WO2018146916A1 - 薄膜歪センサとそれを用いたトルクセンサ - Google Patents

薄膜歪センサとそれを用いたトルクセンサ Download PDF

Info

Publication number
WO2018146916A1
WO2018146916A1 PCT/JP2017/042905 JP2017042905W WO2018146916A1 WO 2018146916 A1 WO2018146916 A1 WO 2018146916A1 JP 2017042905 W JP2017042905 W JP 2017042905W WO 2018146916 A1 WO2018146916 A1 WO 2018146916A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
strain sensor
elastic body
film strain
region
Prior art date
Application number
PCT/JP2017/042905
Other languages
English (en)
French (fr)
Inventor
池田 隆男
鈴木 隆史
金井 孝
嵩幸 遠藤
四輩 熊
Original Assignee
日本電産コパル電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産コパル電子株式会社 filed Critical 日本電産コパル電子株式会社
Publication of WO2018146916A1 publication Critical patent/WO2018146916A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/14Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft

Definitions

  • Embodiments of the present invention relate to a thin film strain sensor applied to, for example, a torque sensor provided at a joint of a robot arm and a torque sensor using the same.
  • This type of thin film strain sensor generally has a strain generating body, an insulating film, a thin film resistor, and a thin film electrode.
  • the insulating film is formed on the strain generating body, and the thin film resistor and the thin film electrode are formed on the insulating film. Yes.
  • the thin film strain sensor detects deformation of the strain generating body caused by the force applied to the strain generating body as a change in the resistance value of the thin film resistor (see, for example, Patent Documents 1 and 2).
  • Electrical connection means such as soldering, wire bonding, and anisotropic conductive bonding are used to connect the thin film electrodes of the thin film strain sensor and circuit wiring.
  • the thickness of the thin film electrode is thin unlike the thick film electrode provided on the circuit board. For this reason, sufficient joining force may not be obtained. In this case, the electrical connection may become unstable or may be disconnected.
  • Embodiments of the present invention provide a thin film strain sensor capable of obtaining a sufficient bonding strength in a thin film electrode and preventing connection failure and disconnection, and a torque sensor using the thin film strain sensor.
  • the thin film strain sensor includes a first connecting part connected to the first measured object, a second connecting part connected to the second measured object, the first connecting part, and the second connecting part.
  • An elastic body having a transmission portion between the first and second connecting portions, a resistor provided on a surface of the transmission portion of the elastic body, and electrically detecting distortion of the transmission portion, the first connecting portion, and the second An electrode that is provided on a region of the elastic body other than the coupling portion and the transmission portion and is electrically connected to the resistor.
  • the torque sensor of the present embodiment includes a first structure, a second structure, a plurality of third structures connecting the first structure and the second structure, the first structure, and the first structure.
  • a first thin film strain sensor and a second thin film strain sensor provided between the first structure and each of the first thin film strain sensor and the second thin film strain sensor.
  • An elastic body having one connection part, a second connection part connected to the second structure, a transmission part between the first connection part and the second connection part, and a surface of the transmission part;
  • a resistor for electrically detecting distortion of the transmission portion and provided on a region of the elastic body other than the first connection portion, the second connection portion, and the transmission portion; Connected electrodes.
  • Embodiments of the present invention can provide a thin film strain sensor capable of obtaining sufficient bonding strength in a thin film electrode and preventing connection failure and disconnection, and a torque sensor using the same.
  • FIG. 3 is a sectional view taken along line III-III in FIG. 1.
  • the perspective view which shows the assembly state of the torque sensor to which this embodiment is applied.
  • FIG. 1 schematically shows an example of a thin film strain sensor according to the present embodiment.
  • the thin film strain sensor 11 includes, for example, an elastic body 12 as a strain generating body, thin film resistors 13a and 13b, a plurality of thin film wirings 14a, 14b, 14c and 14d, and thin film electrodes 15a, 15b and 15c.
  • the elastic body 12 has a rectangular shape, for example, and is made of, for example, stainless steel (SUS).
  • SUS stainless steel
  • the shape and material of the elastic body 12 are not limited to this, and may be any material that can be welded as described later.
  • the elastic body 12 includes the first connecting portions 12a and 12b and the second connecting portions 12c and 12d, the transmission portion 12e between the first connecting portions 12a and 12b and the second connecting portions 12c and 12d, and the first connecting portion 12a. , 12b, second connecting portions 12c and 12d, and a region (hereinafter also referred to as an electrode arrangement region) 12f other than the transmission portion 12e.
