WO2022092921A1 - 사스-코로나바이러스-2 항원을 포함하는 바이럴 벡터 및 이의 이용 - Google Patents

사스-코로나바이러스-2 항원을 포함하는 바이럴 벡터 및 이의 이용 Download PDF

Info

Publication number
WO2022092921A1
WO2022092921A1 PCT/KR2021/015484 KR2021015484W WO2022092921A1 WO 2022092921 A1 WO2022092921 A1 WO 2022092921A1 KR 2021015484 W KR2021015484 W KR 2021015484W WO 2022092921 A1 WO2022092921 A1 WO 2022092921A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
measles virus
sars
coronavirus
variant
Prior art date
Application number
PCT/KR2021/015484
Other languages
English (en)
French (fr)
Inventor
서기원
정서연
이건세
Original Assignee
에스케이바이오사이언스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이바이오사이언스 주식회사 filed Critical 에스케이바이오사이언스 주식회사
Publication of WO2022092921A1 publication Critical patent/WO2022092921A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/215Coronaviridae, e.g. avian infectious bronchitis virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors

Definitions

  • the present invention relates to a vaccine composition for preventing SARS-coronavirus-2 (SARS-CoV-2) infection and the use thereof, and more specifically, SARS-coronavirus-2 infection using an antigen derived from SARS-coronavirus-2 It relates to a viral vector vaccine composition for prophylaxis and use thereof.
  • SARS-CoV-2 SARS-coronavirus-2
  • SARS-CoV-2 (SARS-CoV-2) is called Severe Acute Respiratory Syndrome Coronavirus 2 or Covid 19 (COVID19), and is named Corona 19 in Korea.
  • SARS-coronavirus-2 was first discovered at the Huanan Fish Market in Wuhan on December 12, 2019. It is an RNA virus, and a human-to-human infection was confirmed.
  • SARS-coronavirus-2 is a virus that requires handling at a biosafety level 3 research facility (BSL-3 facility), and the virus's reproduction index (R0) is estimated to be 1.4 to 3.9. This means that one patient can transmit the virus to a minimum of 1.4 to a maximum of 3.9 people, that is, it is estimated that the control of the infectious disease caused by SARS-coronavirus-2 is quite difficult, and as of March 31, 2020, worldwide There were 785,867 infections and 37,827 deaths.
  • Symptoms such as fever, shortness of breath, kidney and liver damage, cough, and pneumonia are observed for 2 to 14 days after infection with the virus, and a therapeutic agent has not yet been developed.
  • a therapeutic agent has not yet been developed.
  • vaccines to prevent SARS-coronavirus-2 infection are being studied, but existing vaccines only use neutralizing antibodies to prevent infection and induce a cellular immune response that can contribute to the eradication of the virus in the body.
  • viral vector (viral vector) vaccine has the advantage that it can be safely administered because it uses a viral vector backbone that is attenuated and does not cause disease in individuals.
  • viral vector backbone that is attenuated and does not cause disease in individuals.
  • the present invention is to provide a viral vector and its use as a vaccine for preventing infection of SARS-coronavirus-2.
  • An object of the present invention is to provide a novel SARS-coronavirus-2 viral vector for preventing infection that is safe and capable of inducing a cellular immune response as well as the generation of neutralizing antibodies in the body.
  • the epidemic virus In the case of a new infectious disease epidemic, the epidemic virus is usually a high-risk pathogen, so in the case of inactivated or live vaccines, there is a high risk in the production and administration of vaccine substances. In particular, in the case of a live vaccine, it takes a very long time to attenuate and prove safety. In the case of a gene-based vaccine, there is no commercial case yet, and since it is an incomplete technology in terms of efficacy and safety, the inventors of the present invention intend to provide a vaccine applicable to the current pandemic novel infectious disease in terms of versatility, safety, efficacy, and commercialization.
  • One embodiment of the present invention may provide a nucleic acid construct capable of obtaining a recombinant measles virus from the nucleic acid construct, preferably a recombinant measles virus expressing the SARS-coronavirus-2 antigen.
  • One embodiment of the present invention is (1) a cDNA molecule encoding a full-length antigenometic (+) RNA strand of measles virus (MV); and (2) a heterologous polynucleotide encoding at least one structural protein of SARS-Coronavirus-2 or a variant thereof, wherein the at least one structural protein is a spike (S) protein, a nucleocapsid. (N) protein, and any one protein selected from the group consisting of a membrane (M) protein, wherein the heterologous polynucleotide relates to a nucleic acid construct operably linked in the cDNA of the antigenomic (+) RNA.
  • S spike
  • N nucleocapsid.
  • M membrane
  • the nucleic acid construct comprises (1) a cDNA molecule encoding a full-length antigenomic (+) RNA strand of measles virus (MV) and (2) at least one structural protein of SARS-coronavirus-2 Or it may be a nucleic acid construct into which a heterologous polynucleotide encoding a variant thereof is inserted.
  • the heterologous polynucleotide may be a nucleic acid construct inserted in a non-coding or intergenic region between the P gene and the M gene or between the H gene and the L gene of the measles virus genome. These intergenic regions are highly conserved.
  • the cDNA may serve as a template for transcription, as well as as a template for translation for expression of the product into a cell or cell line.
  • the cDNA is a double-stranded molecule, one of the strands contains an antigenic (+) RNA of the measles virus with a heterologous polynucleotide therein, except for a “U” nucleotide replaced by a “T” nucleotide in the cDNA. have the same nucleotide sequence.
  • the nucleic acid construct of the present invention may include regulatory elements that control the transcription of the coding sequence, and in particular may include a promoter for transcription and a termination sequence. Such modulators may preferably be derived from the measles virus.
  • the "operably linked” means that functional cloning, or insertion of, a heterologous polynucleotide within the nucleic acid construct of the present invention, whereby the polynucleotide and the nucleic acid construct are at least one polypeptide of SARS-Coronavirus-2, or at least effectively or efficiently transcribed and appropriately translated in a cell, cell line, host cell used as part of a system for the production of a recombinant MV expressing one protein, or at least one antigen, or at least an antigenic fragment thereof It can be understood to mean that
  • the variant may preferably be a variant of the spike (S) protein.
  • the variant of the spike (S) protein may include a mutation induced to induce an immune response to SARS-coronavirus-2, preferably
  • the S protein may refer to NCBI assceccion No.: MN908947.
  • the virus of the present invention can exhibit excellent immunogenicity even when administered in a small amount, and specifically, even when administered in a small amount per inoculation, the neutralizing antibody inducing ability can be good.
  • the virus comprising the nucleic acid construct of the present invention as a genome induces neutralizing antibodies at a good level with a small amount of about 3 ⁇ 10 5 PFU or less, preferably 1 ⁇ 10 5 PFU (1E5 PFU/dose) or less per administration ability can be confirmed.
  • the heterologous polynucleotide is the polynucleotide represented by SEQ ID NO: 1 (inserted S protein antigen) or at least 90% or more, 95% or more, 98% or more, 99% or more, or 100% of the sequence It comprises a polynucleotide having homology and can be operably linked between a P gene and an M gene of a measles virus genome.
  • sequence homology is 90% or more, the antigen can be expressed at a similar level while maintaining the functional properties of the antigen.
  • the cDNA molecule encoding the full-length antigenomic (+) RNA strand of MV is a Schwarz strain, a Zagreb strain, an AIK-C strain, a Moraten strain, and a Philips strain.
  • the Schwarz strain is preferable by confirming that it has low side effects and can induce a high rate of cellular immune response in the Schwarz strain.
  • the expression control sequence of the heterologous polynucleotide is a T7 promoter and a T7 terminator sequence, which are located 5' and 3' from the adjacent sequences.
  • the nucleic acid construct may comprise, from the 5' to the 3' terminus, the following polynucleotides, which are operative within the nucleic acid construct and under the control of viral replication and transcriptional regulators such as MV leader and trailer sequences. can be connected to
  • the recombinant cDNA sequence of the nucleic acid construct may be a nucleic acid construct of SEQ ID NO: 2 (SK-MV-CoV-S sequence in FIG. 1), preferably at least 90% or more of the polynucleotide of SEQ ID NO: 2 Polynucleotides having homology may also be included.
  • N protein is the nucleoprotein (N), phosphoprotein (P), matrix protein ( M), fusion protein (F), hemagglutinin protein (H) and RNA polymerase large protein (L)
  • N protein is the nucleoprotein
  • P protein is the nucleoprotein
  • M matrix protein
  • F hemagglutinin protein
  • L RNA polymerase large protein
  • the vector may be a vector comprising or consisting of SEQ ID NO:2.
  • the vector may preferably include a plasmid.
  • the vector plasmid in which the nucleic acid construct of the present application is located can be obtained from a Bluescript plasmid and can be obtained by cloning the heterologous polynucleotide of the present invention into the plasmid.
  • One embodiment of the present invention is a recombinant measles virus expressing the S protein of SARS-coronavirus-2 or a variant thereof as an antigen, wherein the virus comprises a nucleic acid construct of the present application, or a vector comprising the same in its genome, or It is possible to provide a recombinant measles virus comprising
  • Another embodiment of the present invention can induce a CD4+ and CD8+ T cell response, a Th-1 cell response to the S protein of SARS-coronavirus-2 or a variant thereof after one or two immunizations with the recombinant measles virus.
  • the recombinant measles virus of the present invention can produce interleukin 2 (IL-2), interferon gamma (IFN- ⁇ ), and interferon alpha (IFN- ⁇ ) to provide a close relationship to the Th-1 cell response.
  • IL-2 interleukin 2
  • IFN- ⁇ interferon gamma
  • IFN- ⁇ interferon alpha
  • a host cell transfected with the nucleic acid construct or vector (transfection, transfection) or infected with the recombinant measles virus may also be included in the scope of the present invention.
  • Said transfection can include electroporation, liposome gene delivery, direct injection, receptor-mediated uptake, magnetoporation, ultrasound, or any combination thereof, as well as any combination thereof, as is known in the art. It can be inserted using a known general transfection technique.
  • transcription and replication of the recombinant measles virus can occur in the cytoplasm of an infected host cell.
  • the host cell may include, without limitation, a cell expressing T7 RNA polymerase, preferably a mammalian cell, and more preferably a hamster cell for the expression of the S protein of SARS-coronavirus-2 or a variant thereof.
  • a cell expressing T7 RNA polymerase preferably a mammalian cell, and more preferably a hamster cell for the expression of the S protein of SARS-coronavirus-2 or a variant thereof.
  • a polynucleotide encoding any one selected from the group consisting of N protein, P protein, M protein, F protein, H protein and L protein of MV is included, or a polynucleotide
  • One or more vectors consisting of can be selectively transfected into the host cell.
  • step (c) propagating the recombinant measles virus of step (b) by transfecting them by co-culturing the transfected cells of step (b) with cells enabling propagation of the recombinant measles virus;
  • the cell of step (a) contains a polynucleotide encoding any one selected from the group consisting of N protein, P protein, M protein, F protein, H protein, and L protein of MV, or a vector consisting of polynucleotides is one The above may be further selectively transfected.
  • a viral vector comprising the step of preparing a non-replicating transcription plasmid having no replication in a cell, comprising the steps below, or SARS-coronavirus-2 S protein or A method for producing a recombinant measles virus expressing a variant thereof may be provided.
  • step b) preparing a non-replicating transcription plasmid in which the polynucleotide encoding the protein expressed by the expression plasmid of step a) is deleted from the entire polynucleotide of the full-length MV genome;
  • steps a) and b) when the gene encoding the F protein and the H protein is deleted from the entire polynucleotide of the MV genome, a plasmid containing or consisting of the gene encoding the F protein or the H protein is added together. cells can be transfected.
  • a reporter gene is inserted instead of a nucleotide encoding an envelope glycoprotein comprising hemagglutinin (H) and a membrane fusion protein (F) in the entire polynucleotide of the full-length MV genome.
  • the reporter gene is a gene capable of detecting the expression material of the gene by any method, and may include, for example, a gene encoding luciferase, preferably green fluorescent protein (GFP). .
  • the non-replicating transcription plasmid into which the reporter gene is inserted can be used for a neutralization test of a recombinant virus.
  • One embodiment of the present invention is the recombinant measles virus; And it provides a vaccine composition for preventing infection of SARS-coronavirus-2, comprising a pharmaceutically acceptable carrier.
  • Another embodiment of the present invention is a recombinant measles virus, or a recombinant measles virus produced according to the method of claim 13 or 15;
  • compositions that induces a CD4+ and CD8+ T cell response or a Th-1 response to the S protein of SARS-coronavirus-2 or a variant thereof, comprising a pharmaceutically acceptable carrier, particularly preferably the composition may have the effect of preventing SARS-coronavirus-2 infection.
  • the 'SARS-coronavirus-2 infection or infection' broadly includes not only the infection of the SARS-coronavirus-2 itself, but also various conditions (eg, respiratory disease, pneumonia, etc.) resulting from the infection of the virus. can be understood as a concept that
  • the vaccine may be prepared by a conventional method well known in the art, and may optionally further include various additives that can be used in the preparation of a vaccine in the art.
  • the vaccine composition according to the present invention may include the recombinant viral antigen and a pharmaceutically acceptable carrier.
  • lactose dextrose, sucrose, sorbitol, mannitol, starch, gum acacia, calcium phosphate, alginate, gelatin, calcium silicate, microcrystalline cellulose as commonly used in formulations.
  • polyvinylpyrrolidone polyvinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, and mineral oil.
  • the pharmaceutical composition of the present invention contains non-ionic surfactants such as TWEENTM, polyethylene glycol (PEG), etc., antioxidants including ascorbic acid, lubricants, wetting agents, sweetening agents, flavoring agents, emulsifying agents, suspending agents, It may be used by further including a preservative and the like.
  • the vaccine is prepared in unit dosage form by formulating using a pharmaceutically acceptable carrier and/or excipient according to a method that can be easily carried out by a person of ordinary skill in the art to which the present invention pertains. or it may be prepared by incorporation into a multi-dose container.
  • the formulation may be in the form of a solution, suspension, or emulsion in oil or aqueous medium, or may be in the form of an extract, powder, granule, tablet or capsule, and may additionally include a dispersant or stabilizer.
  • a suitable dosage of the vaccine in the present invention may be prescribed variously depending on factors such as formulation method, administration method, age, weight, sex, pathological condition, food, administration time, administration route, excretion rate, and response sensitivity of the patient. can On the other hand, the dosage of the vaccine according to the present invention may be preferably 1 ⁇ 500 ug per dose.
  • the vaccine comprising the recombinant virus as an active ingredient may be administered into the body by intravenous injection, intramuscular injection, subcutaneous injection, transdermal delivery or airway inhalation, but is not limited thereto.
