WO2009087856A1 - 治療器 - Google Patents

治療器 Download PDF

Info

Publication number
WO2009087856A1
WO2009087856A1 PCT/JP2008/072648 JP2008072648W WO2009087856A1 WO 2009087856 A1 WO2009087856 A1 WO 2009087856A1 JP 2008072648 W JP2008072648 W JP 2008072648W WO 2009087856 A1 WO2009087856 A1 WO 2009087856A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveform
treatment device
digital signal
circuit
waveform data
Prior art date
Application number
PCT/JP2008/072648
Other languages
English (en)
French (fr)
Inventor
Yasuo Fujita
Rika Asai
Koji Kurase
Yasutaka Murase
Original Assignee
Omron Healthcare Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Healthcare Co., Ltd. filed Critical Omron Healthcare Co., Ltd.
Priority to CN200880122836.1A priority Critical patent/CN101909689B/zh
Publication of WO2009087856A1 publication Critical patent/WO2009087856A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/322Electromedical brushes, combs, massage devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/3603Control systems
    • A61N1/36034Control systems specified by the stimulation parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0472Structure-related aspects

Definitions

  • the present invention relates to a treatment device capable of outputting a modulated wave as a treatment current.
  • a treatment device that produces a massage-like effect by flowing a treatment current through the electrode pad.
  • a rectangular pulse wave is usually used as a treatment current, and a desired bodily sensation is created by controlling the peak value, pulse width, pause width, and the like.
  • a type of treatment device that uses an amplitude-modulated wave as a treatment current has also been proposed (see Patent Document 1).
  • the pulse wave mainly stimulates muscles, whereas the modulated wave has a difference in the therapeutic effect in that it also stimulates tissues (nerves, joints, etc.) behind the muscles.
  • a modulated wave is generated by an analog circuit.
  • this conventional configuration has the following problems.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a technique capable of outputting a stable modulated wave with a simple circuit configuration.
  • Another object of the present invention is to provide a technology capable of outputting modulated waves of various waveforms with a simple circuit configuration.
  • the treatment device of the present invention adopts the following configuration.
  • the treatment device is a treatment device capable of outputting a modulated wave as a treatment current, and stores a waveform data defining a waveform of the modulated wave, and outputs a digital signal according to the waveform data.
  • Digital signal generating means for converting, analog means for converting the digital signal to output a source waveform, and amplification means for amplifying the source waveform to output a treatment current.
  • the waveform data is data in which an amplitude value for each predetermined time is described, and the digital signal generating means outputs a digital signal representing the amplitude value of the source waveform according to the waveform data.
  • Such a circuit can be configured using, for example, an integrated circuit, a DA converter circuit, an amplifier circuit, or the like. Therefore, the circuit configuration is extremely simple compared to a conventional treatment device using an analog circuit, and the device can be reduced in size and cost.
  • a modulated wave having a waveform with modulated amplitude or frequency, or both (amplitude + frequency) can be generated.
  • a modulated wave having a waveform whose amplitude changes in a non-constant period, or a waveform whose amplitude changes in a constant or non-constant period and whose maximum value changes in each period is also possible to generate a modulated wave or the like.
  • the treatment device of the present invention further includes a pulse wave generation unit that generates and outputs a pulse wave, and can selectively output a modulated wave and a pulse wave as a treatment current. Since there is a difference in the therapeutic effect between the pulse wave and the modulated wave, the convenience and utility value of the treatment device can be improved by making it possible to select two types of treatment currents.
  • the pulse wave generation circuit and the modulation wave generation circuit may have different configurations, but it is also possible to generate two types of waveforms, a modulation wave and a pulse wave, with a common circuit configuration.
  • the storage means also stores waveform data that defines the waveform of the pulse wave
  • the digital signal generation means outputs a digital signal according to the waveform data of the pulse wave, thereby providing a treatment current.
  • a configuration that can also output a pulse wave can be preferably employed.
  • the waveform data stored in the storage means can be rewritten. This improves the expandability and flexibility of the treatment device.
  • an anti-aliasing filter is provided between the conversion unit and the amplification unit. By smoothing the waveform with the anti-aliasing filter, it is possible to improve the experience.
  • the conversion means is preferably a resistance ladder circuit. Thereby, a high-speed DA converter circuit can be realized at low cost.
  • the treatment device of the present invention can output a modulated wave having various waveforms stably with a simple circuit configuration.
  • FIG. 1 is a view showing an appearance of a treatment device.
  • FIG. 2 is a block diagram schematically showing the configuration of the treatment device.
  • FIG. 3A is a diagram showing an example of waveform data
  • FIG. 3B is a table showing a correspondence relationship between the waveform data and the terminal output of the digital signal generation circuit.
  • FIG. 4 is a diagram illustrating a configuration of a resistance ladder circuit.
  • FIG. 5 is a diagram showing a flow of modulation wave generation / output processing.
  • 6A is a diagram illustrating an example of an amplitude modulation waveform
  • FIG. 6B is a diagram illustrating an example of a frequency modulation waveform
  • FIG. 6C is a diagram illustrating an example of an amplitude / frequency modulation waveform.
  • FIG. 6A is a diagram illustrating an example of an amplitude modulation waveform
  • FIG. 6B is a diagram illustrating an example of a frequency modulation waveform
  • FIG. 6C is a diagram
  • FIG. 7A is a diagram showing an example of a waveform whose amplitude changes at a non-constant period
  • FIG. 7B is an example of a waveform where the amplitude changes at a constant period and the maximum value of the amplitude changes every period
  • FIG. 7C is a diagram illustrating an example of a waveform in which the amplitude changes in a non-constant period and the maximum value of the amplitude changes in each period.
  • FIG. 8 is a block diagram schematically showing the configuration of the treatment device according to the first modification.
  • FIG. 9 is a diagram showing a conventional circuit configuration for generating a modulated wave.
  • FIG. 1 is a diagram showing an appearance of a treatment device
  • FIG. 2 is a block diagram schematically showing a hardware configuration of the treatment device.
  • the treatment device 100 generally includes a treatment device main body 200, a pair of pads 300 to be attached to a treatment site, and a cord 400 for electrically connecting the treatment device main body 200 and the pad 300.
  • the pad 300 is made of a thin and highly flexible member.
  • An electrode 301 is formed on one surface (contact surface with the body) of the pad 300.
  • the electrode 300 surface of the pad 300 is covered with an adhesive gel material.
  • a snap 302 corresponding to the electrode 301 is provided on the other surface of the pad 300.
  • the treatment device main body 200 is provided with an outline, an operation unit 210, a display unit 220, a CPU (Central Processing Unit) 230, a power supply unit 240, and a modulated wave generation / output unit 250.
  • an operation unit 210 the operation unit 210
  • a display unit 220 the display unit 220
  • a CPU (Central Processing Unit) 230 the display unit 220
  • a power supply unit 240 the power supply unit 240
  • a modulated wave generation / output unit 250 As shown in FIG. 2, the treatment device main body 200 is provided with an outline, an operation unit 210, a display unit 220, a CPU (Central Processing Unit) 230, a power supply unit 240, and a modulated wave generation / output unit 250.
  • a modulated wave generation / output unit 250 the modulated wave generation / output unit 250.
  • the operation unit 210 is provided with a power switch for switching power on / off, a strength adjustment dial for adjusting strength, a function switch for selecting a treatment mode (waveform), and the like. .
  • a switch or dial When a switch or dial is operated by the user, the signal is input to the CPU 230.
  • the display unit 220 includes an LCD (liquid crystal display), an LED (light emitting diode), a backlight, a buzzer, and the like.
  • the display unit 220 is controlled by the CPU 230 and outputs the current operation state, operation navigation, warning, and the like.
  • the power supply unit 240 includes a power supply circuit, a power supply state monitoring circuit, and the like.
  • An AC adapter or a battery is used as the power source.
  • the power supply circuit is a circuit that generates a DC 3.3V voltage from the supply voltage of the AC adapter or the battery.
  • the DC output from the power supply circuit is supplied to the CPU 230.
  • the power supply state monitoring circuit is a circuit that stops the CPU 230 (therapeutic device main body 200) when the output voltage from the power supply circuit falls below a predetermined allowable voltage.
  • the modulation wave generation / output unit 250 (modulation wave generation means) is a functional block for generating and outputting a modulation wave treatment current.
  • the modulated wave generation / output unit 250 includes a digital signal generation circuit 251, a DA conversion circuit 252, a filter 253, an intensity adjustment circuit 254, an amplification circuit 255, and the like.
  • the digital signal generation circuit 251 is a circuit having a function (storage means) for storing waveform data defining the waveform of the treatment current and a function (digital signal generation means) for outputting a digital signal in accordance with the waveform data.
  • the digital signal generation circuit 251 stores a plurality of types of waveform data, and can change the output waveform according to the treatment mode.
  • the digital signal generation circuit 251 of this embodiment is configured using an FPGA (Field Programmable Gate Array), and the waveform data is stored in the built-in memory of the FPGA.
  • the digital signal generation circuit may be configured using other integrated circuits such as a microprocessor, an embedded CPU, an ASIC (Application Specific Integrated Circuit), and a microcomputer. Since the built-in memory of the FPGA has a small capacity, the waveform data may be stored in an external memory.
  • FIG. 3A shows an example of waveform data.
  • the waveform data is digital data in a format in which amplitude values for each predetermined time are described in time order.
  • the amplitude value every 0.1 msec is represented by 11 steps of values from 0 to 10.
  • a data size of 50 bytes is required to define a waveform of 0.01 sec. Note that, as the predetermined time (waveform sampling interval) is shorter and the range of amplitude values (waveform resolution) is larger, a finer waveform can be generated.
  • FIG. 3B is a table showing the correspondence between the amplitude value of the waveform data and the terminal output of the digital signal generation circuit.
  • the digital signal generation circuit 251 has ten terminals # 1 to # 10, and switches the output value (0/1) of each terminal according to the amplitude value of the waveform data. Specifically, when the amplitude value is 0, the output of all terminals is set to “0”, and when the amplitude value is n (0 ⁇ n ⁇ 10), the outputs of n terminals # 1 to #n are set to “ 1 ”(the remaining terminals are“ 0 ”). In the example of FIGS.
  • the terminal outputs of # 1 to # 4 are “1” for the first 0.1 msec.
  • the terminal outputs of # 1 to # 6 are “1” for 1 msec, and the terminal outputs of # 1 to # 3 are “1” for the next 0.1 msec.
  • a digital signal corresponding to the source waveform of the treatment current is generated and output.
  • the broken line in FIG. 3B schematically represents the source waveform.
  • the DA conversion circuit 252 is a circuit having a function (conversion means) for converting a digital signal output from the digital signal generation circuit 251 into an analog signal and outputting a source waveform.
  • a resistance ladder circuit is used as shown in FIG. As a result, a high-speed DA conversion circuit can be realized at low cost.
  • the filter 253 is a filter for performing anti-aliasing of the source waveform, and typically a low-pass filter is used.
  • the strength adjustment circuit 254 is an electronic volume for scaling the amplitude of the source waveform in accordance with the “strength” designated by the strength adjustment dial of the operation unit 210. Note that the order of the filter 253 and the strength adjustment circuit 254 may be reversed.
  • the amplification circuit 255 is a circuit having a function (amplification means) for amplifying a source waveform and outputting a treatment current.
  • an amplifier circuit 255 is configured by an amplifier and a transformer.
  • the source waveform of mV order is amplified to a waveform of several V to several tens V order.
  • the user can select the treatment mode using the function switch of the operation unit 210.
  • treatment methods such as “fir”, “tapping”, “push”, and “slip”, and treatment sites such as “shoulder”, “waist”, “joint”, and “foot sole” can be designated. Further, the user can adjust the strength of the treatment current using the strength adjustment dial of the operation unit 210.
  • the treatment mode is notified to the digital signal generation circuit 251 via the CPU 230.
  • the digital signal generation circuit 251 reads waveform data corresponding to the designated treatment mode, and sequentially generates and outputs a digital signal.
  • the digital signal is converted into an analog signal by the DA conversion circuit 252 to generate a treatment current source waveform.
