WO2009087956A1 - 蓄電装置 - Google Patents

蓄電装置 Download PDF

Info

Publication number
WO2009087956A1
WO2009087956A1 PCT/JP2009/000004 JP2009000004W WO2009087956A1 WO 2009087956 A1 WO2009087956 A1 WO 2009087956A1 JP 2009000004 W JP2009000004 W JP 2009000004W WO 2009087956 A1 WO2009087956 A1 WO 2009087956A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
capacitor
balance
control circuit
time
Prior art date
Application number
PCT/JP2009/000004
Other languages
English (en)
French (fr)
Inventor
Kimiyasu Kakiuchi
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008000332A external-priority patent/JP5024055B2/ja
Priority claimed from JP2008000331A external-priority patent/JP5024054B2/ja
Priority claimed from JP2008000330A external-priority patent/JP5024053B2/ja
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to EP09700989.8A priority Critical patent/EP2249453B1/en
Priority to US12/810,917 priority patent/US8294428B2/en
Publication of WO2009087956A1 publication Critical patent/WO2009087956A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a power storage device that stores electric power in a capacitor and discharges it when necessary.
  • a vehicle has been devised in which a capacitor capable of rapid charging / discharging is used in combination with a battery.
  • a capacitor capable of rapid charging / discharging is used in combination with a battery.
  • FIG. 13 is a block circuit diagram of a conventional charging device.
  • a balance voltage adjusting unit 503 is connected to both ends of each of a plurality of capacitors 501 connected in series.
  • a sampling capacitor 505 for measuring the voltage across the capacitor 501 is connected to both ends of each capacitor 501 via two switches 507.
  • the balance voltage adjustment unit 503 and the switch 507 are connected to the control unit 509.
  • the plurality of capacitors 501 connected in series are connected to a motor, a generator, a battery, a load, and the like of the vehicle via a charge / discharge circuit.
  • the balance voltage adjustment unit 503 has the following configuration. That is, a series circuit of a balance switch 511 and a balance resistor 513 is connected to both ends of the capacitor 501. Further, two voltage-dividing resistors 515 connected in series are also connected to both ends of the capacitor 501. A connection point of the two voltage dividing resistors 515 is connected to one input of the comparator 517. A digital potentiometer 519 is connected to the other input of the comparator 517. Since the digital potentiometer 519 is connected to the reference power source 521 and the control unit 509, an arbitrary reference voltage can be output in accordance with an instruction from the control unit 509. The output of the comparator 517 is connected to the balance switch 511 and controls its on / off.
  • the control unit 509 obtains the degree of progress of deterioration of each capacitor 501. Specifically, the capacitance value C and the internal resistance value R are respectively determined from the slope of the voltage change at both ends when each capacitor 501 is charged with constant current and the voltage change at both ends when charging is interrupted, and these deterioration limits are obtained in advance. The difference up to the value is obtained as the deterioration progress. Accordingly, the smaller the difference is, the more the deterioration proceeds.
  • the control unit 509 obtains the average value of the deterioration progress of each capacitor 501 and obtains the balance voltage so that the variation width of the deterioration progress of each capacitor 501 becomes small. That is, for the capacitor 501 that has been deteriorated, the balance voltage is determined so as to reduce the voltage between both ends in order to delay the deterioration. Thereafter, the balance voltage adjustment unit 503 is controlled so that the voltage across each capacitor 501 becomes the balance voltage.
  • the present invention provides a power storage device capable of extending the life of a capacitor with simple operation and high accuracy.
  • the first point time (t1) at the time of measurement and the second point time (t2) at the time of measuring the voltage across the capacitor (V2i) at the second point are measured, and one point from the second point time (t2) is measured.
  • a time difference ( ⁇ t) is obtained, and the absolute value ( ⁇ Vi) is divided by the time difference ( ⁇ t) and multiplied by a predetermined coefficient (A) to obtain a voltage adjustment width ( ⁇ Vb) of each capacitor.
  • the balance voltage (Vri) is determined by subtracting the voltage adjustment width ( ⁇ Vbi) from the initial balance voltage (Vro), and the voltage across the capacitor (Vi) is changed to the balance voltage (Vri) via the balance voltage adjustment unit. ) To control.
  • the power storage device of the present invention when the capacitor is not charged or discharged, the absolute value ( ⁇ Vi) of the difference between the two capacitor voltages (V1i, V2i) at different measurement timings is obtained, thereby obtaining the balance voltage (Vri). To decide. Therefore, there is no need to measure the capacitance value C and the internal resistance value R after the capacitor is in a constant current charge state as in the prior art, and the balance voltage is determined from the result of calculating the deterioration degree and calculating the average value. Control is also unnecessary. Therefore, there is an effect that the life of the capacitor can be extended with an extremely simple operation compared to the conventional case.
  • FIG. 1 is a block circuit diagram of a power storage device according to Embodiment 1 of the present invention.
  • FIG. 2 is a change diagram of the voltage across the capacitor at times t1 and t2 of the power storage device according to Embodiment 1 of the present invention.
  • FIG. 3 is a flowchart for obtaining the balance voltage of each capacitor of the power storage device according to Embodiment 1 of the present invention.
  • FIG. 4 is a flowchart for obtaining the balance voltage of each capacitor of the power storage device according to Embodiment 2 of the present invention.
  • FIG. 5 is a change diagram of the voltage across the capacitor at times t1 and t2 of the power storage device according to Embodiment 3 of the present invention.
  • FIG. 6 is a time-dependent characteristic diagram of the total voltage of the power storage device according to Embodiment 3 of the present invention.
  • FIG. 7 is a flowchart for obtaining the non-charging / discharging both-end voltage and the charging / discharging both-end voltage of the power storage device according to Embodiment 3 of the present invention.
  • FIG. 8 is a flowchart for obtaining the balance voltage of each capacitor of the power storage device according to Embodiment 3 of the present invention.
  • FIG. 9 is a flowchart for obtaining the balance voltage of each capacitor of the power storage device according to Embodiment 4 of the present invention.
  • FIG. 10 is a change diagram of the voltage across the capacitor at times t1 and t2 of the power storage device according to the fifth embodiment of the present invention.
  • FIG. 11 is a flowchart for obtaining the balance voltage of each capacitor of the power storage device according to Embodiment 5 of the present invention.
  • FIG. 12 is a flowchart for obtaining the balance voltage of each capacitor of the power storage device according to Embodiment 6 of the present invention.
  • FIG. 13 is a block circuit diagram of a conventional power storage device.
  • (Embodiment 1) 1 is a block circuit diagram of a power storage device according to Embodiment 1 of the present invention.
  • each capacitor 11 may be one, or a plurality of capacitors 11 connected in parallel will be described below.
  • 1 may be configured such that the outermost ends of capacitors 11 connected in series in the power storage device illustrated in FIG. 1 are connected to the outermost ends of other power storage devices. In the case of such a series-parallel connection, a balance voltage adjusting unit 13 described later is connected to each capacitor 11.
  • a balance voltage adjusting unit 13 is connected to both ends of each capacitor 11. Further, since the control circuit 15 is connected to the balance voltage adjusting unit 13, the operation of the balance voltage adjusting unit 13 is controlled by the control circuit 15.
  • the control circuit 15 includes a plurality of peripheral circuits having functions such as a digital potentiometer 519 and a reference power source 521 shown in FIG. 13 and a microcomputer for controlling them.
  • the control circuit 15 also has a function of communicating data with a vehicle control circuit (not shown) by a data signal (Data).
  • the balance switch 17 has a configuration capable of on / off control from the outside, and for example, an FET or a transistor can be applied.
  • a series circuit of two voltage dividing resistors 21 is connected to both ends of the capacitor 11.
  • a connection point of the two voltage dividing resistors 21 is connected to one input of the control circuit 15 and the comparator 23.
  • the positive electrode of the uppermost capacitor 11 shown in FIG. 1 is equal to the total voltage Vc of the capacitors 11 connected in series, the total voltage Vc is also controlled by the control circuit 15 via the uppermost balance voltage adjusting unit 13. It is wired so that it can be read.
  • the other input of the comparator 23 is connected to the control circuit 15.
  • the balance voltage Vri generated from the control circuit 15 is input to the comparator 23.
  • the output of the comparator 23 is connected to the balance switch 17. Therefore, on / off of the balance switch 17 is controlled by the output of the comparator 23.
  • a temperature sensor 25 is disposed in the vicinity of the capacitor 11. As the temperature sensor 25, a thermistor having a large resistance change with respect to temperature was used. The output of the temperature sensor 25 is connected to the control circuit 15. Therefore, the control circuit 15 can read the temperature T detected by the temperature sensor 25.
  • the positive terminal 27 and the negative terminal 29 which are the both ends of the capacitor 11 connected in series are connected to a motor, a generator, a battery, a load and the like of the vehicle via a charge / discharge circuit. In FIG. 1, these are omitted.
  • FIG. 2 is a change diagram of the voltage across the capacitor at times t1 and t2 of the power storage device according to Embodiment 1 of the present invention.
  • the horizontal axis represents time t
  • the vertical axis represents the capacitor both-ends voltage Vi.
  • the number n of capacitors 11 is 4, and the range of the subscript i is 1 to 4.
  • the control circuit 15 recognizes the start of the vehicle by receiving an ON signal of the ignition switch as a data signal (Data) from the vehicle control circuit.
  • Data data signal
  • the drive voltage is applied to the control circuit 15 when the ignition switch is turned on, the start of the vehicle may be recognized accordingly.
  • each capacitor 11 repeats the operation of charging the regenerative power during braking and discharging the charged power during acceleration by using the vehicle. This change with time is not shown in FIG.
  • the control circuit 15 sequentially reads the capacitor both-end voltages V21 to V24 at time t2 from the balance voltage adjusting unit 13 and stores them in the memory, and also stores the time t2 as the second time t2. Thus, the second point time t2 is measured.
  • the time of non-charging / discharging is defined as a state where charging / discharging of the capacitor 11 by a charging / discharging circuit (not shown) is not actively performed. Therefore, not only when the current does not completely flow through the capacitor 11, but also when a slight leakage current flows through the capacitor 11 even when the charge / discharge circuit is not operated, this is included during non-charge / discharge.
  • the control circuit 15 stores the temperature dependency of the capacitor both-end voltage Vi obtained in advance, and thereby corrects the two capacitor end-point voltages V1i and V2i according to the temperature T obtained from the temperature sensor 25. ing.
  • the temperature-dependent characteristic of the voltage Vi across the capacitor when the temperature T is changed while the capacitor 11 is charged to a known voltage at a reference temperature To is obtained. This is obtained for each predetermined voltage width (for example, 0.1 V) until the known voltage reaches the rated voltage (for example, 2.5 V) of the capacitor 11. That is, the temperature dependency characteristic of the voltage Vi across the capacitor when the temperature T is changed while the capacitor 11 is charged to 0.1 V at the reference temperature To (25 ° C.), and then charged to 0.2 V at 25 ° C. Then, the temperature dependence characteristic is obtained, and then the temperature dependence characteristic is obtained by charging to 25V at 0.3 ° C. In this manner, the temperature dependence characteristic is obtained repeatedly up to the rated voltage (2.5V). A plurality of temperature dependence characteristics obtained in this way are stored in advance in the memory of the control circuit 15.
  • a temperature dependent characteristic having the capacitor terminal voltage Vi at the temperature T is selected from a plurality of temperature dependent characteristics.
  • the voltage Vi across the capacitor at the reference temperature To is obtained from the selected temperature-dependent characteristic.
  • the voltage V i across the capacitor thus obtained is a value after temperature correction.
  • the magnitude relation between the capacitor both-end voltages V21 to V24 is not necessarily the same as the magnitude relation between the capacitor both-end voltages V11 to V14. That is, the magnitude relationship may be reversed depending on the characteristics of each capacitor 11 and variations in the progress of deterioration.
  • the capacitor 11 having the maximum voltage V11 at the time t1 has the minimum voltage V21 at the time t2
  • the capacitor 11 having the minimum voltage V14 at the time t1 is at the time t2.
  • the maximum terminal voltage V24 is obtained. Therefore, in the first embodiment, the balance voltage Vri of each capacitor 11 is based on the slope of the thick arrow in FIG. 2 obtained from the two capacitor end-point voltages V1i and V2i at time t1 and time t2 at different measurement timings. To decide.
  • FIG. 3 is a flowchart for obtaining the balance voltage of each capacitor of the power storage device according to Embodiment 1 of the present invention.
  • the control circuit 15 since the control circuit 15 controls the operation of the entire power storage device by executing various subroutines from the main routine, the flowchart is shown in the form of a subroutine.
  • the control circuit 15 executes the subroutine shown in FIG. 3 at the time t2 when the values of the first point time t1, the second point time t2, and the two capacitor voltage values V1i and V2i are aligned.
  • first, 1 is substituted into the variable memory i built in the control circuit 15 (step number S11).
  • the variable memory i is defined to have the same meaning as the subscript i, and is hereinafter referred to as the subscript i.
  • ⁇ Vi / ⁇ t is the slope of the thick arrow in FIG.
  • This inclination corresponds to the reciprocal of the capacitance value C of each capacitor 11. That is, since all the capacitors 11 are connected in series, both are charged with the same current value I.
  • C I ⁇ ⁇ t / ⁇ Vi.
  • the reciprocal of the slope ⁇ Vi / ⁇ t in FIG. 2 is proportional to the capacitance value C of each capacitor 11.
  • the predetermined coefficient A is a coefficient for adjusting the balance voltage Vri so as to fall within the normal range in the next step (S17), and is experimentally obtained in advance and stored in the memory.
  • the voltage adjustment width ⁇ Vbi increases as the deterioration of the capacitor 11 progresses.
  • the balance voltage adjusting unit 13 adjusts the capacitor both-ends voltage Vi so as to become the balance voltage Vri, so that the capacitor end-of-capacitance voltage Vi becomes smaller as the capacitor 11 deteriorates.
  • the progress of deterioration of the capacitor 11 is suppressed from the other capacitors 11.
  • a predetermined coefficient A is obtained in advance so that the balance voltage Vri does not become extremely small or negative in the equation of S17, and the inclination is multiplied by the predetermined coefficient A in S15.
  • the control circuit 15 compares the balance voltage Vri and the deterioration limit value Vg (S19).
  • the deterioration limit value Vg is a value of the balance voltage Vri when the capacitor 11 deteriorates to a limit state where it can no longer be used, and this is also experimentally obtained in advance. Therefore, if the balance voltage Vri is equal to or lower than the deterioration limit value Vg (Yes in S19), the power storage device cannot be used any more, and the control circuit 15 transmits the power storage device deterioration signal as a Data signal to the vehicle control circuit. (S21). In response to this, the vehicle control circuit warns the driver of deterioration of the power storage device, prompts repair, and stops charging the power storage device. Thereby, since it does not continue using the degraded electrical storage apparatus, high reliability is obtained. Thereafter, the control circuit 15 ends the subroutine of FIG. 3 and returns to the main routine.
  • the control circuit 15 uses the first time t1 when measuring the first capacitor voltage V1i and the second capacitor voltage V2i of the two capacitor voltage V1i and V2i.
  • Each capacitor 11 is measured by measuring the second point time t2, obtaining the time difference ⁇ t by subtracting the first point time t1 from the second point time t2, and dividing the absolute value ⁇ Vi by the time difference ⁇ t and multiplying by the predetermined coefficient A.
  • the voltage adjustment width ⁇ Vbi is calculated, and the balance voltage Vri is determined by subtracting the voltage adjustment width ⁇ Vbi from the initial balance voltage Vro. In this way, the balance voltage Vri of each capacitor 11 corresponding to the absolute value ⁇ Vi is obtained.
  • each balance voltage adjustment unit 13 causes the both-end voltage Vi of the connected capacitor 11 to become the balance voltage Vri.
  • the balance switch 17 is controlled so that That is, if the capacitor both-ends voltage Vi is larger than the balance voltage Vri, the comparator 23 turns on the balance switch 17. As a result, the capacitor 11 is discharged by the balance resistor 19, and the voltage Vi across the capacitor decreases. Thereafter, when the voltage V i across the capacitor becomes substantially equal to the balance voltage Vri, the comparator 23 turns off the balance switch 17. As a result, the discharge of the capacitor 11 is stopped, and the voltage Vi across the capacitor becomes the target balance voltage Vri. As a result, since the voltage applied to the capacitor 11 is lowered, the progress of deterioration can be reduced. After that, the voltage V i across the capacitor gradually decreases due to self-discharge when the vehicle is not used.
  • the voltage V i across the capacitor 11 (V24 in FIG. 2) of the capacitor 11 that has deteriorated at the end of use of the vehicle is lowered, and the voltage V i across the capacitor 11 of the capacitor 11 where the deterioration has not progressed relatively. (V21 in FIG. 2) remains high, so that the deterioration of the former is reduced and the deterioration of the latter is relatively advanced, so that the deterioration of each capacitor 11 can be made uniform.
  • Become As a result, the possibility that only one arbitrary capacitor 11 reaches the deterioration limit and the entire power storage device cannot be used can be reduced, and the life of the power storage device can be extended.
  • the two-point capacitor both-end voltages V1i and V2i are shown as the reciprocals of the slopes of the thick arrows in FIG. Only the influence of the capacitance value C of 11 is reflected, and the influence of the internal resistance value R is not included. This is because the voltage Vi across the capacitor reflects the magnitude of the internal resistance value R immediately after charging / discharging the capacitor 11 or only when charging / discharging is completed. Therefore, in the first embodiment, the deterioration progress of each capacitor 11 can be made uniform without obtaining the internal resistance value R, so that the lifetime of the capacitor can be extended with a simple operation.
  • the first point time t1 is at the start-up time and the second point time t2 is at the end of use, so that the capacitor 11 is not reliably charged / discharged.
  • two capacitor voltages V1i and V2i are obtained respectively.
  • the first point time t1 and the second point time t2 are not limited at the time of starting and at the end of use, respectively, and the vehicle 11 may be in use as long as the capacitor 11 is not charged / discharged.
  • a signal indicating that the charge / discharge circuit of the capacitor 11 is not operating is received from the vehicle control circuit, or the current detection circuit is connected in series to the series circuit of the plurality of capacitors 11. Need to connect.
  • FIG. 4 is a flowchart for obtaining the balance voltage of each capacitor of the power storage device according to Embodiment 2 of the present invention. Note that the structure of the power storage device in Embodiment 2 is the same as that in FIG. 1, and thus the description of the structure is omitted. Since the feature of the second embodiment is the operation part, the operation will be described in detail below.
  • the control circuit 15 reads the current voltage V1i across each capacitor 11 at an arbitrary time t1 when the capacitor 11 is not charged / discharged when the vehicle is started or used, and is built in the control circuit 15. Store in memory. At this time, the temperature correction of the voltage V1i across the capacitor is performed in the same way as in the first embodiment. Further, unlike the first embodiment, the time t1 at this time is not stored in the memory.
  • the control circuit 15 reads the current voltage V2i across each capacitor 11 at an arbitrary time t2 when the capacitor 11 is not charged / discharged during use of the vehicle after the time t1 or at the end of use of the vehicle. It memorizes in the memory built in. At this time, as in the first embodiment, the temperature correction of the voltage V2i across the capacitor is performed. Further, unlike the first embodiment, the time t2 at this time is not stored in the memory.
  • the ratio value ⁇ i 1
  • the ratio value ⁇ i of the other capacitors 11 increases, the deterioration progresses.
  • the voltage adjustment width ⁇ Vbi of the capacitor 11 with the subscript i is obtained from the correlation between the ratio value ⁇ i and the voltage adjustment width ⁇ Vb (S65).
  • the control circuit 15 determines the ratio value ⁇ i obtained experimentally in advance. And the voltage adjustment width ⁇ Vb are stored in the memory, and the voltage adjustment width ⁇ Vbi corresponding to the ratio value ⁇ i obtained in S63 is obtained.
  • the correlation between the ratio value ⁇ i and the voltage adjustment width ⁇ Vb is a positive correlation function, this is obtained as an equation by the least square method, and the ratio value ⁇ i is substituted into the above equation, whereby each capacitor The voltage adjustment width ⁇ Vbi with respect to 11 is calculated. Thereby, the memory can be saved as compared with the case where the correlation is stored in the memory as a data table.
  • the initial balance voltage Vro is the rated voltage (2.5 V) of the capacitor 11 as in the first embodiment.
  • the balance voltage Vri becomes smaller as the capacitor 11 is further deteriorated. Accordingly, the progress of the deterioration of the capacitor 11 is suppressed by the other capacitors 11, so that the life of the capacitor 11 can be extended accordingly.
  • the control circuit 15 compares the balance voltage Vri and the deterioration limit value Vg (S69).
  • the meaning of the deterioration limit value Vg is the same as in the first embodiment. If the balance voltage Vri becomes equal to or lower than the deterioration limit value Vg (Yes in S69), the power storage device cannot be used any more, and the control circuit 15 transmits a deterioration signal of the power storage device to the vehicle control circuit as a Data signal ( S71). Then, the subroutine of FIG. 3 is terminated and the process returns to the main routine.
  • the control circuit 15 adds 1 to the subscript i and updates the content of the subscript i ( S73). Thereafter, it is determined whether or not the updated subscript i is equal to a value obtained by adding 1 to the number n of capacitors 11 (S75). If the subscript i is not n + 1 (No in S75), the balance voltage Vri of all the capacitors 11 has not been determined yet, so the process returns to S63 and the subsequent operations are repeated. If the subscript i is equal to n + 1 (Yes in S75), since the balance voltage Vri for all the capacitors 11 has been determined, the subroutine of FIG. 4 is terminated and the process returns to the main routine.
  • the control circuit 15 obtains the minimum value ⁇ Vmin of each absolute value ⁇ Vi, and adjusts the voltage for each capacitor 11 from the correlation obtained in advance in the value ⁇ i of the ratio between each absolute value ⁇ Vi and the minimum value ⁇ Vmin and the voltage adjustment width ⁇ Vb.
  • Each of the widths ⁇ Vbi is obtained, and the balance voltage Vri is determined by subtracting the voltage adjustment width ⁇ Vbi from the initial balance voltage Vro. In this way, the balance voltage Vri of each capacitor 11 corresponding to the absolute value ⁇ Vi is obtained.
  • the subsequent operation is adjusted by the balance voltage adjusting unit 13 so that the voltage Vi between both ends of each capacitor 11 becomes the determined balance voltage Vri, as in the first embodiment.
  • the applied voltage of the capacitor 11 that has deteriorated decreases, so that further progress of deterioration can be reduced and the deterioration of each capacitor 11 can be made uniform. Accordingly, the life of the power storage device can be extended.
