WO2009084673A1 - ハイブリッド式建設機械 - Google Patents

ハイブリッド式建設機械 Download PDF

Info

Publication number
WO2009084673A1
WO2009084673A1 PCT/JP2008/073832 JP2008073832W WO2009084673A1 WO 2009084673 A1 WO2009084673 A1 WO 2009084673A1 JP 2008073832 W JP2008073832 W JP 2008073832W WO 2009084673 A1 WO2009084673 A1 WO 2009084673A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
battery
power
electric
limit value
Prior art date
Application number
PCT/JP2008/073832
Other languages
English (en)
French (fr)
Inventor
Makoto Yanagisawa
Keiji Manabe
Original Assignee
Sumitomo Heavy Industries, Ltd.
Sumitomo(S.H.I.) Construction Machinery Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries, Ltd., Sumitomo(S.H.I.) Construction Machinery Manufacturing Co., Ltd. filed Critical Sumitomo Heavy Industries, Ltd.
Priority to EP08866647.4A priority Critical patent/EP2228492A4/en
Priority to US12/810,607 priority patent/US8285434B2/en
Priority to JP2009548112A priority patent/JP5154578B2/ja
Priority to CN2008801231152A priority patent/CN101918649B/zh
Publication of WO2009084673A1 publication Critical patent/WO2009084673A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/10Supports for movable superstructures mounted on travelling or walking gears or on other superstructures
    • E02F9/12Slewing or traversing gears
    • E02F9/121Turntables, i.e. structure rotatable about 360°
    • E02F9/123Drives or control devices specially adapted therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • E02F9/2075Control of propulsion units of the hybrid type
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2217Hydraulic or pneumatic drives with energy recovery arrangements, e.g. using accumulators, flywheels
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2246Control of prime movers, e.g. depending on the hydraulic load of work tools
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/04Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0677Engine power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/086Power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/1033Input power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]

Definitions

  • the present invention relates to a construction machine, and more particularly to a hybrid construction machine that works efficiently by using two power sources in combination.
  • a hybrid work machine that operates efficiently by combining the power of an internal combustion engine and the power of an electric motor has been developed and used. 2. Description of the Related Art As a hybrid work machine, one that takes a so-called parallel drive form is known.
  • a hydraulic pump and a power machine that performs a generator action and a motor action are connected in parallel to an internal combustion engine (engine) as a common power source.
  • the hydraulic actuator is driven by the hydraulic pump, and the power storage device is charged by the generator action of the power machine.
  • the power is operated from the power storage device as an electric motor to assist the engine.
  • a motive power machine there are a case where a dual-purpose machine (generator / motor) that performs both a generator action and a motor action is used, and a case where a separate generator and motor are used together.
  • the charge / discharge characteristics of power storage devices such as batteries (secondary batteries) and capacitors (electric double layer capacitors) such as lithium ion capacitors depend on the amount of charge, and the maximum charge power increases as the charge amount decreases. The discharge power is reduced. Therefore, since the power distribution between the engine and the power storage device is determined regardless of the charge amount of such a power storage device, the charge amount of the power storage device is too small or too large depending on the load condition. As a result, the capacity of the power storage device cannot be used effectively, and the power storage device may be deteriorated.
  • a power source device for a work machine that can determine the power distribution between the engine and the power machine according to the charge amount of the power storage device and keep the charge amount of the power storage device within an appropriate range.
  • a hydraulic pump and a generator / motor are connected in parallel to an engine serving as a common power source, and a power storage device is generated by the generator action of the generator / motor. Charge the battery. Further, the generator / motor is driven by the discharging power of the battery to perform the motor operation. Based on the required power of the actuator, the charge power and discharge power of the battery set according to the battery charge amount so that the battery charge amount is kept within a certain range, and the set engine power, Determine the power distribution of the generator / motor. JP 2005-237178 A
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a hybrid construction machine that can use an engine and a battery as a power source in an appropriate output range.
  • a hydraulic generator that converts engine output into hydraulic pressure and supplies it to a hydraulic drive unit, and a motor generator that is connected to the engine and functions as both an electric motor and a generator.
  • An electric storage device that supplies electric power to the motor generator to function as an electric motor, an electric drive unit that is driven by electric power from the electric storage device, generates regenerative power, and supplies the electric power storage device, and the motor generator
  • a hybrid construction machine having a control unit that controls the operation of the engine, wherein the control unit is calculated by an output condition calculation unit that calculates an output condition between the engine and the battery, and calculated by the output condition calculation unit
  • a hybrid construction machine comprising: an electric drive unit and a power distribution unit that determines an output value of the hydraulic drive unit based on an output condition.
  • the power distribution unit includes a capacitor output set value determined based on the charge rate of the capacitor, an engine output set value determined based on the engine speed, An output command for controlling the operation and output of the motor generator based on the hydraulic load request value indicating the power required by the hydraulic generator and the electric load request value indicating the power required by the electric drive unit. It may be generated and output. Further, the power distribution unit may determine the electric power for powering the electric drive unit and the regenerative power generated by the regenerative operation of the electric drive unit based on output limit values of the engine and the battery. . Furthermore, the power distribution unit may determine an output supplied to the hydraulic drive unit based on output limit values of the engine and the battery.
  • the output command of the battery may be determined by comparing the battery request limit value calculated based on the outputs of the engine, the electric drive unit, and the battery and the battery target output.
  • the output of the motor generator may be determined by comparing the output command of the battery with the power supplied to the electric drive unit or the electric power output from the electric drive unit.
  • the operation and output of the motor generator can be controlled based on the output conditions, it is possible to use the engine and the battery as the power source in an appropriate output range.
  • Fig. 1 is a side view of the hybrid excavator.
  • An upper swing body 3 is mounted on the lower traveling body 1 of the power shovel via a swing mechanism 2.
  • a boom 4 extends from the upper swing body 3, and an arm 5 is connected to the tip of the boom 4. Further, the bucket 6 is connected to the tip of the arm 5.
  • the boom 4, the arm 5, and the bucket 6 are hydraulically driven by a boom cylinder 7, an arm cylinder 8, and a bucket cylinder 9, respectively.
  • the upper swing body 3 is mounted with a cabin 10 and a power source (not shown).
  • FIG. 2 is a block diagram showing the configuration of the drive system of the power shovel shown in FIG.
  • the mechanical power system is indicated by a double line
  • the high-pressure hydraulic line is indicated by a solid line
  • the pilot line is indicated by a broken line
  • the electric drive / control system is indicated by a one-dot chain line.
  • the engine 11 as a mechanical drive unit and the motor generator 12 as an assist drive unit are both connected to an input shaft of a speed reducer 13 as a booster.
  • a main pump 14 and a pilot pump 15 are connected to the output shaft of the speed reducer 13.
  • a control valve 17 is connected to the main pump 14 via a high pressure hydraulic line 16.
  • the control valve 17 is a control device that controls the hydraulic system. Connected to the control valve 17 are hydraulic motors 1A (for right) and 1B (for left), a boom cylinder 7, an arm cylinder 8, and a bucket cylinder 9 for the lower traveling body 1 via a high-pressure hydraulic line.
  • a battery 19 as a battery is connected to the motor generator 12 via an inverter 18.
  • a turning motor 21 is connected to the battery 19 via an inverter 20.
  • the turning electric motor 21 is an electric load in the power shovel.
  • a resolver 22, a mechanical brake 23, and a turning speed reducer 24 are connected to the rotating shaft 21 ⁇ / b> A of the turning electric motor 21.
  • An operation device 26 is connected to the pilot pump 15 via a pilot line 25.
  • a control valve 17 and a pressure sensor 29 as a lever operation detection unit are connected to the operating device 26 via hydraulic lines 27 and 28, respectively.
  • the pressure sensor 29 is connected to a controller 30 that performs electric system drive control.
  • the power shovel having the above configuration is a hybrid construction machine that uses the engine 11, the motor generator 12, and the turning electric motor 21 as power sources. These power sources are mounted on the upper swing body 3 shown in FIG. Hereinafter, each part will be described.
  • the engine 11 is an internal combustion engine constituted by, for example, a diesel engine, and its output shaft is connected to one input shaft of the speed reducer 13. The engine 11 is always operated during the operation of the construction machine.
  • the motor generator 12 may be an electric motor capable of both power running operation and regenerative operation.
  • a motor generator that is AC driven by an inverter 20 is shown as the motor generator 12.
  • the motor generator 12 can be constituted by, for example, an IPM (Interior / Permanent / Magnet) motor in which a magnet is embedded in a rotor.
  • IPM Interior / Permanent / Magnet
  • the rotating shaft of the motor generator 12 is connected to the other input shaft of the speed reducer 13.
  • Reduction gear 13 has two input shafts and one output shaft.
  • the drive shaft of the engine 11 and the drive shaft of the motor generator 12 are connected to the two input shafts, respectively. Further, the drive shaft of the main pump 14 is connected to the output shaft.
  • the motor generator 12 performs a power running operation, and the driving force of the motor generator 12 is transmitted to the main pump 14 via the output shaft of the speed reducer 13. Thereby, the drive of the engine 11 is assisted.
  • the load on the engine 11 is small, the driving force of the engine 11 is transmitted to the motor generator 12 via the speed reducer 13 so that the motor generator 12 generates power by regenerative operation. Switching between the power running operation and the regenerative operation of the motor generator 12 is performed by the controller 30 according to the load of the engine 11 and the like.
  • the main pump 14 is a hydraulic pump that generates hydraulic pressure to be supplied to the control valve 17.
  • the hydraulic pressure generated by the main pump 14 is supplied to drive each of the hydraulic motors 1 ⁇ / b> A and 1 ⁇ / b> B, the boom cylinder 7, the arm cylinder 8, and the bucket cylinder 9 that are hydraulic loads via the control valve 17.
  • the pilot pump 15 is a pump that generates a pilot pressure necessary for the hydraulic operation system.
  • the control valve 17 inputs the hydraulic pressure supplied to each of the hydraulic motors 1A, 1B, the boom cylinder 7, the arm cylinder 8 and the bucket cylinder 9 for the lower traveling body 1 connected via a high-pressure hydraulic line. It is a hydraulic control device which controls these hydraulically by controlling according to the above.
  • the inverter 18 is provided between the motor generator 12 and the battery 19 as described above, and controls the operation of the motor generator 12 based on a command from the controller 30. Thus, when the inverter 18 is operating and controlling the power running of the motor generator 12, the necessary power is supplied from the battery 19 to the motor generator 12. Further, when the regeneration of the motor generator 12 is being controlled for operation, the battery 19 is charged with the electric power generated by the motor generator 12.
  • the battery 19 that is a storage battery is disposed between the inverter 18 and the inverter 20.
  • the inverter 20 is provided between the turning electric motor 21 and the battery 19 as described above, and performs operation control on the turning electric motor 21 based on a command from the controller 30.
  • the inverter 20 performs operation control on the turning electric motor 21 based on a command from the controller 30.
  • the turning electric motor 21 is in a power running operation, necessary electric power is supplied from the battery 19 to the turning electric motor 21.
  • the turning electric motor 21 is performing a regenerative operation, the battery 19 is charged with the electric power generated by the turning electric motor 21.
  • the turning electric motor 21 may be an electric motor capable of both power running operation and regenerative operation, and is provided for driving the turning mechanism 2 of the upper turning body 3.
  • the rotational force of the rotational driving force of the turning electric motor 21 is amplified by the speed reducer 24, and the upper turning body 3 rotates while being controlled for acceleration and deceleration. Further, due to the inertial rotation of the upper swing body 3, the number of rotations is increased by the speed reducer 24 and transmitted to the turning electric motor 21, and regenerative power can be generated.
  • the turning electric motor 21 an electric motor driven by the inverter 20 by a PWM (Pulse WidthulModulation) control signal is shown.
  • the turning electric motor 21 can be constituted by, for example, a magnet-embedded IPM motor. Thereby, since a larger induced electromotive force can be generated, the electric power generated by the turning electric motor 21 during regeneration can be increased.
  • the charge / discharge control of the battery 19 is based on the state of charge of the battery 19, the operation state of the motor generator 12 (powering operation or regenerative operation), and the operation state of the turning motor 21 (powering operation or regenerative operation). Is done by.
  • the resolver 22 is a sensor that detects the rotation position and rotation angle of the rotating shaft 21A of the turning electric motor 21.
  • the resolver 22 is mechanically connected to the turning electric motor 21 to detect a difference between the rotation position of the rotation shaft 21A before the rotation of the turning electric motor 21 and the rotation position after the left rotation or the right rotation.
  • the rotation angle and the rotation direction of the rotation shaft 21A are detected.
  • the rotation angle and the rotation direction of the turning mechanism 2 are derived.
  • the mechanical brake 23 is a braking device that generates a mechanical braking force, and mechanically stops the rotating shaft 21A of the turning electric motor 21. This mechanical brake 23 is switched between braking and release by an electromagnetic switch. This switching is performed by the controller 30.
  • the turning speed reducer 24 is a speed reducer that mechanically transmits to the turning mechanism 2 by reducing the rotational speed of the rotating shaft 21A of the turning electric motor 21.
  • the rotational force of the turning electric motor 21 can be increased and transmitted to the turning body as a larger rotational force.
  • the number of rotations generated in the revolving structure can be increased, and more rotational motion can be generated in the turning electric motor 21.
  • the turning mechanism 2 can turn in a state where the mechanical brake 23 of the turning electric motor 21 is released, whereby the upper turning body 3 is turned leftward or rightward.
  • the operating device 26 is an input device for the driver of the power shovel to operate the turning electric motor 21, the lower traveling body 1, the boom 4, the arm 5, and the bucket 6, and includes levers 26A and 26B and a pedal 26C. .
  • the lever 26 ⁇ / b> A is a lever for operating the turning electric motor 21 and the arm 5, and is provided in the vicinity of the driver seat of the upper turning body 3.
  • the lever 26B is a lever for operating the boom 4 and the bucket 6, and is provided in the vicinity of the driver's seat.
  • the pedals 26C are a pair of pedals for operating the lower traveling body 1, and are provided under the feet of the driver's seat.
  • the operating device 26 converts the hydraulic pressure (primary hydraulic pressure) supplied through the pilot line 25 into hydraulic pressure (secondary hydraulic pressure) corresponding to the operation amount of the driver and outputs the converted hydraulic pressure.
  • the secondary hydraulic pressure output from the operating device 26 is supplied to the control valve 17 through the hydraulic line 27 and detected by the pressure sensor 29.
  • One hydraulic line 27 is used for operating the hydraulic motors 1A and 1B (i.e., two in total), and two hydraulic lines 27 are used for operating the boom cylinder 7, the arm cylinder 8 and the bucket cylinder 9 respectively (i.e., two). In reality, there are eight in total, but for convenience of explanation, they are collectively shown as one.
  • the pressure sensor 29 as the lever operation detection unit, a change in hydraulic pressure in the hydraulic line 28 due to the operation of the lever 26A is detected by the pressure sensor 29.
  • the pressure sensor 29 outputs an electrical signal representing the hydraulic pressure in the hydraulic line 28. This electrical signal is input to the controller 30. Thereby, the operation amount of the lever 26A can be accurately grasped.
  • the pressure sensor is used as the lever operation detection unit. However, a sensor that reads the operation amount of the lever 26A with an electric signal may be used as it is.
  • the controller 30 is a control device that performs drive control of the power shovel, and includes a speed command conversion unit 31, a drive control device 32, and a turning drive control device 40.
  • the controller 30 includes a processing unit including a CPU (Central Processing Unit) and an internal memory.
  • the speed command conversion unit 31, the drive control device 32, and the turning drive control device 40 are realized when the CPU of the controller 30 executes a drive control program stored in an internal memory.
  • the speed command conversion unit 31 is an arithmetic processing unit that converts a signal input from the pressure sensor 29 into a speed command. Thereby, the operation amount of the lever 26A is converted into a speed command (rad / s) for rotating the turning electric motor 21. This speed command is input to the drive control device 32 and the turning drive control device 40.
  • FIG. 3 is a diagram showing a model of the power system of the power shovel described above.
  • the engine 50 corresponds to the engine 11 described above
  • the assist motor 52 corresponds to the motor generator 12 having both functions of the motor and the generator.
  • the hydraulic load 54 corresponds to a component driven by hydraulic pressure, and includes the above-described boom cylinder 7, arm cylinder 8, packet cylinder 9, and hydraulic motors 1A and 1B. However, when considered as a load for generating hydraulic pressure, the hydraulic load 54 corresponds to the main pump 14 as a hydraulic pump for generating hydraulic pressure.
  • the electric load 56 corresponds to a component driven by electric power such as an electric motor or an electric actuator, and includes the turning electric motor 21 described above.
  • the battery 58 is a capacitor and corresponds to the battery 19 described above. In this embodiment, a capacitor (electric double layer capacitor) is used as the battery 58.
  • the hydraulic load 54 is supplied with hydraulic pressure generated by a hydraulic pump that generates hydraulic pressure (the main pump 14 described above).
  • the engine 50 is driven by supplying power to the hydraulic pump. That is, the power generated by the engine 50 is converted into hydraulic pressure by the hydraulic pump and supplied to the hydraulic load 54.
  • an assist motor 52 is also connected to the hydraulic pump, and the power generated by the assist motor 52 can be supplied to the hydraulic pump for driving. That is, the electric power supplied to the assist motor 52 is converted into power by the assist motor 52, and the power is converted into hydraulic pressure by the hydraulic motor and supplied to the hydraulic load 54. At this time, the assist motor operates as an electric motor.
  • the electric load 56 is driven by being supplied with electric power from the battery 58.
  • a case where the electric load 56 is driven is referred to as a power running operation.
  • the electric load 56 can generate regenerative electric power as in, for example, an electric motor / generator.
  • the generated regenerative electric power is supplied to the battery 58 and stored, or supplied to the assist motor 52 to assist the assist motor. It becomes the electric power which drives 52.
  • the battery 58 is charged by the regenerative power from the electric load 56 as described above. Further, when the assist motor 52 receives power from the engine 50 and functions as a generator, the power generated by the assist motor 52 can be supplied to the battery 58 for charging. The electric power generated by the assist motor 52 can be directly supplied to the electric load 56 to drive the electric load 56.
  • the assist motor 52 when the engine 50 is assisted to generate hydraulic pressure and supply power to the hydraulic load 54, electric power is output as power.
  • the output polarity of the assist motor 52 at this time is (+).
  • the assist motor 52 when the assist motor 52 is driven by the driving force of the engine 50 to generate power, power is input to the assist motor 52. Accordingly, the output polarity of the assist motor 52 at this time is ( ⁇ ).
  • the output polarity is (+).
  • regenerative power or power generated by the assist motor 52 may be supplied from the electric load 56 and charged.
  • the output polarity of the battery 58 is ( ⁇ ).
  • the output polarity when the power is supplied and driven that is, the power running operation is (+)
  • the output polarity when the regenerative power is generated is ( ⁇ ). It becomes.
