WO2009088092A1 - ポリフェニレンスルフィド樹脂を含む組成物およびその製造方法 - Google Patents

ポリフェニレンスルフィド樹脂を含む組成物およびその製造方法 Download PDF

Info

Publication number
WO2009088092A1
WO2009088092A1 PCT/JP2009/050405 JP2009050405W WO2009088092A1 WO 2009088092 A1 WO2009088092 A1 WO 2009088092A1 JP 2009050405 W JP2009050405 W JP 2009050405W WO 2009088092 A1 WO2009088092 A1 WO 2009088092A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
component
composition according
kneading
melt
Prior art date
Application number
PCT/JP2009/050405
Other languages
English (en)
French (fr)
Inventor
Hideko Oyama
Motonobu Furuta
Original Assignee
Rikkyo Gakuin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008001493A external-priority patent/JP2011057719A/ja
Priority claimed from JP2008232527A external-priority patent/JP2011057720A/ja
Application filed by Rikkyo Gakuin filed Critical Rikkyo Gakuin
Publication of WO2009088092A1 publication Critical patent/WO2009088092A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0869Acids or derivatives thereof
    • C08L23/0884Epoxide containing esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials

Definitions

  • composition comprising polysulfide sulfide resin and method for producing the same
  • the present invention relates to a composition containing a polysulfide sulfide resin and a method for producing the same.
  • Polyphenylene sulfide is a resin that excels in heat resistance, rigidity, flame retardancy, and chemical resistance, and is widely used in electrical / electronic parts and automotive parts. Polyphenylene sulfide, however, has these properties, but it has sufficient moldability and impact resistance. For this reason, there are limits to the application of polyphenylene sulfide, and there has been a strong demand from the market to improve these drawbacks.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 58_154757
  • Patent Document 2 Japanese Patent Application Laid-Open No. 1-198664
  • Patent Document 3 describes a composition in which ⁇ -olefin and a glycidyl ester copolymer of ⁇ -unsaturated acid are blended with a polyphenylene sulfide resin.
  • Patent Document 4 describes that a composition in which a polyurethane sulfide is a continuous phase and a polyolefin is a dispersed phase is excellent in toughness.
  • JP-A-2005-248170 describes a composition comprising a polyethylene sulfide, an epoxy group-containing ethylene copolymer, a polyolefin resin, and an inorganic filler in terms of rigidity and impact resistance. It is described that it is excellent.
  • Each of the techniques described in these patent documents is a composition having a polyphenylene sulfide as a continuous phase and a polyolefin as a dispersed phase.
  • Epoxy group described in JP-A-2005-248170 Patent Document 5
  • the ethylene copolymer contained is said to act as a compatibilizer between polyphenylene sulfide and polyolefin.
  • polyphenylene sulfide resin compositions are not sufficient in all of impact resistance, molding processability and flame retardancy.
  • a polyphenylene sulfide resin composition having impact resistance, ductility and flame retardancy has not been obtained so far.
  • polyphenylene sulfide has a problem in that the ductility and the like of the electrical conductivity-imparting material are greatly reduced. There was also a problem that sufficient electrical conductivity could not be obtained when a small amount of an electrically conductive material was blended to maintain the ductility of polyphenylene sulfide. That is, a polyphenylene sulfide resin composition having impact resistance, ductility and flame retardancy, and also excellent electrical conductivity has not been obtained so far.
  • polyphenylene ether has poor molding processability and cannot be molded by itself, but is known to have a low dielectric constant and excellent heat resistance.
  • attempts have been made to improve the characteristics of the resin by combining polyphenylene sulfide and polyphenylene ether.
  • Patent Document 6 Japanese Patent Application Laid-Open No. SHO 50-1 5 6 5 61 (Patent Document 6) describes a resin composition composed of polyphenylene sulfide and polyphenylene ether.
  • Patent Document 7 describes polyphenylene ether, crystalline thermoplastic resins such as polyphenylene sulfide, and phases such as modified rubber-like substances. A resin composition comprising a solubilizer is described.
  • Patent Document 8 describes a heat-resistant and solvent-resistant resin composition comprising an acid-modified polyphenylene ether, a modified polyphenylene sulfide, a polyphenylene sulfide, and a binder. Things are listed.
  • Patent Document 9 Japanese Patent Application Laid-Open Nos. 0-3-20 3 56
  • Patent Document 9 Japanese Patent Application Laid-Open No.
  • Patent Documents 10-995 926 include polyphenylene sulfide, polyphenylene ether, and A resin composition comprising an unsaturated monomer or polymer having an epoxy group or an oxazolinyl group is described.
  • Japanese Patent Application Laid-Open No. 2000-0 3 1 6 2 4 5 Patent Document 1 1
  • Patent Document 1 1 describes polyphenylene sulfide, cross-linked polyphenylene sulfide, polyphenylene ether, and epoxy group or oxazolinyl.
  • a resin composition containing a styrenic copolymer or an ethylene copolymer having a group is described.
  • Patent Document 1 2 describes a resin composition comprising polyphenylene sulfide, polyphenylene ether, a copolymer of an unsaturated monomer having an epoxy group or an oxazolinyl group and styrene, and an impact resistance agent.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 5 8-1 5 4 7 5 7
  • Patent Document 2 Japanese Patent Laid-Open No. 1 1 9 8 6 6 4
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2-1 6 1 60
  • Patent Document 4 Japanese Patent Laid-Open No. 2 0 0 1 ⁇ 3 0 2 9 1 7
  • Patent Document 5 Japanese Patent Laid-Open No. 2 0 0 5 2 4 8 1 70
  • Patent Document 6 Japanese Patent Laid-Open No. 5 0-1 5 6 5 6 1
  • Patent Document 7 Japanese Unexamined Patent Publication No. 6 3-1 8 3 9 5 4
  • Patent Document 8 Japanese Patent Laid-Open No. 0 2-7 5 6 5 6
  • Patent Document 9 Japanese Patent Laid-Open No. 0 3-2 0 3 5 6
  • Patent Document 1 Japanese Laid-Open Patent Publication No. 10 ⁇ 9 5 9 2 6
  • Patent Document 1 JP 2 0 0 6 ⁇ 3 1 6 2 4 5
  • Patent Document 1 Japanese Patent Laid-Open No. 2 0 0 7 ⁇ 2 3 0 7 8
  • An object of the present invention is to provide a resin composition having impact resistance, ductility and flame retardancy. Another object of the present invention is to provide a resin composition having electrical conductivity such as low dielectric constant in addition to impact resistance, ductility and flame retardancy.
  • polyphenylene sulfide contains ethylene unit Z ethylenically unsaturated carboxylic acid daricidyl ester unit or ethylenically unsaturated hydrocarbon group daricidyl.
  • Ether unit z vinegar A resin composition having impact resistance, ductility, flame retardancy, etc. can be obtained by blending ethylene-based terpolymers composed of vinyl acid units or methyl acrylate units in a specific ratio. The present invention has been completed.
  • the present inventors have found that the resin composition has excellent electrical conductivity by blending an electrical conductivity-imparting substance with the resin composition, and completed the present invention. Furthermore, the present inventors have added a resin composition containing polyphenylene sulfide and polyphenylene ether to ethylene unit Z ethylenically unsaturated carboxylic acid daricidyl ester unit or ethylenically unsaturated hydrocarbon group daricidyl ether unit vinyl acetate unit. By blending an ethylene-based terpolymer consisting of a unit or a methyl acrylate unit, an inexpensive resin composition can be obtained while having excellent heat resistance, impact resistance, ductility, etc., and low dielectric constant. As a result, the present invention has been completed.
  • Component (A1) 65 to 99% by mass of polyphenylene sulfide containing 70 mol% or more of the repeating unit represented by the following chemical formula (1), and
  • Component (B) An ethylene terpolymer comprising an ethylene unit, an ethylenically unsaturated carboxylic acid glycidyl ester unit or an ethylenically unsaturated hydrocarbon group glycidyl ether unit, and a vinyl acetate unit or a methyl acrylate unit 1 to A resin composition containing 35% by mass.
  • the component (B) has a melt index of 2 to 50 gZl 0 minutes measured with a load of 190 and 21 mm, and is used for differential scanning calorimetry.
  • the component (A1) has a melting point by differential scanning calorimetry of 265 to 295, and a specific gravity in the range of 1.2 to 1.4. [1] to [3] Resin composition.
  • the component (A1) has a functional group capable of reacting with the ethylenically unsaturated carboxylic acid glycidyl ester unit or the ethylenically unsaturated hydrocarbon group glycidyl ether unit in the component (ii).
  • the resin composition according to any one of the above.
  • the melt viscosity at 300, 121 sec 1 of the composition obtained by melt-kneading is that of the component (A 1) before melt-kneading.
  • the step of melt-kneading the components (A1) and (B) uses a kneader, and the maximum shear rate of the kneader defined by the following formula (i) is 800 sec- 1 or more.
  • the method for producing a resin composition according to [9] or [11], wherein the resin composition is kneaded so that S 7CDmN / h (i)
  • Component ( A1) Contains 70 mol% or more of the repeating unit represented by the following chemical formula (1) 75 to 99% by weight of polyphenylene sulfide
  • Component (D) 1 to 25% by mass of a graft copolymer composed of a segment composed of an ethylenically unsaturated carboxylic acid glycidyl ester unit or an ethylenically unsaturated hydrocarbon group daricidyl ether unit, and a vinyl copolymer segment
  • a process for producing a resin composition comprising the steps of melt-kneading the components (A1) and (D),
  • the melt viscosity at 300 ° C and 121 sec- 1 of the composition obtained by melt-kneading is 300 of the component (A1) before melt-kneading, which is 1.5 times the melt viscosity at 121 sec- 1 .
  • a method for producing a resin composition which is a step of kneading to achieve the above.
  • a tubular molded body or fiber comprising the resin composition or the electrically conductive resin composition according to any one of [1:] to [8].
  • a laminate comprising the substrate comprising the resin composition or the electrically conductive resin composition according to any one of [1] to [8], and a layer comprising a metal layer or an inorganic material provided on the substrate.
  • a laminate comprising a substrate comprising the resin composition or electrically conductive resin composition according to any one of [1] to [8], and a metal plating layer provided on the substrate.
  • the method for producing a molded body, wherein the resin composition is a resin composition produced by the method according to [13].
  • a laminated body comprising a step of injection molding, extrusion molding, or sheet film molding of a resin composition, and a step of laminating a metal layer or an inorganic layer on the surface of the molded body obtained in the above step.
  • a manufacturing method comprising:
  • the method for producing a laminate, wherein the resin composition is a resin composition produced by the method according to [13].
  • Component (A2) Polyphenylene ether
  • Component (B) includes an ethylene terpolymer comprising an ethylene unit, an ethylenically unsaturated carboxylic acid glycidyl ester unit or an ethylenically unsaturated hydrocarbon group glycidyl ether unit, and a vinyl acetate unit or a methyl acrylate unit. Resin composition.
  • the component (B) is 1 to 45% by mass with respect to the total amount of the components (Al), (A 2) and (B), and the mass of the components (A1) and (A2)
  • R 1, R 2, R 3 and R 4 are each independently hydrogen, halogen, primary or secondary alkyl group having 1 to 7 carbon atoms, phenyl group, haloalkyl group, aminoalkyl group. And a group selected from the group consisting of a hydrocarbonoxy group and a halohydrocarbonoxy group in which a halogen atom and an oxygen atom are bonded via at least two carbon atoms.
  • the component (A2) is poly (2,6-dimethyl-1,4_phenylene ether), and the intrinsic viscosity at 30 in the black mouth form is 0.2 to 0.8 dl /
  • the component (B) has a melt index of 2 to 50 gZl 0 minutes measured under a load of 190 and 21 mm, and a melting point of 45 to 100 in differential scanning calorimetry.
  • the resin composition according to any one of [27].
  • the component (A1) has a melting point by differential scanning calorimetry of 265 to 295, and a specific gravity in the range of 1.2 to 1.4, [22] to [28] The resin composition as described.
  • the component (A1) has a functional group capable of reacting with the ethylenically unsaturated carboxylic acid glycidyl ester unit or the ethylenically unsaturated hydrocarbon group glycidyl ether unit in the component (B).
  • [22] -The resin composition in any one of [29].
  • [31] The resin composition according to any one of [22] to [: 30], wherein the evaluation in the UL 94 flame retardancy test is V-0 or V-1.
  • the electrically conductive resin composition which is 1 to 30 parts by mass with respect to 100 parts by mass in total.
  • a tubular molded article comprising the resin composition or the electrically conductive resin composition according to any one of [22] to [33].
  • a laminate comprising a substrate comprising the resin composition or the electrically conductive resin composition according to any one of [22] to [33], and a layer comprising a metal layer or an inorganic material provided on the substrate. body.
  • a laminate comprising a substrate comprising the resin composition or the electrically conductive resin composition according to any one of [22] to [33], and a metal plating layer provided on the substrate.
  • a resin composition having impact resistance, ductility and flame retardancy can be provided. Further, according to the present invention, a resin composition having not only impact resistance, ductility and flame retardancy but also electrical conductivity such as a low dielectric constant can be provided.
  • Figure 1 shows a transmission electron micrograph of the cross section of the press sheet produced in Example 2.
  • Figure 2 shows a transmission electron micrograph of the cross section of the press sheet produced in Comparative Example 3.
  • the resin composition of the present invention is also simply referred to as a resin composition.
  • a resin composition containing polyphenylene sulfide as a main component is also referred to as a polyphenylene sulfide resin composition.
  • a resin composition containing polyphenylene sulfide and an ethylene-based terpolymer and not including a polyphenylene ether includes a “PPS resin composition”, a polyphenylene sulfide, and an ethylene-based terpolymer.
  • a resin composition containing polyphenylene ether is also referred to as a “PPSZPPE resin composition”.
  • the PPS resin composition of the present invention comprises 65 to 99% by mass of polyphenylene sulfide containing 70 mol% or more of a repeating unit represented by the following chemical formula (1) as the component (A 1), and the component.
  • (B) is an ethylenic terpolymer comprising an ethylene unit, an ethylenically unsaturated carboxylic acid glycidyl ester unit or an ethylenically unsaturated hydrocarbon group glycidyl ether unit, and a vinyl acetate unit or a methyl acrylate unit. 1 to 3 5 mass% included.
  • Polyphenylene sulfide contains 70 mol% or more, preferably 80 mol% or more of the unit represented by the chemical formula (1).
  • polyphenylene sulfide may contain less than 30 mol% of units represented by the following chemical formula.
  • CH 3 polyphenylene sulfide can be synthesized by a conventional method, for example, a method described in Japanese Patent Publication No. Sho 52-12-240 or Japanese Patent Publication No. Sho 61-73-332. Commercially available polyphenylene sulfide may also be used.
  • the polyphenylene sulfide obtained as described above may be subjected to various treatments.
  • this treatment include heat treatment performed under an inert gas atmosphere such as nitrogen or under reduced pressure or washing with hot water, and with functional group-containing compounds such as acid anhydrides, amines, isocyanates, and functional group-containing disulfide compounds.
  • An activation process is included.
  • Polyphenylene sulfide has a functional group capable of reacting with an ethylenically unsaturated carboxylic acid daricidyl ester unit or an ethylenically unsaturated hydrocarbon group glycidyl ether unit of an ethylene terpolymer in component (B) described later. It is preferable to have. Polyphenylene sulfide having such a functional group is considered to form a graphopolymer with the ethylene-based terpolymer of component (B). This is believed to improve the compatibility of the polyphenylene sulfide and the ethylene terpolymer and improve the properties of the resin composition.
  • Such functional groups include sulfanyl groups (mercapto groups), epoxy groups, carboxylic acids Examples thereof include a syl group, among which a sulfanyl group is preferable.
  • the heat distortion temperature (1.82 MPa load) based on ASTM D 648 of polyphenylene sulfide is preferably 90-130.
  • the specific gravity of polyphenylene sulfide is preferably 1.2 to 1.4.
  • the melting point of polyphenylene sulfide by differential scanning calorimetry is preferably 265 to 295, more preferably 270 to 290.
  • Such polyphenylene sulfide provides a resin composition particularly excellent in heat resistance.
  • the molecular weight of polyphenylene sulfide is not particularly limited, but is preferably 10,000 or more, more preferably 15,000 or more, and more preferably 1,800 or more in terms of weight average molecular weight.
  • the resin composition of the present invention contains component (B) an ethylene-based terpolymer.
  • Ethylene-based terpolymers consist of (a) ethylene units, (b) ethylenically unsaturated carboxylic acid glycidyl ester units or ethylenically unsaturated hydrocarbon group glycidyl ether units, and (c) vinyl acetate units or acrylics. Consists of methyl acid units.
  • the ethylene unit refers to a portion derived from ethylene in the copolymer, and specifically refers to a unit represented by — (CH 2 —CH 2 ) —. Ethylene-based unsaturated force rupidic acid glycidyl ester units and the like are defined similarly.
  • the compounds that give (b) an ethylenically unsaturated carboxylic acid daricidyl ester unit or an ethylenically unsaturated hydrocarbon group daricidyl ether unit are represented by the following general formulas (3) and (4), respectively. It is represented by
  • R is a hydrocarbon group having 2 to 13 carbon atoms having one ethylene bond.
  • R preferably has 2 to 10 carbon atoms.
  • Examples of the ethylenically unsaturated carboxylic acid glycidyl ester unit represented by the general formula (3) include glycidyl acrylate, glycidyl methacrylate, diglycidyl itaconate, and the like, daricidyl ⁇ , ⁇ -unsaturated carboxylic acid.
  • R is a hydrocarbon group having 2 to 13 carbon atoms having one ethylene bond.
  • X is one CH 2 —O— or a group represented by the following chemical formula (4-1).
  • R preferably has 2 to 10 carbon atoms.
  • Ethylenically unsaturated hydrocarbon group glycidyl ether unit represented by the general formula (4) includes, for example, allyl glycidyl ether, 2-methylallyl glycidyl ether, styrene-p-daricidyl ether. And a-unsaturated hydrocarbon group daricidyl ether.
  • the melt index (also referred to as “MI”, synonymous with MFR) measured at 21 kg (2.16 kg load) according to JIS K7210, 190 of ethylene terpolymer is preferably 2-50 10 minutes, more preferably 3 to 20 g / 10 minutes.
  • ethylene-based terpolymerization The melting point of the body by differential scanning calorimetry is preferably 45-100, and more preferably 50-97.
  • the surface hardness (Shore D) based on AS TM D 2240 of the ethylene-based terpolymer is preferably 10-40.
  • Ethylene terpolymers include, for example, (a) ethylene, (b) ethylenically unsaturated carboxylic acid daricidyl ester or ethylenically unsaturated hydrocarbon group daricidyl ether, and (c) vinyl acetate or It is possible to produce methyl acrylate by random copolymerization in the presence of a radical generator at 500 to 4,000 atm and 100 to 30 Ot in the presence or absence of a suitable solvent or chain transfer agent. preferable.
  • the ethylene-based terpolymer can be finely dispersed in the continuous phase by reacting an epoxy group with a functional group contained in polyphenylene sulfide or the like. For this reason, it is preferable that the ethylene-based terpolymer has a certain amount of epoxy groups. However, if the amount of the epoxy groups is too large, the ethylene-based terpolymers are polymerized due to polymerization of the epoxy groups. The original copolymer is considered to be difficult to finely disperse. Therefore, there is a suitable range for the amount of epoxy groups in the ethylene-based terpolymer.
  • the ethylene-based terpolymer of the present invention preferably has an epoxy equivalent of 2000 to 5000 gZe q.
  • the epoxy equivalent is the molecular weight per epoxy group, and the smaller the epoxy equivalent, the greater the amount of epoxy groups contained in the molecule.
  • the epoxy equivalent is calculated as follows.
  • polyphenylene sulfide when polyphenylene sulfide has a sulfanyl group, the group can react with an ester group as well as an epoxy group.
  • the ethylene terpolymer of component (B) is It has an epoxy group derived from the unit (b) and an ester group derived from the unit (c). Therefore, when the polysulfide sulfide contains a sulfanyl group, it can also react with an epoxy group and an ester group, so that the component (B) is more easily dispersed in the component (A1).
  • Ethylene-based terpolymers may be graft-modified by binding vinyl-based copolymer segments as branches to the trunks of ethylene-based terpolymer segments.
  • Such a graft copolymer is also referred to as a “ternary base graft copolymer”.
  • a segment refers to a polymer chain that constitutes a trunk and a branch in a Draft copolymer.
  • vinyl monomers that form the Biel polymer segment include (meth) acrylic acid alkyl esters having an alkyl chain length of 1 to 20 carbon atoms, vinyl monomers having an acid group, and a hydroxyl group. Vinyl monomers having an epoxy group, vinyl monomers having a cyano group, and styrene. The following can be illustrated as specific examples of these.
  • (meth) methyl acrylate, acrylonitrile, styrene, and a combination thereof are preferable, and styrene is more preferable.
  • the ratio of the ethylene-based terpolymer segment and the vinyl-based polymer segment is preferably 50 to 99 mass% to 50 to 1 mass%, more preferably 60 to 80 mass% to 40 to 20 mass%.
  • the M I of the ternary base graft copolymer is preferably 0.01 to 50 gZl O, more preferably 0.05 to 30 gZl 0 min.
  • MI is measured under the conditions of resin temperature 230 and measurement load 21N (2.16 kg ⁇ f) in accordance with the method specified in JIS K7210. If this MI is less than 0. l gZl O or more than 50 gZl 0 min, the affinity between the ternary graft copolymer and polyphenylene sulfide will decrease, or the resulting molded product The appearance of the may deteriorate is there.
  • a known method may be used to bond the ethylene-based terpolymer segment and the vinyl-based polymer segment. For example, as described in JP-A-2007-63506, a vinyl monomer is polymerized by adding a vinyl monomer to a solution of an ethylene terpolymer segment in the presence of a peroxide. Obtainable.
  • the mass ratio of the component (A1) to the component (B) in the PPS resin composition of the present invention is 65:35 to 99: 1, preferably 75:25 to 99: 1, and 80:20 to 95: 5 is more preferred.
  • the mass ratio of component (A1) to component (B) is 75:25 to 99: 1, the flame retardancy of the resin composition is good, and the evaluation in UL 94 flame retardancy test is V-0 or Can be a resin composition of V-1.
  • the PPS / PPE resin composition of the present invention comprises a component (A1) polyphenylene sulfide, a component (A2) polyphenylene ether, and a component (B) ethylene-based terpolymer.
  • polyphenylene ether refers to a polymer whose main component is a unit having a phenyl ether structure.
  • the polyphenylene ether preferably contains 90 mol% or more, more preferably 95 mol% or more of the unit represented by the following general formula (2).
  • R 1, R 2, R 3 and R 4 are each independently hydrogen, halogen, primary or secondary alkyl group having 1 to 7 carbon atoms, phenyl group, eight-necked alkyl group, aminoalkyl Selected from the group consisting of: a group, a hydrocarbonoxy group, and a halohydrocarbonoxy group in which a halogen atom and an oxygen atom are bonded via at least two carbon atoms.
  • the number of carbon atoms of the haloalkyl group, aminoalkyl group, and hydrocarbon-rich xyl group is preferably 1 to 7.
  • the carbon number of the halohydrocarbonoxy group is preferably 2-7.
  • R 1 and R 2 are preferably each independently a primary alkyl group having 1 to 3 carbon atoms, and R 3 and R 4 are preferably hydrogen.
  • units other than the unit represented by the general formula (2) include vinyl aromatic compounds.
  • polyphenylene ether obtained by graft polymerization of a vinyl aromatic compound can be used for the polymer composed of the unit represented by the general formula (2).
  • polyphenylene ethers include poly (2, 6-dimethyl-1, 4-phenylene ether), poly (2, 6-jetyl-1, 4, _phenylene ether), poly (2, 6 — Dipropyl-1,4-phenolene ether), poly (2_methyl-6-ethyl-1,4-1-phenyl), poly (2_methyl-6-propyl-1,4-phenylene) 1 ter), poly (2-ethyl-6-propyl-1,4-phenylene ether), 2,6-dimethylphenol 2, 3,6 _trimethylphenol copolymer, 2,6-dimethylphenol 2, 3,6-triethylphenol copolymer, 2,6-jetylphenol Z2, 3,6-trimethylphenol copolymer, and 2,6-dipropylphenol 2,3,6 _trimethylphenol copolymer Is included.
  • polyphenylene ether a copolymer of styrene and poly (2,6-dimethyl-1,1,4-phenylene), 2,6-dimethylphenol // 2,3,6_trimethyl
  • a copolymer obtained by graft polymerization of styrene to a phenol copolymer may be used.
  • poly (2,6-dimethyl_1,4 monophenylene ether) is preferable as the polyphenylene ether.
  • the polyphenylene ether is such that the intrinsic viscosity of 3 Ot: is about 0.2 to 0.8 dlZg, more preferably about 0.3 to 0.6 d 1 in the black mouth form. Has a molecular weight. .
  • Polyphenylene ethers are maleic anhydride, glycidyl methacrylate, styrene, 2-hydroxyethyl methacrylate, N— [4-2,3-epoxypropoxy) 1,2,5-dimethylphenylmethyl] It may be modified with acrylamide, trimethoxyvinylsilane or the like.
  • Polyphenylene ether is usually produced by oxidative coupling of structural units (monomers). Numerous catalysts are known for the oxidative coupling polymerization of polyphenylene ether. There is no particular limitation on the selection of the catalyst, and any known catalyst can be used. That is, for example, polyphenylene ether polymerized using at least one kind of heavy metal compounds such as copper, manganese and cobalt may be used.
  • Polyphenylene ether usually has a hydroxyl group at the molecular chain end. Since this hydroxyl group can react with the epoxy group or ester group of component (B) terpolymer, it is thought to improve compatibility with component (B). As a result, in the resin composition containing the components (Al), (A2) and (B), it is considered that fine dispersion of the component (B) is achieved.
  • the content of component (B) in the PPSZPPE resin composition is preferably 1 to 45% by mass, more preferably 100% by mass when the total amount of component (Al), component (A 2) and component (B) is 100% by mass. Is 1 to 38% by mass, still more preferably 3 to 37% by mass, and particularly preferably 5 to 35% by mass.
  • the mass ratio of the component (A 1) to the component (A 2) is preferably 10:90 to 90:10, more preferably 20:80 to 80:20, and more preferably 25:75 to 75:25, Even more preferably, it is 50:50 to 75:25.
  • each component of the PPSZPPE resin composition By setting each component of the PPSZPPE resin composition within these ranges, it is possible to satisfy heat resistance, ductility, impact resistance such as Charpy impact strength, and low dielectric constant.
  • the content of polyphenylene sulfide in the PP SZPPE resin composition is high, the flame retardancy of the resin composition is improved, and the resin assembly whose evaluation in the UL 94 flame retardancy test is V_ 0 or V-1 A composition is obtained.
  • the resin composition of the present invention can be made into an electrically conductive resin composition by further adding a component (C) an electrical conductivity imparting substance.
  • Examples of the electrical conductivity-imparting substance include carbon black, carbon fiber, graphite, metal fiber, carbon nanotube, metal oxide, and antistatic plasticizer. Of these, carbon black is preferred. Carbon black includes furnace black, medium thermal carbon black, acetylene black, ketjen bra For example. Of these, acetylene black and ketjen black are preferred.
  • a resin composition containing carbon black or the like may have reduced impact resistance if it is ductile. This phenomenon is usually because the total area of the interface with the continuous phase increases because the force pump rack is a fine particle of 1 zm or less, but the interface adhesion is not good and the interface is easy to peel off. Understood.
  • the resin composition of the present invention has good ductility and impact resistance even when force bon black or the like is combined. The reason for this is not clear, but it is highly related to having a phase structure in which microdomains of 1 ⁇ m or less mainly composed of an ethylene-based terpolymer are dispersed in a continuous phase such as polyphenylene sulfide. It is guessed.
  • the effect of toughening due to the dispersed phase is that the neighboring dispersed phases interact with each other due to the flexibility of the dispersed phase, causing plastic deformation in the continuous phase that would otherwise be difficult to plastically deform. It is thought to absorb the guise.
  • the resin composition of the present invention is considered to improve ductility and the like by the same action.
  • plastic deformation occurring in the continuous phase is considered to occur in a very small region at first.
  • carbon black when carbon black is blended, the fracture of the interface between the carbon black and the continuous phase also occurs in a very small region at first.
  • the fracture of the interface between the carbon black and the continuous phase and the plastic deformation of the continuous phase due to the disperse phase occur in a similar scale region, and are therefore considered to occur and progress competitively.
  • the plastic phase of the continuous phase caused by the dispersed phase is more preferable because the dispersed phase is flexible and the adhesiveness between the dispersed phase and the continuous phase is better. It is considered to occur preferentially and progress. Therefore, it is considered that the resin composition of the present invention has an unprecedented effect of excellent impact resistance and the like even when carbon black or the like is blended.
  • the resin composition of the present invention or the electrically conductive resin composition of the present invention may further include other compounding agents depending on applications and purposes, such as inorganic fillers such as talc, my strength, calcium carbonate, and wollastonite, cups. Ring agents, reinforcing agents, flame retardant aids, stabilizers, pigments, mold release agents, impact modifiers such as elastomers, and the like can be blended. The amount of these ingredients is
  • the total amount of (A 1), (A 2) and (B) is 100 parts by mass or less, preferably 45 parts by mass or less, and preferably 20 parts by mass or less.
  • glass fibers are preferably combined with the resin composition of the present invention or the electrically conductive resin composition of the present invention.
  • the heat resistance, bending elastic modulus and the like of the resin composition are further improved.
  • Known glass fibers can be used.
  • glass fibers made of A glass, C glass, E glass, S glass, etc. can be used.
  • the glass fiber may be surface-treated. Of these, glass fiber surface-treated with silane is preferred.
  • the number average glass fiber length of the glass fiber is preferably 10 to 1000 m. Examples of such glass fibers include chopped strands, milled glass, and long fibers. Chopped strand glass fibers having a diameter of 3 to 30 m and a fiber length of 1 to 3 mm are preferable.
  • the content of the glass fiber is preferably 5 to 90 parts by mass, more preferably 10 to 70 parts by mass, when the total amount of the components (Al), (A2) and (B) which are resin components is 100 parts by mass. It is.
  • the total amount of components (Al), (A 2) and (B) means the total amount of components (A1) and (B) in the PPS resin composition, and the component (A) in the PPSZPPE resin composition. It means the total amount of 1), (A2) and (B).
  • the component (A1) polyphenylene sulfide is preferably a continuous phase
  • the component (B) ethylene-based terpolymer is preferably a dispersed phase.
  • Component (B) can be finely dispersed in the continuous phase by the mechanism described above.
  • the particle diameter of the dispersed phase is preferably less than 1 m in terms of number average particle diameter, and more preferably less than 0.
  • the number average particle size of component (B) is determined by measuring the particle size of a plurality of dispersed particles, preferably the particle size of 100 or more dispersed particles from a transmission electron microscope image or a scanning electron microscope image. Is obtained by calculating.
  • either the polyphenylene sulfide of component (A1) or the polyphenylene ether of component (A2) is a continuous phase.
  • a form in which the component is a dispersed phase is preferred. This is because a resin composition having excellent heat resistance can be obtained when either the component (Al), which is a super engineering plastic, or the component (A2), which is an engineering plastic, becomes a continuous phase.
  • the polyphenylene sulfide of the component (A1) becomes a continuous phase because it is excellent in mechanical properties, heat resistance and the like.
  • the minor component (B) becomes the dispersed phase.
  • the PPSZPPE resin composition allows the component (B) to react not only with the functional group in the component (A1) but also with the functional group in the component (A2) by the mechanism described above.
  • the product can act as a compatibilizer.
  • the PPSZPPE resin composition has a phase structure in which the component (B), which is a minor component, is finely dispersed in the component (Al) and the component (A2).
  • the component (B) which is a minor component
  • the dispersed phase some of the blended (B) will be in (A1) and (A2), and some will be in (A 1) and (A2 ) Dispersed at the interface. Due to such a characteristic phase structure, unlike conventional examples, it is presumed that a resin composition excellent in impact resistance and ductility can be obtained while realizing heat resistance and low dielectric constant.
  • Component (B) is preferably dispersed as fine particles having a number average particle size of 1 / m in (A1) and (A2), and is dispersed as fine particles having a size of 0.5 xm or less. More preferably.
  • the phase structure can be observed with a transmission electron microscope image. That is, after dyeing the composition with ruthenium oxide or the like, an ultrathin section is prepared using a microtome or the like, and the phase structure can be observed with a transmission electron microscope. At that time, when the section is stained with ruthenium oxide, component (B) is most easily dyed, component (A 2) is most likely to be dyed next, and component (A1) is most difficult to be dyed. The form of each component can be observed. The more fine particles are found in the resin composition, the better the mechanical properties described above.
  • the component (B) tends to exist at the interface between the polyphenylene sulfide of the component (A1) and the polyphenylene ether of the component (A2). This is presumably because component (B) can react with components (A1) and (A2) as described above. As melt-kneading proceeds further, component (B) is finely dispersed in (A2) and (A2) from the interface.
  • the compatibility of the component (A1) polyphenylene sulfide and the component (A2) polyphenylene ether is not sufficient, and the resin composition obtained by simply mixing the two is It is known that sufficient mechanical properties cannot be exhibited due to insufficient adhesion at the interface.
  • the component (B) can react with the components (A1) and (A2), it is considered that a resin composition having extremely excellent mechanical properties can be obtained.
  • the PPS resin composition can be obtained by melt-kneading components (A1) and (B).
  • a kneader such as a single screw extruder or a twin screw extruder can be used. Among them, a twin screw extruder capable of strong kneading is preferably used.
  • the melt kneading temperature is preferably 260 to 330, more preferably 280 to 32.
  • the resin composition contains other components such as the electrical conductivity imparting substance of component (C), it can be produced in the same manner. In this case, the order of kneading is not particularly limited.
  • the component (C) electrical conductivity imparting substance can be melt-kneaded together with the resin composition components (A1) and (B) of the present invention, and the component (Al) and the component (B) are previously melt-kneaded.
  • the pellet obtained as described above may be blended with a component (C) an electrical conductivity imparting substance and melt-kneaded.
  • the melt viscosity at 300 and 121 sec of the composition obtained by melt kneading (hereinafter also simply referred to as “specific melt viscosity”) is 1.5 times the specific melt viscosity of the component (A1) before melt kneading. It is preferable to knead so that it becomes the above.
  • the specific melt viscosity of the composition after the melt-kneading is It is preferably produced so that the specific melt viscosity of component (A1) is 1.5 times or more.
  • the components (A1) and (B), or the components (A1), (A2), and (B) are previously melt-kneaded and then mixed with the component (C) electrical conductivity-imparting substance and melted again.
  • the specific melt viscosity of the resin composition obtained in the second melt kneading is manufactured to be 1.5 times or more the specific melt viscosity of the component (A1) before kneading. . This viscosity ratio is more preferably 2.5 times or more.
  • the ethylene terpolymer of component (B) is easily dispersed finely with a particle diameter of 1 m or less in the polyphenylene sulfide continuous phase of component (A1).
  • a resin composition excellent in impact resistance and the like can be obtained.
  • the specific melt viscosity of the resin composition is In order to make the specific melt viscosity of the component (A 1) 1.5 times or more, the kneading time may be increased. At that time, the melt viscosity of the resin composition in the kneaded state is monitored, and the kneading is stopped when the desired melt viscosity is stably obtained. Alternatively, the specific melt viscosity of the resin composition may be adjusted by appropriately adjusting the screw configuration of the kneader to increase the degree of kneading.
  • the specific melt viscosity may be measured by a conventional method, but is preferably measured with a one-type melt viscometer (for example, Capillograph E 3 B type manufactured by Toyo Seiki Co., Ltd.).
  • a one-type melt viscometer for example, Capillograph E 3 B type manufactured by Toyo Seiki Co., Ltd.
  • the phase structure of the resin composition changes because the reaction between the component (A 1) polyphenylene sulfide and the component (B) ethylene-based terpolymer is sufficient. It is inferred that this is because This is also inferred from the fact that a composition in which each component does not react even if the composition is the same does not have a very high melt viscosity during kneading.
  • the step of melt-kneading the components (A 1) and (B) uses a kneader, and the maximum shear rate of the kneader defined as follows is 80 0. It is preferable to knead so that se C— 1 or more.
  • the shear rate S of the kneader is defined by the following equation (i).
  • Dm is the average diameter of the screw grooves.
  • the average diameter of the screw groove is the average value of the screw diameter in each groove portion (concave portion) of the screw.
  • Dm is defined as the difference between the cylinder inner diameter and the disk major axis diameter.
  • Clearance is the distance between the screw or disk and the kneader wall, also called chip clearance.
  • the screen may include a needing part, and the clearance may vary in the longitudinal direction of the screen.
  • the clearance can be calculated as the average value of the entire screw or as the average value of clearances other than the two ding portions.
  • the maximum value of the shear rate means the maximum shear rate that occurs in the melt-kneading process.
  • Dm and h are not changed, so the shear rate S is adjusted by the number of rotations of N.
  • the melt-kneading step means a case where the setting temperature of the kneader is from 28 to 320, which is a temperature at which the polyphenylene sulfide is melted.
  • the maximum value of the shear rate of the kneader is preferably 8 0 0 sec-1 or more, 9 0 0 sec one 1 or more is more preferable.
  • the kneader a twin screw extruder excellent in productivity is preferable.
  • a graft-modified ternary unigraph copolymer When a graft-modified ternary unigraph copolymer is used in place of the ethylene-based terpolymer of component (B), the effect of sufficiently kneading as described above becomes significant. . Since such a graft copolymer has a branch chain, an epoxy group or an ester group present in the trunk and a functional group such as polyphenylene sulfide are unlikely to react due to steric hindrance. However, by increasing the degree of kneading, the reaction of epoxy groups and functional groups such as polyphenylene sulfide proceeds, and the graft copolymer is likely to be finely dispersed in the polyphenylene sulfide matrix.
  • This effect is achieved by using a segment consisting of an ethylenically unsaturated carboxylic acid daricidyl ester unit or an ethylenically unsaturated hydrocarbon group glycidyl ether unit as the component (D) instead of the component (B).
  • a binary base graft copolymer comprising a vinyl copolymer segment is used.
  • the binary-based graft copolymer may be any known one. However, in the present invention, the ethylene-based binary copolymer segment is a trunk, and the vinyl-based copolymer segment is branched to this trunk. Copolymers bonded as are preferred.
  • the ratio of the ethylene unit to the ethylenically unsaturated carboxylic acid glycidyl ester unit or the ethylenically unsaturated hydrocarbon group glycidyl ether unit in the ethylene-based binary copolymer segment is 60 to 98% by mass: 4 0 to 2% by mass is preferable, 70 to 95% by mass: 30 to 5% by mass is more preferable.
  • the vinyl monomer forming the vinyl polymer segment the same ones as described for the ternary base graft copolymer may be used.
  • Styrene is more preferable as the vinyl monomer.
  • the affinity between styrene and polyphenylene ether is good, so component (B) Further refinement of the process proceeds.
  • the ratio of the ethylene-based binary copolymer segment to the vinyl-based polymer segment and the MI of the binary base graft copolymer are preferably the same as those of the ternary graft copolymer.
  • the binary base graft copolymer may be prepared in the same manner as the ternary graft copolymer.
  • the ratio of components (A1) and (B) is 65:35 to 99: 1, preferably 75:25 to 99: 1, and more preferably 80:20 to 95: 5.
  • the mass ratio of component (A1) to component (B) is 75:25 to 99: 1, the flame retardancy of the resin composition is good, and the evaluation in UL 94 flame retardancy test is V-0 or It can be a resin composition of V-1.
  • the method for producing the PPSZPPE resin composition is not particularly limited.
  • the component (A1) polyphenylene sulfide, the component (A2) polyphenylene ether, and the component (B) ethylene terpolymer may be melt-kneaded together.
  • component (A1) and component (B) are previously melt-kneaded and then component (A2) is added and melt-kneaded, or component (A2) and component (B) are previously melt-kneaded and then component (A1) is added.
  • a melt kneading method may be used.
  • the components (A1) and (B) are supplied to the extruder from the upstream side of the extruder, and the component (A2) is supplied to the extruder from the downstream side of the extruder and melt-kneaded, or A method may be used in which the component (A2) and the component (B) are supplied to the extruder from the upstream side of the extruder, and the component (A1) is supplied to the extruder from the downstream side of the extruder and melt kneaded.
  • component (C) When blending the electrical conductivity imparting substance of component (C), component (Al), (A2), component
  • Component (A2) and component (C) may be added and melt-kneaded after melt-kneading (C) in advance, or component (Al), component (A2) and component (B) may be melt-kneaded in advance. Then, component (C) may be added and melt kneaded.
  • the specific melt viscosity of the composition obtained by melt-kneading is determined by the specific melt viscosity of the component (A1) before melt-kneading. It is preferable to knead so that it becomes 1.5 times or more of the degree, and it is more preferable to knead so that it becomes 2.5 times or more. Further, it is preferable that the kneading machine defined as described above is kneaded so that the maximum value of the shear rate is 80 0 sec- 1 or more.
  • the resin composition of the present invention can be easily processed into a molded product by a processing method used for ordinary thermoplastic resin molded products.
  • processing methods include injection molding, extrusion molding, film * sheet molding, fiber molding, vacuum molding, blow molding, press molding, calendar molding, foam molding, and the like.
  • the resin composition of the present invention can be widely applied to electric / electronic parts, communication parts, film / sheets for packaging, textiles, automobile parts, etc. by applying the above-described molding method.
  • component (C) an electrical conductivity-imparting substance it can be applied to antistatic materials, antistatic materials, conductive materials, highly conductive materials, etc. by adjusting the blending amount. be able to.
  • the Charpy impact strength is 60 kJ Zm 2 or more.
  • the PPSZPPEE resin composition containing the component (A 2) is expected to be applied to the high-speed communication field because of its excellent heat resistance, impact resistance, ductility, and low dielectric constant.
  • the resin composition preferably has a dielectric constant of 3.2 or less at a frequency of 1 kHz.
  • the dielectric constant may be measured by a conventional method.
  • the resin composition of the present invention is preferably evaluated as V-0 or V-1 in the UL94 flame retardant test.
  • the resin composition of the present invention is used as a substrate comprising the resin composition and a laminate comprising a metal layer on the substrate.
  • the substrate is a plate-like or film-like member that becomes the base of the laminate, and may be obtained by a known method.
  • the substrate can be obtained by film, sheet, extrusion molding, or injection molding.
  • the metal layer can be formed by subjecting the surface of the substrate to a plating process or a metal foil bonding process.
  • plating processes include electrolytic plating, vapor phase plating, chemical plating, and melting plating.
  • electrolytic plating and chemical plating are preferable.
  • Electrolytic plating is a method in which a substrate is immersed in an electrolytic solution, and then electricity is conducted to deposit metal ions in the solution on the surface of the substrate.
  • metallic metals in the electrolyte include copper, nickel, gold, silver, tin, aluminum, zinc, and chromium, but copper is preferred.
  • the metal foil lamination treatment can be performed by applying a known method such as a thermocompression bonding method or a method of interposing an adhesive layer between the film and sheet of the resin composition.
  • Metal foil is not particularly limited, but examples include gold foil, silver foil, stainless steel foil, electrolytic copper foil, rolled copper foil, copper alloy foil, titanium foil, aluminum foil, nickel foil, copper-nickel foil, nickel-copper A foil is included. Of these, electrolytic copper foil, rolled copper foil, and copper-nickel foil are preferred.
  • the thickness of the metal layer is preferably 1 to 500, more preferably 2 to 300 Am.
  • the laminate of the present invention can be used as a flexible printed circuit board, a multilayer printed circuit board or the like by forming a circuit.
  • the resin composition of the present invention may be used as a laminate comprising a substrate comprising the resin composition and an inorganic layer on the substrate.
  • the inorganic material forming the inorganic layer include carbon, silicon oxide, aluminum oxide, magnesium oxide, titanium nitride, indium oxide, and silicon.
  • the method for forming the inorganic layer include a vacuum deposition method, an ion plating method, and a sputtering method. In the vacuum evaporation method, an ion beam assist method in which an ion beam is simultaneously irradiated may be used.
  • the substrate may be subjected to a surface treatment.
  • a well-known method can be applied to the surface treatment method. Examples include polishing treatment, acid treatment, alkali treatment, UV irradiation treatment, plasma treatment by high frequency discharge in an argon or oxygen atmosphere, and ion beam treatment.
  • the laminate of the present invention may have a two-layer structure comprising a substrate and a metal layer or an inorganic layer, or a laminate of three or more layers comprising a metal layer and a substrate and a metal layer, or an inorganic layer and a substrate and an inorganic layer. There may be.
  • Such a laminate can be applied to printed wiring boards, electrical / electronic components, and automotive structural materials.
  • Example 1 The present invention will be described below with reference to examples, but this is merely an example, and the present invention is not limited thereto.
  • Tensile test A tensile test was carried out using a Strograph VE S 50 type, manufactured by Toyo Seiki Seisakusho Co., Ltd., with a load cell of 1 kN, a distance between chucks of 40 mm, and a stretching speed of 1 OmmZmin.
  • Charpy impact test DG digitali mp acttester manufactured by Toyo Seiki Seisakusho Co., Ltd., load by hammer mass 4 J, distance from center of rotation axis of hammer to center of gravity 0.2 3 mm, hammer lift angle 1 The measurement was performed at 50 °, a cycle of 0.962 sec, and a temperature of 20 in accordance with JIS 7 160.
  • volume resistivity ( ⁇ ⁇ cm) As a device for measuring electrical conductivity, we used JISK 7 1 94 Mouthless Yuichi GP type and Hires Yuichi UP type made by Dia Instruments Co., Ltd. The volume resistivity was measured according to the above.
  • Flame retardancy test UL 94 flame retardancy test was conducted to evaluate the flame retardancy of the specimens. As for flame retardancy, V_0 is the best, V-1 is second only, and HB is inferior.
  • Carbon black shown as EC in the table
  • the kneading section of the kneader has an internal volume of about 70 mL, a cylinder inner diameter of 47.7 mm, a disk major axis outer diameter of 46.9 mm, a disk single axis outer diameter of 29.3 mm, and a clearance between the disk and the kneader wall is 0.
  • the distance between the shafts was 38.5 mm, and the meshing ratio (disk major axis Z disk minor axis) was 1.6.
  • Dm is 0.8 mm and h is 0.4 mm. Therefore, the shear rate S was calculated as 1.2 X 10 3 (se c- 1 ).
  • the obtained kneaded material was preheated at a temperature of 310 for 3 minutes, pressed at a pressure of 20 MPa for 5 minutes, and then rapidly cooled to 20 to obtain a sheet having a thickness of about 0.5 mm.
  • Comparative Example 1 was press-molded using the pellets as they were without kneading.
  • a press sheet was punched into a mini dumbbell shape with a straight section of 16 mm in length.
  • a press sheet with a dumbbell shape punched to a total length of 80 mm, a thickness of 5 mm, a parallel part width of 10 mm, a parallel part length of 10 mm, and a claw part width of 15 mm was used.
  • the average particle diameter of the dispersed phase was calculated from a transmission electron micrograph of the cross section of the press sheet. sand That is, the number average particle diameter was measured for 100 to 200 dispersed phases.
  • a transmission electron micrograph of the cross section of the press sheet of Example 2 is shown in FIG.
  • a component (A1) of the continuous phase and a component (B) of the dispersed phase were observed, and the particle size of the dispersed phase was in the range of 0.02 to 0.5 / zm.
  • the number average particle size was 0.3 ⁇ 111.
  • a transmission electron micrograph of the cross section of the press sheet of Comparative Example 3 is shown in FIG.
  • the component (A1) of the continuous phase and the polyethylene of the dispersed phase were recognized, the particle size of the dispersed phase was in the range of 2 to 5 m, and the number average particle size was 3. l / zrn.
  • the resin compositions of Examples 1 and 2 were extremely excellent in elongation rate as compared with any of Comparative Examples 1 to 4.
  • Ingredient ( ⁇ ) Resin composition of Comparative Example 1 not containing an ethylene-based terpolymer, Comparative Example 2 in which the ratio of Component (A1) to Ingredient ( ⁇ ) is 60:40, Ingredient ( ⁇ ) Ethylene-based Three In Comparative Example 3 and Comparative Example 4 which contained polyethylene and ethylene noglycidyl methacrylate, respectively, instead of the original copolymer, all of the physical properties were not sufficient.
  • the PP SZPPE resin compositions of Examples 3 to 8 were excellent in ductility and impact resistance and had a low dielectric constant as compared with the resin composition of Comparative Example 7 containing only the component (A1). It was.
  • the resin compositions of Examples 3 to 8 having these components as main components are excellent in heat resistance.
  • the ratio between the specific melt viscosity of the kneaded resin composition after kneading and the specific melt viscosity of the polyphenylene sulfide used as the raw material before kneading was calculated. Further, the obtained resin composition was evaluated in the same manner as in Example 1. These results are shown in Table 3. The specific melt viscosities of the resin compositions of Example 2 and Comparative Examples 1 and 3 were also measured and shown in Table 3 together with other physical property values.
  • Example 1 The resin compositions of 3 to 15 were such that the specific melt viscosity of the resin composition after kneading was 2.5 times or more the specific melt viscosity of polyphenylene sulfide used as a raw material before kneading. It is thought that they were kneaded.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

難燃性、延性、耐衝撃性を具備し、電気・電子部品、通信部品、包装用などのフィルム・シート、自動車部品などへ幅広く適用可能な樹脂組成物を提供する。具体的に本発明は、成分(A1)下記の化学式(1)で示される繰り返し単位を70モル%以上含むポリフェニレンスルフィドを65~99質量%、および成分(B)エチレン単位/エチレン系不飽和カルボン酸グリシジルエステル単位またはエチレン系不飽和炭化水素基グリシジルエーテル単位/酢酸ビニル単位またはアクリル酸メチル単位からなるエチレン系三元共重合体を1~35質量%含む、樹脂組成物を提供する。          

Description

明細書
ポリフエ二レンスルフィ ド樹脂を含む組成物およびその製造方法
技術分野
本発明は、 ポリフエ二レンスルフィ ド樹脂を含む組成物およびその製造方法に関する。 背景技術
ポリフエ二レンスルフイ ドは耐熱性、 剛性、 難燃性、 耐薬品性などに優れた樹脂であ り、 電気 ·電子部品、 自動車部品などに幅広く用いられている。 しかしながら、 ポリフ ェニレンスルフィドは、 これらの特性を有する反面、 成形加工性、 耐衝撃性などが本十 分であった。 そのため、 ポリフエ二レンスルフイ ドの用途展開には限界があり、 それら 欠点の改良が市場から強く要望されていた。
ポリフエ二レンスルフィドの耐衝撃性、成形加工性等を改良する試みとして、例えば、 特開昭 58_ 154757号公報 (特許文献 1 ) には、 ポリフエ二レンスルフィ ドと α 一才レフィン Ζα, β一不飽和酸のダリシジルエステル共重合体を含む樹脂組成物が記 載されている。 また、 特開平 1— 198664号公報 (特許文献 2) には、 ポリフエ二 レンスルフィ ドにエチレン Ζメ夕クリル酸グリシジルーポリメタクリル酸メチルダラ フト共重合体を配合した樹脂組成物が記載されている。 さらに特開平 2— 16 160号 公報 (特許文献 3) には、 ポリフエ二レンスルフイド樹脂に α—ォレフィンとひ, β - 不飽和酸のグリシジルエステル共重合体を配合した組成物が記載されている。
これらの特許文献には、 α—ォレフィンと a, j3—不飽和酸のグリシジルエステル共 重合体が開示されているが、 これらは、 いずれもエチレン等とダルシジルメ夕クリレー ト等からなる 2元共重合体である。
特開 200 1— 3029 1 7号公報 (特許文献 4) には、 ポリフエ二レンスルフィ ド が連続相、 ポリオレフィンが分散相である組成物が靭性に優れることが記載されている。 また、 特開 2005— 248 170号公報 (特許文献 5) には、 ポリフエ二レンスルフ イ ド、 エポキシ基含有エチレン共重合体、 ポリオレフイン樹脂および無機充填剤からな る組成物が剛性、 耐衝撃性に優れることが記載されている。 これらの特許文献に記載の 技術は、 いずれもポリフエ二レンスルフイ ドを連続相、 ポリオレフインを分散相とする 組成物である。 特開 2005— 248 1 70号公報 (特許文献 5) に記載のエポキシ基 含有エチレン共重合体は、 ポリフエ二レンスルフィドとポリオレフインとの相溶化剤と して作用するとされている。
しかしながら、 これらのポリフエ二レンスルフイド樹脂組成物は、 耐衝撃性、 成形加 ェ性、 および難燃性の総てにおいて十分ではなかった。 特に、 耐衝撃性、 延性と難燃性 とを具備したポリフエ二レンスルフィド樹脂組成物は今まで得られていなかった。
さらに、 ポリフエ二レンスルフイドは、 電気伝導性付与物質を配合した場合にはその 延性などが大幅に低下するという問題があった。 ポリフエ二レンスルフィドの延性を保 つため電気伝導性物質を少量配合した場合には、 十分な電気伝導性が得られないという 問題もあった。 すなわち、 耐衝撃性、 延性と難燃性とを具備し、 さらに電気伝導性にも 優れたポリフエ二レンスルフイド樹脂組成物は今まで得られていなかった。
ところで、 ポリフエ二レンエーテルは、 成形加工性が悪く、 単独では成形加工不可で あるが、 低誘電率で耐熱性に優れることが知られている。 この特性を生かし、 かつ、 ポ リフエ二レンスルフィドを高性能化するために、 ポリフエ二レンスルフィドとポリフエ 二レンエーテルを組み合わせて樹脂の特性を改良する試みが従来なされてきた。 例えば、 特開昭 5 0— 1 5 6 5 6 1号公報 (特許文献 6 ) には、 ポリフエ二レンスルフイドとポ リフエ二レンエーテルとからなる樹脂組成物が記載されている。 特開昭 6 3 - 1 8 3 9 5 4号公報 (特許文献 7 ) には、 ポリフエ二レンエーテルと、 ポリフエ二レンスルフィ ドのような結晶性熱可塑性樹脂と、 変性ゴム様物質のような相溶化剤からなる樹脂組成 物が記載されている。 特開平 0 2— 7 5 6 5 6号公報 (特許文献 8 ) には、 酸変性ポリ フエ二レンエーテル、 変性ポリフエ二レンスルフイド、 ポリフエ二レンスルフイ ド、 お よび結合剤からなる耐熱耐溶剤性樹脂組成物が記載されている。 特開平 0 3— 2 0 3 5 6号公報 (特許文献 9 ) および特開平 1 0— 9 5 9 2 6号公報 (特許文献 1 0 ) には、 ポリフエ二レンスルフイド、 ポリフエ二レンエーテル、 および、 エポキシ基もしくはォ キサゾリ二ル基を有する不飽和モノマーまたはポリマーを含む樹脂組成物が記載され ている。 特開 2 0 0 6 - 3 1 6 2 4 5号公報 (特許文献 1 1 ) には、 ポリフエ二レンス ルフイド、 架橋型ポリフエ二レンスルフイド、 ポリフエ二レンエーテル、 および、 ェポ キシ基もしくはォキサゾリ二ル基を有するスチレン系共重合体またはエチレン系共重 合体を含む樹脂組成物が記載されている。 特開 2 0 0 7— 2 3 0 7 8号公報 (特許文献 1 2 ) には、 ポリフエ二レンスルフイド、 ポリフエ二レンエーテル、 エポキシ基または ォキサゾリ二ル基を有する不飽和モノマーとスチレンの共重合体、 および耐衝撃剤から なる樹脂組成物に関して記載されている。
しかしながら、 これら従来の樹脂組成物は、 耐熱性は優れていても誘電率が高い、 耐 衝撃性が不十分である、 延性が不十分である、 高価であるなどの問題点がある。 すなわ ち、 耐熱性、 耐衝撃性、 延性の総てに優れ、 安価であり、 低誘電率である樹脂組成物は 知られていない。
特許文献 1 特開昭 5 8 - 1 5 4 7 5 7号公報
特許文献 2 特開平 1一 1 9 8 6 6 4号公報
特許文献 3 特開平 2— 1 6 1 6 0号公報
特許文献 4 特開 2 0 0 1 ― 3 0 2 9 1 7号公報
特許文献 5 特開 2 0 0 5 2 4 8 1 7 0号公報
特許文献 6 特開昭 5 0— 1 5 6 5 6 1号公報
特許文献 7 特開昭 6 3— 1 8 3 9 5 4号公報
特許文献 8 特開平 0 2— 7 5 6 5 6号公報
特許文献 9 特開平 0 3— 2 0 3 5 6号公報
特許文献 1 0 特開平 1 0 ― 9 5 9 2 6号公報
特許文献 1 1 特開 2 0 0 6 ― 3 1 6 2 4 5号公報
特許文献 1 2 特開 2 0 0 7 ― 2 3 0 7 8号公報
発明の開示
発明が解決しょうとする課題
本発明は、 耐衝撃性、 延性および難燃性を具備した樹脂組成物を提供することを課題 とする。 また、 本発明は、 耐衝撃性、 延性および難燃性に加え、 低誘電率である等の電 気伝導性をも具備した樹脂組成物を提供することを課題とする。
課題を解決するための手段
本発明者らはポリフエ二レンスルフィドを含む樹脂組成物について、 鋭意検討をした 結果、 ポリフエ二レンスルフイドに、 エチレン単位 Zエチレン系不飽和カルボン酸ダリ シジルエステル単位またはエチレン系不飽和炭化水素基ダリシジルエーテル単位 z酢 酸ビニル単位またはァクリル酸メチル単位からなるエチレン系三元共重合体を特定の 範囲の比率で配合することにより、 耐衝撃性、 延性および難燃性などを具備した樹脂組 成物が得られることを見出し、 本発明を完成した。 また、 この樹脂組成物に、 電気伝導 性付与物質を配合することにより、 優 lた電気伝導性をも具備することを見出し、 本発 明を完成した。 さらに本発明者らは、 ポリフエ二レンスルフイドとポリフエ二レンェ一 テルを含む樹脂組成物に、 エチレン単位 Zエチレン系不飽和カルボン酸ダリシジルエス テル単位またはエチレン系不飽和炭化水素基ダリシジルエーテル単位 酢酸ビニル単 位またはァクリル酸メチル単位からなるエチレン系三元共重合体を配合することによ り、 耐熱性、 耐衝撃性および延性などに優れ、 低誘電率でありながら、 安価な樹脂組成 物が得られることを見出し、 本発明を完成した。
すなわち、 前記課題は以下の本発明により解決される。
[1] 成分 (A1) 下記の化学式 (1) で示される繰り返し単位を 70モル%以上含む ポリフエ二レンスルフイドを 65〜99質量%、 ならびに
成分 (B) エチレン単位、 エチレン系不飽和カルボン酸グリシジルエステル単位または エチレン系不飽和炭化水素基グリシジルエーテル単位、 および、 酢酸ビニル単位または アクリル酸メチル単位からなるエチレン系三元共重合体を 1〜35質量%含む、 樹脂組 成物。
【化 1】
Figure imgf000006_0001
[2] 前記成分 (B) は、 数平均粒子径が 1 m未満の分散相を形成する、 [1] に記 載の樹脂組成物。
[3] 前記成分 (B) は、 J I S K7210に準じ、 190 、 21 Νの荷重にて測 定したメルトインデックスが 2〜50 gZl 0分であり、 示差走査熱量測定における融 点が 45〜 100でである、 [1] または [2] に記載の樹脂組成物。
[4]前記成分(A 1)は、示差走査熱量測定による融点が 265 〜 295 であり、 比重が 1. 2〜1. 4の範囲である、 [1] 〜 [3] のいずれかに記載の樹脂組成物。
[5] 前記成分 (A1) は、 前記成分 (Β) 中のエチレン系不飽和カルボン酸グリシジ ルエステル単位またはエチレン系不飽和炭化水素基グリシジルエーテル単位と反応し うる官能基を有する、 [1] 〜 [4] のいずれかに記載の樹脂組成物。
[6] UL 94難燃性試験における評価が V—0または V— 1である、 [1] 〜 [5] のいずれかに記載の樹脂組成物。
[7] [1] 〜 [5] のいずれかに記載の樹脂組成物、 および成分 (C) 電気伝導性 付与物質を含み、 成分 (C) の含有量は、 成分 (Al) 100質量部に対し 1〜30質 量部である、 電気伝導性樹脂組成物。
[8] 前記成分 (C) はカーボンブラックである、 [7] に記載の電気伝導性樹脂組成 物。
[9] 前記成分 (A1) および (Β) を溶融混練する工程を含む、 [1] 〜 [6] のい ずれかに記載の樹脂組成物の製造方法。
[10] 前記成分 (Al)、 (Β) および (C) を溶融混練する工程を含む、 [8] に記 載の電気伝導性樹脂組成物の製造方法。
[1 1] 前記成分 (A1) および (Β) を溶融混練する工程は、 溶融混練されて得た組 成物の 300 、 121 s e c 1における溶融粘度が、 溶融混練前の成分 (A 1 ) の 3 00 、 121 s e c 1における溶融粘度の 1. 5倍以上となるように混練する工程で ある、 [9] に記載の樹脂組成物の製造方法。
[12] 前記成分 (A1) および (B) を溶融混練する工程は、 混練機を用い、 かつ以 下の式 ( i ) で定義される混練機のせん断速度の最大値が 800 s e c—1以上となるよ うに混練される工程である、 [9] または [1 1] に記載の樹脂組成物の製造方法。 S = 7C · Dm · N/h ( i )
(式 (i) 中、 Sはせん断速度、 Dmはスクリユー溝の平均径、 またはシリンダー内径 とディスク長軸直径の差、 Nはスクリュー毎秒回転数、 hはクリアランスを表す。) [13] 成分 (A1) 下記の化学式 (1) で示される繰り返し単位を 70モル%以上含 むポリフエ二レンスルフイドを 75〜99質量%、 および
成分 (D) エチレン系不飽和カルボン酸グリシジルエステル単位またはエチレン系不飽 和炭化水素基ダリシジルエーテル単位からなるセグメントと、 ビニル系共重合体セグメ ントからなるグラフト共重合体を 1〜 25質量%含む樹脂組成物の製造方法であつて、 前記成分 (A1) および (D) を溶融混練する工程を含み、
前記工程は、 溶融混練されて得た組成物の 300°C、 121 s e c—1における溶融粘度 が、 溶融混練前の成分 (A1) の 300で、 121 s e c— 1における溶融粘度の 1. 5 倍以上となるように混練する工程である、 樹脂組成物の製造方法。
【化 2】
Figure imgf000008_0001
[14] シャルビ一衝撃強度が 60 k JZm2以上である [1] 〜 [8] のいずれかに 記載の樹脂組成物または電気伝導性樹脂組成物。
[15] [1] 〜 [8] のいずれかに記載の樹脂組成物または電気伝導性樹脂組成物 からなる射出成形体、 押出し成形体、 またはシート ·フィルム成形体。
[16] [1:] 〜 [8] のいずれかに記載の樹脂組成物または電気伝導性樹脂組成物 からなるチューブ状の成形体または繊維。
[17] [1] 〜 [8] のいずれかに記載の樹脂組成物または電気伝導性樹脂組成物 からなる基板、 および前記基板の上に設けられた金属層または無機物からなる層を含む 積層体。
[18] [1] 〜 [8] のいずれかに記載の樹脂組成物または電気伝導性樹脂組成物 からなる基板、 および前記基板の上に設けられた金属めつき層を含む積層体。
[19] [15] に記載の成形体を用いた電気 ·電子部品、 通信機器部品、 または自 動車部品。 [20] 樹脂組成物を射出成形、 押出し成形、 またはシート ·フィルム成形する工程を 含む成形体の製造方法であって、
前記樹脂組成物は、 [13] に記載の方法で製造された樹脂組成物である、 成形体の製 造方法。
[2 1] 榭脂組成物を射出成形、 押出し成形、 またはシート ·フィルム成形する工程、 および前記工程で得た成形体の表面に金属層または無機物層を積層する工程を含む、 積 層体の製造方法であって、
前記樹脂組成物は、 [13] に記載の方法で製造された樹脂組成物である、 積層体の製 造方法。
[22] 成分 (A1) 下記の化学式 (1) で示される繰り返し単位を 70モル%以上 含むポリフエ二レンスルフイド、
【化 3】
Figure imgf000009_0001
(1) 成分 (A2) ポリフエ二レンエーテル、 ならびに
成分 (B) エチレン単位、 エチレン系不飽和カルボン酸グリシジルエステル単位または エチレン系不飽和炭化水素基グリシジルエーテル単位、 および、 酢酸ビニル単位または ァクリル酸メチル単位からなるエチレン系三元共重合体を含む、 樹脂組成物。
[23] 前記成分 (Al)、 (A 2) および (B) の合計量に対し、 前記成分 (B) は 1 〜45質量%であり、 かつ、 前記成分 (A1) と (A2) の質量比は、 10 : 90〜9 0 : 10である、 [20] に記載の樹脂組成物。
[24] 前記成分 (A2) は、 下記一般式 (2) で示される繰り返し単位を 90モル% 以上含む、 [22] または [23] に記載の榭脂組成物。
【化 4】
Figure imgf000010_0001
(式中、 R l, R2, R 3および R 4は、 それぞれ独立して、 水素、 ハロゲン、 炭素数 1〜7の第一級もしくは第二級アルキル基、 フエニル基、 ハロアルキル基、 アミノアル キル基、 炭化水素ォキシ基、 および、 ハロゲン原子と酸素原子が少なくとも 2個の炭素 原子を介して結合されているハロ炭化水素ォキシ基からなる群から選択される基であ る。)
[25] 前記成分 (A2) は、 ポリ (2, 6—ジメチル— 1, 4 _フエ二レンエーテル) であり、 かつクロ口ホルム中、 30 における固有粘度が 0. 2〜0. 8 d l/gであ る、 [22] 〜 [24] のいずれかに記載の樹脂組成物。
[26] 周波数 1 kHzにおける誘電率が 3. 2以下である、 [22] 〜 [25] のい ずれかに記載の樹脂組成物。
[27] 前記成分 (B) は、 数平均粒子径が 1 /m未満の分散相を形成する、 [22] 〜 [26] のいずれかに記載の樹脂組成物。
[28] 前記成分 (B) は、 J I S K7210に準じ、 190 、 21 Νの荷重にて 測定したメルトインデックスが 2〜 50 gZl 0分であり、 示差走査熱量測定における 融点が 45〜100でである、 [22] 〜 [27] のいずれかに記載の樹脂組成物。
[29] 前記成分 (A1) は、 示差走査熱量測定による融点が 265で〜 295 であ り、 比重が 1. 2〜1. 4の範囲である、 [22] 〜 [28] のいずれかに記載の樹脂 組成物。
[30] 前記成分 (A1) は、 前記成分 (B) 中のエチレン系不飽和カルボン酸グリシ ジルエステル単位またはエチレン系不飽和炭化水素基グリシジルエーテル単位と反応 しうる官能基を有する、 [22] 〜 [29] のいずれかに記載の樹脂組成物。 [31] UL 94難燃性試験における評価が V— 0または V— 1である、 [22] 〜 [: 3 0] のいずれかに記載の樹脂組成物。
[32] [22] 〜 [30] のいずれかに記載の樹脂組成物、 および成分 (C) 電気 伝導性付与物質を含み、 成分 (C) の含有量は、 成分 (A1) および (A2) の合計 1 00質量部に対し 1〜 30質量部である、 電気伝導性樹脂組成物。
[33] 前記成分 (C) はカーボンブラックである、 [32] に記載の電気伝導性樹脂 組成物。
[34] 前記成分 (Al)、 (A 2) および (B) を溶融混練する工程を含む、 [22] 〜 [31] のいずれかに記載の樹脂組成物の製造方法。
[35] 前記成分 (Al)、 (A2)、 (B) および (C) を溶融混練する工程を含む、 [3 3] に記載の電気伝導性樹脂組成物の製造方法。
[36] シャルピー衝撃強度が 60 k JZm2以上である [22] 〜 [33] のいずれ かに記載の樹脂組成物または電気伝導性樹脂組成物。
[37] [22:! 〜 [33] のいずれかに記載の樹脂組成物または電気伝導性樹脂組 成物からなる射出成形体、チューブ状の成形体、シ一ト ·フィルム成形体、 または繊維。
[38] [22] 〜 [33] のいずれかに記載の樹脂組成物または電気伝導性樹脂組 成物からなるチューブ状の成形体。
[39] [22] 〜 [33] のいずれかに記載の樹脂組成物または電気伝導性樹脂組 成物からなる基板、 および前記基板の上に設けられた金属層または無機物からなる層を 含む積層体。
[40] [22] 〜 [33] のいずれかに記載の樹脂組成物または電気伝導性樹脂組 成物からなる基板、 および前記基板の上に設けられた金属めつき層を含む積層体。
[41] [37] に記載の成形体を用いた電気 ·電子部品、 通信機器部品、 または自 動車部品。
【発明の効果】
本発明により、 耐衝撃性、 延性および難燃性を具備した樹脂組成物が提供できる。 ま た、 本発明により、 耐衝撃性、 延性および難燃性に加え、 低誘電率である等の電気伝導 性をも具備した樹脂組成物が提供できる。 図面の簡単な説明
図 1は実施例 2で製造したプレスシート断面の透過型電子顕微鏡写真
図 2は比較例 3で製造したプレスシ一ト断面の透過型電子顕微鏡写真
[符号の説明]
1 連続相
2 分散相
発明を実施するための最良の形態
1 . 本発明の樹脂組成物
本発明の樹脂組成物は、 単に榭脂組成物とも呼ばれる。 また、 ポリフエ二レンスルフ ィドを主成分とする樹脂組成物は、 ポリフエ二レンスルフィド樹脂組成物とも呼ばれる。 特に、 ポリフエ二レンスルフィドとエチレン系三元共重合体を含みポリフエ二レンエー テルを含まない榭脂組成物は 「P P S樹脂組成物」、 ポリフエ二レンスルフイド、 ェチ レン系三元共重合体をおよびポリフエ二レンエーテルを含む樹脂組成物は 「P P S Z P P E樹脂組成物」 とも称される。
( 1 ) ポリフエ二レンスルフイ ド (成分 A 1 )
本発明の P P S樹脂組成物は、 成分 (A 1 ) として下記の化学式 (1 ) で示される 繰り返し単位を 7 0モル%以上含むポリフエ二レンスルフィドを 6 5〜9 9質量%、 な らびに成分 (B) としてエチレン単位、 エチレン系不飽和カルボン酸グリシジルエステ ル単位またはエチレン系不飽和炭化水素基グリシジルエーテル単位、 および、 酢酸ビニ ル単位またはァクリル酸メチル単位からなるェチレン系三元共重合体を 1〜 3 5質 量%含む。 ポリフエ二レンスルフイドは、 前記の化学式 (1 ) で示される単位を、 7 0 モル%以上含むが、 好ましくは 8 0モル%以上含む。
また、 ポリフエ二レンスルフイドは、 下記の化学式で示される単位を 3 0モル%未満含 んでいてもよい。
【化 5】
Figure imgf000013_0001
Figure imgf000013_0002
Figure imgf000013_0003
CH3 ポリフエ二レンスルフィドは、 定法、 例えば特公昭 5 2 - 1 2 2 4 0号公報や特開昭 6 1—7 3 3 2号公報に記載される方法により合成できる。 また、 市販されているポリ フエ二レンスルフィドを用いてもよい。
上記のようにして得られたポリフエ二レンスルフイドは、 種々の処理が施されていて もよい。 この処理の例には、 窒素などの不活性ガス雰囲気下あるいは減圧下で行われる 熱処理または熱水などによる洗浄、 および酸無水物、 ァミン、 イソシァネート、 官能基 含有ジスルフィド化合物等の官能基含有化合物による活性化処理が含まれる。
ポリフエ二レンスルフイドは、 後述する成分 (B ) 中のエチレン系三元共重合体のェ チレン系不飽和カルボン酸ダリシジルエステル単位またはエチレン系不飽和炭化水素 基グリシジルエーテル単位と反応しうる官能基を有することが好ましい。 かかる官能基 を有するポリフエ二レンスルフイドは、 成分 (B ) のエチレン系三元共重合体との間で グラフ卜ポリマーを形成すると考えられる。 これにより、 ポリフエ二レンスルフイドと エチレン系三元共重合体の相溶性が向上し、 樹脂組成物の特性が向上すると考えられる。 このような官能基としては、 スルファニル基 (メルカプト基)、 エポキシ基、 カルボキ シル基などが挙げられるが、 中でもスルファニル基が好ましい。
ポリフエ二レンスルフイドの ASTM D 648に基づく熱変形温度 (1. 82MP a荷重) は、 90〜 130 であることが好ましい。 また、 ポリフエ二レンスルフイド の比重は、 1. 2〜1. 4が好ましい。 ポリフエ二レンスルフイドの示差走査熱量測定 による融点は、 好ましくは 265〜 295 、 さらに好ましくは 270〜290でであ る。このようなポリフエ二レンスルフィドは、特に耐熱性に優れた樹脂組成物を与える。 ポリフエ二レンスルフィドの分子量は特に制限されないが、 重量平均分子量で好まし くは 10, 000以上、 さらに好ましくは 15, 000以上、 より好ましくは 18, 0 00以上である。 分子量がこのような範囲にあるポリフエ二レンスルフィドを用いると、 組成物としての成形性、 物性などが良好となる上に、 末端に存在する官能基の量が適量 となり、 後述するように、 成分 (B) のエポキシ基等の官能基と反応して、 十分な相溶 化効果を与えうる。 そのため、 成分 (B) を微分散させやすくなる。
(2) エチレン系三元共重合体 (成分 B)
本発明の樹脂組成物は、 成分 (B) エチレン系三元共重合体を含む。 エチレン系三元 共重合体は、 (a) エチレン単位、 (b) エチレン系不飽和カルボン酸グリシジルエステ ル単位またはエチレン系不飽和炭化水素基グリシジルェ一テル単位、 および (c) 酢酸 ビニル単位またはアクリル酸メチル単位からなる。 エチレン単位とは、 共重合体中のェ チレンに由来する部分をいい、 具体的には- (CH2- CH2) -で表される単位をいう。 ェチレン系不飽和力ルポン酸グリシジルエステル単位等も同様に定義される。
かかる共重合体の (a) 単位:(b) 単位: (c) 単位は、 40〜94質量%: 1〜2 0質量%: 5〜40質量%が好ましく、 50〜90質量%: 2〜 15質量% : 8-35 質量%が好ましい。 エチレン系三元共重合体において (b) エチレン系不飽和カルボン 酸ダリシジルエステル単位またはエチレン系不飽和炭化水素基ダリシジルエーテル単 位を与える化合物は、 それぞれ下記一般式 (3)、 (4) で表される。
【化 6】
Figure imgf000014_0001
(3) 一般式 (3) において、 Rは、 一つのエチレン結合を有する炭素数 2〜13の炭化水 素基である。 Rの炭素数は、 好ましくは 2〜10である。
一般式 (3) で表されるエチレン系不飽和カルボン酸グリシジルエステル単位として は、 例えばアクリル酸グリシジル、 メ夕クリル酸グリシジル、 ィタコン酸ジグリシジル 等の α, β—不飽和カルボン酸ダリシジルが挙げられる。
【化 7】
Figure imgf000015_0001
一般式 (4) において、 Rは、 一つのエチレン結合を有する炭素数 2〜13の炭化水 素基である。 また、 Xは、 一 CH2 —O—または下記化学式 (4— 1) で表される基で ある。 Rの炭素数は、 好ましくは 2〜 10である。
【化 8】
Figure imgf000015_0002
(4- 1) 一般式 (4) で表されるエチレン系不飽和炭化水素基グリシジルエーテル単位として は、 例えば、 ァリルグリシジルエーテル、 2—メチルァリルグリシジルエーテル、 スチ レン— p—ダリシジルエーテル等の a—不飽和炭化水素基ダリシジルエーテルが挙げ られる。
エチレン系三元共重合体の J I S K7210、 190で、 21 Ν (2. 16 kg荷 重) にて測定したメルトインデックス (「M I」 ともいう、 MFRと同義である) は、 好ましくは 2〜50 10分であり、 さらに好ましくは 3〜 20 g/ 10分である。 また、 得られる樹脂組成物の機械的性質を向上させる観点から、 エチレン系三元共重合 体の示差走査熱量測定による融点は、 45〜100 が好ましく、 50〜97 がさら に好ましい。 エチレン系三元共重合体の AS TM D 2240に基づく表面硬度 (Sh o r e D) は、 10〜40が好ましい。
エチレン系三元共重合体は、 例えば、 (a) エチレン、 (b) エチレン系不飽和カルボ ン酸ダリシジルエステルまたはエチレン系不飽和炭化水素基ダリシジルエーテル、 およ び (c) 酢酸ビニルまたはアクリル酸メチルを、 ラジカル発生剤の存在下、 500〜4 000気圧、 100〜30 Ot:で適当な溶媒や連鎖移動剤の存在下または不存在下にラ ンダム共重合させる方法により製造することが好ましい。
前述のとおり、 エチレン系三元共重合体は、 エポキシ基がポリフエ二レンスルフイド 等に含まれる官能基等と反応することにより、 連続相中に微分散できると考えられる。 このためエチレン系三元共重合体は、 ある程度の量のエポキシ基を有することが好まし レ^ しかしながら、 エポキシ基の量が多すぎると、 エポキシ基同士が重合してしまう等 により、 エチレン系三元共重合体は微分散しにくくなると考えられる。 従って、 ェチレ ン系三元共重合体中のエポキシ基の量には好適な範囲が存在する。 本発明のエチレン系 三元共重合体は、 エポキシ当量が 2000〜5000 gZe qであることが好ましい。 エポキシ当量は、 エポキシ基 1個あたりの分子量であり、 エポキシ当量が小さいほど、 分子内に含まれるエポキシ基の量が多くなる。
例えば、エチレン系三元共重合体が、エチレン単位:グリシジルメ夕クリレート単位: メチルァクリレート単位 =70 : 3 : 27 (質量比) からなる場合、 エポキシ当量は以 下のように計算される。
各単位の分子量は、 それぞれ 28、 1 14、 86である。 よって、 各単位の比をモル 比で表すと、 エチレン単位:グリシジルメ夕クリレート単位:メチルァクリレート単位 =2. 5 : 0. 026 : 0. 314 = 88 : 0. 9 : 1 1. 1 (モル比) となる。 従つ て、 このような共重合体は、 エポキシ基 0. 009個あたり、 0. 88X28 + 0. 0 09 X 1 14 + 0. 1 1 1 X 86 = 35. 2の分子量を有すると考えられる。 よって、 エポキシ当量は、 35. 2/0. 009 = 39 1 1 gZe Qと計算できる。
また、 ポリフエ二レンスルフイドがスルファニル基を有する場合、 当該基は、 ェポキ シ基のみならずエステル基とも反応しうる。 成分 (B) のエチレン系三元共重合体は、 単位 (b) に由来するエポキシ基と、 単位 (c) に由来するエステル基を有する。 よつ て、 ポリフエ二レンスルフイ ドがスルファニル基を含むと、 エポキシ基およびエステル 基とも反応できるので、 成分 (B) が成分 (A1) 中により微分散しやすくなる。
ェチレン系三元共重合体は、 ェチレン系三元共重合体セグメントの幹にビニル系共重 合体セグメントが枝として結合してグラフト変性されていてもよい。 このようなグラフ ト共重合体は、 「三元ベースグラフト共重合体」 とも称される。 セグメントとは、 ダラ フト共重合体において、 幹および枝を構成する高分子鎖をいう。
ビエル系重合体セグメントを形成するビニル単量体の例には、 アルキル鎖長の炭素数 が 1〜20の (メタ) アクリル酸アルキルエステル、 酸基を有するビニル単量体、 ヒド 口キシル基を有するビニル単量体、 エポキシ基を有するビニル単量体、 シァノ基を有す るビニル単量体、 およびスチレンが含まれる。 こられの具体例として、 以下のものが例 示できる。
(メタ) アクリル酸メチル、 (メタ) アクリル酸ェチル、 (メタ) アクリル酸プチル、 (メタ) アクリル酸へキシル、 (メタ) アクリル酸 2 _ェチルへキシル、 (メタ) ァクリ ル酸ラウリル、 (メタ) アクリル酸ステアリル、 (メタ) アクリル酸、 マレイン酸、 無水 マレイン酸、 (メタ) アクリル酸 2—ヒドロキシェチル、 (メタ) アクリル酸 2—ヒドロ キシプロピル、 (メタ) アクリル酸グリシジル、 (メタ) アクリロニトリル、 スチレン。 これらの中でも、 (メタ) アクリル酸メチル、 アクリロニトリル、 スチレン、 および これらの組み合わせが好ましく、 スチレンがさらに好ましい。
エチレン系三元共重合体セグメントと、 ビニル系重合体セグメントとの比率は、 50 〜99質量%対 50〜 1質量%が好ましく、 60〜80質量%対 40〜20質量%がよ り好ましい。
三元ベースグラフト共重合体の M Iは、 好ましくは 0. 01〜50 gZl O分、 さら に好ましくは 0. 05〜30 gZl 0分である。
M Iは J I S K7210に規定された方法に準拠して、 樹脂温度 230 、 測定荷 重 21N (2. 16 k g · f ) の条件で測定される。 この M Iが 0. O l gZl O分未 満、 または 50 gZl 0分を超えると、 三元べ一スグラフト共重合体とポリフエ二レン スルフィ ド等との親和性が低下したり、 得られる成形品の外観が悪化したりすることが ある。 エチレン系三元共重合体セグメントと、 ビニル系重合体セグメントとを結合する には、 公知の方法を用いてよい。 例えば、 特開平 2007-63506号公報に記載の とおり、 エチレン系三元共重合体セグメントの溶液に、 過酸化物存在の下、 ビニル系単 量体を加えてビニル系単量体を重合して得ることができる。
本発明の PPS樹脂組成物における成分 (A1) と成分 (B) の質量比は、 65 : 3 5〜 99 : 1であるが、 75 : 25〜 99 : 1が好ましく、 80 : 20〜 95 : 5がよ り好ましい。 特に、 成分 (A1) と成分 (B) の質量比が 75 : 25〜99 : 1である と、 樹脂組成物の難燃性が良好となり、 UL 94難燃性試験における評価が V— 0また は V— 1である樹脂組成物となりうる。
(3) ポリフエ二レンエーテル (成分 A2)
本発明の PPS/PPE樹脂組成物は、 成分 (A1) のポリフエ二レンスルフイド、 成分 (A2) のポリフエ二レンエーテル、 および成分 (B) のエチレン系三元共重合体 を含む。 本発明において、 ポリフエ二レンエーテルとは、 フエ二レンエーテル構造を有 する単位を主成分とする重合体をいう。 ポリフエ二レンエーテルは、 下記一般式 (2) で示される単位を好ましくは 90モル%以上、 さらに好ましくは 95モル%以上含む。
【化 9】
Figure imgf000018_0001
式中、 R l, R2, R 3および R 4は、 それぞれ独立して、 水素、 ハロゲン、 炭素数 1〜7の第一級もしくは第二級アルキル基、 フエニル基、 八口アルキル基、 アミノアル キル基、 炭化水素ォキシ基、 および、 ハロゲン原子と酸素原子が少なくとも 2個の炭素 原子を介して結合されているハロ炭化水素ォキシ基からなる群から選択される。
ハロアルキル基、 アミノアルキル基、 炭化水素才キシ基の炭素数は、 好ましくは 1〜 7である。 ハロ炭化水素ォキシ基の炭素数は、 好ましくは 2〜 7である。
R 1および R 2は、 それぞれ独立して炭素数 1〜 3の第一級アルキル基であることが 好ましく、 R 3および R 4は、 水素であることが好ましい。
上記一般式 (2) で示される単位以外の単位としては、 ビニル芳香族化合物が挙げら れる。 例えば、 上記一般式 (2) で示される単位からなる重合体に、 ビニル芳香族化合 物をグラフト重合したポリフエ二レンエーテルを用いることができる。
ポリフエ二レンエーテルの具体例には、 ポリ (2, 6—ジメチル— 1, 4—フエニレ ンエーテル)、 ポリ (2, 6—ジェチル— 1, 4 _フエ二レンエーテル)、 ポリ (2, 6 —ジプロピル一 1, 4—フエ二レンエーテル)、 ポリ (2 _メチル— 6—ェチル— 1, 4一フエ二レンェ一テル)、 ポリ (2 _メチル _ 6—プロピル一 1, 4—フエ二レンェ 一テル)、 ポリ (2—ェチル _ 6—プロピル— 1, 4—フエ二レンエーテル)、 2, 6 - ジメチルフエノール 2, 3, 6 _トリメチルフエノール共重合体、 2, 6—ジメチル フエノール 2, 3, 6—トリェチルフエノール共重合体、 2, 6—ジェチルフエノー ル Z2, 3, 6—トリメチルフエノール共重合体、 および 2, 6—ジプロピルフエノー ル 2, 3, 6 _トリメチルフエノール共重合体が含まれる。
また、 ポリフエ二レンエーテルとして、 ポリ (2, 6—ジメチル一 1, 4_フエニレ ンェ一テル) にスチレンをグラフト重合した共重合体、 2, 6—ジメチルフエノール/ / 2, 3, 6 _トリメチルフエノール共重合体にスチレンをグラフト重合した共重合体を 用いてもよい。
中でも、 ポリフエ二レンエーテルとしては、 ポリ (2, 6—ジメチル _ 1, 4一フエ 二レンエーテル) が好ましい。
ポリフエ二レンエーテルは、好ましくは、 クロ口ホルム中、 3 Ot:の固有粘度が、 0. 2〜0. 8 d lZg程度、 さらに好ましくは 0. 3〜0. 6 d 1 程度となるような 分子量を有する。 .
また、 ポリフエ二レンエーテルは、 無水マレイン酸、 グリシジルメ夕クリレート、 ス チレン、 2—ヒドロキシェチルメタクリレート、 N— [4— 2, 3—エポキシプロポキ シ) 一2, 5—ジメチルフエニルメチル] アクリルアミド、 トリメトキシビニルシラン 等で変性されていてもよい。 ポリフエ二レンエーテルは、 通常、 構成単位 (モノマー) の酸化カップリングにより 製造される。 ポリフエ二レンエーテルの酸化カップリング重合に関しては、 数多くの触 媒が知られている。 触媒の選択に関しては特に制限はなく、 公知の触媒のいずれも用い ることができる。 すなわち、 例えば銅、 マンガン、 コバルト等の重金属化合物の少なく とも一種を用いて重合されたポリフエ二レンエーテルを用いてよい。
ポリフエ二レンエーテルは、通常、分子鎖末端は水酸基である。この水酸基は成分(B) 三元共重合体のエポキシ基やエステル基と反応できるので、 成分 (B) との相溶性を向 上させると考えられる。 その結果、 成分 (Al)、 (A2) および (B) を含む樹脂組成 物において、 成分 (B) の微分散化が達成されると考えられる。
PPSZPPE樹脂組成物における成分 (B) の含有量は、 成分 (Al)、 成分 (A 2)および成分(B)の合計量を 100質量%としたとき、好ましくは 1〜45質量%、 さらに好ましくは 1〜38質量%、 さらにより好ましくは 3〜37質量%、 特に好まし くは 5〜35質量%である。
また、 成分(A 1 ) と成分(A 2 ) の質量比は、 好ましくは 10 : 90〜 90 : 10、 さらに好ましくは 20 : 80〜80 : 20、 より好ましくは 25 : 75〜75 : 25、 よりさらに好ましくは 50 : 50〜75 : 25である。