  • the vaccine composition may further include an immunological adjuvant to enhance the immune response effect.
  • the immunological adjuvant is, for example, AS03, CPG (CpG), squalene (MF59), liposome, TLR agonist, monophosphoryl lipid A (MPL) (AS04), magnesium hydroxide, magnesium carbonate, which are well known in the vaccine manufacturing industry.
  • Aluminum Hydroxide Pentahydrdate, Titanium Didoxide, Calcium Carbonate, Barium Oxide, Barium Hydroxide, Barium Peroxide, Barium Sulfate, Calcium Sulfate, Calcium Pyrophosphate, Magnesium Carbonate, Magnesium Oxide, Aluminum Hydroxide , aluminum phosphate, and hydrated aluminum potassium sulfate may be at least one selected from the group consisting of, preferably, CPG (CpG), aluminum hydroxide, or a mixture thereof, but is not limited thereto.
  • One embodiment of the present invention relates to a method of preventing infection of SARS-coronavirus-2 or inducing a CD4+ and CD8+ T cell response or Th-1 response to SARS-coronavirus-2 S protein or a variant thereof, the method comprising:
  • the method may comprise administering an effective amount of the nucleic acid construct, the vector comprising the same, or the recombinant measles virus to a subject in need thereof.
  • the use of the recombinant measles virus for preventing infection of SARS-coronavirus-2 or for eliciting CD4+ and CD8+ T cell responses or Th-1 responses against the S protein of SARS-coronavirus-2 or a variant thereof to provide.
  • the vaccine according to one embodiment of the present invention has high safety.
  • the vaccine according to one embodiment of the present invention has excellent immunogenicity and has excellent efficacy as a vaccine.
  • the vaccine of the present invention exhibits not only a high neutralizing antibody titer, but also an excellent cellular immune response. In particular, since it can induce a Th-1 response, it is possible to eliminate virus-infected cells by inducing cellular immunity through the Th-1 response.
  • the present invention has an excellent preventive effect against SARS-coronavirus-2 infection.
  • the productivity of this vaccine strain is excellent.
  • the recombinant MV of the present invention can exhibit excellent neutralizing antibody production ability even with a small dose, and for example, can show neutralizing antibody induction ability even with an amount of 3 ⁇ 10 5 PFU or less.
  • 1 shows a gene construct for constructing a viral vector.
  • Figure 2 shows the helper plasmid necessary for constructing the construct of Figure 1 (SK-MV-P-pcDNA3.1; composed of P gene of MV, SK-MV-N -pcDNA3.1; composed of N gene of MV, SK -MV-L-pcDNA3.1; consisting of the L gene of MV). These can be used with the construct of FIG. 1 .
  • CPE Cytopathic effect
  • Figure 4 shows the results of the binding antibody according to the Tg mouse immunogenicity test.
  • the protein used in the experiment is a 3629-1 (cat.#) product from Mabtech, where S1-1 is a pool of 83 species covering the range from the 1st amino acid to the 83rd amino acid of S1, and S1-2 is the 84th amino acid. It is a pool of 83 species covering the range of amino acids from to 166.
  • Measles virus (MV, Measles virus) was selected as a backbone of a safe viral vector, and Schwarz strain was selected among them.
  • the Schwarz strain was derived from the Edmonston strain. It is an attenuated vaccine strain obtained from Edmonston strain from chicken embryo fibroblast and intraamniotic cavity of chicken embryo cells after more than 70 passaging. This attenuated vaccine is known to cause side effects with a lower probability than the existing Measels vaccine produced by Edmonston strain, and the severity of the symptoms is also mild. Therefore, Shcwarz strain measles virus was used to use a virus that is safe in terms of side effects and has a sufficiently known effect on the human body.
  • MV was a viral vector and was able to induce a high rate of cellular immune response along with antibody immunity.
  • NCBI assceccion No.: AF266291.1 The sequence of Schwarz vaccine strain measles virus (NCBI assceccion No.: AF266291.1) was referenced, and this was used as the backbone.
  • the polynucleotide of SEQ ID NO: 1 synthesized with reference to the sequence of Severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1 (NCBI assceccion No.: MN908947) was used as a polynucleotide of a heterologous antigen between the M gene and H gene of the backbone. added to the non-encrypted area of Through this, a replicable recombinant virus expressing the Spike protein was constructed, and was referred to as the SK-MV-CoV-S construct (see FIG. 1 ).
  • the viral proteins included in the genome of MV are divided into structural proteins and non-structural proteins.
  • Structural proteins include M, H, and F, which structure particles on the surface of the virus and play a role in entry into cells.
  • the remaining proteins, N, P, and L proteins are involved in the maintenance, expression, and replication of the virus genome, and are essential components for virus replication.
  • These three N, P, L protein genes are essential for virus rescue, so the helper plasmid shown in FIG. 2 was constructed and used together for the production of recombinant virus.
  • the S gene can contain the following three modifications, and a mutant polynucleotide containing the following three modifications can be used as the polynucleotide of the heterologous antigen: furin cleavage site mutation, hexa-proline mutation, and D614G mutation.
  • the spike protein of SARS-CoV-2 is fragmented into the receptor binding subunit S1 and the fusion subunit S2 by furin-like protease.
  • SARS-CoV-2 can be infected and enter the cell only through fusion with the cell membrane through this process. Since the construct produced in the present invention enters the cell through the entry process using the MV protein, the entry process through the spike is not required. Therefore, the furin cleavage site is not essential for the Spike sequence included in the recombinant MV vaccine. And according to a recently published report, when Spike protein was not cleaved to S1/S2 and maintained in a pre-fusion form, the immunogenicity was better.
  • the PGSAG sequence was mutated to replace the 681-685th amino acid sequence (PRRAR), which is a recognition site for furin-like protease, in the sequence of the S protein, thereby maintaining the prefusion form of the Spike.
  • PRRAR 681-685th amino acid sequence
  • a mutation in which some 6 of the amino acid residues called hexa-proline mutation was substituted with proline was added to a part of the Spike sequence. This mutation is a mutation to prevent modifications that may occur in heat and molecular/chemical environmental changes.
  • Six proline substitution mutations were added at the following positions of the Spike protein (F817P, A892P, A900P, A942P, K986P, V987P). As described above, when six proline mutations, Hexa-Pro, are inserted into the spike gene sequence, higher expression than the original amino acid sequence is shown, and it is reported to have the ability to withstand heat stress and three freeze-thaw cycles.
  • the D614G mutation that changes aspartic acid, the 614th amino acid of Spike, into glycine is a mutation that increases the binding ability of the Spike protein with cell receptors.
  • This process describes the process of transfecting the prepared plasmid into the BHK21-T7 cell line stably expressing T7 RNA polymerase to produce a Spike-expressing recombinant measles virus (rMV-S).
  • the BHK21-T7 cell line a BHK21 cell line expressing T7 RNA polymerase, was cultured in a GMEM (Glasgow modified Eagle medium) culture medium containing 10% FBS. 24 hours before transfection, BHK21-T7 cells were seeded in a 6-well plate at 5*10 5 cells/well. The next day, the medium was exchanged with a new medium, and transfection was performed with TransIT-LT-1 (MIRUS) transfection reagent as shown in Table 1 below and cultured for 1 day.
  • GMEM Gasgow modified Eagle medium
  • Opti-MEM 300ul of Opti-MEM is added per 5ug of DNA, and TransIT-LT1 transfection reagent is added as a transfection reagent at a level of 3ul per 1ug of total DNA, mixed gently by pipetting and tapping, and then mixed at room temperature for 15 ⁇ After reacting for 30 minutes, the cells were treated.
  • SK-MV-N-pcDNA3.1 400ng 300 SK-MV-P-pcDNA3.1 (SEQ ID NO: 4) 50ng SK-MV-L-pcDNA3.1 (SEQ ID NO: 5) 100ng pMA-MV-S (SEQ ID NO: 2) 4.5 ⁇ g Transfection reagent (TransIT-LT1) 15 ⁇ L
  • the medium in the 6 well plate was replaced with a new medium, and then incubated for 3 hours in a CO 2 incubator whose temperature was adjusted to 43° C. to give heat shock. After that, it was again cultured in an incubator at 37°C for 2 more days.
  • the supernatant of the incubated 6-well plate was removed and the cells were detached with trypsin. The detached cells were seeded together with VERO76 cells and cultured in a cell culture flask. Co-Culture was carried out in a 37 °C CO 2 incubator for 6-7 days.
  • syncytia multinucleated cell body
  • Syncytia multinucleated cell body
  • the cells were scraped from the bottom of the dish using a cell scraper and passed through Vero once more.
  • Cell lysate and culture solution were recovered together and frozen in a cryogenic freezer set at -80°C, then thawed at 37°C to destroy the cells.
  • the cell lysate was adsorbed to Vero76 cells for one to two hours to infect, exchanged with fresh 3% FBS DMEM medium, and grown in a CO 2 incubator at 37° C.
  • syncytia multinucleated cell body
  • CPE Cytopathic effect (CPE)
  • the syncytia was separated with a sterile pipette tip and infected with VERO76 cells.
  • the first syncytia was considered as one replicative center and virus clone.
  • This process describes the process of preparing a sample using the previously prepared virus to conduct an immunogenicity confirmation experiment in experimental animals.
  • Vero76 cells were seeded as 1E7 cells in a T175 flask and cultured in DMEM containing 10% FBS for 18 to 24 hours. When the confluency of 70% of the flask area was reached the day after seeding, the number of cells was counted to measure the number of live cells. When the number of cells is confirmed, the virus corresponding to an amount of 0.01 MOI is diluted in serum free DMEM and infected. Virus infection was carried out by adsorption for 1 hour in a 37° C. CO 2 incubator.
  • the obtained virus was aliquoted and stored in a deep freezer at -80°C until use, and the titer of the obtained virus was measured and confirmed by Plaque assay.
  • mice are known to be insensitive to MV, so for the immunogenicity test of the produced rMV-S, transgenic mice expressing human CD46, known as the cellular receptor for MV, were prepared and tested.
  • rMV-S prepared in hCD46 Tg mice was intraperitoneally administered once or twice at 3-week intervals.
  • the experimental group was divided into rMV-S uninoculated group (G1), rMV-S single inoculated group (G2), and rMV-S double inoculated group (G3, G4).
  • the second inoculation group included a group immunized with rMV-S prepared during secondary immunization (G3) and a group immunized with the RBD protein of Spike of MN908947 (G4). Two to three weeks after the final inoculation, whole blood was collected to obtain isolated serum and splenocytes.
  • Serum was obtained by blood collection and serum separation, and challenge-infected with SARS-CoV-2 virus nasally at 1E5 PFU/hamster. Body weight and body temperature were measured daily, and an autopsy was performed on the 4th day after infection to collect nasal lavage fluid and lung tissue.
  • Immunogenicity evaluation in the hCD46 Tg mouse model was performed by IgG ELISA assay.
  • As an antigen for coating SARS-CoV-2 spike S1 protein was used. After blocking the antigen-coated plate, the secondary immunized serum was diluted 1:50 in PBS and reacted on the plate. The secondary antibody for detecting mouse IgG or IgG subtype was diluted 1:5000 in PBS and reacted on the plate. Then, a substrate was added to develop color, and the absorbance was measured.
  • the isolated serum was serially dilution from 1/20 to 2-fold and reacted with SARS-CoV-2 virus (Severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1).
  • SARS-CoV-2 virus severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1
  • the reacted virus was infected and cultured in a well plate, and the number of plaques was confirmed by performing a plaque assay to measure the reduced titer of the virus.
  • a plate coated with an antibody that reacts with IFN-r and IL4 was prepared and isolated transgenic mouse splenocytes were seeded. Spike proteins and peptides were added to the cells as promoters and cultured for 24 to 48 hours. After removing the medium from each plate, adding a substrate and reacting, the results were confirmed using an ELIspot reader.
  • mouse splenocytes were analyzed as follows. Cells were seeded in a 96 well culture plate, treated with a promoter antigen, and cultured for 24 to 48 hours. After that, cytokine expression was measured in the culture medium, and immune cells were used for flow cytometry analysis.
  • the virus titer was checked in nasal wash and lung tissue to confirm the vaccine's protective ability.
  • the nasal passages of the hamsters were washed with PBS on the 4th day after infection and recovered, and the lung tissue was ground to extract viral RNA.
  • Virus gene expression was confirmed from this RNA by real-time RT-PCR, and the copy number of viral genes in the process of replication was compared for each group. Plaque assay was performed using lung tissue to compare the amount of infectious SARS-CoV-2.
  • ELISpot Enzyme-Linked ImmunoSpot
  • cell-mediated immunity was analyzed by measuring the cytokine secreted into the culture medium by ELISA method.
  • the cultured splenocytes were treated with stimulate, and the secretion of IL-6 and TNF-a was measured.
  • FIG. 7 it was confirmed that all three cytokines were measured the highest in G3, which is the two-inoculation group of rMV-S.
  • TNF- ⁇ is closely related to the Th1 immune response
  • IL-6 is a multifunctional cytokine that supports the growth of B cells and plays an important role in establishing a defense system during infection.
  • Flow cytometry splenocytes were analyzed to determine the overall immune response, including vaccine-induced T-cell and B-cell responses. Activation of CD4+ or CD8+ T cells, effector T cells secreting cytotoxic or antiviral cytokines, and populations of germinal center B cells were confirmed.
  • CD4+/CD8+ cells expressing CD25 a T lymphocyte activation marker
  • the graph on the left of Figure 8 is the proportion of the population of CD4+ T cells expressing CD25. There was no trend of population increase in response to antigen stimulation in all groups. However, it was confirmed that activation was achieved through an increased ratio of CD4 + CD25 + in the vaccinated group regardless of stimulation.
  • the population of activated CD8+ cells is shown in the graph on the right of FIG. 8 .
  • the population of activated CD8+ cells showed a statistically significant increase in all of the vaccinated groups, G2, G3, and G4. Among them, G3 immunized twice with rMV-S vaccine showed the largest increase.
  • T cells secreting cytotoxic cytokines in response to antigen stimulation in splenocytes were confirmed by flow cytometry.
  • Granzyme B and Perforin are cytotoxic cytokines that kill infected cells, and INF-r is a representative antiviral cytokine.
  • FIG. 9 it was confirmed that the ratio of CD8+ T cells secreting Granzyme B, Perforin, and IFN-r was very high in G3 splenocytes. As such, it was found that the ratio of effector CD8+ T cells increased in the rMV-S vaccine twice-inoculated group, and the cell-mediated defense system was activated according to antigen stimulation.
  • Germinal center (GC) B cells are involved in the construction of a memory system for antigens and the development of antibody-producing plasma cells. Therefore, the establishment of a memory system and activation of antibody production were confirmed through population analysis of GC B cells in splenocytes of immunized hCD46 Tg mice. Cells were detected with an antibody expressing GL7 and IgD, which are the germinal center B cell markers. As a result of the analysis, it was confirmed that the degree of activation of GC B cells significantly increased in all vaccine groups compared to the unvaccinated group as shown in FIG. 10 . The group with the highest increase was G3 who received 2 doses of rMV-S vaccine.
  • the present invention can be used as a vaccine for preventing SARS-coronavirus-2 infection.
  • the present invention provides a safe vaccine.
  • SEQ ID NO: note One Codon-optimized cNDA sequence of S protein of Covid-19 virus 2 SK-MV-CoV-S sequence of Figure 1 ( pMA-MV-S) 3 SK-MV-N-pcDNA3.1 4 SK-MV-P-pcDNA3.1 5 SK-MV-L-pcDNA3.1

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Communicable Diseases (AREA)
  • General Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Wood Science & Technology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Immunology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Pulmonology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plant Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 홍역 바이러스(measles virus: MV)의 전장 길이 항게놈성 (+) RNA 가닥을 암호화하는 cDNA 분자에, 사스-코로나 바이러스-2의 적어도 하나의 구조 단백질 또는 이의 변이체를 암호화하는 이종의 폴리뉴클레오티드가 삽입된 핵산 작제물로, 상기 적어도 하나의 구조 단백질은 스파이크 (S) 단백질, 뉴클레오캡시드 (N) 단백질, 및 멤브레인 (M) 단백질로 이루어진 군에서 선택된 어느 하나의 단백질인 핵산 작제물, 이를 포함하는 바이럴 벡터 및 이를 포함하는 사스-코로나 바이러스-2 감염 예방용 조성물, 바람직하게 백신에 관한 것이다. 본 발명의 백신은 안전하면서, 세포성 면역 반응 유도 효과가 우수하다.

Description

사스-코로나바이러스-2 항원을 포함하는 바이럴 벡터 및 이의 이용
본 출원은 2020년 10월 29일에 출원된 한국특허출원 제10-2020-0142572호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다. 본 발명은 사스-코로나바이러스-2 (SARS-CoV-2) 감염 예방용 백신 조성물 및 이의 이용에 관한 것으로, 더욱 구체적으로 사스-코로나바이러스-2로부터 유래된 항원을 이용한 사스-코로나바이러스-2 감염 예방용 바이럴 벡터 백신 조성물 및 이의 이용에 관한 것이다.
사스-코로나바이러스-2 (SARS-CoV-2)는 중증 급성 호흡기 증후군 코로나바이러스 2 (Severe Acute Respiratory Syndrome Coronavirus 2) 또는 코비드 19 (COVID19)로 불리며, 한국에서는 코로나 19로 명명된다. 사스-코로나바이러스-2 는 2019년 12월 12일 우한 화난수산시장에서 처음 발견된 바이러스로, RNA 바이러스이며, 인간대 인간 (Human-to-human) 감염이 확인되었다.
사스-코로나바이러스-2는 생물안전 3등급 연구시설 (BSL-3 facility)에서 취급이 필요한 바이러스이며, 바이러스의 재생산지수(R0)를 1.4~3.9로 추정하고 있다. 이는 환자 1명이 최소 1.4명에서 최대 3.9명에게 바이러스를 옮길 수 있다는 것을 의미하여, 즉, 사스-코로나바이러스-2에 의한 감염병 통제가 상당히 어려운 것으로 추정하고 있으며, 2020년 3월 31일 기준으로 전세계 감염자 785,867명, 사망자 37,827명 정도로 집계되었다.
상기 바이러스 감염 후 2~14일간 발열, 호흡곤란, 신장 및 간 손상, 기침, 폐렴 등의 증상이 관찰되며, 아직까지 치료제는 개발되지 못하고 있는 상태이다. 치료제가 개발되지 못한 상황에서 감염을 예방하고, 지역사회에의 확산을 방지하기 위해 백신에 대한 연구가 절실하다. 이러한 상황에서 사스-코로나바이러스-2 감염을 예방하기 위한 백신이 연구되고 있으나, 기존 백신은 중화항체를 활용하여 감염예방을 목적으로 하였을 뿐 체내에서 바이러스의 퇴치에 기여할 수 있는 세포성 면역 반응을 유도할 수 있으면서 안전한 백신 개발이 절실하다.
한편 바이러스 벡터(바이럴 벡터) 백신은 약독화되어 개체에게 질병을 야기하지 않는 바이러스 벡터 백본 (backbone)을 사용하기 때문에 안전하게 투여될 수 있다는 장점이 있어 백신 개발에서 빠르게 성장하고 있으나, 아직까지 사스-코로나바이러스-2의 백신에는 적용되어 상업화된 예가 없다.
본 발명은 상기와 같은 문제를 해결하기 위하여 사스-코로나바이러스-2의 감염 예방을 위한 바이럴 벡터 및 이의 백신으로의 이용을 제공하고자 한다. 본 발명은 안전하고 체내 중화항체 생성뿐만 아니라 세포성 면역 반응까지 유도할 수 있는 새로운 사스-코로나바이러스-2 감염 예방을 위한 바이럴 벡터를 제공하고자 한다.
신종감염병의 대유행 상황에서, 해당 유행바이러스는 보통 고위험 병원체이기 때문에 불활화 및 생백신의 경우는 백신물질의 생산 및 인체투여에서 위험성 높다. 특히, 생백신의 경우 약독화 과정과 안전성 입증까지 매우 오랜 기간이 걸린다. 유전자 기반 백신의 경우 아직까지 상용화 사례 없고, 효력과 안전성 측면에서 아직 미완의 기술이므로, 본 발명의 발명자들은 범용성, 안전성, 효력, 상용화의 측면에서 현재 대유행 신종감염병에 적용 가능한 백신을 제공하고자 한다.
본 발명의 일 구현예는 핵산 작제물로부터 재조합 홍역 바이러스, 바람직하게 사스-코로나 바이러스-2 항원을 발현하는 재조합 홍역 바이러스를 얻을 수 있는 핵산 작제물(Nucleic acid construct)을 제공할 수 있다.
본 발명의 일 구현예는 (1) 홍역 바이러스(measles virus: MV)의 전장 길이 항게놈성 (+) RNA 가닥을 암호화하는 cDNA 분자; 및 (2) 사스-코로나 바이러스-2의 적어도 하나의 구조 단백질 또는 이의 변이체를 암호화하는 이종의 폴리뉴클레오티드를 포함하는 핵산 작제물로, 상기 적어도 하나의 구조 단백질은 스파이크 (S) 단백질, 뉴클레오캡시드 (N) 단백질, 및 멤브레인 (M) 단백질로 이루어진 군에서 선택된 어느 하나의 단백질이며, 상기 이종의 폴리뉴클레오티드는 상기 항게놈성 (+) RNA의 cDNA 내에 작동가능하게 연결된 핵산 작제물에 관한 것이다. 바람직하게 상기 핵산 작제물은 (1) 홍역 바이러스(measles virus: MV)의 전장 길이 항게놈성 (+) RNA 가닥을 암호화하는 cDNA 분자에 (2) 사스-코로나 바이러스-2의 적어도 하나의 구조 단백질 또는 이의 변이체를 암호화하는 이종의 폴리뉴클레오티드가 삽입된 핵산 작제물일 수 있다. 상기 이종의 폴리뉴클레오티드는 홍역 바이러스 게놈의 P 유전자와 M 유전자 사이 또는 H 유전자와 L 유전자 사이의 비-코딩 또는 유전자간 영역에 삽입된 핵산 작제물일 수 있다. 이러한 유전자간 영역은 매우 높은 보존성을 가진다.
상기 cDNA는 전사를 위한 주형으로 제공될 수 있으며, 뿐만 아니라 세포 또는 세포주 내로의 생성물 발현을 위한 해독의 주형으로서도 제공된다. cDNA가 이중 가닥 분자인 경우, 가닥들 중 하나는 cDNA 내에 "T" 뉴클레오타이드에 의해 치환된 "U" 뉴클레오타이드를 제외하고는, 내부에 이종 폴리뉴클레오티드를 지닌 홍역 바이러스의 항게놈성 (+) RNA와 동일한 뉴클레오타이드 서열을 갖는다. 본 발명의 핵산 작제물은 암호화 서열의 전사를 제어하는 조절 인자를 포함할 수 있으며, 특히 전사용 프로모터 및 종결 서열을 포함할 수 있다. 이러한 조절인자는 바람직하게 홍역 바이러스로부터 유래된 것일 수 있다. 상기 "작동가능하게 연결된"은 본 발명의 핵산 작제물 내에서 이종 폴리뉴클레오티드를 기능성 클로닝, 또는 삽입함으로써, 상기 폴리뉴클레오티드 및 핵산 작제물이 사스-코로나 바이러스-2의 적어도 하나의 폴리펩타이드, 또는 적어도 하나의 단백질, 또는 적어도 하나의 항원, 또는 적어도 이의 항원성 단편을 발현하는 재조합 MV의 생산을 위한 시스템의 일부로서 사용된 세포, 세포주, 숙주 세포 내에서 효과적으로, 또는 효율적으로 전사되고 적절하게는 해독되도록 함을 의미하는 것으로 이해될 수 있다.
상기 작동가능하게 연결된 사스-코로나 바이러스-2의 적어도 하나의 구조 단백질 또는 이의 변이체를 암호화하는 이종의 폴리뉴클레오티드에 있어서, 상기 변이체는 바람직하게 스파이크 (S) 단백질의 변이체일 수 있다. 상기 스파이크 (S) 단백질의 변이체는 사스-코로나 바이러스-2 에 대한 면역 반응을 유발할 수 있도록 유도된 변이를 포함할 수 있으며, 바람직하게
i) S 단백질의 681-685번째 아미노산 서열이 PRRAR에서 PGSAG로 치환된 변이체 (즉, 퓨린 절단부위 변이가 유발된 변이체),
ii) S 단백질의 F817P, A892P, A900P, A942P, K986P, 및 V987P 치환이 도입된 변이체(즉, hexa-proline 변이가 유발된 변이체), 또는
iii) S 단백질의 D614G 치환이 도입된 변이체(즉, D614G 변이가 유발된 변이체)를 포함할 수 있다. 여기서 S 단백질은 NCBI assceccion No.: MN908947를 참고할 수 있다.
이러한 변이를 통해 본 발명의 바이러스는 적은 양이 투여되어도 우수한 면역원성을 나타낼 수 있으며, 구체적으로 1회 접종당 적은 양이 투여되더라도 중화항체 유도능이 양호할 수 있다. 바람직하게 본 발명의 핵산 작제물을 게놈으로 포함하는 바이러스는 1회 투여당 대략 3Х 105 PFU 이하, 바람직하게 1Х 105 PFU (1E5 PFU/dose) 이하 정도로 적은 양으로도 양호한 수준으로 중화항체 유도능이 확인될 수 있다.
바람직한 구현예에서 상기 이종의 폴리뉴클레오티드는 서열번호 1(삽입된 S 단백질 항원)로 표현된 폴리뉴클레오티드 또는 이와 적어도 90% 이상, 95% 이상, 98% 이상, 99% 이상, 또는 100%의 서열 상동성을 갖는 폴리뉴클레오티드를 포함하며, 홍역 바이러스 게놈의 P 유전자와 M 유전자 사이에 작동가능하게 연결될 수 있다. 90% 이상의 서열 상동성을 가지는 경우 항원의 기능적 특성을 유지하면서 유사한 수준으로 항원을 발현할 수 있다.
MV의 전장 항게놈성 (+) RNA 가닥을 암호화하는 cDNA 분자는 슈바르츠 균주(Schwarz strain), 자그렙 균주(Zagreb strain), AIK-C 균주, 모라텐 균주(Moraten strain), 필립스 균주(Philips strain), 벡켄햄(Beckenham) 4A 균주, 벡켄햄 16 균주, 에드몬스톤 씨드 A 균주(Edmonston seed A strain), 에드몬스톤 씨드 B 균주(Edmonston seed B strain), CAM-70 균주, TD 97 균주, 레닌그라드-16 균주(Leningrad-16 strain), 상하이 191 균주(Shanghai 191 strain) 및 벨그레이드 균주(Belgrade strain)로 이루어진 그룹으로부터 선택된 약독화된 바이러스 균주로부터 수득될 수 있으나, 본 발명은 특히 사스-코로나 바이러스-2의 항원을 암호화하는 폴리뉴클레오티드가 삽입될 때 슈바르츠 균주에서 낮은 부작용을 가지고, 높은 비율의 세포성 면역 반응을 유발할 수 있다는 것을 확인하여 슈바르츠 균주가 바람직하다는 점을 확인하였다.
본 발명의 일 구현예에서 이종의 폴리뉴클레오티드의 발현 제어 서열은 T7 프로모터 및 T7 종결인자 서열이며, 이들은 인접한 서열로부터 5' 및 3'에 위치한다.
상기 핵산 작제물은 5'로부터 3' 말단으로 하기 폴리뉴클레오티드를 포함할 수 있으며, 이들은 핵산 작제물 내에서 및 MV 리더 및 트레일러 서열(trailer sequence)과 같은 바이러스 복제 및 전사 조절 인자의 제어 하에서 작동적으로 연결될 수 있다.
(a) MV의 N 단백질을 암호화하는 폴리뉴클레오티드;
(b) MV의 P 단백질을 암호화하는 폴리뉴클레오티드;
(c) 사스-코로나 바이러스-2의 S 단백질 또는 이의 변이체를 암호화하는 이종의 폴리뉴클레오티드;
(d) MV의 M 단백질을 암호화하는 폴리뉴클레오티드;
(e) MV의 F 단백질을 암호화하는 폴리뉴클레오티드;
(f) MV의 H 단백질을 암호화하는 폴리뉴클레오티드;
(g) MV의 L 단백질을 암호화하는 폴리뉴클레오티드.
바람직하게 상기 핵산 작제물의 재조합 cDNA 서열은 서열번호 2 (도1 의 SK-MV-CoV-S 서열)인 핵산 작제물일 수 있으며, 바람직하게 상기 서열번호 2의 폴리뉴클레오티드와 적어도 90% 이상의 서열 상동성을 갖는 폴리뉴클레오티드도 포함할 수 있다.
여기서 "N 단백질", "P 단백질", "M 단백질", "F 단백질", "H 단백질" 및 "L 단백질"은 각각 홍역 바이러스의 핵단백질(N), 인단백질(P), 매트릭스 단백질(M), 융합 단백질(F), 헤마글루티닌 단백질(H) 및 RNA 폴리머라제 거대 단백질(L)을 의미하는 것으로 이해될 수 있으며, 이들은 각각 홍역바이러스 Edmonston strains (GenBank: AF266291.1_)를 이용할 수 있다.
본 발명의 다른 구현예는 앞서 설명된 본원의 핵산 작제물을 포함하거나, 이로 이루어진 벡터를 제공한다. 상기 벡터는 서열번호 2를 포함하거나 이로 이루어진 벡터일 수 있다. 상기 벡터는 바람직하게 플라스미드를 포함할 수 있다.
본 원의 핵산 작제물이 위치한 벡터 플라스미드는 Bluescript 플라스미드로부터 수득될 수 있으며 플라스미드 내에 본 발명의 이종 폴리뉴클레오타이드를 클로닝시킴으로써 수득될 수 있다.
본 발명의 일 구현예는 사스-코로나 바이러스-2의 S 단백질 또는 이의 변이체를 항원으로 발현하는 재조합 홍역 바이러스로, 상기 바이러스는 본원의 핵산 작제물, 또는 이를 포함하는 벡터를 게놈 내에 포함하거나, 이로 이루어지는, 재조합 홍역 바이러스를 제공할 수 있다.
본 발명의 다른 구현예는 상기 재조합 홍역 바이러스로 1회 또는 2회 면역 후 사스-코로나 바이러스-2의 S 단백질 또는 이의 변이체에 대해 CD4+ 및 CD8+ T 세포 반응, Th-1 세포 반응을 유발할 수 있다. 특히 본 발명의 재조합 홍역 바이러스는 인터루킨 2 (IL-2), 인터페론감마 (IFN-γ), 인터페론알파 (IFN-α) 를 생성하여 Th-1 세포 반응에 밀접한 관련성을 제공할 수 있다.
상기 핵산 작제물 또는 벡터로 트랜스펙션(형질감염, transfection) 되거나, 상기 재조합 홍역 바이러스로 감염된 숙주 세포도 본 발명의 범위에 포함될 수 있다. 상기 트랜스펙션은 전기천공, 리포좀에 의한 유전자 전달, 직접 주입, 수용체-매개의 흡수(receptor-mediated uptake), 마그네토포레이션 (magnetoporation), 초음파, 또는 이들의 임의 조합, 뿐만 아니라 당해 기술 분야에 공지된 일반적인 트랜스펙션 기법을 이용하여 삽입할 수 있다. 바람직하게 상기 재조합 홍역 바이러스의 전사 및 복제는 감염된 숙주 세포의 세포질 내에서 일어날 수 있다. 상기 숙주 세포는 T7 RNA 중합효소를 발현하는 세포는 제한없이 포함될 수 있으며, 바람직하게 포유류 세포를 포함할 수 있고, 더 바람직하게 사스-코로나 바이러스-2의 S 단백질 또는 이의 변이체의 발현을 위해 햄스터 세포 BHK21, 또는 HEK(Human Embryonic Kideny)293 세포를 포함할 수 있다.
본 발명의 일 구현예에서 바이러스를 수득하는 과정에서 MV의 N 단백질, P 단백질, M 단백질, F 단백질, H 단백질 및 L 단백질로 이루어진 군에서 선택된 어느 하나를 암호화하는 폴리뉴클레오티드가 포함되거나, 폴리뉴클레오티드로 이루어진 벡터가 상기 숙주 세포에 하나 이상 더 선택적으로 트랜스펙션될 수 있다.
일 구현예에서 아래 단계를 포함하는, 사스-코로나 바이러스-2의 S 단백질 또는 이의 변이체를 발현하는 재조합 홍역 바이러스를 생산하는 방법을 제공할 수 있다.
(a) T7 RNA 중합효소를 발현하는 세포를 제1항 내지 제4항 중 어느 한 항에 따른 핵산 작제물 또는 제7항에 따른 벡터로 트랜스펙션시키는 단계;
(b) 트랜스펙션된 세포를 재조합 홍역 바이러스의 생산이 가능하도록 배양하는 단계;
(c) 상기 (b) 단계의 트랜스펙션된 세포를 재조합 홍역 바이러스의 증식이 가능하도록 하는 세포와 공-배양함으로써 이들을 트랜스펙션시켜 상기 (b) 단계의 재조합 홍역 바이러스를 증식시키는 단계; 및
(d) 사스-코로나 바이러스-2의 S 단백질 또는 이의 변이체를 발현하는 재조합 홍역 바이러스를 회수하는 단계.
상기 (a) 단계의 세포는 MV의 N 단백질, P 단백질, M 단백질, F 단백질, H 단백질 및 L 단백질로 이루어진 군에서 선택된 어느 하나를 암호화하는 폴리뉴클레오티드가 포함되거나, 폴리뉴클레오티드로 이루어진 벡터가 하나 이상 추가로 선택적으로 트랜스펙션될 수 있다.
또 다른 실시예에서 아래의 단계를 포함하는, 세포 내에서 복제성은 없는 비-복제성 전사 플라스미드를 제조하는 단계를 포함하는 바이럴 벡터, 또는 상기 벡터를 이용하여 사스-코로나 바이러스-2의 S 단백질 또는 이의 변이체를 발현하는 재조합 홍역 바이러스를 생산 방법을 제공할 수 있다.
a) MV의 N 단백질, P 단백질, M 단백질, F 단백질, H 단백질 및 L 단백질로 이루어진 군에서 선택된 어느 하나의 MV의 단백질을 발현하는 적어도 하나 이상의 발현 플라스미드; 및
사스-코로나 바이러스-2의 S 단백질 또는 이의 변이체를 발현하는 발현 플라스미드를 제조하는 단계;
b) 전장 MV게놈의 전체 폴리뉴클레오티드에서 a) 단계의 발현 플라스미드로 발현되는 단백질을 암호화하는 폴리뉴클레오티드는 삭제된 비-복제성 전사 플라스미드를 제조하는 단계;
c) 발현 플라스미드 및 전사 플라스미드를 T7 RNA 중합효소를 발현하는 숙주 세포로 트랜스펙션하는 단계; 및
d) 숙주 세포로부터 재조합 홍역 바이러스를 회수하는 단계.
구체적으로 상기 a) 및 b) 단계에 있어서, MV게놈의 전체 폴리뉴클레오티드에서 F 단백질 및 H 단백질을 암호화하는 유전자가 결실되는 경우, F 단백질 또는 H 단백질을 암호화하는 유전자가 포함되거나 이로 이루어진 플라스미드를 함께 세포로 트랜스펙션할 수 있다.
일 구현예에서 상기 비-복제성 전사 플라스미드는 전장 MV게놈의 전체 폴리뉴클레오티드에서 헤마글루티닌(H)과 막 융합 단백질(F)를 포함하는 외피 당단백질 암호화하는 뉴클레오티드 대신에 리포터 유전자가 삽입될 수 있다. 이의 비 제한적인 예시는 도 3에 나타냈다. 상기 리포터 유전자는 유전자의 발현물질을 어떤 방법으로든 검출할 수 있는 유전자로서 예를 들어 루시페라제(luciferase)를 암호화하는 유전자를 포함할 수 있으며, 바람직하게 green fluorescent protein (GFP)를 포함할 수 있다. 상기 리포터 유전자가 삽입된 비-복제성 전사 플라스미드는 재조합 바이러스의 중화 테스트에 이용될 수 있다.
본 발명의 일 구현예는 상기 재조합 홍역 바이러스; 및 약학적으로 허용 가능한 담체를 포함하는, 사스-코로나 바이러스-2의 감염 예방용 백신 조성물을 제공한다.
본 발명의 다른 구현예는 재조합 홍역 바이러스, 또는 제13항 또는 제15항의 방법에 따라 생산된 재조합 홍역 바이러스; 및
약학적으로 허용 가능한 담체를 포함하는, 사스-코로나 바이러스-2의 S 단백질 또는 이의 변이체에 대해 CD4+ 및 CD8+ T 세포 반응 또는 Th-1 반응을 유발하는 약학적 조성물을 제공하며, 특히 바람직하게 상기 조성물은 사스-코로나 바이러스-2 감염 예방 효과를 가질 수 있다.
상기 '사스-코로나바이러스-2 감염 또는 감염증'이라 함은 사스-코로나바이러스-2 자체의 감염뿐만 아니라, 상기 바이러스의 감염으로부터 발생되는 여러가지 병증 (예를 들어, 호흡기 질환, 폐렴 등)을 넓게 포함하는 개념으로 이해될 수 있다. 본 발명에서 상기 백신은 당업계에서 잘 알려진 통상적인 방법으로 제조될 수 있고, 당업계에서 백신 제조 시 사용할 수 있는 여러 첨가물을 선택적으로 더 포함할 수 있다. 본 발명에 따른 백신 조성물은 상기 재조합 바이러스 항원 및 약학적으로 허용가능한 담체를 포함할 수 있다. 이에 제한되는 것은 아니지만 예를 들면, 제제시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다. 본 발명의 약제학적 조성물은 상기 성분들 이외에 TWEEN™, 폴리에틸렌 글리콜 (PEG) 등과 같은 비-이온성 계면 활성제, 아스코르브 산을 포함하는 항산화제, 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함하여 사용될 수 있다. 본 발명에서 상기 백신은, 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있는 방법에 따라, 약제학적으로 허용되는 담체 및/또는 부형제를 이용하여 제제화 함으로써 단위 용량 형태로 제조되거나 또는 다용량 용기 내에 내입시켜 제조될 수 있다. 이때 제형은 오일 또는 수성 매질중의 용액, 현탁액 또는 유화액 형태이거나 엑스제, 분말제, 과립제, 정제 또는 캅셀제 형태일 수도 있으며, 분산제 또는 안정화제를 추가적으로 포함할 수 있다. 본 발명에서 상기 백신의 적합한 투여량은 제제화 방법, 투여 방식, 환자의 연령, 체중, 성, 병적 상태, 음식, 투여 시간, 투여 경로, 배설 속도 및 반응 감응성과 같은 요인들에 의해 다양하게 처방될 수 있다. 한편, 본 발명에 따른 백신의 투여량은 바람직하게는 도즈 당 1 ~ 500 ug 일 수 있다. 본 발명의 일 구체 예에서는 상기 재조합 바이러스를 유효성분으로 포함하는 백신은 정맥내주사, 근육 내주사, 피하내주사, 경피전달 또는 기도흡입으로 체내에 투여될 수 있으나, 이에 제한되는 것은 아니다.
상기 백신 조성물은 면역 반응 효과를 향상시키기 위해, 면역학적 애쥬반트를 더 포함할 수 있다. 상기 면역학적 애쥬반트는 예를 들어 백신 제조 업계에서 잘 알려진 AS03, 씨피지(CpG), 스쿠알렌(MF59), 리포솜, TLR agonist, MPL(monophosphoryl lipid A)(AS04), 마그네슘 하이드록사이드, 마그네슘 카보네이트 하이드독사이드 펜타하이드데이트, 티타듐다이독사이드, 칼슘 카보네이트, 바륨 옥사이드, 바륨 하이이드록사이드, 바륨 퍼옥사이드, 바륨 설페이트, 칼슘 설페이트, 칼슘 파이로포스페이트, 마그네슘 카보네이트, 마그네슘 옥사이드, 알루미늄 하이드록사이드, 알루미늄 포스페이트 및 수화된 알루미늄 포타슘 설페이트로부터 선택된 어느 하나 이상일 수 있으며, 바람직하게 씨피지(CpG), 알루미늄 하이드록사이드, 또는 이들의 혼합물을 포함할 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 일 구현예는 사스-코로나 바이러스-2의 감염 예방 또는 사스-코로나 바이러스-2의 S 단백질 또는 이의 변이체에 대해 CD4+ 및 CD8+ T 세포 반응 또는 Th-1 반응을 유발 방법에 관한 것으로, 상기 방법은 상기 핵산 작제물, 이를 포함하는 벡터, 또는 상기 재조합 홍역 바이러스를 이를 필요로 하는 개체에 유효량 투여하는 단계를 포함할 수 있다. 다른 구현예에서 재조합 홍역 바이러스의 사스-코로나 바이러스-2의 감염 예방 용도 또는 사스-코로나 바이러스-2의 S 단백질 또는 이의 변이체에 대해 CD4+ 및 CD8+ T 세포 반응 또는 Th-1 반응을 유발하기 위한 용도를 제공한다.
본 발명의 일 구현예에 따른 백신은 안전성이 높다.
본 발명의 일 구현예에 따른 백신은 우수한 면역원성을 가지며, 백신으로 우수한 효능을 갖는다.
본 발명의 백신은 중화 항체가가 높을 뿐만 아니라, 우수한 세포성 면역 반응을 보인다. 특히 Th-1 반응을 유도할 수 있어, Th-1 반응을 통한 세포성 면역 유도로 바이러스에 감염된 세포도 제거할 수 있다.
본 발명은 사스-코로나바이러스-2 감염에 대한 예방 효과가 우수하다.
본 백신주의 생산성이 우수하다. 본 발명의 재조합 MV는 적은 투여량으로도 우수한 중화항체 생성능을 발휘할 수 있으며, 예를 들어, 3Х 105 PFU 이하의 양으로도 중화항체 유도 능력을 보여줄 수 있다.
도 1은 바이럴 벡터를 제작하기 위한 유전자 컨스트럭트를 보여준다.
도 2는 도 1의 construct 제작시 필요한 helper plasmid를 보여준다(SK-MV-P-pcDNA3.1;MV 의 P 유전자로 구성, SK-MV-N -pcDNA3.1; MV 의 N 유전자로 구성, SK-MV-L-pcDNA3.1; MV 의 L 유전자로 구성). 이들은 도 1의 컨스트럭트와 함께 사용될 수 있다.
도 3은 Cytopathic effect (CPE) determination assay 결과로, 본 발명으로 Replicable rMV-S(=rMeV-S) 가 제작되었음을 보여준다. MV의 N 단백질과 Covid-19의 S 단백질이 모두 발현되었음을 확인할 수 있다.
도 4는 Tg 마우스 면역원성 시험에 따른 결합 항체가 결과를 보여준다.
도 5는 면역한 Tg 마우스의 중화 항체가를 보여준다.
도 6은 ELIspot을 통한 Tg 마우스의 세포성 면역 분석 결과를 나타낸다.
실험에 사용된 단백질은 Mabtech 사의 3629-1 (cat.#)제품으로 S1-1은 S1의 1번째 아미노산부터 83 번째 아미노산까지의 범위를 커버하는 83종의 pool이고, S1-2는 84번째 아미노산부터 166번째 아미노산의 범위를 커버하는 83종의 pool이다.
도 7은 Cytokine ELISA를 통한 Tg 마우스의 세포성 면역 분석 결과를 나타낸다.
도 8은 Flow cytometry를 통한 Tg 마우스의 활성화 T 세포 반응 분석 결과를 나타낸다.
도 9는 Flow cytometry를 통한 Tg 마우스의 Effector T 세포의 분석 결과를 나타낸다.
도 10은 Flow cytometry를 통한 Tg 마우스의 GC B 세포의 분석 결과를 나타낸다.
도 11은 햄스터 혈청의 중화항체가를 보여준다.
도 12는 공격실험 결과 햄스터의 장기에서 검출되는 바이러스의 농도 감소를 통해 rMV-S 백신의 효능을 보여준다.
이하, 본 발명의 이해를 돕기 위하여 실시예 등을 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예들에 한정되는 것으로 해석되어서는 안된다. 본 발명의 실시예들은 본 발명이 속한 분야에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
1. Viral vector의 선택
안전한 바이럴 벡터의 백본(Backbone)로 홍역 바이러스(MV, Measles virus)를 선택하였고, 그 중에서 Schwarz strain을 선택하였다. 상기 Schwarz strain은 Edmonston strain에서 유래하였다. Edmonston strain에서 Chicken embryo fibroblast 와 Intraamniotic cavity of chicken embryo 세포 등에서 70번 이상의 passaging을 거쳐 얻은 약독화 백신주이다. 이렇게 약독화 된 백신은 Edmonston strain으로 제작한 기존 Measels 백신에 비하여 낮은 확률로 부작용이 발생하고, 그 증상의 정도도 경미한 것으로 알려져있다. 따라서 부작용 측면에서 안전하고, 인체에 미치는 영향이 충분히 알려져 있는 바이러스를 사용하고자 Shcwarz strain measles virus를 이용하였다. 또한 MV를 바이러스 벡터로 선택한 결과, 우수한 면역원성을 보였다. 즉 삽입된 외부 유전자 항원 (즉, COVID-19의 S 단백질 항원)의 면역 효과도 오래 지속되었다. MV는 바이러스 벡터로 항체면역과 더불어 높은 비율의 세포성 면역반응을 유도할 수 있었다.
2. 항원 발현용 컨스트럭트 제조
2.1. MV 컨스트럭트 제작
Schwarz vaccine strain measles virus (NCBI assceccion No.: AF266291.1) 서열을 참조하였고, 이를 백본(Backbone)으로 하였다.
Severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1의 서열 (NCBI assceccion No.: MN908947)을 참고하여 합성한 서열번호 1의 폴리뉴클레오티드를 이종 항원의 폴리뉴클레오티드로하여 상기 백본의 M 유전자 및 H 유전자 사이의 비암호화 영역에 추가하였다. 이를 통해 Spike 단백질을 발현하는 replicable 재조합 바이러스를 제작하였고, SK-MV-CoV-S construct (도 1 참조)로 칭하였다.
MV의 게놈에 포함되어 있는 바이러스 단백질은 구조단백질과 비구조 단백질로 나뉘며 구조단백질에는 M, H, F가 있어 바이러스의 표면에서 입자를 구조화하고 세포에 entry 하는 역할을 한다. 나머지 단백질인 N, P, L 단백질은 virus의 게놈의 유지와 발현, 그리고 복제에 관여하는 단백질로, 바이러스의 replication에 있어 필수적인 구성요소이다. 이 3 가지 N, P, L 단백질 유전자는 virus rescue에 필수적이어서, 도 2의 helper 플라스미드를 제작하여 재조합 바이러스 제작에 함께 사용하였다.
2.2. Spike 서열 modification
S 유전자는 다음과 같은 3가지의 modification을 포함할 수 있으며, 상기 이종 항원의 폴리뉴클레오티드로 하기의 3가지 변형이 포함된 변이체의 폴리뉴클레오티드를 이용할 수 있다: Furin 절단부위 변이, hexa-proline 변이 및 D614G 변이.
각 변형은 Spike 단백질의 안정성이나 감염력과 연관이 있다. Hexa-proline 및 furin 절단부 둘연변이는 단백질 안정성을 향상시키기 위해 적용하였고, D614G 돌연변이는 SARS-CoV-2의 virion에서 증가된 감염성을 가지는 것으로 보고되고 있어 적용시켰다.
1) Furin cleavage site replacement
SARS-CoV-2의 스파이크 단백질은 furin like protease 에 의해 수용체 결합 subunit인 S1 과 융합 subunit인 S2로 파편화된다. SARS-CoV-2는 이러한 과정을 통해 세포막과 융합을 거쳐야만 세포 내로 감염되어 들어갈 수 있다. 본 발명에서 제작하는 construct는 MV 단백질을 이용한 entry 과정을 거쳐 세포내로 진입하므로 Spike를 통한 entry 과정이 필요하지 않다. 따라서 재조합 MV 백신에 포함되는 Spike 서열은 furin cleavage site가 필수적이지 않다. 그리고 최근 발표된 보고에 따르면 Spike 단백질이 S1/S2로 cleavage 되지 않고 pre-fusion 형태로 유지되었을 때 면역원성이 더 뛰어난 것으로 나타났다. 따라서 본 발명에서는 S 단백질의 서열 내에 furin like protease의 인식부위인 681-685 번째 아미노산 서열(PRRAR)을 PGSAG 서열로 대체하도록 변이시켜, Spike의 prefusion 형태가 유지되게 하였다.
2) Hexa-proline mutation
Spike 서열의 일부에 hexa-proline 변이라고하는 아미노산 잔기 중 일부 6개를 proline으로 치환시키는 변이를 추가하였다. 이 변이는 열과 분자/화학적 환경변화에서 발생할 수 있는 변형을 막기위한 변이로 Spike 단백질의 다음과 같은 위치에 (F817P, A892P, A900P, A942P, K986P, V987P) 6개의 proline 치환 변이를 추가하였다. 이와 같이 스파이크 유전자 서열에 6개의 프롤린 돌연변이인 Hexa-Pro를 삽입하면 원래의 아미노산 서열보다 더 높은 발현을 보이고, 열 스트레스와 3회의 동결-해동 사이클에 견딜 수 있는 능력을 가지는 것으로 보고되어있다.
3) D614G mutation
Spike의 614 번째 아미노산인 Aspartic acid를 glycine으로 변이 시키는 D614G 돌연변이는 Spike 단백질의 세포 수용체와 결합력을 증가시키는 변이이다.
3. 발현세포주로 Transfection
이 과정은 T7 RNA 중합효소를 안정적으로 발현하는 BHK21-T7 세포주에 제작한 플라스미드를 transfection 시켜 Spike를 발현하는 재조합 홍역바이러스(rMV-S)를 제작하고자 하는 과정을 설명한다.
T7 RNA 중합효소를 발현하는 BHK21 세포주인 BHK21-T7 세포주를 10% FBS가 포함된 GMEM(Glasgow modified Eagle medium) 배양 배지에서 배양하였다. Transfection 수행 24시간 전에, BHK21-T7 cell을 6-well plate에 5*105 cells/well로 seeding하였다. 그 다음날 배지를 새 배지로 교환하고 아래 표 1과 같이 TransIT-LT-1 (MIRUS) transfection reagent로 transfection을 진행하고 1일 배양하였다. 이 때, DNA 5ug 당 300ul의 Opti-MEM를 첨가하고, 여기에 형질감염 시약으로 TransIT-LT1 transfection reagent를 총 DNA 1ug 당 3ul 수준으로 첨가하여, pipetting 및 tapping으로 부드럽게 섞어준 뒤 이를 상온에서 15~30분간 반응하여 세포에 처리하였다.
DNA 첨가량 Opti-MEM (μL)
SK-MV-N-pcDNA3.1 (서열번호 3) 400ng 300
SK-MV-P-pcDNA3.1 (서열번호 4) 50ng
SK-MV-L-pcDNA3.1 (서열번호 5) 100ng
pMA-MV-S (서열번호 2) 4.5 μg
Transfection reagent (TransIT-LT1) 15 μL
Transfection 1일차에 6 well plate의 배지를 새 배지로 교환한 뒤, heat shock을 주기 위해 온도를 43℃ 로 조절한 CO2 incubator에서 3시간 동안 배양하였다. 그 후, 다시 37℃ incubator에 2일 더 배양하였다. Transfection 후 3일차에 배양중인 6 well plate의 상층액을 제거하고 trypsin으로 세포를 떼어내었다. 떼어낸 세포를 VERO76 세포와 함께 seeding하여 cell culture flask에서 배양하였다. Co-Culture는 6 ~ 7일동안 37 ℃ CO2 incubator에서 진행하였다.
Co-culture 기간 동안 MV의 증폭 시 발생하는 현상인 syncytia (다핵세포체)가 형성이 되는지 관찰하였다. 배양한지 7일 째에도 Syncytia(다핵세포체)가 확인되지 않으면, cell scraper를 사용해 dish 바닥에서 세포를 긁어 회수하여 Vero에 한 차례 더 passaging 시켰다. Cell lysate와 배양액을 함께 회수하여 -80℃로 설정된 초저온 냉동고에 얼렸다가 37℃에서 녹여 세포를 파괴하였다. 세포 용출물을 Vero76 세포에 한시간에서 두시간 흡착시켜 감염시키고, 새 3% FBS DMEM 배지로 교환해 준 뒤, 6 ~ 7일 동안 37℃ CO2 incubator에서 키우며 관찰하였다. 배양 도중 도 3의 CPE (Cytopathic effect (CPE)) 사진과 같이 Syncytia(다핵세포체)가 발생하면, syncytia를 멸균한 파이펫 팁으로 분리하여 VERO76 세포에 감염시켰다. 이 때, 처음 발생한 1개의 syncytia는 1개의 replicative center 이자 virus clone으로 간주하였다. 위의 과정으로 제작한 rMV-S (spike를 발현하는 재조합 홍역바이러스)의 single clone을 배양하여 증폭시켰다.
도 3과 같이 Western Blot 및 IFA(immunofluorescence assay)의 방법으로 Measles virus와 Spike 단백질의 발현 여부를 확인하였다.
4. rMV-S 바이러스 생산
이 과정은 실험동물에서 면역원성 확인실험을 진행하기 위해 앞서 제작한 바이러스를 이용해 시료를 제작하는 과정을 기술한다.
Vero76 세포를 T175 flask에 1E7 cells로 seeding하여, 18 ~ 24 시간동안 10% FBS가 포함된 DMEM에 배양하였다. Seeding 다음날 플라스크 면적의 70%의 confluency에 도달하면 세포 수를 집계하여 live 세포수를 측정하였다. 세포수가 확인되면 0.01 MOI의 양에 해당하는 바이러스를 Serum free DMEM에 희석하여 감염시킨다. 바이러스 감염의 과정은 37℃ CO2 incubator에서 1시간 흡착으로 진행하였다.
바이러스 흡착이 끝나면, 40ml의 3% FBS DMEM을 넣어준 뒤 37℃ CO2 incubator에서 배양한다. 감염 후 5일차에 배지를 제거하고 새 배지로 교환해 주었다. 감염 후 6일차에 배지를 제거하고, cell scrapper를 이용하여 세포를 모아 젤라틴, sucrose 등의 안정제성분의 조성물이 포함되어 있는 PBS에 회수하였다. 그런 다음, 수확된 바이러스를 1차례의 동결 및 해동 사이클을 거쳐 바이러스를 방출시켰다. 원심분리를 수행하여 상층액의 바이러스를 회수하고, pellet은 버린다.
수득된 바이러스를 분주하여 -80℃의 deep freezer에 사용시까지 보관하고, 수득된 바이러스의 역가를 Plaque assay 로 측정하여 확인하였다.
5. 동물시험
5.1. 면역원성 시험 (Immunogencity test)
일반적으로 마우스는 MV에 감수성이 없는 것으로 알려져 있어, 제작한 rMV-S의 면역원성 테스트를 위해 MV의 cellular receptor로 알려진 인간의 CD46을 발현하는 Transgenic 마우스를 준비하여 실험을 진행하였다. hCD46 Tg 마우스에 제작한 rMV-S를 1회 또는 3주 간격으로 2회 복강투여하였다. 실험군은 rMV-S 미접종 그룹(G1), rMV-S 1회 접종그룹(G2), rMV-S 2회 접종 그룹(G3, G4)으로 나누어 진행하였다. 2회접종 그룹은 2차 면역시 제작한 rMV-S 로 면역하는 그룹(G3)과 상기 MN908947의 Spike의 RBD 단백질로 면역하는 그룹(G4)을 포함하도록 하였다. 최종 접종 후 2~3주 후 전혈하여 분리된 혈청과 비장세포를 얻었다.
5.2. 방어능 시험 (Protection test)
Golden Syrian 햄스터 모델에서 백신의 방어능을 평가하기 위한 실험을 진행하였다. rMV-S 백신을 면역증강제 없이 3주 간격으로 2회 복강투여하였다. 그룹은 총 4개로, 컨트롤 그룹(NC), 백신 미접종 후 Chllenge 진행 그룹(Infection Control, IC), 낮은 Dose (1E5 PFU/dose)의 백신 그룹(Low Dose, LD), 높은 Dose (5E5 PFU/dose)의 백신 그룹(High Dose, HD)으로 진행되었다. 2차 접종 후 2주 뒤, 햄스터를 ABL3 (Animal Biosafety Level 3) 실험 시설로 이동하였다. 채혈 및 혈청분리를 수행하여 혈청을 얻고, SARS-CoV-2 바이러스를 1E5 PFU/hamster로 비강으로 공격감염하였다. 매일 체중과 체온을 측정하였고 감염 후 4일차에 부검을 진행하여 비강세척액, 폐조직을 수집하였다.
5.3. 면역원성 평가 분석
hCD46 Tg mouse 모델에서 면역원성 평가는 IgG ELISA 분석으로 수행하였다. 코팅용 항원은 SARS-CoV-2 spike S1 단백질을 이용하였다. 항원으로 코팅된 플레이트를 블로킹 한 뒤 2차 면역 한 혈청을 PBS에 1:50 으로 희석하여 플레이트에 반응시켰다. 마우스의 IgG 나 IgG 서브타입을 검출하는 2차 항체는 PBS에 1: 5000으로 희석하여 플레이트에 반응시켰다. 그 뒤 기질을 첨가하여 발색시키고, 흡광도를 측정했다.
5.4. 중화항체가 평가 분석
햄스터와 hCD46 TG Mouse 모델에서 얻은 혈청을 이용해 중화항체 생성 여부를 PRNT로 확인하였다. 분리한 혈청을 희석배수 1/20 부터 2-fold로 serial dilution 하여 SARS-CoV-2 바이러스(Severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1)와 반응시켰다. 반응한 바이러스를 웰 플레이트에 감염시켜 배양하고 감소된 바이러스의 역가를 측정하기 위해 plaque assay를 진행하여 plaque 수를 확인하였다.
5.5. 세포성 면역의 평가
ELIspot을 진행하기 위해 IFN-r와 IL4와 반응하는 antibody가 코팅된 plate를 준비해 분리한 transgenic 마우스의 비장세포를 seeding 하였다. 세포에 Spike 단백질 및 펩타이드를 촉진제로 첨가하여 24~48 시간 배양하였다. 각 플레이트에서 배지를 제거하고 기질을 첨가하여 반응시킨다음 ELIspot reader를 사용하여 결과를 확인하였다.
Flow cytometry와 면역세포에서 분비되는 싸이토카인 측정을 위해서는 아래와 같은 방식으로 마우스의 비장세포를 분석하였다. 96 well culture plate에 세포를 seeding 하고, 촉진제 항원을 처리하여 24~48시간 배양하였다. 이후 배양액에서는 싸이토카인 발현을 측정하고 면역 세포는 유세포분석에 이용하였다.
5.6. 백신의 방어능 확인
햄스터모델에서 SARS-CoV-2의 challenge 후 백신의 방어능을 확인하기 위해 nasal wash와 폐 조직에서 바이러스의 titer를 확인하였다. Nasal wash를 얻기 위해 감염 후 4일차에 햄스터의 비강을 PBS로 세척하여 회수하였고, 폐조직을 갈아 Viral RNA를 추출하였다. 이 RNA로부터 바이러스의 유전자 발현을 real time RT-PCR로 확인하여 복제진행중인 바이러스 유전자의 카피수를 그룹별로 비교하였다. 감염성이 있는 SARS-CoV-2의 양을 비교하기 위해 폐 조직을 이용하여 plaque assay를 수행하였다.
6. 면역원성 평가
6.1 hCD46 Tg 마우스에서 rMV-S 백신의 총항체가 분석
마우스에 한번 또는 두번의 면역 후, 혈청에서 검출되는 항원 특이적 IgG 레벨을 ELISA로 비교하였다. 도 4의 결과로 rMV-S 접종그룹에서 강력한 항체반응이 유도된 것을 알 수 있다. IgG 서브클래스 중 전반적으로 IgG2c의 양이 더 많이 유도되는 것을 확인하였다. IgG2c는 IFN-r 와 같은 Th1 사이토카인의 영향을 받는 것으로 알려져 있어, rMV-S 백신에 의해 Th2 반응보다 Th1 반응이 더 많이 유도된 것으로 보인다. 또한, 부스팅을 하지 않은 G2 그룹도 대조군에 비해 통계적으로 유의한 스파이크 특이 항체의 검출이 확인되었다.
도 4의 결과를 통해 확인할 수 있듯이, 접종횟수에 상관없이 우수한 항체생성율이 관찰되었다. 또한 IgG2c가 증가하는 것으로 확인되었는 바, Th1 반응이 발생중임을 알 수 있었다.
6.2. hCD46 Tg 마우스에서 중화항체가 분석
백신 접종 후 Tg 마우스에서 중화항체 생성 여부를 PRNT (Plaque Reduction Neutralization assay) 로 분석하였다. 도 5의 결과처럼 rMV-S 백신을 2회 면역한 G3 그룹의 혈청은 160배 희석시에도 플라크가 70% 이상 중화되어 가장 높은 중화능을 보였다. Boosting을 하지 않은 G1 그룹이나, boosting을 단백질 항원으로 진행한 G4 그룹의 결과는 비슷한 수준으로 나타나, 혈청의 희석배수가 80일 때에도 50%이상의 바이러스 중화능을 나타냈다. 이 결과로 rMV-S 백신의 단일면역이나, 2회 면역이 실험동물에 상당한 수준의 중화 항체를 유도할 수 있음을 알 수 있다.
6.3. hCD46 Tg 마우스에서 세포성 면역결과 분석 (1) ELIspot
Cytokine 분비 세포의 측정을 통하여 세포 매개 면역을 조사하고자, 면역된 마우스의 비장 세포를 사용하여 ELISpot (Enzyme-Linked ImmunoSpot) 분석을 수행했다. 도 6에서 보는 바와 같이 여러 Stimulate의 종류에 따라 정도의 차이는 있지만 IFN-r을 분비하는 SFU 역가 (spot forming unit titer)는 모두 G3가 가장 높게 확인되었다. IL-4 cytokine의 SFU 역가는 그룹 간에 유의한 차이가 없어, 면역 반응의 패턴이 Th1 반응으로 편향되어 있는 경향을 확인하였다.
6.4. hCD46 Tg 마우스에서 세포성 면역결과 분석 (2) Cytokine secretion
이 과정에서는 배양액으로 분비되는 cytokine을 ELISA방식으로 측정하여 세포 매개 면역을 분석하였다. 배양된 비장세포에 stimulate를 처리하고, IL-6, TNF-a의 분비를 측정하였다. 도 7의 결과를 통해 세가지 cytokine 모두 rMV-S의 2회 접종 그룹인 G3에서 가장 높게 측정된 것을 확인하였다. TNF-α는 Th1 면역 반응과 밀접한 관련이 있고, IL-6는 다기능 cytokine으로 B세포 성장을 지원하는 역할과 감염시 방어체계 구축에 중요한 기능을 한다. 이러한 결과들을 통해 rMV-S 백신이 실험동물 체내에서 세포 매개 면역을 충분히 잘 유도하고 있음을 알 수 있다.
6.5. hCD46 Tg 마우스에서 세포성 면역결과 분석 (3) Flow cytometry
백신으로 유도된 T 세포 및 B 세포 반응을 포함하여 전반적인 면역 반응을 확인하기 위해 Flow cytometry 비장세포를 분석하였다. CD4+ 또는 CD8+ T 세포의 활성화, 세포 독성 cytokine이나 항바이러스 cytokine을 분비하는 이펙터 T 세포 및 Germinal center B cell의 population을 확인하였다.
1) 활성화 T 세포 확인 결과
T 림프구 활성화 마커인 CD25를 발현하는 CD4+/CD8+ 세포의 population을 분석하였다.
도 8의 좌측 그래프는 CD25를 발현하는 CD4+ T 세포의 집단의 비율이다. 전 그룹에서 항원 자극에 반응하여 population 증가 경향이 나타나지 않았다. 그러나 자극과 무관하게 백신 접종군의 CD4+ CD25 + 증가된 비율을 통해 활성화 되어있는 것을 확인하였다.
활성화된 CD8+ 세포의 population은 도 8의 우측 그래프에 나타냈다. 활성화된 CD8+ 세포의 개체군은 백신 접종 그룹인 G2, G3, G4에서 모두 통계적으로 유의하게 증가하는 경향을 보였다. 그 중 rMV-S 백신으로 2회 면역한 G3에서 가장 큰 증가를 보였다.
2) 세포독성 T 세포 반응 분석
비장세포에서 항원 자극에 대해 세포독성 사이토카인을 분비하는 T 세포의 비율을 유세포 분석으로 확인하였다. Granzyme B와 Perforin 은 세포독성 cytokine으로 감염된 세포를 사멸시키는 작용을 하고, INF-r 은 대표적인 항바이러스 cytokine이다. 도 9에 제시된 것처럼 G3의 비장세포에서 Granzyme B, Perforin, IFN-r를 분비하는 CD8+ T 세포의 비율이 매우 높게 나타난 것을 확인하였다. 이처럼 rMV-S 백신 2회 접종 그룹에서 effector CD8+ T 세포의 비율이 증가하여 항원 자극에 따라 세포 매개성 방어체계가 활성화된 것을 알수 있었다.
3) Germinal center B 세포 반응 분석
Germinal center (GC) B 세포는 항원에 대한 기억 시스템의 구축과, 항체를 생산하는 형질 세포의 발달에 관여한다. 따라서 면역된 hCD46 Tg마우스의 비장세포에서 GC B 세포의 population 분석을 통해 기억 시스템 구축과 항체 생산의 활성화를 확인하였다. Germinal center B cell marker인 GL7 및 IgD를 발현하는 항체로 세포를 detection 하였다. 분석 결과, 도 10과 같이 미접종군에 비해 모든 백신군에서 GC B 세포의 활성화 정도가 유의하게 증가하는 것으로 확인되었다. 가장 높은 증가를 보인 그룹은 rMV-S 백신을 2회 접종한 G3였다.
이러한 결과를 통해 rMV-의 2회 접종은 hCD46 Tg 마우스에서 우수한 면역반응을 토대로 중화항체를 성공적으로 형성하는 것을 알 수 있었다.
6.6. 햄스터 중화항체가 결과
백신접종에 따른 햄스터 체내의 중화항체 생성 여부를 PRNT로 확인하였다. 도 11의 그래프를 통해 Low dose로 2회 접종한 그룹과 High dose로 2회 접종한 그룹 모두 유사한 수준의 중화능을 보이는 것을 알 수 있다. 두 그룹 모두 320배 희석하였을 때 Plaque 역가가 약 50% 감소하는 것으로 확인되어 rMV-S 가 효과적으로 중화항체를 유도함을 확인할 수 있었다.
6.7. 햄스터 방어능 결과
도 12의 그래프 A)와 B)를 통해 백신을 접종한 햄스터의 비강세척액과 폐 조직내에서 SARS-CoV-2의 RNA 발현수준이 현격히 감소한 것을 확인하였다. 이 효과는 접종 dose에 상관없이 나타나, Low dose인 1E5 PFU/dose의 면역으로도 햄스터가 충분히 공격감염에서 보호됨을 확인하였다.
도 12의 그래프 C)를 통하여 그룹간 폐조직내의 감염성 바이러스의 양을 비교한 결과 접종 dose에 상관없이 백신을 접종한 두 그룹에서 바이러스가 검출되지 않은 것을 알 수 있다. 반면 IC 그룹 (Vaccination: X, Infection: O) 에서는 높은 역가의 감염성 바이러스가 확인되어 백신이 햄스터를 공격감염에서 보호하고 있음을 확인하였다.
결론적으로 햄스터 모델에 rMV-S를 1E5 PFU/dose 또는 5E5 PFU/dose 로 2회 접종하였을 때 효과적으로 SARS-CoV-2의 감염을 예방하는 것을 확인할 수 있었다.
본 발명은 사스-코로나바이러스-2 감염 예방을 위한 백신으로 이용할 수 있다. 본 발명은 안전한 백신을 제공한다.
서열번호 비고
1 Covid-19 바이러스의 S 단백질의 코돈 최적화된 cNDA 서열
2 도1 의 SK-MV-CoV-S 서열(=pMA-MV-S)
3 SK-MV-N-pcDNA3.1
4 SK-MV-P-pcDNA3.1
5 SK-MV-L-pcDNA3.1

Claims (19)

  1. 홍역 바이러스(measles virus: MV)의 전장 길이 항게놈성 (+) RNA 가닥을 암호화하는 cDNA 분자에,
    사스-코로나 바이러스-2의 적어도 하나의 구조 단백질 또는 이의 변이체를 암호화하는 이종의 폴리뉴클레오티드가 삽입된 핵산 작제물로,
    상기 적어도 하나의 구조 단백질은 스파이크 (S) 단백질, 뉴클레오캡시드 (N) 단백질, 및 멤브레인 (M) 단백질로 이루어진 군에서 선택된 어느 하나의 단백질인, 핵산 작제물.
  2. 제1항에 있어서, 상기 이종의 폴리뉴클레오티드는 홍역 바이러스 게놈의 P 유전자와 M 유전자 사이 또는 H 유전자와 L 유전자 사이의 비-코딩 또는 유전자간 영역에 삽입된 것을 특징으로 하는 핵산 작제물.
  3. 제1항에 있어서, 상기 변이체는 스파이크 (S) 단백질의 변이체로,
    i) S 단백질의 681-685번째 아미노산 서열이 PRRAR에서 PGSAG로 치환;
    ii) S 단백질의 F817P, A892P, A900P, A942P, K986P, 및 V987P 중 선택되는 어느 하나 이상의 치환; 및
    iii) S 단백질의 D614G 치환;으로 이루어지는 군에서 선택되는 어느 하나 이상의 치환이 포함된 핵산 작제물.
  4. 제1항에 있어서, 상기 이종의 폴리뉴클레오티드는 서열번호 1로 표현된 폴리뉴클레오티드 또는 이와 적어도 90% 이상의 서열 상동성을 갖는 폴리뉴클레오티드로를 포함하며,
    홍역 바이러스 게놈의 P 유전자와 M 유전자 사이에 작동가능하게 연결된 핵산 작제물.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서, 5'로부터 3' 말단으로 하기 폴리뉴클레오티드를 포함하는 핵산 작제물:
    (a) MV의 N 단백질을 암호화하는 폴리뉴클레오티드;
    (b) MV의 P 단백질을 암호화하는 폴리뉴클레오티드;
    (c) 사스-코로나 바이러스-2의 S 단백질 또는 이의 변이체를 암호화하는 이종의 폴리뉴클레오티드;
    (d) MV의 M 단백질을 암호화하는 폴리뉴클레오티드;
    (e) MV의 F 단백질을 암호화하는 폴리뉴클레오티드;
    (f) MV의 H 단백질을 암호화하는 폴리뉴클레오티드; 및
    (g) MV의 L 단백질을 암호화하는 폴리뉴클레오티드이며,
    상기 폴리뉴클레오티드는 핵산 작제물 내에서 및 MV 리더 및 트레일러 서열(trailer sequence)과 같은 바이러스 복제 및 전사 조절 인자의 제어 하에서 작동적으로 연결됨.
  6. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 핵산 작제물의 재조합 cDNA는 서열번호 2를 포함하는 핵산 작제물.
  7. 제1항 내지 제4항 중 어느 한 항의 핵산 작제물을 포함하는 벡터.
  8. 사스-코로나 바이러스-2의 S 단백질 또는 이의 변이체를 항원으로 발현하는 재조합 홍역 바이러스로, 상기 바이러스가 제1항 내지 제4항 중 어느 한 항에 따른 핵산 작제물, 또는 제7항에 따른 벡터를 상기 홍역 바이러스의 게놈 내에 포함하거나, 이로 이루어지는, 재조합 홍역 바이러스.
  9. 제8항에 있어서, 상기 재조합 홍역 바이러스로 1회 또는 2회 면역 후 사스-코로나 바이러스-2의 S 단백질 또는 이의 변이체에 대해 CD4+ 및 CD8+ T 세포 반응 또는 Th-1 반응을 유발하는 재조합 홍역 바이러스.
  10. 제1항 내지 제4항 중 어느 한 항에 따른 핵산 작제물 또는 제7항에 따른 벡터로 트랜스펙션되거나, 제8항 또는 제9항에 따른 재조합 홍역 바이러스로 감염된 숙주 세포.
  11. 제10항에 있어서, 상기 숙주 세포는 T7 RNA 중합효소를 발현하는 햄스터 세포 BHK21, 또는 HEK(Human Embryonic Kideny)293 세포인 숙주 세포.
  12. 제10항에 있어서, 상기 숙주 세포는 MV의 N 단백질, P 단백질, M 단백질, F 단백질, H 단백질 및 L 단백질로 이루어진 군에서 선택된 어느 하나를 암호화하는 폴리뉴클레오티드가 포함되거나, 폴리뉴클레오티드로 이루어진 벡터가 하나 이상 더 트랜스펙션된, 숙주 세포.
  13. (a) T7 RNA 중합효소를 발현하는 세포를 제1항 내지 제4항 중 어느 한 항에 따른 핵산 작제물 또는 제7항에 따른 벡터로 트랜스펙션시키는 단계;
    (b) 트랜스펙션된 세포를 재조합 홍역 바이러스의 생산이 가능하도록 배양하는 단계;
    (c) 상기 (b) 단계의 트랜스펙션된 세포를 재조합 홍역 바이러스의 증식이 가능하도록 하는 세포와 공-배양함으로써 이들을 트랜스펙션시켜 상기 (b) 단계의 재조합 홍역 바이러스를 증식시키는 단계; 및
    (d) 사스-코로나 바이러스-2의 S 단백질 또는 이의 변이체를 발현하는 재조합 홍역 바이러스를 회수하는 단계를 포함하는,
    사스-코로나 바이러스-2의 S 단백질 또는 이의 변이체를 발현하는 재조합 홍역 바이러스를 생산 방법.
  14. 제13항에 있어서, 상기 (a) 단계의 세포는 MV의 N 단백질, P 단백질, M 단백질, F 단백질, H 단백질 및 L 단백질로 이루어진 군에서 선택된 어느 하나를 암호화하는 폴리뉴클레오티드가 포함되거나, 폴리뉴클레오티드로 이루어진 벡터가 하나 이상 추가로 트랜스펙션된, 방법.
  15. a) MV의 N 단백질, P 단백질, M 단백질, F 단백질, H 단백질 및 L 단백질로 이루어진 군에서 선택된 어느 하나의 MV의 단백질을 발현하는 적어도 하나 이상의 발현 플라스미드; 및
    사스-코로나 바이러스-2의 S 단백질 또는 이의 변이체를 발현하는 발현 플라스미드를 제조하는 단계;
    b) 전장 MV게놈의 전체 폴리뉴클레오티드에서 a) 단계의 발현 플라스미드로 발현되는 단백질을 암호화하는 폴리뉴클레오티드는 삭제된 비-복제성 전사 플라스미드를 제조하는 단계;
    c) 발현 플라스미드 및 전사 플라스미드를 T7 RNA 중합효소를 발현하는 숙주 세포로 트랜스펙션하는 단계; 및
    d) 숙주 세포로부터 재조합 홍역 바이러스를 회수하는 단계를 포함하는,
    사스-코로나 바이러스-2의 S 단백질 또는 이의 변이체를 발현하는 재조합 홍역 바이러스의 생산 방법.
  16. 제8항 또는 제9항에 따른 재조합 홍역 바이러스, 또는 제13항 또는 제15항의 방법에 따라 생산된 재조합 홍역 바이러스; 및
    약학적으로 허용 가능한 담체를 포함하는, 사스-코로나 바이러스-2의 감염 예방용 백신 조성물.
  17. 제8항 또는 제9항에 따른 재조합 홍역 바이러스, 또는 제13항 또는 제15항의 방법에 따라 생산된 재조합 홍역 바이러스; 및
    약학적으로 허용 가능한 담체를 포함하는, 사스-코로나 바이러스-2의 S 단백질 또는 이의 변이체에 대해 CD4+ 및 CD8+ T 세포 반응 또는 Th-1 반응을 유발하는 약학적 조성물.
  18. 사스-코로나 바이러스-2의 S 단백질 또는 이의 변이체에 대해 대상체 내에서 CD4+ 및 CD8+ T 세포 반응 또는 Th-1 반응을 유발하는 방법으로,
    상기 방법은 제8항 또는 제9항에 따른 재조합 홍역 바이러스, 또는 제13항 또는 제15항의 방법에 따라 생산된 재조합 홍역 바이러스를 이를 필요로 하는 개체에 유효량 투여하는 단계를 포함하는 방법.
  19. 제8항 또는 제9항에 따른 재조합 홍역 바이러스, 또는 제13항 또는 제15항의 방법에 따라 생산된 재조합 홍역 바이러스의 사스-코로나 바이러스-2의 감염 예방 용도 또는 사스-코로나 바이러스-2의 S 단백질 또는 이의 변이체에 대해 CD4+ 및 CD8+ T 세포 반응 또는 Th-1 반응을 유발하기 위한 용도.
PCT/KR2021/015484 2020-10-29 2021-10-29 사스-코로나바이러스-2 항원을 포함하는 바이럴 벡터 및 이의 이용 WO2022092921A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0142572 2020-10-29
KR20200142572 2020-10-29

Publications (1)

Publication Number Publication Date
WO2022092921A1 true WO2022092921A1 (ko) 2022-05-05

Family

ID=81384140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/015484 WO2022092921A1 (ko) 2020-10-29 2021-10-29 사스-코로나바이러스-2 항원을 포함하는 바이럴 벡터 및 이의 이용

Country Status (1)

Country Link
WO (1) WO2022092921A1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101241423B1 (ko) * 2002-06-20 2013-03-12 상뜨르 나쇼날 드 라 러쉐르쉬 샹띠피끄(씨엔알에스) 알엔에이 바이러스 항원의 에피토프를 발현하는 재조합홍역 바이러스-백신 제제의 제조에 사용하기 위한 용도
WO2021160850A1 (en) * 2020-02-13 2021-08-19 Institut Pasteur Measles-vectored covid-19 immunogenic compositions and vaccines

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101241423B1 (ko) * 2002-06-20 2013-03-12 상뜨르 나쇼날 드 라 러쉐르쉬 샹띠피끄(씨엔알에스) 알엔에이 바이러스 항원의 에피토프를 발현하는 재조합홍역 바이러스-백신 제제의 제조에 사용하기 위한 용도
WO2021160850A1 (en) * 2020-02-13 2021-08-19 Institut Pasteur Measles-vectored covid-19 immunogenic compositions and vaccines

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DEARLOVE BETHANY, LEWITUS ERIC, BAI HONGJUN, LI YIFAN, REEVES DANIEL B., JOYCE M. GORDON, SCOTT PAUL T., AMARE MIHRET F., VASAN SA: "A SARS-CoV-2 vaccine candidate would likely match all currently circulating variants", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, NATIONAL ACADEMY OF SCIENCES, vol. 117, no. 38, 22 September 2020 (2020-09-22), pages 23652 - 23662, XP055925998, ISSN: 0027-8424, DOI: 10.1073/pnas.2008281117 *
ESCRIOU NICOLAS; CALLENDRET BENOÎT; LORIN VALÉRIE; COMBREDET CHANTAL; MARIANNEAU PHILIPPE; FÉVRIER MICHÈLE; TANGY FRÉDÉRIC : "Protection from SARS coronavirus conferred by live measles vaccine expressing the spike glycoprotein", VIROLOGY, ELSEVIER, AMSTERDAM, NL, vol. 452, 1 January 1900 (1900-01-01), AMSTERDAM, NL , pages 32 - 41, XP028627222, ISSN: 0042-6822, DOI: 10.1016/j.virol.2014.01.002 *
LINIGER, M. ; ZUNIGA, A. ; TAMIN, A. ; AZZOUZ-MORIN, T.N. ; KNUCHEL, M. ; MARTY, R.R. ; WIEGAND, M. ; WEIBEL, S. ; KELVIN, D. ; RO: "Induction of neutralising antibodies and cellular immune responses against SARS coronavirus by recombinant measles viruses", VACCINE, ELSEVIER, AMSTERDAM, NL, vol. 26, no. 17, 16 April 2008 (2008-04-16), AMSTERDAM, NL , pages 2164 - 2174, XP022590867, ISSN: 0264-410X *

Similar Documents

Publication Publication Date Title
CN106459931B (zh) 减毒的非洲猪瘟病毒疫苗
WO2021221486A1 (en) Vaccine composition for preventing or treating infection of sars-cov-2
WO2021002776A1 (en) Immunobiological agent for inducing specific immunity against severe acute respiratory syndrome virus sars-cov-2
JP7012365B2 (ja) ジカウイルスに対する新規のワクチン
US20090297555A1 (en) Recombinant human cytomegalovirus and vaccines comprising heterologous antigens
WO2018124615A1 (ko) 대상포진 백신 조성물
US20230323389A1 (en) Synthetic modified vaccinia ankara (smva) based coronavirus vaccines
WO2022045827A1 (ko) 신규한 코로나바이러스 재조합 스파이크 단백질, 이를 코딩하는 폴리뉴클레오티드, 상기 폴리뉴클레오티드를 포함하는 벡터 및 상기 벡터를 포함하는 코로나바이러스감염증 예방 또는 치료용 백신
Tang et al. A recombinant adenovirus expressing the E protein of duck Tembusu virus induces protective immunity in duck
WO2020005028A1 (ko) 중증 열성 혈소판 감소 증후군(sfts) 바이러스 감염 질환 예방 또는 치료용 백신 조성물
WO2022092921A1 (ko) 사스-코로나바이러스-2 항원을 포함하는 바이럴 벡터 및 이의 이용
US20070003577A1 (en) Purified trimeric S protein as vaccine against severe acute respiratory syndrome virus infections
WO2020138761A1 (ko) 돼지 생식기 및 호흡기 증후군 바이러스의 키메라 바이러스 및 이를 이용한 백신
WO2019212312A1 (ko) 키메라 지카바이러스 백신
Wang et al. Intranasal delivery of a chimpanzee adenovirus vector expressing a pre-fusion spike (BV-AdCoV-1) protects golden Syrian hamsters against SARS-CoV-2 infection
WO2020076141A1 (ko) 재조합 rsv 생백신주 및 이의 제조 방법
WO2022163902A1 (ko) 인체 감염 사스코로나 바이러스 예방 및 감염 증상 완화용 백신 조성물
WO2021215857A1 (ko) 삼량체를 형성하는 코로나-19 바이러스 (covid-19, coronavirus disease 2019)의 재조합 스파이크 단백질 및 식물에서의 상기 재조합 스파이크 단백질의 대량 생산 방법과 이를 기반으로하는 백신조성물 제조 방법
WO2022065889A1 (ko) 재조합 단백질을 포함하는 사스-코로나바이러스-2 감염증 예방 또는 치료용 백신 조성물
Yang et al. Synthesized swine influenza NS1 antigen provides a protective immunity in a mice model
KR101111998B1 (ko) 이종성 요소가 없는 gM-음성 EHV-돌연변이체
WO2014046410A1 (ko) 노다바이러스의 바이러스 유사입자의 생산방법, 이를 발현하는 효모 세포주 및 이를 포함하는 백신 조성물
WO2022015124A1 (ko) 중증급성호흡기증후군 코로나바이러스 2 감염 예방용 백신 조성물
Sangewar Improved vaccine platform for safe and effective control of bovine viral diarrhea virus
WO2023219198A1 (ko) 코로나바이러스의 스파이크 단백질, 뉴클레오캡시드 단백질 및 pgsa 단백질을 동시발현하는 복제불능 아데노바이러스를 이용한 코로나바이러스 백신

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886915

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21886915

Country of ref document: EP

Kind code of ref document: A1