  • the output polarities thereof are appropriately adjusted in consideration of the operation state of the assist motor 52 and the electric load 56 and the charging state of the battery 58, which are components related to electric power. Therefore, it is necessary to determine the operating conditions.
  • the distribution of the output to the hydraulic load 54 and the output to the electric load 56 can be controlled while adjusting the output polarity of the assist motor 52 so that the battery 58 is always properly charged. is important.
  • the inputs related to control are the following four variables.
  • the actual engine speed Nact is a variable indicating the actual engine speed of the engine 50.
  • the engine 50 is always driven during operation of the power shovel, and the actual engine speed Nact is detected.
  • Hydraulic load demand output Phydreq The hydraulic load request output Phydreq is a variable indicating the power required by the hydraulic load 54, and corresponds to, for example, the operation amount of the operation lever when the driver operates the power shovel.
  • the electrical load request output Pelcreq is a variable indicating the power required by the electrical load 56, and corresponds to, for example, the operation amount of the operation lever when the driver operates the power shovel.
  • Battery voltage Vact is a variable indicating the output voltage of the battery 58.
  • a capacitor capacitor is used as the battery. Since the charge amount of the capacitor is proportional to the square of the voltage across the terminals of the capacitor, the state of charge of the battery 58 (that is, the charge rate SOC) can be known by detecting the output voltage.
  • Assist motor output command Pasmref This is a value for instructing the output of the assist motor 52.
  • the assist motor 52 functions as an electric motor to assist the engine 50 to supply power to the hydraulic load 54, or the assist motor 52 functions as a generator to supply electric power to the electric load 56. Whether to supply or charge the battery 58 is instructed.
  • the drive control device 32 included in the controller 30 performs the hydraulic load actual output Phydout, based on the actual engine speed Nact, the hydraulic negative required output Phydreq, the electrical load required output Pelcreq, and the battery voltage Vact.
  • the electric load actual output Pelcout and the assist motor output command Pasmref are controlled.
  • the drive control device 32 is referred to as a control unit 60.
  • FIG. 5 is a functional block diagram of the control unit 60 included in the controller 30 for performing the above-described control. An overview of the control function of the control unit 60 will be described with reference to FIG.
  • the control unit 60 includes an output condition calculation unit 60-9 and a power distribution unit 60-8.
  • the output condition calculation unit 60-9 includes blocks 60-1 to 60-7, and calculates upper and lower limit values that are output conditions of the engine 50 and the battery 58.
  • the actual engine speed Nact input to the output condition calculation unit 60-9 of the control unit 60 is input to the block 60-1.
  • the block 60-1 determines the upper limit value Pengmax and the lower limit value Pengmin of the output at the input actual engine speed Nact, and inputs them to the block 60-8 which is a power distribution unit.
  • the block 60-1 has a map or conversion table showing an upper limit value and a lower limit value in the relationship between the rotational speed of the engine 50 and the output. Refer to this map or conversion table.
  • the upper limit value Pengmax and the lower limit value Pengmin of the output at the actual engine speed Nact input are determined.
  • the map or conversion table is created in advance and stored in the memory of the controller 30. Note that the upper limit value Pengmax and the lower limit value Pengmin may be obtained by substituting the actual engine speed Nact into an expression representing the upper limit value and the lower limit value without using a map or a conversion table.
  • the hydraulic load request output Phydreq and the electrical load request output Pelcreq input to the control unit 60 are input to the block 60-8 which is a power distribution unit.
  • the battery voltage Vact input to the output condition calculation unit 60-9 of the control unit 60 is input to the block 60-2.
  • the current charging rate SOCact of the battery 58 is obtained from the input battery voltage Vact.
  • the obtained current charging rate SOCact is output to blocks 60-3, 60-4 and 60-7.
  • the charge rate SOC can be easily obtained by calculation from the measured battery voltage (capacitor terminal voltage).
  • the block 60-3 includes a maximum value of the discharge power that can be discharged (battery output upper limit value Pbatmax11) and a charge power that can be currently charged from the input current charge rate SOCact and a predetermined maximum charge / discharge current (constant current). Is obtained (battery output lower limit value Pbatmin11).
  • Pbatmax11 a maximum value of the discharge power that can be discharged
  • Pbatmin11 a charge power that can be currently charged from the input current charge rate SOCact and a predetermined maximum charge / discharge current (constant current). Is obtained (battery output lower limit value Pbatmin11).
  • FIG. 5 the maximum charge power [kW] and the maximum discharge power [kW] that can be charged and discharged with a constant current at the charge rate with respect to the charge rate SOC are shown.
  • a map or conversion table is stored.
  • the map shown in block 60-3 represents the power (charge / discharge maximum current ⁇ capacitor voltage) determined when a maximum charge / discharge current limited by the capacity of the converter or the capacitor flows at a certain charge rate SOC. Since the charging rate SOC is proportional to the square of the charge / discharge voltage (capacitor voltage), the maximum charge power and the maximum discharge power shown in the block 60-3 draw a parabola.
  • the block 60-3 refers to this map or conversion table, and allows the maximum charge power (battery output upper limit value Pbatmax11) and the maximum discharge power (at the current charge rate SOCact to be allowed under a constant current).
  • the battery output lower limit value Pbatmin11) is obtained.
  • the determined maximum discharge power (battery output upper limit value Pbatmax11) is output to block 60-5, and the determined maximum charge power (battery output lower limit value Pbatmin11) is output to block 60-6.
  • the block 60-4 determines the maximum value of the discharge power that can be discharged (battery output upper limit value Pbatmax12) and the maximum value of the charge power that can be charged from the current charge rate SOCact, the predetermined SOC lower limit value, and the SOC upper limit value.
  • a value (battery output lower limit value Pbatmin12) is obtained.
  • a map or conversion table to represent is stored.
  • the map shown in block 60-4 represents appropriate charge / discharge power at a certain charge rate SOC.
  • the lower limit value is a charging rate SOC set to allow a margin so that the charging rate does not become zero. If the charge rate SOC is reduced to zero or a value close to zero, it becomes impossible to discharge immediately when a discharge request is made. Therefore, it is desirable to maintain a state of being charged to some extent. Therefore, a lower limit value (for example, 30%) is provided for the charging rate SOC, and control is performed so that discharging cannot be performed when the charging rate SOC is equal to or lower than the lower limit value.
  • the maximum discharge power (the maximum power that can be discharged) is zero (that is, not discharged) at the lower limit value of the charge rate SOC, and there is a margin in the dischargeable power as the charge rate SCO increases. It is getting bigger.
  • the maximum discharge power increases linearly from the upper limit value of the charging rate SOC.
  • the maximum discharge power is not limited to the linear increase, and may be increased by drawing a parabola. You may set so that it may increase with a pattern.
  • the maximum charge power (maximum chargeable power) is zero (that is, not charged) in the upper limit value of the charge rate SOC, and there is a margin in the chargeable power as the charge rate SCO becomes smaller. Enlarge.
  • the maximum charging power increases linearly from the upper limit value of the charging rate SOC.
  • the maximum charging power is not limited to a linear increase, and may be increased by drawing a parabola. You may set so that it may increase with a pattern.
  • the block 60-4 refers to this map or conversion table to determine the maximum discharge power (battery output upper limit value Pbatmax12) and the maximum charge power (battery output lower limit value Pbatmin12) allowed at the current charge rate SOCact. Ask.
  • the obtained maximum discharge power (battery output upper limit value Pbatmax12) is output to block 60-5, and the obtained maximum charge power (battery output lower limit value Pbatmin12) is output to block 60-6.
  • the block 60-5 includes a power distribution unit with the smaller one of the battery output upper limit value Pbatmax11 supplied from the block 60-3 and the battery output upper limit value Pbatmax12 supplied from the block 60-4 as the battery output upper limit value Pbatmax1. Is output to block 60-8.
  • the block 60-5 functions as a minimum value selector.
  • the block 60-6 uses the larger one of the battery output lower limit value Pbatmin11 supplied from the block 60-3 and the battery output lower limit value Pbatmin12 supplied from the block 60-4 as the battery output lower limit value Pbatmin1.
  • the data is output to the block 60-8 which is a distribution unit.
  • the larger battery output lower limit value means the smaller negative value, that is, the value closer to zero. Thereby, it can protect reliably from the excessive charging / discharging exceeding the output capability of the battery 19.
  • the block 60-6 functions as a maximum value selector.
  • Block 60-7 obtains a battery output target value Pbattgt for making the charging rate SOC close to the target value from the input current charging rate SOCact and a predetermined SOC target value.
  • the block 60-7 stores a map or conversion table representing the battery output target value Pbattgt that approaches the SOC target value at the charging rate as shown in FIG.
  • the block 60-7 refers to this map or conversion table, and in order to set the charging rate SOC to the optimum target value, the charging power indicating how much charging should be performed or the discharging power indicating how much discharging should be performed Can be requested.
  • the output of the vertical axis in the map referenced by the block 60-7 is zero when neither charging nor discharging is performed, the charging side is negative, and the discharging side is positive.
  • the current charging rate SOCact is smaller than the target value, the battery 58 should be charged, and the target value of charging power, that is, the battery output target value Pbattgt is shown.
  • the battery output target value Pbattgt is a positive value, it represents the target discharge power, and when it is a negative value, it represents the target charge power.
  • the battery output target value Pbattgt obtained in block 60-7 is output to block 60-8 which is a power distribution unit.
  • the block 60-8 as the power distribution unit includes the engine output upper limit value Pengmax, the engine output lower limit value Pengmin, the battery output upper limit value Pbatmax1, and the battery output lower limit value as the battery output limit value.
  • the value Pbatmin1 and the battery output target value Pbatgtt are input.
  • the block 60-8 determines the hydraulic load actual output Phydout, the electric load actual output Pelcout, and the assist motor output command Pasmref based on these input values, and outputs them to each part of the controller 30.
  • the controller 30 controls the hydraulic pressure supplied to the hydraulic load 54 based on the actual hydraulic load output Phydout, controls the power supplied to the electric load 56 based on the actual electrical load Pelcout, and outputs the assist motor output command Pasmref. Based on this, the assist amount of the engine 50 by the assist motor 52 or the power generation amount by the assist motor 52 is controlled.
  • FIG. 6 is a flowchart of processing performed in the control unit 60.
  • step S1 the engine output upper limit value Pengmax and the engine output upper limit value Pengmin of the current engine 50 are determined from the actual engine speed Nact indicating the current speed of the engine 50 using a map or a conversion table. This process is performed by block 60-1. At this time, if the engine output upper limit value Pengmax and the engine output upper limit value Pengmin are set in a range where the fuel efficiency of the engine 50 is good in the map or the conversion table, the energy saving effect of the engine 50 can be obtained.
  • step S2 a battery output upper limit value Pbatmax1 and a battery output lower limit value Pbatmin1 are determined from the current battery voltage Vact. This process is performed by blocks 60-2 to 60-6.
  • the block 60-2 obtains the current charging rate SOCact by calculation from the current battery voltage Vact.
  • the block 60-3 determines the battery output upper limit value Pbatmax11 and the battery output lower limit value Pbatmin11 when the charging current and the discharging current are made constant as maximum values from the current charging rate SOCact using a map or a conversion table.
  • the block 60-4 determines the battery output upper limit value Pbatmax12 and the battery output lower limit value Pbatmin12 which are not lower than the SOC lower limit value and not higher than the SOC upper limit value from the current charging rate SOCact using the map or the conversion table. .
  • the block 60-5 determines the smaller one of the battery output upper limit value Pbatmax11 and the battery output upper limit value Pbatmax12 as the battery output upper limit value Pbatmax1.
  • the battery output upper limit value Pbatmax1 indicates the maximum discharge power
  • the battery output lower limit value Pbatmin1 indicates the maximum charge power.
  • the block 60-6 determines the larger one of the battery output lower limit value Pbatmin11 and the battery output lower limit value Pbatmin12 as the battery output lower limit value Pbatmin1.
  • step S3 the battery output target value Pbattgt is determined from the current charging rate SOCact. This process is performed by block 60-7.
  • step S4 the actual electric load output Pelcout is determined based on the limit values of the required output of the engine 50 and the battery 58.
  • the processing in step S4 is performed in block 60-8 which is a power distribution unit. This process will be described later.
  • step S5 the actual hydraulic load output Phydout is determined based on the limit values of the required output of the engine 50 and the battery 58.
  • the processing in step S5 is performed in block 60-8 which is a power distribution unit. This process will be described later.
  • step S6 the battery output Pbatout is determined based on the calculated outputs of the engine 50, the electric load 56, and the battery 58.
  • the battery output Pbatout is charging / discharging power to the battery 58.
  • the processing in step S6 is performed in block 60-8 which is a power distribution unit. This process will be described later.
  • step S7 an assist motor output command Pasmref is determined based on a comparison between the actual electric load output Pelcout and the battery output Pbatout.
  • the processing in step S6 is performed in block 60-8 which is a power distribution unit. This process will be described later.
  • step S7 When the process in step S7 is completed, the process in the control unit 60 is terminated.
  • the hydraulic load actual output Phydout, the electric load actual output Pelcout, and the assist motor output command Pasmref are determined.
  • FIG. 7 is a flowchart of the process in step S4.
  • an electric load output upper limit Pelcmax which is the maximum power that can be supplied to the electric load 56. That is, the electric load output upper limit Pelcmax is the maximum power that can be supplied during the power running operation of the electric load 56, and the power during the power running operation is set as a positive value.
  • the hydraulic load 54 does not function as a driving force source for the electric load 56, the hydraulic load output request Phydreq is not taken into consideration, and thus the electric load output upper limit Pelcmax is equal to the engine output upper limit Pengmax and the battery output. This is the sum of the upper limit value Pbatmax1.
  • FIG. 8 is a diagram showing a calculation model of the above-described electric load output upper limit Pelcmax.
  • step S4-2 the electric load request output Pelcreq and the electric load output upper limit Pelcmax are compared, and it is determined whether or not the electric load request output Pelcreq is less than or equal to the electric load output upper limit Pelcmax.
  • step S4-2 If it is determined in step S4-2 that the electrical load required output Pelcreq is greater than the electrical load output upper limit Pelcmax (No in step S4-2), the process proceeds to step S4-3.
  • step S4-3 the value of the electric load actual output Pelcout is made equal to the value of the electric load output upper limit Pelcmax, and then the process ends. That is, when the power required by the electric load 56 is larger than the maximum value of power that can be supplied by the assist motor 52 and the battery 58, only the maximum power that can be supplied by the assist motor 52 and the battery 58 is supplied to the electric load 56. And an upper limit is set for the power supplied to the electric load.
  • step S4-4 the maximum power during the regenerative operation of the electric load 56 is calculated.
  • the electric load output lower limit value Pelcmin is obtained by subtracting the hydraulic load output request Phydreq from the engine output lower limit value Pengmin and adding the battery output lower limit value Pbatmin1.
  • FIG. 9 is a diagram showing a calculation model of the electric load output lower limit value Pelcmin described above.
  • step S4-5 the electric load request output Pelcreq and the electric load output lower limit value Pelcmin are compared, and it is determined whether or not the electric load request output Pelcreq is greater than or equal to the electric load output lower limit value Pelcmin.
  • step S4-5 If it is determined in step S4-5 that the electrical load required output Pelcreq is smaller than the electrical load output lower limit value Pelcmin (No in step S4-5), the process proceeds to step S4-6.
  • step S4-6 the value of the electric load actual output Pelcout is made equal to the value of the electric load output lower limit value Pelcmin, and then the process ends. That is, when the power regenerated by the electric load 56 is greater than the sum of the maximum power that can be consumed by the assist motor 52 and the maximum power that can be stored in the battery 58, the power that is regenerated by the electric load 56 can be consumed by the assist motor 52.
  • An upper limit is set so as not to exceed the sum of the power and the maximum power that can be stored in the battery 58.
  • step S4-5 determines whether the electric load required output Pelcreq is equal to or greater than the electric load output lower limit value Pelccin (Yes in step S4-5).
  • step S4-7 the value of the actual electric load output Pelcout is made equal to the value of the electric load request Pelcreq, and then the process ends. That is, when the electric power regenerated by the electric load 56 is equal to or less than the sum of the maximum electric power that can be consumed by the assist motor 52 and the maximum electric power that can be stored in the battery 58, the electric power that is regenerated by the electric load 56 is set to be output as it is. Yes.
  • the electric load 56 can be stably controlled by considering the engine output upper and lower limit values Pengmax and Pengmin and the battery output upper and lower limit values Pbatmax and Pbatmin in calculating the value of the actual electric load output Pelcout. .
  • FIG. 10 is a flowchart of the process in step S5.
  • step S5-1 the hydraulic load output upper limit value Phydmax, which is the maximum power that can be supplied to the hydraulic load 54, is calculated.
  • the hydraulic load output upper limit value Phydmax is calculated by adding the battery output upper limit value Pbatmax to the engine output upper limit value Pengmax and subtracting the electric load actual output Pelcout.
  • FIG. 11 is a diagram showing a calculation model of the hydraulic load output upper limit value Phydmax.
  • the electric load actual output Pelcout has polarity, and takes positive and negative values, similarly to the electric load output upper and lower limit values Pelecmax and Pelecmin.
  • the electric load actual output Pelcout When the electric load actual output Pelcout is a positive value, it means that electric power is supplied during the power running operation of the electric load 56, and the power that can be supplied to the hydraulic load 54 is obtained by subtracting the electric power supplied to the electric load 56. .
  • the electric load actual output Pelcout when the electric load actual output Pelcout is a negative value, it means that regenerative power is supplied during the regenerative operation of the electric load 56, and the power that can be supplied to the hydraulic load 54 is obtained by adding the regenerative power from the electric load 56. It will be a thing. Since the negative value of the actual electric load output Pelcout is subtracted, it automatically becomes positive between negative and negative, and the regenerative power is added.
  • step S5-2 the hydraulic load request output Phydreq is compared with the hydraulic load output upper limit value Phydmax, and it is determined whether or not the hydraulic load request output Phydreq is less than or equal to the hydraulic load output upper limit value Phydmax.
  • step S5-2 When it is determined in step S5-2 that the hydraulic load request output Phydreq is not less than the hydraulic load output upper limit Phydmax, that is, the hydraulic load request output Phydreq is greater than the hydraulic load output upper limit Phydmax (No in step S5-2) ), The process proceeds to step S5-3.
  • step S5-3 the value of the hydraulic load actual output Phydout is made equal to the hydraulic load output upper limit Phydmax, and then the process ends. That is, when the power required by the hydraulic load 54 is greater than the sum of the maximum power that can be output from the engine 50 and the maximum power that can be output from the assist motor 52, the power that is supplied to the hydraulic load 54 can be the maximum power that can be output from the engine 50.
  • the upper limit is set as the sum of the maximum power that can be output from the assist motor 52.
  • step S5-2 when it is determined in step S5-2 that the hydraulic load request output Phydreq is equal to or less than the hydraulic load output upper limit Phydmax (Yes in step S5-2), the process proceeds to step S5-4.
  • step S5-4 the value of the hydraulic load output Phydout is made equal to the value of the hydraulic load request output Phydreq, and then the process ends. That is, when the power required by the hydraulic load 54 is equal to or less than the sum of the maximum power that can be output from the engine 50 and the maximum power that can be output from the assist motor 52, the power required by the hydraulic load 54 is set to be supplied as it is. ing.
  • the hydraulic load 54 can be stably controlled by considering the engine output upper limit value Pengmax and the battery output upper limit value Pbatmax1 in the calculation of the value of the hydraulic load actual output Phydout.
  • FIG. 12 is a flowchart of the process in step S6.
  • the battery output upper limit value Pbatmax2 indicates the maximum discharge power
  • the battery output lower limit value Pbatmin2 indicates the maximum charge power.
  • the battery control output upper limit value Pbatmax2 which is electric power that can be discharged by the battery 58, is calculated in the state of the output to the electric load 56 and the output to the hydraulic load 54 determined as described above.
  • the battery control output upper limit value Pbatmax2 is calculated by subtracting the engine output lower limit value Pengmin from the sum of the electric load actual output Pelcout and the hydraulic load output Phydout.
  • FIG. 13 is a diagram showing a calculation model of the battery control output upper limit value Pbatmax2.
  • the battery control output upper limit value Pbatmax2 is the sum of the power that can be consumed by the electric load 56 and the power that can be consumed by assisting the hydraulic system by the assist motor 52.
  • step S6-2 the battery output upper limit value Pbatmax1 determined in step S2 is compared with the battery control output upper limit value Pbatmax2, and it is determined whether or not the battery control output upper limit value Pbatmax2 is greater than or equal to the battery output upper limit value Pbatmax1. judge.
  • step S6-2 If it is determined in step S6-2 that the battery control output upper limit value Pbatmax2 is equal to or greater than the battery output upper limit value Pbatmax1 (Yes in step S6-2), the process proceeds to step S6-3. In step S6-3, the battery output upper limit value Pbatmax is made equal to the battery output upper limit value Pbatmax1. Thereafter, the process proceeds to step S6-5.
  • step S6-2 when it is determined in step S6-2 that the battery control output upper limit value Pbatmax2 is not equal to or greater than the battery output upper limit value Pbatmax1, that is, the battery control output upper limit value Pbatmax2 is smaller than the battery output upper limit value Pbatmax1 (in step S6-2). No), the process proceeds to step S6-4. In step S6-4, the value of the battery output upper limit value Pbatmax is made equal to the value of the battery control output upper limit value Pbatmax2. Thereafter, the process proceeds to step S6-5.
  • step S6-5 the battery target output Pbattgt is compared with the battery output upper limit value Pbatmax, and it is determined whether or not the battery target output Pbatgtgt is equal to or less than the battery output upper limit value Pbatmax.
  • step S6-5 If it is determined in step S6-5 that the battery target output Pbattgt is not less than or equal to the battery output upper limit value Pbatmax, that is, the battery target output Pbatttgt is greater than the battery output upper limit value Pbatmax (No in step S6-5), the process proceeds to step S6. Proceed to -6. In step S6-6, the value of the battery output Pbatout is made equal to the value of the battery output upper limit value Pbatmax, and then the process ends.
  • the battery output upper and lower limit values Pbatmax2 and Pbatmin2 are obtained based on the actual electric load output Pelcout and the actual hydraulic load output Phydout. Thereby, since the maximum value of the output (charge / discharge power) of the battery 58 according to the actual load request can be obtained, the battery 58 can be charged / discharged corresponding to the actual work situation.
  • the battery output upper and lower limit values obtained based on the electric load actual output Pelcout and the hydraulic load actual output Phydout are compared with the maximum power that can be charged and discharged according to the current state of charge of the battery 58, Determine the battery requirement limit. Thereby, it is possible to prevent an excessive load from being applied to the battery 58.
  • the battery request limit value and the battery target output are compared so that the battery output Pbatout of the battery 58 falls within the range of the battery request limit value, and when the battery target output is outside the range of the battery request limit value, The battery target output is corrected. Thereby, it is possible to more reliably prevent an excessive load from being applied to the battery 58.
  • FIG. 14 is a graph showing the value of the battery output Pbatout determined by the process of step S6-6 in a graph showing the relationship between the battery charge rate (SOC) and the battery output.
  • the graph of FIG. 14 shows the battery output upper limit value Pbatmax1 determined by the block 60-5 shown in FIG.
  • the battery output upper limit value Pbatmax1 is a smaller value of the battery output upper limit value Pbatmax11 and the battery output upper limit value Pbatmax12, and corresponds to a portion where a two-dot chain line is drawn in the figure.
  • the graph of FIG. 14 also shows Pbatmin1 determined in block 60-6 shown in FIG.
  • the battery output lower limit value Pbatmin1 is a larger value (closer to zero) of the battery output lower limit value Pbatmin11 and the battery output lower limit value Pbatmin12, and corresponds to a portion where a two-dot chain line is drawn in the figure.
  • Actual battery output Pbatout is determined so as to enter a region below Pbatmax1 indicated by a two-dot chain line on the plus side indicating discharge. On the other hand, the actual battery output Pbatout is determined so as to enter the region above Pbatmin1 indicated by a two-dot chain line on the minus side indicating charging.
  • the battery output target value Pbattgt referred to in the block 60-7 is also shown.
  • the current charging rate of the battery 58 In consideration of SOCact, the actual discharge power or charge power of the battery 58 is determined as the battery output Pbatout.
  • step S6-6 since the battery target output Pbattgt at the current charging rate SOCact of the battery 58 exceeds the battery output control upper limit value Pbatmax, the target discharge power is the upper limit of the discharge power. The value is exceeded. In this case, the battery target output Pbatgt should not be set as the battery output Pbatout. Therefore, the actual battery output Pbatout is set to the battery output control upper limit value Pbatmax.
  • step S6-2 and step S6-4 described above since the battery control output upper limit value Pbatmax2 is smaller than the battery output upper limit value Pbatmax1, the value of the battery output upper limit value Pbatmax is equal to the value of the battery control output upper limit value Pbatmax2. Is set.
  • the value of the battery output upper limit value Pbatmax that is, the value of the battery control output upper limit value Pbatmax2 is finally set as the actual battery output Pbatout. That is, the battery request limit value is calculated based on the outputs of the engine 50, the electric load 56, and the battery 58. Then, the battery target output Pbattgt is compared with the calculated battery request limit value, and replaced with the battery supply limit value in the case shown in FIG. At this time, the target value exceeding the capacity of the battery 58 can be prevented from being calculated by comparing the SOC and the limit value of the battery 58 corresponding to the SOC so as not to exceed the output capacity of the battery 58. .
  • step S6-5 if it is determined in step S6-5 that the battery target output Pbatgtt is equal to or less than the battery output upper limit value Pbatmax (Yes in step S6-5), the process proceeds to step S6-7.
  • a battery control output lower limit value Pbatmin2 which is electric power that can be charged by the battery 58, is calculated in the state of the output to the electric load 56 and the output to the hydraulic load 54 determined as described above.
  • the battery control output lower limit value Pbatmin2 is calculated by subtracting the engine output upper limit value Pengmax from the sum of the electric load actual output Pelcout and the hydraulic load output Phydout.
  • FIG. 15 is a diagram showing a calculation model of the battery control output lower limit value Pbatmin2.
  • the battery control output lower limit Pbatmin2 is the sum of the regenerative power of the electric load 56 and the power generated by the assist motor 52.
  • step S6-8 the battery output lower limit value Pbatmin1 is compared with the battery control output lower limit value Pbatmin2, and it is determined whether or not the battery control output lower limit value Pbatmin2 is less than or equal to the battery output lower limit value Pbatmin1.
  • step S6-8 If it is determined in step S6-8 that the battery control output lower limit value Pbatmin2 is less than or equal to the battery output lower limit value Pbatmin1 (Yes in step S6-8), the process proceeds to step S6-9. In step S6-9, the value of the battery output lower limit value Pbatmin is made equal to the value of the battery output lower limit value Pbatmin1. Thereafter, the process proceeds to step S6-11.
  • step S6-8 when it is determined in step S6-8 that the battery control output lower limit value Pbatmin2 is not less than or equal to the battery output lower limit value Pbatmin1, that is, the battery control output lower limit value Pbatmin2 is greater than the battery output lower limit value Pbatmin1 (No in step S6-8). ), The process proceeds to step S6-10. In step S6-10, the value of the battery output lower limit value Pbatmin is made equal to the value of the battery control output lower limit value Pbatmin2. Thereafter, the process proceeds to step S6-11.
  • step S6-11 the battery target output Pbattgt is compared with the battery output lower limit value Pbatmin to determine whether or not the battery target output Pbatttgt is equal to or greater than the battery output lower limit value Pbatmin.
  • step S6-11 If it is determined in step S6-11 that the battery target output Pbatgt is greater than or equal to the battery output lower limit value Pbatmin (Yes in step S6-11), the process proceeds to step S6-12.
  • step S6-12 the value of the battery output Pbatout is made equal to the value of the battery target output Pbatgtgt, and then the process is terminated.
  • FIG. 16 is a graph showing the value of the battery output Pbatout determined by the process of step S6-12 in a graph showing the relationship between the battery charge rate (SOC) and the battery output.
  • the battery output upper limit value Pbatmax1 is equal to or less than the battery control output upper limit value Pbatmax2, so that the value of the battery control output upper limit value Pbatmax1 is changed to the battery level by the processing of step S6-2 and step S6-3. It is set as the output upper limit value Pbatmax.
  • the battery control output lower limit value Pbatmin2 is equal to or less than the battery output lower limit value Pbatmin1
  • the value of the battery output lower limit value Pbatmin1 is set as the battery output lower limit value Pbatmin by the processes in steps S6-8 and S6-9.
  • the battery target output Pbattgt at the current charging rate SOCact of the battery 58 is not less than the battery output lower limit Pbatmin and not more than the battery output upper limit value Pbatmax, the battery target output Pbattgt can be set as the actual battery output Pbatout. is there. Therefore, the value of the battery target output Pbattgt is set as the battery output Pbatout by the process of step S6-12.
  • step S6-11 when it is determined in step S6-11 that the battery target output Pbatgt is not equal to or greater than the battery output lower limit value Pbatmin, that is, the battery target output Pbatgtgt is smaller than the battery output lower limit value Pbatmin (No in step S6-11), the process is performed. Proceed to step S6-13. In step S6-13, the value of the battery output Pbatout is made equal to the value of the battery output lower limit value Pbatmin, and then the process ends.
  • FIG. 17 is a graph showing the value of the battery output Pbatout determined by the process of step S6-12 in a graph showing the relationship between the battery charge rate (SOC) and the battery output.
  • the value of the battery output lower limit value Pbatmin1 is changed to the battery output lower limit value by the processing in steps S6-8 and S6-9.
  • Pbatmin the battery target output Pbattgt at the current charging rate SOCact of the battery 58 is less than the battery output lower limit Pbatmin, the target charging power exceeds the maximum charging power of the battery, and the battery target output Pbattgt is the actual battery output. Should not be set as Pbatout. Therefore, the value of the battery output lower limit value Pbatmin, that is, the value of the battery output lower limit value Pbatmin1 is set as the battery output Pbatout by the process of step S6-13.
  • the battery output upper and lower limit values Pbatmax2 and Pbatmin2 are obtained based on the actual electric load output Pelcout and the actual hydraulic load output Phydout. Thereby, since the maximum value of the output (charge / discharge power) of the battery 58 according to the actual load request can be obtained, the battery 58 can be charged / discharged corresponding to the actual work situation.
  • the battery output upper and lower limit values obtained based on the electric load actual output Pelcout and the hydraulic load actual output Phydout are compared with the maximum power that can be charged and discharged according to the current state of charge of the battery 58, Determine the battery requirement limit. Thereby, it is possible to prevent an excessive load from being applied to the battery 58.
  • the battery request limit value and the battery target output are compared so that the battery output Pbatout of the battery 58 falls within the range of the battery request limit value, and when the battery target output is outside the range of the battery request limit value, The battery target output is corrected. Thereby, it is possible to more reliably prevent an excessive load from being applied to the battery 58.
  • FIG. 18 is a flowchart of the process in step S7.
  • step S7-1 an assist motor output command Pasmref for instructing the operation of the assist motor 52 is calculated, and then the process ends.
  • the assist motor output command Pasmref is calculated by subtracting the electric load actual output Pelcout from the battery output Pbatout.
  • FIG. 19 is a diagram showing a calculation model of the assist motor output command Pasmref.
  • the output of the assist motor 52 corresponds to the power obtained by subtracting the power consumed by the electric load 56 from the power discharged from the battery 58.
  • the output of the electric load 56 has polarity, and the polarity is positive when the electric load 56 actually consumes power.
  • the electric load output which is the power consumed by the electric load 56
  • the assist motor 52 functions as an electric motor.
  • the value obtained by subtracting the electrical load output which is the power consumed by the electrical load 56, from the power discharged from the battery 58
  • the power from the engine 50 is supplied to the assist motor 52, and the assist motor 52 generates power. Functions as a machine.
  • the assist motor 52 generates a negative amount of electric power, and the electric power is supplied to the electric load 56.
  • the assist motor 52 functions as an electric motor to assist the engine 50. That is, the assist motor 52 is controlled based on an electrical comparison between the actual electric load Pelcout, which is the output setting value of the electric drive unit, and the battery output Pbatout, which is the capacitor output setting value.
  • a hybrid power shovel that is an example of a hybrid construction machine to which the present embodiment is applied includes a hydraulic generator, a motor generator, a capacitor, an electric drive unit, and a control unit.
  • the hydraulic pressure generator corresponds to the main pump 14 that is a hydraulic motor, converts the output of the engine 50 into hydraulic pressure, and supplies the hydraulic pressure to the hydraulic drive unit.
  • the motor generator 12 corresponds to the assist motor 52, is connected to the engine 50, and functions as both the motor and the generator.
  • the accumulator corresponds to the battery 19 (or 58) and supplies electric power to the motor generator 12 to function as an electric motor.
  • the electric drive unit is driven by electric power from the electric storage device and the motor generator, generates regenerative electric power, and supplies it to at least one of the electric storage device and the motor generator.
  • the control unit 60 controls the operation of the motor generator 12.
  • the control unit 60 includes a power distribution unit 60-8 for controlling the operation and output of the motor generator 12.
  • Power distribution unit 60-8 is determined based on the storage device output setting values (battery output upper limit value Pbatmax1 and battery output lower limit value Pbatmin1) determined based on the charging rate (SOC) of the storage battery and the engine speed.
  • Engine output set values engine output upper limit value Pengmax and engine output lower limit value Pengmin
  • hydraulic load request value hydraulic load request output Phydreq
  • electric load request output Pelcreq electric load request output
  • the power distribution unit 60-8 determines the electric power to be supplied to the electric drive unit, and outputs it as an electric load actual output value (electric load actual output Pelcout). Further, the power distribution unit 60-8 determines an output to be supplied to the hydraulic drive unit, and outputs it as a hydraulic load actual output value (hydraulic load actual output Phydout). Further, the power distribution unit 60-8 determines an output command (assist motor output command Pasmref) based on the storage rate (SOC) of the battery.
  • SOC storage rate
  • the operation and output of the motor generator can be controlled in consideration of the capacitor output set value, the electric load request value, the engine output set value, and the hydraulic load request value.
  • a certain engine and battery can be used in an appropriate output range.
  • the regenerative electric power from an electric load can be used efficiently, and the charging rate (SOC) of the battery can be efficiently maintained near the target value.
  • SOC charging rate
  • a hybrid excavator has been described as an example of a hybrid construction machine.
  • the present invention can also be applied to a construction machine such as a truck or a wheel loader.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Operation Control Of Excavators (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