  • the amplitude of the source waveform after DA conversion changes stepwise (discontinuously; discretely).
  • the waveform is smoothed through the anti-aliasing filter 253, thereby reducing pain and improving the sensation.
  • the filter 253 is unnecessary.
  • the intensity adjustment circuit 254 scales the amplitude of the source waveform in accordance with the intensity designation value.
  • the amplification circuit 255 amplifies and boosts the source waveform in the mV order, and generates a modulated wave in the order of several V to several tens of V.
  • a therapeutic current flows from the high potential side pad through the body to the low potential side pad. This current can cause body tissues such as muscles and nerves to be electrically stimulated to obtain a therapeutic effect similar to massage (relieving stiffness and pain).
  • the treatment device of this embodiment can create an arbitrary waveform depending on the definition of the waveform data. For example, as shown in FIG. 6A, an amplitude-modulated waveform in which only the amplitude is modulated can be created, as shown in FIG. 6B, a frequency-modulated waveform in which only the frequency is modulated can be created, or in FIG. As can be seen, it is also possible to produce a waveform with both amplitude and frequency modulated. As a more complex waveform, as shown in FIG. 7A, a waveform whose amplitude changes in a non-constant period (that is, a waveform in which the modulation wave frequency changes) is created, or as shown in FIG.
  • the magnitude of the amplitude corresponds to the strength of the stimulus, it is possible to create a bodily sensation similar to massage such as “fir” or “tap” by periodically changing the amplitude as shown in FIG. 6A. Then, by changing the period of amplitude change as shown in FIG. 7A, the massage speed can be dynamically changed as “slow ⁇ fast ⁇ slow ⁇ fast ⁇ ...” Or the amplitude can be changed as shown in FIG. By changing the maximum value, the strength of the massage can be dynamically changed as “strong ⁇ medium ⁇ weak ⁇ strong ⁇ ...”.
  • the higher the carrier frequency the deeper the treatment current reaches the body. Therefore, by changing the carrier frequency as shown in FIG. 6B, FIG. 6C, FIG. 7A, and FIG. 7C, the movement of the stimulus toward the inside of the body can be created.
  • the treatment device of the present embodiment has the following excellent advantages.
  • the modulation wave generation circuit is composed of an FPGA and a DA conversion circuit, so the circuit configuration is extremely simple compared to a treatment device using a conventional analog circuit. Further, since digital signal processing is used, stable waveform generation is possible. In addition, the compensation circuit for the environmental change and the adjustment work at the time of manufacture, which are necessary for the conventional treatment device, are not required. Therefore, the apparatus can be reduced in size and cost as compared with the conventional treatment device.
  • the treatment device of the present embodiment can generate treatment currents of various waveforms, and can give dynamic changes and rhythms to the stimulation of the treatment current, such as speed, strength, and depth of the treatment site. You can also. Therefore, it is possible to produce completely new experiences and therapeutic effects that cannot be created with conventional treatment devices.
  • FIG. 8 shows the configuration of the modulated wave generation / output unit according to the first modification.
  • the treatment device of Modification 1 also has a function (pulse wave generation means) for generating and outputting a pulse wave, and can output both a modulated wave and a pulse wave.
  • the memory of the digital signal generation circuit 251 stores the waveform data of the pulse wave in addition to the waveform data of the modulated wave.
  • a bypass line 256 for bypassing the filter 253 and a bypass switch 257 are provided in the subsequent stage of the DA conversion circuit 252.
  • the CPU 230 When the treatment mode using the pulse wave is selected, the CPU 230 notifies the digital signal generation circuit 251 of the treatment mode and switches the bypass switch 257 to the bypass line 256 side.
  • the digital signal generation circuit 251 reads waveform data corresponding to the designated mode, and generates a pulse wave source waveform. Note that there is no difference in the format of waveform data between the modulated wave and the pulse wave, and only the contents of the described data (definition of the waveform) are different. Therefore, the processing in the digital signal generation circuit 251 and the DA conversion circuit 252 is not different between the case of generating a modulated wave and the case of generating a pulse wave.
  • the source waveform output from the DA conversion circuit 252 is input to the strength adjustment circuit 254 via the bypass line 256.
  • the reason for bypassing the filter 253 in the case of a pulse waveform is to prevent the pulse waveform from being rounded. Then, after level adjustment according to the strength designation value is performed, the amplification circuit 255 amplifies and outputs a pulse wave treatment current.
  • a pulse wave acts mainly on muscles, whereas a modulated wave has a difference in the therapeutic effect in that it stimulates deeper in the body than muscles. Therefore, by making it possible to select a pulse wave and a modulated wave, it is possible to improve the convenience and utility value (added value) of the treatment device.
  • a highly functional treatment device corresponding to two types of treatment currents can be realized with a small and inexpensive configuration.
  • the waveform data storage means may be a read-only storage medium or a rewritable storage medium. However, from the viewpoints of extensibility, flexibility, maintainability, etc., it is preferable to store the waveform data in a rewritable storage medium and further allow the waveform data to be rewritten (updated) from outside the treatment device.
  • an interface with an external device for example, a USB connector for connecting to a computer, a communication I / F for performing wireless communication with a computer
  • a waveform is transmitted from the external device to the treatment device. Data may be transmitted and written.
  • waveform data may be edited or deleted using the operation unit 210 and the display unit 220 of the treatment device.
  • the operation unit 210 and the display unit 220 of the treatment device By enabling rewriting of waveform data in this way, for example, it is possible to update to the latest version of waveform data at the time of product shipment, or to change the waveform data to be written according to the user's wishes.
  • various services such as providing waveform data to the user of the treatment device at the WEB site and enabling the user to edit the waveform data is born.
  • the waveform data format is not limited to that of the above embodiment.
  • the sampling interval and resolution may be made finer, or the sampling interval and resolution may be dynamically changed.
  • the waveform data may be compressed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Electrotherapy Devices (AREA)

Abstract

 デジタル信号発生回路251のメモリに、変調波の波形を定義する波形データが格納されている。デジタル信号発生回路251は、選ばれた波形データに従ってデジタル信号を出力する。DA変換回路252は、デジタル信号をアナログ変換し、変調波の源波形を出力する。源波形は増幅回路255によって増幅され、変調波の治療波形が出力される。

Description

治療器
 本発明は、治療電流として変調波を出力可能な治療器に関する。
 電極パッドを介して身体に治療電流を流すことで、マッサージのような効果を奏する治療器が知られている。この種の治療器では、通常、治療電流として矩形パルス波が用いられ、その波高値・パルス幅・休止幅などを制御することで所望の体感が作り出されている。また、治療電流として振幅変調波を用いるタイプの治療器も提案されている(特許文献1参照)。パルス波は主に筋肉に刺激を与えるのに対して、変調波は筋肉より奥の組織(神経、関節など)にも刺激を及ぼす点で、両者の治療効果には違いがある。
 従来の治療器では、図9に示すように、アナログ回路によって変調波の生成が行われている。すなわち、2つの発振回路A,Bから周波数が僅かに異なる2つの正弦波A,Bを得て、それらをミキサで合成し、周波数差(122Hz=2522Hz-2400Hz)に応じた「うなり」を生じさせることにより、振幅変調波を生成しているのである。しかしながら、この従来構成には次のような問題がある。
 (1)うなりを利用しているので一種類の波形しか作り出すことができない。また、変調波や搬送波の周波数を変化させたり、最大振幅を動的に変化させたりすることもできない。それゆえ、従来の治療器では単調な体感しか得ることができなかった。発振回路のペアを複数用意することで、複数種類の変調波形を得ることも可能ではあるが、そうすると回路基板の大型化やコスト増を招き、好ましくない。
 (2)きれいな(歪みのない)合成波形を得るために、2つの正弦波の振幅を一致させる振幅調整回路が必要になる。また、アナログ回路ゆえ、環境変動に対する安定性を確保すべく、温度補償回路や電圧補償回路などを設ける必要がある。したがって、回路構成が複雑になり、回路基板の大型化やコスト増を招いている。
 (3)さらに、製造時には、2つの発振回路の発振周波数を調整するための調整作業が必要となる。この調整作業は、オシロスコープで波形を確認しながら手作業で行わねばならず、非常に煩雑であるとともに、リードタイムやコストの増大を招いていた。
特表2003-532453号公報(WO01/051122)
 本発明は上記実情に鑑みてなされたものであって、その目的とするところは、シンプルな回路構成で、安定した変調波を出力可能な技術を提供することにある。
 本発明の他の目的は、シンプルな回路構成で、さまざまな波形の変調波を出力可能な技術を提供することにある。
 上記目的を達成するために本発明の治療器は、以下の構成を採用する。
 本発明に係る治療器は、治療電流として変調波を出力可能な治療器であって、前記変調波の波形を定義する波形データを記憶している記憶手段と、前記波形データに従ってデジタル信号を出力するデジタル信号発生手段と、前記デジタル信号をアナログ変換して源波形を出力する変換手段と、前記源波形を増幅して治療電流を出力する増幅手段と、を備える。
 ここで、前記波形データは、所定時間ごとの振幅値が記述されたデータであり、前記デジタル信号発生手段は、前記波形データに従って前記源波形の振幅値を表すデジタル信号を出力することが好ましい。
 このような回路は、たとえば、集積回路、DA変換回路、増幅回路などを用いて構成可能である。よって、従来のアナログ回路を用いた治療器に比べて回路構成が極めてシンプルになり、装置の小型化およびコスト低減を図ることができる。
 また、変調波の波形生成がデジタル信号処理によって実現されているため、安定した波形生成が可能となる。また、従来の治療器で必要とされていた、環境変動に対する補償回路や、製造時の調整作業などが不要になるという利点もある。
 また、波形データの定義しだいで任意の波形を作り出すことができるので、従来の治療器では出力できなかった、さまざまな波形の変調波(治療電流)を生成し出力できるようになる。たとえば、振幅もしくは周波数、またはその両方(振幅+周波数)が変調された波形を有する変調波を生成することができる。さらに複雑な波形として、非一定の周期で振幅が変化する波形を有する変調波であるとか、一定または非一定の周期で振幅が変化し、かつ、周期毎に振幅の最大値が変化する波形を有する変調波などを生成することも可能である。
 また、本発明の治療器が、パルス波を生成し出力するパルス波生成手段をさらに備え、治療電流として変調波とパルス波を選択的に出力可能であることが好ましい。パルス波と変調波では治療効果に差があることから、2タイプの治療電流を選択可能とすることで、治療器の利便性と利用価値の向上を図ることができる。
 なお、パルス波生成用の回路と変調波生成用の回路とを別の構成にしてもよいが、共通の回路構成で変調波とパルス波の2タイプの波形を発生させることも可能である。具体的には、前記記憶手段が、パルス波の波形を定義する波形データも記憶しており、前記デジタル信号発生手段が、前記パルス波の波形データに従ってデジタル信号を出力することにより、治療電流としてパルス波も出力可能である構成を好ましく採用できる。このようにパルス波と変調波の回路構成を共通にすることで、さらなる小型化およびコストダウンを図ることができる。
 前記記憶手段に記憶された波形データの書き換えが可能であることが好ましい。これにより治療器の拡張性や柔軟性が向上する。
 前記変換手段と前記増幅手段の間にアンチエイリアシングフィルタを備えることが好ましい。アンチエイリアシングフィルタにより波形を滑らかにすることにより、体感の向上を図ることができる。
 前記変換手段は、抵抗ラダー回路であることが好ましい。これにより高速なDA変換回路を安価に実現できる。
 なお、上記構成の各々は可能な限り互いに組み合わせて本発明を構成することができる。
 本発明の治療器は、シンプルな回路構成で、安定して、さまざまな波形の変調波を出力可能である。
図1は、治療器の外観を示す図である。 図2は、治療器の構成を模式的に示すブロック図である。 図3Aは、波形データの一例を示す図であり、図3Bは、波形データとデジタル信号発生回路の端子出力との対応関係を示すテーブルである。 図4は、抵抗ラダー回路の構成を示す図である。 図5は、変調波の生成・出力処理の流れを示す図である。 図6Aは、振幅変調波形の例を示す図であり、図6Bは、周波数変調波形の例を示す図であり、図6Cは、振幅・周波数変調波形の例を示す図である。 図7Aは、非一定の周期で振幅が変化する波形の例を示す図であり、図7Bは、一定の周期で振幅が変化し、かつ、周期毎に振幅の最大値が変化する波形の例を  示す図であり、図7Cは、非一定の周期で振幅が変化し、かつ、周期毎に振幅の最大値が変化する波形の例を示す図である。 図8は、変形例1に係る治療器の構成を模式的に示すブロック図である。 図9は、変調波を生成するための従来の回路構成を示す図である。
 以下に図面を参照して、この発明の好適な実施の形態を例示的に詳しく説明する。ここでは、低周波の治療電流を用いる治療器(低周波治療器)を例示する。
 <治療器の構成>
 図1、図2を参照して、本発明の実施形態に係る治療器について説明する。図1は治療器の外観を示す図であり、図2は治療器のハードウエア構成を模式的に示すブロック図である。
 治療器100は、概略、治療器本体200と、治療部位に貼り付けるための一対のパッド300と、治療器本体200とパッド300とを電気的に接続するためのコード400とから構成される。
 パッド300は、薄くかつ柔軟性の高い部材により構成されている。パッド300の一方の面(身体との接触面)には、電極301が形成されている。パッド300の電極側の表面は粘着性を有するゲル状材料によって被覆されている。
 パッド300の他方の面には、電極301に対応したスナップ302が設けられている。コード400のスナップ402をパッド300側のスナップ302に留め、コード400のプラグ401を治療器本体200のジャックに差し込むことで、治療器本体200とパッド300(電極301)との接続がはかられる。
 図2に示すように、治療器本体200には、概略、操作部210、表示部220、CPU(Central Processing Unit)230、電源部240、変調波生成・出力部250が設けられている。
 (操作部)
 操作部210には、電源のオン/オフを切り替えるための電源スイッチ、強さの調整を行うための強さ調整ダイヤル、治療モード(波形)の選択を行うための機能スイッチなどが設けられている。ユーザによってスイッチやダイヤルが操作されると、その信号がCPU230に入力される。
 (表示部)
 表示部220は、LCD(液晶ディスプレイ)、LED(発光ダイオード)、バックライト、ブザーなどで構成される。表示部220はCPU230によって制御され、現在の動作状態、操作のナビゲート、警告などを出力する。
 (電源部)
 電源部240は、電源回路、電源状態監視回路などで構成される。電源としてはACアダプタまたは電池が用いられる。電源回路は、ACアダプタまたは電池の供給電圧からDC3.3V電圧を生成する回路である。電源回路からのDC出力はCPU230に供給される。電源状態監視回路は、電源回路からの出力電圧が所定の許容電圧を下回った場合にCPU230(治療器本体200)を停止させる回路である。
 (変調波生成・出力部)
 変調波生成・出力部250(変調波生成手段)は、変調波の治療電流を生成し出力するための機能ブロックである。変調波生成・出力部250は、デジタル信号発生回路251、DA変換回路252、フィルタ253、強さ調整回路254、増幅回路255などで構成される。
 デジタル信号発生回路251は、治療電流の波形を定義する波形データを記憶する機能(記憶手段)と、その波形データに従ってデジタル信号を出力する機能(デジタル信号発生手段)とを備える回路である。デジタル信号発生回路251は、複数種類の波形データを記憶しており、治療モードに応じて出力波形を変えることができる。
 本実施形態のデジタル信号発生回路251はFPGA(Field Programmable Gate Array)を用いて構成されており、波形データはFPGAの内蔵メモリに格納されている。なお、FPGAに限らず、マイクロプロセッサ、組み込みCPU、ASIC(Application Specific Integrated Circuit)、マイコンなど、他の集積回路を用いてデジタル信号発生回路を構成してもよい。またFPGAの内蔵メモリは容量が小さいため、外部メモリに波形データを格納するようにしてもよい。
 図3Aは、波形データの一例を示している。波形データは、所定時間ごとの振幅値が時間順に記述された形式のデジタルデータである。図3Aの例では、0.1msecごとの振幅値が0~10の11段階の値で表されている。1つの振幅値に4ビットを割り当てた場合、0.01secの波形を定義するのに50バイトのデータサイズが必要となる。なお、上記所定時間(波形のサンプリング間隔)が短いほど、また振幅値の範囲(波形の分解能)が大きいほど、高精細な波形生成が可能になる。
 図3Bは、波形データの振幅値とデジタル信号発生回路の端子出力との対応関係を示すテーブルである。デジタル信号発生回路251は、#1~#10の10個の端子を有しており、波形データの振幅値に応じて各端子の出力値(0/1)を切り替える。具体的には、振幅値が0のときは全端子の出力を「0」にし、振幅値がn(0<n≦10)のときは#1~#nのn個の端子の出力を「1」(残りの端子は「0」)にする。図3A、図3Bの例では、振幅値が4,6,3,・・・であるため、最初の0.1msecは#1~#4の端子出力が「1」になり、次の0.1msecは#1~#6の端子出力が「1」になり、次の0.1msecは#1~#3の端子出力が「1」になる。これにより、治療電流の源波形に対応するデジタル信号が生成し出力される。なお、図3Bの破線は源波形を模式的に表現したものである。
 DA変換回路252は、デジタル信号発生回路251から出力されたデジタル信号をアナログ変換して源波形を出力する機能(変換手段)をもつ回路である。本実施形態では、図4に示すように、抵抗ラダー回路を用いている。これにより、高速なDA変換回路を安価に実現できる。
 フィルタ253は、源波形のアンチエイリアシングを行うためのフィルタであり、典型的にはローパスフィルタが用いられる。強さ調整回路254は、操作部210の強さ調整ダイヤルで指定された「強さ」に応じて、源波形の振幅をスケーリングするための電子ボリウムである。なお、フィルタ253と強さ調整回路254の順番は逆でもよい。
 増幅回路255は、源波形を増幅して治療電流を出力する機能(増幅手段)をもつ回路である。具体的には、アンプとトランスにより増幅回路255が構成される。この増幅回路255において、mVオーダの源波形が数V~数十Vオーダの波形へと増幅される。
 <変調波の生成・出力処理>
 図5を参照して、治療器の動作(特に変調波の生成・出力処理)を詳しく説明する。
 ユーザは、操作部210の機能スイッチを用いて、治療モードを選択することができる。治療モードとしては、「もみ」「たたき」「押し」「さすり」といった治療方法や、「肩」「腰」「関節」「足裏」といった治療部位などを指定可能である。また、ユーザは、操作部210の強さ調整ダイヤルを用いて、治療電流の強さを調整することができる。
 ユーザにより治療モードが指定されると、その治療モードがCPU230を介してデジタル信号発生回路251に通知される。デジタル信号発生回路251は、指定された治療モードに対応する波形データを読み込み、順次、デジタル信号を生成し出力する。このデジタル信号はDA変換回路252によりアナログ信号に変換され、治療電流の源波形が生成される。
 図5に示すように、DA変換後の源波形は振幅が階段状に(不連続に;離散的に)変化している。このような波形の電流を身体に流すと、ピリピリした痛みを生じることがある。そこで本実施形態では、アンチエイリアシングフィルタ253を通して波形を滑らかにすることで、痛みの低減並びに体感の向上を図っている。ただし、デジタル信号発生回路251およびDA変換回路252の分解能が十分に高く、滑らかな源波形を生成できるのであれば、フィルタ253は不要になる。
 強さ調整ダイヤルにて指定された「強さ」(0~MAX)は、CPU230を介して強さ調整回路254に通知される。強さ調整回路254は、その強さ指定値に応じて、源波形の振幅をスケーリングする。本実施形態では、「強さ=MAX」に対応する振幅レベルの源波形がDA変換回路252から出力されるように、波形データが設計されている。よって強さ調整回路254は、「強さ=MAX」の場合は源波形をスルーし、「強さ<MAX」の場合には源波形の振幅レベルを縮小する。なお、デジタル信号発生回路251およびDA変換回路252の分解能が十分に高く、かつ、強さの各段階に対応する源波形を生成できるのであれば、強さ調整回路254は不要になる。
 増幅回路255は、mVオーダの源波形を増幅・昇圧し、数V~数十Vオーダの変調波を生成する。この変調波がパッド300に印加されると、高電位側のパッドから身体を介して低電位側のパッドへと治療電流が流れる。この電流によって筋肉や神経などの体組織が電気的刺激を受け、マッサージと同じような治療効果(凝りや痛みの緩和)を得ることができる。
 <変調波の例>
 本実施形態の治療器は、波形データの定義しだいで任意の波形を作り出すことができる。たとえば、図6Aに示すように、振幅のみが変調された振幅変調波形を作り出すこともできるし、図6Bに示すように、周波数のみが変調された周波数変調波形を作り出すこともできるし、図6Cに示すように、振幅と周波数の両方が変調された波形を作り出すこともできる。さらに複雑な波形として、図7Aに示すように、非一定の周期で振幅が変化する波形(つまり、変調波周波数が変化する波形)を作り出したり、図7Bに示すように、一定の周期で振幅が変化し、かつ、周期毎に振幅の最大値が変化する波形を作り出したり、図7Cに示すように、非一定の周期で振幅が変化し、かつ、周期毎に振幅の最大値が変化する波形を作り出すことも可能である。
 振幅の大小は刺激の強弱に対応するので、図6Aのように振幅を周期的に変化させることで、「もみ」や「たたき」などのマッサージに似た体感を作り出すことができる。そして、図7Aのように振幅変化の周期を変えることで、マッサージの速度を「遅い→速い→遅い→速い→・・・」のように動的に変化させたり、図7Bのように振幅の最大値を変えることで、マッサージの強さを「強→中→弱→強→・・・」のように動的に変化させることができる。
 また、搬送波周波数が高いほど、身体のより深くに治療電流が到達する。よって、図6B、図6C、図7A、図7Cのように搬送波周波数を変化させることで、身体の内部方向への刺激の動きを作り出すことができる。
 <治療器の利点>
 本実施形態の治療器は、以下の優れた利点を有する。
 本実施形態の治療器では、変調波の生成回路がFPGAとDA変換回路で構成されているので、従来のアナログ回路を用いた治療器に比べて回路構成が極めてシンプルである。また、デジタル信号処理を利用しているので、安定した波形生成が可能である。しかも、従来の治療器で必要とされていた、環境変動に対する補償回路や、製造時の調整作業などが不要になる。したがって、従来の治療器に比べて、装置の小型化およびコスト低減を図ることができる。
 また、本実施形態の治療器は、さまざまな波形の治療電流を生成することができるとともに、速度、強さ、治療部位の深さなど、治療電流の刺激に動的な変化やリズムをもたせることもできる。よって、従来の治療器では作り出せなかった、まったく新しい体感や治療効果を生み出すことができる。
 <変形例>
 なお、上記実施形態は本発明の一具体例を示したものにすぎない。本発明の範囲は上記実施形態に限られるものではなく、その技術思想の範囲内で種々の変形が可能である。以下、好ましい変形例を述べる。
 (変形例1)
 図8は、変形例1に係る変調波生成・出力部の構成を示している。変形例1の治療器は、パルス波を生成し出力するための機能(パルス波生成手段)も備えており、変調波とパルス波のいずれをも出力可能である。
 図8に示すように、デジタル信号発生回路251のメモリには、変調波の波形データに加えて、パルス波の波形データも格納されている。また、変形例1では、DA変換回路252の後段に、フィルタ253をバイパスするためのバイパスライン256と、バイパススイッチ257と、が設けられている。
 パルス波を用いる治療モードが選択された場合、CPU230は、デジタル信号発生回路251に治療モードを通知するとともに、バイパススイッチ257をバイパスライン256側に切り替える。デジタル信号発生回路251は指定されたモードに対応する波形データを読み込んで、パルス波の源波形を生成する。なお、変調波とパルス波とでは、波形データの形式に違いはなく、記述されているデータの内容(波形の定義)が異なるにすぎない。それゆえ、デジタル信号発生回路251およびDA変換回路252における処理は、変調波を生成する場合とパルス波を生成する場合とで異なるところはない。
 DA変換回路252から出力された源波形は、バイパスライン256を経由して強さ調整回路254に入力される。パルス波形の場合にフィルタ253をバイパスさせる理由は、パルス波形のなまりを防止するためである。そして、強さ指定値に応じたレベル調整が行われた後、増幅回路255で増幅され、パルス波の治療電流が出力される。
 このように変形例1の構成によれば、パルス波と変調波の2タイプの治療電流を利用可能である。パルス波は主に筋肉に作用するのに対して、変調波は筋肉よりも体内深くに刺激を及ぼす点で、両者の治療効果には差がある。よって、パルス波と変調波を選択可能とすることで、治療器の利便性と利用価値(付加価値)の向上を図ることができる。しかも、図8のように、パルス波と変調波の回路構成を共通にしたことで、小型かつ安価な構成で、2タイプの治療電流に対応した高機能な治療器を実現できる。
 (その他の変形例)
 波形データの記憶手段は、読み込み専用の記憶媒体でもよいし、書き換え可能な記憶媒体でもよい。しかし、拡張性、柔軟性、メンテナンス性などの観点から、書き換え可能な記憶媒体に波形データを格納し、さらに治療器の外から波形データの書き換え(更新)を可能とすることが好ましい。具体的には、治療器に外部機器とのインターフェイス(たとえば、コンピュータと接続するためのUSBコネクタ、コンピュータと無線通信を行うための通信I/Fなど)を設けて、外部機器から治療器に波形データを送信し書き込めるようにしてもよい。あるいは、治療器の操作部210と表示部220を用いて波形データの編集や削除などを行えるようにしてもよい。このように波形データの書き換えを可能とすることで、たとえば、製品出荷時に最新バージョンの波形データに更新したり、ユーザの希望に合わせて書き込む波形データを異ならせることもできる。また、WEBサイトで治療器のユーザに対して波形データを提供したり、ユーザ自身による波形データの編集を可能にしたりするなど、さまざまなサービスの可能性が生まれる。
 波形データの形式は上記実施形態のものに限らない。たとえば、サンプリング間隔や分解能をもっと細かくしてもよいし、サンプリング間隔や分解能を動的に変化させてもよい。またメモリを節約するために、波形データを圧縮してもよい。

Claims (9)

  1.  治療電流として変調波を出力可能な治療器であって、
     前記変調波の波形を定義する波形データを記憶している記憶手段と、
     前記波形データに従ってデジタル信号を出力するデジタル信号発生手段と、
     前記デジタル信号をアナログ変換して源波形を出力する変換手段と、
     前記源波形を増幅して治療電流を出力する増幅手段と、
    を備えることを特徴とする治療器。
  2.  前記波形データは、所定時間ごとの振幅値が記述されたデータであり、
     前記デジタル信号発生手段は、前記波形データに従って前記源波形の振幅値を表すデジタル信号を出力することを特徴とする請求の範囲第1項に記載の治療器。
  3.  前記変調波は、振幅もしくは周波数、またはその両方が変調された波形を有することを特徴とする請求の範囲第1項または第2項に記載の治療器。
  4.  前記変調波は、非一定の周期で振幅が変化する波形を有することを特徴とする請求の範囲第1項~第3項のいずれかに記載の治療器。
  5.  前記変調波は、一定または非一定の周期で振幅が変化し、かつ、周期毎に振幅の最大値が変化する波形を有することを特徴とする請求の範囲第1項~第3項のいずれかに記載の治療器。
  6.  前記記憶手段が、パルス波の波形を定義する波形データも記憶しており、
     前記デジタル信号発生手段が、前記パルス波の波形データに従ってデジタル信号を出力することにより、治療電流としてパルス波も出力可能であることを特徴とする請求の範囲第1項~第5項のいずれかに記載の治療器。
  7.  前記記憶手段に記憶された波形データの書き換えが可能であることを特徴とする請求の範囲第1項~第6項のいずれかに記載の治療器。
  8.  前記変換手段と前記増幅手段の間にアンチエイリアシングフィルタを備えることを特徴とする請求の範囲第1項~第7項のいずれかに記載の治療器。
  9.  前記変換手段は、抵抗ラダー回路であることを特徴とする請求の範囲第1項~第8項のいずれかに記載の治療器。
PCT/JP2008/072648 2008-01-10 2008-12-12 治療器 WO2009087856A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200880122836.1A CN101909689B (zh) 2008-01-10 2008-12-12 治疗器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-002966 2008-01-10
JP2008002966A JP2009160328A (ja) 2008-01-10 2008-01-10 治療器

Publications (1)

Publication Number Publication Date
WO2009087856A1 true WO2009087856A1 (ja) 2009-07-16

Family

ID=40852981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072648 WO2009087856A1 (ja) 2008-01-10 2008-12-12 治療器

Country Status (3)

Country Link
JP (1) JP2009160328A (ja)
CN (1) CN101909689B (ja)
WO (1) WO2009087856A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103816044A (zh) * 2014-02-17 2014-05-28 洛阳理工学院 一种用于感冒理疗的按摩仪

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204208193U (zh) * 2014-08-31 2015-03-18 深圳市艾尔曼医疗电子仪器有限公司 低周波电刺激器
CN105680836A (zh) * 2016-01-05 2016-06-15 孝感量子机电科技有限公司 一种中低频治疗仪的治疗波形轮廓产生方法和电路
JP6870799B2 (ja) * 2017-02-27 2021-05-12 伊藤超短波株式会社 電気刺激装置
JP6859766B2 (ja) * 2017-03-14 2021-04-14 オムロンヘルスケア株式会社 情報処理装置、電気治療器、システムおよびプログラム
JP6628370B2 (ja) * 2017-08-31 2020-01-08 西村 明美 周波治療器
MX2019010940A (es) * 2017-03-14 2021-12-07 Akemi Nishimura Dispositivo para terapia con frecuencias.
JP7087346B2 (ja) * 2017-11-06 2022-06-21 オムロンヘルスケア株式会社 電気治療器、制御方法、および治療システム
JP7170303B2 (ja) * 2018-03-29 2022-11-14 合同会社中研トラスト 周波治療器
JP7303841B2 (ja) * 2021-04-01 2023-07-05 孝夫 奥田 電気的刺激装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0243509B2 (ja) * 1982-12-25 1990-09-28
JP3510904B2 (ja) * 1993-06-17 2004-03-29 有限会社楠本産業 低周波治療器
JP2005144176A (ja) * 2003-11-18 2005-06-09 Chih Jung Huang プログラマブルメモリを具えた変調中周波搬送波電気治療器
JP2006175162A (ja) * 2004-12-24 2006-07-06 Hirose Electric Co Ltd 干渉波装置とそれに用いる正弦波発生回路

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2520883Y (zh) * 2001-12-11 2002-11-20 中国人民解放军海军潜艇学院 电疗仪

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0243509B2 (ja) * 1982-12-25 1990-09-28
JP3510904B2 (ja) * 1993-06-17 2004-03-29 有限会社楠本産業 低周波治療器
JP2005144176A (ja) * 2003-11-18 2005-06-09 Chih Jung Huang プログラマブルメモリを具えた変調中周波搬送波電気治療器
JP2006175162A (ja) * 2004-12-24 2006-07-06 Hirose Electric Co Ltd 干渉波装置とそれに用いる正弦波発生回路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103816044A (zh) * 2014-02-17 2014-05-28 洛阳理工学院 一种用于感冒理疗的按摩仪

Also Published As

Publication number Publication date
CN101909689A (zh) 2010-12-08
JP2009160328A (ja) 2009-07-23
CN101909689B (zh) 2014-04-09

Similar Documents

Publication Publication Date Title
WO2009087856A1 (ja) 治療器
EP1136097B1 (en) Living body stimulating apparatus
CN107596556B (zh) 一种基于音乐实时调制的经皮迷走神经刺激系统
BR0206110A (pt) Aparelho e método para medição da composição corporal, e balança pessoal
KR101057974B1 (ko) 고주파치료 및 저주파치료 기능을 동시 적용한 전기치료기
JP6733555B2 (ja) 電気治療器、システムおよびプログラム
KR101277465B1 (ko) 스마트폰과 접속되는 저주파 자극기
KR102023654B1 (ko) 고주파 세기가 자동으로 조절되는 휴대용 고주파 두피 마사지기
JP4807176B2 (ja) 低周波治療器及びその制御方法
ITVR20000070A1 (it) Dispositivo di generazione di campo elettromedicale
TWM517612U (zh) 無線控制電療設備
US20230225840A1 (en) Electric field generating device for oral care and oral care device including same
JP4610131B2 (ja) 電気刺激装置
JP6862947B2 (ja) 情報処理装置、電気治療器、システムおよびプログラム
JP2003220149A (ja) パルス健康器
JP6912843B1 (ja) 電気治療器
JP2004267325A (ja) 干渉低周波治療器
CN110891649A (zh) 电疗仪、电子设备及终端装置
CN212235628U (zh) 可穿戴骶丛神经刺激器
KR200241782Y1 (ko) 퍼스날 사운드 카드. 오디오 주파수를 이용한 저전류고압펄스 신호발생장치
CN106038273A (zh) 一种经络电子针炙装置
CN213724431U (zh) 一种用于针灸治疗的低频脉冲信号发生器
KR20160023064A (ko) 단말기와 접속된 자극 및 진단을 위한 장치 및 방법
KR100874099B1 (ko) 휴대단말기를 이용한 범용 주파수 발생기 및 주파수 발생방법
KR20230037767A (ko) 자가 관리가 가능한 에너지 테라피 복합 기기

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880122836.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08870016

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08870016

Country of ref document: EP

Kind code of ref document: A1