  • the capacitor 11 when the capacitor 11 is not charged / discharged, the absolute value ⁇ Vi of the difference between the two capacitor end-point voltages V1i and V2i having different measurement timings is obtained, and the balance voltage Vri is determined by the ratio ⁇ i with the minimum value ⁇ Vmin. To decide. Therefore, it is not necessary to measure the first point time t1 and the second point time t2 as compared with the first embodiment, and a power storage device capable of extending the life of the capacitor 11 with a simple operation can be realized.
  • the control circuit 15 outputs a deterioration signal when the balance voltage Vri is equal to or lower than the deterioration limit value Vg.
  • this may be output when the absolute value ⁇ Vi is equal to or greater than the degradation upper limit value ⁇ Vg.
  • the deterioration upper limit value ⁇ Vg is an absolute value ⁇ Vi at a limit when the power storage device cannot be used any more, and may be obtained in advance and stored in the memory of the control circuit 15. Since the absolute value ⁇ Vi increases as the capacitor 11 deteriorates as described above, the absolute value ⁇ Vi is determined to be deteriorated when the balance voltage Vri is equal to or lower than the deterioration limit value Vg.
  • Embodiment 2 it is possible to determine the deterioration of the power storage device at an early stage. Further, both of these two determinations may be performed, and a deterioration signal may be output if at least one of the conditions is satisfied. Thereby, since deterioration determination is performed twice, deterioration determination accuracy is improved.
  • the deterioration limit value Vg and the deterioration upper limit value ⁇ Vg may be set in two stages.
  • the vehicle control circuit issues a warning to the driver and performs control to limit the charging current.
  • control is performed so as to stop charging the power storage device together with a warning.
  • FIG. 5 is a change diagram of the voltage across the capacitor at times t1 and t2 of the power storage device according to Embodiment 3 of the present invention.
  • the horizontal axis represents time t
  • the vertical axis represents the capacitor both-ends voltage Vi.
  • the horizontal axis represents time t
  • the vertical axis represents the capacitor both-ends voltage Vi.
  • the horizontal axis represents time t
  • the vertical axis represents the capacitor both-ends voltage Vi.
  • the horizontal axis represents time t
  • the vertical axis represents the capacitor both-ends voltage Vi.
  • the horizontal axis represents time t
  • the vertical axis represents the capacitor both-ends voltage Vi.
  • four capacitors 11 are provided in the same manner as in the first embodiment for easy understanding. Suppose that they are in series. Therefore, the number n of capacitors 11 is 4, and the range of the subscript i is 1 to 4.
  • FIG. 5 it is assumed that an ignition switch (not shown) of the vehicle is turned on at time t1 and the vehicle is activated.
  • the control circuit 15 recognizes the start of the vehicle by receiving an ON signal of the ignition switch as a data signal (Data) from the vehicle control circuit.
  • Data data signal
  • the drive voltage is applied to the control circuit 15 when the ignition switch is turned on, the start of the vehicle may be recognized accordingly.
  • the time of non-charging / discharging is defined as a state in which charging / discharging of the capacitor 11 by a charging / discharging circuit (not shown) is not actively performed. Therefore, not only when the current does not completely flow through the capacitor 11, but also when a slight leakage current flows through the capacitor 11 even when the charge / discharge circuit is not operated, this is included during non-charge / discharge.
  • each capacitor voltage Vi increases with time. Note that details of the change with time of the voltage Vi across the capacitor are omitted in FIG.
  • the second point time t2 is measured. Details of these operations will also be described with reference to FIG.
  • the voltage V2i at the time of charging / discharging of each capacitor 11 at time t2 in FIG. 5 is more than the voltage V1i at the time of non-charging / discharging at time t1. Also grows.
  • the control circuit 15 stores the temperature dependence of the capacitor both-end voltage Vi obtained in advance, and according to the temperature T obtained from the temperature sensor 25, the non-charge / discharge both-end voltage V1i and the charge-discharge both-end voltage are stored. The voltage V2i is corrected.
  • the temperature-dependent characteristic of the voltage Vi across the capacitor when the temperature T is changed while the capacitor 11 is charged to a known voltage at a reference temperature To is obtained. This is obtained for each predetermined voltage width (for example, 0.1 V) until the known voltage reaches the rated voltage (for example, 2.5 V) of the capacitor 11. That is, the temperature dependency characteristic of the voltage Vi across the capacitor when the temperature T is changed while the capacitor 11 is charged to 0.1 V at the reference temperature To (25 ° C.), and then charged to 0.2 V at 25 ° C. Then, the temperature dependence characteristic is obtained, and then the temperature dependence characteristic is obtained by charging to 25V at 0.3 ° C. In this manner, the temperature dependence characteristic is obtained repeatedly up to the rated voltage (2.5V). A plurality of temperature dependence characteristics obtained in this way are stored in advance in the memory of the control circuit 15.
  • a temperature dependent characteristic having the capacitor terminal voltage Vi at the temperature T is selected from a plurality of temperature dependent characteristics.
  • the voltage Vi across the capacitor at the reference temperature To is obtained from the selected temperature-dependent characteristic.
  • the voltage V i across the capacitor thus obtained is a value after temperature correction.
  • the magnitude relationship between the voltage V21 to V24 at the time of charging / discharging is not necessarily the same as the magnitude relationship of the voltages V11 to V14 at the time of non-charging / discharging. That is, the magnitude relationship may be reversed depending on the characteristics of each capacitor 11 and variations in the progress of deterioration.
  • the capacitor 11 having the maximum non-charging / discharging voltage V11 at time t1 has the minimum charging / discharging voltage V21 at time t2, and the minimum non-charging / discharging voltage at time t1.
  • the capacitor 11 having the voltage V14 is at the maximum charging / discharging voltage V24 at time t2. Therefore, in the third embodiment, the balance voltage Vri of each capacitor 11 is determined based on the slopes of the thick arrows in FIG. 5 obtained from the two capacitor voltages V1i and V2i at two points at time t1 and time t2. ing.
  • FIG. 6 is a time characteristic diagram of the total voltage of the power storage device according to the third embodiment of the present invention.
  • the horizontal axis represents time t
  • the vertical axis represents the total voltage Vc of the capacitor.
  • the first point time t1 is determined as an arbitrary time during which the capacitor 11 is in a non-charge / discharge state.
  • the non-charge / discharge state that is, an arbitrary voltage at which the total voltage Vc1 of the capacitor 11 is substantially constant.
  • the time is determined as the first point time t1.
  • the control circuit 15 reads the voltage V1i between the capacitors 11 at the time of non-charging / discharging.
  • the predetermined time ts is determined in advance as a time for obtaining the voltage gradient ⁇ Vc with sufficient measurement accuracy, and is set to 0.1 seconds in the third embodiment.
  • the charging current I to the capacitor 11 increases with time, and eventually reaches the maximum current value.
  • the voltage slope ⁇ Vc of the total voltage Vc of the capacitor 11 increases with time after the time tb, eventually has a maximum value, and thereafter decreases with time. That is, as shown in FIG. 6, the voltage gradient ⁇ Vcc from time tc to time td is larger than the voltage gradient ⁇ Vcb from time tb to time tc.
  • the difference between the total voltage Vcg at the second point time t2 and the total voltage Vc1 at the first point time t1 is sufficiently large.
  • the absolute value ⁇ Vi of the difference between the both-end voltage V2i during charging / discharging at the second time point t2 becomes larger than the voltage reading accuracy by the control circuit 15, and high accuracy can be achieved.
  • the second time t2 is determined when the capacitor 11 is charged.
  • the second time t2 may be determined when the capacitor 11 changes from the non-charge / discharge state to the discharge state.
  • the determination method in this case is almost the same as that shown in FIG. 6, but the total voltage Vc decreases with time due to the discharge, so that the voltage gradient ⁇ Vc is all obtained as an absolute value.
  • the time when the absolute value of the voltage gradient ⁇ Vc becomes smaller than the absolute value of the previous voltage gradient ⁇ Vco may be determined as the second point time t2.
  • the capacitor 11 suddenly changes from the charged state.
  • the battery is in a discharged state or has changed from a discharged state to a charged state.
  • a voltage drop due to the internal resistance value R of all capacitors 11 occurs at that time, and if the latter, a voltage rise occurs.
  • the second time t2 is determined at an arbitrary time after this voltage drop or voltage rise, the absolute value ⁇ Vi of the difference between the charge / discharge end voltage V2i and the non-charge / discharge end voltage V1i at that time.
  • the control circuit 15 determines the second point time t2 only when the positive / negative of the voltage gradient ⁇ Vc is the same as the positive / negative of the previous voltage gradient ⁇ Vco.
  • the determination operation of the second point time t2 is as follows.
  • the control circuit 15 is connected in series every predetermined time ts after an initial voltage rise or voltage drop due to the internal resistance value R of all capacitors 11 immediately after the start of charging or discharging of the capacitors 11.
  • a voltage gradient ⁇ Vc of the total voltage Vc of the capacitor 11 is obtained.
  • the second time t2 is determined. The voltage V2i is measured.
  • FIG. 7 is a flowchart for obtaining the non-charging / discharging both-end voltage and the charging / discharging both-end voltage of the power storage device according to Embodiment 3 of the present invention.
  • the control circuit 15 controls the operation of the entire power storage device by executing various subroutines from the main routine
  • the flowcharts of FIGS. 7 and 8 are shown in the form of subroutines.
  • the control circuit 15 executes a subroutine shown in FIG. 7 in order to determine the balance voltage Vri every predetermined time (for example, minute order) from the main routine.
  • a subroutine shown in FIG. 7 in order to determine the balance voltage Vri every predetermined time (for example, minute order) from the main routine.
  • the control circuit 15 clears the previous voltage gradient ⁇ Vco (S111).
  • 0 is substituted for the previous voltage gradient ⁇ Vco, which is a memory variable built in the control circuit 15.
  • ⁇ Vco 0 as shown in S111 of FIG. This is defined below as meaning that the value (0) on the right side is substituted for the variable on the left side (previous voltage gradient ⁇ Vco).
  • the control circuit 15 determines whether or not the capacitor 11 is currently in a non-charge / discharge state (S113). For this determination, the control circuit 15 receives the current charge / discharge state of the capacitor 11 by a data signal (Data) from a vehicle control circuit (not shown). The charge / discharge state is obtained, for example, by receiving a data signal (Data) indicating whether the vehicle control circuit is operating the charge / discharge circuit.
  • Data data signal
  • the control circuit 15 does not determine the balance voltage Vri and ends the subroutine of FIG. 7 and returns to the main routine. As a result, the control circuit 15 can control to determine the balance voltage Vri every time the capacitor 11 enters the non-charge / discharge state. As described above, the balance voltage Vri reflecting the latest state of the capacitor 11 is obtained. can get. The reason why the balance voltage Vri is not determined when not in the non-charge / discharge state is as follows.
  • the first point time t1 is determined at the time of charging / discharging, for example, in the case of FIG. 6, the first point time t1 is after the time ta.
  • the second point time t2 is a charging time tg, both the first point time t1 and the second point time t2 are being charged.
  • the absolute value ⁇ Vi of the difference between the voltages Vi across the capacitors at the first point time t1 and the second point time t2 shown in FIG. 5 is obtained, the influence of the voltage increase due to the internal resistance value R of each capacitor 11 is included. Only the influence of the capacitance value C (corresponding to the slope of the thick arrow in FIG. 5) is reflected.
  • the first point time t1 is set to the non-charge / discharge state so that the influence of the internal resistance value R is included in the absolute value ⁇ Vi.
  • the control circuit 15 determines whether or not the use of the power storage device has been completed (S115).
  • the end of use of the power storage device is assumed to be the same timing as the end of use of the vehicle. Therefore, the control circuit 15 can determine the end of use by reading the state of an ignition key (not shown) transmitted from the vehicle control circuit.
  • the control circuit 15 reads the voltage V1i at both ends of each capacitor 11 when the capacitor 11 is not charged / charged by the balance voltage adjusting unit 13 (S117). The time is stored as the first point time t1 (S119).
  • control circuit 15 reads the temperature T from the temperature sensor 25 (S121), and corrects the voltage V1i at both ends during non-charging / discharging by the temperature T (S123).
  • the details of the temperature correction method are as described above.
  • the control circuit 15 determines whether or not the capacitor 11 is in a charge / discharge state (S125). The detailed operation of this determination is the same as S113. If it is not in the charge / discharge state (No in S125), it is determined again whether or not the use of the power storage device is terminated at this time (S126). If the use is finished (Yes in S126), the ignition key is turned off after a while after stopping the vehicle. In this case as well, the subroutine of FIG. Return to the main routine. On the other hand, if the use is not finished (No in S126), since the second time t2 cannot be determined, the process returns to S125 and waits until a charge / discharge state is reached.
  • the control circuit 15 determines whether or not the initial waiting time has elapsed (S127).
  • the initial waiting time is the time until the initial voltage rise or voltage drop due to the internal resistance value R of all the capacitors 11 immediately after the start of charging or discharging of the capacitors 11, This corresponds to the period from time ta to time tb. If the initial waiting time has not elapsed (No in S127), the process returns to S127 and waits until the initial waiting time elapses.
  • the control circuit 15 reads the total voltage Vc of the capacitor 11 via the top balance voltage adjustment unit 13 in FIG. 5 (S129). Thereafter, the read all voltage Vc is substituted for the previous all voltage Vco, and the previous all voltage Vco is updated (S131).
  • the control circuit 15 determines whether or not the predetermined time ts has elapsed (S133).
  • the product F of the obtained voltage gradient ⁇ Vc and the previous voltage gradient ⁇ Vco is calculated (S139).
  • the reason why the product F is calculated is to determine whether the positive / negative of the voltage gradient ⁇ Vc is the same as the positive / negative of the previous voltage gradient ⁇ Vco. That is, if the sign is the same, the product F is positive, and if the sign is different, the product F is negative. If the product F is 0, it is found that the previous voltage gradient ⁇ Vco remains cleared to 0 in S111. When such a product F becomes 0, it means that the voltage gradient ⁇ Vc is obtained for the first time after the execution of the subroutine of FIG. Therefore, if the product F is 0 (Yes in S141), the previous voltage gradient ⁇ Vco does not exist, so that it cannot be compared with the voltage gradient ⁇ Vc. Therefore, the process jumps to S147 described later.
  • the control circuit 15 next determines whether or not the product F is positive (S143). If the product F is negative (No in S143), the voltage slope ⁇ Vc is different from the previous voltage slope ⁇ Vco, and charging and discharging are suddenly reversed. Stop, end the flowchart of FIG. 7, and return to the main routine. As a result, the balance voltage Vri is not updated and the current value is held. Further, as described above, the main routine executes the subroutine of FIG. 7 at regular intervals, so that the operation of determining the balance voltage Vri can be performed when the capacitor 11 is again in the non-charge / discharge state.
  • the control circuit 15 next determines the absolute value of the voltage slope ⁇ Vc and the absolute value of the previous voltage slope ⁇ Vco. The values are compared (S145). If the absolute value of the voltage gradient ⁇ Vc is equal to or larger than the absolute value of the previous voltage gradient ⁇ Vco (No in S145), the voltage gradient ⁇ Vc is increasing from the time tb to the time te in FIG. Thus, the second point time t2 cannot be determined yet.
  • control circuit 15 assigns and updates the value of the voltage gradient ⁇ Vc to the previous voltage gradient ⁇ Vco (S147), and returns to S131.
  • the operation after the operation for obtaining the voltage gradient ⁇ Vc after the elapse of the predetermined time ts is repeated.
  • FIG. 8 is a flowchart for obtaining the balance voltage of each capacitor of the power storage device according to Embodiment 3 of the present invention.
  • the control circuit 15 substitutes 1 for the built-in variable memory i (S161).
  • the variable memory i is defined to have the same meaning as the subscript i, and is hereinafter referred to as the subscript i.
  • the charging current I is the same for each capacitor 11, it can be seen that the reciprocal of the slope ⁇ Vi / ⁇ t in FIG. 5 is proportional to the capacitance value C of each capacitor 11.
  • the capacitance value C decreases, and the internal resistance value Ri of each capacitor 11 increases. Therefore, as the deterioration progresses, the voltage increase ⁇ Vca caused by the internal resistance value R immediately after the start of charging in FIG. 6 also increases. Thereby, since the internal resistance value R is the sum of the internal resistance values Ri of the capacitors 11, the internal resistance value Ri of each capacitor 11 also increases and deteriorates. Accordingly, in FIG. 5, the absolute value ⁇ Vi is expressed as the sum of the voltage increase due to the internal resistance value Ri of each capacitor 11 and the voltage increase over time due to charging of the capacitor 11.
  • the predetermined coefficient A is a coefficient for adjusting the balance voltage Vri so as to fall within the normal range in the next step (S167), and is experimentally obtained in advance and stored in the memory.
  • the voltage adjustment width ⁇ Vbi becomes larger as the deterioration of the capacitor 11 progresses.
  • the balance voltage adjusting unit 13 adjusts the capacitor both-ends voltage Vi so as to become the balance voltage Vri, so that the capacitor end-of-capacitance voltage Vi becomes smaller as the capacitor 11 deteriorates. Accordingly, the progress of the deterioration of the capacitor 11 is suppressed by the other capacitors 11, so that the life of the capacitor 11 can be extended accordingly.
  • a predetermined coefficient A is obtained in advance so that the balance voltage Vri does not become extremely small or negative in the expression of S167, and the inclination is multiplied by the predetermined coefficient A in S165.
  • the control circuit 15 compares the balance voltage Vri and the deterioration limit value Vg (S169).
  • the deterioration limit value Vg is a value of the balance voltage Vri when the capacitor 11 deteriorates to a limit state where it can no longer be used, and this is also experimentally obtained in advance. Therefore, if the balance voltage Vri becomes equal to or lower than the deterioration limit value Vg (Yes in S169), the power storage device cannot be used any more, and the control circuit 15 transmits the power storage device deterioration signal to the vehicle control circuit as a Data signal. (S171).
  • the vehicle control circuit warns the driver of the deterioration of the power storage device, prompts repair, and prohibits the use of the power storage device. Thereby, since it does not continue using the degraded electrical storage apparatus, high reliability is obtained. Thereafter, the control circuit 15 ends the subroutine of FIG. 8 and returns to the subroutine of FIG. In the subroutine of FIG. 7, after the execution of S157 (subroutine of FIG. 8), the subroutine of FIG. 7 is also terminated and the process returns to the main routine.
  • the control circuit 15 measures the first point time t1 when measuring the both-end voltage V1i at the time of non-charging / discharging and the second point time t2 when measuring the both-end voltage V2i at the time of charging / discharging, and from the second point time t2.
  • the time difference ⁇ t is obtained by subtracting the first point time t1.
  • the voltage adjustment width ⁇ Vbi of each capacitor 11 is calculated by dividing the absolute value ⁇ Vi by the time difference ⁇ t and multiplying by the predetermined coefficient A.
  • the balance voltage Vri is determined by subtracting the voltage adjustment width ⁇ Vbi from the initial balance voltage Vro. In this way, the balance voltage Vri of each capacitor 11 corresponding to the absolute value ⁇ Vi is obtained.
  • the balance voltage Vri continues to be updated if the condition for obtaining the balance voltage Vri is satisfied. Thereafter, when the use of the vehicle ends, the control circuit 15 outputs the latest balance voltage Vri updated last to each balance voltage adjusting unit 13. Thereby, each balance voltage adjustment part 13 controls the balance switch 17 so that the both-ends voltage Vi of the capacitor 11 connected becomes the balance voltage Vri. That is, if the capacitor both-ends voltage Vi is larger than the balance voltage Vri, the comparator 23 turns on the balance switch 17. As a result, the capacitor 11 is discharged by the balance resistor 19, and the voltage Vi across the capacitor decreases.
  • the comparator 23 turns off the balance switch 17. As a result, the discharge of the capacitor 11 is stopped, and the voltage Vi across the capacitor becomes the target balance voltage Vri. As a result, since the voltage applied to the capacitor 11 is lowered, the progress of deterioration can be reduced. After that, the voltage V i across the capacitor gradually decreases due to self-discharge when the vehicle is not used.
  • the capacitor terminal voltage Vi (V24 in FIG. 5) of the capacitor 11 that has deteriorated at the end of use of the vehicle is lowered, and the capacitor terminal voltage Vi of the capacitor 11 in which the deterioration has not progressed relatively. (V21 in FIG. 5) remains high.
  • the deterioration progress of the former is reduced and the latter deterioration is relatively advanced, so that the progress of deterioration of each capacitor 11 can be made uniform.
  • the possibility that only one arbitrary capacitor 11 reaches the deterioration limit and the entire power storage device cannot be used can be reduced, and the life of the power storage device can be extended.
  • the balance voltage Vri is obtained when charging the capacitor 11 has been described. However, this may be performed when the capacitor 11 is discharged. However, in any case, the first point time t1 needs to be during non-charging / discharging, and the second point time t2 needs to be during charging / discharging.
  • the voltage drop at the time of stopping charging becomes larger than the increase of the voltage Vi across the capacitor due to charging.
  • the slope ⁇ Vi / ⁇ t becomes negative.
  • the slope ⁇ Vi / ⁇ t can be obtained according to the sum of the voltage rise at the start of charging and the rise of the voltage across the capacitor Vi due to charging, so a highly accurate balance voltage Vri reflecting the influence of the charged state and the deteriorated state is determined. can do. The same applies to the discharge.
  • FIG. 9 is a flowchart for obtaining the balance voltage of each capacitor of the power storage device according to Embodiment 4 of the present invention. Note that the configuration of the power storage device in Embodiment 4 is the same as that in FIG. That is, since the feature of the fourth embodiment is the operation part, the operation will be described in detail below.
  • FIG. 7 may be basically the same as that of the third embodiment, but since the first point time t1 and the second point time t2 are not used in the fourth embodiment, the operations of S119 and S151 are performed. Is unnecessary. Therefore, the control is simplified accordingly.
  • the balance voltage Vri determination subroutine is different from that in the third embodiment, and this portion will be described with reference to FIG.
  • the index i is updated by adding 1 (S185), and it is determined whether or not the index i has reached the value obtained by adding 1 to the number n of capacitors 11 (S187). If the subscript i is not equal to n + 1 (No in S187), the process returns to S183, and the operation for obtaining the absolute value ⁇ Vi of the next capacitor 11 is repeated.