 ハイブリッド式建設機械において、制御部(60)は動力分配部(60-8)と出力条件算出部(60-9)とを有する。出力条件算出部(60-9)は、蓄電器(58)の充電率に基づいて決定される蓄電器出力設定値と、エンジン(50)の回転数に基づいて決定されるエンジン出力設定値と、油圧発生機が要求する動力を示す油圧負荷要求値と、電気駆動部が要求する電力を示す電気負荷要求値とを含む出力条件を算出する。動力分配部(60-8)は、算出された出力条件に基づいて電気駆動部と油圧駆動部の出力値を決定する。

Description

ハイブリッド式建設機械
 本発明は建設機械に係り、特に2つの動力源を併用して効率的に作業を行うハイブリッド式建設機械に関する。
 内燃機関の動力と電動機の動力を併用して効率的に動作するハイブリッド式の作業機械が開発され用いられるようになっている。ハイブリッド式の作業機械として、いわゆるパラレル方式の駆動形態をとるものが知られている。
 パラレル方式の駆動形態では、油圧ポンプと、発電機作用と電動機作用を行なう動力機とが、共通の動力源としての内燃機関(エンジン)にパラレルに接続される。油圧ポンプによって油圧アクチュエータが駆動されるとともに、動力機の発電機作用によって蓄電装置に充電が行われる。この蓄電装置からの電力により動力機を電動機として動作させてエンジンをアシストする。なお、動力機としては、一台で発電機作用と電動機作用の双方を行なう兼用機(発電機兼電動機)を用いる場合と、別々の発電機と電動機を併用する場合とがある。
 このようなハイブリッド式の作業機械によると、エンジンの負荷を軽減し、エンジンを高効率範囲で運転することによって省エネルギーを実現することができる。しかし、従来のハイブリッド式の作業機械は、以下のような問題を有している。
 リチウムイオン蓄電器等のバッテリ(二次電池)やキャパシタ(電気二重層コンデンサ)等の蓄電装置の充放電特性は、その充電量に依存しており、充電量が低くなるほど最大充電電力は大きく、最大放電電力は小さくなる。そこで、このような蓄電装置の充電量に関係なくエンジンと蓄電装置のパワー配分を決めているため、負荷状況によっては蓄電装置の充電量が少な過ぎる、あるいは多すぎる状態となる。この結果、蓄電装置の能力を有効に利用できないとともに、蓄電装置の劣化を招くことがある。
 このような問題を解決するために、蓄電装置の充電量に応じてエンジンと動力機のパワー配分を決め、蓄電装置の充電量を適正範囲に保つことができる作業機械の動力源装置が提案されている(例えば、特許文献1参照。)この動力源装置では、油圧ポンプと発電機兼電動機とを共通の動力源としてのエンジンにパラレルに接続し、発電機兼電動機の発電機作用によって蓄電装置としてのバッテリを充電する。また、バッテリの放電力により発電機兼電動機を駆動して電動機作用を行なう。そして、アクチュエータ要求パワーと、バッテリ充電量が一定範囲内に保たれるようにバッテリ充電量に応じて設定されるバッテリの充電パワー及び放電パワーと、設定されたエンジンパワーとに基づいて、エンジンと発電機兼電動機のパワー配分を決定する。
特開2005-237178号公報
 上述の特許文献1に開示された技術では、建設機械の構成部品が要求する電気負荷が考慮されていないため、電気負荷で発生させることのできる回生電力を有効に発生させることができない。また、駆動機構の一部を電動化してバッテリからの電力により駆動した場合、電動機の出力が考慮されていないため、バッテリの充電率(SOC:State of Charge)を適正な範囲に維持することができなくなるおそれがある。さらに、エンジンの出力制限が設けられていないため、エンジンの負荷を適正に制御することができず、エンジンが過負荷になりエンストを起こして連続運転ができなくなるおそれがある。
 本発明は上述の問題に鑑みなされたものであり、動力源であるエンジンとバッテリとを適正な出力範囲で使用することのできるハイブリッド式建設機械を提供することを目的とする。
 上述の目的を達成するために、本発明によれば、エンジンの出力を油圧に変換し油圧駆動部に供給する油圧発生機と該エンジンに接続され、電動機及び発電機の両方として機能する電動発電機と、該電動発電機に電力を供給して電動機として機能させる蓄電器と、該蓄電器からの電力により駆動され、且つ回生電力を発生して該蓄電器に供給する電気駆動部と、該電動発電機の動作を制御する制御部とを有するハイブリッド式建設機械であって、該制御部は、該エンジンと該蓄電器との出力条件を算出する出力条件算出部と、該出力条件算出部で算出された出力条件に基づいて、該電気駆動部と該油圧駆動部の出力値を決定する動力分配部とを備えることを特徴とするハイブリッド式建設機械が提供される。
 本発明によるハイブリッド式建設機械において、該動力分配部は、該蓄電器の充電率に基づいて決定される蓄電器出力設定値と、該エンジンの回転数に基づいて決定されるエンジン出力設定値と、該油圧発生機が要求する動力を示す油圧負荷要求値と、該電気駆動部が要求する電力を示す電気負荷要求値と、に基づいて該電動発電機の動作及び出力を制御するための出力指令を生成して出力することとしてもよい。また、該動力分配部は、該電気駆動部を力行運転する電力及び前記電気駆動部の回生運転により発生する回生電力を、該エンジン及び該蓄電器の出力限界値に基づいて決定することとしてもよい。さらに、該動力分配部は、該油圧駆動部に供給する出力を、該エンジン及び該蓄電器の出力限界値に基づいて決定することとしてもよい。また、該蓄電器の出力指令は、該エンジン、該電気駆動部、及び該蓄電器のそれぞれの出力に基づいて算出されたバッテリ要求限界値とバッテリ目標出力とを比較して決定されることとしてもよい。また、該電動発電機の出力は、該蓄電器の出力指令と該電気駆動部に供給する電力又は該電気駆動部から出力される電力とを比較して決定されることとしてもよい。
 本発明によれば、出力条件に基づいて電動発電機の動作及び出力を制御することができるため、動力源であるエンジンと蓄電器とを適正な出力範囲で使用することができる。
ハイブリッド式パワーショベルの側面図である。 図1に示すパワーショベルの駆動系の構成を表すブロック図である。 図1に示すパワーショベルの動力系をモデル化して示す図である。 電力(動力)の移動の方向性を出力極性としてとらえた極性を示す図である。 本発明の一実施形態による制御を行うためのコントローラに含まれる制御部の機能ブロック図である。 図5に示す駆動制御部において行われる処理のフローチャートである。 図6に示すステップS4における処理のフローチャートである。 電気負荷出力上限値Pelcmaxの算出モデルを示す図である。 電気負荷出力下限値Pelcmineの算出モデルを示す図である。 図6に示すステップS5の処理のフローチャートである。 油圧負荷出力上限値Phydmaxの算出モデルを示す図である。 図6に示すステップS6の処理のフローチャートである。 バッテリ制御出力上限値Pbatmax2の算出モデルを示す図である。 バッテリ出力Pbatoutの値をバッテリ充電率(SOC)とバッテリ出力との関係を示すグラフ中に示す図である。 バッテリ制御出力下限値Pbatmin2の算出モデルを示す図である。 バッテリ出力Pbatoutの値をバッテリ充電率(SOC)とバッテリ出力との関係を示すグラフ中に示す図である。 バッテリ出力Pbatoutの値をバッテリ充電率(SOC)とバッテリ出力との関係を示すグラフ中に示す図である。 図6に示すステップS7の処理のフローチャートである。 アシストモータ出力指令Pasmrefの算出モデルを示す図である。
符号の説明
 1 下部走行体
 1A、1B 走行機構
 2 旋回機構
 3 上部旋回体
 4 ブーム
 5 アーム
 6 バケット
 7 ブームシリンダ
 8 アームシリンダ
 9 バケットシリンダ
 10 キャビン
 11 エンジン
 12 電動発電機
 13 減速機
 14 メインポンプ
 15 パイロットポンプ
 16 高圧油圧ライン
 17 コントロールバルブ
 18 インバータ
 19 バッテリ
 20 インバータ
 21 旋回用電動機
 23 メカニカルブレーキ
 24 旋回減速機
 25 パイロットライン
 26 操作装置
 26A、26B レバー
 26C ペダル
 27 油圧ライン
 28 油圧ライン
 29 圧力センサ
 30 コントローラ
 31 速度指令変換部
 32 駆動制御装置
 40 旋回駆動制御装置
 50 エンジン
 52 アシストモータ
 54 油圧負荷
 56 電気負荷
 58 バッテリ
 60 制御部
 60-1~60-7 ブロック
 60-8 ブロック(動力分配部)
 60-9 出力条件算出部
 次に、本発明の実施形態について図面を参照しながら説明する。
 まず、本発明が適用されるハイブリッド式建設機械の一例としてハイブリッド式パワーショベルについて説明する。
 図1はハイブリッド式パワーショベルの側面図である。パワーショベルの下部走行体1には、旋回機構2を介して上部旋回体3が搭載されている。上部旋回体3からブーム4が延在し、ブーム4の先端にアーム5が接続される。さらに、アーム5の先端にバケット6が接続される。ブーム4、アーム5及びバケット6は、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9によりそれぞれ油圧駆動される。また、上部旋回体3には、キャビン10及び動力源(図示せず)が搭載される。
 図2は、図1に示すパワーショベルの駆動系の構成を表すブロック図である。図2において、機械的動力系は二重線、高圧油圧ラインは実線、パイロットラインは破線、電気駆動・制御系は一点鎖線でそれぞれ示されている。
 機械式駆動部としてのエンジン11と、アシスト駆動部としての電動発電機12は、ともに増力機としての減速機13の入力軸に接続されている。減速機13の出力軸には、メインポンプ14及びパイロットポンプ15が接続されている。メインポンプ14には、高圧油圧ライン16を介してコントロールバルブ17が接続されている。
 コントロールバルブ17は、油圧系の制御を行う制御装置である。コントロールバルブ17には、下部走行体1用の油圧モータ1A(右用)及び1B(左用)、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9が高圧油圧ラインを介して接続される。
 電動発電機12には、インバータ18を介して蓄電器としてのバッテリ19が接続されている。バッテリ19には、インバータ20を介して旋回用電動機21が接続されている。旋回用電動機21はパワーショベルにおける電気負荷である。旋回用電動機21の回転軸21Aには、レゾルバ22、メカニカルブレーキ23、及び旋回減速機24が接続される。パイロットポンプ15には、パイロットライン25を介して操作装置26が接続される。操作装置26には、油圧ライン27及び28を介して、コントロールバルブ17及びレバー操作検出部としての圧力センサ29がそれぞれ接続される。圧力センサ29には、電気系の駆動制御を行うコントローラ30が接続されている。
 以上の構成を有するパワーショベルは、エンジン11、電動発電機12、及び旋回用電動機21を動力源とするハイブリッド型の建設機械である。これらの動力源は、図1に示す上部旋回体3に搭載される。以下、各部について説明する。
 エンジン11は、例えば、ディーゼルエンジンで構成される内燃機関であり、その出力軸は減速機13の一方の入力軸に接続される。エンジン11は、建設機械の運転中は常時運転される。
 電動発電機12は、力行運転及び回生運転の双方が可能な電動機であればよい。ここでは、電動発電機12として、インバータ20によって交流駆動される電動発電機を示す。この電動発電機12は、例えば、磁石がロータ内部に埋め込まれたIPM(Interior Permanent Magnet)モータで構成することができる。電動発電機12の回転軸は減速機13の他方の入力軸に接続される。
 減速機13は、2つの入力軸と1つの出力軸を有する。2つの入力軸には、エンジン11の駆動軸と電動発電機12の駆動軸がそれぞれ接続される。また、出力軸にはメインポンプ14の駆動軸が接続される。エンジン11の負荷が大きい場合には、電動発電機12が力行運転を行い、電動発電機12の駆動力が減速機13の出力軸を経てメインポンプ14に伝達される。これによりエンジン11の駆動がアシストされる。一方、エンジン11の負荷が小さい場合は、エンジン11の駆動力が減速機13を経て電動発電機12に伝達されることにより、電動発電機12が回生運転による発電を行う。電動発電機12の力行運転と回生運転の切り替えは、コントローラ30により、エンジン11の負荷等に応じて行われる。
 メインポンプ14は、コントロールバルブ17に供給するための油圧を発生する油圧ポンプである。メインポンプ14で発生した油圧は、コントロールバルブ17を介して油圧負荷である油圧モータ1A、1B、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9の各々を駆動するために供給される。パイロットポンプ15は、油圧操作系に必要なパイロット圧を発生するポンプである。
 コントロールバルブ17は、高圧油圧ラインを介して接続される下部走行体1用の油圧モータ1A、1B、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9の各々に供給する油圧を運転者の操作入力に応じて制御することにより、これらを油圧駆動制御する油圧制御装置である。
 インバータ18は、上述の如く電動発電機12とバッテリ19との間に設けられ、コントローラ30からの指令に基づき、電動発電機12の運転制御を行う。これにより、インバータ18が電動発電機12の力行を運転制御している際には、必要な電力をバッテリ19から電動発電機12に供給する。また、電動発電機12の回生を運転制御している際には、電動発電機12により発電された電力をバッテリ19に充電する。
 蓄電器であるバッテリ19は、インバータ18とインバータ20との間に配設されている。これにより、電動発電機12と旋回用電動機21の少なくともどちらか一方が力行運転を行っている際には、力行運転に必要な電力を供給するとともに、また、少なくともどちらか一方が回生運転を行っている際には、回生運転によって発生した回生電力を電気エネルギーとして蓄積するための電源である。
 インバータ20は、上述の如く旋回用電動機21とバッテリ19との間に設けられ、コントローラ30からの指令に基づき、旋回用電動機21に対して運転制御を行う。これにより、旋回用電動機21が力行運転している際には、必要な電力がバッテリ19から旋回用電動機21に供給される。また、旋回用電動機21が回生運転をしている際には、旋回用電動機21により発電された電力がバッテリ19に充電される。
 旋回用電動機21は、力行運転及び回生運転の双方が可能な電動機であればよく、上部旋回体3の旋回機構2を駆動するために設けられている。力行運転の際には、旋回用電動機21の回転駆動力の回転力が減速機24にて増幅され、上部旋回体3は加減速制御されながら回転運動を行う。また、上部旋回体3の慣性回転により、減速機24にて回転数が増大されて旋回用電動機21に伝達され、回生電力を発生させることができる。ここでは、旋回用電動機21として、PWM(Pulse Width Modulation)制御信号によりインバータ20によって交流駆動される電動機を示す。この旋回用電動機21は、例えば、磁石埋込型のIPMモータで構成することができる。これにより、より大きな誘導起電力を発生させることができるので、回生時に旋回用電動機21にて発電される電力を増大させることができる。
 なお、バッテリ19の充放電制御は、バッテリ19の充電状態、電動発電機12の運転状態(力行運転又は回生運転)、旋回用電動機21の運転状態(力行運転又は回生運転)に基づき、コントローラ30によって行われる。
 レゾルバ22は、旋回用電動機21の回転軸21Aの回転位置及び回転角度を検出するセンサである。レゾルバ22は、旋回用電動機21と機械的に連結することで旋回用電動機21の回転前の回転軸21Aの回転位置と、左回転又は右回転した後の回転位置との差を検出することにより、回転軸21Aの回転角度及び回転方向を検出する。旋回用電動機21の回転軸21Aの回転角度を検出することにより、旋回機構2の回転角度及び回転方向が導出される。
 メカニカルブレーキ23は、機械的な制動力を発生させる制動装置であり、旋回用電動機21の回転軸21Aを機械的に停止させる。このメカニカルブレーキ23は、電磁式スイッチにより制動/解除が切り替えられる。この切り替えは、コントローラ30によって行われる。
 旋回減速機24は、旋回用電動機21の回転軸21Aの回転速度を減速して旋回機構2に機械的に伝達する減速機である。これにより、力行運転の際には、旋回用電動機21の回転力を増力させ、より大きな回転力として旋回体へ伝達することができる。これとは逆に、回生運転の際には、旋回体で発生した回転数を増加させ、より多くの回転動作を旋回用電動機21に発生させることができる。
 旋回機構2は、旋回用電動機21のメカニカルブレーキ23が解除された状態で旋回可能となり、これにより、上部旋回体3が左方向又は右方向に旋回される。
 操作装置26は、パワーショベルの運転者が、旋回用電動機21、下部走行体1、ブーム4、アーム5、及びバケット6を操作するための入力装置であり、レバー26A及び26Bとペダル26Cを含む。レバー26Aは、旋回用電動機21及びアーム5を操作するためのレバーであり、上部旋回体3の運転席近傍に設けられる。レバー26Bは、ブーム4及びバケット6を操作するためのレバーであり、運転席近傍に設けられる。また、ペダル26Cは、下部走行体1を操作するための一対のペダルであり、運転席の足下に設けられる。
 操作装置26は、パイロットライン25を通じて供給される油圧(1次側の油圧)を運転者の操作量に応じた油圧(2次側の油圧)に変換して出力する。操作装置26から出力される2次側の油圧は、油圧ライン27を通じてコントロールバルブ17に供給されるとともに、圧力センサ29によって検出される。
 レバー26A及び26Bとペダル26Cの各々が操作されると、油圧ライン27を通じてコントロールバルブ17が駆動され、これにより、油圧モータ1A、1B、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9内の油圧が制御されることによって、下部走行体1、ブーム4、アーム5、及びバケット6が駆動される。
 なお、油圧ライン27は、油圧モータ1A及び1Bを操作するために1本ずつ(すなわち合計2本)、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9をそれぞれ操作するために2本ずつ(すなわち合計6本)設けられるため、実際には全部で8本あるが、説明の便宜上、1本にまとめて表す。
 レバー操作検出部としての圧力センサ29では、レバー26Aの操作による、油圧ライン28内の油圧の変化が圧力センサ29で検出される。圧力センサ29は、油圧ライン28内の油圧を表す電気信号を出力する。この電気信号は、コントローラ30に入力される。これにより、レバー26Aの操作量を的確に把握することができる。また、本実施の形態では、レバー操作検出部として圧力センサを用いたが、レバー26Aの操作量をそのまま電気信号で読み取るセンサを用いてもよい。
 コントローラ30は、パワーショベルの駆動制御を行う制御装置であり、速度指令変換部31、駆動制御装置32、及び旋回駆動制御装置40を含む。コントローラ30は、CPU(Central Processing Unit)及び内部メモリを含む演算処理装置で構成される。速度指令変換部31、駆動制御装置32、及び旋回駆動制御装置40は、コントローラ30のCPUが内部メモリに格納された駆動制御用のプログラムを実行することにより実現される。
 速度指令変換部31は、圧力センサ29から入力される信号を速度指令に変換する演算処理部である。これにより、レバー26Aの操作量は、旋回用電動機21を回転駆動させるための速度指令(rad/s)に変換される。この速度指令は、駆動制御装置32及び旋回駆動制御装置40に入力される。
 次に、本発明の一実施形態によるハイブリッド式建設機械の駆動制御について、上述のパワーショベルの駆動制御を例にとって説明する。
 図3は上述のパワーショベルの動力系をモデル化して示す図である。図3のモデル図において、エンジン50は上述のエンジン11に相当し、アシストモータ52は電動機及び発電機の両方の機能を有する電動発電機12に相当する。油圧負荷54は油圧により駆動される構成部品に相当し、上述のブームシリンダ7、アームシリンダ8、パケットシリンダ9、油圧モータ1A,1Bを含む。ただし、油圧を発生させるための負荷として考えた場合、油圧負荷54は、油圧を発生させる油圧ポンプとしてのメインポンプ14に相当する。電気負荷56は電動モータや電動アクチュエータ等のように電力で駆動される構成部品に相当し、上述の旋回用電動機21を含む。バッテリ58は蓄電器であり、上述のバッテリ19に相当する。本実施形態ではバッテリ58としてキャパシタ(電気二重層コンデンサ)を用いることとする。
 油圧負荷54には、油圧を発生する油圧ポンプ(上述のメインポンプ14)で発生した油圧が供給される。エンジン50はこの油圧ポンプに動力を供給して駆動する。すなわち、エンジン50が発生した動力は油圧ポンプにより油圧に変換されて油圧負荷54に供給される。
 一方、油圧ポンプにはアシストモータ52も接続されており、アシストモータ52で発生した動力を油圧ポンプに供給して駆動することができる。すなわち、アシストモータ52に供給された電力はアシストモータ52により動力に変換され、その動力が油圧モータにより油圧に変換されて油圧負荷54に供給される。この際、アシストモータは電動機として動作する。
 電気負荷56にはバッテリ58から電力が供給され駆動される。電気負荷56が駆動されている場合を力行運転と称する。電気負荷56は、例えば電動機兼発電機にように回生電力を発生することができるもので、発生した回生電力はバッテリ58に供給されて蓄積されるか、あるいはアシストモータ52に供給されてアシストモータ52を駆動する電力となる。
 バッテリ58は、上述のように電気負荷56からの回生電力により充電される。また、アシストモータ52がエンジン50からの動力を受けて発電機として機能した場合、アシストモータ52が発生した電力をバッテリ58に供給して充電することもできる。アシストモータ52が発生した電力は、電気負荷56に直接供給して電気負荷56を駆動することもできる。
 以上のような構成において、電力に関連する部分を見ると、電力(動力)の移動に方向性があることがわかる。この方向性を出力極性としてとらえると、図4に示すうような極性となる。
 アシストモータ52に関して見ると、エンジン50をアシストして油圧を発生させて動力を油圧負荷54に供給する場合は、電力を動力として出力することとなる。このときのアシストモータ52の出力極性を(+)とする。一方、エンジン50の駆動力でアシストモータ52を駆動して発電する場合は、アシストモータ52に動力が入力されることとなる。したがって、このときのアシストモータ52の出力極性は(-)となる。
 バッテリ58に関して見ると、放電して電気負荷56又はアシストモータ52を駆動する場合は、出力極性を(+)とする。一方、電気負荷56から回生電力、あるいはアシストモータ52の発電による電力が供給されて充電される場合がある。このときのバッテリ58の出力極性は(-)となる。
 電気負荷56に関して見ると、電力が供給されて駆動されている場合、すなわち力行運転している場合の出力極性を(+)とすると、回生電力を発生しているときの出力極性は(-)となる。
 以上のように、ハイブリッド式パワーショベルにおいては、電力に関連する構成部品である、アシストモータ52及び電気負荷56の運転状態及びバッテリ58の充電状態を考慮してそれらの出力極性を適宜調整することで、運転条件を決定する必要がある。特に、バッテリ58が常時適度に充電されるような状態になるように、アシストモータ52の出力極性を調整しながら、油圧負荷54への出力と電気負荷56への出力の配分を制御することが重要である。
 ここで、制御に関する入力は以下の4つの変数となる。
 1)エンジン実回転数Nact
 エンジン実回転数Nactは、エンジン50の実際の回転数を示す変数である。エンジン50はパワーショベルの運転時には常に駆動されており、エンジン実回転数Nactが検出されている。
 2)油圧負荷要求出力Phydreq
 油圧負荷要求出力Phydreqは、油圧負荷54が必要とする動力を示す変数であり、例えばパワーショベルを運転者が操作する際の操作レバーの操作量に相当する。
 3)電気負荷要求出力Pelcreq
 電気負荷要求出力Pelcreqは、電気負荷56が必要とする電力を示す変数であり、例えばパワーショベルを運転者が操作する際の操作レバーの操作量に相当する。
 4)バッテリ電圧Vact
 バッテリ電圧Vactは、バッテリ58の出力電圧を示す変数である。本実施形態ではバッテリとしてキャパシタ蓄電器を用いている。キャパシタの充電量は、キャパシタの端子間電圧の二乗に比例するから、出力電圧を検出することでバッテリ58の充電状態(すなわち、充電率SOC)を知ることができる。
 以上の4つの変数に基づいて、以下の出力を制御して最適な運転条件を達成する。
 1)油圧負荷実出力Phydout
 油圧負荷要求出力Phydreqに対して、実際に油圧負荷54に供給する動力である。油圧負荷要求出力Phydreqに対して常に要求された動力を供給すると、同時に駆動されている電気負荷56の要求を満たせなくなったり、バッテリ58の充電率SOCを適当な範囲内に維持できなくなってしまう。このため、実際に油圧負荷54に供給する動力をある程度制限しなくてはならない場合がある。
 2)電気負荷実出力Pelcout
 電気負荷要求出力Pelcreqに対して、実際に電気負荷54に供給する電力である。電気負荷要求出力Pelcreqに対して常に要求された電力を供給すると、同時に駆動されている油圧負荷54の要求を満たせなくなったり、バッテリ58の充電率SOCを適当な範囲内に維持できなくなってしまう。このため、実際に電気負荷56に供給する電力をある程度制限しなくてはならない場合がある。
 3)アシストモータ出力指令Pasmref
 アシストモータ52の出力を指示する値である。アシストモータ出力指令Pasmrefにより、アシストモータ52が電動機として機能してエンジン50をアシストして油圧負荷54に動力を供給するか、あるいは、アシストモータ52が発電機として機能して電気負荷56に電力を供給するかバッテリ58を充電するか、が指示される。
 そこで、本実施形態では、コントローラ30に含まれる駆動制御装置32が、エンジン実回転数Nact、油圧負要求出力Phydreq、電気負荷要求出力Pelcreq、及びバッテリ電圧Vactに基づいて、油圧負荷実出力Phydout、電気負荷実出力Pelcout、及びアシストモータ出力指令Pasmrefを制御する。以下、説明の便宜上、駆動制御装置32を制御部60と称する。
 図5は上述の制御を行うためのコントローラ30に含まれる制御部60の機能ブロック図である。制御部60の制御機能の概要について図5を参照しながら説明する。
 制御部60は出力条件算出部60-9と動力分配部60-8とを備えている。出力条件算出部60-9は、ブロック60-1~60-7で構成され、エンジン50とバッテリ58の出力条件である上下限値を算出する。
 まず、制御部60の出力条件算出部60-9に入力されたエンジン実回転数Nactはブロック60-1に入力される。ブロック60-1は、入力されたエンジン実回転数Nactにおける出力の上限値Pengmaxと下限値Pengminとを決定し、動力分配部であるブロック60-8に入力する。ブロック60-1は図5に示すように、エンジン50の回転数と出力との関係において、上限値と下限値とを示すマップあるいは変換テーブルを有しており、このマップあるいは変換テーブルを参照しながら入力されたエンジン実回転数Nactにおける出力の上限値Pengmaxと下限値Pengminとを決定する。マップあるいは変換テーブルは予め作成されてコントローラ30のメモリに格納されている。なお、マップあるいは変換テーブルを用いることなく、上限値と下限値を表す式にエンジン実回転数Nactを代入して上限値Pengmaxと下限値Pengminとを求めてもよい。
 制御部60に入力された油圧負荷要求出力Phydreq及び電気負荷要求出力Pelcreqは、動力分配部であるブロック60-8に入力される。
 制御部60の出力条件算出部60-9に入力されたバッテリ電圧Vactは、ブロック60-2に入力される。ブロック60-2では、入力されたバッテリ電圧Vactから、バッテリ58の現在の充電率SOCactを求める。求めた現在の充電率SOCactは、ブロック60-3、60-4及び60-7に出力される。本実施形態では、バッテリ58としてキャパシタを用いるので、計測したバッテリ電圧(キャパシタの端子間電圧)から演算により容易に充電率SOCを求めることができる。
 ブロック60-3は、入力された現在の充電率SOCactと所定の最大充放電電流(一定の電流)とから、現在放電できる放電電力の最大値(バッテリ出力上限値Pbatmax11)及び現在充電できる充電電力の最大値(バッテリ出力下限値Pbatmin11)を求める。ブロック60-3には、図5に示すように、充電率SOCに対してその充電率において一定の電流のもとで充放電可能な最大充電電力[kW]及び最大放電電力[kW]を表すマップ又は変換テーブルが格納されている。
 すなわち、ブロック60-3に示すマップは、ある充電率SOCにおいて、コンバータやキャパシタの能力で制限される充放電最大電流を流すときに決まる電力(充放電最大電流×キャパシタ電圧)を表している。充電率SOCは充放電電圧(キャパシタ電圧)の二乗に比例するため、ブロック60-3内に示す最大充電電力及び最大放電電力は放物線を描くこととなる。
 このように、ブロック60-3は、このマップ又は変換テーブルを参照して現在の充電率SOCactにおいて一定の電流のもとで許容される最大充電電力(バッテリ出力上限値Pbatmax11)及び最大放電電力(バッテリ出力下限値Pbatmin11)を求める。求めた最大放電電力(バッテリ出力上限値Pbatmax11)はブロック60-5に出力され、求めた最大充電電力(バッテリ出力下限値Pbatmin11)はブロック60-6に出力される。
 ブロック60-4は、入力された現在の充電率SOCactと所定のSOC下限値及びSOC上限値とから、現在放電できる放電電力の最大値(バッテリ出力上限値Pbatmax12)及び現在充電できる充電電力の最大値(バッテリ出力下限値Pbatmin12)を求める。ブロック60-4には図5に示すように、充電率SOCに対して、SOC下限値以下にならず、SOC上限値以上とならないための最大放電電力[kW]及び最大充電電力[kW]を表すマップ又は変換テーブルが格納されている。
 すなわち、ブロック60-4に示すマップは、ある充電率SOCにおける適切な充放電電力を表している。ブロック60-4に示すマップのうち、下限値は充電率がゼロとならないように余裕を持たせるために設定された充電率SOCである。充電率SOCがゼロ又はゼロに近い値になるまで減らしてしまうと、放電要求があった場合にすぐに放電できなくなってしまうため、ある程度充電された状態に維持しておくことが望ましい。そのため、充電率SOCに下限値(例えば30%)を設けて下限値以下の充電率SOCのときには放電できないように制御する。したがって、最大放電電力(放電可能な最大電力)は充電率SOCの下限値においてゼロ(すなわち放電させない)であり、充電率SCOが大きくなるにつれて放電可能な電力に余裕が生じるので、最大放電電力を大きくしている。ブロック60-4に示すマップでは、充電率SOCの上限値から最大放電電力が直線的に増加しているが、直線的な増加に限ることなく、放物線を描いて増加させてもよく、任意のパターンで増加するように設定してもよい。
 一方、充電率SOCが100%のときに、例えば電気負荷から回生電力が発生した場合、回生電力を蓄電器で直ちに吸収することができなくなるので、充電率SOCが100%とならないように上限値(例えば90%)を設けて上限値以上の充電率SOCのときには充電できないように制御する。したがって、最大充電電力(充電可能な最大電力)は充電率SOCの上限値においてゼロ(すなわち充電させない)であり、充電率SCOが小さくなるにつれて充電可能な電力に余裕が生じるので、最大充電電力を大きくする。ブロック60-4に示すマップでは、最大充電電力が充電率SOCの上限値から直線的に増加しているが、直線的な増加に限ることなく、放物線を描いて増加させてもよく、任意のパターンで増加するように設定してもよい。
 このように、ブロック60-4は、このマップ又は変換テーブルを参照して現在の充電率SOCactにおいて許容される最大放電電力(バッテリ出力上限値Pbatmax12)及び最大充電電力(バッテリ出力下限値Pbatmin12)を求める。求めた最大放電電力(バッテリ出力上限値Pbatmax12)はブロック60-5に出力され、求めた最大充電電力(バッテリ出力下限値Pbatmin12)はブロック60-6に出力される。
 ブロック60-5は、ブロック60-3から供給されたバッテリ出力上限値Pbatmax11と、ブロック60-4から供給されたバッテリ出力上限値Pbatmax12のうち、小さいほうをバッテリ出力上限値Pbatmax1として、動力分配部であるブロック60-8に出力する。ここで、ブロック60-5は最小値選択器の機能をはたす。
 一方、ブロック60-6は、ブロック60-3から供給されたバッテリ出力下限値Pbatmin11と、ブロック60-4から供給されたバッテリ出力下限値Pbatmin12のうち、大きいほうをバッテリ出力下限値Pbatmin1として、動力分配部であるブロック60-8に出力する。ここで、バッテリ出力値がマイナスの場合が充電を表すため、バッテリ出力下限値の大きいほうということは、マイナスの値が小さいほう、すなわち、ゼロに近いほうの値を意味する。これにより、バッテリ19の出力能力を超えた過度な充放電から確実に保護することができる。ここで、ブロック60-6は最大値選択器の機能をはたす。
 このようにして、現在のバッテリ58の充電状態に応じた充放電可能な最大電力を求める。
 ブロック60-7は、入力された現在の充電率SOCactと所定のSOC目標値から、充電率SOCを目標値に近づけるためのバッテリ出力目標値Pbattgtを求める。ブロック60-7には、図5に示すように充電率に対して、その充電率においてSOC目標値に近づくバッテリ出力目標値Pbattgtを表すマップ又は変換テーブルが格納されている。ブロック60-7は、このマップあるいは変換テーブルを参照することで、充電率SOCを最適な目標値にするために、どのくらい充電をすべきかを示す充電電力又はどのくらい放電をするべきかを示す放電電力を求めることができる。
 ブロック60-7が参照するマップにおける縦軸の出力は充電も放電もしていないときをゼロとし、充電側がマイナスであり、放電側がプラスである。図5に示す例では、現在の充電率SOCactが目標値より小さい状態であり、バッテリ58を充電すべきであり、充電電力の目標値、すなわちバッテリ出力目標値Pbattgtが示されている。バッテリ出力目標値Pbattgtがプラスの値の場合は目標放電電力を表し、マイナスの値の場合は目標充電電力を表す。ブロック60-7で求められたバッテリ出力目標値Pbattgtは、動力分配部であるブロック60-8に出力される。
 以上のように、動力分配部であるブロック60-8には、エンジン出力限界値としてのエンジン出力上限値Pengmax、エンジン出力下限値Pengmin、バッテリ出力上限値Pbatmax1、バッテリ出力限界値としてのバッテリ出力下限値Pbatmin1、及びバッテリ出力目標値Pbattgtが入力される。ブロック60-8は、これら入力された値に基づいて、油圧負荷実出力Phydout、電気負荷実出力Pelcout、及びアシストモータ出力指令Pasmrefを決定し、コントローラ30の各部に出力する。
 そこで、コントローラ30は、油圧負荷実出力Phydoutに基づいて油圧負荷54に供給する油圧を制御し、電気負荷実出力Pelcoutに基づいて電気負荷56に供給する電力を制御し、アシストモータ出力指令Pasmrefに基づいてアシストモータ52によるエンジン50のアシスト量又はアシストモータ52による発電量を制御する。
 ここで、制御部60において、油圧負荷実出力Phydout、電気負荷実出力Pelcout、及びアシストモータ出力指令Pasmrefを決定する処理について説明する。図6は制御部60において行われる処理のフローチャートである。
 ステップS1において、マップ又は変換テーブルを用いてエンジン50の現在の回転数を示すエンジン実回転数Nactから、現在のエンジン50のエンジン出力上限値Pengmax及びエンジン出力上限値Pengminが決定される。この処理はブロック60-1により行われる。この際、エンジン出力上限値Pengmax及びエンジン出力上限値Pengminを、マップ又は変換テーブルにおいて、エンジン50の燃費効率の良い範囲に設定しておけば、エンジン50の省エネ効果を得ることができる。
 次に、ステップS2において、現在のバッテリ電圧Vactから、バッテリ出力上限値Pbatmax1及びバッテリ出力下限値Pbatmin1が決定される。この処理は、ブロック60-2~60-6により行われる。
 まず、ブロック60-2は、現在のバッテリ電圧Vactから演算により現在の充電率SOCactを求める。次に、ブロック60-3は、マップあるいは変換テーブルを用いて現在の充電率SOCactから、充電電流及び放電電流を最大値として一定とした際のバッテリ出力上限値Pbatmax11及びバッテリ出力下限値Pbatmin11を決定する。同時に、ブロック60-4は、マップあるいは変換テーブルを用いて現在の充電率SOCactから、SOC下限値以下にならず、SOC上限値以上とならないバッテリ出力上限値Pbatmax12及びバッテリ出力下限値Pbatmin12を決定する。続いて、ブロック60-5は、バッテリ出力上限値Pbatmax11とバッテリ出力上限値Pbatmax12のうち、値の小さいほうをバッテリ出力上限値Pbatmax1として決定する。ここで、バッテリ出力上限値Pbatmax1は最大放電電力を示し、バッテリ出力下限値Pbatmin1は最大充電電力を示す。また、ブロック60-6は、バッテリ出力下限値Pbatmin11とバッテリ出力下限値Pbatmin12のうち、大きいほうをバッテリ出力下限値Pbatmin1として決定する。
 以上のように、ステップS2で、バッテリ出力上限値Pbatmax1及びバッテリ出力下限値Pbatmin1が決定されたら、続いて、ステップS3において、現在の充電率SOCactからバッテリ出力目標値Pbattgtが決定される。この処理はブロック60-7により行われる。
 次に、ステップS4において、電気負荷実出力Pelcoutが、エンジン50及びバッテリ58の要求出力の限界値に基づいて決定される。ステップS4における処理は動力分配部であるブロック60-8で行われる。この処理については後述する。続いて、ステップS5において、油圧負荷実出力Phydoutが、エンジン50及びバッテリ58の要求出力の限界値に基づいて決定される。ステップS5における処理は動力分配部であるブロック60-8で行われる。この処理については後述する。
 次に、ステップS6において、バッテリ出力Pbatoutが、エンジン50、電気負荷56、及び、バッテリ58の算出された出力に基づいて決定される。バッテリ出力Pbatoutは、バッテリ58への充放電電力である。ステップS6における処理は動力分配部であるブロック60-8で行われる。この処理については後述する。
 続いて、ステップS7において、アシストモータ出力指令Pasmrefが、電気負荷実出力Pelcoutとバッテリ出力Pbatoutとの比較に基づいて決定される。ステップS6における処理は動力分配部であるブロック60-8で行われる。この処理については後述する。
 ステップS7の処理が終了したら、制御部60での処理は終了する。以上の制御部60での処理により、油圧負荷実出力Phydout、電気負荷実出力Pelcout、及びアシストモータ出力指令Pasmrefが決定される。
 ここで、上述のステップS4における処理について詳細に説明する。図7はステップS4における処理のフローチャートである。
 まず、ステップS4-1において、電気負荷56に供給可能な最大電力である電気負荷出力上限値Pelcmaxを算出する。つまり、電気負荷出力上限値Pelcmaxは、電気負荷56の力行運転時に供給できる最大電力であり、力行運転時の電力がプラスの値として設定される。ここで、油圧負荷54は電気負荷56に対する駆動力源としては機能しないため、油圧負荷出力要求Phydreqは考慮されず0となるので、電気負荷出力上限値Pelcmaxは、エンジン出力上限値Pengmaxとバッテリ出力上限値Pbatmax1との和である。すなわち、電気負荷56に供給可能な最大の電力は、エンジン50の最大出力で得られるアシストモータ52による発電量とバッテリの最大放電電力との和である。図8は上述の電気負荷出力上限値Pelcmaxの算出モデルを示す図である。
 次に、ステップS4-2において、電気負荷要求出力Pelcreqと電気負荷出力上限値Pelcmaxを比較し、電気負荷要求出力Pelcreqが電気負荷出力上限値Pelcmax以下であるか否かを判定する。
 ステップS4-2において電気負荷要求出力Pelcreqが電気負荷出力上限値Pelcmaxより大きいと判定された場合(ステップS4-2のNo)、処理はステップS4-3に進む。ステップS4-3では、電気負荷実出力Pelcoutの値を電気負荷出力上限値Pelcmaxの値に等しくし、その後処理を終了する。すなわち、電気負荷56が要求する電力が、アシストモータ52とバッテリ58とで供給できる電力の最大値より大きい場合は、アシストモータ52とバッテリ58とで供給できる最大電力しか電気負荷56に供給しないこととし、電気負荷に供給する電力に上限を設けている。
 一方、ステップS4-2において電気負荷要求出力Pelcreqが電気負荷出力上限値Pelcmax以下であると判定された場合(ステップS4-2のYes)、処理はステップS4-4に進む。ステップS4-4では、電気負荷56の回生運転時の最大電力が算出される。ここで、電気負荷56は、回生運転時の電力をマイナスの値としているため、回生運転時の最大電力は電気負荷出力下限値Pelcminとして算出される。電気負荷出力下限値Pelcminは、エンジン出力下限値Pengminから油圧負荷出力要求Phydreqを減算し、且つバッテリ出力下限値Pbatmin1を加算して求められる。図9は上述の電気負荷出力下限値Pelcminの算出モデルを示す図である。
 次に、ステップS4-5において、電気負荷要求出力Pelcreqと電負荷出力下限値Pelcminとを比較し、電気負荷要求出力Pelcreqが電負荷出力下限値Pelcmin以上であるか否かを判定する。
 ステップS4-5において、電気負荷要求出力Pelcreqが電負荷出力下限値Pelcminより小さいと判定された場合(ステップS4-5のNo)、処理はステップS4-6に進む。ステップS4-6では、電気負荷実出力Pelcoutの値を電気負荷出力下限値Pelcminの値に等しくし、その後、処理を終了する。すなわち、電気負荷56が回生する電力が、アシストモータ52で消費できる最大電力とバッテリ58に蓄積できる最大電力の和より大きい場合は、電気負荷56が回生する電力が、アシストモータ52で消費できる最大電力とバッテリ58に蓄積できる最大電力の和より大きくならないように上限を設けている。
 一方、ステップS4-5において、電気負荷要求出力Pelcreqが電負荷出力下限値Pelcmin以上であると判定された場合(ステップS4-5のYes)、処理はステップS4-7に進む。ステップS4-7では、電気負荷実出力Pelcoutの値を電気負荷要求Pelcreqの値に等しくし、その後処理を終了する。すなわち、電気負荷56が回生する電力が、アシストモータ52で消費できる最大電力とバッテリ58に蓄積できる最大電力の和以下の場合は、電気負荷56が回生する電力をそのまま出力するように設定している。このように、電気負荷実出力Pelcoutの値の算出に、エンジン出力上下限値Pengmax,Pengmin及びバッテリ出力上下限値Pbatmax,Pbatminを考慮することで、電気負荷56を安定して制御することができる。
 次に、上述のステップS5の処理について詳細に説明する。図10はステップS5の処理のフローチャートである。
 まず、ステップS5-1において、油圧負荷54に供給可能な最大動力である油圧負荷出力上限値Phydmaxを算出する。油圧負荷出力上限値Phydmaxは、エンジン出力上限値Pengmaxにバッテリ出力上限値Pbatmaxを加算し、且つ電気負荷実出力Pelcoutを減算して算出される。なお、図11は油圧負荷出力上限値Phydmaxの算出モデルを示す図である。ここで、電気負荷実出力Pelcoutには極性があり、電気負荷出力上下限値Pelecmax,Pelecminと同様に、プラスとマイナスの値をとる。電気負荷実出力Pelcoutがプラスの値のときは電気負荷56の力行運転時に電力を供給することを意味し、油圧負荷54に供給可能な動力は電気負荷56に供給する電力を減算したものとなる。一方、電気負荷実出力Pelcoutがマイナスの値のときは電気負荷56の回生運転時に回生電力を供給することを意味し、油圧負荷54に供給可能な動力は電気負荷56からの回生電力を加算したものとなる。電気負荷実出力Pelcoutのマイナスの値が減算されるため、自動的にマイナスとマイナスでプラスとなり、回生電力は加算されることとなる。
 次に、ステップS5-2において、油圧負荷要求出力Phydreqと油圧負荷出力上限値Phydmaxとを比較し、油圧負荷要求出力Phydreqが油圧負荷出力上限値Phydmax以下であるか否かが判定される。
 ステップS5-2において、油圧負荷要求出力Phydreqが油圧負荷出力上限値Phydmax以下ではない、すなわち、油圧負荷要求出力Phydreqが油圧負荷出力上限値Phydmaxより大きいと判定された場合(ステップS5-2のNo)、処理はステップS5-3に進む。ステップS5-3では、油圧負荷実出力Phydoutの値を油圧負荷出力上限値Phydmaxに等しくし、その後処理を終了する。すなわち、油圧負荷54が要求する動力が、エンジン50から出力できる最大動力とアシストモータ52から出力できる最大動力の和より大きい場合は、油圧負荷54に供給する動力を、エンジン50から出力できる最大動力とアシストモータ52から出力できる最大動力の和までとして上限を設けている。
 一方、ステップS5-2において、油圧負荷要求出力Phydreqが油圧負荷出力上限値Phydmax以下であると判定された場合(ステップS5-2のYes)、処理はステップS5-4に進む。ステップS5-4では、油圧負荷出力Phydoutの値を油圧負荷要求出力Phydreqの値に等しくし、その後処理を終了する。すなわち、油圧負荷54が要求する動力が、エンジン50から出力できる最大動力とアシストモータ52から出力できる最大動力の和以下である場合は、油圧負荷54が要求する動力をそのまま供給するように設定している。このように、油圧負荷実出力Phydoutの値の算出に、エンジン出力上限値Pengmax、及びバッテリ出力上限値Pbatmax1を考慮することで、油圧負荷54を安定して制御することができる。
 次に、上述のステップS6の処理について詳細に説明する。図12はステップS6の処理のフローチャートである。ここで、バッテリ出力上限値Pbatmax2は最大放電電力を示し、バッテリ出力下限値Pbatmin2は最大充電電力を示す。
 まず、ステップS6-1において、上述のように決定された電気負荷56への出力と油圧負荷54への出力の状態において、バッテリ58が放電可能な電力であるバッテリ制御出力上限値Pbatmax2を算出する。バッテリ制御出力上限値Pbatmax2は、電気負荷実出力Pelcoutと油圧負荷出力Phydoutとの和からエンジン出力下限値Pengminを減算して算出される。図13はバッテリ制御出力上限値Pbatmax2の算出モデルを示す図である。バッテリ制御出力上限値Pbatmax2は、電気負荷56で消費できる電力と、アシストモータ52で油圧系をアシストして消費することのできる電力との和となる。
 次に、ステップS6-2において、ステップS2で決定したバッテリ出力上限値Pbatmax1とバッテリ制御出力上限値Pbatmax2とを比較し、バッテリ制御出力上限値Pbatmax2がバッテリ出力上限値Pbatmax1以上であるか否かを判定する。
 ステップS6-2において、バッテリ制御出力上限値Pbatmax2がバッテリ出力上限値Pbatmax1以上であると判定された場合(ステップS6-2のYes)、処理はステップS6-3に進む。ステップS6-3では、バッテリ出力上限値Pbatmaxの値をバッテリ出力上限値Pbatmax1の値に等しくする。その後、処理はステップS6-5に進む。
 一方、ステップS6-2において、バッテリ制御出力上限値Pbatmax2がバッテリ出力上限値Pbatmax1以上ではない、すなわちバッテリ制御出力上限値Pbatmax2がバッテリ出力上限値Pbatmax1より小さいと判定された場合(ステップS6-2のNo)、処理はステップS6-4に進む。ステップS6-4では、バッテリ出力上限値Pbatmaxの値をバッテリ制御出力上限値Pbatmax2の値に等しくする。その後、処理はステップS6-5に進む。
 ステップS6-5では、バッテリ目標出力Pbattgtとバッテリ出力上限値Pbatmaxとを比較し、バッテリ目標出力Pbattgtがバッテリ出力上限値Pbatmax以下であるか否かを判定する。
 ステップS6-5においてバッテリ目標出力Pbattgtがバッテリ出力上限値Pbatmax以下ではない、すなわちバッテリ目標出力Pbattgtがバッテリ出力上限値Pbatmaxより大きいと判定された場合(ステップS6-5のNo)、処理はステップS6-6に進む。ステップS6-6では、バッテリ出力Pbatoutの値をバッテリ出力上限値Pbatmaxの値に等しくし、その後処理を終了する。
 このように、電気負荷実出力Pelcoutと油圧負荷実出力Phydoutとをもとに、バッテリ出力上下限値Pbatmax2,Pbatmin2を求める。これにより、実際の負荷要求に応じたバッテリ58の出力(充放電電力)の最大値を求めることができるので、実際の作業状況に対応してバッテリ58の充放電を行なうことができる。
 また、電気負荷実出力Pelcoutと油圧負荷実出力Phydoutとをもとに求められたバッテリ出力上下限値と、現在のバッテリ58の充電状態に応じた充放電可能な最大電力とを対比して、バッテリ要求限界値を求める。これにより、バッテリ58に過大な負荷がかかることを防止することができる。
 そして、バッテリ58のバッテリ出力Pbatoutがバッテリ要求限界値の範囲内に入るように、バッテリ要求限界値とバッテリ目標出力とを対比し、バッテリ目標出力がバッテリ要求限界値の範囲外の場合には、バッテリ目標出力の補正を行なう。これにより、より確実にバッテリ58に過大な負荷がかかることを防止することができる。
 図14はステップS6-6の処理により決定されるバッテリ出力Pbatoutの値を、バッテリ充電率(SOC)とバッテリ出力との関係を示すグラフ中に示す図である。図14のグラフには、図5に示すブロック60-5で決定されるバッテリ出力上限値Pbatmax1が示されている。バッテリ出力上限値Pbatmax1は、バッテリ出力上限値Pbatmax11とバッテリ出力上限値Pbatmax12の値の小さいほうの値であり、図中、2点鎖線が引かれている部分に相当する。また、図14のグラフには、図5に示すブロック60-6で決定されるPbatmin1も示されている。バッテリ出力下限値Pbatmin1は、バッテリ出力下限値Pbatmin11とバッテリ出力下限値Pbatmin12の値の大きいほうの値(ゼロに近いほう)であり、図中、2点鎖線が引かれている部分に相当する。
 実際のバッテリ出力Pbatoutは、放電を示すプラス側では、2点鎖線で示されるPbatmax1より下側の領域に入るように決定される。一方、 実際のバッテリ出力Pbatoutは、充電を示すマイナス側では、2点鎖線で示されるPbatmin1より上側の領域に入るように決定される。
 また、図14に示すグラフには、ブロック60-7で参照されるバッテリ出力目標値Pbattgtも示されている。本実施形態では、バッテリ58の放電可能な最大値として設定するバッテリ出力上限値Pbatmax1と、バッテリ58の充電可能な最大値として設定するバッテリ下限値Pbatmin1とに加えて、バッテリ58の現在の充電率SOCactも考慮して、バッテリ58の実際の放電電力又は充電電力をバッテリ出力Pbatoutとして決定する。
 ステップS6-6の処理では、図14に示すように、バッテリ58の現在の充電率SOCactにおけるバッテリ目標出力Pbattgtが、バッテリ出力制御上限値Pbatmaxを超えているので、目標放電電力が放電電力の上限値を超えている。この場合、バッテリ目標出力Pbattgtをバッテリ出力Pbatoutとして設定すべきではない。したがって、実際のバッテリ出力Pbatoutはバッテリ出力制御上限値Pbatmaxに設定される。ここで、上述のステップS6-2及びステップS6-4において、バッテリ制御出力上限値Pbatmax2がバッテリ出力上限値Pbatmax1より小さため、バッテリ出力上限値Pbatmaxの値はバッテリ制御出力上限値Pbatmax2の値に等しく設定されている。したがって、図14に示す例の場合、最終的にバッテリ出力上限値Pbatmaxの値、すなわちバッテリ制御出力上限値Pbatmax2の値が実際のバッテリ出力Pbatoutとして設定される。すなわち、バッテリ要求限界値は、エンジン50、電気負荷56、及び、バッテリ58のそれぞれの出力に基づいて算出される。そして、バッテリ目標出力Pbattgtは算出されたバッテリ要求限界値と比較され、図14に示す場合ではバッテリ供給限界値へ置き換えられる。その際、バッテリ58の出力能力を超えないように、SOCと対応したバッテリ58の限界値との比較を行うことで、バッテリ58の能力を超えた目標値が算出されることを防ぐことができる。
 一方、ステップS6-5においてバッテリ目標出力Pbattgtがバッテリ出力上限値Pbatmax以下であると判定された場合(ステップS6-5のYes)、処理はステップS6-7に進む。ステップS6-7では、上述のように決定された電気負荷56への出力と油圧負荷54への出力の状態において、バッテリ58が充電可能な電力であるバッテリ制御出力下限値Pbatmin2を算出する。バッテリ制御出力下限値Pbatmin2は、電気負荷実出力Pelcoutと油圧負荷出力Phydoutとの和からエンジン出力上限値Pengmaxを減算して算出される。図15はバッテリ制御出力下限値Pbatmin2の算出モデルを示す図である。バッテリ制御出力下限値Pbatmin2は、電気負荷56の回生電力とアシストモータ52で発電する電力の和となる。
 続いて、ステップS6-8において、バッテリ出力下限値Pbatmin1とバッテリ制御出力下限値Pbatmin2とを比較し、バッテリ制御出力下限値Pbatmin2がバッテリ出力下限値Pbatmin1以下であるか否かを判定する。
 ステップS6-8においてバッテリ制御出力下限値Pbatmin2がバッテリ出力下限値Pbatmin1以下であると判定された場合(ステップS6-8のYes)、処理はステップS6-9に進む。ステップS6-9では、バッテリ出力下限値Pbatminの値をバッテリ出力下限値Pbatmin1の値に等しくする。その後、処理はステップS6-11に進む。
 一方、ステップS6-8においてバッテリ制御出力下限値Pbatmin2がバッテリ出力下限値Pbatmin1以下ではない、すなわちバッテリ制御出力下限値Pbatmin2がバッテリ出力下限値Pbatmin1より大きいと判定された場合(ステップS6-8のNo)、処理はステップS6-10に進む。ステップS6-10では、バッテリ出力下限値Pbatminの値をバッテリ制御出力下限値Pbatamin2の値に等しくする。その後、処理はステップS6-11に進む。
 次に、ステップS6-11では、バッテリ目標出力Pbattgtとバッテリ出力下限値Pbatminとを比較し、バッテリ目標出力Pbattgtがバッテリ出力下限値Pbatmin以上であるか否かを判定する。
 ステップS6-11においてバッテリ目標出力Pbattgtがバッテリ出力下限値Pbatmin以上であると判定された場合(ステップS6-11のYes)、処理はステップS6-12に進む。ステップS6-12では、バッテリ出力Pbatoutの値をバッテリ目標出力Pbattgtの値に等しくし、その後処理を終了する。図16はステップS6-12の処理により決定されるバッテリ出力Pbatoutの値をバッテリ充電率(SOC)とバッテリ出力との関係を示すグラフ中に示す図である。
 図16に示す例の場合、まず、バッテリ出力上限値Pbatmax1がバッテリ制御出力上限値Pbatmax2以下であるため、ステップS6-2及びステップS6-3の処理により、バッテリ制御出力上限値Pbatmax1の値がバッテリ出力上限値Pbatmaxとして設定される。また、バッテリ制御出力下限値Pbatmin2がバッテリ出力下限値Pbatmin1以下であるので、ステップS6-8及びステップS6-9の処理により、バッテリ出力下限値Pbatmin1の値がバッテリ出力下限値Pbatminとして設定される。ここで、バッテリ58の現在の充電率SOCactにおけるバッテリ目標出力Pbattgtは、バッテリ出力下限Pbatmin以上であり且つバッテリ出力上限値Pbatmax以下であるので、バッテリ目標出力Pbattgtを実際のバッテリ出力Pbatoutとして設定可能である。したがって、ステップS6-12の処理により、バッテリ目標出力Pbattgtの値がバッテリ出力Pbatoutとして設定される。
 一方、ステップS6-11においてバッテリ目標出力Pbattgtがバッテリ出力下限値Pbatmin以上ではない、すなわちバッテリ目標出力Pbattgtがバッテリ出力下限値Pbatminより小さいと判定された場合(ステップS6-11のNo)、処理はステップS6-13に進む。ステップS6-13では、バッテリ出力Pbatoutの値をバッテリ出力下限値Pbatminの値に等しくし、その後処理を終了する。図17はステップS6-12の処理により決定されるバッテリ出力Pbatoutの値をバッテリ充電率(SOC)とバッテリ出力との関係を示すグラフ中に示す図である。
 図17に示す例の場合、バッテリ制御出力下限値Pbatmin2がバッテリ出力下限値Pbatmin1以下であるので、ステップS6-8及びステップS6-9の処理により、バッテリ出力下限値Pbatmin1の値がバッテリ出力下限値Pbatminとして設定される。ここで、バッテリ58の現在の充電率SOCactにおけるバッテリ目標出力Pbattgtは、バッテリ出力下限Pbatmin未満であるので、目標充電電力がバッテリの最大充電電力を超えており、バッテリ目標出力Pbattgtを実際のバッテリ出力Pbatoutとして設定すべきではない。したがって、ステップS6-13の処理により、バッテリ出力下限値Pbatminの値、すなわちバッテリ出力下限値Pbatmin1の値がバッテリ出力Pbatoutとして設定される。
 このように、電気負荷実出力Pelcoutと油圧負荷実出力Phydoutとをもとに、バッテリ出力上下限値Pbatmax2,Pbatmin2を求める。これにより、実際の負荷要求に応じたバッテリ58の出力(充放電電力)の最大値を求めることができるので、実際の作業状況に対応してバッテリ58の充放電を行なうことができる。
 また、電気負荷実出力Pelcoutと油圧負荷実出力Phydoutとをもとに求められたバッテリ出力上下限値と、現在のバッテリ58の充電状態に応じた充放電可能な最大電力とを対比して、バッテリ要求限界値を求める。これにより、バッテリ58に過大な負荷がかかることを防止することができる。
 そして、バッテリ58のバッテリ出力Pbatoutがバッテリ要求限界値の範囲内に入るように、バッテリ要求限界値とバッテリ目標出力とを対比し、バッテリ目標出力がバッテリ要求限界値の範囲外の場合には、バッテリ目標出力の補正を行なう。これにより、より確実にバッテリ58に過大な負荷がかかることを防止することができる。
 次に、上述のステップS7の処理について詳細に説明する。図18はステップS7の処理のフローチャートである。
 処理が開始されると、ステップS7-1において、アシストモータ52の運転を指示するアシストモータ出力指令Pasmrefを算出し、その後処理を終了する。アシストモータ出力指令Pasmrefは、バッテリ出力Pbatoutから電気負荷実出力Pelcoutを減算して算出される。このように、バッテリ出力と電気負荷実出力とを対比してアシストモータ出力指令を求めることで、ハイブリッド式建設機械の運転状態やバッテリ58の充電状態に応じた、アシストモータ52の電動発電機運転の制御を行なうことができる。その結果、バイブリッド式建設機械を安定して連続運転することができる。
 図19はアシストモータ出力指令Pasmrefの算出モデルを示す図である。アシストモータ52の出力はバッテリ58から放電する電力から電気負荷56で消費される電力を引いて得られる電力に相当する。
 ここで、電気負荷56の出力は極性を有しており、電気負荷56が実際に電力を消費する場合は極性はプラスである。この場合、バッテリ58が放電する電力から電気負荷56で消費される電力である電気負荷出力を減算した値がプラスであれば、電力がアシストモータ52に供給され、アシストモータ52は電動機として機能する。一方、バッテリ58が放電する電力から電気負荷56で消費される電力である電気負荷出力を減算した値がマイナスであれば、エンジン50からの動力がアシストモータ52に供給され、アシストモータ52は発電機として機能する。これにより、アシストモータ52はマイナスになった分の電力を発電し、その電力が電気負荷56に供給される。
 また、電気負荷56が回生電力を発生する場合は、電気負荷56の出力極性はマイナスである。この場合、マイナスの値を引くこととなるから、バッテリ58が放電する電力に電気負荷56で回生する電力が加算されることとなる。したがって、バッテリ58が放電する電力と電気負荷56で回生する電力との和がアシストモータ52に供給され、アシストモータ52は電動機として機能して、エンジン50をアシストすることとなる。すなわち、電気駆動部の出力設定値である電気負荷実出力Pelcoutと、蓄電器出力設定値であるバッテリ出力Pbatoutとの電気的な比較に基づいて、アシストモータ52の制御が行われる。
 以上説明したように、本実施形態が適用されるハイブリッド式建設機械の一例であるハイブリッド式パワーショベルは、油圧発生機、電動発電機、蓄電器、電気駆動部、及び制御部を有する。油圧発生機は油圧モータであるメインポンプ14に相当し、エンジン50の出力を油圧に変換し油圧駆動部に供給する。電動発電機12はアシストモータ52に相当し、エンジン50に接続され、電動機及び発電機の両方として機能する。蓄電器はバッテリ19(又は58)に相当し、電動発電機12に電力を供給して電動機として機能させる。電気駆動部は、蓄電器及び電動発電機からの電力により駆動され、且つ回生電力を発生して蓄電器及び電動発電機の少なくとも一方に供給する。制御部60は、電動発電機12の動作を制御する。以上のような構成のハイブリッド式建設機械において、制御部60は、電動発電機12の動作及び出力を制御するための動力分配部60-8を有する。動力分配部60-8は、機蓄電器の充電率(SOC)に基づいて決定される蓄電器出力設定値(バッテリ出力上限値Pbatmax1及びバッテリ出力下限値Pbatmin1)と、エンジンの回転数に基づいて決定されるエンジン出力設定値(エンジン出力上限値Pengmax及びエンジン出力下限値Pengmin)と、油圧発生機が要求する動力を示す油圧負荷要求値(油圧負荷要求出力Phydreq)と、電気駆動部が要求する電力を示す電気負荷要求値(電気負荷要求出力Pelcreq)と、に基づいて電動発電機12の動作及び出力を制御するための出力指令(アシストモータ出力指令Pasmref)を生成して出力する。
 動力分配部60-8は、電気駆動部に供給する電力を決定し、電気負荷実出力値(電気負荷実出力Pelcout)として出力する。また、動力分配部60-8は、油圧駆動部に供給する出力を決定し、油圧負荷実出力値(油圧負荷実出力Phydout)として出力する。さらに、動力分配部は60-8は、蓄電器の蓄電率(SOC)に基づいて出力指令(アシストモータ出力指令Pasmref)を決定する。
 本実施形態によれば、蓄電器出力設定値、電気負荷要求値、エンジン出力設定値、及び油圧負荷要求値を考慮して、電動発電機の動作及び出力を制御することができるため、動力源であるエンジンと蓄電器とを適正な出力範囲で使用することができる。また、本実施形態によれば、電気負荷からの回生電力を効率よく利用することができ、また、蓄電器の充電率(SOC)を効率的に目標値近辺に維持することがきる。なお、本願発明ではハイブリッド式建設機械の一例としてハイブリッド式ショベルを例に説明したが、トラックやホイルローダなどの建設機械にも適用することができる。
 本発明は具体的に開示された実施例に限られず、本発明の範囲を逸脱することなく様々な変形例及び改良例がなされるであろう。
 本出願は2007年12月28日出願の優先権主張日本特許出願2007-340836号に基づくものであり、その全内容はここに援用される。

Claims (6)

  1.  エンジンの出力を油圧に変換し油圧駆動部に供給する油圧発生機と
     前記エンジンに接続され、電動機及び発電機の両方として機能する電動発電機と、
     該電動発電機に電力を供給して電動機として機能させる蓄電器と、
     該蓄電器からの電力により駆動され、且つ回生電力を発生して前記蓄電器に供給する電気駆動部と、
     前記電動発電機の動作を制御する制御部と
     を有するハイブリッド式建設機械であって、
     前記制御部は、前記エンジンと前記蓄電器との出力条件を算出する出力条件算出部と、該出力条件算出部で算出された出力条件に基づいて、前記電気駆動部と前記油圧駆動部の出力値を決定する動力分配部とを備えることを特徴とするハイブリッド式建設機械
  2.  請求項1記載のハイブリッド式建設機械であって、
     前記動力分配部は、前記蓄電器の充電率に基づいて決定される蓄電器出力設定値と、前記エンジンの回転数に基づいて決定されるエンジン出力設定値と、前記油圧発生機が要求する動力を示す油圧負荷要求値と、前記電気駆動部が要求する電力を示す電気負荷要求値と、に基づいて前記電動発電機の動作及び出力を制御するための出力指令を生成して出力することを特徴とするハイブリッド式建設機械。
  3.  請求項1又は2記載のハイブリッド式建設機械であって、
     前記動力分配部は、前記電気駆動部を力行運転する電力及び前記電気駆動部の回生運転により発生する回生電力を、前記エンジン及び前記蓄電器の出力限界値に基づいて決定することを特徴とするハイブリッド式建設機械。
  4.  請求項1乃至3のうちいずれか一項記載のハイブリッド式建設機械であって、
     前記動力分配部は、前記油圧駆動部に供給する出力を、前記エンジン及び前記蓄電器の出力限界値に基づいて決定することを特徴とするハイブリッド式建設機械。
  5.  請求項1乃至4のうちいずれか一項記載のハイブリッド式建設機械であって、
     前記蓄電器の出力指令は、前記エンジン、前記電気駆動部、及び前記蓄電器のそれぞれの出力に基づいて算出されたバッテリ要求限界値とバッテリ目標出力とを比較して決定されることを特徴とするハイブリッド式建設機械。
  6.  請求項5記載のハイブリッド式建設機械であって、
     前記電動発電機の出力は、前記蓄電器の出力指令と前記電気駆動部に供給する電力又は前記電気駆動部から出力される電力とを比較して決定されることを特徴とするハイブリッド式建設機械。
PCT/JP2008/073832 2007-12-28 2008-12-26 ハイブリッド式建設機械 WO2009084673A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP08866647.4A EP2228492A4 (en) 2007-12-28 2008-12-26 Hybrid construction machine
US12/810,607 US8285434B2 (en) 2007-12-28 2008-12-26 Hybrid-type construction machine having an output condition calculating unit to calculate output conditions of an engine and an electric storage device
JP2009548112A JP5154578B2 (ja) 2007-12-28 2008-12-26 ハイブリッド式建設機械
CN2008801231152A CN101918649B (zh) 2007-12-28 2008-12-26 混合式施工机械

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-340836 2007-12-28
JP2007340836 2007-12-28

Publications (1)

Publication Number Publication Date
WO2009084673A1 true WO2009084673A1 (ja) 2009-07-09

Family

ID=40824386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073832 WO2009084673A1 (ja) 2007-12-28 2008-12-26 ハイブリッド式建設機械

Country Status (6)

Country Link
US (1) US8285434B2 (ja)
EP (1) EP2228492A4 (ja)
JP (1) JP5154578B2 (ja)
KR (1) KR101268849B1 (ja)
CN (1) CN101918649B (ja)
WO (1) WO2009084673A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011040346A (ja) * 2009-08-18 2011-02-24 Toyota Central R&D Labs Inc 充電電力制限値演算装置
CN102912821A (zh) * 2012-04-27 2013-02-06 华侨大学 一种液压挖掘节能系统
JP2013240149A (ja) * 2012-05-11 2013-11-28 Daikin Ind Ltd ハイブリット式作業機械
JP2015034376A (ja) * 2013-08-07 2015-02-19 コベルコ建機株式会社 ハイブリッド建設機械の旋回電動機速度制御装置
WO2015040722A1 (ja) * 2013-09-19 2015-03-26 東芝三菱電機産業システム株式会社 蓄電池システム
WO2015040724A1 (ja) * 2013-09-19 2015-03-26 東芝三菱電機産業システム株式会社 蓄電池システム
JP2016168920A (ja) * 2015-03-12 2016-09-23 コベルコ建機株式会社 ハイブリッド建設機械

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101395407B1 (ko) * 2010-01-29 2014-05-14 스미토모 겐키 가부시키가이샤 하이브리드식 건설기계
JP5329574B2 (ja) * 2011-01-25 2013-10-30 住友重機械工業株式会社 ハイブリッド型建設機械
WO2012102351A1 (ja) * 2011-01-28 2012-08-02 住友重機械工業株式会社 ショベル
CN102650303A (zh) * 2011-02-24 2012-08-29 中联重科股份有限公司 混凝土泵送设备的动力驱动装置和混凝土泵送设备
JP5562272B2 (ja) * 2011-03-01 2014-07-30 日立建機株式会社 ハイブリッド式建設機械
JP5562893B2 (ja) * 2011-03-31 2014-07-30 住友建機株式会社 ショベル
US9067501B2 (en) * 2011-04-01 2015-06-30 Caterpillar Inc. System and method for adjusting balance of operation of hydraulic and electric actuators
CA2968400A1 (en) 2011-04-29 2012-11-01 Harnischfeger Technologies, Inc. Controlling a digging operation of an industrial machine
CN102418354B (zh) * 2011-10-28 2013-09-18 华侨大学 基于泵/马达的混联式液压挖掘机驱动系统
JP5867039B2 (ja) * 2011-12-09 2016-02-24 コベルコ建機株式会社 ハイブリッド建設機械
JP5270775B1 (ja) * 2012-03-09 2013-08-21 トヨタ自動車株式会社 電動車両および電動車両の制御方法
US9010467B2 (en) * 2012-04-23 2015-04-21 Federal Signal Corporation Shared power street sweeper
CA2872608C (en) * 2012-06-08 2017-05-02 Volvo Construction Equipment Ab Apparatus for controlling a cascaded hybrid construction machine system and a method therefor
JP6019956B2 (ja) * 2012-09-06 2016-11-02 コベルコ建機株式会社 ハイブリッド建設機械の動力制御装置
JP6014463B2 (ja) * 2012-11-07 2016-10-25 日立建機株式会社 作業車両
JP6232795B2 (ja) * 2013-07-18 2017-11-22 コベルコ建機株式会社 ハイブリッド建設機械
CN103481796A (zh) * 2013-09-09 2014-01-01 上海电控研究所 新型电动驱动系统
US9935473B2 (en) * 2013-09-19 2018-04-03 Toshiba Mitsubishi-Electric Industrial Systems Corporation Storage battery system
EP3128086B1 (en) * 2014-03-31 2020-12-30 Sumitomo (S.H.I.) Construction Machinery Co., Ltd. Shovel
US10458095B2 (en) * 2015-01-07 2019-10-29 Volvo Construction Equipment Ab Control method for controlling an excavator and excavator comprising a control unit implementing such a control method
JP6469844B2 (ja) * 2015-03-27 2019-02-13 住友重機械工業株式会社 ショベルおよびショベルの駆動方法
PE20230969A1 (es) 2015-05-28 2023-06-16 Joy Global Longview Operations Llc Maquina de mineria y sistema de almacenamiento de energia para la misma
KR102462668B1 (ko) * 2015-06-10 2022-11-03 현대두산인프라코어(주) 건설기계의 제어장치 및 제어방법
CN105421521B (zh) * 2015-11-11 2018-07-03 潍柴动力股份有限公司 挖掘机防熄火控制方法及系统
US9630614B1 (en) * 2016-01-28 2017-04-25 Miq Llc Modular power plants for machines
GB2606643B (en) * 2020-02-20 2023-06-07 Terex Gb Ltd Material processing apparatus with hybrid power system
GB2592237B (en) * 2020-02-20 2022-07-20 Terex Gb Ltd Material processing apparatus with hybrid power system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002322682A (ja) * 2001-04-27 2002-11-08 Kobelco Contstruction Machinery Ltd ショベル
JP2005237178A (ja) 2004-02-23 2005-09-02 Kobelco Contstruction Machinery Ltd 作業機械の動力源装置
JP2007247230A (ja) * 2006-03-15 2007-09-27 Kobelco Contstruction Machinery Ltd ハイブリッド建設機械

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006336306A (ja) * 2005-06-02 2006-12-14 Shin Caterpillar Mitsubishi Ltd 作業機械
JP2006336432A (ja) * 2005-06-06 2006-12-14 Shin Caterpillar Mitsubishi Ltd 作業機械
JP2007001493A (ja) * 2005-06-27 2007-01-11 Nissan Motor Co Ltd ハイブリッド車両の制御装置
CN101900043B (zh) * 2005-10-28 2012-01-04 株式会社小松制作所 发动机、液压泵以及发电电动机的控制装置
JP5066905B2 (ja) * 2006-12-04 2012-11-07 トヨタ自動車株式会社 車両用駆動装置の制御装置
JP2008137619A (ja) * 2006-12-05 2008-06-19 Toyota Motor Corp 車両用駆動装置の制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002322682A (ja) * 2001-04-27 2002-11-08 Kobelco Contstruction Machinery Ltd ショベル
JP2005237178A (ja) 2004-02-23 2005-09-02 Kobelco Contstruction Machinery Ltd 作業機械の動力源装置
JP2007247230A (ja) * 2006-03-15 2007-09-27 Kobelco Contstruction Machinery Ltd ハイブリッド建設機械

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2228492A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011040346A (ja) * 2009-08-18 2011-02-24 Toyota Central R&D Labs Inc 充電電力制限値演算装置
CN102912821A (zh) * 2012-04-27 2013-02-06 华侨大学 一种液压挖掘节能系统
CN102912821B (zh) * 2012-04-27 2014-12-17 华侨大学 一种液压挖掘节能系统
JP2013240149A (ja) * 2012-05-11 2013-11-28 Daikin Ind Ltd ハイブリット式作業機械
JP2015034376A (ja) * 2013-08-07 2015-02-19 コベルコ建機株式会社 ハイブリッド建設機械の旋回電動機速度制御装置
WO2015040724A1 (ja) * 2013-09-19 2015-03-26 東芝三菱電機産業システム株式会社 蓄電池システム
WO2015040722A1 (ja) * 2013-09-19 2015-03-26 東芝三菱電機産業システム株式会社 蓄電池システム
CN105556782A (zh) * 2013-09-19 2016-05-04 东芝三菱电机产业系统株式会社 蓄电池系统
JPWO2015040722A1 (ja) * 2013-09-19 2017-03-02 東芝三菱電機産業システム株式会社 蓄電池システム
JPWO2015040724A1 (ja) * 2013-09-19 2017-03-02 東芝三菱電機産業システム株式会社 蓄電池システム
US10014698B2 (en) 2013-09-19 2018-07-03 Toshiba Mitsubishi-Electric Industrial Systems Corporation Storage battery system
US10044200B2 (en) 2013-09-19 2018-08-07 Toshiba Mitsubishi-Electric Industrial Systems Corporation Storage battery system
JP2016168920A (ja) * 2015-03-12 2016-09-23 コベルコ建機株式会社 ハイブリッド建設機械

Also Published As

Publication number Publication date
EP2228492A4 (en) 2017-02-22
CN101918649A (zh) 2010-12-15
KR101268849B1 (ko) 2013-05-29
JP5154578B2 (ja) 2013-02-27
US8285434B2 (en) 2012-10-09
CN101918649B (zh) 2013-02-06
US20100280697A1 (en) 2010-11-04
KR20100099214A (ko) 2010-09-10
EP2228492A1 (en) 2010-09-15
JPWO2009084673A1 (ja) 2011-05-19

Similar Documents

Publication Publication Date Title
JP5154578B2 (ja) ハイブリッド式建設機械
JP5198661B2 (ja) ハイブリッド型作業機械及び作業機械の制御方法
US9008875B2 (en) Hybrid working machine and servo control system
JP5220679B2 (ja) ハイブリッド型作業機械及びハイブリッド型作業機械の制御方法
US8532855B2 (en) Hybrid construction machine
JP5767448B2 (ja) ハイブリッド式建設機械の制御システム及び方法
JP5340627B2 (ja) ハイブリッド式建設機械
JP5974014B2 (ja) ハイブリッド駆動式の油圧作業機械
JP2010173599A (ja) ハイブリッド式作業機械の制御方法、及びサーボ制御システムの制御方法
JP5037555B2 (ja) ハイブリッド型建設機械
JP6243857B2 (ja) ハイブリッド建設機械
JP2006233843A (ja) ハイブリッド駆動式のホイール系作業車両
JP2015107711A (ja) ハイブリッド式作業車両
JP5546750B2 (ja) ハイブリッド式建設機械
JP5037558B2 (ja) ハイブリッド型建設機械
WO2020044921A1 (ja) ハイブリッド建設機械
WO2020039862A1 (ja) ハイブリッド建設機械
JP2014231297A (ja) ハイブリッド作業機械

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880123115.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08866647

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009548112

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20107014164

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12810607

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008866647

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE