WO2009084539A1 - 荷重センサ - Google Patents

荷重センサ Download PDF

Info

Publication number
WO2009084539A1
WO2009084539A1 PCT/JP2008/073441 JP2008073441W WO2009084539A1 WO 2009084539 A1 WO2009084539 A1 WO 2009084539A1 JP 2008073441 W JP2008073441 W JP 2008073441W WO 2009084539 A1 WO2009084539 A1 WO 2009084539A1
Authority
WO
WIPO (PCT)
Prior art keywords
base substrate
load sensor
strain
strain detection
frame member
Prior art date
Application number
PCT/JP2008/073441
Other languages
English (en)
French (fr)
Inventor
Ryoichi Maeda
Yoshiharu Terauchi
Takayuki Norimatsu
Kentaro Nishikawa
Original Assignee
Alps Electric Co., Ltd.
Ntn Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co., Ltd., Ntn Corporation filed Critical Alps Electric Co., Ltd.
Priority to JP2009548046A priority Critical patent/JPWO2009084539A1/ja
Priority to CN2008801232850A priority patent/CN101910812A/zh
Publication of WO2009084539A1 publication Critical patent/WO2009084539A1/ja
Priority to US12/818,714 priority patent/US7997155B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/18Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2206Special supports with preselected places to mount the resistance strain gauges; Mounting of supports
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0041Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining deflection or stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0083Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by measuring variation of impedance, e.g. resistance, capacitance, induction

Definitions

  • the present invention relates to a load sensor, and more particularly, to a load sensor suitable for detecting a load applied to a detection target in which it is difficult to directly attach a strain detection member such as a strain gauge.
  • a load sensor has a sensor plate that is elastically deformed by receiving an applied load, and a plurality of strain detection elements (strain gauges) fixed to the surface thereof, and the sensor plate is elastically deformed according to the applied load on the sensor. It is known to detect the applied load by judging the tensile stress and the compressive stress applied to the strain detecting element (see, for example, Patent Document 1).
  • a strain gauge for detecting a load in the vertical direction and a strain gauge for detecting a load in the horizontal direction are directly attached to the side surface of the pressure receiving column joined to the pressure receiving portion.
  • a load distribution sensor that detects the above (for example, see Patent Document 2).
  • the strain gauge is directly attached to the side surface of the pressure receiving column, for example, the strain gauge is formed of a special material or has a special shape. There is a problem in that it is impossible to detect a strain generated in a detection target for which it is difficult to directly attach a strain detection member such as a gauge. Further, in the conventional load sensor as described above, it is necessary to reduce the size of the sensor plate in order to reduce the size, but when the sensor plate is reduced in this way, it is formed on the sensor plate. In some cases, the distance between the input / output terminal and the strain detection element cannot be secured. In this case, it is conceivable that the detection accuracy of the strain detection element is deteriorated due to the influence of stress applied to the input / output terminals due to wiring work or the like.
  • the present invention has been made in view of such a problem, and can appropriately detect a strain generated in a detection target for which it is difficult to directly attach a strain detection member, and can reduce the size of the sensor itself. It is an object of the present invention to provide a load sensor that can prevent deterioration in detection accuracy that may occur based on stress applied to an input / output terminal and ensure high detection accuracy.
  • the load sensor of the present invention comprises a base substrate having at least two fixing portions for a detection target, and a strain detection element provided on a surface of the base substrate, and the strain detection element is disposed in a region between the fixing portions. It is characterized by arranging.
  • the base substrate is fixed to the detection target at two locations, and the strain detection elements are arranged in a region between the two fixed portions. For this reason, by fixing the base substrate so that the portion (distortion detection portion) where the distortion in the detection target is to be detected is arranged between the fixing portions, the base substrate is similar to the distortion generated in the distortion detection portion in the detection target.
  • the distortion of the base substrate can be detected by the strain detection element, so that even if it is difficult to attach the strain detection member directly to the detection target, the distortion occurs in the detection target. It becomes possible to detect distortion appropriately.
  • the load sensor includes a reference resistance element that is provided on the surface of the base substrate and forms a bridge circuit together with the strain detection element, and the reference resistance element is disposed in a region outside the fixing portion.
  • the reference resistance element is arranged in the region outside the fixed portion, it is possible to obtain a reference resistance value without being affected by the distortion generated in the detection target.
  • the width of the portion where the strain detection element is provided on the base substrate is narrower than the other portions. In this case, since the base substrate can be easily distorted according to the distortion generated in the detection target, the distortion generated in the detection target can be detected with higher accuracy.
  • the strain detection element and the reference resistance element are formed on the base substrate by screen printing.
  • a bridge circuit including a strain detection element and a reference resistance element can be easily formed on the base substrate.
  • the base substrate may have two surfaces facing the detection target with a bent portion interposed therebetween, and at least one fixing portion may be provided on both surfaces.
  • the base substrate having two surfaces sandwiching the bent portion is fixed to the detection target, the base substrate is distorted in the same manner as the distortion generated in the detection target, and the distortion of the base substrate is reduced. Since it can be detected by the strain detection element, even in a detection target having a bent shape in which it is difficult to directly attach the strain detection member, it is possible to appropriately detect the distortion generated in the detection target. .
  • the base substrate may have a substantially L shape.
  • the base substrate since the base substrate can be fixed to the detection target having a substantially L shape, it is possible to appropriately detect the distortion generated in the detection target having the L shape.
  • the load sensor of the present invention includes a base substrate having at least two fixing portions with respect to a detection target, a strain detection element and an input / output terminal provided on the surface of the base substrate, and the strain detection element is fixed to the fixing sensor. While being arranged in a region between the parts, it is arranged in a region on the opposite side of the input / output terminal with the fixed part interposed therebetween.
  • the base substrate is fixed to the detection target in at least two places, and the strain detection element is disposed in the region between the fixed portions, so that the location where the strain in the detection target is to be detected (strain detection location)
  • strain detection location the location where the strain in the detection target is to be detected.
  • the distance between the input / output terminal and the strain detection element can be reduced, and the deterioration of the detection accuracy that can occur based on the stress applied to the input / output terminal can be prevented. It is possible to ensure a high degree of detection accuracy while achieving the above.
  • the load sensor includes a reference resistance element that is provided on the surface of the base substrate and forms a bridge circuit together with the strain detection element, and the reference resistance element is disposed in a region outside the fixing portion.
  • the load sensor it is preferable to arrange in a region opposite to the input / output terminal with the fixed portion interposed therebetween. In this case, it is equivalent to the load applied to the strain detection location in the detection target by fixing the base substrate so that the location (distortion detection location) where the strain in the detection target is to be detected is arranged between the fixing portions. Can be applied to the base substrate, and an output voltage corresponding to the load applied to the detection target by the bridge circuit can be output.
  • the reference resistance element is arranged in a region outside the fixed portion, it becomes possible to obtain a reference resistance value without being affected by the load applied to the detection target.
  • it is disposed in a region opposite to the input / output terminal with the fixed portion interposed therebetween, it is possible to obtain a reference resistance value without being affected by stress on the input / output terminal.
  • the strain detection element, the input / output terminal, and the reference resistance element are formed on the base substrate by screen printing.
  • a bridge circuit including a strain detection element and a reference resistance element can be easily formed on the base substrate.
  • the base substrate has a bent portion and has two surfaces facing the detection target with the bent portion interposed therebetween, and at least one fixing portion is provided on both surfaces, It is also possible to provide the strain detection element, the input / output terminal and the reference resistance element on the surface of the surface. In this case, since the base substrate having two surfaces sandwiching the bent portion is fixed to the detection target on both surfaces, a load equivalent to the load applied to the detection target having the bent shape is applied to the base substrate. It is possible to detect the load on the base substrate with a strain detecting element while applying the voltage.
  • the strain detection element may be disposed in a region near the bent portion, while the reference resistance element may be disposed in a region opposite to the bent portion with the fixed portion interposed therebetween. It is done.
  • the strain detection element since the strain detection element is arranged in the area near the bent portion, the surface on which the strain detection element or the like is provided is fixed to a position where the strain in the detection target is to be detected (strain detection position). It is possible to transmit the load applied to the strain detection location in the detection target with high accuracy to the base substrate.
  • the reference resistance element is disposed on the opposite side of the bending portion with the fixed portion interposed therebetween, it is possible to obtain a reference resistance value in the bridge circuit without being affected by the load on the detection target. Become.
  • the base substrate may have a substantially L shape.
  • the base substrate since the base substrate can be fixed to the detection target having a substantially L shape, it is possible to appropriately detect the load applied to the detection target having the L shape.
  • a thermistor may be provided on the same surface as the strain detection element, the input / output terminal, and the reference resistance element. In this case, since the load correction calculation can be performed according to the temperature detected by the thermistor provided on the same surface as the strain detection element that detects the load on the detection target, the detection target can be detected with higher accuracy. It is possible to detect the applied load.
  • the base substrate is fixed to the detection target at two locations, and the strain detection element is disposed in the region between the two fixed portions.
  • the base substrate is distorted in the same manner as the strain generated at the detected strain location in the detection target, and the distortion of the base substrate is distorted. Since it can detect with a detection element, it becomes possible to detect the distortion which generate
  • the base substrate is fixed to the detection target at at least two locations, the strain detection element is disposed in the region between the fixed portions, and the input / output terminals are strain-detected with the fixed portion interposed therebetween. Because it is placed in the area opposite to the element, the load equivalent to the load applied to the detection target is applied to the base substrate, and the load on the base substrate is detected without being affected by the stress on the input / output terminals. It can be detected by the element. As a result, the distance between the input / output terminal and the strain detection element can be reduced, and the deterioration of the detection accuracy that can occur based on the stress applied to the input / output terminal can be prevented. It is possible to ensure a high degree of detection accuracy while achieving the above.
  • FIG. 3 is a configuration diagram of a bridge circuit formed on a base substrate of the strain detection sensor according to Embodiment 1.
  • FIG. 3 is a perspective view at the time of changing the structure of the distortion
  • FIG. It is the top view (a) and side sectional view (b) of the distortion detection sensor shown in FIG. It is the perspective view (a) and front view (b) of the base board which the distortion detection sensor which concerns on Embodiment 2 of this invention has.
  • FIG. 6 is a side sectional view of a strain detection sensor according to Embodiment 2.
  • FIG. It is a perspective view which shows the structure of the load sensor which concerns on Embodiment 3 of this invention. It is the top view (a) and side sectional view (b) of the load sensor which concerns on Embodiment 3.
  • 6 is a configuration diagram of a bridge circuit formed on a base substrate of a load sensor according to Embodiment 3.
  • FIG. It is a top view at the time of changing the structure of the load sensor which concerns on Embodiment 3.
  • FIG. It is the perspective view (a) and front view (b) of the base board which the load sensor which concerns on Embodiment 4 of this invention has.
  • FIG. 6 is a side sectional view of a load sensor according to a fourth embodiment.
  • the load sensor according to the present embodiment is disposed at a location where a load such as various frames arranged inside a vehicle or the like is easily applied, and detects the load applied thereto.
  • a load such as various frames arranged inside a vehicle or the like
  • positioned it is not limited to a specific field
  • FIG. 1 is a perspective view showing a configuration of a load sensor 10 according to Embodiment 1 of the present invention
  • FIG. 2 is a top view (a) and a side sectional view (b) of the load sensor 10 according to Embodiment 1.
  • FIG. 1 and FIG. 2B for convenience of explanation, a frame member 20 as a detection target to which the load sensor 10 is fixed is shown.
  • FIG. 2B shows a cross section cut at the center of screws 13a and 13b described later.
  • the load sensor 10 includes a base substrate 11 that is fixed to a frame member 20.
  • the base substrate 11 is formed, for example, by processing a flat stainless steel (SUS) material into a predetermined shape and coating the surface thereof with glass.
  • SUS stainless steel
  • two holes 12a and 12b are formed as fixing portions for the frame member 20. These holes 12 a and 12 b are formed on the same straight line near the center of the short side along the long side of the base substrate 11.
  • the hole 12a is formed inside the left side end portion of the base substrate 11 shown in FIG. 2A, and the hole 12b is formed near the right side end portion shown in FIG. For this reason, in the base substrate 11, the dimension of the outer part of the hole 12a is longer than the outer part of the hole 12b. Further, in the base substrate 11, a constricted portion 11a that is narrower than other portions is formed between the holes 12a and 12b. The constricted portion 11 a is formed to make the base substrate 11 easily distorted according to the strain generated in the frame member 20.
  • the base substrate 11 having such a configuration is fixed to the frame member 20 at two positions by screws 13a and 13b through holes 12a and 12b.
  • Spacers 14a and 14b are disposed between the base substrate 11 and the frame member 20 and between the base substrate 11 and the head portions of the screws 13a and 13b.
  • the spacers 14a and 14b are disposed in order to separate the base substrate 11 and the frame member 20 from each other by a predetermined distance, or to prevent the base substrate 11 from being damaged by the screws 13a and 13b.
  • the spacer 14b between the base substrate 11 and the head portions of the screws 13a and 13b may be omitted.
  • the base substrate 11 has a portion where the distortion in the frame member 20 is desired to be detected (hereinafter referred to as “distortion detection portion”) between the fixed portions (that is, the hole 12a and the hole 12b).
  • disortion detection portion a portion where the distortion in the frame member 20 is desired to be detected
  • the base substrate 11 reflects the state of the frame member 20 in the vicinity of the distortion detection location. And deforms integrally. For this reason, when distortion occurs at the strain detection location in the frame member 20, the base substrate 11 is distorted according to the strain amount at the strain detection location.
  • a pair of strain detection elements 15a and 15b and a pair of reference resistance elements 16a and 16b are provided on the surface of the base substrate 11 (the surface opposite to the frame member 20 shown in FIGS. 1 and 2).
  • the pair of strain detection elements 15a and 15b is an area between the holes 12a and 12b of the base substrate 11, and is arranged in the vertical direction shown in FIG. 2A at a position corresponding to the narrow width portion by the constricted portion 11a. Has been placed.
  • the pair of reference resistance elements 16a and 16b are arranged in the vertical direction shown in the figure in the region outside the holes 12a and 12b, specifically, the region on the left side of the hole 12a shown in FIG. Has been placed.
  • the pair of strain detection elements 15a and 15b and the pair of reference resistance elements 16a and 16b are bridged to form a bridge circuit as shown in FIG. That is, the strain detection element 15a and the reference resistance element 16b connected in series and the strain detection element 15b and the reference resistance element 16a connected in series are connected in parallel, and are connected between the power supply voltage Vcc and the ground GND. .
  • the output terminal Out1 is drawn from the connection point between the strain detection element 15b and the reference resistance element 16a, and the output terminal Out2 is drawn from the connection point between the distortion detection element 15a and the reference resistance element 16b.
  • the components and wiring of such a bridge circuit are formed on the base substrate 11.
  • the components and wirings of these bridge circuits are formed by screen printing on the base substrate 11.
  • the bridge circuit can be easily formed on the base substrate 11.
  • the base substrate 11 is also distorted accordingly.
  • the pair of strain detection elements 15a and 15b are arranged in the region between the holes 12a and 12b, a compressive stress or a tensile stress corresponding to the strain of the frame member 20 is applied.
  • the pair of reference resistance elements 16a and 16b are arranged in the region outside the holes 12a and 12b (left side of the hole 12a shown in FIG. 2B), the pair of reference resistance elements 16a and 16b can be adapted to the distortion of the frame member 20. No compressive or tensile stress is applied.
  • the output voltage from the output terminals Out1 and Out2 of the bridge circuit shown in FIG. 3 changes according to the compressive stress or tensile stress applied to the pair of strain detection elements 15a and 15b. That is, the output voltage from the bridge circuit changes according to the strain generated in the frame member 20 to which the load sensor 10 is fixed.
  • the base substrate 11 is fixed to the frame member 20 at two locations, and the pair of strain detection elements 15a and 15b are arranged in the region between the holes 12a and 12b. is doing.
  • the distortion detection location in the frame member 20 is fixed by fixing the base substrate 11 so that the distortion detection location in the frame member 20 is disposed between the fixing portions (that is, between the holes 12a and 12b). Since the base substrate 11 is distorted in the same manner as the strain generated in the base plate 11 and the strain of the base substrate 11 can be detected by the pair of strain detection elements 15a and 15b, the strain detection member is directly attached to the frame member 20. Even when it is difficult to attach to the frame member, it is possible to appropriately detect the distortion generated in the frame member 20.
  • the working efficiency is improved as compared with the case where the strain detection member is directly attached. Therefore, the time and cost required for the work can be reduced.
  • the pair of strain detection elements 15a and 15b are arranged in a region between the holes 12a and 12b as fixing portions formed in the base substrate 11, and the reference resistance
  • the elements 16a and 16b are arranged in a region outside the holes 12a and 12b.
  • the distortion detection location in the frame member 20 is fixed by fixing the base substrate 11 so that the distortion detection location in the frame member 20 is disposed between the fixing portions (that is, between the holes 12a and 12b). Since distortion can be generated in the base substrate 11 in the same manner as the distortion generated in the frame substrate and an output voltage corresponding to the distortion generated in the frame member 20 can be output by the bridge circuit formed in the base substrate 11, the distortion detection member can be output.
  • the pair of strain detection elements 15a and 15b are arranged in the narrow portion of the constricted portion 11a formed in the base substrate 11, and therefore the frame member 20 Since the compressive stress or the tensile stress corresponding to the strain can be transmitted to the pair of strain detection elements 15a and 15b with high accuracy, the strain generated in the frame member 20 can be detected with higher accuracy.
  • FIGS. 4 and 5 are perspective views when the configuration of the load sensor 10 according to the first embodiment is changed
  • FIG. 5 is a top view (a) and a side sectional view (b) of the load sensor 10 ′ shown in FIG. It is. 4 and 5, the same components as those in FIGS. 1 and 2 are denoted by the same reference numerals, and the description thereof is omitted.
  • the base substrate 11 is longer and has two constricted portions 11 a and 11 b, and strain is detected in the narrow portions of the two constricted portions 11 a and 11 b.
  • a hole 12c as a fixing portion is formed between the elements 15a and 15b and the constricted portions 11a and 11b, and the frame is formed by screws 13a to 13c through the holes 12a to 12c including the holes 12c. It differs from the load sensor 10 described above in that it is fixed at three positions with respect to the member 20.
  • the pair of strain detection elements 15a and 15b and the pair of reference resistance elements 16a and 16b in the load sensor 10 ′ shown in FIGS. 4 and 5 are the same as the bridge sensor shown in FIG. Is configured. Further, the components and wirings of the bridge circuit are formed by screen printing on the base substrate 11 in the same manner as the load sensor 10 described above.
  • the base substrate 11 is also distorted accordingly. Since the pair of strain detection elements 15a and 15b are disposed in the region between the holes 12a and 12c and the region between the holes 12c and 12b, respectively, the compressive stress or tension according to the strain of the frame member 20 is obtained. Stress will be applied.
  • the pair of reference resistance elements 16a and 16b are arranged in the region outside the holes 12a to 12c (the left side of the hole 12a shown in FIG. 5B). No compressive or tensile stress is applied. For this reason, the output voltage from the bridge circuit changes according to the distortion generated in the frame member 20 to which the load sensor 10 ′ is fixed, similarly to the load sensor 10 described above. That is, since an output voltage corresponding to the distortion of the frame member 20 can be output via the base substrate 11, even if it is difficult to attach the distortion detection member directly to the frame member 20, the frame member Accordingly, it is possible to appropriately detect the distortion generated in 20.
  • the load sensor 30 according to the second embodiment is different from the load sensor 10 according to the first embodiment in which the base substrate 11 has a flat plate shape in that the base substrate 11 has a bent shape with a bent portion interposed therebetween. By having such a bent shape, the load sensor 30 according to the second embodiment can detect, for example, distortion generated in a detection target having an L shape.
  • FIG. 6 is a perspective view (a) and a front view (b) of the base substrate 31 included in the load sensor 30 according to the second embodiment.
  • FIG. 7 is a sectional side view of the load sensor 30 according to the second embodiment.
  • the same components as those of the load sensor 10 according to the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the frame member 20 as a detection target to which the load sensor 30 is fixed is shown for convenience of explanation.
  • a bent portion disposed at a position between the pair of strain detection elements 15a and 15b and the hole 12b. It differs from the base substrate 11 according to the first embodiment in that it is bent at a substantially right angle at 32.
  • the bending portion 32 is disposed at a position between the pair of strain detection elements 15a and 15b and the hole 12b, and faces the frame member 20 with the bending portion 32 interposed therebetween.
  • the base substrate 31 has a substantially L shape with a plane extending vertically upward from the bent portion 32 and a plane extending horizontally from the bent portion 32 to the right side shown in FIG. Have.
  • a pair of strain detection elements 15a and 15b and a pair of reference resistance elements 16a and 16b are provided on a plane extending vertically upward from the bent portion 32.
  • the pair of strain detection elements 15a and 15b and the pair of reference resistance elements 16a and 16b constitute the bridge circuit shown in FIG. 3 as with the load sensor 10 according to the first embodiment. Further, the components and wirings of the bridge circuit are formed by screen printing on the base substrate 31 as in the load sensor 10 according to the first embodiment.
  • the base substrate 31 is arranged such that the strain detection location in the frame member 20 is between the fixed portions (that is, between the hole 12a and the hole 12b).
  • the point to be fixed is the same as that of the load sensor 10 according to the first embodiment.
  • the base substrate 31 is also distorted accordingly.
  • the pair of strain detection elements 15a and 15b are arranged in the region between the holes 12a and 12b, a compressive stress or a tensile stress corresponding to the strain of the frame member 20 is applied.
  • the pair of reference resistance elements 16a and 16b are arranged in the region outside the holes 12a and 12b (the upper side of the hole 12a shown in FIG. 7)
  • the compressive stress or the No tensile stress is applied.
  • the output voltage from the output terminals Out1 and Out2 of the bridge circuit shown in FIG. 3 changes according to the compressive stress or tensile stress applied to the pair of strain detection elements 15a and 15b. That is, the output voltage from the bridge circuit changes according to the distortion generated in the frame member 20 to which the load sensor 30 is fixed.
  • the load sensor 30 has two planes facing the frame member 20 with the bent portion 32 interposed therebetween, and the holes 12a and 12b as the fixing portions are provided on both planes, respectively.
  • the pair of strain detection elements 15a and 15b are arranged in a region between the holes 12a and 12b, and the reference resistance elements 16a and 16b are arranged in a region outside the holes 12a and 12b. Therefore, by fixing the base substrate 31 so that the strain detection location in the frame member 20 is disposed between the fixing portions (that is, between the hole 12a and the hole 12b), the strain detection location in the frame member 20 is obtained.
  • an output voltage corresponding to the distortion generated in the frame member 20 can be output by the bridge circuit formed on the base substrate 11. Even in the frame member 20 having a bent shape that is difficult to be directly attached, it is possible to appropriately detect distortion generated in the frame member 20.
  • FIG. 8 is a perspective view showing the configuration of the load sensor 40 according to the third embodiment of the present invention
  • FIG. 9 is a top view (a) and a side sectional view (b) of the load sensor 40 according to the third embodiment. ).
  • the frame member 20 as a detection target to which the load sensor 40 is fixed is shown for convenience of explanation.
  • FIG. 9B shows a cross section cut at the center of screws 13a and 13b described later.
  • the load sensor 40 includes a base substrate 11 fixed to the frame member 20.
  • the base substrate 11 is formed, for example, by processing a flat stainless steel (SUS) material into a predetermined shape and coating the surface thereof with glass. Thus, by coating the surface of the stainless steel with glass, it is possible to obtain the base substrate 11 excellent in high heat resistance while ensuring elasticity.
  • the base substrate 11 is formed with three holes 12a to 12c (not shown in FIG. 8, refer to FIG. 9B) as fixing portions for the frame member 20. These holes 12 a to 12 c are formed along the long side of the base substrate 11 on the same straight line near the center of the short side.
  • the hole 12a is formed inside the left side end portion shown in FIG. 9A of the base substrate 11, the hole 12b is formed inside the right side end portion shown in FIG.
  • the base substrate 11 is formed near the center.
  • constricted portions 11a and 11b that are narrower than the other portions are formed between the holes 12a and 12c and between the holes 12c and 12b. .
  • the constricted portions 11 a and 11 b are formed to make the base substrate 11 easily distorted according to the load applied to the frame member 20.
  • the base substrate 11 having such a configuration is fixed to the frame member 20 at three positions by screws 13a to 13c through holes 12a to 12c.
  • spacers 14a to 14c are disposed between the base substrate 11 and the frame member 20 and between the base substrate 11 and the head portions of the screws 13a to 13c. ing.
  • the spacers 14a to 14c are disposed in order to separate the base substrate 11 and the frame member 20 from each other by a predetermined distance, or to prevent the base substrate 11 from being damaged by the screws 13a to 13c.
  • the base substrate 11 has a portion where the strain in the frame member 20 is desired to be detected (hereinafter referred to as “strain detection location”) between the fixed portions (that is, the hole 12a and the hole 12c and 12b).
  • strain detection location a portion where the strain in the frame member 20 is desired to be detected
  • the base substrate 11 is deformed integrally reflecting the state in the vicinity of the distortion detection location in the frame member 20. To do. For this reason, when a load is applied to the strain detection location in the frame member 20, a load equivalent to the load applied to the strain detection location is applied to the base substrate 11.
  • the strain detection element 15a is a region between the hole 12a and the hole 12c of the base substrate 11, and is disposed at a position corresponding to the narrow width portion by the constricted portion 11a.
  • the strain detection element 15b is a region between the hole 12c and the hole 12b of the base substrate 11, and is disposed at a position corresponding to the narrow width portion by the constricted portion 11b.
  • the pair of reference resistance elements 16a and 16b are arranged in the vertical direction shown in FIG. 9A in the region outside the holes 12a to 12c, specifically, the region on the left side of the hole 12a shown in FIG. Has been placed. Further, the input / output terminals 17a to 17d are arranged in a region opposite to the pair of strain detection elements 15a and 15b and the pair of reference resistance elements 16a and 16b, specifically, the holes 12b. In the right side area shown in FIG. 9A, they are arranged in the vertical direction shown in FIG.
  • the pair of strain detection elements 15a and 15b, the pair of reference resistance elements 16a and 16b, and the input / output terminals 17a to 17d are bridge-connected to form a bridge circuit as shown in FIG. That is, the strain detection element 15a and the reference resistance element 16b connected in series and the strain detection element 15b and the reference resistance element 16a connected in series are connected in parallel, and are connected between the power supply voltage Vcc and the ground GND. .
  • the output terminal Out1 is drawn from the connection point between the strain detection element 15b and the reference resistance element 16a, and the output terminal Out2 is drawn from the connection point between the distortion detection element 15a and the reference resistance element 16b.
  • the input / output terminals 17a and 17b correspond to the power supply voltage Vcc and the ground GND, respectively
  • the input / output terminals 17c and 17d correspond to the output terminal Out1 and the output terminal Out2, respectively.
  • the components and wiring of such a bridge circuit are formed on the base substrate 11.
  • the components and wiring of these bridge circuits are formed by screen printing on the base substrate 11.
  • the bridge circuit can be easily formed on the base substrate 11.
  • the load sensor 40 having such a configuration, for example, when a load is applied to the frame member 20, the load is transmitted to the base substrate 11 through the screws 13b and 13c.
  • the pair of strain detection elements 15a and 15b are arranged in the region between the hole 12a and the hole 12c and between the hole 12c and the hole 12b, respectively, according to the load on the frame member 20 Compressive stress or tensile stress is applied.
  • the pair of reference resistance elements 16a and 16b are arranged in the region outside the holes 12a to 12c (the left side of the hole 12a shown in FIG. 9A), the pair of reference resistance elements 16a and 16b can respond to the load on the frame member 20. No compressive or tensile stress is applied.
  • the output voltage from the output terminals Out1 and Out2 of the bridge circuit shown in FIG. 10 changes according to the compressive stress or tensile stress applied to the pair of strain detection elements 15a and 15b. That is, the output voltage from the bridge circuit changes according to the load applied to the frame member 20 to which the load sensor 40 is fixed.
  • the input / output terminals 17a to 17d have a pair of strain detection elements 15a and 15b and a side opposite to the pair of reference resistance elements 16a and 16b across the holes 12a to 12c (shown in FIG. 9A of the hole 12c). (Right side) area. For this reason, stress applied to the input / output terminals 17a to 17d due to wiring work or the like does not affect the strain detection elements 15a and 15b and the pair of reference resistance elements 16a and 16b.
  • the base substrate 11 is fixed to the frame member 20 at three locations, and the pair of strain detection elements 15a and 15b are interposed between the holes 12a and 12c, respectively. It arrange
  • the input / output terminals 17a to 17d are arranged in a region opposite to the pair of strain detection elements 15a and 15b with the holes 12b and 12c interposed therebetween. Therefore, the load on the base substrate 11 can be detected by the pair of strain detection elements 15a and 15b without being affected by the stress on the input / output terminals 17a to 17d. As a result, it is possible to reduce the distance between the input / output terminals 17a to 17d and the pair of strain detection elements 15a and 15b, and to prevent detection accuracy deterioration that may occur based on the stress applied to the input / output terminals 17a to 17d. Therefore, it is possible to ensure high detection accuracy while reducing the size of the sensor itself.
  • the pair of reference resistance elements 16a and 16b that form a bridge circuit together with the pair of strain detection elements 15a and 15b are arranged in the region outside the holes 12a to 12c. .
  • the distortion in the frame member 20 is secured by fixing the base substrate 11 so that the strain detection point in the frame member 20 is disposed between the fixing portions (that is, between the hole 12a and the holes 12c and 12b).
  • a load equivalent to the load applied to the detection location can be applied to the base substrate 11, and an output voltage corresponding to the load applied to the frame member 20 by the bridge circuit can be output.
  • the reference resistance value can be obtained without being affected by the load applied to the frame member 20. Can be obtained. Further, since the holes 12a are disposed in the region opposite to the input / output terminals 17a to 17d, the reference resistance value can be obtained without being affected by the stress on the input / output terminals 17a to 17d. It becomes possible.
  • the pair of reference resistance elements 16a and 16b are arranged in the region on the left side of the hole 12a shown in FIG. 9A.
  • the position where 16b is arranged is not limited to this, and can be changed as appropriate. Any position may be used as long as the position is not affected by the load applied to the frame member 20 as the detection target and the stress on the input / output terminals 17a to 17d.
  • an auxiliary piece 11c extending from the long side of the base substrate 11 may be provided, and a pair of reference resistance elements 16a and 16b may be arranged on the surface of the auxiliary piece 11c.
  • the pair of reference resistance elements 16a and 16b can affect the load applied to the frame member 20 and the influence of stress on the input / output terminals 17a to 17d as in the above-described embodiment. Since the resistance value used as a reference in the bridge circuit can be obtained, the output voltage corresponding to the load applied to the frame member 20 in the bridge circuit can be output, and high detection accuracy can be obtained. Can be secured.
  • the load sensor 60 according to the fourth embodiment is a load according to the third embodiment in which the base substrate 11 has a flat plate shape in that the base substrate 31 has a bent portion and has a bent shape with the bent portion interposed therebetween. Different from the sensor 40. By providing the base substrate 31 having such a bent shape, the load sensor 60 according to Embodiment 4 can appropriately detect a load applied to a detection target having an L-shape, for example. is there.
  • FIG. 12 is a perspective view (a) and a front view (b) of the base substrate 31 included in the load sensor 60 according to the fourth embodiment.
  • FIG. 13 is a side sectional view of the load sensor 60 according to the fourth embodiment. 12 and 13, the same components as those of the load sensor 40 according to the third embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • FIG. 6 shows a cross-sectional view taken along the chain line shown in FIG. Further, in FIG. 13, for convenience of explanation, the frame member 20 as a detection target to which the load sensor 60 is fixed is shown.
  • a bent portion 32 is formed at a predetermined position on the base substrate 31 included in the load sensor 60 according to the fourth embodiment.
  • the base substrate 31 is bent at a substantially right angle by a bent portion 32 and has two planes facing the frame member 20 with the bent portion 32 interposed therebetween.
  • the base substrate 31 is substantially L-shaped by a plane 31a extending vertically upward from the bent portion 32 and a plane 31b extending horizontally from the bent portion 32 to the right side shown in FIG. It has a shape.
  • the holes 12a and 12b as the fixing portions are formed at substantially central portions of the respective planes 31a and 31b.
  • the base substrate 31 is formed with a protruding portion 33 protruding leftward as shown in FIG.
  • the constituent material and the coating material of the base substrate 31 are the same as those of the base substrate 11 according to the third embodiment.
  • the base substrate 31 having such a configuration is fixed to the frame member 20 at two positions by screws 13a and 13b through holes 12a and 12b, as shown in FIG.
  • spacers 14 a and 14 b are disposed between the base substrate 31 and the frame member 20. These spacers 14a and 14b are arranged to separate the base substrate 31 and the frame member 20 from each other by a certain distance.
  • a spacer disposed between the base substrate 31 and the head portions of the screws 13a and 13b is omitted.
  • the base substrate 31 is fixed so that the strain detection point in the frame member 20 is disposed between the fixing portions (that is, between the hole 12a and the hole 12b). Is done.
  • the base substrate 31 reflects the state in the vicinity of the distortion detection location in the frame member 20 with the frame member 20. It deforms integrally. For this reason, when a load is applied to the strain detection location in the frame member 20, a load equivalent to the load applied to the frame member 20 is applied to the base substrate 31.
  • a pair of strain detection elements 15a and 15b On the surface of the plane 31a (the surface on the frame member 20 side shown in FIG. 13), a pair of strain detection elements 15a and 15b, a pair of reference resistance elements 16a and 16b, and five input / output terminals 17a to 17e are provided. ing.
  • the pair of strain detection elements 15 a and 15 b are disposed in a region between the hole 12 a and the hole 12 b and in the vicinity of the bending portion 32.
  • the pair of reference resistance elements 16a and 16b are arranged in a region opposite to the bent portion 32 with the hole 12a interposed therebetween.
  • the pair of strain detection elements 15a and 15b and the pair of reference resistance elements 16a and 16b are arranged in the right and left direction shown in FIG. Yes.
  • the input / output terminals 17a to 17e are provided on the projecting portion 33, and are disposed on the opposite side of the pair of strain detection elements 15a and 15b and the pair of reference resistance elements 16a and 16b with the hole 12a interposed therebetween.
  • the input / output terminal 17e constitutes an input / output terminal corresponding to the thermistor 18 described later.
  • the strain detection location on the frame member 20 is between the fixed portions (that is, between the hole 12a and the hole 12b).
  • the base substrate 31 is fixed so that the load applied to the strain detection location in the frame member 20 can be transmitted to the base substrate 31 with high accuracy.
  • the pair of reference resistance elements 16a and 16b are disposed in the region opposite to the bent portion 32 with the hole 12a interposed therebetween, the reference resistor element 16a and 16b is used as a reference in a bridge circuit described later without being affected by the load on the frame member 20. A resistance value can be obtained.
  • the pair of strain detection elements 15a and 15b, the pair of reference resistance elements 16a and 16b, and the input / output terminals 17a to 17e provided on the plane 31 are similar to those of the load sensor 40 according to the third embodiment.
  • the bridge circuit shown in FIG. the components and wirings of the bridge circuit are formed by screen printing on the base substrate 31 as in the case of the load sensor 40 according to the third embodiment.
  • a bridge circuit can be easily formed on the base substrate 31 even when the bending portion 32 is bent. It becomes possible to do.
  • the thermistor 18 for performing temperature correction according to a temperature change in which the load sensor 60 according to the fourth embodiment is disposed is provided on the plane 31.
  • the thermistor 18 is a region on the left side of the reference resistance element 16a shown in FIG. 12, specifically, between the hole 12a and the input / output terminals 17a to 17e, opposite to the bent portion 32 with the hole 12a interposed therebetween. Is located in the side area. The reason why it is arranged in the region on the side of the reference resistance element 16a in this way is to enable appropriate temperature detection without being affected by the load on the frame member 20.
  • the temperature detected by the thermistor 18 is transferred to an external control unit, and is used for correction calculation of the load detected by the load sensor 60 by the control unit.
  • the frame member 20 can be calculated with higher accuracy by performing the load correction calculation according to the temperature detected by the thermistor 18 provided on the same surface as the strain detection elements 15a, 15b and the like for detecting the load on the frame member 20. It becomes possible to detect the load with respect to.
  • the load sensor 60 having such a configuration, for example, when a load is applied to the frame member 20, the load is transmitted to the base substrate 31 via the screw 13a.
  • the pair of strain detection elements 15a and 15b are disposed in the region between the hole 12a and the hole 12b and in the vicinity of the bent portion 32, the compressive stress or the load corresponding to the load on the frame member 20 is determined. Tensile stress will be applied.
  • the pair of reference resistance elements 16a and 16b are arranged in a region opposite to the bent portion 32 with the hole 12a interposed therebetween, a compressive stress or a tensile stress corresponding to the load on the frame member 20 is not applied. Absent.
  • the output voltage from the output terminals Out1 and Out2 of the bridge circuit shown in FIG. 10 changes according to the compressive stress or tensile stress applied to the pair of strain detection elements 15a and 15b. That is, the output voltage from the bridge circuit changes according to the load applied to the frame member 20 to which the load sensor 60 is fixed.
  • the input / output terminals 17a to 17d are arranged on the opposite side of the pair of strain detection elements 15a and 15b and the pair of reference resistance elements 16a and 16b (left side of the hole 12a shown in FIG. 12) across the hole 12a. Since they are arranged in the region, the stress applied to the input / output terminals 17a to 17e by wiring work or the like does not affect the strain detection elements 15a and 15b and the pair of reference resistance elements 16a and 16b.
  • the load sensor 60 includes the two flat surfaces 31a and 31b that face the frame member 31 with the bent portion 32 interposed therebetween, and the holes 12a and 12b of both the flat surfaces 31a and 31b. And a pair of strain detection elements 15a and 15b are arranged in the region between the holes 12a and 12b and in the vicinity of the bent portion 32. Therefore, by fixing the base substrate 31 so that the strain detection location in the frame member 20 is disposed between the fixing portions (that is, between the hole 12a and the hole 12b), the strain detection location of the frame member 20 is obtained. A load equivalent to the applied load can be applied to the base substrate 31, and the load on the base substrate 31 can be detected by the pair of strain detection elements 15a and 15b.
  • the input / output terminals 17a to 17e are arranged in a region opposite to the pair of strain detection elements 15a and 15b with the hole 12a interposed therebetween. Therefore, the load on the base substrate 31 can be detected by the pair of strain detection elements 15a and 15b without being affected by the stress on the input / output terminals 17a to 17e. As a result, it is possible to reduce the distance between the input / output terminals 17a to 17d and the pair of strain detection elements 15a and 15b, and to prevent detection accuracy deterioration that may occur based on the stress applied to the input / output terminals 17a to 17e. Therefore, it is possible to ensure high detection accuracy while reducing the size of the sensor itself.
  • the reference resistance elements 16a and 16b constituting the bridge circuit together with the pair of strain detection elements 15a and 15b are arranged in the region opposite to the bent portion 32 with the hole 12a interposed therebetween. is doing. Therefore, by fixing the base substrate 31 so that the strain detection location in the frame member 20 is disposed between the fixing portions (that is, between the hole 12a and the hole 12b), the strain detection location in the frame member 20 is obtained.
  • a load equivalent to the applied load can be applied to the base substrate 31, and an output voltage corresponding to the load applied to the frame member 20 by the bridge circuit can be output.
  • the reference resistance elements 16a and 16b are arranged in a region opposite to the bent portion 32 with the hole 12a interposed therebetween, the reference resistance elements 16a and 16b are used without being affected by the load applied to the frame member 20. A resistance value can be obtained. Further, since the pair of reference resistance elements 16a and 16b are arranged in a region opposite to the input / output terminals 17a to 17d with the hole 12a interposed therebetween, they are not affected by stress on the input / output terminals 17a to 17d. It becomes possible to obtain a reference resistance value.
  • this invention is not limited to the said embodiment, It can change and implement variously.
  • the size, shape, and the like illustrated in the accompanying drawings are not limited to this, and can be appropriately changed within a range in which the effect of the present invention is exhibited.
  • various modifications can be made without departing from the scope of the object of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Measurement Of Force In General (AREA)

Abstract

 歪み検出部材を直接的に取り付けることが困難な検出対象に発生する歪みを適切に検出すること。検出対象としてのフレーム部材(20)に対する少なくとも2箇所の固定部としての孔(12a、12b)を有するベース基板(11)と、ベース基板(11)の表面に設けられる一対の歪み検出素子(15a、15b)とを具備し、これらの歪み検出素子(15a、15b)を孔(12a、12b)の間の領域に配置したことを特徴とする。ベース基板(11)の表面に設けられ、一対の歪み検出素子(15a、15b)と共にブリッジ回路を構成する参照抵抗素子(16a、16b)を具備し、参照抵抗素子(16a、16b)を孔(12a、12b)の外側の領域に配置したことを特徴とする。  

Description

荷重センサ
 本発明は、荷重センサに関し、特に、歪みゲージ等の歪み検出部材を直接的に取り付けることが困難な検出対象に印加される荷重の検出に好適な荷重センサに関する。
 従来、荷重センサにおいては、印加荷重を受けて弾性変形するセンサ板と、その表面に固着された複数の歪み検出素子(ストレインゲージ)とを備え、センサに対する印加荷重に応じてセンサ板を弾性変形させることで歪み検出素子に加わる引張応力及び圧縮応力を判断し、当該印加荷重を検出するものが知られている(例えば、特許文献1参照)。
 また、受圧部に接合された受圧柱の側面に、垂直方向の荷重を検出するための歪みゲージと、水平方向の荷重を検出するための歪みゲージとを直接的に取り付け、3次元の荷重分布を検出する荷重分布センサが提案されている(例えば、特許文献2参照)。
 このような荷重センサにおいては、近年、検出対象の小型化や複雑な形状が選択されることに伴って、センサ自体の構成を小型化することが要請されている。また、検出される荷重に基づいて行われる制御が高度化されることに伴って、検出対象に印加される荷重を高い精度で検出することも要請されている。
特開2003-294520号公報 特開2000-162054号公報
 しかしながら、上述のような従来の荷重分布センサにおいては、歪みゲージを受圧柱の側面に直接的に取り付ける構成を採るため、例えば、特殊な材料で形成され、或いは、特殊な形状を有するなど、歪みゲージ等の歪み検出部材を直接的に取り付けることが困難な検出対象に発生する歪みを検出することができないという問題がある。
 また、上述したような従来の荷重センサにおいて、小型化を実現するためには、センサ板を縮小することが必要となるが、このようにセンサ板を縮小する場合には、センサ板上に形成される入出力端子と、歪み検出素子との間の距離を確保できない場合が生じ得る。この場合、配線作業等により入出力端子に加えられる応力の影響によって歪み検出素子の検出精度を劣化させることが考えられる。
 本発明はかかる問題点に鑑みて為されたものであり、歪み検出部材を直接的に取り付けることが困難な検出対象に発生する歪みを適切に検出することができ、また、センサ自体の小型化を図りつつ、入出力端子に加わる応力に基づいて発生し得る検出精度の劣化を防止して高度の検出精度を確保することができる荷重センサを提供することを目的とする。
 本発明の荷重センサ、検出対象に対する少なくとも2箇所の固定部を有するベース基板と、前記ベース基板の表面に設けられる歪み検出素子とを具備し、前記歪み検出素子を前記固定部の間の領域に配置することを特徴とする。
 この構成によれば、ベース基板が2箇所で検出対象に固定されると共に、歪み検出素子を2箇所の固定部の間の領域に配置している。このため、検出対象における歪みを検出したい箇所(歪み検出箇所)が固定部の間に配置されるようにベース基板を固定することにより、検出対象における歪み検出箇所に発生した歪みと同様にベース基板に歪みを発生させると共に、当該ベース基板の歪みを歪み検出素子で検出することができるので、歪み検出部材を検出対象に直接的に取り付けることが困難な場合であっても、検出対象に発生する歪みを適切に検出することが可能となる。
 特に、上記荷重センサにおいては、前記ベース基板の表面に設けられ、前記歪み検出素子と共にブリッジ回路を構成する参照抵抗素子を具備し、前記参照抵抗素子を前記固定部の外側の領域に配置することが好ましい。この場合には、検出対象における歪みを検出したい箇所(歪み検出箇所)が固定部の間に配置されるようにベース基板を固定することにより、検出対象における歪み検出箇所に発生した歪みと同様にベース基板に歪みを発生させると共に、当該ベース基板の歪みに応じた出力電圧をブリッジ回路から出力することができるので、歪み検出部材を検出対象に直接的に取り付けることが困難な場合であっても、検出対象に発生する歪みを適切に検出することが可能となる。特に、固定部の外側の領域に参照抵抗素子が配置されていることから、検出対象に発生した歪みの影響を受けることなく、基準となる抵抗値を得ることが可能となる。
 また、上記荷重センサおいて、前記ベース基板における前記歪み検出素子が設けられる部分の幅を他の部分に比べて細幅にすることが好ましい。この場合には、ベース基板を検出対象に発生した歪みに応じて歪み易くすることができるので、より高い精度で検出対象に発生する歪みを検出することが可能となる。
 さらに、上記荷重センサにおいては、前記歪み検出素子及び参照抵抗素子を前記ベース基板にスクリーン印刷により形成することが好ましい。この場合には、ベース基板上に簡単に歪み検出素子及び参照抵抗素子を含むブリッジ回路を形成することが可能となる。
 また、上記荷重センサにおいて、前記ベース基板は、曲げ部を挟んで前記検出対象に対向する2面を有し、双方の面に前記固定部を少なくとも1つ設けることも可能である。この場合には、曲げ部を挟んだ2面を有するベース基板が検出対象に固定されることから、検出対象に発生した歪みと同様にベース基板に歪みを発生させると共に、当該ベース基板の歪みを歪み検出素子で検出することができるので、歪み検出部材を直接的に取り付けることが困難な屈曲した形状を有する検出対象においても、当該検出対象に発生する歪みを適切に検出することが可能となる。
 例えば、上記荷重センサにおいて、前記ベース基板は、略L字形状を有するようにしても良い。この場合には、略L字形状を有する検出対象にベース基板を固定することができるので、当該L字形状を有する検出対象に発生する歪みを適切に検出することが可能となる。
 本発明の荷重センサは、検出対象に対する少なくとも2箇所の固定部を有するベース基板と、前記ベース基板の表面に設けられる歪み検出素子及び入出力端子とを具備し、前記歪み検出素子を、前記固定部の間の領域に配置する一方、前記固定部を挟んで前記入出力端子と反対側の領域に配置したことを特徴とする。
 この構成によれば、ベース基板が少なくとも2箇所で検出対象に固定されると共に、歪み検出素子を固定部の間の領域に配置したことから、検出対象における歪みを検出したい箇所(歪み検出箇所)が固定部の間に配置されるようにベース基板を固定することにより、検出対象における歪み検出箇所に印加された荷重と同等の荷重をベース基板に印加させると共に、当該ベース基板に対する荷重を歪み検出素子で検出することができる。また、入出力端子を、固定部を挟んで歪み検出素子と反対側の領域に配置している。このため、入出力端子に対する応力の影響を受けることなく、ベース基板に対する荷重を歪み検出素子で検出することができる。この結果、入出力端子と歪み検出素子との距離を縮小することができると共に、入出力端子に加わる応力に基づいて発生し得る検出精度の劣化を防止することができるので、センサ自体の小型化を図りつつ、高度の検出精度を確保することが可能となる。
 特に、上記荷重センサにおいては、前記ベース基板の表面に設けられ、前記歪み検出素子と共にブリッジ回路を構成する参照抵抗素子を具備し、前記参照抵抗素子を、前記固定部の外側の領域に配置する一方、前記固定部を挟んで前記入出力端子と反対側の領域に配置することが好ましい。この場合には、検出対象における歪みを検出したい箇所(歪み検出箇所)が固定部の間に配置されるようにベース基板を固定することにより、検出対象における歪み検出箇所に印加された荷重と同等の荷重をベース基板に印加させると共に、ブリッジ回路で検出対象に印加された荷重に応じた出力電圧を出力することができる。この場合において、参照抵抗素子が固定部の外側の領域に配置されていることから、検出対象に印加された荷重の影響を受けることなく、基準となる抵抗値を得ることが可能となる。また、固定部を挟んで入出力端子と反対側の領域に配置していることから、入出力端子に対する応力の影響を受けることなく、基準となる抵抗値を得ることが可能となる。
 さらに、上記荷重センサにおいては、前記歪み検出素子、入出力端子及び参照抵抗素子を前記ベース基板にスクリーン印刷により形成することが好ましい。この場合には、ベース基板上に簡単に歪み検出素子及び参照抵抗素子を含むブリッジ回路を形成することが可能となる。
 また、上記荷重センサにおいて、前記ベース基板は、曲げ部を有すると共に当該曲げ部を挟んで前記検出対象に対向する2面を有し、双方の面に前記固定部を少なくとも1つ設けると共に、一方の面の表面に前記歪み検出素子、入出力端子及び参照抵抗素子を設けることも可能である。この場合には、曲げ部を挟んだ2面を有するベース基板が双方の面で検出対象に固定されることから、屈曲した形状を有する検出対象に印加された荷重と同等の荷重をベース基板に印加発生させると共に、当該ベース基板に対する荷重を歪み検出素子で検出することが可能となる。
 例えば、上記荷重センサにおいては、前記歪み検出素子を前記曲げ部の近傍の領域に配置する一方、前記参照抵抗素子は前記固定部を挟んで前記曲げ部と反対側の領域に配置することが考えられる。この場合には、歪み検出素子が曲げ部の近傍の領域に配置されることから、当該歪み検出素子等が設けられる面を検出対象における歪みを検出したい箇所(歪み検出箇所)に固定することにより、高い精度で検出対象における歪み検出箇所に印加される荷重をベース基板に伝達させることが可能となる。また、参照抵抗素子は固定部を挟んで曲げ部と反対側の領域に配置されていることから、検出対象に対する荷重の影響を受けることなくブリッジ回路における基準となる抵抗値を得ることが可能となる。
 また、上記荷重センサにおいて、前記ベース基板は、略L字形状を有することも可能である。この場合には、略L字形状を有する検出対象にベース基板を固定することができるので、当該L字形状を有する検出対象に印加される荷重を適切に検出することが可能となる。
 なお、上記荷重センサにおいては、前記歪み検出素子、入出力端子及び参照抵抗素子と同一の面にサーミスタを設けるようにしても良い。この場合には、検出対象に対する荷重を検出する歪み検出素子等と同一の面に設けられたサーミスタで検出した温度に応じて荷重の補正計算を行うことができるので、より高い精度で検出対象に印加された荷重を検出することが可能となる。
 本発明によれば、ベース基板が2箇所で検出対象に固定されると共に、歪み検出素子を2箇所の固定部の間の領域に配置したことから、検出対象における歪みを検出したい箇所(歪み検出箇所)が固定部の間に配置されるようにベース基板を固定することにより、検出対象における歪み検出箇所に発生した歪みと同様にベース基板に歪みを発生させると共に、当該ベース基板の歪みを歪み検出素子で検出することができるので、歪み検出部材を直接的に取り付けることが困難な構造物体に発生する歪みを検出することが可能となる。
 また、本発明によれば、ベース基板が少なくとも2箇所で検出対象に固定されると共に、歪み検出素子を固定部の間の領域に配置すると共に、入出力端子を、固定部を挟んで歪み検出素子と反対側の領域に配置したことから、検出対象に印加された荷重と同等の荷重をベース基板に印加させると共に、入出力端子に対する応力の影響を受けることなく、ベース基板に対する荷重を歪み検出素子で検出することができる。この結果、入出力端子と歪み検出素子との距離を縮小することができると共に、入出力端子に加わる応力に基づいて発生し得る検出精度の劣化を防止することができるので、センサ自体の小型化を図りつつ、高度の検出精度を確保することが可能となる。
本発明の実施の形態1に係る歪み検出センサの構成を示す斜視図である。 実施の形態1に係る歪み検出センサの上面図(a)及び側断面図(b)である。 実施の形態1に係る歪み検出センサのベース基板に形成されるブリッジ回路の構成図である。 実施の形態1に係る歪み検出センサの構成を変更した場合の斜視図である。 図4に示す歪み検出センサの上面図(a)及び側断面図(b)である。 本発明の実施の形態2に係る歪み検出センサが有するベース基板の斜視図(a)及び正面図(b)である。 実施の形態2に係る歪み検出センサの側断面図である。 本発明の実施の形態3に係る荷重センサの構成を示す斜視図である。 実施の形態3に係る荷重センサの上面図(a)及び側断面図(b)である。 実施の形態3に係る荷重センサのベース基板に形成されるブリッジ回路の構成図である。 実施の形態3に係る荷重センサの構成を変更した場合の上面図である。 本発明の実施の形態4に係る荷重センサが有するベース基板の斜視図(a)及び正面図(b)である。 実施の形態4に係る荷重センサの側断面図である。
 以下、本発明の実施の形態について添付図面を参照して詳細に説明する。本実施の形態に係る荷重センサは、例えば、車両等の内部に配置される各種フレーム等の荷重が印加され易い箇所に配設され、そこに印加される荷重を検出するものである。なお、本実施の形態に係る荷重センサが配設される検出対象については、特定の分野に限定されるものではなく適宜変更が可能である。
 (実施の形態1)
 図1は、本発明の実施の形態1に係る荷重センサ10の構成を示す斜視図であり、図2は、実施の形態1に係る荷重センサ10の上面図(a)及び側断面図(b)である。なお、図1及び図2(b)においては、説明の便宜上、荷重センサ10が固定される検出対象としてのフレーム部材20を示している。また、図2(b)においては、後述するビス13a、13bの中央で切断した断面について示している。
 図1に示すように、本実施の形態に係る荷重センサ10は、フレーム部材20に固定されるベース基板11を備えている。ベース基板11は、例えば、平板状のステンレス(SUS)材料を所定形状に加工すると共に、その表面をガラスコーティングすることで形成される。ベース基板11には、フレーム部材20に対する固定部としての2つの孔12a、12b(図1に不図示、図2(b)参照)が形成されている。これらの孔12a、12bは、ベース基板11の長辺に沿って短辺の中央近傍の同一直線上に形成されている。
 孔12aは、ベース基板11の図2(a)に示す左方側端部よりも内側に形成され、孔12bは、同図に示す右方側端部近傍に形成されている。このため、ベース基板11においては、孔12bの外側部分よりも孔12aの外側部分の寸法が長く構成されている。また、ベース基板11において、孔12a、12bの間には、他の部分よりも細幅にされたくびれ部11aが形成されている。このくびれ部11aは、フレーム部材20に発生した歪みに応じてベース基板11を歪み易くするために形成されている。
 このような構成を有するベース基板11は、孔12a、12bを介してビス13a、13bによりフレーム部材20に2箇所の位置で固定されている。なお、ベース基板11とフレーム部材20との間、並びに、ベース基板11とビス13a、13bのヘッド部分との間には、スペーサ14a、14bが配設されている。スペーサ14a、14bは、ベース基板11とフレーム部材20とを一定距離だけ離間させるため、或いは、ベース基板11をビス13a、13bにより損傷させないために配設されている。なお、ベース基板11とビス13a、13bのヘッド部分との間のスペーサ14bは省略しても良い。
 例えば、本実施の形態に係る荷重センサ10において、ベース基板11は、フレーム部材20における歪みを検出したい箇所(以下、「歪み検出箇所」という)が固定部の間(すなわち、孔12aと、孔12bとの間)に配置されるように固定される。このようにフレーム部材20における歪み検出箇所が固定部の間に配置されるように固定されることにより、ベース基板11は、フレーム部材20における歪み検出箇所の近傍の状態を反映してフレーム部材20と一体的に変形する。このため、フレーム部材20に歪み検出箇所に歪みが発生した場合、ベース基板11は、当該歪み検出箇所の歪み量に応じて歪みが発生することとなる。
 ベース基板11の表面(図1及び図2に示すフレーム部材20と反対側の表面)には、一対の歪み検出素子15a、15b、並びに、一対の参照抵抗素子16a、16bが設けられている。一対の歪み検出素子15a、15bは、ベース基板11の孔12aと12bとの間の領域であって、くびれ部11aによる細幅部に対応する位置に図2(a)に示す上下方向に並べて配置されている。一方、一対の参照抵抗素子16a、16bは、孔12a、12bの外側の領域、具体的には、孔12aの図2(a)に示す左方側の領域に同図に示す上下方向に並べて配置されている。
 これらの一対の歪み検出素子15a、15b、並びに、一対の参照抵抗素子16a、16bは、図3に示すように、ブリッジ接続されてブリッジ回路を構成している。すなわち、直列接続された歪み検出素子15a及び参照抵抗素子16bと、直列接続された歪み検出素子15b及び参照抵抗素子16aとが並列接続され、電源電圧VccとアースGNDとの間に接続されている。そして、歪み検出素子15bと参照抵抗素子16aとの間の接続点から出力端子Out1が引き出され、歪み検出素子15aと参照抵抗素子16bとの間の接続点から出力端子Out2が引き出されている。
 このようなブリッジ回路の構成要素及び配線が、ベース基板11に形成されている。特に、本実施の形態に係る荷重センサ10においては、これらのブリッジ回路の構成要素及び配線を、ベース基板11に対するスクリーン印刷により形成している。このようにスクリーン印刷でベース基板11にブリッジ回路の構成要素及び配線を形成することにより、ベース基板11上に簡単にブリッジ回路を形成することが可能となる。
 このような構成を有する荷重センサ10において、例えば、外部要因によってフレーム部材20に歪みが発生すると、これに応じてベース基板11にも歪みが発生する。この場合において、一対の歪み検出素子15a、15bは、孔12a、12bの間の領域に配置されていることから、フレーム部材20の歪みに応じた圧縮応力又は引張応力が加わることとなる。一方、一対の参照抵抗素子16a、16bは、孔12a、12bの外側(孔12aの図2(b)に示す左方側)の領域に配置されていることから、フレーム部材20の歪みに応じた圧縮応力又は引張応力が加わることはない。このため、図3に示すブリッジ回路の出力端子Out1、Out2からの出力電圧は、一対の歪み検出素子15a、15bに対して加わった圧縮応力又は引張応力に応じて変化する。すなわち、ブリッジ回路からの出力電圧は、荷重センサ10が固定されるフレーム部材20に発生した歪みに応じて変化することとなる。
 このように実施の形態1に係る荷重センサ10においては、ベース基板11が2箇所でフレーム部材20に固定されると共に、一対の歪み検出素子15a、15bを孔12a、12bの間の領域に配置している。このため、フレーム部材20における歪み検出箇所が固定部の間(すなわち、孔12aと、孔12bとの間)に配置されるようにベース基板11を固定することにより、フレーム部材20における歪み検出箇所に発生した歪みと同様にベース基板11に歪みを発生させると共に、当該ベース基板11の歪みを一対の歪み検出素子15a、15bで検出することができるので、歪み検出部材をフレーム部材20に直接的に取り付けることが困難な場合であっても、フレーム部材20に発生する歪みを適切に検出することが可能となる。
 また、このように歪み検出素子15a、15bが設けられるベース基板11を検出対象としてのフレーム部材20に固定するだけで済むことから、歪み検出部材を直接的に取り付ける場合と比べて作業効率を向上することができるので、作業に要する時間及びコストを低減することが可能となる。
 特に、実施の形態1に係る荷重センサ10においては、一対の歪み検出素子15a、15bを、ベース基板11に形成された固定部としての孔12a、12bの間の領域に配置すると共に、参照抵抗素子16a、16bを孔12a、12bの外側の領域に配置している。このため、フレーム部材20における歪み検出箇所が固定部の間(すなわち、孔12aと、孔12bとの間)に配置されるようにベース基板11を固定することにより、フレーム部材20における歪み検出箇所に発生した歪みと同様にベース基板11に歪みを発生させると共に、ベース基板11に形成されたブリッジ回路でフレーム部材20に発生した歪みに応じた出力電圧を出力することができるので、歪み検出部材をフレーム部材20に直接的に取り付けることが困難な場合であっても、フレーム部材20に発生する歪みを適切に検出することが可能となる。特に、孔12a、12bの外側の領域に参照抵抗素子16a、16bが配置されていることから、フレーム部材20に発生した歪みの影響を受けることなく、基準となる抵抗値を得ることが可能となる。
 特に、実施の形態1に係る荷重センサ10においては、一対の歪み検出素子15a、15bは、ベース基板11に形成されたくびれ部11aの細幅部に配置させていることから、フレーム部材20の歪みに応じた圧縮応力又は引張応力を精度良く一対の歪み検出素子15a、15bに伝達することができるので、より高い精度でフレーム部材20に発生する歪みを検出することが可能となる。
 なお、以上の説明においては、フレーム部材20に対して2箇所でベース基板11を固定する場合について説明しているが、ベース基板11におけるフレーム部材20に対する固定箇所は、これに限定されるものではない。例えば、図4及び図5に示すように、3箇所でフレーム部材20に対して固定するようにしても良い。図4は、実施の形態1に係る荷重センサ10の構成を変更した場合の斜視図であり、図5は、図4に示す荷重センサ10´の上面図(a)及び側断面図(b)である。なお、図4及び図5において、図1及び図2と同一の構成については同一の符号を付してその説明を省略する。
 図4及び図5に示す荷重センサ10´においては、ベース基板11がより長尺とされ、2つのくびれ部11a、11bを有する点、2つのくびれ部11a、11bの細幅部にそれぞれ歪み検出素子15a、15bが配置されている点、並びに、くびれ部11a、11bの間に固定部としての孔12cが形成され、この孔12cを含めた孔12a~12cを介してビス13a~13cによりフレーム部材20に対して3箇所の位置で固定される点で、上述した荷重センサ10と相違する。
 なお、図4及び図5に示す荷重センサ10´における一対の歪み検出素子15a、15b、並びに、一対の参照抵抗素子16a、16bは、上述した荷重センサ10と同様に、図3に示すブリッジ回路を構成している。また、このブリッジ回路の構成要素及び配線は、上述した荷重センサ10と同様に、ベース基板11に対するスクリーン印刷により形成されている。
 このように変形した場合においても、フレーム部材20に歪みが発生すると、これに応じてベース基板11にも歪みが発生する。一対の歪み検出素子15a、15bは、それぞれ孔12a、12cの間の領域、並びに、孔12c、12bの間の領域に配置されていることから、フレーム部材20の歪みに応じた圧縮応力又は引張応力が加わることとなる。一方、一対の参照抵抗素子16a、16bは、孔12a~12cの外側(孔12aの図5(b)に示す左方側)の領域に配置されていることから、フレーム部材20の歪みに応じた圧縮応力又は引張応力が加わることはない。このため、ブリッジ回路からの出力電圧は、上述した荷重センサ10と同様に、荷重センサ10´が固定されるフレーム部材20に発生した歪みに応じて変化することとなる。すなわち、ベース基板11を介してフレーム部材20の歪みに応じた出力電圧を出力することができるので、歪み検出部材をフレーム部材20に直接的に取り付けることが困難な場合であっても、フレーム部材20に発生する歪みを適切に検出することが可能となる。
 (実施の形態2)
 実施の形態2に係る荷重センサ30は、ベース基板11が曲げ部を挟んで屈曲した形状を有する点で、ベース基板11が平板形状を有する実施の形態1に係る荷重センサ10と相違する。このように屈曲した形状を有することで、実施の形態2に係る荷重センサ30は、例えば、L字形状を有する検出対象に発生する歪みを検出可能とするものである。
 以下、実施の形態2に係る荷重センサ30の構成について説明する。図6は、実施の形態2に係る荷重センサ30が有するベース基板31の斜視図(a)及び正面図(b)である。図7は、実施の形態2に係る荷重センサ30の側断面図である。なお、図6において、実施の形態1に係る荷重センサ10と同一の構成については同一の符号を付してその説明を省略する。また、図7においては、説明の便宜上、荷重センサ30が固定される検出対象としてのフレーム部材20を示している。
 図6(a)に示すように、実施の形態2に係る荷重センサ30が有するベース基板31においては、一対の歪み検出素子15a、15bと、孔12bとの間の位置で配置された曲げ部32にて略直角に折り曲げられている点で、実施の形態1に係るベース基板11と相違する。実施の形態2に係るベース基板31においては、一対の歪み検出素子15a、15bと、孔12bとの間の位置に曲げ部32が配置されており、曲げ部32を挟んでフレーム部材20に対向する2つの平面を有している。具体的には、ベース基板31は、曲げ部32から上方側に垂直に延出する平面と、曲げ部32から図7に示す右方側に水平に延出する平面とで略L字形状を有している。
 曲げ部32から垂直に上方側に延出する平面には、図6に示すように、一対の歪み検出素子15a、15b、並びに、一対の参照抵抗素子16a、16bが設けられている。これらの一対の歪み検出素子15a、15b、並びに、一対の参照抵抗素子16a、16bは、実施の形態1に係る荷重センサ10と同様に、図3に示すブリッジ回路を構成している。また、このブリッジ回路の構成要素及び配線は、実施の形態1に係る荷重センサ10と同様に、ベース基板31に対するスクリーン印刷により形成されている。
 なお、実施の形態2に係る荷重センサ30においても、ベース基板31が、フレーム部材20における歪み検出箇所が固定部の間(すなわち、孔12aと、孔12bとの間)に配置されるように固定される点は、実施の形態1に係る荷重センサ10と同様である。
 このような構成を有する荷重センサ30において、例えば、外部要因によってフレーム部材20に歪みが発生すると、これに応じてベース基板31にも歪みが発生する。この場合において、一対の歪み検出素子15a、15bは、孔12a、12bの間の領域に配置されていることから、フレーム部材20の歪みに応じた圧縮応力又は引張応力が加わることとなる。一方、一対の参照抵抗素子16a、16bは、孔12a、12bの外側(孔12aの図7に示す上方側)の領域に配置されていることから、フレーム部材20の歪みに応じた圧縮応力又は引張応力が加わることはない。このため、図3に示すブリッジ回路の出力端子Out1、Out2からの出力電圧は、一対の歪み検出素子15a、15bに対して加わった圧縮応力又は引張応力に応じて変化する。すなわち、ブリッジ回路からの出力電圧は、荷重センサ30が固定されるフレーム部材20に発生した歪みに応じて変化することとなる。
 このように実施の形態2に係る荷重センサ30においては、曲げ部32を挟んでフレーム部材20に対向する2つの平面を有し、双方の平面にそれぞれ固定部としての孔12a、12b設けると共に、一対の歪み検出素子15a、15bを孔12a、12bの間の領域に配置すると共に、参照抵抗素子16a、16bを孔12a、12bの外側の領域に配置している。従って、フレーム部材20における歪み検出箇所が固定部の間(すなわち、孔12aと、孔12bとの間)に配置されるようにベース基板31を固定することにより、フレーム部材20における歪み検出箇所に発生した歪みと同様にベース基板11に歪みを発生させると共に、ベース基板11に形成されたブリッジ回路でフレーム部材20に発生した歪みに応じた出力電圧を出力することができるので、歪み検出部材を直接的に取り付けることが困難な屈曲した形状を有するフレーム部材20においても、当該フレーム部材20に発生する歪みを適切に検出することが可能となる。
 (実施の形態3)
 図8は、本発明の実施の形態3に係る荷重センサ40の構成を示す斜視図であり、図9は、実施の形態3に係る荷重センサ40の上面図(a)及び側断面図(b)である。なお、図8及び図9(b)においては、説明の便宜上、荷重センサ40が固定される検出対象としてのフレーム部材20を示している。また、図9(b)においては、後述するビス13a、13bの中央で切断した断面について示している。
 図8に示すように、本実施の形態に係る荷重センサ40は、フレーム部材20に固定されるベース基板11を備えている。ベース基板11は、例えば、平板状のステンレス(SUS)材料を所定形状に加工すると共に、その表面をガラスコーティングすることで形成される。このようにステンレス材料の表面をガラスコーティングすることにより、弾性を確保しつつ、耐高熱性に優れたベース基板11を得ることができる。ベース基板11には、フレーム部材20に対する固定部としての3つの孔12a~c(図8に不図示、図9(b)参照)が形成されている。これらの孔12a~cは、ベース基板11の長辺に沿って短辺の中央近傍の同一直線上に形成されている。
 孔12aは、ベース基板11の図9(a)に示す左方側端部よりも内側に形成され、孔12bは、同図に示す右方側端部よりも内側に形成され、孔12cは、ベース基板11の中央近傍に形成されている。また、ベース基板11において、孔12aと孔12cとの間、並びに、孔12cと孔12bとの間には、それぞれ他の部分よりも細幅にされたくびれ部11a、11bが形成されている。このくびれ部11a、11bは、フレーム部材20に印加された荷重に応じてベース基板11を歪み易くするために形成されている。
 このような構成を有するベース基板11は、孔12a~12cを介してビス13a~13cによりフレーム部材20に3箇所の位置で固定されている。なお、ベース基板11とフレーム部材20との間、並びに、ベース基板11とビス13a~13cのヘッド部分との間には、図9(b)に示すように、スペーサ14a~14cが配設されている。スペーサ14a~14cは、ベース基板11とフレーム部材20とを一定距離だけ離間させるため、或いは、ベース基板11をビス13a~13cにより損傷させないために配設されている。
 例えば、本実施の形態に係る荷重センサ40において、ベース基板11は、フレーム部材20における歪みを検出したい箇所(以下、「歪み検出箇所」という)が固定部の間(すなわち、孔12aと、孔12c及び12bとの間)に配置されるように固定される。このようにフレーム部材20における歪み検出箇所が固定部の間に配置されるように固定することにより、ベース基板11は、フレーム部材20における歪み検出箇所の近傍の状態を反映して一体的に変形する。このため、フレーム部材20における歪み検出箇所に荷重が印加された場合、ベース基板11には、当該歪み検出箇所に対する荷重と同等の荷重が印加されることとなる。
 ベース基板11の表面(図8及び図9に示すフレーム部材20と反対側の表面)には、一対の歪み検出素子15a、15b、一対の参照抵抗素子16a、16b、並びに、4つの入出力端子17a~17dが設けられている。歪み検出素子15aは、ベース基板11の孔12aと孔12cとの間の領域であって、くびれ部11aによる細幅部に対応する位置に配置されている。また、歪み検出素子15bは、ベース基板11の孔12cと孔12bとの間の領域であって、くびれ部11bによる細幅部に対応する位置に配置されている。一方、一対の参照抵抗素子16a、16bは、孔12a~12cの外側の領域、具体的には、孔12aの図9(a)に示す左方側の領域に同図に示す上下方向に並べて配置されている。さらに、入出力端子17a~17dは、孔12a~12cを挟んで一対の歪み検出素子15a、15b、並びに、一対の参照抵抗素子16a、16bと反対側の領域、具体的には、孔12bの図9(a)に示す右方側の領域に同図に示す上下方向に並べて配置されている。
 これらの一対の歪み検出素子15a、15b、一対の参照抵抗素子16a、16b、並びに、入出力端子17a~17dは、図10に示すように、ブリッジ接続されてブリッジ回路を構成している。すなわち、直列接続された歪み検出素子15a及び参照抵抗素子16bと、直列接続された歪み検出素子15b及び参照抵抗素子16aとが並列接続され、電源電圧VccとアースGNDとの間に接続されている。そして、歪み検出素子15bと参照抵抗素子16aとの間の接続点から出力端子Out1が引き出され、歪み検出素子15aと参照抵抗素子16bとの間の接続点から出力端子Out2が引き出されている。ここでは、入出力端子17a、17bがそれぞれ電源電圧Vcc、アースGNDに対応し、入出力端子17c、17dがそれぞれ出力端子Out1、出力端子Out2に対応するものとする。
 このようなブリッジ回路の構成要素及び配線が、ベース基板11に形成されている。特に、本実施の形態に係る荷重センサ40においては、これらのブリッジ回路の構成要素及び配線を、ベース基板11に対するスクリーン印刷により形成している。このようにスクリーン印刷でベース基板11にブリッジ回路の構成要素及び配線を形成することにより、ベース基板11上に簡単にブリッジ回路を形成することが可能となる。
 このような構成を有する荷重センサ40において、例えば、フレーム部材20に荷重が印加されると、当該荷重がビス13b、13cを介してベース基板11に伝達される。この場合において、一対の歪み検出素子15a、15bは、それぞれ孔12aと孔12cとの間、孔12cと孔12bとの間の領域に配置されていることから、フレーム部材20に対する荷重に応じた圧縮応力又は引張応力が加わることとなる。一方、一対の参照抵抗素子16a、16bは、孔12a~12cの外側(孔12aの図9(a)に示す左方側)の領域に配置されていることから、フレーム部材20に対する荷重に応じた圧縮応力又は引張応力が加わることはない。このため、図10に示すブリッジ回路の出力端子Out1、Out2からの出力電圧は、一対の歪み検出素子15a、15bに対して加わった圧縮応力又は引張応力に応じて変化する。すなわち、ブリッジ回路からの出力電圧は、荷重センサ40が固定されるフレーム部材20に印加された荷重に応じて変化することとなる。
 なお、入出力端子17a~17dは、孔12a~12cを挟んで一対の歪み検出素子15a、15b、並びに、一対の参照抵抗素子16a、16bと反対側(孔12cの図9(a)に示す右方側)の領域に配置されている。このため、配線作業等により入出力端子17a~17dに加えられる応力が歪み検出素子15a、15b、並びに、一対の参照抵抗素子16a、16bに影響を与えることはない。
 このように実施の形態3に係る荷重センサ40においては、ベース基板11が3箇所でフレーム部材20に固定されると共に、一対の歪み検出素子15a、15bをそれぞれ孔12aと孔12cとの間、孔12cと孔12bとの間の領域に配置している。このため、フレーム部材20における歪み検出箇所が固定部の間(すなわち、孔12aと、孔12c及び12bとの間)に配置されるようにベース基板11を固定することにより、フレーム部材20における歪み検出箇所に印加された荷重と同等の荷重をベース基板11に印加させると共に、当該ベース基板11に対する荷重を一対の歪み検出素子15a、15bで検出することができる。
 また、実施の形態3に係る荷重センサ40においては、入出力端子17a~17dを、孔12b、12cを挟んで一対の歪み検出素子15a、15bと反対側の領域に配置している。このため、入出力端子17a~17dに対する応力の影響を受けることなく、ベース基板11に対する荷重を一対の歪み検出素子15a、15bで検出することができる。この結果、入出力端子17a~17dと一対の歪み検出素子15a、15bとの距離を縮小することができると共に、入出力端子17a~17dに加わる応力に基づいて発生し得る検出精度の劣化を防止することができるので、センサ自体の小型化を図りつつ、高度の検出精度を確保することが可能となる。
 さらに、実施の形態3に係る荷重センサ40においては、一対の歪み検出素子15a、15bと共にブリッジ回路を構成する一対の参照抵抗素子16a、16bを孔12a~12cの外側の領域に配置している。このため、フレーム部材20における歪み検出箇所が固定部の間(すなわち、孔12aと、孔12c及び12bとの間)に配置されるようにベース基板11を固定することにより、フレーム部材20における歪み検出箇所に印加された荷重と同等の荷重をベース基板11に印加させると共に、ブリッジ回路でフレーム部材20に印加された荷重に応じた出力電圧を出力することができる。この場合において、一対の参照抵抗素子16a、16bが孔12a~12cの外側の領域に配置されていることから、フレーム部材20に印加された荷重の影響を受けることなく、基準となる抵抗値を得ることが可能となる。また、孔12aを挟んで入出力端子17a~17dと反対側の領域に配置していることから、入出力端子17a~17dに対する応力の影響を受けることなく、基準となる抵抗値を得ることが可能となる。
 なお、以上の説明においては、一対の参照抵抗素子16a、16bを孔12aの図9(a)に示す左方側の領域に配置した場合について説明しているが、一対の参照抵抗素子16a、16bが配置される位置については、これに限定されるものではなく適宜変更が可能である。検出対象としてのフレーム部材20に印加される荷重、並びに、入出力端子17a~17dに対する応力の影響を受けない位置であれば、いかなる位置に配置しても良い。例えば、図11に示すように、ベース基板11の長辺から延出する補助片11cを設け、この補助片11cの表面に一対の参照抵抗素子16a、16bを配置するようにしても良い。このように変形した場合においても、上述した実施の形態と同様に、一対の参照抵抗素子16a、16bが、フレーム部材20に印加される荷重、並びに、入出力端子17a~17dに対する応力の影響を受けることがないことから、ブリッジ回路において基準となる抵抗値を得ることができるので、当該ブリッジ回路でフレーム部材20に印加された荷重に応じた出力電圧を出力することができ、高度の検出精度を確保することが可能となる。
 (実施の形態4)
 実施の形態4に係る荷重センサ60は、ベース基板31が曲げ部を有し、この曲げ部を挟んで屈曲した形状を有する点で、ベース基板11が平板形状を有する実施の形態3に係る荷重センサ40と相違する。このように屈曲した形状を有するベース基板31を備えることで、実施の形態4に係る荷重センサ60は、例えば、L字形状を有する検出対象に印加された荷重を適切に検出可能とするものである。
 以下、実施の形態4に係る荷重センサ60の構成について説明する。図12は、実施の形態4に係る荷重センサ60が有するベース基板31の斜視図(a)及び正面図(b)である。図13は、実施の形態4に係る荷重センサ60の側断面図である。なお、図12及び図13において、実施の形態3に係る荷重センサ40と同一の構成については同一の符号を付してその説明を省略する。また、図6においては、図5(b)に示す鎖線における断面図を示している。さらに、図13においては、説明の便宜上、荷重センサ60が固定される検出対象としてのフレーム部材20を示している。
 図12(a)に示すように、実施の形態4に係る荷重センサ60が有するベース基板31には、所定位置に曲げ部32が形成されている。ベース基板31は、曲げ部32により略直角に折り曲げられており、曲げ部32を挟んでフレーム部材20に対向する2つの平面を有している。具体的には、ベース基板31は、曲げ部32から上方側に垂直に延出する平面31aと、曲げ部32から図13に示す右方側に水平に延出する平面31bとで略L字形状を有している。固定部としての孔12a、12bは、それぞれの平面31a、31bの略中央部分に形成されている。また、ベース基板31には、図12に示す左方側に突出する突出部33が形成されている。なお、ベース基板31の構成材料及びコーティング材料は、実施の形態3に係るベース基板11と同様である。
 このような構成を有するベース基板31は、図13に示すように、孔12a、12bを介してビス13a、13bによりフレーム部材20に2箇所の位置で固定されている。なお、ベース基板31とフレーム部材20との間には、スペーサ14a、14bが配設されている。これらのスペーサ14a、14bは、ベース基板31とフレーム部材20とを一定距離だけ離間させるために配置されている。なお、図13に示す荷重センサ60においては、ベース基板31とビス13a、13bのヘッド部分との間に配置されるスペーサを省略している。
 例えば、実施の形態4に係る荷重センサ60において、ベース基板31は、フレーム部材20における歪み検出箇所が固定部の間(すなわち、孔12aと、孔12bとの間)に配置されるように固定される。このようにフレーム部材20における歪み検出箇所が固定部の間に配置されるように固定することにより、ベース基板31は、フレーム部材20における歪み検出箇所の近傍の状態を反映してフレーム部材20と一体的に変形する。このため、フレーム部材20における歪み検出箇所に荷重が印加された場合、ベース基板31には、フレーム部材20に対する荷重と同等の荷重が印加されることとなる。
 平面31aの表面(図13に示すフレーム部材20側の表面)には、一対の歪み検出素子15a、15b、一対の参照抵抗素子16a、16b、並びに、5つの入出力端子17a~17eが設けられている。一対の歪み検出素子15a、15bは、孔12aと孔12bとの間であって、曲げ部32の近傍の領域に配置されている。一方、一対の参照抵抗素子16a、16bは、孔12aを挟んで曲げ部32と反対側の領域に配置されている。また、一対の歪み検出素子15a、15b、並びに、一対の参照抵抗素子16a、16bは、それぞれ孔12aよりも図12に示す右方側の領域に、同図に示す左右方向に並べて配置されている。入出力端子17a~17eは、突出部33に設けられ、孔12aを挟んで一対の歪み検出素子15a、15b、並びに、一対の参照抵抗素子16a、16bと反対側に配置されている。なお、入出力端子17eは、後述するサーミスタ18に対応する入出力端子を構成する。
 このように一対の歪み検出素子15a、15bが曲げ部32の近傍の領域に配置されることから、フレーム部材20における歪み検出箇所が固定部の間(すなわち、孔12aと、孔12bとの間)に配置されるようにベース基板31を固定することにより、高い精度でフレーム部材20における歪み検出箇所に印加される荷重をベース基板31に伝達させることが可能となる。また、一対の参照抵抗素子16a、16bを孔12aを挟んで曲げ部32と反対側の領域に配置したことから、フレーム部材20に対する荷重の影響を受けることなく、後述するブリッジ回路における基準となる抵抗値を得ることが可能となる。
 このように平面31に設けられる一対の歪み検出素子15a、15b、一対の参照抵抗素子16a、16b、並びに、入出力端子17a~17eは、実施の形態3に係る荷重センサ40と同様に、図10に示すブリッジ回路を構成している。また、このブリッジ回路の構成要素及び配線は、実施の形態3に係る荷重センサ40と同様に、ベース基板31に対するスクリーン印刷により形成されている。このようにスクリーン印刷でベース基板31の平面31aにブリッジ回路の構成要素及び配線を形成することにより、曲げ部32で屈曲する構成を有する場合においても、ベース基板31上に簡単にブリッジ回路を形成することが可能となる。
 また、平面31には、実施の形態4に係る荷重センサ60が配設される温度変化に応じて温度補正を行うためのサーミスタ18が設けられている。サーミスタ18は、参照抵抗素子16aの図12に示す左方側の領域、具体的には、孔12aと入出力端子17a~17eとの間であって、孔12aを挟んで曲げ部32と反対側の領域に配置されている。このように参照抵抗素子16aの側方側の領域に配置したのは、フレーム部材20に対する荷重の影響を受けることなく適切に温度検出を可能とするためである。サーミスタ18で検出された温度は、外部の制御部に渡され、この制御部によって荷重センサ60が検出した荷重の補正計算に用いられる。このようにフレーム部材20に対する荷重を検出する歪み検出素子15a、15b等と同一面に設けられたサーミスタ18で検出した温度に応じて荷重の補正計算を行うことにより、より高い精度でフレーム部材20に対する荷重を検出することが可能となる。
 このような構成を有する荷重センサ60において、例えば、フレーム部材20に荷重が印加されると、当該荷重がビス13aを介してベース基板31に伝達される。この場合において、一対の歪み検出素子15a、15bは、孔12aと孔12bとの間であって曲げ部32近傍の領域に配置されていることから、フレーム部材20に対する荷重に応じた圧縮応力又は引張応力が加わることとなる。一方、一対の参照抵抗素子16a、16bは、孔12aを挟んで曲げ部32と反対側の領域に配置されていることから、フレーム部材20に対する荷重に応じた圧縮応力又は引張応力が加わることはない。このため、図10に示すブリッジ回路の出力端子Out1、Out2からの出力電圧は、一対の歪み検出素子15a、15bに対して加わった圧縮応力又は引張応力に応じて変化する。すなわち、ブリッジ回路からの出力電圧は、荷重センサ60が固定されるフレーム部材20に印加された荷重に応じて変化することとなる。
 なお、入出力端子17a~17dは、孔12aを挟んで一対の歪み検出素子15a、15b、並びに、一対の参照抵抗素子16a、16bと反対側(孔12aの図12に示す左方側)の領域に配置されていることから、配線作業等により入出力端子17a~17eに加えられる応力が歪み検出素子15a、15b、並びに、一対の参照抵抗素子16a、16bに影響を与えることはない。
 このように実施の形態4に係る荷重センサ60においては、曲げ部32を挟んでフレーム部材31に対向する2つの平面31a、31bを有し、双方の平面31a、31bの孔12a、12bを介して2箇所に固定されると共に、一対の歪み検出素子15a、15bを孔12a、12bの間であって曲げ部32近傍の領域に配置している。従って、フレーム部材20における歪み検出箇所が固定部の間(すなわち、孔12aと、孔12bとの間)に配置されるようにベース基板31を固定することにより、フレーム部材20の歪み検出箇所に印加された荷重と同等の荷重をベース基板31に印加させると共に、当該ベース基板31に対する荷重を一対の歪み検出素子15a、15bで検出することができる。
 また、実施の形態4に係る荷重センサ60においては、入出力端子17a~17eを、孔12aを挟んで一対の歪み検出素子15a、15bと反対側の領域に配置している。このため、入出力端子17a~17eに対する応力の影響を受けることなく、ベース基板31に対する荷重を一対の歪み検出素子15a、15bで検出することができる。この結果、入出力端子17a~17dと一対の歪み検出素子15a、15bとの距離を縮小することができると共に、入出力端子17a~17eに加わる応力に基づいて発生し得る検出精度の劣化を防止することができるので、センサ自体の小型化を図りつつ、高度の検出精度を確保することが可能となる。
 さらに、実施の形態4に係る荷重センサ60においては、一対の歪み検出素子15a、15bと共にブリッジ回路を構成する参照抵抗素子16a、16bを孔12aを挟んで曲げ部32の反対側の領域に配置している。従って、フレーム部材20における歪み検出箇所が固定部の間(すなわち、孔12aと、孔12bとの間)に配置されるようにベース基板31を固定することにより、フレーム部材20における歪み検出箇所に印加された荷重と同等の荷重をベース基板31に印加させると共に、当該ブリッジ回路でフレーム部材20に印加された荷重に応じた出力電圧を出力することができる。この場合において、参照抵抗素子16a、16bが孔12aを挟んで曲げ部32の反対側の領域に配置されていることから、フレーム部材20に印加された荷重の影響を受けることなく、基準となる抵抗値を得ることが可能となる。また、一対の参照抵抗素子16a、16bは、孔12aを挟んで入出力端子17a~17dと反対側の領域に配置していることから、入出力端子17a~17dに対する応力の影響を受けることなく、基準となる抵抗値を得ることが可能となる。
 なお、本発明は上記実施の形態に限定されず、種々変更して実施することが可能である。上記実施の形態において、添付図面に図示されている大きさや形状などについては、これに限定されず、本発明の効果を発揮する範囲内で適宜変更することが可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。
 

Claims (13)

  1.  検出対象に対する少なくとも2箇所の固定部を有するベース基板と、前記ベース基板の表面に設けられる歪み検出素子とを具備し、前記歪み検出素子を前記固定部の間の領域に配置したことを特徴とする荷重センサ。
  2.  前記ベース基板の表面に設けられ、前記歪み検出素子と共にブリッジ回路を構成する参照抵抗素子を具備し、前記参照抵抗素子を前記固定部の外側の領域に配置したことを特徴とする請求項1記載の荷重センサ。
  3.  前記ベース基板における前記歪み検出素子が設けられる部分の幅を他の部分に比べて細幅にしたことを特徴とする請求項1又は請求項2記載の荷重センサ。
  4.  前記歪み検出素子及び参照抵抗素子を前記ベース基板にスクリーン印刷により形成したことを特徴とする請求項2記載の荷重センサ。
  5.  前記ベース基板は、曲げ部を挟んで前記検出対象に対向する2面を有し、双方の面に前記固定部を少なくとも1つ設けたことを特徴とする請求項1記載の荷重センサ。
  6.  前記ベース基板は、略L字形状を有することを特徴とする請求項5記載の荷重センサ。
  7.  前記ベース基板の表面には歪み検出素子とともに入出力端子を設け、前記歪み検出素子を、前記固定部の間の領域に配置する一方、前記固定部を挟んで前記入出力端子と反対側の領域に配置したことを特徴とする請求項1記載の荷重センサ。
  8.  前記ベース基板の表面に設けられ、前記歪み検出素子と共にブリッジ回路を構成する参照抵抗素子を具備し、前記参照抵抗素子を、前記固定部の外側の領域に配置する一方、前記固定部を挟んで前記入出力端子と反対側の領域に配置したことを特徴とする請求項7記載の荷重センサ。
  9.  前記歪み検出素子、入出力端子及び参照抵抗素子を前記ベース基板にスクリーン印刷により形成したことを特徴とする請求項8記載の荷重センサ。
  10.  前記ベース基板は、曲げ部を有すると共に当該曲げ部を挟んで前記検出対象に対向する2面を有し、双方の面に前記固定部を少なくとも1つ設けると共に、一方の面の表面に前記歪み検出素子、入出力端子及び参照抵抗素子を設けたことを特徴とする請求項8記載の荷重センサ。
  11.  前記歪み検出素子を前記曲げ部の近傍の領域に配置する一方、前記参照抵抗素子は前記固定部を挟んで前記曲げ部と反対側の領域に配置されていることを特徴とする請求項10記載の荷重センサ。
  12.  前記ベース基板は、略L字形状を有することを特徴とする請求項10記載の荷重センサ。
  13.  前記歪み検出素子、入出力端子及び参照抵抗素子と同一の面にサーミスタを設けたことを特徴とする請求項10記載の荷重センサ。
PCT/JP2008/073441 2007-12-27 2008-12-24 荷重センサ WO2009084539A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009548046A JPWO2009084539A1 (ja) 2007-12-27 2008-12-24 荷重センサ
CN2008801232850A CN101910812A (zh) 2007-12-27 2008-12-24 载荷传感器
US12/818,714 US7997155B2 (en) 2007-12-27 2010-06-18 Load sensor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007335782 2007-12-27
JP2007-335782 2007-12-27
JP2007-335783 2007-12-27
JP2007335783 2007-12-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/818,714 Continuation US7997155B2 (en) 2007-12-27 2010-06-18 Load sensor

Publications (1)

Publication Number Publication Date
WO2009084539A1 true WO2009084539A1 (ja) 2009-07-09

Family

ID=40824253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073441 WO2009084539A1 (ja) 2007-12-27 2008-12-24 荷重センサ

Country Status (4)

Country Link
US (1) US7997155B2 (ja)
JP (1) JPWO2009084539A1 (ja)
CN (1) CN101910812A (ja)
WO (1) WO2009084539A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010149178A (ja) * 2008-11-21 2010-07-08 Murata Machinery Ltd プレス機械
WO2018146916A1 (ja) * 2017-02-13 2018-08-16 日本電産コパル電子株式会社 薄膜歪センサとそれを用いたトルクセンサ
JPWO2019031381A1 (ja) * 2017-08-10 2020-02-27 株式会社村田製作所 ひずみセンサとその製造方法
JP2021073457A (ja) * 2021-01-26 2021-05-13 日本電産コパル電子株式会社 薄膜歪センサとそれを用いたトルクセンサ
WO2022201821A1 (ja) * 2021-03-22 2022-09-29 日本電産コパル電子株式会社 トルクセンサ

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2558871B (en) * 2016-10-28 2021-01-06 Datum Electronics Ltd Strain gauge
CN108204870A (zh) * 2016-12-19 2018-06-26 深圳纽迪瑞科技开发有限公司 压力感应组件及具有该压力感应组件的电子设备
DE102017126135A1 (de) 2017-11-08 2019-05-09 BPW-Hungária Kft. Vorrichtung zur Lasterfassung von vorzugsweise Druck-, Zug- und/oder Torsionsbelastungen an einem Nutzfahrzeug-Fahrwerksteil
GB2619560A (en) * 2022-06-10 2023-12-13 Jr Dynamics Ltd Rapidly deployable strain gauge based monitoring system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0557605U (ja) * 1992-01-08 1993-07-30 アンリツ株式会社 歪センサ組立体
JP2002131152A (ja) * 2000-10-27 2002-05-09 Yazaki Corp センシング素子の固定構造
JP2002139373A (ja) * 2000-10-31 2002-05-17 Matsushita Electric Ind Co Ltd 重量センサ
JP2003004553A (ja) * 2001-06-19 2003-01-08 Matsushita Electric Ind Co Ltd 歪検出装置
JP2007292159A (ja) * 2006-04-24 2007-11-08 Ntn Corp センサ付車輪用軸受

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3849874A (en) * 1972-07-28 1974-11-26 Bell & Howell Co Method for making a semiconductor strain transducer
US4478089A (en) * 1982-06-29 1984-10-23 International Business Machines Corporation Tri-axial force transducer for a manipulator gripper
US5404016A (en) * 1984-08-31 1995-04-04 Santa Barbara Research Center Dewar detector assembly
US4918833A (en) * 1988-04-08 1990-04-24 General Electric Company Method of assembling an electronic transducer
US5079535A (en) * 1990-09-11 1992-01-07 Case Western Reserve University Strain gauge and method of making and using the same
JPH0557605A (ja) 1991-02-12 1993-03-09 Fuji Electric Co Ltd 薄板工作物用の両面研摩盤
US5224384A (en) * 1991-06-07 1993-07-06 Maclean-Fogg Company Resistive strain gauge pressure sensor
JPH06186096A (ja) * 1992-12-15 1994-07-08 Ishida Co Ltd 歪みゲージ及びその製造方法
JP3131642B2 (ja) * 1994-09-14 2001-02-05 日本電子工業株式会社 応力複合化センサ及びこれを用いた構造体の応力測定装置
US5837946A (en) * 1995-06-16 1998-11-17 Weigh-Tronix, Inc. Force sensitive scale and dual load sensor cell for use therewith
US6285201B1 (en) * 1997-10-06 2001-09-04 Micron Technology, Inc. Method and apparatus for capacitively testing a semiconductor die
US5959214A (en) * 1997-12-22 1999-09-28 Delco Electronics Corp. Strain gauge with steel substrate
JP2000207102A (ja) * 1999-01-18 2000-07-28 Alps Electric Co Ltd キ―ボ―ド装置
US6467361B2 (en) * 2001-03-20 2002-10-22 Cts Corporation Strain gage sensor having an unstrained area
JP2003083707A (ja) * 2001-09-14 2003-03-19 Matsushita Electric Ind Co Ltd 歪センサ
JP2003294520A (ja) 2003-02-20 2003-10-15 Takata Corp シート重量計測装置
JP5003385B2 (ja) * 2006-10-31 2012-08-15 アイシン精機株式会社 車両のシート用乗員荷重検出装置
US7784363B2 (en) * 2008-09-30 2010-08-31 Gm Global Technology Operations, Inc. Phalange tactile load cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0557605U (ja) * 1992-01-08 1993-07-30 アンリツ株式会社 歪センサ組立体
JP2002131152A (ja) * 2000-10-27 2002-05-09 Yazaki Corp センシング素子の固定構造
JP2002139373A (ja) * 2000-10-31 2002-05-17 Matsushita Electric Ind Co Ltd 重量センサ
JP2003004553A (ja) * 2001-06-19 2003-01-08 Matsushita Electric Ind Co Ltd 歪検出装置
JP2007292159A (ja) * 2006-04-24 2007-11-08 Ntn Corp センサ付車輪用軸受

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010149178A (ja) * 2008-11-21 2010-07-08 Murata Machinery Ltd プレス機械
WO2018146916A1 (ja) * 2017-02-13 2018-08-16 日本電産コパル電子株式会社 薄膜歪センサとそれを用いたトルクセンサ
JP2018132312A (ja) * 2017-02-13 2018-08-23 日本電産コパル電子株式会社 薄膜歪センサとそれを用いたトルクセンサ
JPWO2019031381A1 (ja) * 2017-08-10 2020-02-27 株式会社村田製作所 ひずみセンサとその製造方法
US11215516B2 (en) 2017-08-10 2022-01-04 Murata Manufacturing Co., Ltd. Strain sensor and manufacturing method therefor
JP2021073457A (ja) * 2021-01-26 2021-05-13 日本電産コパル電子株式会社 薄膜歪センサとそれを用いたトルクセンサ
JP6999842B2 (ja) 2021-01-26 2022-01-19 日本電産コパル電子株式会社 薄膜歪センサとそれを用いたトルクセンサ
WO2022201821A1 (ja) * 2021-03-22 2022-09-29 日本電産コパル電子株式会社 トルクセンサ

Also Published As

Publication number Publication date
US20100251834A1 (en) 2010-10-07
US7997155B2 (en) 2011-08-16
CN101910812A (zh) 2010-12-08
JPWO2009084539A1 (ja) 2011-05-19

Similar Documents

Publication Publication Date Title
WO2009084539A1 (ja) 荷重センサ
CN106486039B (zh) 具有弯曲感测装置的柔性显示装置
JP2018091813A (ja) トルクセンサ
JP4893506B2 (ja) 電流センサ
US20210270684A1 (en) Flexible module and display device
US20160100486A1 (en) Display Module with Curved Surface
JP2008134229A (ja) 車両のシート用乗員荷重センサ
WO2018221288A1 (ja) センサ、タッチパネル、及び電子機器
US9885624B2 (en) Strain sensor, and load detection device using same
JP2001330522A (ja) 荷重センサ
JP2009168505A (ja) ロードセル
WO2017132968A1 (zh) 压力传感装置及具有该压力传感装置的电子设备
JP2002139373A (ja) 重量センサ
WO2021095566A1 (ja) 電流検出装置
JP2014044180A (ja) 歪みセンサモジュール
JP2011069714A (ja) ペダル荷重センサ
JP2021063844A (ja) トルクセンサ
JP2006030086A (ja) 長さ測定装置の弾性固定具及び固定方法
JP3915620B2 (ja) 半導体力学量センサ
JP2022027164A (ja) 電流検出装置
JP4921674B2 (ja) マイクロメカニカル素子及び調整方法
JP2020197425A (ja) 荷重センサ
JP2006105758A (ja) 歪検出装置
JP4884068B2 (ja) 表示装置及びその筐体
JPH06207866A (ja) 荷重検出装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880123285.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08866638

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009548046

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08866638

Country of ref document: EP

Kind code of ref document: A1