  • the voltage adjustment width ⁇ Vbi of the capacitor 11 with the subscript i is obtained from the correlation between the ratio value ⁇ i and the voltage adjustment width ⁇ Vb (S195).
  • the voltage adjustment width ⁇ Vbi is set to a larger value as the deterioration progresses. Therefore, the control circuit 15 stores the correlation between the ratio value ⁇ i and the voltage adjustment width ⁇ Vb obtained experimentally in advance in a memory, and obtains the voltage adjustment width ⁇ Vbi according to the ratio value ⁇ i obtained in S193. I have to.
  • the correlation between the ratio value ⁇ i and the voltage adjustment width ⁇ Vb is a positive correlation function, this is obtained as an equation by the method of least squares, and the ratio value ⁇ i is substituted into the above-described equation.
  • the voltage adjustment width ⁇ Vbi for the capacitor 11 is calculated. Thereby, the memory can be saved as compared with the case where the correlation is stored in the memory as a data table.
  • the initial balance voltage Vro is the rated voltage (2.5 V) of the capacitor 11 as in the third embodiment.
  • the balance voltage Vri becomes smaller as the capacitor 11 is further deteriorated. Accordingly, the progress of the deterioration of the capacitor 11 is suppressed by the other capacitors 11, so that the life of the capacitor 11 can be extended accordingly.
  • the control circuit 15 compares the balance voltage Vri and the deterioration limit value Vg (S199).
  • the meaning of the degradation limit value Vg is the same as in the third embodiment. If the balance voltage Vri is equal to or lower than the deterioration limit value Vg (Yes in S199), the power storage device cannot be used any more, so the control circuit 15 transmits a deterioration signal of the power storage device to the vehicle control circuit as a Data signal (S201). ), The subroutine of FIG. 9 is terminated, and the process returns to the subroutine of FIG.
  • the control circuit 15 adds 1 to the subscript i and updates the content of the subscript i ( S203). Thereafter, it is determined whether or not the updated subscript i is equal to a value obtained by adding 1 to the number n of capacitors 11 (S205). If the subscript i is not n + 1 (No in S205), since the balance voltage Vri of all the capacitors 11 has not been determined yet, the process returns to S193 and the subsequent operations are repeated. If the subscript i is equal to n + 1 (Yes in S205), since the balance voltage Vri for all the capacitors 11 has been determined, the subroutine of FIG. 9 is terminated and the process returns to the subroutine of FIG.
  • the control circuit 15 obtains the minimum value ⁇ Vmin of the absolute value ⁇ Vi, and from the correlation obtained in advance in the value ⁇ i of the ratio ⁇ i between the absolute value ⁇ Vi and the minimum value ⁇ Vmin and the voltage adjustment width ⁇ Vb, the voltage adjustment width ⁇ Vbi for each capacitor 11. For each. Then, the balance voltage Vri is determined by subtracting the voltage adjustment width ⁇ Vbi from the initial balance voltage Vro. In this way, the balance voltage Vri of each capacitor 11 corresponding to the absolute value ⁇ Vi is obtained.
  • the balance voltage is based on the absolute value ⁇ Vi. High accuracy can also be achieved by determining Vri.
  • the subsequent operation is adjusted by the balance voltage adjusting unit 13 so that the voltage Vi between both ends of each capacitor 11 becomes the determined balance voltage Vri at the end of use of the vehicle, as in the third embodiment.
  • the applied voltage of the capacitor 11 that has deteriorated decreases, so that further progress of deterioration can be reduced and the deterioration of each capacitor 11 can be aligned with high accuracy. Accordingly, the life of the power storage device can be extended.
  • the both-end voltage V1i during non-charging / discharging is measured, and the both-end voltage V2i during charging / discharging is measured during charging / discharging, and the absolute value ⁇ Vi of these differences is measured.
  • the balance voltage Vri is determined by the ratio ⁇ i to the minimum value ⁇ Vmin. Therefore, it is not necessary to measure the times t1 and t2 as compared with the third embodiment, and a power storage device capable of extending the life of the capacitor 11 with simple operation and high accuracy can be realized.
  • the voltage V2i during charging / discharging has the same positive or negative voltage slope ⁇ Vc as the previous voltage slope ⁇ Vco, and the absolute value of the voltage slope ⁇ Vc is smaller than the absolute value of the previous voltage slope ⁇ Vco. I sometimes measure it.
  • the charge / discharge current I to the capacitor 11 may be used instead of the voltage gradient ⁇ Vc, and the previous charge / discharge current Io may be used instead of the previous voltage gradient ⁇ Vco.
  • the charge / discharge current I may be obtained, for example, when the control circuit 15 receives the data signal Data from a current detection circuit (not shown) built in the charge / discharge circuit as a data signal Data via the vehicle control circuit.
  • a current detection circuit may be provided in series to detect the current.
  • the voltage gradient ⁇ Vc is replaced with the charge / discharge current I
  • the previous voltage gradient ⁇ Vco is replaced with the previous charge / discharge current Io
  • the charge / discharge current I is read in S137.
  • the operations relating to the total voltage Vc and the previous total voltage Vco may be deleted.
  • a current detection circuit is required in terms of configuration, but the operation can be further simplified as compared with FIG. 7, and the balance voltage Vri can be determined earlier because of less operation.
  • the balance voltage Vri may be determined.
  • FIG. 10 is a change diagram of the voltage across the capacitor at times t1 and t2 of the power storage device according to the fifth embodiment of the present invention. Since the structure of the power storage device in the present fifth embodiment is the same as that in FIG. 1, the description of the structure is omitted. That is, since the feature of the fifth embodiment is the operation part, the operation will be described in detail below.
  • the horizontal axis represents time t
  • the vertical axis represents the voltage Vi across the capacitor.
  • several hundreds of capacitors 11 are connected in series as described above. However, in the following description, four capacitors 11 are provided in the same manner as in the first embodiment for easy understanding. Suppose that they are in series. Therefore, the number n of capacitors 11 is 4, and the range of the subscript i is 1 to 4.
  • FIG. 10 it is assumed that use of the vehicle is terminated at time t1, and an ignition switch (not shown) is turned off.
  • the control circuit 15 recognizes the end of use of the vehicle by receiving the ignition switch OFF signal as the data signal Data from the vehicle control circuit.
  • the voltages V11 to V14 at the end of use are in a state of variation due to variations in characteristics of each capacitor 11 and variations in deterioration.
  • the data are sequentially read from the adjustment unit 13 and stored in a memory built in the control circuit 15.
  • the time t1 is also stored in the memory as the first point time t1. Thereby, the first point time t1 is measured.
  • the capacitor 11 undergoes self-discharge according to the respective insulation resistance value Rzi, and the voltage Vi across the capacitor decreases with time.
  • the insulation resistance value Rz decreases as the capacitor 11 deteriorates, and the capacitance value C also decreases.
  • the control circuit 15 recognizes the start of the vehicle when the ignition switch is turned on from the vehicle control circuit. In addition, since the drive voltage is applied to the control circuit 15 when the ignition switch is turned on, the start of the vehicle may be recognized accordingly.
  • the time of non-charging / discharging is defined as a state where charging / discharging of the capacitor 11 by a charging / discharging circuit (not shown) is not actively performed. Therefore, not only when the current does not completely flow through the capacitor 11, but also when a slight leakage current flows through the capacitor 11 even when the charge / discharge circuit is not operated, this is included during non-charge / discharge.
  • the control circuit 15 stores the temperature dependency of the capacitor both-end voltage Vi obtained in advance, and thereby, depending on the temperature T obtained from the temperature sensor 25, the both-end voltage V1i at the end of use and the both-end voltage V2i at start-up. Is corrected.
  • the temperature-dependent characteristic of the voltage Vi across the capacitor when the temperature T is changed while the capacitor 11 is charged to a known voltage at a reference temperature To is obtained. This is obtained for each predetermined voltage width (for example, 0.1 V) until the known voltage reaches the rated voltage (for example, 2.5 V) of the capacitor 11. That is, the temperature dependency characteristic of the voltage Vi across the capacitor when the temperature T is changed while the capacitor 11 is charged to 0.1 V at the reference temperature To (25 ° C.), and then charged to 0.2 V at 25 ° C. Then, the temperature dependence characteristic is obtained, and then the temperature dependence characteristic is obtained by charging to 25V at 0.3 ° C. In this manner, the temperature dependence characteristic is obtained repeatedly up to the rated voltage (2.5V). A plurality of temperature dependence characteristics obtained in this way are stored in advance in the memory of the control circuit 15.
  • a temperature dependent characteristic having the capacitor terminal voltage Vi at the temperature T is selected from a plurality of temperature dependent characteristics.
  • the voltage Vi across the capacitor at the reference temperature To is obtained from the selected temperature-dependent characteristic.
  • the voltage V i across the capacitor thus obtained is a value after temperature correction.
  • the magnitude relationship between the voltage V21 to V24 at the time of start-up is not necessarily the same as the magnitude relationship of the voltages V11 to V14 at the end of use. That is, the magnitude relationship may be reversed depending on the characteristics of each capacitor 11 and variations in the progress of deterioration.
  • the capacitor 11 having the maximum end-of-use voltage V11 at time t1 has the minimum start-up end voltage V21 at time t2, and the minimum end-of-use voltage V14 at time t1.
  • the balance voltage Vri of each capacitor 11 is determined based on the above-described slope.
  • FIG. 11 is a flowchart for obtaining the balance voltage of each capacitor of the power storage device according to the fifth embodiment of the present invention. Since the control circuit 15 controls the overall operation of the power storage device by executing various subroutines from the main routine, the flowchart of FIG. 11 is shown in the form of a subroutine.
  • the control circuit 15 executes the subroutine of FIG. 11 at the time t2 when the values of the first point time t1, the second point time t2, the both-end voltage V1i at the end of use, and the both-end voltage V2i at start-up are aligned.
  • first, 1 is substituted into the variable memory i built in the control circuit 15 (S311).
  • the variable memory i is defined to have the same meaning as the subscript i, and is hereinafter referred to as the subscript i.
  • i 1 is described, but this is defined below to mean that the value on the right side is substituted for the variable on the left side. Therefore, in S311, the numerical value 1 which is the value on the right side is assigned to the subscript i which is the variable on the left side.
  • the control circuit 15 first obtains a slope ⁇ Vi / ⁇ t obtained by dividing the absolute value ⁇ Vi by the time difference ⁇ t.
  • ⁇ Vi corresponds to ⁇ V1 to ⁇ V4 in FIG. 10
  • the slope ⁇ Vi / ⁇ t corresponds to the slope of the thick arrow in FIG.
  • the balance voltage Vri for each capacitor 11 is obtained from the correlation obtained in advance in the obtained gradient ⁇ Vi / ⁇ t and the balance voltage Vr (S315).
  • the balance voltage Vr is a value determined in accordance with the degree of deterioration of the capacitor 11. That is, for example, when the rated voltage of the capacitor 11 when new is 2.5 V, the balance voltage Vr when new is set to 2.5 V, but when deterioration progresses, the applied voltage of the capacitor 11 is reduced. In order to delay the progress of the deterioration, the balance voltage Vri is controlled to be lowered. Accordingly, the balance voltage Vr is set to a value smaller than 2.5V in accordance with the increase in the gradient ⁇ Vi / ⁇ t accompanying the progress of deterioration. The correlation between the slope ⁇ Vi / ⁇ t and the balance voltage Vr is non-linear.
  • the insulation resistance value Rz and the capacitance value C decrease.
  • the degree cannot be expressed by a simple function that can be uniquely determined with respect to the deterioration progress.
  • the insulation resistance value Rz even if the capacitor 11 is deteriorated to some extent from a new state and the insulation resistance value Rz becomes small, the deterioration does not progress so much.
  • the insulation resistance value Rz is further decreased, the deterioration rapidly proceeds, and thereafter, there is a tendency that the deterioration gradually proceeds.
  • a voltage of about 2.55 V is applied to the capacitor 11 when fully charged, and the deterioration is relatively advanced.
  • the control circuit 15 next compares the balance voltage Vri with the deterioration limit value Vg (S325).
  • the deterioration limit value Vg is a value of the balance voltage Vri when the capacitor 11 deteriorates to a limit state where it can no longer be used, and this is also experimentally obtained in advance. Therefore, if the balance voltage Vri is equal to or lower than the deterioration limit value Vg (Yes in S325), the power storage device cannot be used any more, and the control circuit 15 transmits the power storage device deterioration signal as a Data signal to the vehicle control circuit. (S327).
  • the vehicle control circuit warns the driver of deterioration of the power storage device, prompts repair, and stops charging the power storage device. Thereby, since it does not continue using the degraded electrical storage apparatus, high reliability is obtained. Thereafter, the control circuit 15 ends the subroutine of FIG. 11 and returns to the main routine.
  • the control circuit 15 adds 1 to the subscript i and updates the content of the subscript i ( S329). Thereafter, it is determined whether or not the updated subscript i is equal to a value obtained by adding 1 to the number n of capacitors 11 (S331). If the subscript i is not n + 1 (No in S331), the balance voltage Vri of all the capacitors 11 has not been determined yet, so the process returns to S323 and the subsequent operations are repeated. If the subscript i is equal to n + 1 (Yes in S331), since the balance voltage Vri for all the capacitors 11 has been determined, the subroutine of FIG. 11 is terminated and the process returns to the main routine.
  • the control circuit 15 obtains the absolute value ⁇ Vi of the difference between the both-end voltage V1i at the end of use and the both-end voltage V2i at the start, and the first time t1 when measuring the both-end voltage V1i at the end of use and the both-end voltage V2i at the start.
  • the second point time t2 is measured, and the time difference ⁇ t is obtained by subtracting the first point time t1 from the second point time t2.
  • the balance voltage Vri for each capacitor 11 is obtained from the correlation obtained in advance in the slope ⁇ Vi / ⁇ t obtained by dividing the absolute value ⁇ Vi by the time difference ⁇ t and the balance voltage Vr. Further, the balance voltage Vri of each capacitor 11 is updated by dividing the balance voltage Vri of each capacitor 11 by the balance voltage sum ⁇ Vri obtained by their sum and multiplying by the full charge voltage Vf of all capacitors 11. It is decided by.
  • each balance voltage adjustment unit 13 controls the balance switch 17 so that the voltage Vi between both ends of the connected capacitor 11 becomes the balance voltage Vri.
  • the comparator 23 turns on the balance switch 17.
  • the capacitor 11 is discharged by the balance resistor 19, and the voltage Vi across the capacitor decreases.
  • the comparator 23 turns off the balance switch 17. Then, discharging of the capacitor 11 is stopped, and the voltage Vi across the capacitor becomes the target balance voltage Vri.
  • the balance voltage Vri is updated every time the vehicle is started, even if the deterioration of each capacitor 11 varies, the balance voltage Vri can be updated accordingly, and the deterioration progresses. Improve the accuracy of aligning.
  • the both-end voltage V1i at the end of use is measured at the end of use and at the time of non-charge / discharge of the capacitor 11, and the both-end voltage at start-up at the next start-up and at the time of non-charge / discharge of the capacitor 11 V2i is measured to determine the absolute value ⁇ Vi of these differences, thereby determining the balance voltage Vri. Therefore, it is possible to achieve an extremely simple configuration and operation, and since the influence of the insulation resistance value Rz and the capacitance value C of each capacitor 11 is taken into account, it is possible to increase the life of the capacitor 11 with high accuracy. A device can be realized.
  • FIG. 12 is a flowchart for obtaining the balance voltage of each capacitor of the power storage device according to Embodiment 6 of the present invention. Note that the structure of the power storage device in the present sixth embodiment is the same as that in FIG. 1, and thus the description of the structure is omitted. That is, since the feature of the sixth embodiment is the operation part, the operation will be described in detail below.
  • the both-ends voltage V1i is measured when the use of the capacitor 11 is finished, and at the next vehicle start-up and when the capacitor 11 is not charged / discharged,
  • the operation of measuring the both-end voltage V2i at the start is the same as that of the fifth embodiment.
  • the control is simpler than that of the fifth embodiment. Note that the both-end voltage V1i at the end of use and the both-end voltage V2i at the time of start-up are corrected by the temperature T as in the fifth embodiment.
  • control circuit 15 executes the subroutine of FIG. In FIG. 12, the same operations as those in FIG. 11 are denoted by the same step numbers, and detailed description thereof is omitted.
  • the index i is updated by adding 1 (S355), and it is determined whether or not the index i has reached the value obtained by adding 1 to the number n of capacitors 11 (S357). If the subscript i is not equal to n + 1 (No in S357), the process returns to S353, and the operation for obtaining the absolute value ⁇ Vi of the next capacitor 11 is repeated.
  • the control circuit 15 calculates the minimum value ⁇ Vmin from the obtained absolute values ⁇ Vi (S359).
  • ⁇ V4 is the minimum value ⁇ Vmin.
  • the ratio value ⁇ i is obtained from the absolute value ⁇ Vi, it is a value reflecting the insulation resistance value Rzi and the capacitance value Ci of each capacitor 11 as in the fifth embodiment.
  • the balance voltage Vri is set to a smaller value as the deterioration progresses.
  • the control circuit 15 stores the correlation between the ratio value ⁇ i obtained experimentally in advance and the balance voltage Vr in a memory, and obtains the balance voltage Vri according to the ratio value ⁇ i obtained in S363. Yes.
  • the correlation between the ratio value ⁇ i and the balance voltage Vr cannot be uniquely determined, and varies depending on the internal structure and shape of the capacitor 11, and is stored in the memory as a data table.
  • the control circuit 15 adds 1 to the subscript i and updates the content of the subscript i (S367). Thereafter, it is determined whether or not the updated subscript i is equal to a value obtained by adding 1 to the number n of capacitors 11 (S369). If the subscript i is not n + 1 (No in S369), the balance voltage Vri of all the capacitors 11 has not been obtained yet, so the process returns to S363 and the subsequent operations are repeated.
  • the control circuit 15 obtains the minimum value ⁇ Vmin of the absolute value ⁇ Vi, and determines the balance voltage Vri for each capacitor 11 from the correlation value obtained in advance in the ratio value ⁇ i of the absolute value ⁇ Vi and the minimum value ⁇ Vmin and the balance voltage Vr. Ask. Then, the balance voltage Vri of each capacitor 11 is updated by dividing the balance voltage Vri of each capacitor 11 by the balance voltage sum ⁇ Vri obtained by their sum and multiplying by the full charge voltage Vf of all capacitors 11. It is decided by.
  • the balance voltage adjusting unit 13 adjusts the voltage Vi between both ends of each capacitor 11 to become the balance voltage Vri when charging the regenerative power in the subsequent vehicle braking.
  • the details of this operation are also the same as in the fifth embodiment. Accordingly, also in the sixth embodiment, the progress of deterioration of each capacitor 11 can be made with high accuracy, and the life of the power storage device can be extended.
  • the both-end voltage V1i at the end of use is measured at the end of use and at the time of non-charge / discharge of the capacitor 11, and the both-end voltage at start-up at the next start-up and at the time of non-charge / discharge of the capacitor 11 V2i is measured, the absolute value ⁇ Vi of these differences is obtained, and the balance voltage Vri is determined by the ratio ⁇ i to the minimum value ⁇ Vmin. Therefore, it is not necessary to measure the first point time t1 and the second point time t2 compared to the fifth embodiment, and a power storage device that can extend the life of the capacitor 11 with a simple operation can be realized.
  • the control circuit 15 updates and finally determines the value of the balance voltage Vri so that the total voltage Vc becomes the full charge voltage Vf. However, this does not require the updating operation if the total voltage Vc is within the allowable input voltage range of the load connected to the power storage device.
  • the voltage V1i at the end of use of the capacitor 11 is measured as it is at the end of use of the vehicle and when the capacitor 11 is not charged / discharged.
  • the capacitor 11 may be in a non-charge / discharge state and the voltage V1i at the end of use may be measured.
  • the predetermined discharge voltage Vd is determined in advance as a voltage having a small influence on the progress of deterioration of the capacitor 11 (for example, half of the full charge voltage Vf).
  • the balance voltage Vri may be halved and controlled so that the balance switch 17 is turned on, or by a charge / discharge circuit (not shown). You may go.
  • the predetermined discharge voltage Vd is an upper limit voltage that can reduce the progress of deterioration of the capacitor 11. About half of the full charge voltage Vf is desirable.
  • the temperature sensor 25 is arranged in the vicinity of the capacitor 11.
  • the temperature T does not change much, for example, when the power storage device is used as an emergency auxiliary power supply, it is not necessary to correct the temperature T of the voltage Vi across the capacitor. Therefore, in this case, the temperature sensor 25 may not be used.
  • the control circuit 15 outputs a deterioration signal when the balance voltage Vri is equal to or lower than the deterioration limit value Vg. However, it may be output if the absolute value ⁇ Vi is equal to or greater than the degradation upper limit value ⁇ Vg.
  • the deterioration upper limit value ⁇ Vg is an absolute value ⁇ Vi at a limit when the power storage device cannot be used any more, and may be obtained in advance and stored in the memory of the control circuit 15. Since the absolute value ⁇ Vi increases as the capacitor 11 deteriorates as described above, the absolute value ⁇ Vi is determined to be deteriorated when the balance voltage Vri becomes equal to or lower than the deterioration limit value Vg.
  • the deterioration of the power storage device can be determined at an early stage. Further, both of these two determinations may be performed, and a deterioration signal may be output if at least one of the conditions is satisfied. Thereby, since deterioration determination is performed twice, deterioration determination accuracy is improved.
  • the deterioration limit value Vg and the deterioration upper limit value ⁇ Vg may be set in two stages.
  • the vehicle control circuit issues a warning to the driver and performs control to limit the charging current.
  • control is performed so as to stop charging the power storage device together with a warning.
  • an electric double layer capacitor is used as the capacitor 11, but this may be another capacitor such as an electrochemical capacitor.
  • the present invention is not limited thereto, and the present invention can also be applied to a vehicle regenerative system, an auxiliary power source for a vehicle in each system such as an idling stop, an electric power steering, a vehicle braking system, and an electric supercharger. Furthermore, it can be applied as long as a plurality of capacitors are connected in series and charged and discharged, such as an emergency auxiliary power supply other than for vehicles.
  • the power storage device according to the present invention can extend the life of the capacitor with extremely simple operation and high accuracy, it is particularly useful as a power storage device for a vehicle that stores electric power in the capacitor and discharges it when necessary.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 直列に接続された複数のキャパシタ(11)と、複数のキャパシタ(11)のそれぞれに接続されたバランス電圧調整部(13)と、バランス電圧調整部(13)に接続された制御回路(15)からなり、制御回路(15)は、キャパシタ(11)の非充放電時において、互いに測定タイミングが異なる2点のキャパシタ両端電圧をバランス電圧調整部(13)により測定し、2点のキャパシタ両端電圧の差の絶対値をそれぞれ求め、この絶対値に応じて各キャパシタ(11)のバランス電圧を決定し、バランス電圧調整部(13)を介してキャパシタ両端電圧がバランス電圧になるように制御する蓄電装置を提供する。

Description

蓄電装置
 本発明は、キャパシタに電力を蓄え、必要な時に放電する蓄電装置に関する。
 近年、環境への配慮から駆動の全てあるいは一部をモータで行う、いわゆる電気自動車やハイブリッド自動車が普及しつつある。これらの自動車(以下、車両という)はモータの電力がバッテリから供給されている。しかし、バッテリは急速かつ大電流充放電による特性変化や劣化が起こるため、特に急加速時にモータへ供給する電流を制限している。そのため十分な加速が得られない場合があった。
 そこで、急速充放電が可能なキャパシタをバッテリと併用した車両が考案されている。これにより、急加速時にバッテリに加えキャパシタの電力もモータに供給されるため、バッテリのみの場合より急峻な加速が可能となる。
 モータを駆動できるだけの電圧をキャパシタによって得るには、必要電圧が約750Vであるとすると、1個当たりの定格電圧が2.5Vのキャパシタを用いた場合、300個を直列に接続する必要がある。また、必要な容量を得るために並列接続を組み合わせることもある。
 しかし、キャパシタにはバラツキがあり、キャパシタに印加される電圧がばらつく。よって、それを考慮せず充電を行うと、キャパシタの劣化が進行し、寿命が短くなる可能性がある。
 そこで、従来から多数のキャパシタの劣化進行度のバラツキを低減し、長寿命化する蓄電装置が提案されている。
 図13は従来の充電装置のブロック回路図である。図13において、直列接続された複数のキャパシタ501のそれぞれの両端には、バランス電圧調整部503が接続されている。さらに、各キャパシタ501の両端には、キャパシタ501の両端電圧を測定するためのサンプリングコンデンサ505が2個のスイッチ507を介して接続されている。バランス電圧調整部503とスイッチ507は制御部509に接続されている。なお、図示していないが、直列接続された複数のキャパシタ501は充放電回路を介して車両のモータ、発電機、バッテリ、負荷等に接続されている。
 バランス電圧調整部503は次の構成を有する。すなわち、キャパシタ501の両端にバランススイッチ511とバランス抵抗513の直列回路が接続されている。さらに、キャパシタ501の両端には2個の直列接続された分圧抵抗515も接続されている。2個の分圧抵抗515の接続点はコンパレータ517の一方の入力に接続されている。また、コンパレータ517の他方の入力にはデジタルポテンショメータ519が接続されている。デジタルポテンショメータ519は基準電源521と制御部509に接続されているので、制御部509の指示に従って任意の基準電圧を出力することができる。コンパレータ517の出力はバランススイッチ511に接続され、そのオンオフを制御する。
 次に、このような蓄電装置の動作について説明する。まず、制御部509は各キャパシタ501の劣化進行度を求める。具体的には、各キャパシタ501を定電流充電した時の両端電圧変化の傾き、および充電中断時の両端電圧変化から、容量値Cと内部抵抗値Rをそれぞれ求め、あらかじめ求めたこれらの劣化限界値までの差を劣化進行度として求める。従って、差が小さいほど劣化が進行していることになる。
 次に、制御部509は各キャパシタ501の劣化進行度の平均値を求め、各キャパシタ501の劣化進行度のバラツキ幅が小さくなるようにバランス電圧をそれぞれ求める。すなわち、劣化が進んだキャパシタ501に対しては、劣化を遅らせるために両端電圧を下げるようバランス電圧を決定する。その後、各キャパシタ501の両端電圧がバランス電圧になるようにバランス電圧調整部503を制御する。
 このように制御することにより、各キャパシタ501の劣化進行度のバラツキ幅が小さくなるようにバランス電圧が調整される。従って、劣化が進んだキャパシタ501の劣化進行度を遅延させられるとともに、全キャパシタがほぼ同時期に動作限界に達する。その結果、蓄電装置の長寿命化が得られる。なお、これらの技術内容は、特許文献1に開示されている。
 しかしながら、上記従来の蓄電装置によると、定電流充電中に各キャパシタ501の容量値Cや内部抵抗値Rを測定し、それらから劣化進行度を求め、さらにその平均値から各キャパシタ501の劣化進行度のバラツキ幅が小さくなるようにバランス電圧をそれぞれ求めるという制御を行わなければならず、動作が複雑化する。
特開2007-124883号公報
 本発明は、簡単な動作で高精度にキャパシタの長寿命化を図ることが可能な蓄電装置を提供する。
 本発明の蓄電装置は、直列に接続された複数のキャパシタと、複数のキャパシタのそれぞれに接続されたバランス電圧調整部と、バランス電圧調整部に接続された制御回路を備える。そして、制御回路は、キャパシタの非充放電時において、互いに測定タイミングが異なる2点のキャパシタ両端電圧(V1i、V2i、i=1~n、nはキャパシタの個数)をバランス電圧調整部により測定し、2点のキャパシタ両端電圧(V1i、V2i)の差の絶対値(ΔVi)をそれぞれ求めるとともに、2点のキャパシタ両端電圧(V1i、V2i)のうち、1点目のキャパシタ両端電圧(V1i)を測定する際の1点目時間(t1)と2点目のキャパシタ両端電圧(V2i)を測定する際の2点目時間(t2)と、を測定し、2点目時間(t2)から1点目時間(t1)を差し引くことにより時間差(Δt)を求め、絶対値(ΔVi)を時間差(Δt)で除して既定係数(A)を乗じることにより、各キャパシタの電圧調整幅(ΔVbi)を計算し、初期バランス電圧(Vro)から電圧調整幅(ΔVbi)を差し引くことでバランス電圧(Vri)を決定し、バランス電圧調整部を介してキャパシタ両端電圧(Vi)がバランス電圧(Vri)になるように制御する。
 本発明の蓄電装置によれば、キャパシタの非充放電時に、互いに測定タイミングが異なる2点のキャパシタ両端電圧(V1i、V2i)の差の絶対値(ΔVi)を求め、それによりバランス電圧(Vri)を決定する。従って、従来のようにキャパシタを定電流充電状態とした上で容量値Cや内部抵抗値Rを測定する必要がなく、さらに劣化進行度を求めて平均値を計算した結果からバランス電圧を決定する制御も不要となる。ゆえに、従来に比べ極めて簡単な動作でキャパシタの長寿命化を図ることができるという効果が得られる。
図1は本発明の実施の形態1における蓄電装置のブロック回路図である。 図2は本発明の実施の形態1における蓄電装置の時間t1、t2におけるキャパシタ両端電圧の変化図である。 図3は本発明の実施の形態1における蓄電装置の各キャパシタのバランス電圧を求めるフローチャートである。 図4は本発明の実施の形態2における蓄電装置の各キャパシタのバランス電圧を求めるフローチャートである。 図5は本発明の実施の形態3における蓄電装置の時間t1、t2におけるキャパシタ両端電圧の変化図である。 図6は本発明の実施の形態3における蓄電装置の全電圧の経時特性図である。 図7は本発明の実施の形態3における蓄電装置の非充放電時両端電圧と充放電時両端電圧を求めるフローチャートである。 図8は本発明の実施の形態3における蓄電装置の各キャパシタのバランス電圧を求めるフローチャートである。 図9は本発明の実施の形態4における蓄電装置の各キャパシタのバランス電圧を求めるフローチャートである。 図10は本発明の実施の形態5における蓄電装置の時間t1、t2におけるキャパシタ両端電圧の変化図である。 図11は本発明の実施の形態5における蓄電装置の各キャパシタのバランス電圧を求めるフローチャートである。 図12は本発明の実施の形態6における蓄電装置の各キャパシタのバランス電圧を求めるフローチャートである。 図13は従来の蓄電装置のブロック回路図である。
符号の説明
11  キャパシタ
13  バランス電圧調整部
15  制御回路
25  温度センサ
 以下、本発明を実施するための最良の形態について図面を参照しながら説明する。なお、実施の形態では蓄電装置をハイブリッド自動車に適用した場合について述べる。
 (実施の形態1)
 図1は、本発明の実施の形態1における蓄電装置のブロック回路図である。
 図1において、キャパシタ11は複数個が直列に接続されている。図中の太い線は電力系配線を、細い線は信号系配線をそれぞれ示す。本実施の形態1では、キャパシタ11として大容量の電気二重層キャパシタを用いた。なお、キャパシタ11は必要な電力仕様に応じて直並列接続としてもよい。この場合は、並列接続部分のキャパシタを1個のキャパシタ11として取り扱うことにより、図1と等価回路になる。従って、各キャパシタ11は1個でもよいし、複数個を並列接続したものでもよいものとして、以下説明する。なお、図1に示す蓄電装置における直列接続されたキャパシタ11の最両端を、他の蓄電装置の最両端と接続する構成としてもよい。このような直並列接続の場合は、キャパシタ11のそれぞれに後述するバランス電圧調整部13が接続される構成となる。
 各キャパシタ11の両端には、それぞれバランス電圧調整部13が接続されている。さらに、バランス電圧調整部13には制御回路15が接続されているので、制御回路15によりバランス電圧調整部13の動作が制御されている。なお、制御回路15は、従来の図13に示したデジタルポテンショメータ519や基準電源521等の機能を有する複数の周辺回路と、それらを制御するマイクロコンピュータから構成されている。また、制御回路15は車両用制御回路(図示せず)との間でデータ信号(Data)によりデータを交信する機能も有している。
 次に、バランス電圧調整部13の構成について説明する。まず、キャパシタ11の両端にはバランススイッチ17とバランス抵抗19の直列回路が接続されている。バランススイッチ17は外部からオンオフ制御ができる構成を有し、例えばFETやトランジスタが適用できる。さらに、キャパシタ11の両端には2個の分圧抵抗21の直列回路も接続されている。2個の分圧抵抗21の接続点は制御回路15、およびコンパレータ23の一方の入力に接続されている。これにより、制御回路15はキャパシタ11の両端電圧Vi(i=1~n、nは直列接続されたキャパシタ11の個数)を読み込むことができる。また、図1に示す一番上のキャパシタ11における正極は、直列接続されたキャパシタ11の全電圧Vcと等しいので、全電圧Vcも一番上のバランス電圧調整部13を介して制御回路15により読み込めるように配線されている。
 コンパレータ23の他方の入力は、制御回路15と接続されている。これにより、制御回路15から発せられるバランス電圧Vriがコンパレータ23に入力されることになる。また、コンパレータ23の出力はバランススイッチ17に接続されている。従って、コンパレータ23の出力によりバランススイッチ17のオンオフが制御される。
 キャパシタ11の近傍には温度センサ25が配されている。温度センサ25は温度に対する抵抗値変化が大きいサーミスタを用いた。温度センサ25の出力は制御回路15に接続されている。従って、制御回路15は温度センサ25が検出した温度Tを読み込むことができる。
 直列接続されたキャパシタ11の最両端である正極端子27と負極端子29には、充放電回路を介して車両のモータ、発電機、バッテリ、負荷等に接続されている。なお、図1ではこれらを省略している。
 次に、このような構成を有する蓄電装置の動作について説明する。
 図2は本発明の実施の形態1における蓄電装置の時間t1、t2におけるキャパシタ両端電圧の変化図である。図2において、横軸は時間t、縦軸はキャパシタ両端電圧Viをそれぞれ示す。また、ハイブリッド自動車の場合、キャパシタ11は前記したように数100個程度が直列接続される構成となるが、以下の説明ではわかりやすくするために、キャパシタ11が4個直列であるとする。従って、キャパシタ11の個数nは4になり、添字iの範囲は1~4となる。
 まず、時間t1で車両のイグニションスイッチ(図示せず)がオンになり、車両が起動したとする。制御回路15は、イグニションスイッチのオン信号を車両用制御回路からデータ信号(Data)として受信することにより、車両の起動を認識する。なお、車両の起動は、イグニションスイッチがオンになることで制御回路15に駆動電圧が印加されるので、それにより認識するようにしてもよい。
 車両の起動を認識すると、制御回路15は直ちに現在の各キャパシタ11の両端電圧V1i(i=1~4)をバランス電圧調整部13より順次読み込み、制御回路15に内蔵されたメモリに記憶する。同時に、時間t1も1点目時間t1としてメモリに記憶する。これにより、1点目時間t1が測定されたことになる。なお、キャパシタ両端電圧V11~V14は、前回の車両使用終了時から時間t1に至るまでの間、自己放電により低下した状態である。さらに、各キャパシタ11の特性バラツキや劣化進行バラツキにより、キャパシタ両端電圧V11~V14はばらついた状態である。
 その後、車両の使用により各キャパシタ11は制動時に回生電力を充電し、加速時に充電電力を放電する動作を繰り返す。なお、この経時変化は図2には示していない。
 次に、時間t2において、車両の使用を終了したとする。この際、通常は車両を制動して停止した後、その使用を終了するので、この制動時の回生電力が各キャパシタ11に充電された状態となる。従って、図2の時間t2においては、各キャパシタ11の両端電圧V2i(i=1~4)は、時間t1でのキャパシタ両端電圧V1iよりも大きくなる。制御回路15は時間t2におけるキャパシタ両端電圧V21~V24をバランス電圧調整部13より順次読み込み、メモリに記憶するとともに、時間t2も2点目時間t2として記憶する。これにより、2点目時間t2が測定されたことになる。
 以上の説明より、時間t1、および時間t2はいずれもキャパシタ11への充放電を行っていない非充放電時であるので、安定したキャパシタ両端電圧V1i、V2iを測定することができる。ここで、非充放電時とは、充放電回路(図示せず)によるキャパシタ11への充放電を積極的に行っていない状態として定義する。従って、完全にキャパシタ11に電流が流れていない場合だけでなく、充放電回路を動作させていなくてもキャパシタ11に僅かな漏れ電流が流れる等の場合は非充放電時に含む。
 なお、キャパシタ両端電圧Viは温度により変化する特性を有する。そこで、制御回路15は、あらかじめ求めたキャパシタ両端電圧Viの温度依存性を記憶しておき、それにより温度センサ25から得られる温度Tに応じて、2点のキャパシタ両端電圧V1i、V2iを補正している。
 具体的には、基準温度To(例えば25℃)において、キャパシタ11を既知電圧まで充電した状態で温度Tを変えた時のキャパシタ両端電圧Viの温度依存特性を求める。これを、既知電圧がキャパシタ11の定格電圧(例えば2.5V)まで既定の電圧幅(例えば0.1V)毎に求める。すなわち、基準温度To(25℃)でキャパシタ11を0.1Vまで充電した状態で温度Tを変えた時のキャパシタ両端電圧Viの温度依存特性を求め、次に25℃で0.2Vまで充電して温度依存特性を求め、次に25℃で0.3Vまで充電して温度依存特性を求め、というようにして、定格電圧(2.5V)まで繰り返し温度依存特性を求める。こうして得られた複数の温度依存特性を制御回路15のメモリにあらかじめ記憶しておく。
 次に、温度Tと任意のキャパシタ両端電圧Viが得られれば、複数の温度依存特性の中から、温度Tにおけるキャパシタ両端電圧Viを有する温度依存特性を選択する。次に、基準温度Toにおけるキャパシタ両端電圧Viを、選択した温度依存特性から求める。こうして求めたキャパシタ両端電圧Viが温度補正後の値となる。
 これにより、図2の時間t1とt2で互いに温度が異なっても、基準温度Toにおけるキャパシタ両端電圧Viに補正されるので、以下に述べるバランス電圧Vriの計算精度を向上することができる。ゆえに、各キャパシタ11の劣化進行の低減(詳細は後述する)を高精度に行えるので、温度補正を行うことによりキャパシタ11の長寿命化に寄与できる。
 ここで、キャパシタ両端電圧V21~V24の大小関係は、キャパシタ両端電圧V11~V14の大小関係と同じであるとは限らない。すなわち、各キャパシタ11の特性や劣化進行におけるバラツキに応じて大小関係が逆転する場合がある。具体的には、図2において、時間t1で最大の両端電圧V11を有するキャパシタ11は、時間t2では最小の両端電圧V21となり、時間t1で最小の両端電圧V14を有するキャパシタ11は、時間t2では最大の両端電圧V24となっている。従って、本実施の形態1では、互いに測定タイミングが異なる時間t1と時間t2における2点のキャパシタ両端電圧V1i、V2iから得られる図2の太矢印の傾きを基に、各キャパシタ11のバランス電圧Vriを決定するようにしている。
 次に、具体的なバランス電圧Vriの決定方法を説明する。
 図3は、本発明の実施の形態1における蓄電装置の各キャパシタのバランス電圧を求めるフローチャートである。図3において、制御回路15はメインルーチンから各種サブルーチンを実行することにより蓄電装置全体の動作を制御しているので、フローチャートはサブルーチンの形態で示した。
 上記した1点目時間t1、2点目時間t2の値、および2点のキャパシタ両端電圧V1i、V2iの値が揃った時間t2の時点で、制御回路15は図3のサブルーチンを実行する。これにより、まず制御回路15に内蔵した変数メモリiに1を代入する(ステップ番号S11)。ここで、変数メモリiは添字iと同等の意味を有すると定義し、以下、添字iと呼ぶ。また、S11において、i=1と記載しているが、これは右辺の値を左辺の変数に代入するという意味であると以下定義する。従って、S11では右辺の値である数値の1を、左辺の変数である添字iに代入することになる。
 次に、制御回路15は2点のキャパシタ両端電圧V1i、V2iの差の絶対値ΔViを、ΔVi=|V2i-V1i|より求める(S13)。次に、2点目時間t2から1点目時間t1を差し引くことにより時間差Δtを求める(S14)。すなわち、Δt=t2-t1により時間差Δtを求めている。次に、各キャパシタ11の電圧調整幅ΔVbiを、絶対値ΔVi、時間差Δt、および既定係数Aから、ΔVbi=A×ΔVi/Δtにより求める(S15)。ここで、ΔVi/Δtは図2の太矢印の傾きである。この傾きは各キャパシタ11の容量値Cの逆数に相当する。すなわち、キャパシタ11は全て直列接続されているので、いずれにも同じ電流値Iで充電される。この時のキャパシタ11に蓄えられる電荷量QはQ=C・ΔVi=I・Δtとなる。これを変形すると、C=I・Δt/ΔViとなる。ここで、電流値Iは各キャパシタ11に対して等しいので、図2の傾きΔVi/Δtの逆数が各キャパシタ11の容量値Cと比例することがわかる。
 ここで、キャパシタ11は劣化が進行すると容量値Cが低下するので、劣化が進行したキャパシタ11ほど傾きΔVi/Δtが大きくなることになる。従って、図2において、添字i=4のキャパシタ11は傾きが最も大きいので劣化が一番進行していることがわかる。これにより、傾きの大小に応じてバランス電圧Vriを調整することになる。
 そのために、まずS15で電圧調整幅ΔVbiを求めている。すなわち、電圧調整幅ΔVbiは、キャパシタ11が劣化未進行の初期状態の場合に設定される初期バランス電圧Vro(例えば定格電圧が2.5Vのキャパシタ11であれば、初期バランス電圧Vro=2.5Vとなる)からどれだけ電圧を下げるかを表すものである。これは、上記傾きに既定係数Aを乗じることにより求めている。従って、劣化が進行し、傾きが大きいキャパシタ11ほど、電圧調整幅ΔVbiが大きくなる。なお、既定係数Aは次のステップ(S17)でバランス電圧Vriが正規の範囲に入るように調整するための係数で、あらかじめ実験的に求めてメモリに記憶しておく。
 次に、制御回路15はバランス電圧Vriを、Vri=Vro-ΔVbiより求める(S17)。ここで、上述したように電圧調整幅ΔVbiはキャパシタ11の劣化が進行するほど大きくなり、一方で初期バランス電圧Vroが定数であるので、バランス電圧Vriは小さくなる。これにより、バランス電圧調整部13でキャパシタ両端電圧Viがバランス電圧Vriになるように調整されるので、劣化が進行したキャパシタ11ほどキャパシタ両端電圧Viが小さくなる。これにより、そのキャパシタ11の劣化進行は他のキャパシタ11より抑制される。なお、S17の式でバランス電圧Vriが極端に小さくなったり負になったりしないように、あらかじめ既定係数Aを求めて、S15で傾きに既定係数Aを乗じるようにしている。
 次に、制御回路15はバランス電圧Vriと劣化限界値Vgを比較する(S19)。ここで、劣化限界値Vgとは、キャパシタ11がこれ以上使用できない限界状態まで劣化した時のバランス電圧Vriの値であり、これもあらかじめ実験的に求めてある。従って、もしバランス電圧Vriが劣化限界値Vg以下になれば(S19のYes)、これ以上蓄電装置を使用できないので、制御回路15は蓄電装置の劣化信号をData信号として車両用制御回路に送信する(S21)。これを受け、車両用制御回路は運転者に蓄電装置の劣化を警告し、修理を促すと同時に、蓄電装置の充電を中止する。これにより、劣化した蓄電装置を使い続けることがなくなるので、高信頼性が得られる。その後、制御回路15は図3のサブルーチンを終了してメインルーチンに戻る。
 一方、バランス電圧Vriが劣化限界値Vgより大きければ(S19のNo)、蓄電装置を継続して使用できるので、次に制御回路15は添字iに1を加え、添字iの内容を更新する(S23)。その後、更新した添字iがキャパシタ11の個数n(ここではn=4)に1を加えた値と等しいか否かを判断する(S25)。もし、添字iがn+1でなければ(S25のNo)、まだ全てのキャパシタ11のバランス電圧Vriが決まっていないので、S13に戻り、それ以降の動作を繰り返す。
 一方、添字iがn+1と等しければ(S25のYes)、全てのキャパシタ11に対するバランス電圧Vriを決定できたので、図3のサブルーチンを終了してメインルーチンに戻る。
 以上に説明した図3のフローチャートによるサブルーチンの動作をまとめると、次のようになる。
 制御回路15は、2点のキャパシタ両端電圧V1i、V2iのうち、1点目のキャパシタ両端電圧V1iを測定する際の1点目時間t1と、2点目のキャパシタ両端電圧V2iを測定する際の2点目時間t2を測定し、2点目時間t2から1点目時間t1を差し引くことにより時間差Δtを求め、絶対値ΔViを時間差Δtで除して既定係数Aを乗じることにより、各キャパシタ11の電圧調整幅ΔVbiを計算し、初期バランス電圧Vroから電圧調整幅ΔVbiを差し引くことでバランス電圧Vriを決定している。このようにして、絶対値ΔViに応じた各キャパシタ11のバランス電圧Vriを得ている。
 その後は、制御回路15から各バランス電圧調整部13に対して、それぞれ決定したバランス電圧Vriを出力するので、各バランス電圧調整部13は、接続されたキャパシタ11の両端電圧Viがバランス電圧Vriになるようにバランススイッチ17を制御する。すなわち、キャパシタ両端電圧Viがバランス電圧Vriより大きければ、コンパレータ23はバランススイッチ17をオンにする。これにより、キャパシタ11がバランス抵抗19により放電され、キャパシタ両端電圧Viは低下する。その後、キャパシタ両端電圧Viがバランス電圧Vriとほぼ等しくなれば、コンパレータ23はバランススイッチ17をオフにする。これにより、キャパシタ11の放電が停止し、そのキャパシタ両端電圧Viは目標であるバランス電圧Vriとなる。その結果、キャパシタ11の印加電圧が下がるので、その劣化進行を低減することができる。なお、その後は車両非使用時に渡ってキャパシタ両端電圧Viが自己放電により徐々に低下していく。
 また、このように動作することで、車両使用終了時において劣化が進行したキャパシタ11のキャパシタ両端電圧Vi(図2ではV24)を下げ、比較的劣化が進行していないキャパシタ11のキャパシタ両端電圧Vi(図2ではV21)は高い状態のままとすることにより、前者の劣化進行を低減するとともに後者の劣化を相対的に進ませることになるので、各キャパシタ11の劣化進行を揃えることが可能となる。その結果、任意の1個のキャパシタ11のみが劣化限界に達して蓄電装置全体が使えなくなる可能性を低減でき、蓄電装置の長寿命化も図れる。
 なお、2点のキャパシタ両端電圧V1i、V2iをキャパシタ11への非充放電時に求めているので、2点のキャパシタ両端電圧V1i、V2iは、図2の太矢印の傾きの逆数として示される各キャパシタ11の容量値Cの影響のみを反映しており、内部抵抗値Rの影響は含まれない。これは、キャパシタ11を充放電した直後、または充放電終了時にのみ、キャパシタ両端電圧Viが内部抵抗値Rの大きさを反映するためである。従って、本実施の形態1では内部抵抗値Rを求めずに各キャパシタ11の劣化進行を揃えることができるので、簡単な動作でキャパシタの長寿命化が図れる。
 以上の構成、動作により、キャパシタ11の非充放電時に、互いに測定タイミングが異なる2点のキャパシタ両端電圧V1i、V2iの差の絶対値ΔViを求め、それによりバランス電圧Vriを決定するので、極めて簡単な動作でキャパシタ11の長寿命化を図ることが可能な蓄電装置を実現できる。
 なお、本実施の形態1では、1点目時間t1が起動時であり、2点目時間t2が使用終了時であるようにしたので、確実にキャパシタ11への充放電が行われていない状態で2点のキャパシタ両端電圧V1i、V2iをそれぞれ求められる。しかし、1点目時間t1と2点目時間t2は、それぞれ起動時と使用終了時に限定されるものではなく、キャパシタ11が非充放電時であれば車両の使用中であっても構わない。但し、この場合はキャパシタ11の充放電回路が動作していないことを示す信号を車両用制御回路から受信するようにしておくか、あるいは複数のキャパシタ11の直列回路に対し電流検出回路を直列に接続する必要がある。
 (実施の形態2)
 図4は、本発明の実施の形態2における蓄電装置の各キャパシタのバランス電圧を求めるフローチャートである。なお、本実施の形態2における蓄電装置の構成は図1と同じであるので、構成の説明を省略する。本実施の形態2の特徴は動作部分であるので、動作について以下に詳細を説明する。
 図4において、制御回路15は車両の起動時や車両使用中において、キャパシタ11の非充放電時の任意の時間t1で現在の各キャパシタ11の両端電圧V1iを読み込み、制御回路15に内蔵されたメモリに記憶する。なお、この時に実施の形態1と同様にキャパシタ両端電圧V1iの温度補正を行っておく。また、この時の時間t1は実施の形態1と異なり、メモリに記憶する動作は行わない。
 次に、制御回路15は時間t1より後の車両使用中や車両使用終了時において、キャパシタ11の非充放電時の任意の時間t2で現在の各キャパシタ11の両端電圧V2iを読み込み、制御回路15に内蔵されたメモリに記憶する。なお、この時に実施の形態1と同様にキャパシタ両端電圧V2iの温度補正を行っておく。また、この時の時間t2は実施の形態1と異なり、メモリに記憶する動作は行わない。
 以上の動作で2点のキャパシタ両端電圧V1i、V2iの値が揃ったので、制御回路15は図4のサブルーチンを実行する。これにより、まず添字iに1を代入する(S51)。次に、制御回路15は2点のキャパシタ両端電圧V1i、V2iの差の絶対値ΔViを、ΔVi=|V2i-V1i|より求める(S53)。次に添字iに1を加えて更新し(S55)、添字iがキャパシタ11の個数nに1を加えた値に至ったか否かを判断する(S57)。もし、添字iがn+1と等しくなければ(S57のNo)、S53に戻り、次のキャパシタ11の絶対値ΔViを求める動作を繰り返す。
 添字iがn+1と等しくなれば(S57のYes)、制御回路15は得られた複数の絶対値ΔViの中から最小値ΔVminを求める(S59)。これは、図2の場合であればΔV1が最小値ΔVminとなる。次に、制御回路15は再び添字iに1を代入し(S61)、各絶対値ΔViと最小値ΔVminの比の値Δiを、Δi=ΔVi/ΔVminより求める(S63)。こうして求めた比の値Δiは絶対値ΔViが最小値ΔVminに対してどれだけ大きいかを示す値であるので、比の値Δiは1以上の数値となる。なお、最小値ΔVminに相当するキャパシタ11に対しては、キャパシタ両端電圧ΔVi(図2ではΔV1)が最小値ΔVminと等しいので、比の値Δi=1となる。
 従って、比の値Δiが1のものは、図2よりも明らかなように、傾きが最小のものに相当するので、劣化進行が最も遅いことになる。その他のキャパシタ11については比の値Δiが大きいほど劣化が進行していることになり、図2においては、添字i=4のキャパシタ11が最も劣化進行していることがわかる。ゆえに、比Δiが各キャパシタ11の劣化進行の指標となる。
 そこで、次に比の値Δiと電圧調整幅ΔVbの相関関係から添字iのキャパシタ11の電圧調整幅ΔVbiを求める(S65)。ここで、実施の形態1で説明したように、電圧調整幅ΔVbiは劣化が進行しているものほど大きい値になるようにしているので、制御回路15はあらかじめ実験的に求めた比の値Δiと電圧調整幅ΔVbの相関関係をメモリに記憶しておき、S63で求めた比の値Δiに応じた電圧調整幅ΔVbiを求めるようにしている。なお、比の値Δiと電圧調整幅ΔVbの相関関係は正の相関関数となるので、これを最小二乗法で式として求めておき、比の値Δiを前記式に代入することで、各キャパシタ11に対する電圧調整幅ΔVbiを計算している。これにより、相関関係をデータ表としてメモリに記憶する場合に比べ、メモリの節約ができる。
 次に、制御回路15はバランス電圧Vriを、Vri=Vro-ΔVbiより求める(S67)。なお、初期バランス電圧Vroは、実施の形態1と同様に、キャパシタ11の定格電圧(2.5V)としている。これにより、劣化が進行したキャパシタ11ほど、そのバランス電圧Vriは小さくなる。従って、そのキャパシタ11の劣化進行は他のキャパシタ11より抑制されるので、その分、キャパシタ11の寿命を延ばすことができる。
 次に、制御回路15はバランス電圧Vriと劣化限界値Vgを比較する(S69)。ここで、劣化限界値Vgの意味は、実施の形態1と同じである。もし、バランス電圧Vriが劣化限界値Vg以下になれば(S69のYes)、これ以上蓄電装置を使用できないので、制御回路15は蓄電装置の劣化信号をData信号として車両用制御回路に送信する(S71)。そして、図3のサブルーチンを終了してメインルーチンに戻る。
 一方、バランス電圧Vriが劣化限界値Vgより大きければ(S69のNo)、蓄電装置を継続して使用できるので、次に制御回路15は添字iに1を加え、添字iの内容を更新する(S73)。その後、更新した添字iがキャパシタ11の個数nに1を加えた値と等しいか否かを判断する(S75)。もし、添字iがn+1でなければ(S75のNo)、まだ全てのキャパシタ11のバランス電圧Vriが決まっていないので、S63に戻り、それ以降の動作を繰り返す。添字iがn+1と等しければ(S75のYes)、全てのキャパシタ11に対するバランス電圧Vriを決定できたので、図4のサブルーチンを終了してメインルーチンに戻る。
 以上に説明した図4のフローチャートによるサブルーチンの動作をまとめると、次のようになる。
 制御回路15は、各絶対値ΔViの最小値ΔVminを求め、各絶対値ΔViと最小値ΔVminの比の値Δi、および電圧調整幅ΔVbにおける、あらかじめ求めた相関関係から、各キャパシタ11に対する電圧調整幅ΔVbiをそれぞれ求め、初期バランス電圧Vroから電圧調整幅ΔVbiを差し引くことでバランス電圧Vriを決定している。このようにして、絶対値ΔViに応じた各キャパシタ11のバランス電圧Vriを得ている。
 その後の動作は、実施の形態1と同様に、各キャパシタ11の両端電圧Viが決定されたバランス電圧Vriになるようにバランス電圧調整部13により調整される。その結果、劣化が進行したキャパシタ11の印加電圧が下がるので、さらなる劣化進行を低減することができるとともに、各キャパシタ11の劣化進行を揃えることが可能となる。従って、蓄電装置の長寿命化も図れる。
 以上の構成、動作により、キャパシタ11の非充放電時に、互いに測定タイミングが異なる2点のキャパシタ両端電圧V1i、V2iの差の絶対値ΔViを求め、その最小値ΔVminとの比Δiによりバランス電圧Vriを決定する。従って、実施の形態1に比べ1点目時間t1と2点目時間t2の測定が不要となり、さらに簡単な動作でキャパシタ11の長寿命化を図ることが可能な蓄電装置を実現できる。
 また、実施の形態1、2において、制御回路15は劣化信号をバランス電圧Vriが劣化限界値Vg以下になれば出力するようにしている。しかし、これは絶対値ΔViが劣化上限値ΔVg以上になれば出力するようにしてもよい。ここで、劣化上限値ΔVgは、これ以上蓄電装置を使用できない限界時の絶対値ΔViのことであり、あらかじめ求めて制御回路15のメモリに記憶しておけばよい。なお、絶対値ΔViは上述したようにキャパシタ11が劣化するに従って大きくなるので、バランス電圧Vriが劣化限界値Vg以下になれば劣化と判断するのとは逆に、絶対値ΔViが劣化上限値ΔVg以上になれば劣化と判断することになる。これにより、特に実施の形態2において、蓄電装置の劣化を少しでも早い段階で判断することができる。また、これら2つの判断を両方行い、少なくともいずれかの条件が成立すれば劣化信号を出力するようにしてもよい。これにより、二重に劣化判断を行うので、劣化判断精度が向上する。
 また、実施の形態1、2において、劣化限界値Vgや劣化上限値ΔVgを2段階に設定してもよい。この場合、例えば1段階目では車両用制御回路が運転者に警告を発するとともに、充電電流を制限する制御を行う。2段階目に至ると、警告とともに蓄電装置への充電を中止するように制御する。これにより、劣化した蓄電装置を使い続ける可能性を大きく低減することが可能となる。
 (実施の形態3)
 図5は、本発明の実施の形態3における蓄電装置の時間t1、t2におけるキャパシタ両端電圧の変化図である。
 本実施の形態3における蓄電装置の構成は図1と同じであるので、構成の説明を省略する。すなわち、本実施の形態3の特徴は動作部分であるので、動作について以下に詳細を説明する。なお、図5において、横軸は時間t、縦軸はキャパシタ両端電圧Viをそれぞれ示す。また、ハイブリッド自動車の場合、キャパシタ11は前記したように数100個程度が直列接続される構成となるが、以下の説明ではわかりやすくするために、実施の形態1と同様に、キャパシタ11が4個直列であるとする。従って、キャパシタ11の個数nは4になり、添字iの範囲は1~4となる。
 図5において、時間t1で車両のイグニションスイッチ(図示せず)がオンになり、車両が起動したとする。制御回路15は、イグニションスイッチのオン信号を車両用制御回路からデータ信号(Data)として受信することにより、車両の起動を認識する。なお、車両の起動は、イグニションスイッチがオンになることで制御回路15に駆動電圧が印加されるので、それにより認識するようにしてもよい。
 車両の起動時は、まだキャパシタ11の充放電が行われていないので、制御回路15は直ちに現在の各キャパシタ11の非充放電時両端電圧V1i(i=1~4)をバランス電圧調整部13より順次読み込み、制御回路15に内蔵されたメモリに記憶する。同時に、時間t1も1点目時間t1としてメモリに記憶する。これにより、1点目時間t1が測定されたことになる。なお、これらの動作の詳細は後述する図7を用いて説明する。また、非充放電時両端電圧V11~V14は、前回の車両使用終了時から時間t1に至るまでの間、自己放電により低下した状態である。さらに、各キャパシタ11の特性バラツキや劣化進行バラツキにより、非充放電時両端電圧V11~V14はばらついた状態である。
 ここで、非充放電時とは、充放電回路(図示せず)によるキャパシタ11への充放電を積極的に行っていない状態として定義する。従って、完全にキャパシタ11に電流が流れていない場合だけでなく、充放電回路を動作させていなくてもキャパシタ11に僅かな漏れ電流が流れる等の場合は非充放電時に含む。
 その後、車両の使用により各キャパシタ11には制動時の回生電力が充電される。これにより、各キャパシタ両端電圧Viは経時的に上昇する。なお、キャパシタ両端電圧Viの経時変化の詳細は図5では省略している。このように、非充放電時両端電圧V1iの測定後から、キャパシタ11を連続して充電のみ行っている時(時間t2)に、制御回路15はキャパシタ11の充放電時両端電圧V2i(i=1~4)を、バランス電圧調整部13により測定してメモリに記憶するとともに、時間t2も2点目時間t2として記憶する。これにより、2点目時間t2が測定されたことになる。なお、これらの動作の詳細も後述する図7を用いて説明する。また、制動時の回生電力が各キャパシタ11に充電されているので、図5の時間t2においては、各キャパシタ11の充放電時両端電圧V2iは、時間t1での非充放電時両端電圧V1iよりも大きくなる。
 なお、キャパシタ両端電圧Viは温度により変化する特性を有する。そこで、制御回路15は、あらかじめ求めたキャパシタ両端電圧Viの温度依存性を記憶しておき、それにより温度センサ25から得られる温度Tに応じて、非充放電時両端電圧V1iと充放電時両端電圧V2iを補正している。
 具体的には、基準温度To(例えば25℃)において、キャパシタ11を既知電圧まで充電した状態で温度Tを変えた時のキャパシタ両端電圧Viの温度依存特性を求める。これを、既知電圧がキャパシタ11の定格電圧(例えば2.5V)まで既定の電圧幅(例えば0.1V)毎に求める。すなわち、基準温度To(25℃)でキャパシタ11を0.1Vまで充電した状態で温度Tを変えた時のキャパシタ両端電圧Viの温度依存特性を求め、次に25℃で0.2Vまで充電して温度依存特性を求め、次に25℃で0.3Vまで充電して温度依存特性を求め、というようにして、定格電圧(2.5V)まで繰り返し温度依存特性を求める。こうして得られた複数の温度依存特性を制御回路15のメモリにあらかじめ記憶しておく。
 次に、温度Tと任意のキャパシタ両端電圧Viが得られれば、複数の温度依存特性の中から、温度Tにおけるキャパシタ両端電圧Viを有する温度依存特性を選択する。次に、基準温度Toにおけるキャパシタ両端電圧Viを、選択した温度依存特性から求める。こうして求めたキャパシタ両端電圧Viが温度補正後の値となる。
 これにより、図5の時間t1とt2で互いに温度が異なっても、基準温度Toにおけるキャパシタ両端電圧Viに補正されるので、図8で説明するバランス電圧Vriの計算精度を向上することができる。ゆえに、各キャパシタ11の劣化進行の低減(詳細は後述する)を高精度に行えるので、温度補正を行うことでキャパシタ11の長寿命化に寄与できる。
 ここで、充放電時両端電圧V21~V24の大小関係は、非充放電時両端電圧V11~V14の大小関係と同じであるとは限らない。すなわち、各キャパシタ11の特性や劣化進行におけるバラツキに応じて大小関係が逆転する場合がある。
 具体的には、図5において、時間t1で最大の非充放電時両端電圧V11を有するキャパシタ11は、時間t2では最小の充放電時両端電圧V21となり、時間t1で最小の非充放電時両端電圧V14を有するキャパシタ11は、時間t2では最大の充放電時両端電圧V24となっている。従って、本実施の形態3では、時間t1と時間t2における2点のキャパシタ両端電圧V1i、V2iから得られる図5の太矢印の傾きを基に、各キャパシタ11のバランス電圧Vriを決定するようにしている。
 ここで、1点目時間t1と2点目時間t2の決定方法について説明する。
 図6は、本発明の実施の形態3における蓄電装置の全電圧の経時特性図である。図6において、横軸は時間t、縦軸はキャパシタの全電圧Vcをそれぞれ示す。
 まず、1点目時間t1はキャパシタ11が非充放電状態である任意の時間に決定されるが、図6においては、非充放電時、すなわちキャパシタ11の全電圧Vc1がほぼ一定である任意の時間を1点目時間t1と決定している。この時、制御回路15は各キャパシタ11の非充放電時両端電圧V1iを読み込んでいる。
 次に、時間taで車両制動により回生電力が発生したとする。これにより、キャパシタ11に回生電力が充電されるが、充電開始直後には、全てのキャパシタ11の内部抵抗値Rに起因した初期的な電圧上昇が発生する。電圧上昇の大きさΔVcaはキャパシタ11への充電電流をIとすると、ΔVca=I・Rで表される。この電圧上昇は、図6に示すように、時間tbまでの極めて短期間に急峻に発生し、その後、キャパシタ11への充電に伴って全電圧Vcは経時的に上昇していく。制御回路15は急峻な電圧上昇が発生した後の時間tb以降で、既定時間ts毎に、全電圧Vcの電圧傾きΔVcを求める。ここで、既定時間tsは十分な測定精度で電圧傾きΔVcが求められる時間としてあらかじめ決定されており、本実施の形態3では0.1秒とした。また、図6より明らかなように、電圧傾きΔVcは、例えば時間tbにおける全電圧Vcbと、時間tbから既定時間tsを加えた時間tcにおける全電圧Vccの差ΔVcb(=Vcc-Vcb)を既定時間tsで除して求められる。既定時間tsは一定なので差ΔVcbが電圧傾きΔVcに相当することになる。従って、以後の説明では既定時間tsにおいて生じる電圧の差(例えばΔVcb)を、電圧傾きΔVcとして述べる。
 制御回路15は、時間tcから後もキャパシタ11を連続して充電している時に、既定時間ts毎に電圧傾きΔVcを求める。すなわち、時間tcから既定時間tsが経過した時間tdで全電圧Vcdを求め、電圧傾きΔVccをΔVcc=Vcd-Vccにより計算する。
 ここで、時間tb以降では、回生電力をキャパシタ11に充電するに従って、キャパシタ11への充電電流Iが経時的に増大し、やがて最大電流値に至る。車速が下がり車両制動が終了に近づくと、充電電流Iが低下していく。これに対応して、キャパシタ11の全電圧Vcの電圧傾きΔVcは時間tb以降で経時的に増大し、やがて最大値を有し、その後減少する経時変化を有する。すなわち、図6に示すように、時間tbから時間tcにおける電圧傾きΔVcbに対し、時間tcから時間tdにおける電圧傾きΔVccは大きくなる。やがて時間teから時間tfにおける電圧傾きΔVceで最大値となり、その後、時間tfから時間tgにおける電圧傾きΔVcfが減少する。このように、電圧傾きΔVcfが電圧傾きΔVceより小さくなった時、すなわち、電圧傾きΔVc(図6のΔVcf)が前回電圧傾きΔVco(図6のΔVce)より小さくなった時(図6の時間tg)を2点目時間t2として決定する。この時、制御回路15は各キャパシタ11の充放電時両端電圧V2iを読み込んでいる。これにより、1点目時間t1における全電圧Vc1に対し、2点目時間t2における全電圧Vcgの差が十分大きくなるので、各キャパシタ11の1点目時間t1における非充放電時両端電圧V1iと2点目時間t2における充放電時両端電圧V2iの差の絶対値ΔViも制御回路15による電圧読み込み精度以上に大きくなり、高精度化が可能となる。
 なお、図6ではキャパシタ11の充電時に2点目時間t2を決定している。しかし、キャパシタ11が非充放電状態から放電状態となった際に2点目時間t2を決定してもよい。この場合の決定方法は図6とほぼ同じであるが、放電により全電圧Vcは経時的に低下するので、電圧傾きΔVcは全て絶対値で求めるようにする。これにより、電圧傾きΔVcの絶対値が前回電圧傾きΔVcoの絶対値より小さくなった時を2点目時間t2として決定すればよいことになる。
 また、キャパシタ11の充電時、または放電時において、2点目時間t2を決定する際に、電圧傾きΔVcの正負が前回電圧傾きΔVcoの正負と異なっていれば、キャパシタ11が急遽、充電状態から放電状態になったか、または放電状態から充電状態になったことになる。この時、前者であれば、その時点で全てのキャパシタ11の内部抵抗値Rに起因した電圧降下が発生し、後者であれば、電圧上昇が発生する。この電圧降下、または電圧上昇が発生した後の任意の時間で2点目時間t2を決定すると、その時点での充放電時両端電圧V2iによる非充放電時両端電圧V1iとの差の絶対値ΔViが小さくなる方向に推移する。ゆえに、2点目時間t2の決定時点によっては絶対値ΔViが電圧測定精度に対し相対的に小さくなり、絶対値ΔViの精度が悪くなる可能性がある。このため、制御回路15は、電圧傾きΔVcの正負が前回電圧傾きΔVcoの正負と同じ場合に限って2点目時間t2を決定するようにしている。
 以上の説明より、2点目時間t2の決定動作は以下のようになる。
 制御回路15は、キャパシタ11の充電、または放電の開始直後における全てのキャパシタ11の内部抵抗値Rに起因した初期的な電圧上昇、または電圧降下が発生した後に、既定時間ts毎に、直列接続されたキャパシタ11の全電圧Vcの電圧傾きΔVcを求める。そして、電圧傾きΔVcの正負が前回電圧傾きΔVcoと同じで、かつ電圧傾きΔVcの絶対値が前回電圧傾きΔVcoの絶対値より小さくなった時を2点目時間t2として決定し、充放電時両端電圧V2iを測定する。
 次に、バランス電圧Vriを決定するための全体的な動作について説明する。
 図7は、本発明の実施の形態3における蓄電装置の非充放電時両端電圧と充放電時両端電圧を求めるフローチャートである。図7において、制御回路15はメインルーチンから各種サブルーチンを実行することにより蓄電装置全体の動作を制御しているので、図7、図8のフローチャートはサブルーチンの形態で示した。
 制御回路15はメインルーチンから一定時間(例えば分オーダー)毎にバランス電圧Vriを決定するために、図7のサブルーチンを実行する。このように一定時間毎にバランス電圧Vriを決定することで、最新のキャパシタ11の状態(劣化進行状態等)を反映したバランス電圧Vriを得ることができる。
 図7のサブルーチンが実行されると、制御回路15は前回電圧傾きΔVcoをクリアする(S111)。この具体的な動作は、制御回路15に内蔵したメモリ変数である前回電圧傾きΔVcoに0を代入することになる。なお、このような動作について、図7のS111に示すようにΔVco=0と表記する。これは、右辺の値(0)を左辺の変数(前回電圧傾きΔVco)に代入するという意味であると、以下定義する。
 次に、制御回路15は現在キャパシタ11が非充放電状態であるか否かを判断する(S113)。なお、この判断のために、制御回路15は車両用制御回路(図示せず)からデータ信号(Data)により、現在のキャパシタ11の充放電状態を受信する。充放電状態は、例えば車両用制御回路が充放電回路を動作させているか否かのデータ信号(Data)を受信することで得られる。
 もし、キャパシタ11が非充放電状態でなければ(S113のNo)、制御回路15はバランス電圧Vriを決定せずに、そのまま図7のサブルーチンを終了し、メインルーチンに戻る。これにより、制御回路15はキャパシタ11が非充放電状態になる毎に、バランス電圧Vriを決定するように制御することができ、前記したように最新のキャパシタ11の状態を反映したバランス電圧Vriが得られる。なお、非充放電状態でない場合にバランス電圧Vriを決定しない理由は次の通りである。
 もし、充放電時に1点目時間t1を決定したとすると、例えば図6の場合では、1点目時間t1が時間ta以降となる。一方、2点目時間t2は充電中の時間tgであるので、1点目時間t1と2点目時間t2の両方が充電中になる。この場合、図5に示す1点目時間t1と2点目時間t2におけるキャパシタ両端電圧Viの差の絶対値ΔViを求めると、各キャパシタ11の内部抵抗値Rに起因した電圧上昇の影響が含まれず、容量値C(図5の太矢印の傾きに相当)の影響のみが反映される。従って、内部抵抗値Rの影響を加味したバランス電圧Vriの決定ができなくなり、その分、精度が低下してしまう。このような理由から、本実施の形態3では、内部抵抗値Rの影響が絶対値ΔViに含まれるよう、1点目時間t1が非充放電状態となるようにしている。これにより、バランス電圧Vriに内部抵抗値Rの影響が加味されるので、高精度化が図れる。
 ここでS113に戻り、キャパシタ11が非充放電状態であれば(S113のYes)、制御回路15は蓄電装置の使用が終了しているか否かを判断する(S115)。ここで、蓄電装置の使用終了は車両の使用終了と同じタイミングであるとしている。従って、制御回路15は車両用制御回路から送信されるイグニションキー(図示せず)の状態を読み取ることで、使用終了を判断できる。
 もし、使用終了であれば(S115のYes)、S113ではYesであったので、キャパシタ11が非充放電状態のまま使用終了となったことになる。これは、車両が停止するために制動が行なわれ、それにより発生した回生電力がキャパシタ11に充電された状態で車両の使用を終了したことになる。この場合は、その後積極的にキャパシタ11の充放電が行われることはないので、2点目時間t2が決定できない。従って、制御回路15は充放電時両端電圧V2iの測定を中止するようにしている。この際、制御回路15は図7のサブルーチンを終了し、メインルーチンに戻る。
 一方、使用終了でなければ(S115のNo)、制御回路15はバランス電圧調整部13により各キャパシタ11の非充放電時両端電圧V1iをそれぞれ読み込む(S117)。また、その時間を1点目時間t1として記憶する(S119)。
 次に、制御回路15は温度センサ25より温度Tを読み込み(S121)、非充放電時両端電圧V1iを温度Tによりそれぞれ補正する(S123)。なお、温度補正方法の詳細は前述した通りである。
 次に、制御回路15はキャパシタ11が充放電状態であるか否かを判断する(S125)。この判断の詳細動作はS113と同じである。もし、充放電状態でなければ(S125のNo)、再び蓄電装置の使用が現時点で終了しているか否かを判断する(S126)。もし、使用終了であれば(S126のYes)、車両を停止した後、しばらくしてからイグニションキーをオフにしたことになるので、この場合もS115のYesと同様に、図7のサブルーチンを終了し、メインルーチンに戻る。一方、使用終了でなければ(S126のNo)、前記した2点目時間t2の決定ができないので、S125に戻り充放電状態になるまで待つ。
 充放電状態になれば(S125のYes)、制御回路15は初期待ち時間が経過したか否かを判断する(S127)。ここで、初期待ち時間はキャパシタ11の充電、または放電の開始直後における全てのキャパシタ11の内部抵抗値Rに起因した初期的な電圧上昇、または電圧降下が発生し終わるまでの時間であり、図6の時間taから時間tbまでに相当する。初期待ち時間が経過していなければ(S127のNo)、S127に戻り、初期待ち時間が経過するまで待つ。
 初期待ち時間が経過すれば(S127のYes)、制御回路15は図5における一番上のバランス電圧調整部13を介して、キャパシタ11の全電圧Vcを読み込む(S129)。その後、読み込んだ全電圧Vcを前回全電圧Vcoに代入して、前回全電圧Vcoを更新する(S131)。
 次に、制御回路15は既定時間tsが経過したか否かを判断する(S133)。既定時間tsは図6で説明した通りである。もし、既定時間tsが経過していなければ(S133のNo)、S133に戻り既定時間tsが経過するまで待つ。一方、既定時間tsが経過すれば(S133のYes)、制御回路15は再びキャパシタ11の全電圧Vcを読み込む(S135)。その後、得られた全電圧Vc、および前回全電圧Vcoより、図6で説明した電圧傾きΔVcを、ΔVc=Vc-Vcoより求める(S137)。
 次に、得られた電圧傾きΔVcと前回電圧傾きΔVcoの積Fを計算する(S139)。ここで、積Fを計算する理由は、電圧傾きΔVcの正負と前回電圧傾きΔVcoの正負が同じか否かを判断するためである。すなわち、もし正負が同じであれば積Fは正に、正負が異なれば積Fは負になる。また、もし積Fが0であれば、S111で前回電圧傾きΔVcoを0にクリアしたままの状態であることがわかる。このような積Fが0になる場合は、図7のサブルーチン実行後、初めて電圧傾きΔVcを求めたことを意味する。従って、もし積Fが0であれば(S141のYes)、前回電圧傾きΔVcoが存在しないので、電圧傾きΔVcとの比較をすることができない。ゆえに、後述するS147にジャンプする。
 一方、積Fが0でなければ、(S141のNo)、次に制御回路15は積Fが正であるか否かを判断する(S143)。もし、積Fが負であれば(S143のNo)、電圧傾きΔVcの正負が前回電圧傾きΔVcoと異なり、充電と放電が急に逆転したことになるので、充放電時両端電圧V2iの測定を中止して、図7のフローチャートを終了し、メインルーチンに戻る。これにより、バランス電圧Vriは更新されず、現在の値を保持する。また、前述したようにメインルーチンは一定時間毎に図7のサブルーチンを実行しているので、再びキャパシタ11が非充放電状態になれば、バランス電圧Vriを決定する動作を行うことができる。
 一方、積Fが正であれば(S143のYes)、電圧傾きΔVcの正負が前回電圧傾きΔVcoと同じであるので、次に制御回路15は電圧傾きΔVcの絶対値と前回電圧傾きΔVcoの絶対値を比較する(S145)。もし、電圧傾きΔVcの絶対値が前回電圧傾きΔVcoの絶対値以上であれば(S145のNo)、電圧傾きΔVcは図6の時間tbから時間teに示すように増大中であるので、前記したように、まだ2点目時間t2を決定できない。この場合、制御回路15は電圧傾きΔVcの値を前回電圧傾きΔVcoに代入して更新し(S147)、S131に戻る。これにより、再び既定時間tsが経過後の電圧傾きΔVcを求める動作以降を繰り返す。
 電圧傾きΔVcの絶対値が前回電圧傾きΔVcoの絶対値より小さければ(S145のYes)、図6に示す時間teから時間tgの状態に相当するので、この時点でバランス電圧調整部13を介して充放電時両端電圧V2iをそれぞれ読み込む(S149)。また、その時間を2点目時間t2として記憶する(S151)。次に、制御回路15は温度センサ25より温度Tを読み込み(S153)、充放電時両端電圧V2iを温度Tによりそれぞれ補正する(S155)。なお、温度補正方法の詳細は前述した通りである。
 ここまでの動作により、1点目時間t1、非充放電時両端電圧V1i、2点目時間t2、および充放電時両端電圧V2iの値がそれぞれ得られたので、制御回路15は図8に示すバランス電圧Vriの決定サブルーチンを実行する(S157)。従って、以後は図8を参照しながら説明する。
 図8は、本発明の実施の形態3における蓄電装置の各キャパシタのバランス電圧を求めるフローチャートである。図8において、制御回路15は内蔵した変数メモリiに1を代入する(S161)。ここで、変数メモリiは添字iと同等の意味を有すると定義し、以下、添字iと呼ぶ。
 次に、制御回路15は非充放電時両端電圧V1iと充放電時両端電圧V2iの差の絶対値ΔViを、ΔVi=|V2i-V1i|より求める(S163)。次に、2点目時間t2から1点目時間t1を差し引くことにより時間差Δtを求める(S164)。すなわち、Δt=t2-t1により時間差Δtを求めている。次に、各キャパシタ11の電圧調整幅ΔVbiを、絶対値ΔVi、時間差Δt、および既定係数Aから、ΔVbi=A×ΔVi/Δtにより求める(S165)。ここで、ΔVi/Δtは図5の太矢印の傾きである。この傾きは各キャパシタ11の容量値Cの逆数に相当する。すなわち、キャパシタ11は全て直列接続されているので、いずれにも同じ充電電流Iで充電される。この時のキャパシタ11に蓄えられる電荷量QはQ=C・ΔVi=I・Δtとなる。これを変形すると、C=I・Δt/ΔViとなる。ここで、充電電流Iは各キャパシタ11に対して等しいので、図5の傾きΔVi/Δtの逆数が各キャパシタ11の容量値Cと比例することがわかる。
 ここで、キャパシタ11は劣化が進行すると容量値Cが低下し、各キャパシタ11の内部抵抗値Riが大きくなる。従って、劣化が進行するほど図6における充電開始直後の内部抵抗値Rに起因した電圧上昇ΔVcaも大きくなる。これにより、内部抵抗値Rは各キャパシタ11の内部抵抗値Riの和であるので、各キャパシタ11の内部抵抗値Riにおいても劣化が進行するとともに大きくなる。従って、図5において、絶対値ΔViは各キャパシタ11の内部抵抗値Riに起因した電圧上昇と、キャパシタ11への充電による電圧の経時的上昇の和として表されることになる。傾きΔVi/Δtは各キャパシタ11の内部抵抗値Riと容量値Cを反映した値であり、劣化が進行したキャパシタ11ほど大きくなることがわかる。ゆえに、図5の添字i=4のキャパシタ11は傾きが最も大きいので劣化が一番進行していることになる。これにより、傾きの大小に応じてバランス電圧Vriを調整することになる。
 そのために、まずS165で電圧調整幅ΔVbiを求めている。すなわち、電圧調整幅ΔVbiは、キャパシタ11が劣化未進行の初期状態の場合に設定される初期バランス電圧Vro(例えば定格電圧が2.5Vのキャパシタ11であれば、初期バランス電圧Vro=2.5Vとなる)からどれだけ電圧を下げるかを表すものである。これは、上記傾きに既定係数Aを乗じることにより求めている。従って、劣化が進行し、傾きが大きいキャパシタ11ほど、電圧調整幅ΔVbiが大きくなることになる。なお、既定係数Aは次のステップ(S167)でバランス電圧Vriが正規の範囲に入るように調整するための係数で、あらかじめ実験的に求めてメモリに記憶しておく。
 次に、制御回路15はバランス電圧Vriを、Vri=Vro-ΔVbiより求める(S167)。ここで、前述したように電圧調整幅ΔVbiはキャパシタ11の劣化が進行するほど大きくなり、一方で初期バランス電圧Vroが定数であるので、バランス電圧Vriは小さくなる。これにより、バランス電圧調整部13でキャパシタ両端電圧Viがバランス電圧Vriになるように調整されるので、劣化が進行したキャパシタ11ほどキャパシタ両端電圧Viが小さくなる。従って、そのキャパシタ11の劣化進行は他のキャパシタ11より抑制されるので、その分、キャパシタ11の寿命を延ばすことができる。なお、S167の式でバランス電圧Vriが極端に小さくなったり負になったりしないように、あらかじめ既定係数Aを求めて、S165で傾きに既定係数Aを乗じるようにしている。
 次に、制御回路15はバランス電圧Vriと劣化限界値Vgを比較する(S169)。ここで、劣化限界値Vgとは、キャパシタ11がこれ以上使用できない限界状態まで劣化した時のバランス電圧Vriの値であり、これもあらかじめ実験的に求めてある。従って、もしバランス電圧Vriが劣化限界値Vg以下になれば(S169のYes)、これ以上蓄電装置を使用できないので、制御回路15は蓄電装置の劣化信号をData信号として車両用制御回路に送信する(S171)。これを受け、車両用制御回路は運転者に蓄電装置の劣化を警告し、修理を促すと同時に、蓄電装置の使用を禁止する。これにより、劣化した蓄電装置を使い続けることがなくなるので、高信頼性が得られる。その後、制御回路15は図8のサブルーチンを終了して図7のサブルーチンに戻る。なお、図7のサブルーチンにおいて、S157(図8のサブルーチン)の実行後は図7のサブルーチンも終了し、メインルーチンに戻る。
 一方、バランス電圧Vriが劣化限界値Vgより大きければ(S169のNo)、蓄電装置を継続して使用できるので、次に制御回路15は添字iに1を加え、添字iの内容を更新する(S173)。その後、更新した添字iがキャパシタ11の個数n(ここではn=4)に1を加えた値と等しいか否かを判断する(S175)。もし、添字iがn+1でなければ(S175のNo)、まだ全てのキャパシタ11のバランス電圧Vriが決まっていないので、S163に戻り、それ以降の動作を繰り返す。
 一方、添字iがn+1と等しければ(S175のYes)、全てのキャパシタ11に対するバランス電圧Vriを決定できたので、図8のサブルーチンを終了して図7のサブルーチンに戻る。なお、図7のサブルーチンにおいて、S157(図8のサブルーチン)の実行後は図7のサブルーチンも終了し、メインルーチンに戻る。
 以上に説明した図8のフローチャートによるサブルーチンの動作をまとめると、次のようになる。
 制御回路15は、非充放電時両端電圧V1iを測定する際の1点目時間t1と、充放電時両端電圧V2iを測定する際の2点目時間t2を測定し、2点目時間t2から1点目時間t1を差し引くことにより時間差Δtを求める。そして、絶対値ΔViを時間差Δtで除して既定係数Aを乗じることにより、各キャパシタ11の電圧調整幅ΔVbiを計算する。さらに、初期バランス電圧Vroから電圧調整幅ΔVbiを差し引くことでバランス電圧Vriを決定している。このようにして、絶対値ΔViに応じた各キャパシタ11のバランス電圧Vriを得ている。
 なお、車両使用中の間、メインルーチンにより一定時間毎に図7のサブルーチンが実行されるので、バランス電圧Vriを求める条件が成立すれば、バランス電圧Vriは更新され続ける。その後、車両使用が終了すると、制御回路15は最後に更新された最新のバランス電圧Vriを各バランス電圧調整部13に対してそれぞれ出力する。これにより、各バランス電圧調整部13は、接続されたキャパシタ11の両端電圧Viがバランス電圧Vriになるようにバランススイッチ17を制御する。すなわち、キャパシタ両端電圧Viがバランス電圧Vriより大きければ、コンパレータ23はバランススイッチ17をオンにする。これにより、キャパシタ11がバランス抵抗19により放電され、キャパシタ両端電圧Viは低下する。その後、キャパシタ両端電圧Viがバランス電圧Vriとほぼ等しくなれば、コンパレータ23はバランススイッチ17をオフにする。これにより、キャパシタ11の放電が停止し、そのキャパシタ両端電圧Viは目標であるバランス電圧Vriとなる。その結果、キャパシタ11の印加電圧が下がるので、その劣化進行を低減することができる。なお、その後は車両非使用時に渡ってキャパシタ両端電圧Viが自己放電により徐々に低下していく。
 また、このように動作することで、車両使用終了時において劣化が進行したキャパシタ11のキャパシタ両端電圧Vi(図5ではV24)を下げ、比較的劣化が進行していないキャパシタ11のキャパシタ両端電圧Vi(図5ではV21)は高い状態のままとする。これにより、前者の劣化進行を低減するとともに後者の劣化を相対的に進ませることになるので、各キャパシタ11の劣化進行を揃えることが可能となる。その結果、任意の1個のキャパシタ11のみが劣化限界に達して蓄電装置全体が使えなくなる可能性を低減でき、蓄電装置の長寿命化も図れる。
 以上の構成、動作により、キャパシタ11の非充放電時に、非充放電時両端電圧V1iを測定するとともに、キャパシタ11の充放電時に充放電時両端電圧V2iを測定し、これらの差の絶対値ΔViを求め、それによりバランス電圧Vriを決定する。よって、極めて簡単な動作で、かつ高精度にキャパシタ11の長寿命化を図ることが可能な蓄電装置を実現できる。
 なお、本実施の形態3では、キャパシタ11を充電する際にバランス電圧Vriを求める場合について説明したが、これはキャパシタ11を放電する際でもよい。但し、いずれの場合も1点目時間t1は非充放電時に、2点目時間t2は充放電時にする必要がある。
 これは、以下の理由による。もし、1点目時間t1を充電時に、それ以降の2点目時間t2を非充電時にしたとすると、充電が停止し非充電状態になれば、キャパシタ11の内部抵抗値Riに起因した電圧降下が発生する。その結果、充電を停止するまでにはキャパシタ両端電圧Viが上昇していたものの、充電の停止によりキャパシタ両端電圧Viは低下することになる。従って絶対値ΔViは電圧降下の分、小さくなることになる。これにより、絶対値ΔViが小さくなりすぎると電圧測定精度の影響が大きくなり、絶対値ΔViを基に決定されるバランス電圧Vriの精度も低下する。さらに、充電時間と劣化進行によるキャパシタ11の内部抵抗値Riの大きさによっては、充電によるキャパシタ両端電圧Viの上昇よりも充電停止時の電圧降下の方が大きくなり、充電時であるにもかかわらず傾きΔVi/Δtが負になる可能性もある。このように、充電状態や劣化状態により傾きΔVi/Δtの大小関係が変動すると、バランス電圧Vriを正しく決定できないことになる。ゆえに、1点目時間t1は非充電時に、2点目時間t2は充電時に決定している。これにより、充電開始時の電圧上昇と充電によるキャパシタ両端電圧Viの上昇の和に応じて傾きΔVi/Δtが得られるので、充電状態や劣化状態の影響を反映した高精度なバランス電圧Vriを決定することができる。なお、これらは放電時においても同様である。
 (実施の形態4)
 図9は、本発明の実施の形態4における蓄電装置の各キャパシタのバランス電圧を求めるフローチャートである。なお、本実施の形態4における蓄電装置の構成は図1と同じであるので、構成の説明を省略する。すなわち、本実施の形態4の特徴は動作部分であるので、動作について以下に詳細を説明する。
 まず、図7の動作については、基本的には実施の形態3と同じでよいが、本実施の形態4では1点目時間t1と2点目時間t2を用いないので、S119とS151の動作が不要である。従って、その分、簡易な制御となる。また、本実施の形態4ではバランス電圧Vriの決定サブルーチンが実施の形態3と異なるので、この部分を図9により説明する。
 図7のサブルーチンの実行により、非充放電時両端電圧V1iと充放電時両端電圧V2iが得られれば、図7のS157で制御回路15は図9のサブルーチンを実行する。これにより、まず添字iに1を代入する(S181)。次に、制御回路15は非充放電時両端電圧V1iと充放電時両端電圧V2iの差の絶対値ΔViを、ΔVi=|V2i-V1i|より求める(S183)。次に添字iに1を加えて更新し(S185)、添字iがキャパシタ11の個数nに1を加えた値に至ったか否かを判断する(S187)。もし、添字iがn+1と等しくなければ(S187のNo)、S183に戻り、次のキャパシタ11の絶対値ΔViを求める動作を繰り返す。
 添字iがn+1と等しくなれば(S187のYes)、制御回路15は得られた複数の絶対値ΔViの中から最小値ΔVminを求める(S189)。これは、図5の場合であればΔV1が最小値ΔVminとなる。次に、制御回路15は再び添字iに1を代入し(S191)、各絶対値ΔViと最小値ΔVminの比の値Δiを、Δi=ΔVi/ΔVminより求める(S193)。こうして求めた比の値Δiは絶対値ΔViが最小値ΔVminに対してどれだけ大きいかを示す値であるので、比の値Δiは1以上の数値となる。なお、最小値ΔVminに相当するキャパシタ11に対しては、キャパシタ両端電圧ΔVi(図5ではΔV1)が最小値ΔVminと等しいので、Δi=1となる。
 従って、比の値Δiが1のものは図5よりも明らかなように傾きが最小のものに相当するので、劣化進行が最も遅いことになる。その他のキャパシタ11については比の値Δiが大きいほど劣化が進行していることになり、図5においては、添字i=4のキャパシタ11が最も劣化進行していることがわかる。ゆえに、比の値Δiが各キャパシタ11の劣化進行の指標となる。
 そこで、次に比の値Δiと電圧調整幅ΔVbの相関関係から添字iのキャパシタ11の電圧調整幅ΔVbiを求める(S195)。ここで、実施の形態3で説明したように、電圧調整幅ΔVbiは劣化が進行しているものほど大きい値になるようにしている。よって、制御回路15はあらかじめ実験的に求めた比の値Δiと電圧調整幅ΔVbの相関関係をメモリに記憶しておき、S193で求めた比の値Δiに応じた電圧調整幅ΔVbiを求めるようにしている。なお、比の値Δiと電圧調整幅ΔVbの相関関係は正の相関関数となるので、これを最小二乗法で式として求めておき、比の値Δiを前述した式に代入することで、各キャパシタ11に対する電圧調整幅ΔVbiを計算している。これにより、相関関係をデータ表としてメモリに記憶する場合に比べ、メモリの節約ができる。
 次に、制御回路15はバランス電圧Vriを、Vri=Vro-ΔVbiより求める(S197)。なお、初期バランス電圧Vroは実施の形態3と同様にキャパシタ11の定格電圧(2.5V)としている。これにより、劣化が進行したキャパシタ11ほど、そのバランス電圧Vriは小さくなる。従って、そのキャパシタ11の劣化進行は他のキャパシタ11より抑制されるので、その分、キャパシタ11の寿命を延ばすことができる。
 次に、制御回路15はバランス電圧Vriと劣化限界値Vgを比較する(S199)。ここで、劣化限界値Vgの意味は実施の形態3と同じである。もしバランス電圧Vriが劣化限界値Vg以下になれば(S199のYes)、これ以上蓄電装置を使用できないので、制御回路15は蓄電装置の劣化信号をData信号として車両用制御回路に送信し(S201)、図9のサブルーチンを終了して図7のサブルーチンに戻る。
 一方、バランス電圧Vriが劣化限界値Vgより大きければ(S199のNo)、蓄電装置を継続して使用できるので、次に制御回路15は添字iに1を加え、添字iの内容を更新する(S203)。その後、更新した添字iがキャパシタ11の個数nに1を加えた値と等しいか否かを判断する(S205)。もし、添字iがn+1でなければ(S205のNo)、まだ全てのキャパシタ11のバランス電圧Vriが決まっていないので、S193に戻り、それ以降の動作を繰り返す。添字iがn+1と等しければ(S205のYes)、全てのキャパシタ11に対するバランス電圧Vriを決定できたので、図9のサブルーチンを終了して図7のサブルーチンに戻る。
 以上に説明した図9のフローチャートによるサブルーチンの動作をまとめると、次のようになる。
 制御回路15は、絶対値ΔViの最小値ΔVminを求め、絶対値ΔViと最小値ΔVminの比の値Δi、および電圧調整幅ΔVbにおける、あらかじめ求めた相関関係から、各キャパシタ11に対する電圧調整幅ΔVbiをそれぞれ求める。そして、初期バランス電圧Vroから電圧調整幅ΔVbiを差し引くことでバランス電圧Vriを決定している。このようにして、絶対値ΔViに応じた各キャパシタ11のバランス電圧Vriを得ている。この際、実施の形態3で説明したように、絶対値ΔViはキャパシタ11の内部抵抗値Riと容量値Cを反映した値であるので、本実施の形態4により絶対値ΔViを基にバランス電圧Vriを決定することによっても高精度化が図れる。
 その後の動作は、実施の形態3と同様に、車両使用終了時に、各キャパシタ11の両端電圧Viが決定されたバランス電圧Vriになるようにバランス電圧調整部13により調整される。その結果、劣化が進行したキャパシタ11の印加電圧が下がるので、さらなる劣化進行を低減することができるとともに、各キャパシタ11の劣化進行を高精度に揃えることが可能となる。従って、蓄電装置の長寿命化も図れる。
 以上の構成、動作により、キャパシタ11の非充放電時に、非充放電時両端電圧V1iを測定するとともに、キャパシタ11の充放電時に充放電時両端電圧V2iを測定し、これらの差の絶対値ΔViを求め、その最小値ΔVminとの比Δiによりバランス電圧Vriを決定する。よって、実施の形態3に比べ時間t1、t2の測定が不要となり、さらに簡単な動作で、かつ高精度にキャパシタ11の長寿命化を図ることが可能な蓄電装置を実現できる。
 なお、実施の形態3、4において、充放電時両端電圧V2iは電圧傾きΔVcの正負が前回電圧傾きΔVcoと同じで、かつ電圧傾きΔVcの絶対値が前回電圧傾きΔVcoの絶対値より小さくなった時に測定するようにしている。しかし、電圧傾きΔVcの替わりにキャパシタ11への充放電電流Iを、前回電圧傾きΔVcoの替わりに前回充放電電流Ioを、それぞれ用いるようにしてもよい。充放電電流Iは、例えば充放電回路に内蔵した電流検出回路(図示せず)から車両用制御回路を介してデータ信号Dataとして制御回路15が受信することで求めてもよいし、全キャパシタ11に対して直列に電流検出回路を設けて、それにより検出するようにしてもよい。なお、動作については、図7のフローチャートにおいて、電圧傾きΔVcを充放電電流Iに、前回電圧傾きΔVcoを前回充放電電流Ioに、それぞれ置換するとともに、S137で充放電電流Iを読み込む動作を行い、全電圧Vcと前回全電圧Vcoに関する動作(S129、S131、S135)を削除すればよい。これにより、構成上は電流検出回路が必要となるが、図7に比べてさらに簡易な動作とすることができる上に、動作が少ない分、早くバランス電圧Vriを決定することができる。なお、この場合も充放電電流Iの正負が前回充放電電流Ioと異なれば、充放電時両端電圧V2iの測定を中止してバランス電圧Vriを更新せず、再びキャパシタ11が非充放電状態になれば、バランス電圧Vriを決定するようにすればよい。
 (実施の形態5)
 図10は、本発明の実施の形態5における蓄電装置の時間t1、t2におけるキャパシタ両端電圧の変化図である。本実施の形態5における蓄電装置の構成は図1と同じであるので、構成の説明を省略する。すなわち、本実施の形態5の特徴は動作部分であるので、動作について以下に詳細を説明する。なお、図10において、横軸は時間t、縦軸はキャパシタ両端電圧Viをそれぞれ示す。また、ハイブリッド自動車の場合、キャパシタ11は前記したように数100個程度が直列接続される構成となるが、以下の説明ではわかりやすくするために、実施の形態1と同様に、キャパシタ11が4個直列であるとする。従って、キャパシタ11の個数nは4になり、添字iの範囲は1~4となる。
 図10において、時間t1で車両の使用を終了し、イグニションスイッチ(図示せず)がオフになったとする。制御回路15は、イグニションスイッチのオフ信号を車両用制御回路からデータ信号Dataとして受信することにより、車両の使用終了を認識する。この時、車両を制動して停車させる際に発生した回生電力がキャパシタ11に充電されているので、各キャパシタ11の使用終了時両端電圧V1i(i=1~4)は高い状態である。但し、図10に示すように、使用終了時両端電圧V11~V14は各キャパシタ11の特性バラツキや劣化進行バラツキにより、ばらついた状態である。時間t1の時点では、使用終了時であり、かつキャパシタ11の非充放電時であるので、制御回路15は現在の各キャパシタ11の使用終了時両端電圧V1i(i=1~4)をバランス電圧調整部13より順次読み込み、制御回路15に内蔵されたメモリに記憶する。同時に、時間t1も1点目時間t1としてメモリに記憶する。これにより、1点目時間t1が測定されたことになる。
 その後、車両の非使用時において、キャパシタ11はそれぞれの絶縁抵抗値Rziに応じて自己放電を起こし、キャパシタ両端電圧Viは経時的に低下していく。この時、絶縁抵抗値Rzはキャパシタ11が劣化するほど小さくなり、容量値Cも小さくなる。ここで、自己放電時における任意のキャパシタ11(添字をiとする)の両端電圧Viは、任意の時間におけるキャパシタ両端電圧Voiの状態から、キャパシタ両端電圧Viを求めるまでに時間tが経過したとすると、Vi=Voi/exp(t/(Rzi・Ci))で表される。前述したように、劣化が進行するほど絶縁抵抗値Rziと容量値Ciは小さくなるので、exp(t/(Rzi・Ci))の項は大きくなる。ゆえに、キャパシタ両端電圧Viは小さくなることがわかる。よって、キャパシタ両端電圧Viは、任意の時間におけるキャパシタ両端電圧Voiに対して劣化が進行するほど小さくなるので、キャパシタ両端電圧Viの経時的な変化による傾き|Voi-Vi|/tは大きくなることがわかる。従って、図10の太矢印の傾きの絶対値(|Voi-Vi|/tに相当)が大きい添字i=1のキャパシタ11は、最も劣化が進行していることになる。なお、キャパシタ両端電圧Viの具体的な経時変化の詳細は図10では省略している。
 その後、時間t2において、次回の車両起動を行ったとする。制御回路15は車両用制御回路からイグニションスイッチがオンになったことで車両起動を認識する。なお、車両の起動は、イグニションスイッチがオンになることで制御回路15に駆動電圧が印加されるので、それにより認識するようにしてもよい。
 車両の起動直後は車両が停止した状態であるので、回生電力は発生せず、キャパシタ11が充電されることはない。このような、次回の起動時であり、かつキャパシタ11の非充放電時において、制御回路15は、キャパシタ11の起動時両端電圧V2i(i=1~4)を、バランス電圧調整部13により測定してメモリに記憶するとともに、時間t2も2点目時間t2として記憶する。これにより、2点目時間t2が測定されたことになる。
 以上の説明より、時間t1、および時間t2はいずれもキャパシタ11への充放電を行っていない非充放電時であるので、安定したキャパシタ両端電圧V1i、V2iを測定することができる。ここで、非充放電時とは、充放電回路(図示せず)によるキャパシタ11への充放電を積極的に行っていない状態として定義する。従って、完全にキャパシタ11に電流が流れていない場合だけでなく、充放電回路を動作させていなくてもキャパシタ11に僅かな漏れ電流が流れる等の場合は非充放電時に含む。
 なお、キャパシタ両端電圧Viは温度により変化する特性を有する。そこで、制御回路15は、あらかじめ求めたキャパシタ両端電圧Viの温度依存性を記憶しておき、それにより温度センサ25から得られる温度Tに応じて、使用終了時両端電圧V1iと起動時両端電圧V2iを補正している。
 具体的には、基準温度To(例えば25℃)において、キャパシタ11を既知電圧まで充電した状態で温度Tを変えた時のキャパシタ両端電圧Viの温度依存特性を求める。これを、既知電圧がキャパシタ11の定格電圧(例えば2.5V)まで既定の電圧幅(例えば0.1V)毎に求める。すなわち、基準温度To(25℃)でキャパシタ11を0.1Vまで充電した状態で温度Tを変えた時のキャパシタ両端電圧Viの温度依存特性を求め、次に25℃で0.2Vまで充電して温度依存特性を求め、次に25℃で0.3Vまで充電して温度依存特性を求め、というようにして、定格電圧(2.5V)まで繰り返し温度依存特性を求める。こうして得られた複数の温度依存特性を制御回路15のメモリにあらかじめ記憶しておく。
 次に、温度Tと任意のキャパシタ両端電圧Viが得られれば、複数の温度依存特性の中から、温度Tにおけるキャパシタ両端電圧Viを有する温度依存特性を選択する。次に、基準温度Toにおけるキャパシタ両端電圧Viを、選択した温度依存特性から求める。こうして求めたキャパシタ両端電圧Viが温度補正後の値となる。
 これにより、図10の時間t1とt2で互いに温度が異なっても、基準温度Toにおけるキャパシタ両端電圧Viに補正されるので、図11で説明するバランス電圧Vriの計算精度を向上することができる。ゆえに、各キャパシタ11の劣化進行の低減(詳細は後述する)を高精度に行えるので、温度補正を行うことでキャパシタ11の長寿命化に寄与できる。
 ここで、起動時両端電圧V21~V24の大小関係は、使用終了時両端電圧V11~V14の大小関係と同じであるとは限らない。すなわち、各キャパシタ11の特性や劣化進行におけるバラツキに応じて大小関係が逆転する場合がある。
 具体的には、図10において、時間t1で最大の使用終了時両端電圧V11を有するキャパシタ11は、時間t2では最小の起動時両端電圧V21となり、時間t1で最小の使用終了時両端電圧V14を有するキャパシタ11は、時間t2では最大の起動時両端電圧V24となっている。これは、前述したようにキャパシタ11の劣化進行に伴う絶縁抵抗値Rz、および容量値Cの低下により、傾きVi/tが大きくなるためである。すなわち、添字i=1のキャパシタ11は最も劣化が進行しており、添字i=4のキャパシタ11は最も劣化が進行していないことがわかる。従って、本実施の形態5では、1点目時間t1における使用終了時両端電圧V1iと、2点目時間t2における起動時両端電圧V2iから得られる図10の太矢印の傾きが、絶縁抵抗値Rzと容量値Cを反映した値となることに着目し、前述した傾きを基に各キャパシタ11のバランス電圧Vriを決定するようにしている。
 次に、具体的なバランス電圧Vriの決定方法について説明する。
 図11は、本発明の実施の形態5における蓄電装置の各キャパシタのバランス電圧を求めるフローチャートである。制御回路15はメインルーチンから各種サブルーチンを実行することにより蓄電装置全体の動作を制御しているので、図11のフローチャートはサブルーチンの形態で示した。
 上記した1点目時間t1、2点目時間t2、使用終了時両端電圧V1i、および起動時両端電圧V2iの値が揃った時間t2の時点で、制御回路15は図11のサブルーチンを実行する。これにより、まず制御回路15に内蔵した変数メモリiに1を代入する(S311)。ここで、変数メモリiは添字iと同等の意味を有すると定義し、以下、添字iと呼ぶ。また、S311において、i=1と記載しているが、これは右辺の値を左辺の変数に代入するという意味であると、以下定義する。従って、S311では右辺の値である数値の1を、左辺の変数である添字iに代入することになる。
 次に、制御回路15は使用終了時両端電圧V1iと起動時両端電圧V2iの差の絶対値ΔViを、ΔVi=|V2i-V1i|より求める(S313)。次に、2点目時間t2から1点目時間t1を差し引くことにより時間差Δtを求める(S314)。すなわち、Δt=t2-t1により時間差Δtを求めている。
 次に、制御回路15は、まず絶対値ΔViを時間差Δtで除して得られる傾きΔVi/Δtを求める。なお、ΔViは図10におけるΔV1~ΔV4に相当し、傾きΔVi/Δtは図10における太矢印の傾きに相当する。次に、得られた傾きΔVi/Δtと、バランス電圧Vrにおける、あらかじめ求めた相関関係から、各キャパシタ11に対するバランス電圧Vriをそれぞれ求める(S315)。
 ここで、バランス電圧Vrとは、キャパシタ11の劣化程度に応じて決定される値である。すなわち、例えばキャパシタ11の新品時の定格電圧を2.5Vとした場合、新品時のバランス電圧Vrは2.5Vに設定されるが、劣化が進行すると、キャパシタ11の印加電圧を低減することにより劣化進行を遅らせるために、バランス電圧Vriを下げるように制御する。従って、劣化進行に伴う傾きΔVi/Δtの増大に応じてバランス電圧Vrを2.5Vより小さい値とする。この傾きΔVi/Δtとバランス電圧Vrの相関関係は非線形となる。
 この理由は次の通りである。
 前述したように、キャパシタ11の劣化が進行すると絶縁抵抗値Rzや容量値Cが小さくなるが、その程度は劣化進行度に対して一義的に決定できる簡易な関数で表すことができない。例えば、絶縁抵抗値Rzについては、キャパシタ11が新品の状態からある程度劣化が進行して絶縁抵抗値Rzが小さくなっても劣化はそれほど進行しない。しかし、さらに絶縁抵抗値Rzが小さくなると急激に劣化が進行し、その後緩やかな劣化進行となる傾向がある。このような特性に加え、傾きΔVi/Δtには劣化に伴う容量値Cの変化も加味されるので、傾きΔVi/Δtと、劣化進行度を表すバランス電圧Vr(劣化進行とともに小さくなる)の相関関係は一義的に決定できない。これは、キャパシタ11の内部構造や形状等によっても異なる。そこで、あらかじめ実験的に両者の相関関係を求めて制御回路15のメモリに記憶している。
 バランス電圧Vriが求められれば、次に制御回路15は添字iに1を加え、添字iの内容を更新する(S317)。その後、更新した添字iがキャパシタ11の個数n(ここではn=4)に1を加えた値と等しいか否かを判断する(S319)。もし、添字iがn+1でなければ(S319のNo)、まだ全てのキャパシタ11のバランス電圧Vriが決まっていないので、S313に戻り、それ以降の動作を繰り返す。
 一方、添字iがn+1と等しければ(S319のYes)、全てのキャパシタ11に対するバランス電圧Vriを決定できたので、次に制御回路15は添字iに1を代入し(S321)、バランス電圧Vriを更新する(S323)。
 ここで、バランス電圧Vriの更新方法を説明する。各キャパシタ11の最終的なバランス電圧VriはS315で求めたバランス電圧Vriの比に応じて決定される。具体的には、図10のように添字i=4のキャパシタ11が新品に近い状態であるとすると、バランス電圧Vr4=2.5Vとなる。次に、添字i=2、3のキャパシタ11はいずれも若干劣化が進行しているとして、バランス電圧Vr2=Vr3=2.45Vであったとする。最後に、添字i=1のキャパシタ11は最も劣化が進行しているとして、バランス電圧Vr1=2.4Vであったとする。従って、添字i=1~4の各キャパシタ11の両端電圧比が2.4:2.45:2.45:2.5になるように調整することになる。
 ここで、全キャパシタ11の満充電電圧Vfは各キャパシタ11の定格電圧(2.5V)のキャパシタ直列個数倍(本実施の形態5では4個)である10Vとなる。よって、満充電電圧Vfが10Vになり、かつ添字i=1~4の各キャパシタ11の両端電圧比が2.4:2.45:2.45:2.5になるようにバランス電圧Vriを決定する。すなわち、各キャパシタ11のバランス電圧Vriを、それらの和で求められるバランス電圧和ΣVriで除し、全キャパシタ11の満充電電圧Vfを乗じることで、各キャパシタ11のバランス電圧Vriを更新できる。これを数式で表すと、Vri=Vf・Vri/ΣVriとなる。ここで、Σの範囲は1からn(本実施の形態5ではn=4)である。
 この数式に基づいて、上記数値を代入して各キャパシタ11の最終的なバランス電圧Vr1~Vr4を計算すると、Vr1≒2.45V、Vr2=Vr3=2.5V、Vr4≒2.55Vとなる。これにより、劣化が進行したキャパシタ11ほど両端電圧が小さくなり、劣化進行を遅らせることができる。また、劣化が進行していない添字i=4のキャパシタ11に対しては、定格電圧より僅かに大きなバランス電圧Vr4となっている。これにより、このキャパシタ11には満充電時に約2.55Vの電圧が印加され、相対的に劣化を進ませることになる。ゆえに、このようにしてバランス電圧Vriを決定することで、全てのキャパシタ11の劣化進行を揃えることができる。その結果、任意の1個のキャパシタ11のみが劣化限界に達して蓄電装置全体が使えなくなる可能性を低減でき、蓄電装置の長寿命化も図れる。
 図11に戻り、S323でバランス電圧Vriが更新されれば、次に制御回路15は、バランス電圧Vriと劣化限界値Vgを比較する(S325)。ここで、劣化限界値Vgとは、キャパシタ11がこれ以上使用できない限界状態まで劣化した時のバランス電圧Vriの値であり、これもあらかじめ実験的に求めてある。従って、もしバランス電圧Vriが劣化限界値Vg以下になれば(S325のYes)、これ以上蓄電装置を使用できないので、制御回路15は蓄電装置の劣化信号をData信号として車両用制御回路に送信する(S327)。これを受け、車両用制御回路は運転者に蓄電装置の劣化を警告し、修理を促すと同時に、蓄電装置の充電を中止する。これにより、劣化した蓄電装置を使い続けることがなくなるので、高信頼性が得られる。その後、制御回路15は図11のサブルーチンを終了してメインルーチンに戻る。
 一方、バランス電圧Vriが劣化限界値Vgより大きければ(S325のNo)、蓄電装置を継続して使用できるので、次に制御回路15は添字iに1を加え、添字iの内容を更新する(S329)。その後、更新した添字iがキャパシタ11の個数nに1を加えた値と等しいか否かを判断する(S331)。もし、添字iがn+1でなければ(S331のNo)、まだ全てのキャパシタ11のバランス電圧Vriが決まっていないので、S323に戻り、それ以降の動作を繰り返す。添字iがn+1と等しければ(S331のYes)、全てのキャパシタ11に対するバランス電圧Vriを決定できたので、図11のサブルーチンを終了してメインルーチンに戻る。
 以上に説明した図11のフローチャートによるサブルーチンの動作をまとめると、次のようになる。
 制御回路15は、使用終了時両端電圧V1iと起動時両端電圧V2iの差の絶対値ΔViを求めるとともに、使用終了時両端電圧V1iを測定する際の1点目時間t1と、起動時両端電圧V2iを測定する際の2点目時間t2を測定し、2点目時間t2から1点目時間t1を差し引くことにより時間差Δtを求める。そして、絶対値ΔViを時間差Δtで除して得られる傾きΔVi/Δt、およびバランス電圧Vrにおける、あらかじめ求めた相関関係から、各キャパシタ11に対するバランス電圧Vriをそれぞれ求める。さらに、各キャパシタ11のバランス電圧Vriを、それらの和で求められるバランス電圧和ΣVriで除し、全キャパシタ11の満充電電圧Vfを乗じることで、各キャパシタ11のバランス電圧Vriをそれぞれ更新することにより決定している。
 その後は、制御回路15から各バランス電圧調整部13に対して、それぞれ決定したバランス電圧Vriを出力する。よって、各バランス電圧調整部13は、接続されたキャパシタ11の両端電圧Viがバランス電圧Vriになるようにバランススイッチ17を制御する。車両使用時における制動に伴う回生電力を各キャパシタ11に充電することにより、キャパシタ両端電圧Viがバランス電圧Vriより大きくなれば、コンパレータ23はバランススイッチ17をオンにする。これにより、キャパシタ11がバランス抵抗19により放電され、キャパシタ両端電圧Viは低下する。その後、キャパシタ両端電圧Viがバランス電圧Vriとほぼ等しくなれば、コンパレータ23はバランススイッチ17をオフにする。すると、キャパシタ11の放電が停止し、そのキャパシタ両端電圧Viは目標であるバランス電圧Vriとなる。このような動作により、各キャパシタ11の劣化進行を揃えることができ、長寿命化が図れる。
 なお、本実施の形態5によれば、車両の起動毎にバランス電圧Vriが更新されるので、各キャパシタ11の劣化進行にバラツキがあっても、それに応じたバランス電圧Vriに更新でき、劣化進行を揃える精度が向上する。
 以上の構成、動作により、使用終了時で、かつキャパシタ11の非充放電時に、使用終了時両端電圧V1iを測定するとともに、次回の起動時で、かつキャパシタ11の非充放電時に起動時両端電圧V2iを測定し、これらの差の絶対値ΔViを求め、それによりバランス電圧Vriを決定する。従って、極めて簡単な構成、動作とすることができる上、各キャパシタ11の絶縁抵抗値Rzと容量値Cの影響も加味しているので高精度にキャパシタ11の長寿命化を図ることができる蓄電装置を実現できる。
 (実施の形態6)
 図12は、本発明の実施の形態6における蓄電装置の各キャパシタのバランス電圧を求めるフローチャートである。なお、本実施の形態6における蓄電装置の構成は図1と同じであるので、構成の説明を省略する。すなわち、本実施の形態6の特徴は動作部分であるので、動作について以下に詳細を説明する。
 車両の使用終了時であり、かつキャパシタ11の非充放電時に、キャパシタ11の使用終了時両端電圧V1iを測定し、次回の車両起動時であり、かつキャパシタ11の非充放電時に、キャパシタ11の起動時両端電圧V2iを測定する動作は、実施の形態5と同じである。但し、本実施の形態6では1点目時間t1と2点目時間t2を求める必要はないので、その分、実施の形態5より簡易な制御となる。なお、使用終了時両端電圧V1iと起動時両端電圧V2iは、実施の形態5と同様に温度Tによる補正が行われている。
 この状態で、制御回路15は図12のサブルーチンを実行する。なお、図12において図11と同じ動作については同じステップ番号を付し、詳細な説明を省略する。
 制御回路15は、添字iに1を代入し(S351)、次に使用終了時両端電圧V1iと起動時両端電圧V2iの差の絶対値ΔViを、ΔVi=|V2i-V1i|より求める(S353)。次に添字iに1を加えて更新し(S355)、添字iがキャパシタ11の個数nに1を加えた値に至ったか否かを判断する(S357)。もし、添字iがn+1と等しくなければ(S357のNo)、S353に戻り、次のキャパシタ11の絶対値ΔViを求める動作を繰り返す。
 添字iがn+1と等しくなれば(S357のYes)、制御回路15は得られた複数の絶対値ΔViの中から最小値ΔVminを求める(S359)。これは、図10の場合であればΔV4が最小値ΔVminとなる。次に、制御回路15は再び添字iに1を代入し(S361)、各絶対値ΔViと最小値ΔVminの比の値Δiを、Δi=ΔVi/ΔVminより求める(S363)。こうして求めた比の値Δiは絶対値ΔViが最小値ΔVminに対してどれだけ大きいかを示す値であるので、比の値Δiは1以上の数値となる。なお、比の値Δiは絶対値ΔViから求められるので、実施の形態5と同様に各キャパシタ11の絶縁抵抗値Rziと容量値Ciを反映した値となる。また、最小値ΔVminに相当するキャパシタ11に対しては、キャパシタ両端電圧ΔVi(図10ではΔV4)が最小値ΔVminと等しいので、Δi=1となる。
 従って、比の値Δiが1のものは図10よりも明らかなように傾きが最小のものに相当するので、劣化進行が最も遅いことになる。その他のキャパシタ11については比の値Δiが大きいほど劣化が進行していることになり、図10においては、添字i=1のキャパシタ11が最も劣化進行していることがわかる。ゆえに、比の値Δiが各キャパシタ11の劣化進行の指標となる。そこで、次に比の値Δiとバランス電圧Vrの相関関係から添字iのキャパシタ11のバランス電圧Vriを求める(S365)。ここで、実施の形態5で説明したように、バランス電圧Vriは劣化が進行しているものほど小さい値になるようにしている。よって、制御回路15はあらかじめ実験的に求めた比の値Δiとバランス電圧Vrの相関関係をメモリに記憶しておき、S363で求めた比の値Δiに応じたバランス電圧Vriを求めるようにしている。なお、比の値Δiとバランス電圧Vrの相関関係も一義的に決定できず、かつキャパシタ11の内部構造や形状等によって異なるので、データ表としてメモリに記憶している。
 次に制御回路15は添字iに1を加え、添字iの内容を更新する(S367)。その後、更新した添字iがキャパシタ11の個数nに1を加えた値と等しいか否かを判断する(S369)。もし、添字iがn+1でなければ(S369のNo)、まだ全てのキャパシタ11のバランス電圧Vriが求まっていないので、S363に戻り、それ以降の動作を繰り返す。
 一方、添字iがn+1と等しければ(S369のYes)、全てのキャパシタ11に対するバランス電圧Vriが求まったので、次のS321以降の動作を行って各キャパシタ11のバランス電圧Vriを更新する。この動作は図11のS321以降と同じであるので、詳細な説明を省略する。
 以上に説明した図12のフローチャートによるサブルーチンの動作をまとめると、次のようになる。
 制御回路15は、絶対値ΔViの最小値ΔVminを求め、絶対値ΔViと最小値ΔVminの比の値Δi、およびバランス電圧Vrにおける、あらかじめ求めた相関関係から、各キャパシタ11に対するバランス電圧Vriをそれぞれ求める。そして、各キャパシタ11のバランス電圧Vriを、それらの和で求められるバランス電圧和ΣVriで除し、全キャパシタ11の満充電電圧Vfを乗じることで、各キャパシタ11のバランス電圧Vriをそれぞれ更新することにより決定している。
 バランス電圧Vriが決まれば、その後の車両制動における回生電力の充電時に各キャパシタ11の両端電圧Viがバランス電圧Vriになるようにバランス電圧調整部13により調整される。この動作の詳細も実施の形態5と同じである。従って、本実施の形態6においても、各キャパシタ11の劣化進行を高精度に揃えることができ、蓄電装置の長寿命化を図ることが可能となる。
 以上の構成、動作により、使用終了時で、かつキャパシタ11の非充放電時に、使用終了時両端電圧V1iを測定するとともに、次回の起動時で、かつキャパシタ11の非充放電時に起動時両端電圧V2iを測定し、これらの差の絶対値ΔViを求め、その最小値ΔVminとの比Δiによりバランス電圧Vriを決定する。従って、実施の形態5に比べ1点目時間t1と2点目時間t2の測定が不要となり、さらに簡単な動作でキャパシタ11の長寿命化を図ることが可能な蓄電装置を実現できる。
 なお、実施の形態5、6において、制御回路15は全電圧Vcが満充電電圧Vfになるようにバランス電圧Vriの値を更新して最終決定している。しかし、これは、全電圧Vcが蓄電装置に接続された負荷の許容入力電圧の範囲に入っていれば、更新動作を行わなくてもよい。具体的には、実施の形態5で説明したように、添字i=1のキャパシタ11のバランス電圧Vr1が2.5V、添字i=2、3のキャパシタ11のバランス電圧Vr2、Vr3が2.45V、添字i=4のキャパシタ11のバランス電圧Vr4が2.4Vであったとすると、これらの和ΣVri(=Vc)は9.8Vとなる。この値は満充電電圧Vf(=10V)より低い値であるが、負荷への供給電圧が9.8Vまで低下しても問題ない場合は、バランス電圧Vriの更新を行う必要がなくなる。
 また、実施の形態5、6において、キャパシタ11の使用終了時両端電圧V1iは、車両の使用終了時であり、かつキャパシタ11の非充放電時にそのまま測定している。しかし、使用終了時にキャパシタ11の全電圧Vcが既定放電電圧Vdに至るまで放電した後、キャパシタ11を非充放電状態として使用終了時両端電圧V1iを測定するようにしてもよい。ここで、既定放電電圧Vdはキャパシタ11の劣化進行に対する影響が小さい電圧(例えば満充電電圧Vfの半分)としてあらかじめ決定しておく。また、キャパシタ11の全電圧Vcを放電するには、例えばバランス電圧Vriを半分にしてバランススイッチ17をオンにするように制御することで行ってもよいし、充放電回路(図示せず)により行ってもよい。
 このように全電圧Vcが既定放電電圧Vdに至るように放電制御することで、各キャパシタ11が車両の非使用時に定格電圧近傍の電圧で印加され続ける状態を避けることができ、キャパシタ11の劣化進行を低減することができる。但し、この場合は実施の形態5、6に比べ使用終了時両端電圧V1iが小さくなるので、絶対値ΔViも小さくなる。従って、既定放電電圧Vdをあまり下げすぎるとキャパシタ11の劣化進行に対する影響は低減できても、バランス電圧Vriの精度が悪化するので、既定放電電圧Vdはキャパシタ11の劣化進行を低減できる上限電圧として満充電電圧Vfの半分程度が望ましい。
 また、実施の形態1~6ではキャパシタ11の近傍に温度センサ25を配する構成とした。しかし、例えば蓄電装置を非常用補助電源に用いる場合のように、温度Tがあまり変化しない時には、キャパシタ両端電圧Viの温度Tに対する補正をしなくてもよいことになる。従って、この場合は温度センサ25を用いなくてもよい。
 また、実施の形態1~6において、制御回路15は劣化信号をバランス電圧Vriが劣化限界値Vg以下になれば出力するようにしている。しかし、絶対値ΔViが劣化上限値ΔVg以上になれば出力するようにしてもよい。ここで、劣化上限値ΔVgは、これ以上蓄電装置を使用できない限界時の絶対値ΔViのことであり、あらかじめ求めて制御回路15のメモリに記憶しておけばよい。なお、絶対値ΔViは前述したようにキャパシタ11が劣化するに従って大きくなるので、バランス電圧Vriが劣化限界値Vg以下になれば劣化と判断するのとは逆に、絶対値ΔViが劣化上限値ΔVg以上になれば劣化と判断することになる。これにより、特に実施の形態2、4~6において、蓄電装置の劣化を少しでも早い段階で判断することができる。また、これら2つの判断を両方行い、少なくともいずれかの条件が成立すれば劣化信号を出力するようにしてもよい。これにより、二重に劣化判断を行うので、劣化判断精度が向上する。
 また、実施の形態1~6において、劣化限界値Vgや劣化上限値ΔVgを2段階に設定してもよい。この場合、例えば1段階目では車両用制御回路が運転者に警告を発するとともに、充電電流を制限する制御を行う。2段階目に至ると、警告とともに蓄電装置への充電を中止するように制御する。これにより、劣化した蓄電装置を使い続ける可能性を大きく低減することが可能となる。
 また、実施の形態1~6においてキャパシタ11には電気二重層キャパシタを用いたが、これは電気化学キャパシタ等の他のキャパシタでもよい。
 また、実施の形態1~6において蓄電装置をハイブリッド自動車に適用した場合について述べた。しかし、それらに限らず、車両の回生システムや、アイドリングストップ、電動パワーステアリング、車両制動システム、電動過給器等の各システムにおける車両用補助電源等にも適用可能である。さらに、車両用以外の非常用補助電源等の、キャパシタを複数直列に接続し充放電を行うものであれば適用できる。
 本発明にかかる蓄電装置は極めて簡単な動作で高精度にキャパシタの長寿命化を図ることができるため、特にキャパシタに電力を蓄え、必要な時に放電する車両用の蓄電装置等として有用である。

Claims (15)

  1. 直列に接続された複数のキャパシタと、
    複数の前記キャパシタのそれぞれに接続された複数のバランス電圧調整部と、
    前記複数のバランス電圧調整部に接続された制御回路と、を備え、
    前記制御回路は、
    前記複数のキャパシタの非充放電時において、前記複数のキャパシタの各キャパシタについて互いに測定タイミングが異なる2点のキャパシタ両端電圧(V1i、V2i、i=1~n、nは前記キャパシタの個数)を前記バランス電圧調整部により測定し、
    前記2点のキャパシタ両端電圧(V1i、V2i)の差の絶対値(ΔVi)を求め、
    前記2点のキャパシタ両端電圧(V1i、V2i)のうち、1点目のキャパシタ両端電圧(V1i)を測定する際の1点目時間(t1)と2点目のキャパシタ両端電圧(V2i)を測定する際の2点目時間(t2)と、を測定し、
    前記2点目時間(t2)から前記1点目時間(t1)を差し引くことにより時間差(Δt)を求め、
    前記絶対値(ΔVi)を前記時間差(Δt)で除して既定係数(A)を乗じることにより電圧調整幅(ΔVbi)を計算し、
    初期バランス電圧(Vro)から前記電圧調整幅(ΔVbi)を差し引くことにより前記バランス電圧(Vri)を決定し、
    前記バランス電圧調整部を介してキャパシタ両端電圧(Vi)が前記バランス電圧(Vri)になるように制御することを特徴とする
    蓄電装置。
  2. 前記1点目時間(t1)は起動時であり、
    前記2点目時間(t2)は使用終了時である
    請求項1に記載の蓄電装置。
  3. 前記制御回路は、
    前記複数のキャパシタに対する測定結果から前記絶対値(ΔVi)の最小値(ΔVmin)を求め、
    前記絶対値(ΔVi)と前記最小値(ΔVmin)の比の値(Δi)、および電圧調整幅(ΔVb)における、あらかじめ求めた相関関係から、前記電圧調整幅(ΔVbi)を求めることを特徴とする
    請求項1に記載の蓄電装置。
  4. 前記キャパシタに温度センサを配するとともに、前記温度センサの出力が前記制御回路に接続された構成を有し、
    前記制御回路は、
    あらかじめ求めた前記キャパシタ両端電圧(Vi)の温度依存性により、前記温度センサから得られる温度(T)に応じて、前記2点のキャパシタ両端電圧(V1i、V2i)を補正することを特徴とする
    請求項1に記載の蓄電装置。
  5. 直列に接続された複数のキャパシタと、
    前記複数のキャパシタのそれぞれに接続された複数のバランス電圧調整部と、
    前記複数のバランス電圧調整部に接続された制御回路と、を備え、
    前記制御回路は、前記キャパシタの非充放電時において、前記バランス電圧調整部により前記キャパシタの非充放電時両端電圧(V1i、i=1~n、nは前記キャパシタの個数)を測定し、
    前記非充放電時両端電圧(V1i)の測定後から、前記キャパシタを連続して充電のみ、または放電のみを行っている時における前記キャパシタの充放電時両端電圧(V2i)を、前記バランス電圧調整部により測定し、
    前記非充放電時両端電圧(V1i)と前記充放電時両端電圧(V2i)の差の絶対値(ΔVi)を求め、
    前記非充放電時両端電圧(V1i)を測定する際の1点目時間(t1)と前記充放電時両端電圧(V2i)を測定する際の2点目時間(t2)と、を測定し、
    前記2点目時間(t2)から前記1点目時間(t1)を差し引くことにより時間差(Δt)を求め、
    前記絶対値(ΔVi)を前記時間差(Δt)で除して既定係数(A)を乗じることにより、電圧調整幅(ΔVbi)を計算し、
    初期バランス電圧(Vro)から前記電圧調整幅(ΔVbi)を差し引くことで前記バランス電圧(Vri)を決定し、
    前記バランス電圧調整部を介してキャパシタ両端電圧(Vi)が前記バランス電圧(Vri)になるように制御することを特徴とする
    蓄電装置。
  6. 前記制御回路は、
    前記複数のキャパシタに対する測定結果から前記絶対値(ΔVi)の最小値(ΔVmin)を求め、
    前記絶対値(ΔVi)と前記最小値(ΔVmin)の比の値(Δi)、および電圧調整幅(ΔVb)における、あらかじめ求めた相関関係から、前記電圧調整幅(ΔVbi)を求めることを特徴とする
    請求項5に記載の蓄電装置。
  7. 前記制御回路は、
    前記キャパシタが非充放電状態になる毎に、前記バランス電圧(Vri)を決定することを特徴とする
    請求項5に記載の蓄電装置。
  8. 前記制御回路は、
    前記キャパシタの充電、または放電の開始直後における全ての前記キャパシタの内部抵抗値(R)に起因した初期的な電圧上昇、または電圧降下が発生した後に、
    既定時間(ts)毎に、直列接続された前記キャパシタの全電圧(Vc)の電圧傾き(ΔVc)を求め、
    前記電圧傾き(ΔVc)の正負が前回電圧傾き(ΔVco)と同じで、かつ前記電圧傾き(ΔVc)の絶対値が前記前回電圧傾き(ΔVco)の絶対値より小さくなった時に、前記充放電時両端電圧(V2i)を測定することを特徴とする
    請求項5に記載の蓄電装置。
  9. 前記制御回路は、
    前記キャパシタの充電、または放電の開始直後における全ての前記キャパシタの内部抵抗値(R)に起因した初期的な電圧上昇、または電圧降下が発生した後に、
    既定時間(ts)毎に、前記制御回路に入力される前記キャパシタの充放電電流(I)の正負が前回充放電電流(Io)と同じで、かつ前記充放電電流(I)の絶対値が前記前回充放電電流(Io)の絶対値より小さくなった時に、前記充放電時両端電圧(V2i)を測定することを特徴とする
    請求項5に記載の蓄電装置。
  10. 前記キャパシタに温度センサを配するとともに、前記温度センサの出力が前記制御回路に接続された構成を有し、
    前記制御回路は、
    あらかじめ求めた前記キャパシタ両端電圧(Vi)の温度依存性により、前記温度センサから得られる温度(T)に応じて、前記非充放電時両端電圧(V1i)と前記充放電時両端電圧(V2i)を補正することを特徴とする
    請求項5に記載の蓄電装置。
  11. 直列に接続された複数のキャパシタと、
    前記複数のキャパシタのそれぞれに接続された複数のバランス電圧調整部と、
    前記複数のバランス電圧調整部に接続された制御回路と、を備え、
    前記制御回路は、
    使用終了時であり、かつ前記キャパシタの非充放電時において、前記バランス電圧調整部により前記キャパシタの使用終了時両端電圧(V1i、i=1~n、nは前記キャパシタの個数)を測定し、
    次回の起動時であり、かつ前記キャパシタの非充放電時において、前記バランス電圧調整部により前記キャパシタの起動時両端電圧(V2i)を測定し、
    前記使用終了時両端電圧(V1i)と前記起動時両端電圧(V2i)の差の絶対値(ΔVi)を求め、
    前記使用終了時両端電圧(V1i)を測定する際の1点目時間(t1)と前記起動時両端電圧(V2i)を測定する際の2点目時間(t2)と、を測定し、
    前記2点目時間(t2)から前記1点目時間(t1)を差し引くことにより時間差(Δt)を求め、
    前記絶対値(ΔVi)を前記時間差(Δt)で除して得られる傾き(ΔVi/Δt)、および前記バランス電圧(Vr)における、あらかじめ求めた相関関係から、前記キャパシタに対するバランス電圧(Vri)を求め、
    前記バランス電圧調整部を介してキャパシタ両端電圧(Vi)が前記バランス電圧(Vri)になるように制御することを特徴とする
    蓄電装置。
  12. 前記制御回路は、
    前記複数のキャパシタに対する測定結果から前記絶対値(ΔVi)の最小値(ΔVmin)を求め、
    前記絶対値(ΔVi)と前記最小値(ΔVmin)の比の値(Δi)、および前記バランス電圧(Vr)における、あらかじめ求めた相関関係から、前記バランス電圧(Vri)を求めることを特徴とする
    請求項11に記載の蓄電装置。
  13. 前記制御回路は、
    前記キャパシタの前記バランス電圧(Vri)を、それらの和で求められるバランス電圧和(ΣVri)で除し、全ての前記キャパシタの満充電電圧(Vf)を乗じた値を、前記キャパシタの前記バランス電圧(Vri)として、更新することを特徴とする
    請求項11に記載の蓄電装置。
  14. 前記キャパシタに温度センサを配するとともに、前記温度センサの出力が前記制御回路に接続された構成を有し、
    前記制御回路は、
    あらかじめ求めた前記キャパシタ両端電圧(Vi)の温度依存性により、前記温度センサから得られる温度(T)に応じて、前記使用終了時両端電圧(V1i)と前記起動時両端電圧(V2i)を補正することを特徴とする
    請求項11に記載の蓄電装置。
  15. 前記制御回路は、
    前記バランス電圧(Vri)が劣化限界値(Vg)以下になるか、あるいは前記絶対値(ΔVi)が劣化上限値(ΔVg)以上になるか、の少なくともいずれかの場合に、劣化信号を出力することを特徴とする
    請求項1、5、11のいずれか一つに記載の蓄電装置。
PCT/JP2009/000004 2008-01-07 2009-01-06 蓄電装置 WO2009087956A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09700989.8A EP2249453B1 (en) 2008-01-07 2009-01-06 Electricity accumulating device
US12/810,917 US8294428B2 (en) 2008-01-07 2009-01-06 Electricity accumulating device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008000332A JP5024055B2 (ja) 2008-01-07 2008-01-07 蓄電装置
JP2008-000330 2008-01-07
JP2008000331A JP5024054B2 (ja) 2008-01-07 2008-01-07 蓄電装置
JP2008000330A JP5024053B2 (ja) 2008-01-07 2008-01-07 蓄電装置
JP2008-000332 2008-01-07
JP2008-000331 2008-01-07

Publications (1)

Publication Number Publication Date
WO2009087956A1 true WO2009087956A1 (ja) 2009-07-16

Family

ID=40853071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000004 WO2009087956A1 (ja) 2008-01-07 2009-01-06 蓄電装置

Country Status (3)

Country Link
US (1) US8294428B2 (ja)
EP (1) EP2249453B1 (ja)
WO (1) WO2009087956A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012028256A1 (de) * 2010-08-31 2012-03-08 Voith Patent Gmbh System zur speicherung elektrischer energie
US20120062187A1 (en) * 2010-09-13 2012-03-15 Samsung Electronics Co., Ltd Auxiliary power device, memory system having the same, and cell balancing method thereof
EP2586113A4 (en) * 2010-06-28 2016-01-06 Maxwell Technologies Inc INCREASING THE LIFETIME OF CAPACITORS IN SERIAL MODULES

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5279261B2 (ja) 2007-12-27 2013-09-04 三洋電機株式会社 充電状態均等化装置及びこれを具えた組電池システム
JP5233377B2 (ja) * 2008-04-09 2013-07-10 株式会社ジェイテクト 電動パワーステアリング装置
KR101582090B1 (ko) * 2009-09-03 2016-01-04 삼성전자주식회사 화상형성장치용 전원 공급 장치 및 방법
CA2822593A1 (en) 2010-12-22 2012-06-28 Ge Energy Power Conversion Technology Limited Mechanical arrangement of a multilevel power converter circuit
MX2013007362A (es) 2010-12-22 2013-12-16 Ge Energy Power Conversion Technology Ltd Circuito compensador de capacitor y metodo de control para un dispositivo electronico tal como un inversor de potencia de niveles multiples.
US8907627B2 (en) * 2011-04-08 2014-12-09 Super B B.V. Balancer circuit for rechargeable batteries
CN103158545A (zh) * 2011-12-15 2013-06-19 四川英志新能源股份有限公司 汽车制动能量回收系统
WO2013107497A1 (en) * 2012-01-16 2013-07-25 Schneider Electric Buildings Llc Adjustment of a capacitor charge voltage
KR101888044B1 (ko) * 2012-02-17 2018-08-13 스미토모 겐키 가부시키가이샤 쇼벨 및 쇼벨의 제어방법
US9564768B2 (en) 2012-04-12 2017-02-07 Mitsubishi Electric Corporation Discharge device for electricity storage device
US9331500B2 (en) 2012-04-19 2016-05-03 Caterpillar Inc. Method for balancing ultracapacitor cells
US8901888B1 (en) 2013-07-16 2014-12-02 Christopher V. Beckman Batteries for optimizing output and charge balance with adjustable, exportable and addressable characteristics
FR3007143B1 (fr) 2013-06-17 2015-07-17 Schneider Electric Ind Sas Systeme de calcul d'une grandeur electrique, poste de transformation comprenant un tel systeme et procede de calcul d'une grandeur electrique avec un tel systeme
FR3013457B1 (fr) * 2013-11-15 2016-01-08 Schneider Electric Ind Sas Systeme de calcul de l'energie electrique, armoire electrique comprenant un tel systeme, poste de transformation et procede de calcul associes
US9525298B1 (en) 2014-10-28 2016-12-20 Microsemi Storage Solutions (U.S.), Inc. Method and system for voltage balancing of multiple rechargeable energy storage devices
DK3151405T3 (da) * 2015-09-30 2019-06-24 Siemens Ag Kredsløb til balancering af kondensatorspændinger på kondensatorer i en jævnspændingskreds
CN106933618B (zh) * 2017-01-25 2020-03-27 上海蔚来汽车有限公司 基于系统参数相关系数的系统升级评估方法
KR102295533B1 (ko) * 2017-06-30 2021-08-30 에이브이엑스 코포레이션 울트라커패시터 모듈을 위한 밸런싱 회로
EP3616298A4 (en) 2017-07-21 2020-11-25 AVX Corporation BALANCING CIRCUIT FOR ELECTRIC ENERGY STORAGE DEVICE
US10608442B1 (en) 2018-09-24 2020-03-31 Texas Instruments Incorporated Adaptive cell-balancing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005055358A2 (fr) * 2003-11-20 2005-06-16 Pellenc (Societe Anonyme) Procede de chargement equilibre d'une batterie lithium-ion ou lithium polymere
JP2007012483A (ja) * 2005-06-30 2007-01-18 Optrex Corp 雄型コネクタ
JP2007124883A (ja) 2005-09-27 2007-05-17 Matsushita Electric Ind Co Ltd 蓄電装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5656915A (en) * 1995-08-28 1997-08-12 Eaves; Stephen S. Multicell battery pack bilateral power distribution unit with individual cell monitoring and control
US6316917B1 (en) * 1999-03-09 2001-11-13 Asahi Glass Company, Limited Apparatus having plural electric double layer capacitors and method for adjusting voltages of the capacitors
FI117259B (fi) * 1999-09-22 2006-08-15 Abb Oy Välipiirikondensaattoreiden jännitteen tasaus
EP1618625A4 (en) * 2003-04-25 2007-10-03 Maxwell Technologies Inc LOAD BALANCING CIRCUIT FOR DOUBLE LAYER CAPACITORS
JP3795499B2 (ja) * 2003-12-26 2006-07-12 富士重工業株式会社 蓄電素子の電圧均等化装置
JP4590906B2 (ja) * 2004-04-07 2010-12-01 パナソニック株式会社 キャパシタ制御システム
JP4807058B2 (ja) * 2005-11-10 2011-11-02 パナソニック株式会社 車両用電源装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005055358A2 (fr) * 2003-11-20 2005-06-16 Pellenc (Societe Anonyme) Procede de chargement equilibre d'une batterie lithium-ion ou lithium polymere
JP2007012483A (ja) * 2005-06-30 2007-01-18 Optrex Corp 雄型コネクタ
JP2007124883A (ja) 2005-09-27 2007-05-17 Matsushita Electric Ind Co Ltd 蓄電装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2586113A4 (en) * 2010-06-28 2016-01-06 Maxwell Technologies Inc INCREASING THE LIFETIME OF CAPACITORS IN SERIAL MODULES
WO2012028256A1 (de) * 2010-08-31 2012-03-08 Voith Patent Gmbh System zur speicherung elektrischer energie
CN103053064A (zh) * 2010-08-31 2013-04-17 沃依特专利有限责任公司 用于储存电能的系统
US20120062187A1 (en) * 2010-09-13 2012-03-15 Samsung Electronics Co., Ltd Auxiliary power device, memory system having the same, and cell balancing method thereof
US9252603B2 (en) * 2010-09-13 2016-02-02 Samsung Electronics Co., Ltd. Auxiliary power device, memory system having the same, and cell balancing method thereof

Also Published As

Publication number Publication date
EP2249453A1 (en) 2010-11-10
US20100283434A1 (en) 2010-11-11
US8294428B2 (en) 2012-10-23
EP2249453A4 (en) 2016-04-27
EP2249453B1 (en) 2018-04-25

Similar Documents

Publication Publication Date Title
WO2009087956A1 (ja) 蓄電装置
US9219377B2 (en) Battery charging apparatus and battery charging method
US7688032B2 (en) Battery remaining capacity detecting apparatus and battery remaining capacity detecting method
JP6490414B2 (ja) 二次電池状態検出装置および二次電池状態検出方法
JP3659772B2 (ja) バッテリの劣化判定装置
WO2010026930A9 (ja) 二次電池の状態推定装置
EP2058891B1 (en) Charging control device for a storage battery
JP5493407B2 (ja) 組電池の容量調整装置
WO2017033311A1 (ja) 劣化度推定装置及び劣化度推定方法
WO2007055264A1 (ja) 車両用電源装置
JP2015158416A (ja) 二次電池のsocの推定装置及びsocの推定方法
KR100839980B1 (ko) 배터리팩의 충방전 제어 시스템 및 방법
US8180508B2 (en) Electricity storage control apparatus and method of controlling electricity storage
JP5024054B2 (ja) 蓄電装置
JP5298773B2 (ja) 蓄電装置
JP5298800B2 (ja) 蓄電装置
JP2007261433A (ja) バッテリ制御装置およびバッテリ制御方法
JP2018026246A (ja) 電池監視装置
JP5024053B2 (ja) 蓄電装置
JP2008232989A (ja) 蓄電装置
JP2006010501A (ja) バッテリ状態管理装置
JP5012483B2 (ja) 蓄電装置
CN111066197B (zh) 确定电能存储单元的状态的方法、执行该方法的相应设备以及相应的电能存储单元
JP5024055B2 (ja) 蓄電装置
JP2007265693A (ja) バッテリ制御装置およびバッテリ制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09700989

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12810917

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009700989

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE