WO2022065889A1 - 재조합 단백질을 포함하는 사스-코로나바이러스-2 감염증 예방 또는 치료용 백신 조성물 - Google Patents

재조합 단백질을 포함하는 사스-코로나바이러스-2 감염증 예방 또는 치료용 백신 조성물 Download PDF

Info

Publication number
WO2022065889A1
WO2022065889A1 PCT/KR2021/012981 KR2021012981W WO2022065889A1 WO 2022065889 A1 WO2022065889 A1 WO 2022065889A1 KR 2021012981 W KR2021012981 W KR 2021012981W WO 2022065889 A1 WO2022065889 A1 WO 2022065889A1
Authority
WO
WIPO (PCT)
Prior art keywords
recombinant
sars
coronavirus
protein
seq
Prior art date
Application number
PCT/KR2021/012981
Other languages
English (en)
French (fr)
Inventor
서기원
권태우
김은솜
김치용
이윤재
홍승혜
Original Assignee
에스케이바이오사이언스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이바이오사이언스 주식회사 filed Critical 에스케이바이오사이언스 주식회사
Publication of WO2022065889A1 publication Critical patent/WO2022065889A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/215Coronaviridae, e.g. avian infectious bronchitis virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/14011Baculoviridae
    • C12N2710/14041Use of virus, viral particle or viral elements as a vector
    • C12N2710/14043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vectore
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Definitions

  • the present invention relates to a vaccine composition for preventing or treating SARS-coronavirus-2 (SARS-CoV-2) infection, and more particularly, it includes a polypeptide derived from SARS-coronavirus-2 (SARS-CoV-2). It relates to a vaccine composition for preventing or treating SARS-coronavirus-2 infection using a recombinant protein.
  • SARS-CoV-2 (SARS-CoV-2) is called Severe Acute Respiratory Syndrome Coronavirus 2 or Covid 19 (COVID19), and is named Corona 19 in Korea.
  • SARS-coronavirus-2 was first discovered at the Huanan Fish Market in Wuhan on December 12, 2019. It is an RNA virus, and a human-to-human infection was confirmed.
  • SARS-CoV-2 is known to strongly adhere to the surface of host cells through ACE2 (Angiotensin Converting Enzyme2) receptor, and RBD (Receptor-Binding Domain) of SARS-CoV-2 spike protein is used to bind to ACE2 receptor. is known to be
  • SARS-coronavirus-2 is a virus that requires handling at a biosafety level 3 research facility (BSL-3 facility), and the virus's reproduction index (R0) is estimated to be 1.4 to 3.9. This means that one patient can transmit the virus to a minimum of 1.4 to a maximum of 3.9 people, that is, it is estimated that the control of the infectious disease caused by SARS-coronavirus-2 is quite difficult, and as of March 31, 2020, worldwide There were 785,867 infections and 37,827 deaths.
  • Symptoms such as fever, shortness of breath, kidney and liver damage, cough, and pneumonia are observed for 2 to 14 days after infection with the virus, and a therapeutic agent has not yet been developed.
  • the problem to be solved by the present invention is to provide a novel antigen for the prevention or treatment of SARS-coronavirus-2 infection, a vaccine composition comprising the antigen, or a method for manufacturing the same in order to solve the above problems do.
  • the present invention is to provide a recombinant protein vaccine, a method for preventing or treating SARS-coronavirus-2 infection using the same, or a use of the recombinant protein vaccine for preventing or treating SARS-coronavirus-2 infection.
  • the expression construct for obtaining the S protein with the TM (transmembrane domain) removed has the advantage of improving the protein yield, but due to the problem of not forming a trimer similar to the spike protein, the exposure of the RBD antigen is incomplete, so it is not effective in inducing immunogenicity. This could not be the case, so we tried to solve these problems.
  • an exogenous polypeptide preferably domain (foldon)-P2
  • one aspect of the present invention provides a recombinant antigen protein for preventing or treating SARS-coronavirus-2 (SARS-CoV-2) infection, a construct for expression of the antigen protein, and the recombinant antigen protein It provides a vaccine composition comprising.
  • SARS-CoV-2 SARS-coronavirus-2
  • the present invention can provide a recombinant SARS-coronavirus-2 antigen protein in which at least one exogenous polypeptide is linked to a polypeptide consisting of the amino acid sequence of SEQ ID NO: 1 or a functional fragment thereof.
  • the recombinant SARS-coronavirus-2 antigen protein is the SARS-coronavirus-2 (COVID-19) infection prevention composition, SARS-coronavirus-2 composition for immunogen production, SARS-coronavirus-2 It may be provided for a composition for generating an antibody, or a vaccine composition.
  • the recombinant SARS-coronavirus-2 antigen protein is the SARS-coronavirus-2 (COVID-19) infection prevention use, SARS-use for generating an immunogen against coronavirus-2, SARS-antibody to coronavirus-2 It may be provided for production use, or for vaccine use.
  • the exogenous polypeptide may include any one selected from the group consisting of a 'foldon domain', a 'P2 domain', or a 'a foldon domain and a P2 domain linked domain (ie, a foldon-linker-P2 domain)'.
  • an aspect includes a polypeptide derived from a spike protein of SARS-coronavirus-2 having an amino acid sequence represented by SEQ ID NO: 1, and a foldon domain amino acid sequence optionally at the C terminus of the polypeptide; P2 domain amino acid sequence; Alternatively, the foldon domain amino acid sequence and the P2 domain amino acid sequence are linked together, and it may provide a recombinant antigen protein for preventing or treating SARS-coronavirus-2 infection.
  • the recombinant antigen protein is a SARS-coronavirus-2 spike protein-derived polypeptide having an amino acid sequence represented by SEQ ID NO: 1 (hereinafter, 'polypeptide' or 'polypeptide of SEQ ID NO: 1) ') can be
  • the recombinant antigen protein may have a foldon domain amino acid sequence linked to the C-terminus of the SARS-coronavirus-2 spike protein-derived polypeptide having the amino acid sequence shown in SEQ ID NO: 1, P2 The domain amino acid sequence may be linked, or the foldon domain amino acid sequence and the P2 domain amino acid sequence may be linked together.
  • the recombinant antigen protein may have an amino acid sequence represented by SEQ ID NO: 4, SEQ ID NO: 5, or SEQ ID NO: 6.
  • the meaning of the term 'connected' includes not only the case where the amino acid sequence is directly connected, but also the case where the amino acid sequence is connected directly, and preferably, the foldon domain and the P2 domain may be connected by a linker.
  • the meaning of 'connected together' includes the meaning that the P2 domain is connected to the C terminus of the foldon domain by a linker.
  • the 'foldon domain' may have any foldon sequence known to those skilled in the art.
  • a foldon of the bacteriophage T4 fibritin may be included, and it is represented by the amino acid sequence of SEQ ID NO: 3.
  • the spike protein on the virus surface forms a trimer, but the S-ectodomain with the transmembrane domain removed does not stably form a trimer and exists as a monomer or dimer.
  • the foldon domain induces the S-ectodomain antigen to stably form a trimer, thereby helping to form a structure similar to S on the viral surface, increasing the antigen size and thereby increasing antigenicity.
  • the 'P2 domain' is one of the T cell epitope, and refers to the Tetanus Toxoid Epitope P2 domain. It is represented by the amino acid sequence of SEQ ID NO: 2 herein.
  • the P2 domain may be bound to exhibit a more improved immune enhancing effect.
  • the 'linker' connects the polypeptide of SEQ ID NO: 1 and the domains, or enables connection between the domains, and the linker may consist of at least 4 amino acid residues, for example, 16 amino acids or less in length and preferably 6 or less amino acids.
  • the amino acid used in the linker is at least one of G (Gly, glycerin), S (Ser, serine), and A (Ala, alanine), preferably Gly-Ser-Gly-Ser-Gly (GSGSG), Gly-Ser -Ser-Gly (GSSG), Gly-Ser-Gly-Gly-Ser (GSGGS), Gly-Ser-Gly-Ser (GSGS), and Gly-Ser-Gly-Ser-Ser-Gly (GSGSSG) It may be any one or more peptide linkers selected from, preferably, GSGSG or GSGGS peptide linkers for the purpose of the present invention. When connected with the linker, a stable structure may be formed.
  • the 'functional fragment' described in the present specification has at least 75%, 80%, 90%, 95% sequence homology with the recombinant protein antigen or a (poly)nucleotide sequence encoding the same while exhibiting the function of the recombinant protein antigen; or 99% or more proteins, or (poly)nucleotides.
  • 'Analogue' is similar to the function or effect of the polypeptide or (poly) nucleotide of the present invention and has at least 75%, 80%, 90% sequence homology with the recombinant protein antigen or the (poly)nucleotide sequence encoding the same; 95%, or more than 99% protein, or (poly)nucleotides.
  • the SARS-coronavirus-2 spike protein-derived polypeptide having the amino acid sequence shown in SEQ ID NO: 1 is the full-length amino acid of the SARS-coronavirus-2 spike protein based on FIG. 1 . It can be obtained by cutting the region below heptad repeat 2 (HR2) in the sequence, and in particular, it can be obtained by removing the portion after 1147 of the amino acid sequence constituting the S protein of wild-type COVID-19. As the region below HR2 is cleaved, the polypeptide loses both the transmembrane domain (TM) and the cytoplasmic domain (CP) of the S protein.
  • HR2 heptad repeat 2
  • the inventors of the present invention have confirmed that the sequence encoding the polypeptide represented by SEQ ID NO: 1 has an excellent expression yield in a protein expression system. This can increase the antigen yield.
  • SP Synchronization Peptide
  • the recombinant SARS-coronavirus-2 antigen protein may have a mutation in which at least one amino acid is substituted in a polypeptide or protein comprising a polypeptide consisting of the amino acid sequence of SEQ ID NO: 1.
  • the mutation includes substitution, deletion, addition, etc. of amino acids, but preferably includes substitution. Due to the substitution of the amino acid sequence of the polypeptide of SEQ ID NO: 1, it is possible to increase the antigen yield.
  • the substitution may be understood to mean that the original amino acid sequence is replaced with another amino acid sequence.
  • At least one amino acid may be substituted, preferably 1 to 11 amino acids may be substituted, for example 2 to 10 amino acids may be substituted with another amino acid, another example is 9, 8, 7, 6, 5, 4, 3 or 2 amino acids may be substituted.
  • the mutation is a recombinant antigen protein (SEQ ID NO: 5, SK-S-trimer) in which a foldon domain is linked to the C terminus of the polypeptide of SEQ ID NO: 1 or a foldon domain and a P2 domain at the C terminus of the polypeptide of SEQ ID NO: 1 It can be obtained by further substitutional mutation in the recombinant antigen protein linked together (SEQ ID NO: 6, SK-S-trimer-P2).
  • the mutation is at least one selected from the group consisting of i) 2 proline mutation, ii) furin cleavage site mutation, iii) cathepsin L cleavage site mutation, and iv) S2 subunit mutation It may contain mutations.
  • proline mutation is the amino acid lysine (K) at position 973 of the polypeptide of SEQ ID NO: 1 is substituted with proline (P), and the amino acid valine (V) at position 974 is proline ( It may have a mutation substituted with P), which may be expressed as K973P and V974P, respectively.
  • P proline
  • V valine
  • the lysine (K) amino acid at position 973 of the polypeptide of SEQ ID NO: 1 is substituted with a proline (P) amino acid
  • the valine (V) amino acid at position 974 is substituted with a proline (P) amino acid.
  • the antigen can be stabilized in the prefusion form, and the antigen yield can be improved, which can improve the induction ability of the neutralizing antibody.
  • the recombinant antigen protein may have an amino acid sequence represented by SEQ ID NO: 7 (SK-S-Trimer-2proline) and SEQ ID NO: 8 (SK-S-Trimer-P2-2proline).
  • furin (furin) cleavage site mutation may be understood as a mutation in which the amino acid RRAR corresponding to positions 669-672 of the polypeptide of SEQ ID NO: 1 is substituted with GSAG or HHAH.
  • the furin cleavage site refers to a site of a spike protein that is recognized and cleaved by a purine protein or a purine-like protease (hereinafter, purine) present in a host cell, preferably amino acids at positions 669-672 of the spike protein
  • the sequence RRAR corresponds to this.
  • the amino acid sequence comprises a form in which the amino acid sequence RRAR at positions 669-672 is substituted with GSAG or HHAH.
  • the amino acid substitution of the furin cleavage site of the polypeptide represented by the amino acid sequence of SEQ ID NO: 1 is i) the arginine (R) amino acid at position 669 of the amino acid sequence of SEQ ID NO: 1 is a glycine (G) amino acid is substituted with, the arginine (R) amino acid at position 670 is substituted with a serine (S) amino acid, and the arginine (R) amino acid at position 672 is substituted with a glycine (G) amino acid (ie, R669G, R670S, or R672G) ), or ii) the arginine (R) amino acid at position 669 of the amino acid sequence of SEQ ID NO: 1 is substituted with a histidine (H) amino acid, and the arginine (R) amino acid at position
  • the recombinant antigen protein has an amino acid sequence represented by SEQ ID NO: 9 (SK-S-trimer-P2(GSAG)-2proline) or SEQ ID NO: 11 (SK-S-trimer-P2-(HHAH)-2proline) .
  • amino acids AY corresponding to positions 681-682 of the polypeptide of SEQ ID NO: 1 may be substituted with GS.
  • the amino acid substitution of the cathepsin L cleavage site of the polypeptide represented by the amino acid sequence of SEQ ID NO: 1 is an alanine (A) amino acid at position 681 of the amino acid sequence of SEQ ID NO: 1 is a glycine (G) amino acid
  • the tyrosine (Y) amino acid at position 682 is substituted with a serine (S) amino acid, and includes a recombinant antigen protein.
  • the cathepsin L cleavage site refers to a site where recognition or cleavage occurs by cathepsin L protein present in a host cell in the spike protein, and preferably, the amino acid sequence alanine at positions 681 and 682 of the spike protein ( A) and tyrosine (Y).
  • the amino acid sequence includes a form in which the amino acid sequence alanine (A) and/or tyrosine (Y) at positions 681-682 is substituted with glycine (G) and/or serine (S), respectively.
  • the amino acid substitution of the cathepsin L cleavage site of the polypeptide represented by the amino acid sequence of SEQ ID NO: 1 is an alanine (A) amino acid at position 681 of the amino acid sequence of SEQ ID NO: 1 is a glycine (G) amino acid , and includes a form in which the tyrosine (Y) amino acid at position 682 is substituted with a serine (S) amino acid (ie, A681G, Y682S).
  • the recombinant antigen protein has an amino acid sequence represented by SEQ ID NO: 10 (SK-S-trimer-P2(GSAG/Ca)-2proline).
  • the S2 subunit mutation is a substitution of at least four amino acids among amino acids forming the S2 subunit of the S protein, and may include F804P, A879P, A886P, and A929P mutations.
  • Four amino acids of the amino acid sequence of SEQ ID NO: 1 are further substituted, so that the amino acids present at positions 804, 879, 886, and 929 based on SEQ ID NO: 1 are from phenylalanine (F) to proline (P), respectively, and alanine (A ) to proline (P), alanine (A) to proline (P), and alanine (A) to proline (P).
  • Substitution of these amino acids can further increase antigen yield and improve protein stability.
  • the arginine (R) amino acid at position 669 of the amino acid sequence of SEQ ID NO: 1 is substituted with a glycine (G) amino acid
  • the arginine (R) amino acid at position 670 is serine (S) is substituted with an amino acid
  • the arginine (R) amino acid at position 672 is substituted with a glycine (G) amino acid
  • 4 amino acids of the amino acid sequence of SEQ ID NO: 1 are further substituted here
  • 804, 879 , 886, and 929 amino acids are phenylalanine (F) to proline (P), alanine (A) to proline (P), alanine (A) to proline (P), and alanine (A) to proline (P), respectively, at positions 886, and 929 ( P) substituted recombinant antigenic protein.
  • the recombinant antigen protein has an amino acid sequence represented by SEQ ID NO: 12.
  • an amino acid substitution may occur at a furin cleavage site, a cathepsin L cleavage site, or both of the polypeptide represented by the amino acid sequence of SEQ ID NO: 1.
  • the mutation is, for example, based on SEQ ID NO: 7, the amino acid sequence corresponding to the furin cleavage site and/or the cathepsin L cleavage site of the polypeptide is substituted with a new amino acid can be obtained
  • the inventors of the present invention found that the formation of a tertiary and quaternary structure similar to the viral surface spike protein, which is difficult to achieve with the RBD region of the SARS-CoV-2 spike protein alone, structure stabilization of the prefusion form of the antigen protein, increase in antigen size, increase in immunogenicity , it was confirmed that an increase in the inducing ability of the neutralizing antibody was achieved, and the present invention was completed.
  • the term "recombinant antigen protein” is an antigen for the prevention or treatment of SARS-CoV-2 infection, specifically, the amino acid sequence of a specific section selected at a specific position of the SARS-CoV-2 spike protein. protein containing.
  • the recombinant antigen protein refers to a protein artificially created through cleavage of a partial region of the SARS-CoV-2 spike protein and binding to a foreign gene.
  • the present invention provides a nucleotide sequence encoding the recombinant protein antigen as defined above, and provides a construct for antigen expression for the recombinant protein antigen expression.
  • a recombinant SARS- A construct for expression of the coronavirus-2 antigen protein may be provided.
  • One embodiment of the present invention provides an expression construct for the production of a recombinant antigen protein for the prevention or treatment of SARS-coronavirus-2 infection.
  • it provides a construct for expression for expressing a recombinant antigen protein having any one or more sequences selected from the amino acid sequences represented by SEQ ID NOs: 4 to 12.
  • the expression construct has any one nucleotide sequence selected from the group consisting of SEQ ID NO: 13 to SEQ ID NO: 32.
  • the expression construct having the nucleotide sequence has a high protein yield and can produce a protein having a stable structure.
  • the nucleotide having any one sequence selected from SEQ ID NO: 13 to SEQ ID NO: 22 is any one selected from SEQ ID NO: 23 to SEQ ID NO: 32 through a Chinese Hamster ovary cell (CHO) mammalian expression system
  • the nucleotide having the sequence of can be obtained by using the baculovirus expression system (BEVS) recombinant antigen protein of the present invention.
  • expression construct is understood to mean a nucleic acid molecule containing only a minimal element for protein expression in a cell.
  • the expression construct may be provided in connection with a nucleotide sequence encoding a signal sequence that helps secretion of the antigen protein.
  • signal peptide or “signal sequence” is used interchangeably herein and refers to a short peptide present at the N-terminus of a newly synthesized polypeptide chain (generally 5-30 amino acids in length, but is not limited thereto).
  • the signal sequence is its own signal peptide or the signal peptide mentioned herein is removed during protein secretion.
  • the 'self signal sequence' refers to the signal sequence of the SARS-CoV-2 spike protein.
  • the 'heterologous signal peptide or signal sequence' refers to a signal sequence introduced from the outside or newly synthesized, not the signal sequence of the SARS-CoV-2 spike protein.
  • Preferred heterologous signal sequences are Honeybee melittin signal peptide, murine phosphatase signal peptide, and/or human albumin signal peptide, and preferably, human albumin signal peptide may be used for the purpose of the present invention.
  • said nucleotide sequence is a DNA sequence.
  • Recombinant antigen proteins of the invention can be produced by cloning and expression in prokaryotic or eukaryotic expression systems using suitable expression vectors. Any method known in the art may be used. Preferably, in consideration of the purpose of the present invention and protein expression rate, BEVS, CHO or E. coli expression systems may be used, and BEVS and/or CHO expression systems may be preferably used.
  • a vector may be of any suitable type and may include, but is not limited to, phage, virus, plasmid, phagemid, cosmid, bacmid, and the like. For example, a DNA molecule encoding an antigen of the present invention is inserted into an appropriately constructed expression vector by techniques well known in the art.
  • the expression construct according to an embodiment of the present invention uses a baculovirus expression system (BEVS).
  • BEVS baculovirus expression system
  • the baculovirus expression system can be used without limitation, which is already widely used for recombinant protein production in the industry.
  • commercially available baculovirus vectors such as pBAC4x-1 (Novagen) can be used.
  • Suitable baculovirus promoters for use in the present invention are well known in the literature.
  • As the baculovirus promoter a commonly used promoter such as polyhedrin and p10 promoter may be used.
  • a recombinant Bacmid obtained by transforming E. coli with a baculovirus vector containing an expression construct comprising a nucleotide sequence encoding the antigenic protein, and a recombinant baculovirus comprising the same as a genome. Host cells containing the recombinant baculovirus or transfected with the recombinant baculovirus are also included in the scope of the present invention.
  • DNA molecules comprising a nucleotide sequence encoding an antigenic protein of the present invention can be inserted into vectors having transcriptional and translational control signals.
  • Cells stably transformed with the introduced DNA can also be selected by introducing one or more markers that allow selection of host cells containing the expression vector.
  • the marker may provide, for example, antibiotic resistance, a deficient nutrient synthesis gene, and the like.
  • Preferred host cells are eukaryotic host cells, for example, Spodopterafrugiperda (Sf) cells such as Sf9 and Sf21 using the Baculovirus expression system as insect cells, Trichoplusia ni cells such as high five cells and Drosophila S2 cells, Mammalian cells may include Chinese Hamster Ovary (CHO) cells.
  • a suitable host cell line may be any Chinese Hamster Ovary (CHO) cell line.
  • the term 'host cell' refers to a cell capable of growing in culture and expressing a desired protein recombinant product protein. Suitable cell lines may include, but are not limited to, for example, CHO K1, CHO pro3-, CHO DG44, CHO P12, and the like.
  • examples of the eukaryotic host cells may include yeast, algae, plants, C. elegans (or nematodes), etc. within the scope that does not impair the object of the present invention, and prokaryotic host cells are, for example, E. coli (E. coli, B. subtilis), Salmonella typhi, and may contain bacterial cells such as mycobacteria.
  • E. coli E. coli, B. subtilis
  • Salmonella typhi Salmonella typhi
  • the host cells are propagated in a normal medium or a selective medium (selected for growth of vector-containing cells).
  • the desired protein is produced.
  • Purification of the recombinant antigenic protein can be carried out by any conventional procedure involving any one of methods known for this purpose, namely extraction, precipitation, chromatography, electrophoresis, and the like.
  • Another aspect of the present invention provides a method for producing the recombinant antigenic protein, the method may include culturing a host cell transformed with a vector containing the nucleotide sequence of the present invention and isolating the desired product. .
  • Another embodiment of the present invention provides a novel use of the recombinant protein antigen for preventing or treating SARS-coronavirus-2 infection, and administering the antigen to a subject to prevent or treat SARS-coronavirus-2 infection
  • a method of preventing SARS-coronavirus-2 infection is provided.
  • the SARS-coronavirus-2 infection prevention or treatment vaccine composition comprising the recombinant antigen protein according to the present invention as an active ingredient.
  • the 'SARS-coronavirus-2 infection' is a concept that broadly includes not only the infection of the SARS-coronavirus-2 itself, but also various conditions (eg, respiratory disease, pneumonia, etc.) resulting from the infection of the virus.
  • the vaccine may be prepared by a conventional method well known in the art, and may optionally further include various additives that can be used in the preparation of a vaccine in the art.
  • the vaccine composition according to the present invention may include the recombinant antigen protein and a pharmaceutically acceptable carrier.
  • lactose dextrose, sucrose, sorbitol, mannitol, starch, gum acacia, calcium phosphate, alginate, gelatin, calcium silicate, microcrystalline cellulose as commonly used in formulations.
  • polyvinylpyrrolidone polyvinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, and mineral oil.
  • the pharmaceutical composition of the present invention contains non-ionic surfactants such as TWEENTM, polyethylene glycol (PEG), etc., antioxidants including ascorbic acid, lubricants, wetting agents, sweetening agents, flavoring agents, emulsifying agents, suspending agents, It may be used by further including a preservative and the like.
  • the vaccine is prepared in unit dose form by formulating using a pharmaceutically acceptable carrier and/or excipient according to a method that can be easily carried out by a person of ordinary skill in the art to which the present invention pertains. or it may be prepared by incorporation into a multi-dose container.
  • the formulation may be in the form of a solution, suspension, or emulsion in oil or aqueous medium, or may be in the form of an extract, powder, granule, tablet or capsule, and may additionally include a dispersant or stabilizer.
  • a suitable dosage of the vaccine in the present invention may be prescribed variously depending on factors such as formulation method, administration method, age, weight, sex, pathological condition, food, administration time, administration route, excretion rate, and response sensitivity of the patient. can On the other hand, the dosage of the vaccine according to the present invention may be preferably 1 ⁇ 100 ug per dose.
  • the vaccine comprising the recombinant antigen protein as an active ingredient may be administered into the body by intravenous injection, intramuscular injection, subcutaneous injection, transdermal delivery or airway inhalation, but is not limited thereto.
  • the vaccine composition may further include an immunological adjuvant, in order to enhance the immune response effect, further adding the nucleocapsid (N) protein of SARS-coronavirus-2 with or without the immunological adjuvant.
  • an immunological adjuvant in order to enhance the immune response effect, further adding the nucleocapsid (N) protein of SARS-coronavirus-2 with or without the immunological adjuvant.
  • the immunological adjuvant is, for example, squalene (MF59, Addavax TM ), liposomes, TLR agonist, monophosphoryl lipid A (MPL) (AS04), magnesium hydroxide, magnesium carbonate hydroxide pentahydride date, titanium didox.
  • squalene MF59, Addavax TM
  • liposomes liposomes
  • TLR agonist monophosphoryl lipid A (MPL) (AS04)
  • MPL monophosphoryl lipid A
  • magnesium hydroxide magnesium carbonate hydroxide pentahydride date, titanium didox.
  • calcium carbonate, barium oxide, barium hydroxide, barium peroxide, barium sulfate, calcium sulfate, calcium pyrophosphate, magnesium carbonate, magnesium oxide, aluminum hydroxide, aluminum phosphate and hydrated aluminum potassium sulfate (Alum ) may be any one or more selected from, but is not limited thereto.
  • the 'SARS-coronavirus-2 nucleocapsid (N) protein' is an artificially made SARS-coronavirus-2 nucleocapsid (N) protein of SEQ ID NO: 33.
  • the N protein can induce cellular immunity, and can be used together with the recombinant antigen protein obtained according to an embodiment of the present invention to induce increased protective immunogenicity.
  • the construct for N protein expression of the protein of SEQ ID NO: 33 may be provided by fusion of a nucleotide sequence capable of expressing a human albumin signal peptide (SEQ ID NO: 34) to the N-terminus of the N protein.
  • the nucleotide sequence optimized in the BEV expression system is represented by SEQ ID NO: 35
  • the nucleotide sequence optimized in the CHO expression system is represented by SEQ ID NO: 36.
  • One embodiment of the present invention is a recombinant SARS-coronavirus-2 antigen protein according to the prior art; or SEQ ID NOs: 4 to 12 by treating the individual with an effective amount of at least one or more recombinant proteins selected from SARS-Coronavirus-2 in the body of an individual in need thereof.
  • a method of inducing an immune response, a method of generating an antibody, or neutralization A method for increasing antibody production or IFN- ⁇ secreting T cells is provided.
  • Another embodiment of the present invention is a recombinant SARS-coronavirus-2 antigen protein for the production of antibodies to SARS-coronavirus-2 according to the prior art; Or it provides the use of at least one or more recombinant proteins selected from SEQ ID NOs: 4 to 12.
  • the use of the recombinant protein may be used for inducing an immune response against SARS-coronavirus-2 in the body, for generating an antibody, or for increasing the production of neutralizing antibody or IFN- ⁇ secreting T cells.
  • Another embodiment of the present invention is a recombinant SARS-coronavirus-2 antigen protein for the production of antibodies to SARS-coronavirus-2 according to the prior art;
  • a vaccine comprising at least one recombinant protein selected from SEQ ID NOs: 4 to 12 may be provided, and the vaccine may further include a carrier, an immune enhancer, or an excipient.
  • the vaccine may be provided in the form of an emulsion, cream, gel, liposome, ointment, liquid, and the like.
  • the vaccine composition may be provided as a kit together with instructions for use thereof.
  • the recombinant protein and/or recombinant virus vaccine according to an embodiment of the present invention has high safety.
  • the vaccine according to one embodiment of the present invention has excellent immunogenicity and has excellent efficacy as a vaccine.
  • the vaccine of the present invention has a high neutralizing antibody titer.
  • the vaccine of the present invention is excellent in inducing cellular immunity.
  • the present invention has excellent preventive and therapeutic effects against SARS-coronavirus-2 infection.
  • the recombinant antigen protein of the present invention can maintain a stable three-dimensional spike protein structure (preferably a viral surface spike protein structure (including an ectodomain portion), more preferably a prefusion type spike protein trimeric structure).
  • a stable three-dimensional spike protein structure preferably a viral surface spike protein structure (including an ectodomain portion), more preferably a prefusion type spike protein trimeric structure.
  • FIG. 1 shows a schematic diagram of the structure of the SARS-CoV2 spike full-length protein domain.
  • FIGS. 2 and 3 are diagrams illustratively schematically illustrating a recombinant protein according to an aspect of the present invention.
  • the S gene and N gene sequences were prepared by referring to the sequence of Genbank # MN908947 Severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1.
  • FIG. 1 shows a schematic diagram of the structure of the SARS-CoV2 spike full-length protein domain. Using this, a construct for antigen expression was prepared.
  • SARS-Coronavirus-2 Several series of expression constructs were designed for antigenic protein expression.
  • the recombinant protein obtained through the designed expression construct is shown in detail in FIGS. 2 and 3 .
  • P2 refers to the Tetanus P2 domain
  • foldon refers to the foldon protein expression domain of T4 fibritin.
  • the P2 domain and the foldon protein expression domain were each linked with a GSGSG peptide linker.
  • a nucleotide sequence encoding a signal peptide was operably linked upstream of the construct for expression of the recombinant protein.
  • the expression constructs called S-ecto and S-ecto-P2 use their own signal peptide, and for other constructs, the nucleotide sequence encoding the signal peptide of SEQ ID NO: 3 is used by replacing it did When expressed through the CHO expression system, the native SP sequence of the S protein was allowed to be expressed.
  • Two proline amino acids were introduced based on the attachment of the foldon domain or the recombinant antigen protein in which the P2 domain was linked to the foldon domain.
  • K973P and V974P were introduced as shown in SEQ ID NOs: 7 and 8. Through this, it was possible to obtain a recombinant antigen protein in which the protein was stabilized in the form of prefusion.
  • SK-S-trimer-P2(GSAG/Ca)-2proline recombinant protein was prepared. This was shown as SEQ ID NO: 10.
  • the recombinant protein had resistance to proteolytic degradation during the expression and purification process, and it was expressed and purified as a single polypeptide without being separated into two subunits S1 and S2, increasing protein yield and exhibiting a stable structure.
  • F804P, A879P, A886P, A929P mutations were introduced based on SEQ ID NO: 9, and excellent protein stability and yield were obtained.
  • the original signal peptide or a gene encoding a heterogeneous signal peptide was maintained, substituted, or added to each expression system.
  • the original signal peptide can be expressed as it is in the baculovirus system, CHO cell expression system, and mammalian cell expression system. Since the N protein was originally a protein without a signal peptide, a nucleotide sequence encoding human albumin signal peptide was added to the N-terminus.
  • the N protein antigen of SEQ ID NO: 33 was prepared based on the N protein gene of SARS-corona-2 virus.
  • DNA sequences encoding the recombinant protein were synthesized with codons optimized for insect cells and Chinese Hamster Ovary (CHO) cells in GenScript, respectively.
  • the codon-optimized sequences for each expression system are as follows.
  • the following sequence is a polynucleotide sequence.
  • the construct for expression of the recombinant antigen protein was represented by the nucleotide sequence represented by SEQ ID NOs: 13 to 32.
  • the foldon domain may induce antigen to form trimer to increase antigen size and thereby increase antigenicity.
  • the effect of the vaccine was confirmed by the following procedure using Baculo, and CHO.
  • Each gene was synthesized to express the antigenic gene of SARS-coronavirus-2.
  • the construct for protein expression and the construct for N protein expression of FIGS. 2 and 3 were prepared, respectively.
  • the prepared construct gene was inserted and cloned into the transfer vector pFastBac1 (Invitrogen), and the gene sequence was analyzed.
  • the prepared plasmid was transformed into E. coli for bacmid production to prepare recombinant bacmid, and gene sequence was analyzed.
  • Recombinant Vacmid was inoculated into Sf9 cells cultured as a monolayer, transfected, and recombinant baculovirus was prepared and quantified by the plaque test.
  • the collected recombinant protein was filtered using a filter, and the recombinant protein was purified using an appropriate chromatography method (Ion Exchange, Size Exclusion, etc.).
  • Each gene was synthesized to express the antigenic gene of SARS-coronavirus-2.
  • the synthesized gene was inserted into the expression vector and cloned, and the gene sequence was analyzed.
  • CHO cells for protein production (CHO K-1 cell line) were transformed with the recombinant plasmid.
  • transgenic CHO cells were mass-cultured and recombinant proteins were harvested.
  • the collected recombinant protein was filtered using a filter, and the recombinant protein was purified using an appropriate chromatography method (Ion Exchange, Size Exclusion, etc.).
  • Recombinant protein was quantified using basic total protein quantification methods (Lowry method, BCA method, etc.).
  • recombinant protein was combined with an adjuvant (eg/aluminum hydroxide) and inoculated 2-3 times at intervals of 2-3 weeks.
  • adjuvant eg/aluminum hydroxide
  • the purified recombinant protein in the animal model was combined with an adjuvant (eg/aluminum hydroxide) and inoculated 2-3 times at an interval of 2-3 weeks.
  • an adjuvant eg/aluminum hydroxide
  • Virus shedding in the nasal cavity, respiratory tract, and organs was evaluated for 1 week after infection.
  • the S protein gene of SARS-coronavirus-2 was cloned into an expression vector.
  • a reporter gene was cloned into a transfer vector. The two genes were transformed into pseudovirus-producing cells to prepare a pseudovirus expressing a reporter protein.
  • 96-well-plates were coated with anti-interferon-gamma antibody (anti-IFN- ⁇ antibody).
  • anti-IFN- ⁇ antibody anti-interferon-gamma antibody
  • the plate was blocked with a blocking buffer, and splenocytes and promoter antigen (Stimulate) were added thereto and incubated for 24 to 36 hours.
  • Interferon-gamma detection antibody is reacted, and a substrate is added to react.
  • Immune cells were evaluated using an ELISPOT reader.
  • CR3022 is a human monoclonal antibody against the recombinant SARS-CoV-2 Spike Glycoprotein S1. (CAT# of Abcam: ab273073)
  • BLI measures the affinity constant K d value (Kdis/Kon) through association and dissociation between an antibody and an antigen, and the smaller this value, the higher the affinity.
  • Corona 19 S-specific antibody was immobilized using Octet K2 on ProA sensor chip (ForteBio). Association was measured by dipping the sensor chip into the antigen sample diluted 2-fold from 100 nM, and dissociation was measured by dipping into a well containing only kinetic buffer. Using Octet Data Analysis software (11.0), the data obtained by subtracting the reference from the result value was analyzed by fitting the 1:1 binding model.
  • the S-Trimer-P2 antigen was immunized with the N antigen twice at an interval of 2 weeks, blood was collected, serum was separated, and the immunogenicity was analyzed.
  • the immunogenicity increased according to the week, and the group administered with the N protein showed a higher antibody titer than the group to which the N protein was not added (Table 3).
  • the spleen of the immunized mouse was isolated and ELISpot was performed.
  • ELISpot was performed.
  • an increase in IFN-gamma-secreting T cells specifically responding to the immunized antigen, N-peptide, and p2 peptide stimulation was confirmed in the immune group except for the vehicle.
  • the results are shown in FIG. 4 .
  • the antigens of the present invention exhibited an excellent effect on the cellular immune response.
  • the RBD-specific IgG antibody increased on Days 14, 28, and 43 compared to the Vehicle group (G1), and showed a decreasing trend on Day 57.
  • the S-Trimer-P2 the S-Trimer-P2-specific antibody increased until Day43 compared to the Vehicle group (G1), and then the antibody value decreased.
  • the antibody increased by 227 to 2106 times compared to the Vehicle group until Day 43, and then showed a saturation pattern.
  • the present invention can provide a safe SARS-coronavirus-2 infection prevention composition, preferably a vaccine composition.
  • the recombinant antigen protein can be provided as a vaccine composition for use in the prevention of SARS-coronavirus-2 infection, production of antibodies against SARS-coronavirus-2 infection, or the killing of SARS-coronavirus-2 infected cells. .

Abstract

본 발명은 서열번호 1의 아미노산 서열로 이루어진 폴리펩타이드 또는 이의 기능적 단편에 i) 폴돈 도메인, ii) P2 도메인, 또는 iii) 폴돈 도메인과 P2 도메인이 연결된 도메인으로 이루어진 군에서 선택된 적어도 1종 이상의 외인성 폴리펩타이드가 연결된, 재조합 사스-코로나바이러스-2 항원 단백질 및 이를 포함하는 사스-코로나바이러스-2 감염 예방 또는 치료용 약학 조성물을 제공한다.

Description

재조합 단백질을 포함하는 사스-코로나바이러스-2 감염증 예방 또는 치료용 백신 조성물
본 출원은 2020년 9월 23일에 출원된 한국출원 제10-2020-0123308호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다. 본 발명은 사스-코로나바이러스-2 (SARS-CoV-2) 감염증 예방 또는 치료용 백신 조성물에 관한 것으로, 더욱 구체적으로 사스-코로나바이러스-2 (SARS-CoV-2)로부터 유래된 폴리펩타이드를 포함하는 재조합 단백질을 이용한 사스-코로나바이러스-2 감염증 예방 또는 치료용 백신 조성물에 관한 것이다.
사스-코로나바이러스-2 (SARS-CoV-2)는 중증 급성 호흡기 증후군 코로나바이러스 2 (Severe Acute Respiratory Syndrome Coronavirus 2) 또는 코비드 19 (COVID19)로 불리며, 한국에서는 코로나 19로 명명된다. 사스-코로나바이러스-2 는 2019년 12월 12일 우한 화난수산시장에서 처음 발견된 바이러스로, RNA 바이러스이며, 인간대 인간 (Human-to-human) 감염이 확인되었다. SARS-CoV-2는 ACE2 (Angiotensin Converting Enzyme2) 수용체를 통해 숙주세포의 표면에 강하게 부착하는 것으로 알려져 있으며, SARS-CoV-2의 스파이크단백질의 RBD(Receptor-Binding Domain)는 ACE2 수용체와 결합하는데 이용되는 것으로 알려져 있다.
사스-코로나바이러스-2는 생물안전 3등급 연구시설 (BSL-3 facility)에서 취급이 필요한 바이러스이며, 바이러스의 재생산지수(R0)를 1.4~3.9로 추정하고 있다. 이는 환자 1명이 최소 1.4명에서 최대 3.9명에게 바이러스를 옮길 수 있다는 것을 의미하여, 즉, 사스-코로나바이러스-2에 의한 감염병 통제가 상당히 어려운 것으로 추정하고 있으며, 2020년 3월 31일 기준으로 전세계 감염자 785,867명, 사망자 37,827명 정도로 집계되었다.
상기 바이러스 감염 후 2~14일간 발열, 호흡곤란, 신장 및 간 손상, 기침, 폐렴 등의 증상이 관찰되며, 아직까지 치료제는 개발되지 못하고 있는 상태이다.
치료제가 개발되지 못한 상황에서 감염을 예방하고, 지역사회에의 확산을 방지하기 위해 백신에 대한 연구가 절실하다. 해당 유행바이러스는 보통 고위험 병원체이기 때문에 불활화 및 생백신의 경우는 백신물질의 생산 및 인체투여에서 위험성 높다. 특히, 생백신의 경우 약독화 과정과 안전성 입증까지 매우 오랜 기간이 걸린다. 본 발명의 발명자들은 범용성, 안전성, 효력, 상용화의 측면에서 현재 대유행 신종감염병에 적용 가능한 재조합단백질 백신에 대해 연구하고 본 발명을 완성하게 되었다.
한편 재조합 단백질을 이용한 단백질 백신의 경우 발현 컨스트럭트로부터 수득하는 단백질의 수율이 낮아지는 문제가 종종 발생되었고, 이에 단백질 수율을 개선하고, 재조합 단백질의 구조를 안정화시켜 항체생성율을 증가시킨 새로운 형태의 재조합 단백질 백신 연구가 필요하게 되었다.
따라서 본 발명이 해결하고자 하는 과제는 본 발명은 상기와 같은 문제를 해결하기 위하여 사스-코로나바이러스-2의 감염증 예방 또는 치료를 위한 새로운 항원, 상기 항원을 포함하는 백신 조성물 또는 이의 제조 방법을 제공하고자 한다. 본 발명은 재조합 단백질 백신, 이를 이용한 사스-코로나바이러스-2의 감염증을 예방 또는 치료하는 방법 또는 상기 재조합 단백질 백신의 사스-코로나바이러스-2 감염증 예방 또는 치료 용도를 제공하고자 한다.
TM(transmembrane domain)이 제거된 S 단백질을 얻기 위한 발현 컨스트럭트는 단백질 수율이 향상된다는 이점이 있으나, 스파이크 단백질과 유사한 trimer 형성이 되지 않는 문제로 RBD 항원의 노출이 불완전하여 면역원성 유도에 효과적이지 않을 수 있기에 이러한 문제를 해결하고자 하였다. 서열번호 1의 펩타이드의 안정화 및 삼량체화를 형성하기 위해 외인성 폴리펩타이드 (바람직하게 도메인 (foldon)-P2)를 결합하여 항체 생성율 및/또는 세포성 면역 반응성을 향상시키고자 한다.
상기 과제를 해결하기 위해, 본 발명의 일 양태는 사스-코로나바이러스-2 (SARS-CoV-2) 감염증 예방 또는 치료용 재조합 항원 단백질, 상기 항원 단백질 발현용 컨스트럭트, 및 상기 재조합 항원 단백질을 포함하는 백신 조성물을 제공한다.
본 발명은 서열번호 1의 아미노산 서열로 이루어진 폴리펩타이드 또는 이의 기능적 단편에 적어도 1종 이상의 외인성 폴리펩타이드가 연결된, 재조합 사스-코로나바이러스-2 항원 단백질을 제공할 수 있다. 상기 재조합 사스-코로나바이러스-2 항원 단백질은 상기 사스-코로나바이러스-2 (COVID-19) 감염 예방용 조성물, 사스-코로나바이러스-2에 대한 면역원 생성을 위한 조성물, 사스-코로나바이러스-2에 대한 항체 생성용 조성물, 또는 백신 조성물을 위해 제공될 수 있다. 상기 재조합 사스-코로나바이러스-2 항원 단백질은 상기 사스-코로나바이러스-2 (COVID-19) 감염 예방용도, 사스-코로나바이러스-2에 대한 면역원 생성을 위한 용도, 사스-코로나바이러스-2에 대한 항체 생성용도, 또는 백신 용도를 위해 제공될 수 있다.
상기 외인성 폴리펩타이드는 '폴돈 도메인', 'P2 도메인', 또는 '폴돈 도메인과 P2 도메인이 연결된 도메인(즉, 폴돈-링커- P2 도메인)'으로 이루어진 군에서 선택된 어느 하나를 포함할 수 있다. 구체적으로 일 양태는 서열번호 1로 표시되는 아미노산 서열을 갖는 사스-코로나바이러스-2의 스파이크 단백질 (spike protein) 유래 폴리펩타이드, 및 상기 폴리펩타이드의 C 말단에 선택적으로 폴돈 도메인 아미노산 서열; P2 도메인 아미노산 서열; 또는 폴돈 도메인 아미노산 서열과 P2 도메인 아미노산 서열이 함께 연결된, 사스-코로나바이러스-2 감염증 예방 또는 치료용 재조합 항원 단백질을 제공할 수 있다.
일 구현예에서 상기 재조합 항원 단백질은 서열번호 1로 표시되는 아미노산 서열을 갖는 사스-코로나바이러스-2의 스파이크 단백질 (spike protein) 유래 폴리펩타이드(이하, '폴리펩타이드' 또는 '서열번호 1의 폴리펩타이드'로 칭한다)일 수 있다. 다른 구현예에서, 상기 재조합 항원 단백질은 서열번호 1로 표시되는 아미노산 서열을 갖는 사스-코로나바이러스-2의 스파이크 단백질 (spike protein) 유래 폴리펩타이드의 C 말단에 폴돈 도메인 아미노산 서열이 연결될 수 있고, P2 도메인 아미노산 서열이 연결될 수 있고, 또는 폴돈 도메인 아미노산 서열과 P2 도메인 아미노산 서열이 함께 연결되어 제공될 수 있다. 바람직하게 상기 재조합 항원 단백질은 서열번호 4, 서열번호 5, 또는 서열번호 6으로 표시되는 아미노산 서열을 가질 수 있다.
상기 '연결되다'는 용어의 의미는 직접적으로 아미노산 서열이 이어지는 경우뿐만 아니라, 링커에 의해 이어지는 경우도 포함되며, 바람직하게 상기 폴돈 도메인 및 상기 P2 도메인은 링커에 의해 연결될 수 있다. 상기 '함께 연결되다'는 의미는 상기 폴돈 도메인의 C 말단에 P2 도메인이 링커로 연결되어 제공된다는 의미를 포함한다.
상기 '폴돈 도메인(foldon domain)'은 당업자에게 공지된 임의의 폴돈 서열을 가질 수 있다. 바람직하게 박테리오파지 T4 피브리틴의 폴돈(foldon)이 포함될 수 있으며, 서열번호 3의 아미노산 서열로 표현된다. 바이러스 표면의 스파이크 단백질은 trimer를 형성하고 있지만 transmembrane domain이 제거된 S-ectodomain은 안정적으로 trimer를 형성하지 못 하고 monomer나 dimer로 존재하기도 한다. 상기 폴돈 도메인은 S-ectodomain 항원이 안정적으로 trimer를 형성하도록 유도하여 바이러스 표면의 S와 유사한 구조를 이루도록 도우며, 항원 크기를 증가시키고 이로 인한 항원성을 증가시킬 수 있다.
상기 'P2 도메인' 은 T cell epitope의 하나로, Tetanus Toxoid Epitope P2 도메인을 의미한다. 본 원에서 서열번호 2의 아미노산 서열로 표현된다. 상기 P2 도메인이 결합되어 더 향상된 면역 증강 효과를 나타낼 수 있다.
상기 '링커'는 서열번호 1의 폴리펩타이드와 상기 도메인들을 연결시켜주거나, 상기 도메인들간의 연결이 가능하게 하며, 상기 링커는 적어도 4개의 아미노산 잔기로 이루어질 수 있으며, 예를 들어 16개 아미노산 이하 길이이며 바람직하게는 6개 이하 아미노산으로 이루어질 수 있다. 링커에 사용되는 아미노산은 G(Gly, 글리세린), S(Ser, 세린), 및 A(Ala, 알라닌) 중 하나 이상이며 바람직하게는 Gly-Ser-Gly-Ser-Gly (GSGSG), Gly-Ser-Ser-Gly (GSSG), Gly-Ser-Gly-Gly-Ser (GSGGS), Gly-Ser-Gly-Ser (GSGS), 및 Gly-Ser-Gly-Ser-Ser-Gly (GSGSSG)로 이루어진 군에서 선택된 어느 하나 이상의 펩타이드 링커일 수 있고, 바람직하게 본 발명의 목적상 GSGSG 또는 GSGGS 펩타이드 링커일 수 있다. 상기 링커로 연결될 때 안정적인 구조를 형성할 수 있다.
본원 명세서 내에 기재된 '기능적 단편'은 상기 재조합 단백질 항원이 갖는 기능을 나타내면서도 상기 재조합 단백질 항원 또는 이를 코딩하는 (폴리)뉴클레오티드 서열과 서열 상동성이 적어도 75%, 80%, 90%, 95%, 또는 99% 이상인 단백질, 또는 (폴리)뉴클레오티드를 의미하는 것으로 이해될 수 있다. '유사체'는 본 발명의 폴리펩타이드 또는 (폴리)뉴클레오티드가 갖는 기능 또는 효과와 유사하면서 상기 재조합 단백질 항원 또는 이를 코딩하는 (폴리)뉴클레오티드 서열과 서열 상동성이 적어도 75%, 80%, 90%, 95%, 또는 99% 이상인 단백질, 또는 (폴리)뉴클레오티드를 의미하는 것으로 이해될 수 있다.
상기 서열번호 1로 표시되는 아미노산 서열을 갖는 사스-코로나바이러스-2의 스파이크 단백질 (spike protein) 유래 폴리펩타이드는 도 1을 기준으로, 사스-코로나바이러스-2의 스파이크 단백질 (spike protein)의 전장 아미노산 서열에서 heptad repeat 2 (HR2) 이하의 영역이 절단되어 얻어질 수 있으며, 특히 야생형 COVID-19의 S 단백질을 이루는 아미노산 서열의 1147 이후 부분을 제거하여 얻을 수 있다. HR2 이하의 영역이 절단됨으로 인해, 상기 폴리펩타이드는 S 단백질의 transmembrane domain (TM) 및 cytoplasmic domain (CP)이 함께 상실된다. 본 발명의 발명자들은 서열번호 1로 표시되는 상기 폴리펩타이드를 암호화하는 서열은 단백질 발현 시스템에서 우수한 발현 수율을 갖는다는 것을 확인하게 되었다. 이를 통해 항원 수득율을 증가시킬 수 있다. SP(시그널 펩타이드)는 발현 시스템의 분비과정에서 떨어지는 특성상 면역원성 조성물 또는 백신에서 제외될 수 있다.
본 발명의 일 양태는 상기 폴리펩타이드가 갖는 적어도 하나의 아미노산에 변이가 일어난 재조합 항원 단백질을 포함한다. 상기 재조합 사스-코로나바이러스-2 항원 단백질은 서열번호 1의 아미노산 서열로 이루어진 폴리펩타이드를 포함하는 폴리펩타이드 또는 단백질에 적어도 하나 이상의 아미노산이 치환된 변이를 가질 수 있다. 상기 변이는 아미노산의 치환, 결실, 부가 등이 포함되나, 바람직하게 치환을 포함한다. 상기 서열번호 1의 폴리펩타이드가 갖는 아미노산 서열이 치환됨으로 인해 항원 수득율을 증가시킬 수 있다. 상기 치환이라 함은 원래 가지고 있던 아미노산 서열이 다른 아미노산 서열로 대체되는 것을 의미하는 것으로 이해될 수 있다. 적어도 하나의 아미노산이 치환될 수 있으며, 바람직하게 1개 내지 11개의 아미노산이 치환될 수 있고, 예를 들어, 2개 내지 10개의 아미노산이 다른 아미노산으로 치환될 수 있으며, 또 다른 예는 9개, 8개, 7개, 6개, 5개, 4개, 3개 또는 2개의 아미노산이 치환될 수 있다.
바람직하게 상기 변이는 상기 서열번호 1의 폴리펩타이드의 C 말단에 폴돈 도메인이 연결된 재조합 항원 단백질(서열번호 5, SK-S-trimer) 또는 서열번호 1의 폴리펩타이드의 C 말단에 폴돈 도메인과 P2 도메인이 함께 연결된 재조합 항원 단백질(서열번호 6, SK-S-trimer-P2)에서 추가로 더 치환 변이가 일어나 얻어질 수 있다.
일 구현예에서 상기 변이는 i) 2 프롤린 변이, ii) 퓨린 (furin) 절단 부위 변이, iii) 카텝신(Cathepsin) L 절단 부위 변이, 및 iv) S2 서브유닛 변이로 이루어진 군에서 선택된 어느 하나 이상의 변이를 포함할 수 있다.
i) 2 프롤린 변이
본 발명의 일 양태에서 상기 i) 2 프롤린 변이는 서열번호 1의 폴리펩타이드의 973번 위치의 아미노산 라이신(K)이 프롤린(P)으로 치환되고, 974번 위치의 아미노산 발린(V)이 프롤린(P)으로 치환된 변이를 가질 수 있으며, 이는 각각 K973P 및 V974P로 표현될 수 있다. 이는 서열번호 1을 기준으로 973번째 아미노산이 K에서 P로, 974번째 아미노산이 V에서 P로 치환되었음을 의미한다. 구체적으로 상기 서열번호 1의 폴리펩타이드의 973번 위치의 라이신(K) 아미노산이 프롤린(P) 아미노산으로 치환되고, 974번 위치의 발린(V) 아미노산이 프롤린(P) 아미노산으로 치환된 변이를 가질 수 있다. 상기와 같은 치환으로 항원이 prefusion 형태로 안정화될 수 있고, 항원 수득율을 향상시키고, 이는 중화항체가 유도 능력을 향상시킬 수 있다. 바람직하게 상기 재조합 항원 단백질은 서열번호 7 (SK- S-Trimer-2proline) 및 서열번호 8(SK-S-Trimer-P2-2proline) 로 표현된 아미노산 서열을 가질 수 있다.
ii) 퓨린 (furin) 절단 부위 변이
상기 ii) 퓨린 (furin) 절단 부위 변이는 서열번호 1의 폴리펩타이드의 위치 669-672에 대응하는 아미노산 RRAR이 GSAG 또는 HHAH로 치환된 변이로 이해될 수 있다. 상기 퓨린 절단 부위는 숙주세포에 존재하는 퓨린 단백질 또는 퓨린 유사 단백질 분해효소 (이하, 퓨린)에 의해 인식 및 절단이 일어나는 스파이크 단백질의 부위를 의미하며, 바람직하게 스파이크 단백질의 669-672번 위치의 아미노산 서열 RRAR이 여기에 해당한다. 상기 퓨린 절단 부위에 아미노산의 치환이 일어나는 경우 단백질 수율이 증가되고, 단백질의 안정성을 향상시킬 수 있다. 바람직하게 상기 아미노산 서열은 669-672번 위치의 아미노산 서열 RRAR은 GSAG으로 또는 HHAH으로 치환된 형태를 포함한다. 바람직하게 상기 서열번호 1의 아미노산 서열로 표현된 폴리펩타이드의 퓨린(furin) 절단 부위의 아미노산 치환은 i) 상기 서열번호 1의 아미노산 서열의 669번 위치의 아르기닌(R) 아미노산이 글리신(G) 아미노산으로 치환되고, 670번 위치의 아르기닌(R) 아미노산이 세린(S) 아미노산으로 치환되고, 672번 위치의 아르기닌(R) 아미노산이 글리신(G) 아미노산으로 치환되거나(즉, R669G, R670S, 또는 R672G), 또는 ii) 상기 서열번호 1의 아미노산 서열의 669번 위치의 아르기닌(R) 아미노산이 히스티딘(H) 아미노산으로 치환되고, 670번 위치의 아르기닌(R) 아미노산이 히스티딘(H) 아미노산으로 치환되고, 672번 위치의 아르기닌(R) 아미노산이 히스티딘(H) 아미노산으로 치환(즉, R669H, R670H, 또는 R672H)된 형태를 포함한다. 상기와 같은 위치에서 상기와 같은 서열로 변이를 유발하여 단백질 안정성을 향상시키고, 중화 항체가 유도능 증가로 면역 반응을 증가시킬 수 있다. 바람직하게 상기 재조합 항원 단백질은 서열번호 9 (SK-S-trimer-P2(GSAG)-2proline) 또는 서열번호 11 (SK-S-trimer-P2-(HHAH)-2proline) 로 표현된 아미노산 서열을 갖는다.
iii) 카텝신(Cathepsin) L 절단 부위 변이
상기 iii) 카텝신(Cathepsin) L 절단 부위 변이는 서열번호 1의 폴리펩타이드의 위치 681-682에 대응하는 아미노산 AY가 GS로 치환될 수 있다. 구체적으로 상기 서열번호 1의 아미노산 서열로 표현된 폴리펩타이드의 카텝신(Cathepsin) L 절단 부위의 아미노산 치환은 상기 서열번호 1의 아미노산 서열의 681번 위치의 알라닌(A) 아미노산이 글리신(G) 아미노산으로 치환되고, 682번 위치의 티로신(Y) 아미노산이 세린(S) 아미노산으로 치환된, 재조합 항원 단백질을 포함한다.
상기 카텝신(Cathepsin) L 절단 부위는 스파이크 단백질에서 숙주세포에 존재하는 카텝신 L 단백질에 의해 인식 또는 절단이 일어나는 부위를 의미하며, 바람직하게 스파이크 단백질의 681번 및 682번 위치의 아미노산 서열 알라닌(A) 및 티로신(Y)에서 변이를 유발할 수 있다. 상기 카텝신(Cathepsin) L 절단 부위에서 아미노산의 치환이 일어나는 경우 단백질 수율이 증가되고, 단백질의 안정성을 향상시킬 수 있다. 바람직하게 상기 아미노산 서열은 681-682번 위치의 아미노산 서열 알라닌(A) 및/또는 티로신(Y)은 각각 글리신(G) 및/또는 세린(S)으로 치환된 형태를 포함한다. 상기 글리신(G) 및/또는 세린(S)로의 치환은 주변 구조에 미치는 영향이 적고, 안정적인 스파이크 단백질 구조를 유지할 수 있다. 바람직하게 상기 서열번호 1의 아미노산 서열로 표현된 폴리펩타이드의 카텝신(Cathepsin) L 절단 부위의 아미노산 치환은 상기 서열번호 1의 아미노산 서열의 681번 위치의 알라닌(A) 아미노산이 글리신(G) 아미노산으로 치환되고, 682번 위치의 티로신(Y) 아미노산이 세린(S) 아미노산으로 치환된 형태를 포함한다(즉, A681G, Y682S). 상기와 같은 위치에서 상기와 같은 서열로 변이를 유발하여 단백질 안정성을 향상시키고 수율을 증가시킨다. 바람직하게 상기 재조합 항원 단백질은 서열번호 10 (SK-S-trimer-P2(GSAG/Ca)-2proline)으로 표현된 아미노산 서열을 갖는다.
iv) S2 서브유닛 변이
상기 S2 서브유닛 변이는 S 단백질의 S2 서브유닛을 형성하는 아미노산 중 적어도 4개의 아미노산이 치환된 것으로, F804P, A879P, A886P, 및 A929P 변이를 포함할 수 있다. 상기 서열번호 1의 아미노산 서열의 4개의 아미노산이 더 치환되어, 서열번호 1 기준으로 804, 879, 886, 및 929 위치에 존재하는 아미노산이 각각 페닐알라닌(F)에서 프롤린(P)으로, 알라닌(A)에서 프롤린(P)으로, 알라닌(A)에서 프롤린(P)으로, 알라닌(A)에서 프롤린(P)으로 더 치환될 수 있다. 이러한 아미노산의 치환으로 더욱 더 항원 수득율이 증가될 수 있고, 단백질 안정성이 향상된다. 바람직하게, 본 발명의 일 실시예는 i) 상기 서열번호 1의 아미노산 서열의 669번 위치의 아르기닌(R) 아미노산이 글리신(G) 아미노산으로 치환되고, 670번 위치의 아르기닌(R) 아미노산이 세린(S) 아미노산으로 치환되고, 672번 위치의 아르기닌(R) 아미노산이 글리신(G) 아미노산으로 치환되고, 여기에 추가로 상기 서열번호 1의 아미노산 서열의 4개의 아미노산이 더 치환되어, 804, 879, 886, 및 929 위치의 아미노산이 각각 페닐알라닌(F)에서 프롤린(P)으로, 알라닌(A)에서 프롤린(P)으로, 알라닌(A)에서 프롤린(P)으로, 알라닌(A)에서 프롤린(P)으로 치환된 재조합 항원 단백질을 포함한다. 상기 재조합 항원 단백질은 서열번호 12로 표현되는 아미노산 서열을 갖는다.
다른 실시양태에서 상기 서열번호 1의 아미노산 서열로 표현된 폴리펩타이드의 퓨린(furin) 절단 부위, 카텝신(Cathepsin) L 절단 부위 또는 이들 모두에 아미노산 치환이 발생될 수 있다. 바람직하게 상기 변이는 예를 들어, 서열번호 7을 기준으로 폴리펩타이드의 퓨린(furin) 절단 부위(cleavage site), 및/또는 카텝신(Cathepsin) L 절단 부위에 해당하는 아미노산 서열이 새로운 아미노산으로 치환되어 얻어질 수 있다.
본 발명의 발명자들은 SARS-CoV-2의 스파이크 단백질의 RBD 영역만으로는 달성하기 어려운, 바이러스 표면 스파이크 단백질과 유사한 3차, 4차 구조 형성, 항원 단백질의 prefusion 형태 구조안정화, 항원 크기 증가, 면역원성 증가, 중화항체가 유도능 증가 등이 달성됨을 확인하고 본 발명을 완성하게 되었다.
본 명세서에서 사용된 용어 "재조합 항원 단백질"은 SARS-CoV-2 감염증 예방 또는 치료를 위한 항원으로서, 구체적으로, SARS-CoV-2의 스파이크 단백질의 특정 위치에서 선별된, 특정 구간의 아미노산 서열을 포함하는 단백질을 의미한다. 상기 재조합 항원 단백질은 SARS-CoV-2의 스파이크 단백질의 일부 영역의 절단, 외래 유전자와의 결합 등을 통해 인위적으로 만들어진 단백질을 의미한다.
본 발명은 상기 정의한 재조합 단백질 항원을 암호화하는 뉴클레오타이드 서열을 제공하며, 상기 재조합 단백질 항원 발현을 위한 항원 발현용 컨스트럭트를 제공한다. (a) 서열번호 1의 아미노산 서열로 이루어진 폴리펩타이드 또는 이의 기능적 단편에 적어도 1종 이상의 외인성 폴리펩타이드가 연결된 재조합 사스-코로나바이러스-2 항원 단백질을 코딩하는 뉴클레오타이드 서열; 또는 서열번호 4 내지 12로 이루어진 재조합 항원 단백질을 코딩하는 뉴클레오타이드 서열, 및 (b) 상기 재조합 사스-코로나바이러스-2 항원 단백질을 세포로부터 분비시키기 위한 시그널 서열을 코딩하는 뉴클레오타이드 서열을 포함하는 재조합 사스-코로나바이러스-2 항원 단백질 발현용 컨스트럭트를 제공할 수 있다. 본 발명의 일 구현예는 사스-코로나바이러스-2 감염증 예방 또는 치료용 재조합 항원 단백질 생산을 위한 발현 컨스트럭트를 제공한다. 바람직하게 서열번호 4 내지 12로 표현되는 아미노산 서열 중에서 선택된 어느 하나 이상의 서열을 갖는 재조합 항원 단백질을 발현하기 위한, 발현용 컨스트럭트를 제공한다. 바람직하게 상기 발현 컨스트럭트는 서열번호 13 내지 서열번호 32로 이루어진 군에서 선택된 어느 하나의 뉴클레오타이드 서열을 갖는다. 상기 뉴클레오타이드 서열을 갖는 발현 컨스트럭트는 단백질 수득율이 높고, 안정적인 구조를 갖는 단백질을 생산할 수 있다. 바람직하게 서열번호 13 내지 서열번호 22 중에서 선택된 어느 하나의 서열을 갖는 뉴클레오타이드는 중국 햄스터의 난소세포(Chinese Hamster ovary cell, CHO) 포유동물 발현 시스템을 통해, 서열번호 23 내지 서열번호 32 중에서 선택된 어느 하나의 서열을 갖는 뉴클레오타이드는 배큘로바이러스 발현 시스템(BEVS)을 통해 본 발명의 재조합 항원 단백질을 얻을 수 있다.
본 명세서에서 용어 "발현 컨스트럭트(expression construct)"는 세포내에서 단백질 발현을 위한 최소의 엘리먼트(elemnet)만을 포함하는 핵산분자를 의미하는 것으로 이해된다.
상기 발현 컨스트럭트는 상기 항원 단백질의 분비를 돕는 시그널 서열을 코딩하는 뉴클레오티드 서열과 연결되어 제공될 수 있다.
본원에 사용된 용어 "시그널 펩타이드" 또는 "시그널 서열"은 본원에서 호환적으로 사용되고 숙주 세포에서 단백질을 분비 경로로 지시하는, 새로 합성된 폴리펩타이드 사슬의 N-말단에 존재하는 짧은 펩타이드 (일반적으로 5-30개 아미노산 길이를 갖지만, 이에 제한되지 않는다.)를 의미한다. 상기 시그널 서열은 자체의 시그널 펩타이드 또는 본원에서 언급된 시그널 펩타이드는 단백질 분비 과정에서 제거된다. 상기 '자체 시그널 서열'은 SARS-CoV-2의 스파이크 단백질이 갖는 시그널 서열을 의미한다. 상기 '이종 유래의 시그널 펩타이드 또는 시그널 서열'이라 함은 SARS-CoV-2의 스파이크 단백질이 갖는 시그널 서열이 아닌, 외부에서 도입되거나, 새로 합성된 시그널 서열을 의미한다. 바람직한 이종 유래의 시그널 서열은 Honeybee melittin signal peptide, murine phosphatase signal peptide, 및/또는 인간 알부민 시그널 펩타이드이며, 바람직하게 본 발명의 목적상 인간 알부민 시그널 펩타이드를 사용할 수 있다. 바람직하게 상기 뉴클레오타이드 서열은 DNA 서열이다.
본 발명의 재조합 항원 단백질을 적합한 발현 벡터를 사용하여, 원핵 또는 진핵 발현 시스템에서 클로닝 및 발현에 의해 제조할 수 있다. 당해 분야에 공지된 임의의 방법을 사용할 수 있다. 바람직하게 본 발명의 목적 및 단백질 발현율 등을 고려하여, BEVS, CHO 또는 E.coli 발현시스템을 사용할 수 있으며, 바람직하게 BEVS 및/또는 CHO 발현 시스템을 사용할 수 있다. 벡터는 임의의 적절한 유형일 수 있고, 비제한적으로 파아지, 바이러스, 플라스미드, 파지미드(phagemid), 코스미드(cosmid), 백미드(bacmid) 등을 포함할 수 있다. 예를 들어 본 발명의 항원을 암호화하는 DNA 분자를 당해 분야에 널리 공지된 기법에 의해 적합하게 제작된 발현 벡터에 삽입한다.
본 발명의 일 구현예에 따른 발현 컨스트럭트는 배큘로바이러스 발현 시스템(BEVS)을 이용한다.
배큘로바이러스 발현 시스템은 업계에서 이미 재조합 단백질 생산을 위해 널리 사용되고 있는 것을 제한없이 사용할 수 있다. 예를 들어, pBAC4x-1(Novagen)과 같은 상업적으로 유용한 배큘로바이러스 벡터가 사용될 수 있다. 본 발명에서 사용하는 적당한 배큘로바이러스 프로모터는 문헌에 잘 알려져 있다. 배큘로바이러스 프로모터는 폴리헤드린(polyhedrin), p10 프로모터 등 일반적으로 사용되는 프로모터가 사용될 수 있다. 상기 항원 단백질을 암호화하는 뉴클레오타이드 서열을 포함하는 발현 컨스트럭트가 포함된 배큘로바이러스 벡터를 대장균에 형질전환하여 얻어진 재조합 백미드 (Bacmid), 및 이를 게놈으로 포함하는 재조합 배큘로바이러스도 제공된다. 상기 재조합 백미드를 포함하거나, 상기 재조합 배큘로바이러스로 형질감염된 숙주세포도 본 발명의 범위에 포함된다.
본 발명의 항원 단백질을 암호화하는 뉴클레오타이드 서열을 포함하는 DNA 분자들은 전사 및 번역 조절 신호를 갖는 벡터에 삽입시킬 수 있다. 상기 도입된 DNA에 의해 안정하게 형질전환된 세포를, 또한 상기 발현 벡터를 함유하는 숙주 세포의 선택을 허용하는 하나 이상의 마커를 도입시킴으로써 선택할 수 있다. 상기 마커는 예를 들어 항생제 내성, 결핍 영양소 합성 유전자 등을 제공할 수 있다. 일단 상기 구조물을 함유하는 벡터 또는 DNA 서열을 발현을 위해 제조하였으면, 상기 DNA 구조물을 다양한 적합한 수단들 중 어느 하나, 즉 형질전환, 형질감염, 접합, 원형질체 융합, 일렉트로포레이션, 칼슘 포스페이트-침전, 직접 미세주입 등에 의해 적합한 숙주 세포에 도입시킬 수 있다.
바람직한 숙주 세포는 진핵 숙주 세포로, 예를 들어, 곤충 세포로 Baculovirus 발현시스템을 이용하는 Sf9, Sf21과 같은 Spodopterafrugiperda (Sf) 세포, 하이 파이브 세포와 같은 Trichoplusia ni 세포 및 Drosophila S2 세포들을 포함할 수 있고, 포유류 세포로 중국 햄스터 난소(CHO) 세포를 포함할 수 있다. 적당한 숙주 세포주는 임의의 중국 햄스터 난소 (CHO) 세포주일 수 있다. '숙주세포'라는 용어는 배양액에서 성장할 수 있고 목적하는 단백질 재조합 산물 단백질을 발현할 수 있는 세포를 지칭한다. 적당한 세포주로는, 예컨대, CHO K1, CHO pro3-, CHO DG44, CHO P12 등을 포함할 수 있으며, 이에 제한되지 않는다.
상기 숙주 세포를 통해 우수한 발현율의 재조합 항원 단백질을 얻을 수 있다. 비제한적인 예로 본 발명의 목적을 저해하지 않는 범위 내에서 상기 진핵 숙주 세포의 예로 효모, 조류, 식물, 꼬마선충(또는 선충) 등을 포함할 수 있고, 원핵 숙주 세포들은, 예를 들어, 대장균(E. coli, B. subtilis), 살모넬라티피균(Salmonella typhi) 및 마이코박테리아와 같은 박테리아 세포를 포함할 수 있다. 벡터의 도입 후, 상기 숙주 세포를 일반배지 또는 선택성 배지(벡터 함유 세포의 성장을 위해 선택한다)에서 증식시킨다. 상기 클로닝된 유전자 서열(들)의 발현 결과 목적하는 단백질이 생산된다. 상기 재조합 항원 단백질의 정제를 상기 목적으로 공지된 방법들 중 어느 하나, 즉 추출, 침전, 크로마토그래피, 전기영동 등을 수반하는 임의의 통상적인 과정에 의해 수행할 수 있다.
본 발명의 또 다른 태양은 상기 재조합 항원 단백질의 제조 방법을 제공하며, 상기 방법은 본 발명의 뉴클레오타이드 서열을 함유하는 벡터로 형질전환시킨 숙주 세포를 배양하고 목적하는 생성물을 단리함을 포함할 수 있다.
본 발명의 다른 구현예는 사스-코로나바이러스-2 감염증 예방 또는 치료를 위한, 상기 재조합 단백질 항원의 새로운 용도를 제공하며, 상기 항원을 개체에 투여하여 사스-코로나바이러스-2 감염을 예방 또는 치료하는 사스-코로나바이러스-2 감염증 예방 방법을 제공한다.
본 발명의 또 다른 구현 예에서는 본 발명에 따른 상기 재조합 항원 단백질을 유효성분으로 포함하는 사스-코로나바이러스-2 감염증 예방 또는 치료용 백신 조성물을 제공한다. 상기 '사스-코로나바이러스-2 감염증'이라 함은 사스-코로나바이러스-2 자체의 감염뿐만 아니라, 상기 바이러스의 감염으로부터 발생되는 여러가지 병증 (예를 들어, 호흡기 질환, 폐렴 등)을 넓게 포함하는 개념으로 이해될 수 있다. 본 발명에서 상기 백신은 당업계에서 잘 알려진 통상적인 방법으로 제조될 수 있고, 당업계에서 백신 제조 시 사용할 수 있는 여러 첨가물을 선택적으로 더 포함할 수 있다. 본 발명에 따른 백신 조성물은 상기 재조합 항원 단백질 및 약학적으로 허용가능한 담체를 포함할 수 있다. 이에 제한되는 것은 아니지만 예를 들면, 제제시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다. 본 발명의 약제학적 조성물은 상기 성분들 이외에 TWEEN™, 폴리에틸렌 글리콜 (PEG) 등과 같은 비-이온성 계면 활성제, 아스코르브 산을 포함하는 항산화제, 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함하여 사용될 수 있다. 본 발명에서 상기 백신은, 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있는 방법에 따라, 약제학적으로 허용되는 담체 및/또는 부형제를 이용하여 제제화함으로써 단위 용량 형태로 제조되거나 또는 다용량 용기 내에 내입시켜 제조될 수 있다. 이때 제형은 오일 또는 수성 매질중의 용액, 현탁액 또는 유화액 형태이거나 엑스제, 분말제, 과립제, 정제 또는 캅셀제 형태일 수도 있으며, 분산제 또는 안정화제를 추가적으로 포함할 수 있다. 본 발명에서 상기 백신의 적합한 투여량은 제제화 방법, 투여 방식, 환자의 연령, 체중, 성, 병적 상태, 음식, 투여 시간, 투여 경로, 배설 속도 및 반응 감응성과 같은 요인들에 의해 다양하게 처방될 수 있다. 한편, 본 발명에 따른 백신의 투여량은 바람직하게는 도즈 당 1 ~ 100 ug 일 수 있다. 본 발명의 일 구체 예에서는 상기 재조합 항원 단백질을 유효성분으로 포함하는 백신은 정맥내주사, 근육 내주사, 피하내주사, 경피전달 또는 기도흡입으로 체내에 투여될 수 있으나, 이에 제한되는 것은 아니다.
상기 백신 조성물은 면역 반응 효과를 향상시키기 위해, 면역학적 애쥬반트를 더 포함할 수 있으며, 상기 면역학적 애쥬반트와 함께 또는 면역학적 애쥬반트없이 사스-코로나바이러스-2의 nucleocapsid (N) 단백질을 더 포함할 수 있다.
상기 면역학적 애쥬반트는 예를 들어 스쿠알렌(MF59, AddavaxTM), 리포솜, TLR agonist, MPL(monophosphoryl lipid A)(AS04), 마그네슘 하이드록사이드, 마그네슘 카보네이트 하이드독사이드 펜타하이드데이트, 티타듐다이독사이드, 칼슘 카보네이트, 바륨 옥사이드, 바륨 하이이드록사이드, 바륨 퍼옥사이드, 바륨 설페이트, 칼슘 설페이트, 칼슘 파이로포스페이트, 마그네슘 카보네이트, 마그네슘 옥사이드, 알루미늄 하이드록사이드, 알루미늄 포스페이트 및 수화된 알루미늄 포타슘 설페이트(Alum)로부터 선택된 어느 하나 이상일 수 있으나, 이에 제한되는 것은 아니다.
상기 '사스-코로나바이러스-2의 nucleocapsid (N) 단백질'은 서열번호 33의 인위적으로 만들어진 사스-코로나바이러스-2의 nucleocapsid (N) 단백질이다. N 단백질은 세포성 면역을 유도할 수 있으며, 본 발명의 일 구현예에 따라 얻어진 재조합된 항원 단백질과 함께 사용하여 증가된 보호면역원성을 유도할 수 있다. 상기 서열번호 33의 단백질의 N 단백질 발현을 위한 컨스트럭트는 상기 N 단백질의 N-말단에 인간 알부민 시그널 펩타이드(서열번호 34)를 발현할 수 있는 뉴클레오타이드 서열이 융합되어 제공될 수 있다. 바람직하게 BEV 발현 시스템에서 최적화된 뉴클레오타이드 서열은 서열번호 35로, CHO 발현 시스템에서 최적화된 뉴클레오타이드 서열은 서열번호 36으로 표현된다.
본 발명의 일 구현예는 앞선 기술에 따른 재조합 사스-코로나바이러스-2 항원 단백질; 또는 서열번호 4 내지 12 중에서 선택된 적어도 하나 이상의 재조합 단백질을 개체에 유효량 처리하여 이를 필요로 하는 개체의 체내에 사스-코로나바이러스-2에 대한 면역 반응을 유도하는 방법, 항체를 생성하는 방법, 또는 중화항체 생성 또는 IFN-γ 분비 T세포를 증가시키는 방법을 제공한다.
본 발명의 다른 구현예는 앞선 기술에 따른 사스-코로나바이러스-2에 대한 항체 생성을 위한 재조합 사스-코로나바이러스-2 항원 단백질; 또는 서열번호 4 내지 12 중에서 선택된 적어도 하나 이상의 재조합 단백질의 용도를 제공한다. 상기 재조합 단백질의 용도는 체내에 사스-코로나바이러스-2에 대한 면역 반응을 유도하기 위한, 항체를 생성하기 위한, 또는 중화항체 생성 또는 IFN-γ 분비 T세포를 증가시키기 위한 용도로 사용될 수 있다.
본 발명의 다른 구현예는 앞선 기술에 따른 사스-코로나바이러스-2에 대한 항체 생성을 위한 재조합 사스-코로나바이러스-2 항원 단백질; 또는 서열번호 4 내지 12 중에서 선택된 적어도 하나 이상의 재조합 단백질을 포함하는 백신을 제공할 수 있으며, 상기 백신은 담체, 면역증강제, 또는 부형제 등을 더 포함할 수 있다. 상기 백신은 에멀젼, 크림, 겔, 리포좀, 연고, 액상 등의 형태로 제공될 수 있다. 상기 백신 조성물은 이를 사용하기 위한 사용지침서 등과 함께 키트로 제공될 수 있다.
서열번호 비고 구분
1 SK-S-ecto 펩타이드
2 P2 펩타이드
3 폴돈 펩타이드
4 SK-S-ecto-P2 재조합 항원 단백질 펩타이드
5 SK-S-trimer 재조합 항원 단백질 펩타이드
6 SK-S-trimer-P2 재조합 항원 단백질 펩타이드
7 SK- S-Trimer-2proline 재조합 항원 단백질 펩타이드
8 SK-S-Trimer-P2-2proline 재조합 항원 단백질 펩타이드
9 SK-S-trimer-P2(GSAG)-2proline 재조합 항원 단백질 펩타이드
10 SK-S-trimer-P2(GSAG/Ca)-2proline 재조합 항원 단백질 펩타이드
11 SK-S-trimer-P2-(HHAH)-2proline 재조합 항원 단백질 펩타이드
12 SK-S-trimer-P2(GSAG)6proline 재조합 항원 단백질 펩타이드
13 SK-S-ecto의 CHO 코돈최적화 뉴클레오타이드
14 SK-S-ecto-P2 의CHO 코돈최적화 뉴클레오타이드
15 SK-S-trimer 의 CHO 코돈최적화 뉴클레오타이드
16 SK-S-trimer-P2 의 CHO 코돈최적화 뉴클레오타이드
17 SK- S-Trimer-2proline 의 CHO 코돈최적화 뉴클레오타이드
18 SK-S-Trimer-P2-2proline 의 CHO 코돈최적화 뉴클레오타이드
19 SK-S-trimer-P2(GSAG)-2proline 의 CHO 코돈최적화 뉴클레오타이드
20 SK-S-trimer-P2(GSAG/Ca)-2proline 의 CHO 코돈최적화 뉴클레오타이드
21 SK-S-trimer-P2-(HHAH)-2proline 의 CHO 코돈최적화 뉴클레오타이드
22 SK-S-trimer-P2(GSAG)-6proline 의 CHO 코돈최적화 뉴클레오타이드
23 SK-S-ecto 의 BEV 코돈최적화 뉴클레오타이드
24 SK-S-ecto-P2 의 BEV 코돈최적화 뉴클레오타이드
25 SK-S-trimer 의 BEV 코돈최적화 뉴클레오타이드
26 SK-S-trimer-P2 의 BEV 코돈최적화 뉴클레오타이드
27 SK- S-Trimer-2proline 의 BEV 코돈최적화 뉴클레오타이드
28 SK-S-Trimer-P2-2proline 의 BEV 코돈최적화 뉴클레오타이드
29 SK-S-trimer-P2(GSAG)-2proline 의BEV 코돈최적화 뉴클레오타이드
30 SK-S-trimer-P2(GSAG/Ca)-2proline 의 BEV 코돈최적화 뉴클레오타이드
31 SK-S-trimer-P2-(HHAH)-2proline 의 BEV 코돈최적화 뉴클레오타이드
32 SK-S-trimer-P2(GSAG)6proline 의 BEV 코돈최적화 뉴클레오타이드
33 N 단백질 펩타이드
34 Human albumin SP (1-18) 펩타이드
35 N 단백질의 BEV 코돈최적화 뉴클레오타이드
36 N 단백질의 CHO 코돈최적화 뉴클레오타이드
37 SK-RBD-P2 재조합 항원 단백질 펩타이드
38 SK-RBD 재조합 항원 단백질 펩타이드
39 SP+ SK-S-ecto 재조합 항원 단백질 펩타이드
본 발명의 일 구현예에 따른 재조합 단백질 및/또는 재조합 바이러스 백신은 안전성이 높다. 본 발명의 일 구현예에 따른 백신은 우수한 면역원성을 가지며, 백신으로 우수한 효능을 갖는다.
본 발명의 백신은 중화항체가가 높다.
본 발명의 백신은 세포성 면역의 유도 효과가 우수하다.
본 발명은 사스-코로나바이러스-2 감염에 대한 예방 및 치료효과가 우수하다.
본 발명의 재조합 항원 단백질은 안정적인 형태의 3차원 스파이크 단백질 구조 (바람직하게 바이러스 표면 스파이크 단백질 구조(ectodomain 부분을 포함), 더 바람직하게 prefusion 형태 스파이크 단백질 삼량체 구조)를 유지할 수 있다.
본 발명의 재조합된 항원을 이용해 높은 항체 생성율을 가질 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 SARS-CoV2 spike full-length protein 도메인 구조의 schematic diagram을 나타낸다.
도 2 및 3은 본 발명의 일 양태에 따른 재조합 단백질을 예시적으로 도식화한 그림이다.
도 4는 자극원에 따른 IFN-gamma 분비 T세포의 증가 정도를 확인한 결과이다.
이하, 본 발명의 이해를 돕기 위하여 실시예 등을 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예들에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예들은 본 발명이 속한 분야에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
1. 사스-코로나바이러스-2의 Spike protein을 이용한 항원 발현용 컨스트럭트 제조
(1) 서열번호 1의 폴리펩타이드에 P2 도메인과 폴돈 도메인 연결하여 제작
백신 제조에 사용하는 항원 단백질을 제작하기 위해 Genbank # MN908947 Severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1의 서열을 참고하여 S 유전자, N 유전자 서열을 준비하였다.
도 1은 SARS-CoV2 spike full-length protein 도메인 구조의 schematic diagram을 나타낸다. 이를 이용하여 항원 발현용 컨스트럭트를 제조하였다.
사스-코로나바이러스-2 항원 단백질 발현을 위해 여러 시리즈의 발현 컨스트럭트를 고안하였다. 고안된 발현 컨스트럭트를 통해 얻어진 재조합 단백질을 도 2 및 3에 상세히 도시하였다. P2는 Tetanus P2 domain을, foldon은 T4 피브리틴의 폴돈 단백질 발현 도메인을 의미한다. 여기서 P2 도메인과 폴돈 단백질 발현 도메인은 각각 GSGSG 펩타이드 Linker로 연결되게 하였다.
제작된 재조합 단백질의 적절한 분비 또는 이동을 위해, 상기 재조합 단백질 발현을 위한 컨스트럭트의 upstream에 시그널 펩타이드를 코딩하는 뉴클레오타이드 서열을 작동가능하게 연결하였다. Baculo 발현 시스템을 통해 발현할 때는 S-ecto, 및 S-ecto-P2로 칭하는 발현 컨스트럭트는 자체 시그널 펩타이드를 사용하고, 그 외 construct는 서열번호 3의 시그널 펩타이드를 코딩하는 뉴클레오타이드 서열로 교체하여 사용하였다. CHO 발현 시스템을 통해 발현할 때는 S 단백질의 자체 SP 서열이 발현될 수 있도록 하였다.
(2) 2개의 프롤린 뮤턴트 제작
폴돈 도메인을 부착하거나, 폴돈 도메인에 P2 도메인이 연결된 재조합 항원 단백질을 기준으로, 2개의 프롤린 아미노산을 도입하였다. 구체적으로 서열번호 7 및 8과 같이 K973P 및 V974P을 도입하였다. 이를 통해 단백질이 prefusion 형태로 안정화된 재조합 항원 단백질을 얻을 수 있었다.
(3) cleavage site 변이
Furin cleavage site 및 Cathepsin L cleavage site에 변이를 도입하여 SK-S-trimer-P2(GSAG/Ca)-2proline재조합 단백질을 제작하였다. 이를 서열번호 10으로 나타냈다.
상기 재조합 단백질은 발현 및 정제 과정 중 proteolytic degradation에 저항성을 가졌으며, S1, S2 2개의 서브유닛으로 분리되지 않고 단일 폴리펩타이드로 발현 정제되어 단백질 수율이 증가하고 안정적인 구조를 나타냈다.
(4) 추가 변이
서열번호 9를 기준으로 F804P, A879P, A886P, A929P 변이를 도입하였고, 우수한 단백질 안정성 및 수득율을 얻을 수 있었다.
각 컨스트럭트들이 발현될 때 periplasmic region 혹은 배양 배지로 재조합 단백질이 secretion 될 수 있도록 각 발현 시스템에 원래 가지고 있는 signal peptide 혹은 이종의 signal peptide를 코딩하는 유전자를 유지, 치환 혹은 첨가하였다. Spike 단백질은 N-terminal 1~13 aa이 자체 signal peptide이며, 배큘로바이러스 시스템, CHO cell 발현 시스템, mammalian cell 발현 시스템에서 원래의 시그널 펩타이드가 그대로 발현될 수 있게 하였다. N 단백질은 원래 시그널 펩타이드가 달려있지 않은 단백질이기 때문에 human albumin signal peptide 암호화 뉴클레오티드 서열을 N 말단에 첨가하였다.
2. 기타 단백질을 이용한 항원 제조
사스-코로나-2 바이러스의 N 단백질 유전자를 기초로 서열번호 33의 N 단백질 항원을 제조하였다.
3. 코돈 최적화
재조합 단백질을 암호화하는 DNA 서열은 진스크립트 (GenScript)에서 곤충 세포, 및 Chinese Hamster Ovary(CHO) cell에 최적화된 코돈으로 각각 합성되었다.
각 발현시스템에 코돈-최적화된 서열은 다음과 같다. 하기 서열은 폴리뉴클레오티드 서열이다.
상기 재조합 항원 단백질 발현용 컨스트럭트는 서열번호 13 내지 32로 표현되는 뉴클레오타이드 서열로 나타냈다.
상기 폴돈 도메인은 항원이 trimer를 형성하도록 유도하여 항원 크기를 증가시키고 이로 인한 항원성을 증가시킬 수 있다.
4. 재조합 단백질 백신 제조
Baculo, 및 CHO를 이용하여 하기와 같은 과정으로 백신의 효과를 확인하였다.
1.1 재조합단백질의 생산
1.1.1 배큘로바이러스 발현시스템을 이용한 재조합단백질 생산
1.1.1.1 사스-코로나바이러스-2의 항원유전자를 발현시키기 위하여 각 유전자를 합성하였다. 도 2 및 3의 단백질 발현용 컨스트럭트, 및 N 단백질 발현용 컨스트럭트를 각각 준비하였다. 전이 벡터 pFastBac1 (Invitrogen)에 상기 준비된 컨스트럭트 유전자를 삽입하여 클로닝하고, 유전자서열을 분석하였다.
1.1.1.2 제조된 플라스미드를 bacmid 제조용 E.coli에 형질전환 (Transformation)하여 재조합백미드 (Recombinant bacmid)를 제조하고 유전자서열을 분석하였다.
1.1.1.3 재조합백미드를 단층으로 배양된 Sf9 세포에 접종하여 형질감염 (Transfection)하고 재조합배큘로바이러스를 제조하여 플라그시험법으로 정량하였다.
1.1.1.4 배양된 곤충세포에 재조합배큘로바이러스를 감염시켜 생산된 재조합단백질을 수거하였다.
1.1.1.5 재조합단백질 정제
수거된 재조합단백질을 필터를 이용하여 여과하고, 적절한 크로마토그라피법 (Ion Exchange, Size Exclusion 등)을 이용하여 재조합단백질을 정제하였다.
1.1.2 CHO세포 발현시스템을 이용한 재조합단백질 생산
1.1.2.1 사스-코로나바이러스-2의 항원유전자를 발현시키기 위하여 각 유전자를 합성하였다. 발현벡터에 합성된 유전자를 삽입하여 클로닝하고, 유전자서열을 분석하였다.
1.1.2.2 단백질생산용 CHO 세포(CHO K-1 세포주)에 재조합플라스미드를 형질전환하였다.
1.1.2.3 항생제를 이용하여 재조합단백질을 발현하는 형질전환세포를 동정하였다.
1.1.2.4 동정된 형질전환 CHO세포를 대량배양하고 재조합 단백질을 수거하였다.
1.1.2.5 재조합단백질 정제
수거된 재조합단백질을 필터를 이용하여 여과하고, 적절한 크로마토그라피법 (Ion Exchange, Size Exclusion 등)을 이용하여 재조합단백질을 정제하였다.
1.1.5 재조합단백질 확인 및 정량
1.1.5.1 SDS-PAGE 및 Western blot법을 이용하여 재조합단백질의 발현 여부를 확인하였다.
1.1.5.2 기본적인 총단백질 정량법 (Lowry법, BCA법 등)을 이용하여 재조합단백질을 정량하였다.
5. 재조합 항원 단백질의 평가
A. 동물실험
1.2.1 면역원성 시험 (Immunogenicity Test)
1.2.1.1 동물 모델에 정제된 재조합단백질을 면역증강제 (예/Aluminum hydroxide) 와 조합하여 2~3주 간격으로 2~3회 접종하였다.
1.2.1.2 체중 및 체온 변화를 측정하여 안전성 확인
1.2.1.3 최종 접종 2~3주 후, 전혈하여 분리된 혈청과 비장세포를 얻었다.
1.2.2 방어능 시험 (Protection Test)
1.2.2.1 동물 모델에 정제된 재조합단백질을 면역증강제 (예/Aluminum hydroxide) 와 조합하여 2~3주 간격으로 2~3회 접종하였다.
1.2.2.2 최종 접종 2~3주 후, 치사량의 야생형 사스-코로나바이러스-2 바이러스를 감염하였다.
1.2.2.3 감염 후 1주일 간, 비강, 기도, 장기 등에서의 바이러스 shedding을 평가하였다.
1.2.2.4 감염 후 2주일 간, 체중 및 체온 변화, 사망률 등을 평가하였다.
B. 면역원성 평가
1.3.1 IgG ELISA
1.3.1.1 코팅용 항원 (RBD, S1, S2, N 등)을 96웰-플레이트에 코팅하고, 블로킹버퍼로 플레이트를 블로킹함. 검체 (혈청)를 플레이트에 반응시켰다. IgG 검출항체를 플레이트에 반응시켰다. 기질버퍼를 첨가하여 발색시키고, 흡광도를 측정하였다.
1.3.2 슈도바이러스 제조
1.3.2.1 발현용벡터에 사스-코로나바이러스-2의 S 단백질 유전자를 클로닝하였다. 전이벡터에 reporter유전자를 클로닝하였다. 두 유전자를 슈도바이러스 생산용 세포에 형질전환 (Transfection)하여 reporter단백질을 발현하는 슈도바이러스를 제조하였다.
1.3.3 중화항체가 평가
1.3.3.1 계대 희석된 검체 (혈청)를 슈도바이러스와 반응시킴. 반응한 슈도바이러스를 96웰-플레이트에 배양된 감염용 세포 (Vero E6 등)에 감염하여 배양하였다. 4~6시간 뒤 PBS로 세척하고 새로운 배지로 교체하였다. 24~72시간 배양하여 reporter 단백질 발현량을 비교하여 중화항체가를 평가하였다.
1.3.4 세포성면역 평가
1.3.4.1 96웰-플레이트에 항 인터페론-감마 항체 (anti-IFN-γ antibody)에 코팅하였다. 블로킹버퍼로 플레이트를 블로킹하고, 비장세포와 촉진제항원 (Stimulate)을 넣고 24~36시간을 배양하였다. 인터페론-감마 검출 항체를 반응시키고, 기질을 첨가하여 반응시킴. ELISPOT 리더를 이용하여 면역세포를 평가하였다.
1.3.4.2 면역특성 분석을 위하여, 면역세포 특이 항체와 사이토카인 항체를 분리한 비장세포와 2시간 반응시켰다. 유동세포분석법을 통해 T 세포 분포 및 싸이토카인 발현율을 측정하였다.
C. 백신용 항원의 항원성 평가
CR3022와의 결합력을 평가하기 위해 BioLayer Interferometry (BLI)를 사용하였다. CR3022는 Recombinant SARS-CoV-2 Spike Glycoprotein S1에 대한 Human monoclonal antibody이다. (Abcam사의 CAT#: ab273073)
BLI는 항체와 항원 간에 association과 dissociation을 통해 친화성 상수 Kd값 (Kdis/Kon)을 측정하며 이 값이 작을수록 친화력이 높다. 코로나19 S-특이 항체를 ProA sensor chip (ForteBio)에 Octet K2를 이용해 immobilize 하였다. Sensor chip을 100nM 부터 2-fold로 희석된 항원 시료에 dipping 하여 association을 측정하고 Kinetic buffer만 포함하는 well에 dipping 하여 dissociation을 측정하였다. Octet Data Analysis software(11.0)를 이용하여 결과 값에서 reference를 뺀 데이터를 1:1 binding model에 fitting 하여 분석하였다.
이를 통해 합성 서열 및 정보, 단백질 발현 확인, 단백질 분리 정제, 재조합 단백질 백신 후보물질을 확보할 수 있었다.
이를 통해 코로나감염증을 예방할 수 있게 충분한 항체 및 보호면역을 유도할 수 있다.
6. 결과
(1) BALB/c를 이용한 SK-RBD-P2 (서열번호 37), SK-RBD-P2 (서열번호 37)+ N(서열번호 33), SK-S-Trimer-P2 (서열번호 6)+ N(서열번호 33)의 면역원성 비교 실험 결과
6주령 female 마우스를 이용하여 SK-RBD-P2, SK-RBD-P2 + N, S-Trimer-P2 + N 항원을 2주간격으로 2회 IM 면역 후 채혈하여 혈청을 분리하고 면역원성을 분석하였다. 분석결과 모든 면역그룹(G2~G4)에서 RBD 단백질 특이 항체가 형성됨을 확인하였다. N 단백질 특이 항체는 면역그룹(G3, G4) 두 그룹에서 4주차에 높은 IgG titer를 보이며 우수한 면역원성을 증명했다(표 2).
SK-RBD-P2, SK-RBD-P2 + N, S-Trimer-P2 + N을 면역한 마우스의 총항체가 및 중화항체가 분석(BALB/c 마우스)
No. 항원 항원량
(ug/dose)
개체수 Adjuvant Total IgG titer PBNA50
2 w 4 w 2 w 4 w
RBD-specific N-specific
1 Vehicle 1 0 5 Alum. H 25 25 233 190 ND
2 SK-RBD-P2 10 5
Alum. H
52 12564 109 67 ND
3 SK-RBD-P2 + N 10+1 5 Alum. H 25 5423 1321 152911 ND
4 S-Trimer-P2 + N 10+1 5 Alum. H 25 730 291 3949 40
(2) BALB/c를 이용한 S-Trimer-P2 와 N 조합에 따른 면역원성 비교 실험 결과
6주령 female 마우스를 이용하여 S-Trimer-P2 항원을 N 항원과 함께 2주간격으로 2회 IM 면역 후 채혈하여 혈청을 분리하고 면역원성을 분석하였다. 4, 6, 8주차 샘플을 분석한 결과 주차에 따른 면역원성이 증가하는 양상을 보였고, N 단백질이 첨가되지 않은 그룹에 비해 함께 투여된 그룹에서 높은 항체가를 보였다(표 3).
S-Trimer-P2 단독 또는 N을 함께 면역한 마우스의 총항체가 분석(BALB/c 마우스)
No. 항원 항원량
(ug/dose)
개체수 Adjuvant Total IgG titer
4w 6w 8w
1 Vehicle 0 5 - 25 25 25
2 S-Trimer-P2 10 5 Alum. H 894 1045 17147
3 S-Trimer-P2+N 10+1 5 Alum. H 1964 2113 19056
(3) SK-RBD-P2 (서열번호 37), SK-RBD-P2 + N, S-Trimer-P2 + N의 세포성 면역원성 분석 (Balb/c 마우스)
마우스의 세포성 면역원성 유도를 확인하기 위하여 면역이 완료된 마우스의 비장을 분리하여 ELISPot을 진행하였다. 분석한 결과 vehicle을 제외한 면역그룹 에서 면역한 항원 및 N-peptide, p2 peptide 자극에 특이적으로 반응하는 IFN-gamma 분비 T세포의 증가를 확인하였다. 결과를 도 4에 나타냈다. 이러한 결과를 통해 알 수 있듯이, 본 발명의 항원들은 세포성 면역 반응에 탁월한 효과를 나타내었다.
(4) SK-RBD (서열번호 38), S-Trimer-P2, N을 각각 면역한 형질전환 랫드의 총항체가 및 중화항체가 분석
표 4의 RBD 면역 그룹(G2, G3)의 혈청 분석 결과, Vehicle 그룹(G1) 대비 Day 14, 28, 43에서 RBD 특이적인 IgG 항체가 증가하였고, Day 57에는 감소하는 추세를 보였다. S-Trimer-P2 의 경우, Vehicle 그룹(G1) 대비 Day43까지 S-Trimer-P2 특이 항체가 증가하는 양상을 보였고, 이후 항체가는 감소하였다. N이 함께 면역된 그룹(G3, G5)의 혈청에서 N 특이적 항체 생성을 분석한 결과, Day 43까지 Vehicle그룹 대비 227~2106배 정도 항체가 증가하다가 이 후에는 saturation 양상을 보였다.
항원 Group No. Group No. IgG Titer
Day 0 Day 14 Day 28 Day 43 Day 57
SK RBD (서열번호 38) G1 Vehicle 25 25 29 25 25
G2 SK-RBD (서열번호 38) 25 52 6373 166915 77863
G3 SK-RBD (서열번호 38)+ N 25 83 4663 169083 74617
S-Trimer-P2 G1 Vehicle 25 25 33 38 37
G4 S-Trimer-P2 25 1094 39042 116311 99781
G5 S-Trimer-P2 + N 25 1887 53134 146681 110747
N G1 Vehicle 25 25 25 25 32
G2 SK-RBD (서열번호 38) 25 25 25 25 25
G3 SK-RBD (서열번호 38)+ N 25 245 12611 52646 41609
G4 S-Trimer-P2 25 25 36 179 242
G5 S-Trimer-P2 + N 25 85 1604 5683 5128
G2보다 G4 실험군에서, 외부 항원의 종류에 상관없이 총항체가 생성율이 높게 나타났고, 또한 N 단백질에 의한 항체 생성율도 G4가 더 높게 확인되었다.
본 발명은 안전한 사스-코로나바이러스-2 감염증 예방용 조성물, 바람직하게 백신 조성물을 제공할 수 있다. 본 발명은 재조합 항원 단백질은 사스-코로나바이러스-2 감염 예방, 사스-코로나바이러스-2 감염에 대한 항체 생성, 또는 사스-코로나바이러스-2 감염 세포의 사멸에 사용하기 위한 백신 조성물로 제공될 수 있다.

Claims (27)

  1. 서열번호 1의 아미노산 서열로 이루어진 폴리펩타이드, 또는 이의 기능적 단편에
    i) 폴돈 도메인, ii) P2 도메인, 또는 iii) 폴돈 도메인과 P2 도메인이 연결된 도메인으로 이루어진 군에서 선택된 적어도 1종 이상의 외인성 폴리펩타이드가 연결된, 사스-코로나바이러스-2 재조합 사스-코로나바이러스-2 항원 단백질.
  2. 제1항에 있어서, 상기 외인성 폴리펩타이드는 폴돈 도메인과 P2 도메인이 연결된 도메인인 것을 특징으로 하는 재조합 사스-코로나바이러스-2 항원 단백질.
  3. 제1항에 있어서, 상기 연결은 적어도 4개의 아미노산 잔기로 이루어진 링커에 의해 이루어지는, 재조합 사스-코로나바이러스-2 항원 단백질.
  4. 제1항에 있어서, 상기 재조합 사스-코로나바이러스-2 항원 단백질은 서열번호 1의 아미노산 서열로 이루어진 폴리펩타이드에 적어도 하나 이상의 아미노산이 치환된 변이를 갖는, 재조합 사스-코로나바이러스-2 항원 단백질.
  5. 제4항에 있어서, 상기 변이는 i) 2 프롤린 변이, ii) 퓨린 (furin) 절단 부위 변이, iii) 카텝신(Cathepsin) L 절단 부위 변이, 및 iv) S2 서브유닛 변이로 이루어진 군에서 선택된 어느 하나 이상의 변이를 포함하는 재조합 사스-코로나바이러스-2 항원 단백질.
  6. 제5항에 있어서, 상기 i) 2 프롤린 변이는 서열번호 1의 폴리펩타이드의 973번 위치의 아미노산 라이신(K)이 프롤린(P)으로 치환되고, 974번 위치의 아미노산 발린(V)이 프롤린(P)으로 치환된 변이를 갖는, 재조합 사스-코로나바이러스-2 항원 단백질.
  7. 제5항에 있어서, 상기 ii) 퓨린 (furin) 절단 부위 변이는 서열번호 1의 폴리펩타이드의 위치 669-672에 대응하는 아미노산 RRAR이 GSAG 또는 HHAH로 치환된 재조합 사스-코로나바이러스-2 항원 단백질.
  8. 제5항에 있어서, 상기 iii) 카텝신(Cathepsin) L 절단 부위 변이는 서열번호 1의 폴리펩타이드의 위치 681-682에 대응한은 아미노산 AY가 GS로 치환된 재조합 사스-코로나바이러스-2 항원 단백질.
  9. 제5항에 있어서, 상기 iv) S2 서브유닛 변이는 S 단백질의 S2 서브유닛을 형성하는 아미노산 중 적어도 4개의 아미노산이 치환된 것으로, F804P, A879P, A886P, 및 A929P 변이를 포함하는 재조합 사스-코로나바이러스-2 항원 단백질.
  10. 제5항에 있어서, 상기 변이는 i) 2 프롤린 변이, ii) 퓨린 (furin) 절단 부위 변이, 및 iii) 카텝신(Cathepsin) L 절단 부위 변이를 포함하거나, 또는
    i) 2 프롤린 변이, ii) 퓨린 (furin) 절단 부위 변이, 및 iv) S2 서브유닛 변이를 포함하는 재조합 사스-코로나바이러스-2 항원 단백질.
  11. 제1항 내지 제10항 중 어느 하나의 항에 있어서, 상기 재조합 사스-코로나바이러스-2 항원 단백질은 서열번호 4 내지 12로 이루어진 군에서 선택된 적어도 하나 이상의 서열을 갖는 펩타이드를 포함하는, 사스-코로나바이러스-2 백신에 사용을 위한 재조합 사스-코로나바이러스-2 항원 단백질.
  12. 제1항 내지 제10항 중 어느 하나의 항에 따른 재조합 사스-코로나바이러스-2 항원 단백질을 발현하기 위한 발현 컨스트럭트로,
    (a) 서열번호 1의 아미노산 서열로 이루어진 폴리펩타이드 또는 이의 기능적 단편에 i) 폴돈 도메인, ii) P2 도메인, 또는 iii) 폴돈 도메인과 P2 도메인이 연결된 도메인으로 이루어진 군에서 선택된 적어도 1종 이상의 외인성 폴리펩타이드가 연결된 재조합 사스-코로나바이러스-2 항원 단백질을 또는 이의 기능적 단편을 코딩하는 뉴클레오타이드 서열; 및
    (b) 상기 재조합 사스-코로나바이러스-2 항원 단백질을 세포로부터 분비시키기 위한 시그널 서열을 코딩하는 뉴클레오타이드 서열을 포함하는 재조합 사스-코로나바이러스-2 항원 단백질 발현용 컨스트럭트.
  13. 제12항에 있어서, 상기 발현 컨스트럭트는 서열번호 13 내지 32로 이루어진 군에서 선택된 어느 하나의 뉴클레오타이드 서열로 이루어진 재조합 사스-코로나바이러스-2 항원 단백질 발현용 컨스트럭트.
  14. 제12항의 컨스트럭트를 포함하는 재조합 벡터.
  15. 제14항에 있어서, 상기 재조합 벡터는
    ii) 서열번호 13 내지 22로 이루어진 군에서 선택된 어느 하나의 서열로 표현되는 폴리뉴클레오티드로 이루어진 발현 컨스트럭트를 포함하는 동물세포의 형질감염을 위한 재조합 벡터인, 재조합 벡터.
  16. 제15항의 재조합 벡터를 포함하는 숙주 세포이며, 상기 숙주 세포는 중국 햄스터 난소 (CHO) 세포인 숙주 세포.
  17. 제14항에 있어서, 상기 재조합 벡터는
    i) 서열번호 23 내지 32로 이루어진 군에서 선택된 어느 하나의 서열로 표현되는 폴리뉴클레오티드로 이루어진 발현 컨스트럭트를 포함하는 배큘로바이러스 (baculovirus) 재조합 벡터인 재조합 벡터.
  18. 제17항에 따른 배큘로바이러스 (baculovirus) 재조합 벡터를 대장균에 형질전환하여 얻어진 재조합 백미드 (Bacmid).
  19. 제18항에 따른 재조합 백미드를 게놈으로 포함하는 재조합 배큘로바이러스.
  20. 제18항에 따른 재조합 백미드를 포함하거나, 제19항에 따른 재조합 배큘로바이러스로 형질감염된 숙주세포.
  21. 제20항에 있어서, 상기 숙주세포는 Sf21 또는 Sf9을 포함하는 곤충세포인 것을 특징으로 하는, 숙주세포.
  22. 제14항에 따른 재조합 벡터를 포함하는 숙주 세포를 배양하고 목적하는 생성물을 단리함을 포함하는, 재조합 항원 단백질의 제조 방법.
  23. 제22항의 방법으로 제조된, 서열번호 4 내지 12로 이루어진 군에서 선택된 어느 하나의 서열로 이루어진 재조합 항원 단백질.
  24. 제1항 내지 제10항 중 어느 하나의 항에 따른 재조합 사스-코로나바이러스-2 항원 단백질 또는 이의 기능적 단편을 포함하는 재조합 항원 단백질, 및
    약학적으로 허용가능한 담체를 포함하는, 사스-코로나바이러스-2 감염증 예방 또는 치료용 약학 조성물.
  25. 제24항에 있어서, 상기 조성물은
    서열번호 33의 사스-코로나바이러스-2의 nucleocapsid (N) protein, 면역학적 애쥬반트 또는 이들의 혼합물을 더 포함하는, 사스-코로나바이러스-2 감염증 예방 또는 치료용 약학 조성물.
  26. 제1항 내지 제10항 중 어느 하나의 항에 따른 재조합 사스-코로나바이러스-2 항원 단백질을 포함하는 재조합 항원 단백질, 및
    약학적으로 허용가능한 담체를 포함하는 조성물을 유효량 개체에 투여하여 개체의 체내에 사스-코로나바이러스-2에 대한 중화항체 생성 또는 IFN-γ 분비 T세포를 증가시키기 위한 약학 조성물.
  27. 제26항에 있어서, 상기 약학 조성물은 사스-코로나바이러스-2의 감염 예방을 위한 백신 조성물인 약학 조성물.
PCT/KR2021/012981 2020-09-23 2021-09-23 재조합 단백질을 포함하는 사스-코로나바이러스-2 감염증 예방 또는 치료용 백신 조성물 WO2022065889A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0123308 2020-09-23
KR20200123308 2020-09-23

Publications (1)

Publication Number Publication Date
WO2022065889A1 true WO2022065889A1 (ko) 2022-03-31

Family

ID=80845765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/012981 WO2022065889A1 (ko) 2020-09-23 2021-09-23 재조합 단백질을 포함하는 사스-코로나바이러스-2 감염증 예방 또는 치료용 백신 조성물

Country Status (2)

Country Link
KR (1) KR20220040423A (ko)
WO (1) WO2022065889A1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018081318A1 (en) * 2016-10-25 2018-05-03 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Prefusion coronavirus spike proteins and their use

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018081318A1 (en) * 2016-10-25 2018-05-03 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Prefusion coronavirus spike proteins and their use

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BLACK SAMANTHA: "SARS-CoV-2 vaccine utilizing microneedle arrays appears in the literature", SCIENCEBOARD, 3 April 2020 (2020-04-03), pages 1 - 4, XP055915409, Retrieved from the Internet <URL:https://www.scienceboard.net/index.aspx?sec=ser&sub=def&pag=dis&ItemID=619> [retrieved on 20220426] *
DATABASE PROTEIN 18 July 2020 (2020-07-18), ANONYMOUS: "nucleocapsid phosphoprotein [Severe acute respiratory syndrome coronavirus 2]", XP055915453, retrieved from GENBANK Database accession no. YP_009724397 *
DATABASE PROTEIN 21 May 2020 (2020-05-21), ANONYMOUS: "surface glycoprotein [Severe acute respiratory syndrome coronavirus 2]", XP055915412, retrieved from GENBANK Database accession no. QJE39038 *
WANG NING, SHANG JIAN, JIANG SHIBO, DU LANYING: "Subunit Vaccines Against Emerging Pathogenic Human Coronaviruses", FRONTIERS IN MICROBIOLOGY, vol. 11, 28 February 2020 (2020-02-28), pages 1 - 19, XP055843968, DOI: 10.3389/fmicb.2020.00298 *
WEN XIAOBO; WEN KE; CAO DIANJUN; LI GUOHUA; JONES RONALD W.; LI JIANPING; SZU SHOUSUN; HOSHINO YASUTAKA; YUAN LIJUAN: "Inclusion of a universal tetanus toxoid CD4+T cell epitope P2 significantly enhanced the immunogenicity of recombinant rotavirus ΔVP8* subunit parenteral vacc", VACCINE, vol. 32, no. 35, 1 January 1900 (1900-01-01), AMSTERDAM, NL , pages 4420 - 4427, XP029035483, ISSN: 0264-410X, DOI: 10.1016/j.vaccine.2014.06.060 *
YANG JINGYUN; WANG WEI; CHEN ZIMIN; LU SHUAIYAO; YANG FANLI; BI ZHENFEI; BAO LINLIN; MO FEI; LI XUE; HUANG YONG; HONG WEIQI; YANG : "A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity", NATURE, vol. 586, no. 7830, 1 January 1900 (1900-01-01), London, pages 572 - 577, XP037341143, ISSN: 0028-0836, DOI: 10.1038/s41586-020-2599-8 *

Also Published As

Publication number Publication date
KR20220040423A (ko) 2022-03-30

Similar Documents

Publication Publication Date Title
WO2021221486A1 (en) Vaccine composition for preventing or treating infection of sars-cov-2
WO2021172971A1 (ko) 수두 대상포진 바이러스 융합 단백질 및 이를 포함하는 면역원성 조성물
WO2019225962A1 (ko) 바리셀라 조스터 바이러스의 항원 변이체 및 이의 용도
WO2017095191A1 (ko) 면역글로불린 fc가 융합된 인터루킨-7 융합 단백질을 포함하는 사람 파필로마바이러스 유래 질환의 예방 또는 치료용 약학적 조성물
WO2018124615A1 (ko) 대상포진 백신 조성물
WO2019151760A1 (ko) 신규 다가 hpv 백신 조성물
WO2021096275A1 (ko) 변형된 인터루킨-7 및 tgf 베타 수용체 ii를 포함하는 융합단백질 및 이의 용도
WO2020091529A1 (ko) 재조합 호흡기 세포융합 바이러스 f 단백질 및 이를 포함하는 백신 조성물
WO2015165480A1 (en) Human cytomegalovirus vaccine compositions and method of producing the same
WO2012036391A2 (ko) 돼지 써코바이러스2(pcv2) 유전자의 표면발현용 벡터 및 이로 형질전환된 살모넬라 백신 균주
WO2021201612A1 (ko) 신규 코로나바이러스 예방 및 치료용 백신 조성물
WO2019151759A1 (ko) 신규 백신 면역보조제
WO2022065889A1 (ko) 재조합 단백질을 포함하는 사스-코로나바이러스-2 감염증 예방 또는 치료용 백신 조성물
WO2022092828A1 (ko) 사스-코로나바이러스-2 감염증 예방 또는 치료용 백신 조성물
WO2023017945A1 (ko) 코로나 백신 제형
WO2022203358A1 (ko) 약독화된 레오바이러스 기반의 백신 조성물 및 이의 용도
WO2022131832A1 (ko) 신규 코로나바이러스 예방 및 치료용 백신 조성물
WO2021215857A1 (ko) 삼량체를 형성하는 코로나-19 바이러스 (covid-19, coronavirus disease 2019)의 재조합 스파이크 단백질 및 식물에서의 상기 재조합 스파이크 단백질의 대량 생산 방법과 이를 기반으로하는 백신조성물 제조 방법
WO2022045827A1 (ko) 신규한 코로나바이러스 재조합 스파이크 단백질, 이를 코딩하는 폴리뉴클레오티드, 상기 폴리뉴클레오티드를 포함하는 벡터 및 상기 벡터를 포함하는 코로나바이러스감염증 예방 또는 치료용 백신
WO2022092921A1 (ko) 사스-코로나바이러스-2 항원을 포함하는 바이럴 벡터 및 이의 이용
WO2022015124A1 (ko) 중증급성호흡기증후군 코로나바이러스 2 감염 예방용 백신 조성물
Zhu et al. A chimeric protein comprised of bovine herpesvirus type 1 glycoprotein D and bovine interleukin-6 is secreted by yeast and possesses biological activities of both molecules
WO2022216028A1 (ko) 제2형 중증급성호흡기증후군 코로나바이러스 감염 질환 예방용 중화능 개량 백신 조성물
WO2022169339A1 (ko) 신규 핵산 분자
WO2023003332A1 (ko) 식물 기반 covid-19 변이 재조합 스파이크 단백질 발현 벡터 및 상기 발현 벡터를 이용한 재조합 단백질

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21872917

Country of ref document: EP

Kind code of ref document: A1