PPSZPPE樹脂組成物の各成分をこれらの範囲とすることにより、 耐熱性、 延性 や、 シャルピー衝撃強度等の耐衝撃性、 低誘電率を満足させることができる。 特に PP SZPPE榭脂組成物中のポリフエ二レンスルフィドの含有量が高いと、 樹脂組成物の 難燃性が向上し、 UL 94難燃性試験における評価が V_ 0または V— 1である樹脂組 成物が得られる。
(4) 他の成分
本発明の樹脂組成物は、 さらに成分 (C) 電気伝導性付与物質を加え、 電気伝導性榭 脂組成物とすることができる。
電気伝導性付与物質としては、 カーボンブラック、 カーボン繊維、 グラフアイト、 金 属ファイバー、 カーボンナノチューブ、 金属酸化物、 帯電防止用可塑剤などが挙げられ る。 なかでもカーボンブラックが好ましい。 カーボンブラックとしては、 ファーネスブ ラック、 ミディアムサーマルカーボンブラック、 アセチレンブラック、 ケッチェンブラ ックなどが挙げられる。 なかでもアセチレンブラック、 ケッチェンブラックなどが好ま しい。
通常、 カーボンブラック等が配合された樹脂組成物は、 延性ゃ耐衝撃性が低下するこ とがある。 この現象は、 通常、 力一ポンプラックは 1 z m以下の微粒であるため連続相 との界面の総面積が大きくなるが、 界面の密着性が良好ではなく界面が剥離しやすいか らであると理解されている。 しかし、 本発明の樹脂組成物は、 力一ボンブラック等が配 合されていても、 良好な延性および耐衝撃性を有する。 この理由は明らかではないが、 ポリフエ二レンスルフィド等の連続相に、 エチレン系三元共重合体を主成分とする 1 μ m以下の微小なドメインが分散した相構造を有することと関連が高いと推察される。 分 散相による強靱化の作用は、 その分散相の柔軟性のために近隣の分散相同士が相互作用 して、 本来であれば塑性変形しにくい連続相に塑性変形を生じさせ、 これによりェネル ギ一を吸収するためと考えられている。 本発明の樹脂組成物でも同様の作用により、 延 性等が向上すると考えられる。 この点、 本発明の樹脂組成物においては、 分散相が非常 に微小であるため、 連続相に生じる塑性変形も最初は極めて微小な領域において起こる と考えられる。 一方、 カーボンブラックが配合されている場合、 カーボンブラックと連 続相の界面の破壊も最初は非常に微小な領域で発生する。 このカーボンブラックと連続 相の界面の破壊と、 分散相に起因する連続相の塑性変形とは、 同じようなスケールの領 域で起こるため、 競争的に発生し進展すると考えられる。 しかし、 本発明の樹脂組成物 においては、 分散相が柔軟であることや、 分散相と連続相の密着性が良好であることな どから、 分散相に起因する連続相の塑性変形の方が優先的に生じ、 かつ進展すると考え られる。 よって、 本発明の樹脂組成物はカーボンブラック等が配合されていても、 耐衝 撃性等に優れるという、 従来にない効果を奏すると考えられる。
本発明の樹脂組成物または本発明の電気伝導性樹脂組成物には、 さらに用途、 目的に 応じて他の配合剤、 例えばタルク、 マイ力、 炭酸カルシウム、 ワラスナイトのような無 機充填剤、 カップリング剤、 補強剤、 難燃助剤、 安定剤、 顔料、 離型剤、 またはエラス トマ一等の耐衝撃改良剤等を配合することができる。 これらの配合剤の配合量は、 成分
(A l )、 (A 2 ) および (B ) の合計 1 0 0質量部に対して、 4 5質量部以下、 好まし くは 2 0質量部以下である。 特に本発明の樹脂組成物または本発明の電気伝導性樹脂組成物には、 ガラス繊維を配 合することが好ましい。 ガラス繊維を配合することにより、 該樹脂組成物の耐熱性、 曲 げ弾性率などがさらに向上する。 ガラス繊維は、 公知ものを使用できる。 例えば、 Aガ ラス、 Cガラス、 Eガラス、 Sガラスなどからなるガラス繊維が使用できる。 ガラス繊 維は表面処理が施されていてもよい。 中でも、 シランで表面処理したガラス繊維が好ま しい。 また、 ガラス繊維の数平均ガラス繊維長は、 好ましくは 10〜1000 mであ る。 このようなガラス繊維としては、 チョップドストランド、 ミルドガラス、 長繊維な どが挙げられるが、 径が 3〜 30 m、 繊維長が 1〜 3 mmのチョップドストランドの ガラス繊維が好ましい。
ガラス繊維の含有量は、 樹脂成分である成分 (Al)、 (A2) および (B) の合計量 を 100質量部としたとき、 好ましくは 5〜 90質量部、 さらに好ましくは 10〜70 質量部である。
なお、 成分 (Al)、 (A 2) および (B) の合計量とは、 PPS樹脂組成物において は成分 (A1) と (B) の合計量を、 PPSZPPE樹脂組成物においては、 成分 (A 1) と (A2) と (B) の合計量を意味する。
(5) 本発明の樹脂組成物の相構造
i) PPS樹脂組成物
成分 (A2) を含まない PPS樹脂組成物は、 成分 (A1) ポリフエ二レンスルフィ ドが連続相であり、成分(B)エチレン系三元共重合体が分散相であることが好ましい。 成分 (A1) が連続相となることで、 耐熱性に優れた樹脂組成物となるからである。 成 分(B)は、前述したような機構により、連続相中に微分散しうる。分散相の粒子径は、 数平均粒子径にして 1 m未満が好ましく、 0. 未満がより好ましい。成分(B) の数平均粒子径は透過型電子顕微鏡像あるいは走査型電子顕微鏡像から、 複数の分散粒 子の粒子径、 好ましくは 100個以上の分散粒子の粒子径を測定し、 その平均値を算出 して得られる。
i i) PPSZPPE樹脂組成物
成分 (A2) を含む PPSZPPE樹脂組成物は、 成分 (A1) のポリフエ二レンスル フイドまたは成分 (A2) のポリフエ二レンエーテルのいずれかが連続相であり、 他の 成分が分散相である形態が好ましい。 スーパーエンジニアリングプラスチックである成 分 (Al)、 およびェンジァリニングプラスチックである成分 (A2) のいずれかが連 続相となることで、 耐熱性に優れた樹脂組成物となるからである。 特に、 成分 (A1) のポリフエ二レンスルフイドが連続相になると、 機械的特性、 耐熱性などに優れるので 好ましい。 この場合、 少量成分である (B) は分散相となる。
また、 PPSZPPE榭脂組成物は、 前述のような機構によって、 成分 (B) が、 成 分 (A1) 中の官能基のみならず、 成分 (A2) 中の官能基とも反応し、 これらの反応 生成物が相溶化剤として作用しうる。
このため、 PPSZPPE樹脂組成物は、少量成分である成分(B)が、成分(Al)、 成分 (A2) 中に微分散した相構造となる。 例えば、 (A1) が連続相、 (A2) が分散 相である場合、 配合した (B) の一部は (A1) および (A2) 中に、 他の一部は (A 1) と (A2) の界面に分散する。 このような特徴ある相構造となるため、 従来の例と は異なり、 耐熱性、 低誘電率を実現しながら、 耐衝撃性や延性などにも優れた樹脂組成 物が得られると推察される。 成分 (B) は、 (A1) および (A2) 中に、 数平均粒子 径が 1 / mサイズの微粒子として分散していることが好ましく、 0. 5 xm以下のサイ ズの微粒子として分散していることがより好ましい。 相構造は、 透過型電子顕微鏡像で 観察できる。 すなわち、 該組成物を酸化ルテニウムなどで染色処理したのち、 ミクロト ームなどを使用してその超薄切片を作製し、 透過型電子顕微鏡で相構造を観察できる。 その際、酸化ルテニウムで切片を染色すると、成分(B) は最も染色され易く、成分(A 2) が次に染色され易く、 成分 (A1) は最も染色され難いことから、 樹脂組成物中の 各成分の形態を観察できる。 樹脂組成物に微粒子が認められるほど、 上述した力学特性 がより良好になる。
溶融混練に際して、 当初、 成分 (B) は、 成分 (A1) のポリフエ二レンスルフィド と成分 (A2) のポリフエ二レンエーテルの界面にも存在しやすい。 これは、 前述のと おり、 成分 (B) が、 成分 (A1) および (A2) と反応しうるためと考えられる。 さ らに溶融混練が進むと、 成分 (B) は界面から (A2) および (A2) 中に微分散して いく。 一般に、 成分 (A1) のポリフエ二レンスルフイドと成分 (A2) のポリフエ二 レンエーテルの相溶性は十分でなく、 両者を単純に混合してなる榭脂組成物は、 両者の 界面の接着性が十分でないため、 十分な力学特性を発揮できないことが知られている。 しかし、 本発明は、 成分 (B) が成分 (A1) および (A2) と反応しうるため、 極め て力学特性に優れた樹脂組成物が得られると考えられる。
2. 本発明の樹脂組成物の製造方法
(1) PPS樹脂組成物
PPS樹脂組成物は、 成分 (A1) と (B) を溶融混練して得ることができる。 溶融 混練には、 一軸押し出し機、 あるいは二軸押し出し機などの混練機を用いることができ るが、中でも強混練が可能な二軸押し出し機を用いることが好ましい。溶融混練温度は、 260〜330でが好ましく、 280〜32 がさらに好ましい。 また、 樹脂組成物 が、 成分 (C) の電気伝導性付与物質等の他の成分を含む場合も同様に製造できる。 こ の場合、 混練の順序は特に制限されない。 例えば、 成分 (C) 電気伝導性付与物質を、 本発明の樹脂組成物成分 (A1) および(B) と一括して溶融混練でき、 成分 (Al)、 および成分 (B) を予め溶融混練して得たペレットに、 成分 (C) 電気伝導性付与物質 を配合して溶融混練してもよい。
混練は、溶融混練されて得た組成物の 300 、 121 s e c における溶融粘度(以 下単に「特定溶融粘度」 ともいう)が、溶融混練前の成分(A1) の特定溶融粘度の 1. 5倍以上となるように混練されることが好ましい。 例えば、 成分 (A1) と (B)、 ま たは成分 (A1) と (A2) と (C) を一括して溶融混練する場合、 溶融混練後の組成 物の特定溶融粘度が、 混練する前の成分 (A1) の特定溶融粘度の 1. 5倍以上になる ように製造されることが好ましい。 あるいは、 成分 (A1) および (B)、 または成分 (A1) と (A2) と (B) を予め溶融混練して得たペレットに、 成分 (C) 電気伝導 性付与物質を配合して再度溶融混練する場合、 二回目の溶融混練において得られた樹脂 組成物の特定溶融粘度が、 混練する前の成分 (A1) の特定溶融粘度の 1. 5倍以上に なるように製造されることが好ましい。 この粘度比は、 2. 5倍以上とすることがより 好ましい。
このように樹脂組成物を製造すると、 成分 (A1) のポリフエ二レンスルフイド連続 相に、 成分 (B) のエチレン系三元共重合体が 1 m以下の粒子径で微分散しやすくな るため、耐衝撃性等により優れた樹脂組成物が得られる。樹脂組成物の特定溶融粘度が、 成分 (A l ) の特定溶融粘度の 1 . 5倍以上になるようにするには、 混練時間を長くす ればよい。 その際、 混練状態にある樹脂組成物の溶融粘度をモニターし、 安定して所望 の溶融粘度となったところで混練を停止させればよい。 あるいは、 混練機のスクリュー 構成を適宜調整して、 混練の度合いを強くすることにより、 樹脂組成物の特定溶融粘度 を調整してもよい。
特定溶融粘度は、 定法によって測定してよいが、 キヤビラリ一型の溶融粘度計 (例え ば、 東洋精機株式会社製 キヤピログラフ E 3 B型) で測定されることが好ましい。 このように十分に混練することにより、樹脂組成物の相構造が変化するのは、成分(A 1 ) のポリフエ二レンスルフイドと、 成分 (B ) のエチレン系三元共重合体の反応が十 分に進行するからではないかと推察される。 このことは、 組成が同じでも、 各成分が反 応しない組成物は、 混練の際にその溶融粘度があまり高くはならないことからも推察さ れる。
本発明の樹脂組成物において、前記成分(A 1 )および(B ) を溶融混練する工程は、 混練機を用い、 かつ以下のように定義される混練機のせん断速度の最大値が 8 0 0 s e C—1以上となるように混練されることが好ましい。
混練機のせん断速度 Sは、 以下の式 (i ) で定義される。
S = 7C · Dm · N/ h ( i )
Sはせん断速度、 Nはスクリユー毎秒回転数、 hはクリアランスである。 混練機が一軸 または二軸の押出し機である場合は、 Dmはスクリユー溝の平均径である。 スクリユー 溝の平均径とは、スクリユーの各溝部分(凹部)におけるスクリュ一径の平均値である。 また、 混練機がラボプラストミルのようなディスクを使用したバッチ式の混練機の場 合には、 Dmは、 シリンダー内径とディスク長軸直径の差で定義される。
クリアランスとは、 スクリユーまたはディスクと混練機壁面との間の距離であり、 チ ップクリアランスともいう。 スクリユーは、 一部にニーデイング部分を含む場合等があ り、 そのクリアランスはスクリユーの長手方向で異なる場合がある。 このような場合、 本発明においては、 クリアランスはスクリュー全体の平均値とするか、 または二一ディ ング部分以外のクリァランスの平均値として計算することもできる。
せん断速度の最大値とは、 溶融混練工程において発生する最大のせん断速度を意味す る。 通常の溶融混練工程においては、 Dmと hは変更されないため、 Nの回転数によつ て、 せん断速度 Sは調整される。 溶融混練工程とは、 ポリフエ二レンスルフィドが溶融 する温度である、 混練機の設置温度を 2 8 0〜3 2 0でとした場合を意味する。
混練機のせん断速度が大きくなるほど、混練の度合いを強めることができる。よって、 本発明においては、 混練機のせん断速度の最大値は 8 0 0 s e c—1以上が好ましく、 9 0 0 s e c一 1以上がより好ましい。 混練機としては、 生産性の優れた二軸の押出し機が 好ましい。
成分 (B) のエチレン系三元共重合体の代わりに、 グラフト変性された三元べ一スグ ラフ卜共重合体を用いた場合、 上記のように十分に混練することの効果が顕著となる。 このようなグラフト共重合体は、 枝鎖を有するため、 その立体障害のために、 幹に存在 するエポキシ基またはエステル基と、 ポリフエ二レンスルフィド等の官能基が反応しに くいと考えられる。 しかし、 混練の度合いを強めることにより、 エポキシ基等とポリフ ェニレンスルフィド等の官能基の反応が進行し、 グラフト共重合体がポリフエ二レンス ルフィドマトリックス中に微分散しやすくなると考えられる。
この効果は、 成分 (B) の代わりに、 成分 (D) としてエチレン系不飽和カルボン酸 ダリシジルエステル単位またはエチレン系不飽和炭化水素基グリシジルエーテル単位 からなるセグメント (以下 「エチレン系二元共重合体セグメント」 ともいう) と、 ビニ ル系共重合体セグメントからなる二元ベースグラフト共重合体を用いた場合において も同様である。 二元べ一スグラフト共重合体は、 公知のものであればよいが、 本発明に おいては、 エチレン系二元共重合体セグメントが幹であり、 この幹にビニル系共重合体 セグメントが枝として結合している共重合体が好ましい。 ェチレン系ニ元共重合体セグ メントにおける、 エチレン単位と、 エチレン系不飽和カルボン酸グリシジルエステル単 位またはエチレン系不飽和炭化水素基グリシジルエーテル単位の比率は、 6 0〜9 8質 量%: 4 0〜2質量%が好ましく、 7 0〜9 5質量: 3 0〜 5質量%がより好ましい。 ビニル系重合体セグメントを形成するビニル単量体には、 三元ベースグラフト共重合 体で述べたものと同じものを用いてよい。
ビニル単量体としてはスチレンがさらに好ましい。 ビニル単量体としてスチレンを使 用するとスチレンとポリフエ二レンエーテルとの親和性が良好であるため、 成分 (B ) の微細化がさらに進行する。
また、 エチレン系二元共重合体セグメントとビニル系重合体セグメントとの比率、 お よび二元ベースグラフト共重合体の M Iは、 それぞれ三元べ一スグラフト共重合体と同 様であることが好ましい。 さらに、 二元ベースグラフト共重合体は、 三元べ一スグラフ ト共重合体と同様に調製してよい。
この場合における成分 (A1) と (B) の比率は、 65 : 35〜99 : 1であるが、 75 : 25〜99 : 1が好ましく、 80 : 20〜95 : 5がより好ましい。 特に、 成分 (A1) と成分 (B) の質量比が 75 : 25〜99 : 1であると、 樹脂組成物の難燃性 が良好となり、 UL 94難燃性試験における評価が V— 0または V— 1である樹脂組成 物となりうる。
(2) PPSZPPE樹脂組成物
PPSZPPE樹脂組成物の製造方法も、 特に限定されない。 例えば、 成分 (A1) のポリフエ二レンスルフイド、 (A2) のポリフエ二レンエーテル、 および (B) のェ チレン系三元共重合体を一括して溶融混練して得てよい。 または、 成分 (A1) および 成分 (B) をあらかじめ溶融混練した後に成分 (A2) を加えて溶融混練する方法、 成 分 (A2) および成分 (B) をあらかじめ溶融混練した後に成分 (A1) を加えて溶融 混練する方法を用いてもよい。 さらには、 成分 (A1) と (B) を押出し機の上流側か ら押出し機に供給し、 成分 (A2) を押出し機の下流側から押出し機に供給して溶融混 練する方法、 または、 成分 (A2) と成分 (B) を押出し機の上流側から押出し機に供 給し、 成分 (A1) を押出し機の下流側から押出し機に供給して溶融混練する方法を用 いてもよい。
成分 (C) の電気伝導性付与物質を配合する場合には、 成分 (Al)、 (A2)、 成分
(B) および成分 (C) を一括して溶融混練すればよい。 また成分 (A1) および成分
(C) をあらかじめ溶融混練した後に、 成分 (A2) および成分 (C) を加えて溶融混 練してもよく、 あるいは成分 (Al)、 成分 (A2) および成分 (B) をあらかじめ溶 融混練した後に、 成分 (C) を加えて溶融混練してもよい。
また、 PPS樹脂組成物と同様に、 PPS/PPE樹脂組成物の製造方法においても、 溶融混練されて得た組成物の特定溶融粘度が、 溶融混練前の成分 (A1) の特定溶融粘 度の 1 . 5倍以上となるように混練されることが好ましく、 2 . 5倍以上となるように 混練されることがより好ましい。 さらには、 前記のように定義される混練機のせん断速 度の最大値が 8 0 0 s e c—1以上となるように混練されることが好ましい。
これらの方法は、 成分 (B ) の代わりに、 前述の三元べ一スグラフト共重合体または 二元べ一スグラフト共重合体を用いるときに特に有効である。
3 . 本発明の樹脂組成物の加工方法および用途等
本発明の樹脂組成物は、 通常の熱可塑性樹脂成形品に用いられている加工方法により 容易に成形品に加工される。 加工方法の例には、 射出成形や押出成形、 フィルム *シ一 ト成形、 繊維成形、 真空成形、 ブロー成形、 プレス成形、 カレンダー成形、 発泡成形等 が含まれる。 本発明の樹脂組成物は上記の成形加工法の適用により、 電気 ·電子部品、 通信部品、包装用などのフィルム ·シート、繊維、 自動車部品などへ幅広く適用できる。 特に、 樹脂組成物が成分 (C) 電気伝導性付与物質を含む場合、 その配合量を調整する ことによって、 帯電防止材料、 静電防止材料、 導電性材料、 高導電性材料などへ適用す ることができる。 本発明の樹脂組成物は、 ポータブル機器など強度が求められる分野へ の適用が期待されるため、 シャルピー衝撃強度が 6 0 k J Zm2以上であることが好ま しい。
特に成分 (A 2 ) を含む、 P P S Z P P E樹脂組成物は、 耐熱性、 耐衝撃性、 延性な どに優れ、 低誘電率であることから、 高速通信分野への適用が期待される。 このため、 当該樹脂組成物は、周波数 1 k H zにおける誘電率が 3 . 2以下であることが好ましい。 誘電率は、 定法によって測定してよい。
また、 本発明の樹脂組成物は、 U L 9 4難燃性試験における評価が V— 0または V— 1であることが好ましい。
本発明の樹脂組成物は、 当該樹脂組成物からなる基板、 およびこの基板の上に金属層 を含む積層体として用いられる。 基板とは、 積層体のベースとなる板状またはフィルム 状部材であり、 公知の方法で得てよい。 例えば、 基板は、 フィルム、 シート、 押し出し 成形品、 あるいは射出成形により得ることができる。
金属層は、 基板の表面にメツキ処理や金属箔の張り合わせ処理を施して形成できる。 かかるメツキ処理には、 電解メツキ、 気相メツキ、 化学メツキ、 溶融メツキなど、 既存 の方法を適用できるが、 電解メツキ、 化学メツキが好ましい。 電解メツキは、 電解液中 に基板を浸潰したのち電気を通し、 液中の金属イオンを基板の表面に析出させる方法で ある。 電解液中のメツキ金属としては、 銅、 ニッケル、 金、 銀、 錫、 アルミ、 亜鉛、 ク ロムなどを挙げることができるが銅が好ましい。
金属箔の張り合わせ処理は樹脂組成物のフィルム ·シートに対して熱圧着法、 あるい は接着層を両者間に介在させる方法などの周知の方法を適用して行なうことができる。 金属箔は、 特に限定されないが、 その例には、 金箔、 銀箔、 ステンレス箔、 電解銅箔、 圧延銅箔、 銅合金箔、 チタン箔、 アルミ箔、 ニッケル箔、 銅一ニッケル箔、 ニッケル— 銅箔が含まれる。 中でも電解銅箔、 圧延銅箔、 銅一ニッケル箔が好ましい。
金属層の厚みは 1〜5 0 0 であることが好ましく、 2〜3 0 0 A mの厚みがさら に好ましい。
本発明の積層体は、 回路を形成することにより、 フレキシブルプリント基板、 多層プリ ント基板などとして利用できる。
本発明の樹脂組成物は、 当該樹脂組成物からなる基板、 およびこの基板の上に無機物 層を含む積層体として用いてもよい。 無機物層を形成する無機物の例には、 炭素、 酸化 ケィ素、 酸化アルミ、 酸化マグネシウム、 窒化チタン、 酸化インジウム、 シリコンなど が含まれる。無機物層を形成する方法の例には、真空蒸着法、イオンプレーティング法、 スパッタリング法などが含まれる。 真空蒸着法においては、 イオンビームを同時に照射 するイオンビームアシスト法を用いてもよい。
これらの積層体を製造するにあたり、 基板に表面処理を施してもよい。 表面処理法に は、 周知の方法を適用することができる。 その例には、 研磨処理、 酸処理、 アルカリ処 理、 UV照射処理、 アルゴンまたは酸素雰囲気下での高周波放電によるプラズマ処理、 イオンビーム処理が含まれる。 本発明の積層体は、 基板と、 金属層もしくは無機層から なる二層構造でもよく、 金属層と基板と金属層、 または無機層と基板と無機層等からな る三層以上の積層体であってもよい。
このような積層体はプリント配線基板、 電気 ·電子部品、 自動車構造材などへ適用可 能である。
実施例 以下に本発明を実施例により説明するが、 これは単なる例示であり、 本発明はこれら によって限定されない。
(1) 物性試験
•引張試験: (株) 東洋精機製作所製、 ストログラフ VE S 5 0型を使用し、 ロー ドセル l kN、 チャック間距離 40mm、 延伸速度 1 OmmZm i nで引張試験を行 なった。
•シャルピー衝撃試験: (株) 東洋精機製作所製、 DG d i g i t a l i mp a c t t e s t e rを使用し、 ハンマ一の質量による負荷 4 J、 ハンマーの回転軸中心 から重心までの距離 0. 2 3mm、 ハンマ一持ち上げ角度 1 5 0 ° 、 周期 0. 9 62 s e c、 温度 2 0でで、 J I S 7 1 6 0に準拠して測定を行った。
,体積固有抵抗率 (Ω · cm) :電気伝導率測定装置として、 (株) ダイヤインスツルメ ンッ製の口レス夕一 GP型、 およびハイレス夕一 UP型を使用して、 J I S K 7 1 94に準拠して体積固有抵抗率の測定を行なった。
•難燃性試験: UL 94難燃性試験を実施し、 試験片の難燃性を評価した。 なお、 難燃 性は V_ 0が最も良好で V— 1がそれに次ぎ、 HBが劣る。
(2) 樹脂組成物の成分
<成分 (A 1) >
ポリフエ二レンスルフイド (表中 PP Sと表記) ·
•東レ (株) 製 トレリナ A9 0 0
'熱変形温度 (AS TM D 648、 1. 82 MP a荷重) 1 0 5
•比重 1. 34
•融点 (DS C測定) 2 7 8
<成分 (A2) >
ポリフエ二レンエーテル (表中 P PEと表記)
·三菱エンプラ (株)製 ポリ (2, 6—ジメチル— 1, 4—フエ二レンエーテル) ュ ーピレックス PX— 1 0 0 F
'クロロホルム中、 3 0 の固有粘度 0. 4 d 1 /g
く成分 (B) > エチレン系三元共重合体
,住友化学 (株) 製 ボンドファースト 7L (表中 BF— 7Lと表記)
• MI (J I S K7210、 190 、 21 Ν (=2. 16 kg) 荷重) = 7 分
•融点 60
'表面硬度 (AS TM D2240、 Sho r e D) 18
•組成:エチレン Zグリシジルメタクリレート アクリル酸メチル =70/3/27 (質 量比)
<成分 (C) >
カーボンブラック (表中 ECと表記)
·ライオン (株) 製 ケッチェンブラック EC
• BET比表面積 800m2Zg
•一次粒子径 39. 5 nm
ぐその他成分 >
三井化学 (株) 製ポリエチレン ハイゼックス 2100 J (表中 PEと表記) · M I ( J I S K7210, 190 , 21 N荷重) = 6 gZ 10分
•融点 127で
'表面硬度 (AS TM D2240, Sho r e D) 63
住友化学 (株) 製 ボンドファースト 2C (表中 BF— 2Cと表記)
• MI ( J I S K7210、 190°C、 21 N荷重) =3 gZl 0分
·融点 105で
'表面硬度 (AS TM D2240、 Sho r e D) 46
•組成:エチレン Zグリシジルメタクリレート =94ノ 6 (質量比)
ボンドファースト 2 Cのエポキシ当量は、 以下のとおりに算出された。
各単位の分子量は、 それぞれ 28、 1 14である。 よって、 各単位の比をモル比で表す と、 エチレン単位:グリシジルメ夕クリレート単位 =3. 36 : 0. 05 = 98. 5 : 1. 5 (モル比) となる。 従って、 このような共重合体は、 エポキシ基 0. 015個あ たり、 0. 985X 28 + 0. 015 X 1 14 = 29. 3の分子量を有すると考えられ る。よって、 エポキシ当量は、 29. 3/0. 015= 1953 g/e qと計算できる。 <2元ベースグラフト共重合体 >
日油株式会社製 モディパー A 4200
•エチレン単位/エチレン系不飽和カルボン酸ダリシジルエステル単位からなるセグメ ントに、 アクリル酸メチルセグメントがグラフトしているグラフ卜共重合体 (セグメン 卜比は 70/30 (質量比))
• MI (J I S K7210, 190 、 21 Ν荷重) =0. 1 gZl 0分
日油株式会社製 モディパー A4100
•エチレン単位 Zエチレン系不飽和カルボン酸グリシジルエステル単位からなるセグメ ントに、 スチレンセグメントがグラフトしているグラフト共重合体 (セグメント比は 7 0/30 (質量比))
[実施例 1〜 9および比較例 1〜 9 ]
表 1、 2に示す配合で、 各成分をよく混ぜ合わせた後、 混練機として、 (株) 東洋精 機製作所製ラボプラストミル 4M150型を使用し、 混練温度 300 、 スクリユー回 転数 100 r pm、 混練時間 2〜10分として、 各成分の溶融混練を行った。
混練機の混練部は、 内容積が約 70mL、 シリンダー内径が 47. 7mm, ディスク 長軸外径が 46. 9mm、 ディスク単軸外径が 29. 3mm、 ディスクと混練機壁面の クリアランスが 0. 4mm、 軸間距離が 38. 5mm、 嚙み合い比 (ディスク長径 Zデ イスク短径) が 1. 6であった。 前述の式 (i) における Dmは 0. 8mmであり、 h は 0. 4mmである。 よって、 せん断速度 Sは、 1. 2 X 103 (s e c-1) と算出さ れた。
得られた混練物は、 温度 310 で予熱 3分、 圧力 20 MP aで 5分間プレスし、 その 後 20でに急冷して、 厚さ約 0. 5mmのシートとされた。 ただし、 比較例 1について は、 混練することなく、 ペレットをそのまま用いてプレス成形した。
引張試験用には、 プレスシートを、 平行部直線部の長さ 16 mmのミニダンベル形状に 打ち抜いたものを使用した。 シャルピー衝撃試験用には、 プレスシートをダンベル形状 で、 全長 80mm、 厚さ 5mm、 平行部の幅 10mm、 平行部の長さ 10mm、 つ かみ部の幅 15 mmに打ち抜いたものを使用した。
分散相の平均粒子径は、 プレスシート断面の透過型電子顕微鏡写真から算出した。 すな わち、 分散相 100〜200個について、 数平均粒子径を測定した。
実施例 2のプレスシート断面の透過型電子顕微鏡写真を図 1に示す。 連続相の成分 (A1) と分散相の成分 (B) が認められ、 分散相の粒子径は 0. 02〜0. 5/zmの 範囲であった。 数平均粒子径は 0. 3^111であった。 比較例 3のプレスシート断面の透 過型電子顕微鏡写真を図 2に示す。 連続相の成分 (A1) と分散相のポリエチレンが認 められ、 分散相の粒子径は 2〜 5 mの範囲であり、 数平均粒子径は 3. l /zrnであつ た。
表 1
実施例 比較例
1 2 3 4 5 6 7 8 1 2 3 4 5 6 組成 (質量部)
P P S 90 80 70 60 50 50 40 30 100 60 80 80 30 60
P PE 0 0 10 20 20 30 30 50 0 0 0 0 50 20
B F-7 L 10 20 20 20 30 20 30 20 0 40 0 0 0 0
P E 0 0 0 0 0 0 0 0 0 0 20 0 0 20
B F-2 C 0 0 0 0 0 0 0 0 0 0 0 20 20 0 分散相数平
均粒子径 0.2 0.3 - - - - - - - 3.1 2.6 1.2 - -
伸び率
188 221 29 35 30 19 29 35 12 82 23 78 15 9 (%)
破断点強度
43 31 37 28 22 30 22 38 64 7 15 33 22 14 (MP a)
シャルビ一
衝撃強度 168 500 251 177 252 160 130 180 95 303 66 278 110 44
(k J/m2) 誘解 - - 3.1 3.0 3.0 3.0 2.9 2.8 ― - ― ― 2.8 3.0 難燃性 V-0 V-0 - - - - - - V-0 HB V-1 V- 0 - ― 成分 (A1) ポリフエ二レンスルフイドおよび成分 (Β) エチレン系三元共重合体を 含有し、 かつその質量比が、 90 : 10の実施例 1の PPS樹脂組成物、 および 80 : 20の実施例 2の PPS樹脂組成物は、 分散相の平均粒子径が極めて小さく、 伸び率、 破断点強度、シャルビ一衝撃強度、難燃性の総ての項目について良好であった。例えば、 実施例 1および 2の樹脂組成物は、 比較例 1〜4の何れと比較しても、 伸び率に極めて 優れていた。 成分 (Β) エチレン系三元共重合体を含有しない比較例 1の樹脂組成物、 成分 (A1) と成分 (Β) の比率が 60 : 40である比較例 2、 成分 (Β) エチレン系 三元共重合体に代えて、 それぞれポリエチレン、 およびエチレンノグリシジルメ夕クリ レートを含有した比較例 3および比較例 4は、 総て何れかの物性において十分ではなか つた。
以上より、 PPS樹脂組成物において、 耐衝撃性、 延性、 難燃性の総てを具備するた めには、 (A1) ポリフエ二レンスルフイドおよび (Β) エチレン系三元共重合体を特 定の範囲の割合で配合することが重要であることが分かった。 また、 二軸押し出し機な どを使用して各成分を強く混練することも重要であることが分かった。
成分 (A1) ポリフエ二レンスルフイドおよび成分 (Α2) ポリフエ二レンエーテル を含有し、 さらに成分 (Β) エチレン系三元共重合体を含有する実施例 3〜8の PPS ΖΡΡΕ榭脂組成物は、 成分 (Β) を含有せずにエチレン系二元共重合体を含有する比 較例 5の PP SZPPE樹脂組成物に比して、 延性に優れていた。 また、 実施例 3〜8 の PPSZPPE樹脂組成物は、 成分 (Β) の代わりにポリエチレンを含有する比較例 6の PPSZPPE樹脂組成物に比して延性および耐衝撃性に優れていた。 また、 実施 例 3〜8の PP SZPPE榭脂組成物は、 成分 (A1) のみを含有する比較例 7の樹脂 組成物に比して、 延性、 耐衝撃性に優れ、 しかも低誘電率であった。 また、 ポリフエ二 レンスルフィドおよびポリフエ二レンエーテルは、 それぞれ耐熱性に優れることから、 これらの成分を主成分とする実施例 3〜8の樹脂組成物は、 耐熱性に優れる。
以上より、 PPSZPPE樹脂組成物において、 耐熱性、 耐衝撃性、 延性、 耐衝撃性 の総てを具備するためには、 (A 1) ポリフエ二レンスルフイドおよび (A2) ポリフ ェニレンエーテルを含有し、 さらに成分 (B) エチレン系三元共重合体を含有すること が重要であることが分かった。
表 2
Figure imgf000035_0001
成分 (A1) ポリフエ二レンスルフィド、 成分 (B) エチレン系三元共重合体および (C) 電気伝導性付与物質を含有し、 かつその質量比が 80 : 20 : 5の実施例 9の電 気伝導性樹脂組成物は、 極めて高い電気伝導性を示し、 伸び率にも優れていた。 一方、 成分 (B) を含有しない比較例 8の樹脂組成物は、 伸びが十分でなかった。 また、 成分 (A1) と (B) の質量比が 60 : 40の比較例 9の樹脂組成物は、 十分な電気伝導性 を示さず、 伸び率も十分でなかった。 以上より、 PPS樹脂組成物において、 延性、 電 気伝導性などの特性を具備するためには、 (A1) ポリフエ二レンスルフイド、 (B) ェ チレン系三元共重合体、 (C) 電気伝導性付与物質を特定の範囲の割合で配合すること が重要であることが分かった。 また、 二軸押し出し機などを使用して各成分を強く混練 することも重要であることが分かった。
[実施例 10〜: 12、 および比較例 10、 1 1]
表 3に示す配合で、 各成分をよく混ぜ合わせた後、 押し出し機として、 (株) 東洋精機 製作所製ラボプラストミル 4M150型を使用し、 混練温度 300°C、 スクリュー回転 数 100 r pmで各成分の溶融混練を行なった。実施例 10〜 12、および比較例 10、 1 1は、 混練中の組成物の特定溶融粘度をモニターしながら混練した。 混練時間は表に 示すとおりとした。 特定溶融粘度は、 東洋精機 株式会社製 Ca p i l o g r ah E3 B型を用いて、 300t:、 せん断速度 121 s e c一1で測定した。
混練後の榭脂組成物の特定溶融粘度と、 混練する前の原料としたポリフエ二レンスルフ イドの特定溶融粘度の比を算出した。 また、 得られた樹脂組成物は実施例 1と同様にし て評価した。 これらの結果を表 3に示す。 なお、 実施例 2、 比較例 1、 3の樹脂組成物 についても特定溶融粘度を測定し、 他の物性値と合わせて表 3に示した。
表 3
Figure imgf000036_0001
実施例 2と 10、 および実施例 1 1と 12の比較から、 混練後の樹脂組成物の特定溶 融粘度が、 混練する前の原料としたポリフエ二レンスルフイドの特定溶融粘度の 2. 5 倍以上になるように混練して得た樹脂組成物は、 より優れた耐衝撃性等を与えることが 明らかである。 [実施例 13〜15]
表 4に示す配合で、 各成分をよく混ぜ合わせた後、 実施例 1と同様にして樹脂組成物を 製造し、 評価した。 これらの結果を、 実施例 2、 6、 比較例 1、 3、 10および 11の 値とともに表 4に示す。
表 4
Figure imgf000037_0001
実施例 13、 14と比較例1、 3、 10、 1 1の比較から、 実施例 13、 14の樹脂 組成物は、 衝撃強度等に優れることが明らかである。 また、 実施例 13、 14と実施例 2との比較から、 実施例 13、 14の榭脂組成物は、 破断点強度に優れることも明らか である。 実施例 1 5と 6の比較から、 実施例 1 5の樹脂組成物は、 伸び率と衝撃強度に優れる ことが明らかである。 これは、 グラフト共重合体 A 4 1 0 0がグラフ卜セグメントとし てポリスチレンを有するため、 ポリスチレンとポリフエ二レンエーテルとの相溶性が向 上し、 グラフト共重合体がより微小な相として分散しているためと推察される。
実施例 1 3〜1 5の榭脂組成物は、 混練後の樹脂組成物の特定溶融粘度が、 混練する 前の原料としたポリフエ二レンスルフィドの特定溶融粘度の 2 . 5倍以上になるように 混練されていたと考えられる。

Claims

請求の範囲
1. 成分 (A1) 下記の化学式 (1) で示される繰り返し単位を 70モル%以上含む ポリフエ二レンスルフィドを 65〜99質量%、 ならびに
成分 (B) エチレン単位、 エチレン系不飽和カルボン酸グリシジルエステル単位また はエチレン系不飽和炭化水素基グリシジルエーテル単位、 および、 酢酸ビニル単位また はアクリル酸メチル単位からなるエチレン系三元共重合体を 1〜35質量%含む、 樹脂 組成物。
【化 1】
Figure imgf000039_0001
(1)
2. 前記成分 (B) は、 数平均粒子径が 1 /zm未満の分散相を形成する、 請求項 1に 記載の樹脂組成物。
3. 前記成分 (B) は、 J I S K7210に準じ、 190 、 21 Νの荷重にて測 定したメルトインデックスが 2〜50 g/l 0分であり、 示差走査熱量測定における融 点が 45〜 100 である、 請求項 1に記載の樹脂組成物。
4. 前記成分(A 1)は、示差走査熱量測定による融点が 265 〜 295^であり、 比重が 1. 2〜1. 4である、 請求項 1に記載の樹脂組成物。
5. 前記成分 (A1) は、 前記成分 (B) 中のエチレン系不飽和カルボン酸グリシジ ルエステル単位またはェチレン系不飽和炭化水素基グリシジルエーテル単位と反応し うる官能基を有する、 請求項 1に記載の樹脂組成物。
6. UL 94難燃性試験における評価が V_0または V— 1である、 請求項 1に記載 の樹脂組成物。
7. 請求項 1に記載の樹脂組成物、 および成分 (C) 電気伝導性付与物質を含み、 成 分 (C) の含有量は、 成分 (A1) 100質量部に対し 1〜30質量部である、 電気伝 導性樹脂組成物。
8. 前記成分 (C) はカーボンブラックである、 請求項 7に記載の電気伝導性樹脂組 成物。
9. 前記成分 (A1) および (B) を溶融混練する工程を含む、 請求項 1に記載の樹 脂組成物の製造方法。
10. 前記成分 (Al)、 (B) および (C) を溶融混練する工程を含む、 請求項 8に 記載の電気伝導性樹脂組成物の製造方法。
1 1. 前記成分 (A1) および (B) を溶融混練する工程は、 溶融混練されて得た組 成物の 300t:、 121 s e c 1における溶融粘度が、 溶融混練前の成分 (A 1 ) の 3 00 :、 121 s e c— 1における溶融粘度の 1. 5倍以上となるように混練する工程で ある、 請求項 9に記載の樹脂組成物の製造方法。
12. 前記成分 (A1) および (B) を溶融混練する工程は、 混練機を用い、 かつ以 下の式 (i) で定義される混練機のせん断速度の最大値が 800 s e c—1以上となるよ うに混練される工程である、 請求項 9に記載の樹脂組成物の製造方法。
S = 7C · Dm · N/h ( i )
(式 (i ) 中、 Sはせん断速度、 Dmはスクリユー溝の平均径、 またはシリンダー内 径とディスク長軸直径の差、 Nはスクリユー毎秒回転数、 hはクリアランスを表す。)
13. 成分 (A1) 下記の化学式 (1) で示される繰り返し単位を 70モル%以上含 むポリフエ二レンスルフイドを 65〜99質量%、 および
成分 (D) エチレン系不飽和カルボン酸グリシジルエステル単位またはエチレン系不 飽和炭化水素基ダリシジルエーテル単位からなるセグメントと、 ビニル系共重合体セグ メントからなるグラフト共重合体を 1〜35質量%含む樹脂組成物の製造方法であつ て、
前記成分 (A1) および (D) を溶融混練する工程を含み、
前記工程は、 溶融混練されて得た組成物の 300°C、 121 s e c—1における溶融粘 度が、 溶融混練前の成分 (A1) の 300°C、 121 s e c 1における溶融粘度の 1. 5倍以上となるように混練する工程である、 樹脂組成物の製造方法。
【化 2】
Figure imgf000041_0001
(1)
14. シャルビ一衝撃強度が 60 k J /m2以上である請求項 1に記載の樹脂組成物。
15. 請求項 1に記載の樹脂組成物からなる射出成形体、 押出し成形体、 またはシー ト ·フィルム成形体。
16. 請求項 1に記載の樹脂組成物からなるチューブ状の成形体または繊維。
17. 請求項 1に記載の樹脂組成物からなる基板、 および前記基板の上に設けられた 金属層または無機物からなる層を含む積層体。
18. 請求項 1に記載の樹脂組成物からなる基板、 および前記基板の上に設けられた 金属めつき層を含む積層体。
19. 請求項 15に記載の成形体を用いた電気 ·電子部品、 通信機器部品、 または自 動車部品。
20. 樹脂組成物を射出成形、 押出し成形、 またはシート ·フィルム成形する工程を 含む成形体の製造方法であつて、
前記樹脂組成物は、 請求項 13に記載の方法で製造された樹脂組成物である、 成形体 の製造方法。
21. 榭脂組成物を射出成形、 押出し成形、 またはシート ·フィルム成形する工程、 および前記工程で得た成形体の表面に金属層または無機物層を積層する工程を含む、 積 層体の製造方法であって、
前記樹脂組成物は、 請求項 13に記載の方法で製造された樹脂組成物である、 積層体 の製造方法。
22. 成分 (A1) 下記の化学式 (1) で示される繰り返し単位を 70モル%以上含 むポリフエ二レンスルフィド、
【化 3】
Figure imgf000042_0001
(1)
成分 (A 2) ポリフエ二レンェ一テル、 ならびに
成分 (B) エチレン単位、 エチレン系不飽和力ルポン酸グリシジルエステル単位また はエチレン系不飽和炭化水素基グリシジルエーテル単位、 および、 酢酸ビニル単位また はァクリル酸メチル単位からなるエチレン系三元共重合体を含む、 樹脂組成物。
23. 前記成分 (Al)、 (A2) および (B) の合計量に対し、 前記成分 (B) は 1 〜45質量%であり、 かつ、 前記成分 (A1) と (A2) の質量比は、 10 : 90〜9 0 : 10である、 請求項 22に記載の樹脂組成物。
24. 前記成分 (A2) は、 下記一般式 (2) で示される繰り返し単位を 90モル% 以上含む、 請求項 22に記載の樹脂組成物。
【化 4】
Figure imgf000042_0002
(2)
(式中、 R l, R2, R 3および R 4は、 それぞれ独立して、 水素、 ハロゲン、 炭素数 1〜7の第一級もしくは第二級アルキル基、 フエニル基、 ハロアルキル基、 アミノアル キル基、 炭化水素ォキシ基、 および、 ハロゲン原子と酸素原子が少なくとも 2個の炭素 原子を介して結合されているハロ炭化水素ォキシ基からなる群から選択される基であ る。)
25. 前記成分 (A 2) は、 ポリ (2, 6—ジメチル— 1, 4—フエ二レンエーテル) であり、 かつクロ口ホルム中、 30 における固有粘度が 0. 2〜0. S d lZgであ ϊ¾ΐυΡ200δ/9δ340δ
WO 2009/088092 PCT/JP2009/050405
る、 請求項 22に記載の樹脂組成物。
26. 周波数 1 kHzにおける誘電率が 3. 2以下である、 請求項 22に記載の樹脂 組成物。
27. 前記成分 (B) は、 数平均粒子径が 1 m未満の分散相を形成する、 請求項 2 2に記載の樹脂組成物。
28. 前記成分 (B) は、 J I S K7210に準じ、 190 、 21 Νの荷重にて 測定したメルトインデックスが 2〜 50 g/10分であり、 示差走査熱量測定における 融点が 45〜 10 Ot:である、 請求項 22に記載の樹脂組成物。
29. 前記成分 (A 1) は、 示差走査熱量測定による融点が 265 〜 295でであ り、 比重が 1. 2〜 1. 4の範囲である、 請求項 22に記載の樹脂組成物。
30. 前記成分 (A1) は、 前記成分 (B) 中のエチレン系不飽和カルボン酸グリシ ジルエステル単位またはエチレン系不飽和炭化水素基グリシジルエーテル単位と反応 しうる官能基を有する、 請求項 22に記載の樹脂組成物。
31. UL 94難燃性試験における評価が V_ 0または V_ 1である、 請求項 22に 記載の樹脂組成物。
32. 請求項 22に記載の樹脂組成物、および成分(C)電気伝導性付与物質を含み、 . 成分 (C) の含有量は、 成分 (A1) および (A2) の合計 100質量部に対し 1〜3 0質量部である、 電気伝導性樹脂組成物。
33. 前記成分 (C) は力一ポンプラックである、 請求項 32に記載の電気伝導性樹 脂組成物。
34. 前記成分 (Al)、 (A 2) および (B) を溶融混練する工程を含む、 請求項 2 2に記載の樹脂組成物の製造方法。
35. 前記成分 (Al)、 (A2)、 (B) および (C) を溶融混練する工程を含む、 請 求項 33に記載の電気伝導性樹脂組成物の製造方法。
36. シャルピー衝撃強度が 60 k JZm2以上である請求項 22に記載の樹脂組成 物。
37. 請求項 22に記載の樹脂組成物からなる射出成形体、 押出し成形体、 チューブ 状の成形体、 シート ·フィルム成形体、 または繊維。
3 8 . 請求項 2 2に記載の樹脂組成物からなるチューブ状の成形体。
3 9 . 請求項 2 2に記載の樹脂組成物からなる基板、 および前記基板の上に設けられ た金属層または無機物からなる層を含む積層体。
4 0 . 請求項 2 2に記載の樹脂組成物からなる基板、 および前記基板の上に設けられ た金属めつき層を含む積層体。
4 1 . 請求項 3 7に記載の成形体を用いた電気 ·電子部品、 通信機器部品、 または自 動車部品。
PCT/JP2009/050405 2008-01-08 2009-01-07 ポリフェニレンスルフィド樹脂を含む組成物およびその製造方法 WO2009088092A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-001493 2008-01-08
JP2008001493A JP2011057719A (ja) 2008-01-08 2008-01-08 高性能ポリフェニレンスルフィド系樹脂組成物およびその製造方法
JP2008-232527 2008-09-10
JP2008232527A JP2011057720A (ja) 2008-09-10 2008-09-10 ポリフェニレンスルフィド系樹脂組成物及びその製造方法

Publications (1)

Publication Number Publication Date
WO2009088092A1 true WO2009088092A1 (ja) 2009-07-16

Family

ID=40853201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050405 WO2009088092A1 (ja) 2008-01-08 2009-01-07 ポリフェニレンスルフィド樹脂を含む組成物およびその製造方法

Country Status (1)

Country Link
WO (1) WO2009088092A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2511344A1 (en) * 2009-12-10 2012-10-17 Polyplastics Co., Ltd. Polyarylene sulfide resin composition and insert-molded article
JP2012224754A (ja) * 2011-04-20 2012-11-15 Rikkyo Gakuin ポリフェニレンエーテルを含む樹脂組成物およびその製造方法
WO2017094621A1 (ja) * 2015-12-04 2017-06-08 住友化学株式会社 樹脂組成物及びその製造方法、熱可塑性樹脂組成物、並びに成形体及びその製造方法
JP2019183077A (ja) * 2018-04-17 2019-10-24 ポリプラスチックス株式会社 ポリアリーレンサルファイド樹脂組成物、押出成形品、押出成形品の製造方法、並びに輸送機、又は発電機
WO2019220882A1 (ja) * 2018-05-16 2019-11-21 Dic株式会社 ポリアリーレンスルフィド樹脂組成物、並びこれを用いた二軸延伸フィルムおよび積層体
WO2021172127A1 (ja) * 2020-02-28 2021-09-02 Dic株式会社 ポリアリーレンスルフィド樹脂組成物の製造条件の判定方法および樹脂組成物の製造方法
CN114514117A (zh) * 2019-11-19 2022-05-17 Dic株式会社 双轴拉伸层叠膜、层叠体和它们的制造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01198664A (ja) * 1988-02-03 1989-08-10 Polyplastics Co ポリアリーレンサルファイド樹脂組成物
JPH0320356A (ja) * 1989-02-27 1991-01-29 Nippon G Ii Plast Kk ポリフェニレンサルファイド樹脂組成物
JPH06179791A (ja) * 1992-12-15 1994-06-28 Dainippon Ink & Chem Inc 樹脂組成物
JPH06329905A (ja) * 1993-05-19 1994-11-29 Dainippon Ink & Chem Inc 熱可塑性樹脂組成物
JPH10158511A (ja) * 1996-11-27 1998-06-16 Kureha Chem Ind Co Ltd ポリアリーレンスルフィド樹脂組成物
JP2000063669A (ja) * 1998-06-12 2000-02-29 Toray Ind Inc ポリフェニレンスルフィド樹脂組成物
JP2005248170A (ja) * 2004-02-03 2005-09-15 Toray Ind Inc ポリフェニレンスルフィド樹脂組成物
JP2006316245A (ja) * 2004-12-21 2006-11-24 Asahi Kasei Chemicals Corp ポリフェニレンスルフィド樹脂組成物
JP2008163112A (ja) * 2006-12-27 2008-07-17 Dic Corp ポリアリ−レンスルフィド樹脂組成物の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01198664A (ja) * 1988-02-03 1989-08-10 Polyplastics Co ポリアリーレンサルファイド樹脂組成物
JPH0320356A (ja) * 1989-02-27 1991-01-29 Nippon G Ii Plast Kk ポリフェニレンサルファイド樹脂組成物
JPH06179791A (ja) * 1992-12-15 1994-06-28 Dainippon Ink & Chem Inc 樹脂組成物
JPH06329905A (ja) * 1993-05-19 1994-11-29 Dainippon Ink & Chem Inc 熱可塑性樹脂組成物
JPH10158511A (ja) * 1996-11-27 1998-06-16 Kureha Chem Ind Co Ltd ポリアリーレンスルフィド樹脂組成物
JP2000063669A (ja) * 1998-06-12 2000-02-29 Toray Ind Inc ポリフェニレンスルフィド樹脂組成物
JP2005248170A (ja) * 2004-02-03 2005-09-15 Toray Ind Inc ポリフェニレンスルフィド樹脂組成物
JP2006316245A (ja) * 2004-12-21 2006-11-24 Asahi Kasei Chemicals Corp ポリフェニレンスルフィド樹脂組成物
JP2008163112A (ja) * 2006-12-27 2008-07-17 Dic Corp ポリアリ−レンスルフィド樹脂組成物の製造方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2511344A1 (en) * 2009-12-10 2012-10-17 Polyplastics Co., Ltd. Polyarylene sulfide resin composition and insert-molded article
EP2511344A4 (en) * 2009-12-10 2014-04-16 Polyplastics Co POLYARYLENE SULFIDE RESIN COMPOSITION AND INSERTION MOLDED ARTICLE
US8852707B2 (en) 2009-12-10 2014-10-07 Polyplastics Co., Ltd. Polyarylene sulfide resin composition and insert-molded article
JP2012224754A (ja) * 2011-04-20 2012-11-15 Rikkyo Gakuin ポリフェニレンエーテルを含む樹脂組成物およびその製造方法
WO2017094621A1 (ja) * 2015-12-04 2017-06-08 住友化学株式会社 樹脂組成物及びその製造方法、熱可塑性樹脂組成物、並びに成形体及びその製造方法
JPWO2017094621A1 (ja) * 2015-12-04 2018-09-20 住友化学株式会社 樹脂組成物及びその製造方法、熱可塑性樹脂組成物、並びに成形体及びその製造方法
JP2019183077A (ja) * 2018-04-17 2019-10-24 ポリプラスチックス株式会社 ポリアリーレンサルファイド樹脂組成物、押出成形品、押出成形品の製造方法、並びに輸送機、又は発電機
WO2019203062A1 (ja) * 2018-04-17 2019-10-24 ポリプラスチックス株式会社 ポリアリーレンサルファイド樹脂組成物、押出成形品、押出成形品の製造方法、並びに輸送機、又は発電機
WO2019220882A1 (ja) * 2018-05-16 2019-11-21 Dic株式会社 ポリアリーレンスルフィド樹脂組成物、並びこれを用いた二軸延伸フィルムおよび積層体
JP6674162B1 (ja) * 2018-05-16 2020-04-01 Dic株式会社 ポリアリーレンスルフィド樹脂組成物、並びこれを用いた二軸延伸フィルムおよび積層体
CN111918925A (zh) * 2018-05-16 2020-11-10 Dic株式会社 聚芳硫醚树脂组合物、以及使用其的双轴拉伸薄膜和层叠体
CN111918925B (zh) * 2018-05-16 2023-10-27 Dic株式会社 聚芳硫醚树脂组合物、以及使用其的双轴拉伸薄膜和层叠体
CN114514117A (zh) * 2019-11-19 2022-05-17 Dic株式会社 双轴拉伸层叠膜、层叠体和它们的制造方法
CN114514117B (zh) * 2019-11-19 2023-12-15 Dic株式会社 双轴拉伸层叠膜、层叠体和它们的制造方法
WO2021172127A1 (ja) * 2020-02-28 2021-09-02 Dic株式会社 ポリアリーレンスルフィド樹脂組成物の製造条件の判定方法および樹脂組成物の製造方法
JP7011246B1 (ja) * 2020-02-28 2022-01-26 Dic株式会社 ポリアリーレンスルフィド樹脂組成物の製造条件の判定方法および樹脂組成物の製造方法
EP4113351A4 (en) * 2020-02-28 2024-04-24 Dainippon Ink & Chemicals METHOD FOR DETERMINING THE STATE OF MANUFACTURING A POLYARYLENE SULPHIDE RESIN COMPOSITION AND METHOD FOR PRODUCING A RESIN COMPOSITION

Similar Documents

Publication Publication Date Title
WO2009088092A1 (ja) ポリフェニレンスルフィド樹脂を含む組成物およびその製造方法
KR101243090B1 (ko) 제전성 수지 조성물, 제전·점착성 수지 조성물, 점착 필름및 그 제조 방법
JP5432427B2 (ja) 制電性樹脂組成物、制電・粘着性樹脂組成物並びに粘着フィルム及びその製造方法
EP2584000B1 (en) Polyolefin-based resin composition
JP6074832B2 (ja) ポリフェニレンエーテルを含む樹脂組成物およびその製造方法
WO2008062779A1 (fr) Composition de résine pour revêtement métallique, article moulé de cette composition et article moulé à revêtement métallique
KR101217582B1 (ko) 열가소성 수지 조성물 및 성형품
JP2006291170A (ja) 制電性樹脂組成物および成形品
JP5649114B2 (ja) ポリフェニレンスルフィドを含む樹脂組成物およびその製造方法
JP5238134B2 (ja) 電池セル筐体およびその製造方法
WO1993020142A1 (en) Thermoplastic resin composition containing glass fiber
JP2006328351A (ja) 制電性樹脂組成物および成形品
JP2013100511A (ja) 制電性樹脂組成物および成形品
JP5005412B2 (ja) ポリマーアロイの押出成形シート
JP5361136B2 (ja) 制電性樹脂組成物および成形品
JP5116958B2 (ja) 制電性樹脂組成物および成形品
WO2023007464A1 (en) Platable poly(phenylene sulfide) and poly(phenylene ether) compositions
JP4321693B2 (ja) 多層フィルムおよびその用途
JP2011057719A (ja) 高性能ポリフェニレンスルフィド系樹脂組成物およびその製造方法
JP2011178880A (ja) 軋み音を低減した自動車内装部品
JP5726977B2 (ja) 軋み音を低減した自動車内装部品
JP5769169B2 (ja) ポリ乳酸を含む樹脂組成物およびその製造方法
WO2023286808A1 (ja) 多層シート及びその製造方法
WO2022270468A1 (ja) 多層シート及びその製造方法
WO2024135571A1 (ja) 多層シート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09700795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09700795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP