-01-09 Vacinas baseadas em baculovírus
EP09700761.1A EP2241626B1 (en) 2008-01-09 2009-01-09 Baculovirus-based vaccines
CN2009801019712A CN101952436B (zh) 2008-01-09 2009-01-09 基于杆状病毒的疫苗
JP2010542174A JP5309159B2 (ja) 2008-01-09 2009-01-09 バキュロウイルスを利用したワクチン
US14/447,341 US9555091B2 (en) 2008-01-09 2014-07-30 Baculovirus-based vaccines

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20080002733 2008-01-09
KR10-2008-0002733 2008-01-09

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/812,053 A-371-Of-International US20100285056A1 (en) 2008-01-09 2009-01-09 Baculovirus-Based Vaccines
US14/447,341 Division US9555091B2 (en) 2008-01-09 2014-07-30 Baculovirus-based vaccines

Publications (4)

Publication Number Publication Date
WO2009088256A2 true WO2009088256A2 (ko) 2009-07-16
WO2009088256A3 WO2009088256A3 (ko) 2009-10-08
WO2009088256A8 WO2009088256A8 (ko) 2010-03-25
WO2009088256A9 WO2009088256A9 (ko) 2012-07-12

Family

ID=40853624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/000136 WO2009088256A2 (ko) 2008-01-09 2009-01-09 배큘로바이러스-기반 백신

Country Status (7)

Country Link
US (2) US20100285056A1 (ko)
EP (1) EP2241626B1 (ko)
JP (1) JP5309159B2 (ko)
KR (2) KR101164602B1 (ko)
CN (1) CN101952436B (ko)
BR (1) BRPI0906946A2 (ko)
WO (1) WO2009088256A2 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013538044A (ja) * 2010-06-23 2013-10-10 ドイチェス クレブスフォルシュンクスツェントルム 癌および自己免疫の診断、予防および治療において用いるための再構成されたttウイルス分子
US10246486B2 (en) 2012-06-08 2019-04-02 Gilead Sciences, Inc. Macrocyclic inhibitors of flaviviridae viruses
USRE47334E1 (en) 2012-06-08 2019-04-02 Gilead Sciences, Inc. Macrocyclic inhibitors of flaviviridae viruses
US10472392B2 (en) 2012-06-08 2019-11-12 Gilead Sciences, Inc. Macrocyclic inhibitors of flaviviridae viruses
CN113150086A (zh) * 2021-04-22 2021-07-23 成都亿妙生物科技有限公司 幽门螺杆菌HefC重组蛋白及其应用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8821477B2 (en) 2007-08-06 2014-09-02 Boston Scientific Scimed, Inc. Alternative micromachined structures
KR102138938B1 (ko) * 2018-01-19 2020-07-29 건국대학교 산학협력단 인플루엔자 유래 세포 침투성 펩타이드를 포함하는 배큘로바이러스 기반 유전자 전달체
CN113164623A (zh) 2018-09-18 2021-07-23 维恩维纽克公司 基于arc的衣壳及其用途
CN110343722A (zh) * 2019-07-03 2019-10-18 上海大学 一种重组表达水痘-带状疱疹病毒v-Oka株截短型糖蛋白E的方法
US11129892B1 (en) 2020-05-18 2021-09-28 Vnv Newco Inc. Vaccine compositions comprising endogenous Gag polypeptides
CN113514440A (zh) * 2021-07-01 2021-10-19 广州博徕斯生物科技股份有限公司 杆状病毒荧光纳米探针

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4745051A (en) 1983-05-27 1988-05-17 The Texas A&M University System Method for producing a recombinant baculovirus expression vector
EP0340359A1 (en) 1988-05-06 1989-11-08 The Wellcome Foundation Limited Baculovirus transfer vectors
WO1994002167A1 (en) 1992-07-22 1994-02-03 The Trustees Of Princeton University p53 VACCINE
WO1996030385A1 (en) 1995-03-31 1996-10-03 Case Western Reserve University Viral vectors and their use for treating hyperproliferative disorders, in particular restenosis
US5601818A (en) 1991-07-26 1997-02-11 University Of Rochester Cancer therapy utilizing malignant cells expressing HSV-TK
WO1997016459A1 (fr) 1995-10-31 1997-05-09 Rhone-Poulenc Rorer S.A. Application de la proteine gax au traitement de cancers
US5631236A (en) 1993-08-26 1997-05-20 Baylor College Of Medicine Gene therapy for solid tumors, using a DNA sequence encoding HSV-Tk or VZV-Tk
US5783666A (en) 1991-01-16 1998-07-21 The Johns Hopkins University APC (adenomatous polyosis coli) protein

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IE872748L (en) * 1986-10-16 1988-04-16 Arjomari Europ Polypeptides derived from the evvelope gene of human¹immunodeficiency virus in recombinant baculovirus infected¹insect cells
FR2665710A1 (fr) * 1990-08-10 1992-02-14 Pasteur Institut Baculovirus recombinant exprimant les proteines e et ns1 de virus appartenant aux flaviviridae ou de virus apparentes aux flaviviridae, applications diagnostiques et therapeutiques.
US5169784A (en) * 1990-09-17 1992-12-08 The Texas A & M University System Baculovirus dual promoter expression vector
EP1298211B1 (en) * 1991-07-19 2006-07-12 The University Of Queensland Polynucleotide segment of HPV16 Genome
US5858723A (en) * 1995-12-05 1999-01-12 Behringwerke Aktiengesellschaft Polypeptides and antibodies for diagnosing and treating seminoma
US6077662A (en) 1996-11-27 2000-06-20 Emory University Virus-like particles, methods and immunogenic compositions
WO1998050071A1 (en) * 1997-05-01 1998-11-12 Chiron Corporation Use of virus-like particles as adjuvants
GB9711578D0 (en) 1997-06-04 1997-07-30 Oxford Biomedica Ltd Novel retroviral vector production systems
FR2797889A1 (fr) * 1999-09-01 2001-03-02 Bio Merieux Procede de detection de l'expression d'une proteine d'enveloppe d'un retrovirus endogene humain et utilisations d'un gene codant pour cette proteine
WO2003068804A2 (en) 2002-02-14 2003-08-21 Novavax, Inc. Novel insect cell line
CN101007168B (zh) * 2006-01-23 2010-06-09 北京大学 一种sars疫苗及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4745051A (en) 1983-05-27 1988-05-17 The Texas A&M University System Method for producing a recombinant baculovirus expression vector
EP0340359A1 (en) 1988-05-06 1989-11-08 The Wellcome Foundation Limited Baculovirus transfer vectors
US5783666A (en) 1991-01-16 1998-07-21 The Johns Hopkins University APC (adenomatous polyosis coli) protein
US5601818A (en) 1991-07-26 1997-02-11 University Of Rochester Cancer therapy utilizing malignant cells expressing HSV-TK
WO1994002167A1 (en) 1992-07-22 1994-02-03 The Trustees Of Princeton University p53 VACCINE
US5631236A (en) 1993-08-26 1997-05-20 Baylor College Of Medicine Gene therapy for solid tumors, using a DNA sequence encoding HSV-Tk or VZV-Tk
WO1996030385A1 (en) 1995-03-31 1996-10-03 Case Western Reserve University Viral vectors and their use for treating hyperproliferative disorders, in particular restenosis
WO1997016459A1 (fr) 1995-10-31 1997-05-09 Rhone-Poulenc Rorer S.A. Application de la proteine gax au traitement de cancers

Non-Patent Citations (94)

* Cited by examiner, † Cited by third party
Title
ABE T; TAKAHASHI H; HAMAZAKI H; MIYANO-KUROSAKI N; MATSUURA Y; TAKAKU H.: "Baculovirus induces an innate immune response and confers protection from lethal influenza virus infection in mice", JOURNAL OF IMMUNOLOGY, vol. 171, 2003, pages 1133 - 1139
ALTSCHUL ET AL., J. MOL. BIOL., vol. 215, 1990, pages 403 - 10
AULT KA; GIULIANO AR; EDWARDS RP; TAMMS G; KIM LL; SMITH JF; JANSEN KU; ALLENDE M; TADDEO FJ; SKULSKY D: "A phase I study to evaluate a human papillomavirus (HPV) type 18 L1 VLP vaccine", VCCINE, vol. 22, no. 23-24, 2004, pages 3004 - 7
BARSOUM, J.; BROWN, R.; MCKEE, M.; BOYCE, F. M.: "Efficient transduction of mammalian cells by a recombinant baculovirus having the vesicular stomatitis virus G glycoprotein", HUM GENE THER, vol. 8, 1997, pages 2011 - 2018
BASKIN LS; YUCEL S; CUNHA GR; GLICKMAN SE; PLACE NJ: "A neuroanatomical comparison of humans and spotted hyena, a natural animal model for common urogenital sinus: clinical reflections on feminizing genitoplasty", J UROL., vol. 175, no. 1, 2006, pages 276 - 83
BATT, D. B; G. G. CARMICHAEL, MOL. CELL. BIOL., vol. 15, 1995, pages 4783 - 4790
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 289, no. 2, 2001, pages 444 - 450
BLISSARD, G. W.; WENZ, J. R.: "Baculovirus gp64 envelope glycoprotein is sufficient to mediate pH-dependent membrane fusion", J VIROL, vol. 66, 1992, pages 6829 - 6835
BOYCE, F. M.; BUCHER, N. L.: "Baculovirus-mediated gene transfer into mammalian cells", PROC NATLACAD SCI U SA, vol. 93, 1996, pages 2348 - 2352
CHENG ET AL., PROC. NATL. ACAD. SCI., vol. 95, 1998, pages 3042 - 3047
CHRISTOPHER B. BUCK ET AL., J. VIROL., vol. 82, no. 11, 2008, pages 5190 - 5197
COLE, C. N.; T. P. STACY, MOL. CELL. BIOL., vol. 5, 1985, pages 2104 - 2113
CONDREAY, J. P.; WITHERSPOON, S. M.; CLAY, W. C.; KOST, T. A.: "Transient and stable gene expression in mammalian cells transduced with a recombinant baculovirus vector", PROC NATLACAD SCI USA, vol. 96, 1999, pages 127 - 132
CORPET ET AL., NUC. ACIDS RES., vol. 16, 1988, pages 10881 - 90
COULIE ET AL., J. IMMUNOTHERA., vol. 14, 1993, pages 104 - 109
DAFTARIAN P; MANSOUR M; BENOIT AC; POHAJDAK B; HOSKIN DW; BROWN RG; KAST WM.: "Eradication of established HPV 16-expressing tumors by a single administration of a vaccine composed of a liposome-encapsulated CTL-T helper fusion peptide in a water-in-oil emulsion", V ACCINE, vol. 24, no. 24, 2006, pages 5235 - 44
DHAR, A. K.; ROUX, M. M.; KLIMPEL, K. R.: "Detection and quantification of infectious hypodermal and hematopoietic necrosis virus and white spot virus in shrimp using real-time quantitative PCR and SYBR Green chemistry", J CLIN MICROBIOL, vol. 39, 2001, pages 2835 - 2845
FACCIABENE A; AURISICCHIO L; LA MONICA N.: "Baculovirus vectors elicit antigen- specific immune responses in mice", JOURNAL OF VIROLOGY, vol. 78, no. 16, 2004, pages 8663 - 8672
FAIRWEATHER ET AL., INFECT, IMMUN., vol. 58, 1990, pages 1323 - 1326
FORMAL ET AL., INFECT. IMMUN., vol. 34, 1981, pages 746 - 750
FORREST ET AL., J. INFECT. DIS., vol. 159, 1989, pages 145 - 146
GAMBHIRA R; KARANAM B; JAGU S; ROBERTS JN; BUCK CB; BOSSIS I; ALPHS H; CULP T; CHRISTENSEN ND; RODEN RB: "A protective and broadly cross-neutralizing epitope of human papillomavirus L2", JOURNAL OF VIROLOGY, vol. 81, no. 24, 2007, pages 13927 - 13931
GATTUSO ET AL., HUMAN PATHOL., vol. 26, 1995, pages 123 - 126
GIMMI, E. R. ET AL., NUCLEIC ACIDS RES., vol. 17, 1989, pages 6983 - 6998
GREEN ET AL., J. VIROL., vol. 62, 1988, pages 1819 - 1823
GUADAGNI ET AL., INT. J. BIOL. MARKERS, vol. 9, 1994, pages 53 - 60
GUISO ET AL., MICRO. PATH., vol. 11, 1991, pages 423 - 431
HIGGINS; SHARP, CABIOS, vol. 5, 1989, pages 151 - 3
HIGGINS; SHARP, GENE, vol. 73, 1988, pages 237 - 44
HOFMANN, C.; SANDIG, V.; JENNINGS, G.; RUDOLPH, M.; SCHLAG, P.; STRAUSS, M.: "Efficient gene transfer into human hepatocytes by baculovirus vectors", PROC NATL ACAD SCI U S A, vol. 92, 1995, pages 10099 - 10103
HUANG ET AL., COMP. APPL. BIOSCI., vol. 8, 1992, pages 155 - 65
HUM. GENE THER., vol. 7, 1996, pages 1937 - 1945
HUMAN GENE THERAPY, vol. 14, no. 1, 2003, pages 67 - 77
J. VIRAL., vol. 67, no. 12, 1993, pages 6929 - 6936
J. VIROL., vol. 78, no. 2, 2004, pages 751 - 757
JOURNAL OF IMMUNOLOGY, vol. 171, 2003, pages 1133 - 1139
JOURNAL OF MEDICAL VIROLOGY, vol. 80, 2008, pages 841 - 846
JOURNAL OF UROLOGY, vol. 250, no. 2, 2006, pages 276 - 283
JOURNAL OF VIROLOGY, vol. 75, no. 6, 2001, pages 2544 - 2556
JOURNAL OF VIROLOGY, vol. 76, no. 11, 2002, pages 5729 - 5736
JOURNAL OF VIROLOGY, vol. 78, no. 16, 2004, pages 8663 - 8672
JOURNAL OF VIROLOGY, vol. 81, no. 24, 2007, pages 13927 - 13931
KLASENS, B. I. F. ET AL., NUCLEIC ACIDS RES., vol. 26, 1998, pages 1870 - 1876
KLIPSTEIN ET AL., INFECT, IMMUN., vol. 40, 1983, pages 888 - 893
KONDO K; OCHI H; MATSUMOTO T; YOSHIKAWA H; KANDA T.: "Modification of human papillomavirus-like particle vaccine by insertion of the cross-reactive L2- epitopes", JOURNAL OF MEDICAL VIROLOGY, vol. 80, 2008, pages 841846
KOST, T. A.; CONDREAY, J. P.: "Recombinant baculoviruses as mammalian cell gene-delivery vectors", TRENDS BIOTECHNOL, vol. 20, 2002, pages 173 - 180
KUMAR M; BRADOW BP; ZIMMERBERG J.: "Large-scale production of pseudotyped lentiviral vectors using baculovirus GP64", HUM GENE THER., vol. 14, no. L, 2003, pages 67 - 77
LEE ET AL., NATURE, vol. 329, 1987, pages 642
LI ET AL., MOL. BIOCHEM. PARASITOL., vol. 49, 1991, pages 315 - 323
LIN, S. W.; HENSLEY, S. E.; TATSIS, N.; LASARO, M. O.; ERTL, H. C.: "Recombinant adeno-associated virus vectors induce functionally impaired transgene product-specific CD8 T cells in mice", J CLIN INVEST, vol. 117, 2007, pages 3958 - 3970
LUNG 0; WESTENBERG M; VLAK JM; ZUIDEMA D; BLISSARD GW.: "Pseudotyping Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV): F proteins from group II NPVs are functionally analogous to AcMNPV GP64", JOURNAL OF VIROLOGY, vol. 76, no. 11, 2002, pages 5729 - 5736
MACKOW ET AL., PROC. NATL. ACAD. SCI., USA, vol. 87, 1990, pages 518 - 522
MANGOR JT; MONSMA SA; JOHNSON MC; BLISSARD GW.: "A GP64-null baculovirus pseudotyped with vesicular stomatitis virus G protein", JOURNAL OF VIROLOGY, vol. 75, no. 6, 2001, pages 2544 - 2556
MANN ET AL., PROC. NATL. ACAD. SCI., USA, vol. 88, 1991, pages 3248 - 3252
MONAHAN, P. E.; JOOSS, K.; SANDS, M. S.: "Safety of adeno-associated virus gene therapy vectors: a current evaluation", EXPERT OPIN DRUG SAF, vol. 1, 2002, pages 79 - 91
MONSMA, S. A.; OOMENS, A. G.; BLISSARD, G. W.: "The GP64 envelope fusion protein is an essential baculovirus protein required for cell-to-cell transmission of infection", J VIROL, vol. 70, 1996, pages 4607 - 4616
MULLIGAN RC.: "The basic science of gene therapy", SCIENCE, vol. 260, no. 5110, 1993, pages 926 - 932
NEEDLEMAN; WUNSCH, J. MOL BIO., vol. 48, 1970, pages 443
PALKER ET AL., J. IMMUNOL., vol. 142, 1989, pages 3612 - 3619
PARK SW; LEE HK; KIM TG; YOON SK; PAIK SY.: "Hepatocyte-specific gene expression by baculovirus pseudotyped with vesicular stomatitis virus envelope glycoprotein", BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 289, no. 2, 2001, pages 444 - 450
PASTRANA DV; BUCK CB; PANG YY; THOMPSON CD; CASTLE PE; FITZGERALD PC; KRKJAER S; LOWY DR; SCHILLER JT: "Reactivity of human sera in a sensitive, high-throughput pseudovirus-based papillomavirus neutralization assay for HPV16 and HPV18", VIROLOGY, vol. 321, 2004, pages 205 - 216
PEARSO ET AL., METH. MOL. BIOL., vol. 24, 1994, pages 307 - 31
PEARSON; LIPMAN, METHODS IN MOL BIOL., vol. 24, 1988, pages 307 - 31
PNAS, vol. 95, 1998, pages 8795 - 8800
PROC. NATL. ACAD. SCI. USA, vol. 92, 1995, pages 10099 - 10103
PROC. NATL. ACAD. SCI. USA, vol. 93, 1996, pages 2348 - 2352
PROC. NATL. ACAD. SCI. USA, vol. 96, 1999, pages 127 - 132
PROKOP ET AL.: "Cloning and Expression of Heterologous Genes in Insect Cells with Baculovirus Vectors", RECOMBINANT DNA TECHNOLOGY AND APPLICATIONS, pages 97 - 152
RATISH GAMBHIRA; BALASUBRAMANYAM KARANAM; SUBHASHINI JAGU; JEFFREY N. ROBERTS; CHRISTOPHER . BUCK; IOANNIS BOSSIS; HANNAH ALPHS; T: "A Protective and Broadly Cross-Neutralizing Epitope of Human Papillomavirus L2", JOURNAL OF VIROLOGY, vol. 81, no. 24, 2007, pages 13927 - 13931
ROBERTS ET AL., VACC., vol. 10, 1992, pages 43 - 48
RUSSELL ET AL., J. IMMUNOL., vol. 140, 1988, pages 1274 - 1278
SADOFF ET AL., SCI., vol. 240, 1988, pages 336 - 337
SANDIG, V.; HOFMANN, C.; STEINERT, S.; JENNINGS, G.; SCHLAG, P.; STRAUSS, M.: "Gene transfer into hepatocytes and human liver tissue by baculovirus vectors", HUM GENE THER, vol. 7, 1996, pages 1937 - 1945
SCHEK, N ET AL., MOL. CELL BIOL, vol. 12, 1992, pages 5386 - 5393
SCIENCE, vol. 260, no. 5110, 1993, pages 926 - 932
See also references of EP2241626A4
SHOEMAKER ET AL., PROC. NATL. ACAD. SCI. USA, vol. 89, 1992, pages 1842 - 1846
SMITH; WATERMAN, ADV. APPL. MATH., vol. 2, 1981, pages 482
SPETZLER ET AL., INT. J. PEPT. PROT, RES., vol. 43, 1994, pages 351 - 358
SUMMERS; SMITH: "A Manual of Methods for Baculovirus Vectors and Insect Culture Procedures", TEXAS AGRICULTURAL EXPERIMENTAL STATION BULL., 1986
TJIA, S. T.; ZU ALTENSCHILDESCHE, G. M.; DOERFLER, W.: "Autographa californica nuclear polyhedrosis virus (AcNPV) DNA does not persist in mass cultures of mammalian cells", VIROLOGY, vol. 125, 1983, pages 107 - 117
TRENDS BIOTECHNOL., vol. 20, 2002, pages 173 - 180
V SCHIRRMACHER; C HAAS; R BONIFER; T AHLERT; R GERHARDS; C ERTEL.: "Human tumor cell modification by virus infection: an efficient and safe way to produce cancer vaccine with pleiotropic immune stimulatory properties when using Newcastle disease virus", GENE THERAPHY, vol. 6, no. 1, 1999, pages 63 - 73
VACCINE, vol. 22, 2004, pages 3004 - 3007
VACCINE, vol. 24, 2006, pages 5235 - 5244
VACCINE, vol. 26, no. 20, 2008, pages 2451 - 2456
VIROLOGY, vol. 125, 1983, pages 107 - 117
VIROLOGY, vol. 321, 2004, pages 205 - 216
VIROLOGY, vol. 321, no. 2, 2004, pages 205 - 216
VOGT, S.; UEBLACKER,P.; GEIS, C.; WAGNER, B.; WEXEL, G.; TISCHER, T.; KRUGER, A.; PLANK, C.; ANTON, M.; MARTINEK, V.: "Efficient and stable gene transfer of growth factors into chondrogenic cells and primary articular chondrocytes using a VSV.G pseudotyped retroviral vector", BIOMATERIALS, vol. 29, no. 9, 2008, pages 1242 - 9
WHITLEY ET AL., NEW GENERATION VACCINES, pages 825 - 854
WILSON S; BAIRD M; WARD VK: "Delivery of vaccine peptides by rapid conjugation to baculovirus particles", VACCINE, vol. 26, no. 20, 2008, pages 2451 - 2456
WU ET AL., PROC. NATL. ACAD. SCI., USA, vol. 86, 1989, pages 4726 - 4730
YAMAMOTO ET AL., INFECT. IMMUN., vol. 50, 1985, pages 925 - 928

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013538044A (ja) * 2010-06-23 2013-10-10 ドイチェス クレブスフォルシュンクスツェントルム 癌および自己免疫の診断、予防および治療において用いるための再構成されたttウイルス分子
US10246486B2 (en) 2012-06-08 2019-04-02 Gilead Sciences, Inc. Macrocyclic inhibitors of flaviviridae viruses
USRE47334E1 (en) 2012-06-08 2019-04-02 Gilead Sciences, Inc. Macrocyclic inhibitors of flaviviridae viruses
US10472392B2 (en) 2012-06-08 2019-11-12 Gilead Sciences, Inc. Macrocyclic inhibitors of flaviviridae viruses
CN113150086A (zh) * 2021-04-22 2021-07-23 成都亿妙生物科技有限公司 幽门螺杆菌HefC重组蛋白及其应用
CN113150086B (zh) * 2021-04-22 2022-10-11 成都欧林生物科技股份有限公司 幽门螺杆菌HefC重组蛋白及其应用

Also Published As

Publication number Publication date
US20150030621A1 (en) 2015-01-29
EP2241626B1 (en) 2016-01-06
EP2241626A4 (en) 2013-01-23
WO2009088256A8 (ko) 2010-03-25
BRPI0906946A2 (pt) 2015-07-14
JP5309159B2 (ja) 2013-10-09
EP2241626A2 (en) 2010-10-20
WO2009088256A9 (ko) 2012-07-12
WO2009088256A3 (ko) 2009-10-08
CN101952436B (zh) 2013-03-13
KR20090076852A (ko) 2009-07-13
US20100285056A1 (en) 2010-11-11
CN101952436A (zh) 2011-01-19
KR20110052552A (ko) 2011-05-18
KR101164602B1 (ko) 2012-07-10
JP2011509092A (ja) 2011-03-24
US9555091B2 (en) 2017-01-31

Similar Documents

Publication Publication Date Title
WO2009088256A2 (ko) 배큘로바이러스-기반 백신
WO2019209079A1 (en) Nucleic acid molecules inserted expression regulation sequences, expression vector comprising nucleic acid moleclues and pharmaceutical use thereof
WO2010147268A1 (ko) 자궁경부암 백신
JP2017507672A (ja) 複製型組み換えアデノウイルスベクター、組成物およびこれらの使用方法
US20110117124A1 (en) Enhancement of transgene expression from viral-based vaccine vectors by expression of suppressors of the type i interferon response
WO2022045827A1 (ko) 신규한 코로나바이러스 재조합 스파이크 단백질, 이를 코딩하는 폴리뉴클레오티드, 상기 폴리뉴클레오티드를 포함하는 벡터 및 상기 벡터를 포함하는 코로나바이러스감염증 예방 또는 치료용 백신
WO2020005028A1 (ko) 중증 열성 혈소판 감소 증후군(sfts) 바이러스 감염 질환 예방 또는 치료용 백신 조성물
WO2012036391A2 (ko) 돼지 써코바이러스2(pcv2) 유전자의 표면발현용 벡터 및 이로 형질전환된 살모넬라 백신 균주
WO2019117632A1 (ko) 재조합 아데노바이러스 및 이를 포함하는 줄기세포
WO2020246750A2 (ko) 안정화된 핵산 면역증강제를 함유하는 약학 조성물
KR100347220B1 (ko) 재조합아데노바이러스hiv백신
Schoggins et al. Fiber and penton base capsid modifications yield diminished adenovirus type 5 transduction and proinflammatory gene expression with retention of antigen-specific humoral immunity
WO2019143180A1 (ko) 인플루엔자 유래 세포 침투성 펩타이드를 포함하는 배큘로바이러스 기반 유전자 전달체
WO2022216025A1 (ko) Sars-cov-2 항원을 발현하는 재조합 마이코박테리움 균주 및 이를 포함하는 백신 조성물
WO2022211373A1 (ko) 침팬지 아데노바이러스 혈청형 6의 돌기 유전자로 치환된 재조합 키메릭 아데노바이러스 벡터 및 그 응용
Paolazzi et al. Rabies vaccine: Developments employing molecular biology methods
WO2021125891A1 (ko) A형 간염 바이러스의 제조방법 및 상기의 방법에 따라 제조된 a형 간염 바이러스
WO2015152609A1 (ko) GM-CSF 유전자; 데코린 유전자; TGF-β2 발현을 억제하는 shRNA; 및 FoxP3 발현을 억제하는 shRNA를 포함하는 항종양 조성물
WO2023101381A1 (ko) 구제역 바이러스 유사 입자를 생산하기 위한 백신 플랫폼
WO2023003332A1 (ko) 식물 기반 covid-19 변이 재조합 스파이크 단백질 발현 벡터 및 상기 발현 벡터를 이용한 재조합 단백질
WO2023055154A1 (ko) 재조합된 약독화 rsv 생백신 및 이를 제조하는 방법
WO2023167487A1 (ko) 사스-코로나바이러스-2 감염증 예방용 재조합 발현 벡터 및 그 응용
WO2023048532A1 (ko) 레오바이러스 기반 신규한 백신플랫폼 및 이의 용도
WO2022092921A1 (ko) 사스-코로나바이러스-2 항원을 포함하는 바이럴 벡터 및 이의 이용
WO2022015124A1 (ko) 중증급성호흡기증후군 코로나바이러스 2 감염 예방용 백신 조성물

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980101971.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09700761

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2009700761

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010542174

Country of ref document: JP

Ref document number: 12812053

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1694/MUMNP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: PI0906946

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100708