  • the first connecting portions 12 a and 12 b are one end portions in the longitudinal direction of the elastic body 12 and are provided at both ends in the width direction of the elastic body 12, and the electrode arrangement regions 12 f are arranged in the longitudinal direction of the elastic body 12. It is provided at the other end.
  • the second connecting portions 12c and 12d are substantially intermediate portions in the longitudinal direction of the elastic body 12, and are provided at both ends in the width direction of the elastic body 12, and the transmission portion 12e includes the first connecting portions 12a and 12b and the second connecting portion. It is provided between 12c and 12d.
  • the first connecting portions 12a and 12b are connected to a first structure of a torque sensor, which will be described later, as a measurement target, and transmit force between the first structure and the elastic body 12.
  • the second connecting portions 12 c and 12 d are connected to the second structure of the torque sensor, and transmit force between the second structure and the elastic body 12.
  • connection method between the first connection parts 12a and 12b and the first structure and the connection method between the second connection parts 12c and 12d and the second structure are, for example, welding as described later.
  • broken circles indicated as the first connecting portions 12a and 12b and the second connecting portions 12c and 12d indicate welding positions (welding regions). Moreover, the broken line (straight line) which connects two circle marks has shown the range of the transmission part 12e for convenience.
  • the transmission part 12e is a part that transmits force between the first connection parts 12a and 12b and the second connection parts 12c and 12d. For this reason, the transmission part 12e of the elastic body 12 is an area
  • the thin film resistors 13a and 13b are arranged in the vicinity of the first coupling parts 12a and 12b in the transmission part 12e, and convert the deformation of the transmission part 12e into an electrical signal.
  • the thin film electrodes 15a, 15b, and 15c are arranged in the electrode arrangement region 12f other than the first connecting portions 12a and 12b, the second connecting portions 12c and 12d, and the transmitting portion 12e.
  • the electrode arrangement region 12f is provided at a position away from the transmission portion 12e, the force from the first structure and the second structure is not transmitted. For this reason, the electrode arrangement region 12f is not deformed. Therefore, the force from the first structure and the second structure is not transmitted to the thin film electrodes 15a, 15b, and 15c arranged in the electrode arrangement region 12f.
  • the thin film electrodes 15a and 15b are connected to the thin film resistor 13a by thin film wires 14a and 14b, and the thin film electrodes 15b and 15c are connected to the thin film resistor 13b by thin film wires 14c and 14d.
  • the thin film electrode 15b is an electrode common to the thin film resistors 13a and 13b.
  • the number of thin film resistors, the number of thin film electrodes, and the number of wires connecting the thin film resistors and the thin film electrodes are not limited to this, and can be modified.
  • the electrode arrangement region 12f in which the thin film electrodes 15a, 15b, and 15c are arranged is provided at a position where the force in the elastic body 12 is not transmitted. For this reason, the force applied to the torque sensor is not transmitted to the thin film electrodes 15a, 15b, and 15c. Accordingly, when unillustrated wiring connected by, for example, anisotropic conductive adhesive or wire bonding is connected to the thin film electrodes 15a, 15b, 15c, the bonding strength between these wirings and the thin film electrodes 15a, 15b, 15c. Can be sufficiently retained, and contact failure and disconnection can be prevented.
  • the elastic body 12 constituting the thin film strain sensor 11 is made of a metal such as stainless steel.
  • the elastic body 12 made of a metal such as stainless steel has a larger allowable stress than a silicon substrate, for example, and can be processed into a free shape. For this reason, the thin film strain sensor 11 can be easily manufactured.
  • the elastic body 12 is made of metal, it is possible to connect the small thin film strain sensor 11 to the first structure and the second structure of the torque sensor by welding. Since welding can obtain a strong fixing force with a small area compared to, for example, fixing using a screw or bonding using an adhesive, the thin film strain sensor 11 and the first structure and the second structure. It is possible to stably hold the fixed state.
  • FIG. 2 shows a second embodiment.
  • the electrode arrangement region 12 f was provided at the other end in the longitudinal direction of the elastic body 12.
  • the electrode arrangement region 12 f is provided on one side at the center in the longitudinal direction of the elastic body 12.
  • first connecting portions 12a and 12b are one end in the longitudinal direction of the rectangular elastic body 12 and are provided at both ends in the width direction of the elastic body 12, and the second connecting portions 12c and 12d are elastic. At the other end in the longitudinal direction of the body 12, the elastic body 12 is provided at both ends in the width direction.
  • the transmission part 12e is provided between the first connection parts 12a and 12b and the second connection parts 12c and 12d.
  • the thin film resistors 13a and 13b are disposed in the transmission unit 12e. Specifically, the thin film resistors 13a and 13b are disposed on the transmission portion 12e in the vicinity of the first coupling portions 12a and 12b.
  • the elastic body 12 has an island-shaped extended portion on one side in the width direction at the center in the longitudinal direction of the transmission portion 12e, and the electrode arrangement region 12f is provided in the extended portion.
  • the thin film electrodes 15a, 15b and 15c are arranged in the electrode arrangement region 12f. That is, the thin-film electrodes 15a, 15b, and 15c are arranged in the electrode arrangement region 12f other than the first connecting portions 12a and 12b, the second connecting portions 12c and 12d, and the transmitting portion 12e.
  • the thin film electrodes 15a and 15b are connected to the thin film resistor 13a by thin film wires 14a and 14b, and the thin film electrodes 15b and 15c are connected to the thin film resistor 13b by thin film wires 14c and 14d.
  • the electrode arrangement region 12f is arranged at an extension portion provided at one side portion in the width direction at the center portion in the longitudinal direction of the transmission portion 12e. For this reason, the force from the first structure and the second structure is not transmitted to the electrode arrangement region 12f, and deformation of the electrode arrangement region 12f is prevented. Therefore, the force from the first structure and the second structure is not transmitted to the thin film electrodes 15a, 15b, and 15c arranged in the electrode arrangement region 12f.
  • FIG. 3 shows an example of a thin film strain sensor applied to the first and second embodiments, and shows a cross section taken along line III-III shown in FIG.
  • the strain sensor 11 includes, for example, an elastic body 12, an insulating film 21a, a thin film resistor (strain sensitive film) 13a, an adhesive film 21c, a wiring 21d, an adhesive film 21e, and a glass film 21f as a protective film.
  • an insulating film 21a is provided on the metal elastic body 12, and a thin film resistor composed of a resistance (Cr-N resistance) containing, for example, chromium (Cr) and nitrogen (N) on the insulating film 21a. 13a is provided.
  • a thin film wiring 14a as a lead wire connected to an electrode made of, for example, copper (Cu) is provided at an end portion on the thin film resistor 13a with an adhesive film 21c interposed.
  • An adhesive film 21e is provided on the thin film wiring 14a.
  • the insulating film 21a, the thin film resistor 13a, and the adhesive film 21e are covered with a glass film 21f.
  • the adhesive film 21c enhances the adhesion between the wiring 21d and the thin film resistor 13a
  • the adhesive film 21e enhances the adhesion between the thin film wiring 14a and the glass film 21f.
  • the adhesive films 21c and 21e are films containing chromium (Cr), for example.
  • the configuration of the strain sensor 11 is not limited to this.
  • the elastic body 12 since the elastic body 12 is made of metal, the elastic body 12 can be easily processed. For this reason, the electrode arrangement
  • FIG. 4 shows a third embodiment.
  • a torque sensor using the thin film strain sensor 11 according to the first embodiment is shown.
  • FIGS. 5 and 6 show the manufacturing process of the torque sensor shown in FIG. 4, and an A portion shown by a broken line in FIG. 4 is enlarged.
  • the torque sensor 30 as a measurement target includes a first structure 31, a second structure 32, a plurality of beam portions 33, a first thin film strain sensor 34, and a second thin film strain sensor 35. is doing.
  • the first structure 31, the second structure 32, and the plurality of beam portions 33 are made of, for example, metal, but any material other than metal can be used as long as sufficient mechanical strength can be obtained with respect to applied torque. Can also be used.
  • the first structure 31 to which torque is applied and the second structure 32 that outputs torque are formed in an annular shape, and the diameter of the second structure 32 is smaller than the diameter of the first structure 31.
  • the second structure 32 and the first structure 31 constitute concentric circles.
  • the 1st structure 31 and the 2nd structure 32 are connected with a plurality of beam parts 33 arranged radially, and the 1st thin film strain sensor 11a and the 2nd thin film strain sensor 11b.
  • the first thin film strain sensor 11a and the second thin film strain sensor 11b are the same as the thin film strain sensor 11 shown in the first embodiment.
  • the first thin film strain sensor 11a and the second thin film strain sensor 11b are arranged at symmetrical positions with respect to the centers of the first structure 31 and the second structure 32 (the center of torque action).
  • the first thin film strain sensor 11 a is disposed in a first recess 31 a provided inside the first structure 31 and a second recess 32 a provided in the second structure 32. .
  • a gap is provided between the first depression 31a and the second depression 32a.
  • the first thin film strain sensor 11a is disposed in the first recess 31a and the second recess 32a, and the first thin film strain sensor 11a includes the first structure 31 and the second structure. 32 are connected by welding.
  • the first connecting portions 12a and 12b are welded to the edge of the first recess 31a.
  • the second connecting portions 12c and 12d are fixed to the edge of the second recess 32a by welding.
  • the welding method for example, spot welding or laser beam welding is applied.
  • wirings are connected to the thin film electrodes 15a, 15b, and 15c, respectively. These wirings are connected to the thin film electrodes 15a, 15b, and 15c using, for example, anisotropic conductive adhesive or wire bonding.
  • the thin film strain sensor 11 shown in the first embodiment is applied to the torque sensor 30, but the present invention is not limited to this, and the thin film shown in the second embodiment. It is also possible to apply the strain sensor 11.
  • the first connecting portions 12a and 12b shown in FIG. 2 are fixed to the edge of the first recess 31a by welding, and the second connecting portions 12c and 12d are fixed to the edge of the second recess 32a by welding.
  • the electrode placement region 12f may be disposed on the surface of the second structure 32a, for example, outside the second recess 32a, or the shape of the second recess 32a may be deformed so that the electrode is placed in the second recess 32a.
  • the placement area 12f may be placed. However, in this case, it is necessary to make the second depression 32a larger than the shape of the electrode arrangement region 12f so that the deformation of the transmission portion 12e is not transmitted to the electrode arrangement region 12f.
  • the first connection portions 12a and 12b and the second connection are connected in the first thin film strain sensor 11a and the second thin film strain sensor 11b.
  • the transmission part 12e between the parts 12c and 12d is deformed and distortion occurs. This distortion is detected as an electric signal by the thin film resistors 13a and 13b.
  • the torque between the first structure 31 and the second structure 32 is not transmitted to the island-shaped electrode arrangement region 12f provided on one side of the transmission unit 12e.
  • the electrode arrangement region 12f is not deformed, and no force is transmitted to the thin film electrodes 15a, 15b, and 15c. Therefore, it is possible to stably maintain the connection state between the thin film electrodes 15a, 15b, and 15c and the wiring (not shown).
  • the thin film strain sensor 11 having the configuration shown in the first or second embodiment is applied to the torque sensor 30, and the first connecting portions 12a and 12b of the thin film strain sensor 11 have the first structure.
  • the edge of the first recess 31a of the body 31 is welded, and the second connecting portions 12c and 12d are welded to the edge of the second recess 32a of the second structure 32. Therefore, a large fixing force can be obtained with a small area, and the thin film strain sensor 11 can be stably fixed to the first structure 31 and the second structure 32.
  • the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying constituent elements without departing from the scope of the invention in the implementation stage.
  • various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.
  • the thin film strain sensor and the torque sensor using the thin film strain sensor according to the embodiment of the present invention can be applied to a joint of a robot arm.
  • SYMBOLS 11 Thin film strain sensor, 12 ... Elastic body, 12a, 12b ... 1st connection part, 12c, 12d ... 2nd connection part, 12e ... Transmission part, 12f ... Electrode arrangement area

Abstract

薄膜電極において十分な接合強度を得ることができ、接続不良や断線を防止することが可能な薄膜歪センサとそれを用いたトルクセンサを提供する。薄膜歪センサは、弾性体12、抵抗13a、13b、電極15a、15b、15cを具備している。弾性体12は、第1被計測体に連結される第1連結部12a、12bと、第2被計測体に連結される第2連結部12c、12d、及び第1連結部12a、12bと第2連結部12c、12dとの間の伝達部12eとを有する。抵抗13a、13bは、弾性体12の伝達部12eの表面に設けられ、伝達部12eの歪みを電気的に検出する。電極15a、15b、15cは、第1連結部と第2連結部及び伝達部以外の弾性体の領域上に設けられ、抵抗に電気的に接続される。

Description

薄膜歪センサとそれを用いたトルクセンサ
 本発明の実施形態は、例えばロボットアームの関節に設けられるトルクセンサ等に適用される薄膜歪センサとそれを用いたトルクセンサに関する。
 この種の薄膜歪センサは、一般に、起歪体、絶縁膜、薄膜抵抗や薄膜電極を有し、起歪体上に絶縁膜が形成され、絶縁膜上に薄膜抵抗や薄膜電極が形成されている。薄膜歪センサは、起歪体に印加された力に応じて生じた起歪体の変形を薄膜抵抗の抵抗値の変化として検出する(例えば特許文献1、2参照)。
特開平9-257612号公報 特表2004-512515号公報
 薄膜歪センサの薄膜電極と回路の配線を接続するため、はんだ付け、ワイヤボンディング、異方導電性接着等の電気的接続手段が用いられる。しかし、薄膜電極の厚みは、回路基板上に設けられる厚膜電極と異なり薄い。このため、十分な接合力を得ることができないことがある。この場合、電気的な接続が不安定になったり、断線したりしてしまうことがある。
 本発明の実施形態は、薄膜電極において十分な接合強度を得ることができ、接続不良や断線を防止することが可能な薄膜歪センサとそれを用いたトルクセンサを提供する。
 本実施形態の薄膜歪センサは、第1被計測体に連結される第1連結部と、第2被計測体に連結される第2連結部と、前記第1連結部と前記第2連結部との間の伝達部と、を有する弾性体と、前記弾性体の前記伝達部の表面に設けられ、前記伝達部の歪みを電気的に検出する抵抗と、前記第1連結部と前記第2連結部及び前記伝達部以外の前記弾性体の領域上に設けられ、前記抵抗に電気的に接続された電極と、を具備する。
 本実施形態のトルクセンサは、第1構造体と、第2構造体と、前記第1構造体と前記第2構造体を連結する複数の第3構造体と、前記第1構造体と前記第2構造体との間に設けられた第1薄膜歪センサ及び第2薄膜歪センサを具備し、第1薄膜歪センサ及び第2薄膜歪センサのそれぞれは、前記第1構造体に連結される第1連結部と、前記第2構造体に連結される第2連結部と、前記第1連結部と前記第2連結部との間の伝達部とを有する弾性体と、前記伝達部の表面に設けられ、前記伝達部の歪みを電気的に検出する抵抗と、前記第1連結部と前記第2連結部及び前記伝達部以外の前記弾性体の領域上に設けられ、前記抵抗に電気的に接続された電極と、を具備する。
 本発明の実施形態は、薄膜電極において十分な接合強度を得ることができ、接続不良や断線を防止することが可能な薄膜歪センサとそれを用いたトルクセンサを提供できる。
本実施形態に係る薄膜歪センサの一例を概略的に示す平面図。 本実施形態に係る薄膜歪センサの他の例を示す平面図。 図1のIII-III線に沿った断面図。 本実施形態が適用されるトルクセンサの組み立て状態を示す斜視図。 図4の一部を分解して示す斜視図。 図5に続く組み立て工程を示す平面図。
 以下、実施の形態について、図面を参照して説明する。図面において、同一部分には同一符号を付している。
 図1は、本実施形態に係る薄膜歪センサの一例を概略的に示している。
 薄膜歪センサ11は、例えば起歪体としての弾性体12、薄膜抵抗13a、13b、複数の薄膜配線14a、14b、14c、14d、及び薄膜電極15a、15b、15cを具備している。
 弾性体12は、例えば矩形状であり、例えばステンレススチール(SUS)により構成されている。弾性体12の形状、材料は、これに限定されるものではなく、後述するように溶接可能な材料であればよい。
 弾性体12は、第1連結部12a、12bと第2連結部12c、12d、第1連結部12a、12bと第2連結部12c、12dとの間の伝達部12e、及び第1連結部12a、12bと第2連結部12c、12d、及び伝達部12e以外の領域(以下、電極配置領域とも言う)12fを有している。
 具体的には、第1連結部12a、12bは、弾性体12の長手方向の一端部で、弾性体12の幅方向の両端に設けられ、電極配置領域12fは、弾性体12の長手方向の他端部に設けられている。第2連結部12c、12dは、弾性体12の長手方向のほぼ中間部で、弾性体12の幅方向の両端に設けられ、伝達部12eは、第1連結部12a、12bと第2連結部12c、12dの間に設けられている。
 第1連結部12a、12bは、被計測体としての後述するトルクセンサの第1構造体に連結され、第1構造体と弾性体12との間で力を伝達する。第2連結部12c、12dは、トルクセンサの第2構造体に連結され、第2構造体と弾性体12との間で力を伝達する。
 第1連結部12a、12bと第1構造体との連結方法、及び第2連結部12c、12dと第2構造体との連結方法は、後述するように、例えば溶接である。
 図1において、第1連結部12a、12b、第2連結部12c、12dとして示す破線の丸印は、溶接位置(溶接領域)を示している。また、2つの丸印を結ぶ破線(直線)は、伝達部12eの範囲を便宜的に示している。
 伝達部12eは、第1連結部12a、12bと第2連結部12c、12dとの間で力を伝達する部分である。このため、弾性体12の伝達部12eは、第1構造体及び第2構造体から印加された力で変形する領域である。
 薄膜抵抗13a、13bは、伝達部12e内で第1連結部12a、12bの近傍に配置され、伝達部12eの変形を電気信号に変換する。
 薄膜電極15a、15b、15cは、第1連結部12a、12b、第2連結部12c、12d、伝達部12e以外の電極配置領域12fに配置されている。
 電極配置領域12fは、伝達部12eから離れた位置に設けられているため、第1構造体及び第2構造体からの力が伝達されない。このため、電極配置領域12fは、変形しない。したがって、電極配置領域12fに配置された薄膜電極15a、15b、15cにも第1構造体及び第2構造体からの力が伝達されない。
 薄膜電極15a、15bは、薄膜配線14a、14bにより薄膜抵抗13aに接続され、薄膜電極15b、15cは、薄膜配線14c、14dにより薄膜抵抗13bに接続されている。薄膜電極15bは、薄膜抵抗13a、13bに共通の電極である。
 尚、薄膜抵抗の数、薄膜電極の数、及び薄膜抵抗と薄膜電極とを接続する配線の数は、これに限定されるものではなく、変形可能である。
 上記第1の実施形態に係る薄膜歪センサ11によれば、薄膜電極15a、15b、15cが配置される電極配置領域12fは、弾性体12内の力が伝達されない位置に設けられている。このため、薄膜電極15a、15b、15cにも、トルクセンサに印加された力が伝達されない。したがって、薄膜電極15a、15b、15cに、例えば異方導電性接着剤やワイヤボンディングにより接続される図示せぬ配線が接続された場合において、これら配線と薄膜電極15a、15b、15cとの接合強度を充分に保持することができ、接触不良や断線を防止することが可能である。
 また、薄膜歪センサ11を構成する弾性体12は、ステンレススチールのような金属により構成されている。ステンレススチールのような金属により構成された弾性体12は、例えばシリコン基板などに比べて大きな許容応力を有し、自由な形状に加工することができる。このため、薄膜歪センサ11を容易に製造することができる。
 しかも、弾性体12は金属により構成されているため、小型の薄膜歪センサ11を溶接によりトルクセンサの第1構造体及び第2構造体に連結することが可能である。溶接は、例えばネジを用いた固定や接着剤を用いた接着に比べて、小さな面積によって強固な固定力を得ることが可能であるため、薄膜歪センサ11と第1構造体、第2構造体との固定状態を安定に保持することが可能である。
(第2の実施形態)
 図2は、第2の実施形態を示している。
 図1において、電極配置領域12fは、弾性体12の長手方向の他端部に設けられていた。これに対して、図2に示す第2の実施形態において、電極配置領域12fは、弾性体12の長手方向の中央部で、一側部に設けられている。
 具体的には、第1連結部12a、12bは、矩形状の弾性体12の長手方向の一端部で、弾性体12の幅方向の両端に設けられ、第2連結部12c、12dは、弾性体12の長手方向の他端部で、弾性体12の幅方向の両端に設けられている。
 伝達部12eは、第1連結部12a、12bと第2連結部12c、12dの間に設けられている。
 薄膜抵抗13a、13bは、伝達部12eに配置されている。具体的には、薄膜抵抗13a、13bは、第1連結部12a、12bの近傍の伝達部12e上に配置されている。
 弾性体12は、伝達部12eの長手方向の中央部で、幅方向の一側部に島状の拡張部を有し、電極配置領域12fは、拡張部に設けられている。
 薄膜電極15a、15b、15cは、電極配置領域12fに配置されている。すなわち、薄膜電極15a、15b、15cは、第1連結部12a、12b、第2連結部12c、12d、伝達部12e以外の電極配置領域12fに配置されている。
 薄膜電極15a、15bは、薄膜配線14a、14bにより薄膜抵抗13aに接続され、薄膜電極15b、15cは、薄膜配線14c、14dにより薄膜抵抗13bに接続されている。
 上記第2の実施形態に係る薄膜歪センサによれば、電極配置領域12fは、伝達部12eの長手方向中央部で、幅方向の一側部に設けられた拡張部に配置されている。このため、第1構造体及び第2構造体からの力は、電極配置領域12fに伝達されず、電極配置領域12fの変形が防止されている。したがって、電極配置領域12fに配置された薄膜電極15a、15b、15cにも第1構造体及び第2構造体からの力が伝達されない。このため、薄膜電極15a、15b、15cに、例えば異方導電性接着剤やワイヤボンディングにより接続される図示せぬ配線が接続された場合、これら配線と薄膜電極15a、15b、15cとの接合強度を充分に保持することができ、接触不良や断線を防止することが可能である。
 図3は、第1、第2の実施形態に適用される薄膜歪センサの一例を示すものであり、図1に示すIII-III線に沿った断面を示している。
 歪センサ11は、例えば弾性体12、絶縁膜21a、薄膜抵抗(感歪膜)13a、接着膜21c、配線21d、接着膜21e、保護膜としてのガラス膜21fを具備している。具体的には、金属製の弾性体12上に絶縁膜21aが設けられ、絶縁膜21a上に例えばクロム(Cr)及び窒素(N)を含む抵抗(Cr-N抵抗)により構成された薄膜抵抗13aが設けられる。薄膜抵抗13a上の端部に接着膜21cを介在して、例えば銅(Cu)により構成された電極に接続されるリード線としての薄膜配線14aが設けられる。薄膜配線14a上には接着膜21eが設けられる。絶縁膜21a、薄膜抵抗13a、及び接着膜21eは、ガラス膜21fにより覆われる。接着膜21cは、配線21dと薄膜抵抗13aとの密着性を高め、接着膜21eは、薄膜配線14aとガラス膜21fとの密着性を高めている。接着膜21c、21eは、例えばクロム(Cr)を含む膜である。歪センサ11の構成は、これに限定されるものではない。
 上記第2の実施形態によっても第1の実施形態と同様の効果を得ることが可能である。
 しかも、第2の実施形態においても弾性体12は金属により構成されているため、弾性体12の加工が容易である。このため、電極配置領域12fを伝達部12eの一側部に設けることができる。したがって、トルクセンサの形状や大きさに従って、伝達部12eや電極配置領域12fの形状や大きさ、又は配置を容易に変更することが可能である。
(第3の実施形態)
 図4は、第3の実施形態を示すものであり、例えば第1の実施形態に係る薄膜歪センサ11を用いたトルクセンサを示している。図5、図6は、図4に示すトルクセンサの製造工程を示すものであり、図4の破線で示すA部を拡大して示している。
 図4に示すように、被計測体としてのトルクセンサ30は、第1構造体31、第2構造体32、複数の梁部33、第1薄膜歪センサ34、第2薄膜歪センサ35を具備している。
 第1構造体31、第2構造体32、複数の梁部33は、例えば金属により構成されるが、印加されるトルクに対して機械的な強度を十分に得ることができれば、金属以外の材料を使用することも可能である。
 例えばトルクが印加される第1構造体31と、トルクを出力する第2構造体32は、環状に形成され、第2構造体32の径は、第1構造体31の径より小さい。
 第2構造体32と第1構造体31は同心円を構成する。第1構造体31と第2構造体32は、放射状に配置された複数の梁部33と、第1薄膜歪センサ11a及び第2薄膜歪センサ11bにより連結されている。第1薄膜歪センサ11a及び第2薄膜歪センサ11bは、第1の実施形態に示す薄膜歪センサ11と同様である。
 第1薄膜歪センサ11aと第2薄膜歪センサ11bは、第1構造体31及び第2構造体32の中心(トルクの作用中心)に対して対称な位置に配置されている。
 図5に示すように、第1薄膜歪センサ11aは、第1構造体31の内側に設けられた第1窪み31aと、第2構造体32に設けられた第2窪み32aとに配置される。第1窪み31aと第2窪み32aとの相互間には、間隙が設けられている。第1構造体31と第2構造体32は、第1薄膜歪センサ11aが第1窪み31aと第2窪み32aに配置され、第1薄膜歪センサ11aが第1構造体31と第2構造体32に溶接されることにより連結される。
 具体的には、図6に示すように、第1薄膜歪センサ11aが第1窪み31aと第2窪み32aに配置された後、第1連結部12a、12bが溶接により第1窪み31aの縁部に固定され、第2連結部12c、12dが溶接により第2窪み32aの縁部に固定される。
 溶接方法としては、例えばスポット溶接、又はレーザービーム溶接が適用される。
 次いで、薄膜電極15a、15b、15cに図示せぬ配線がそれぞれ接続される。これら配線は、例えば異方導電性接着剤やワイヤボンディングを用いて薄膜電極15a、15b、15cに接続される。
 上記構成において、トルクセンサ30の第1構造体31と第2構造体32との間でトルクが発生すると、第1薄膜歪センサ11a及び第2薄膜歪センサ11bにおいて、第1連結部12a、12bと第2連結部12c、12d間の伝達部12eが変形し、歪が発生する。この歪が薄膜抵抗13a、13bにより電気信号として検出される。このとき、電極配置領域12fには、第1構造体31と第2構造体32との間のトルクが伝達されない。このため、電極配置領域12fは、変形することがなく、薄膜電極15a、15b、15cに力が伝達されることがない。したがって、薄膜電極15a、15b、15cと図示せぬ配線との接続状態を安定に保持することが可能である。
 尚、第3の実施形態は、第1の実施形態に示す薄膜歪センサ11をトルクセンサ30に適用した場合を示したが、これに限定されるものではなく、第2の実施形態に示す薄膜歪センサ11を適用することも可能である。
 この場合も、図2に示す第1連結部12a、12bが第1窪み31aの縁部に溶接により固定され、第2連結部12c、12dが第2窪み32aの縁部に溶接により固定される。電極配置領域12fは、例えば第2窪み32aの外部で、第2構造体32aの表面に配置されていてもよいし、或いは、第2窪み32aの形状を変形させ、第2窪み32a内に電極配置領域12fを配置してもよい。但し、この場合、伝達部12eの変形が電極配置領域12fに伝達されないように、第2窪み32aを電極配置領域12fの形状より大きくする必要がある。
 トルクセンサ30の第1構造体31と第2構造体32との間でトルクが発生すると、第1薄膜歪センサ11a及び第2薄膜歪センサ11bにおいて、第1連結部12a、12bと第2連結部12c、12d間の伝達部12eが変形し、歪が発生する。この歪が薄膜抵抗13a、13bにより電気信号として検出される。このとき、第1構造体31と第2構造体32との間のトルクは、伝達部12eの一側部に設けられた島状の電極配置領域12fに伝達されない。このため、電極配置領域12fは、変形することがなく、薄膜電極15a、15b、15cに力が伝達されることがない。したがって、薄膜電極15a、15b、15cと図示せぬ配線との接続状態を安定に保持することが可能である。
 上記第3の実施形態によれば、第1又は第2の実施形態に示す構成の薄膜歪センサ11をトルクセンサ30に適用し、薄膜歪センサ11の第1連結部12a、12bを第1構造体31の第1窪み31aの縁部に溶接し、第2連結部12c、12dを第2構造体32の第2窪み32aの縁部に溶接している。このため、小さな面積で大きな固定力を得ることが可能であり、薄膜歪センサ11を第1構造体31、第2構造体32に安定に固定することが可能である。
 その他、本発明は上記各実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記各実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
 本発明の実施形態に係る薄膜歪センサとそれを用いたトルクセンサは、ロボットアームの関節などに適用することが可能である。
 11…薄膜歪センサ、12…弾性体、12a、12b…第1連結部、12c、12d…第2連結部、12e…伝達部、12f…電極配置領域、13a、13b…薄膜抵抗、15a、15b、15c…薄膜電極。

Claims (10)

  1.  第1被計測体に連結される第1連結部と、第2被計測体に連結される第2連結部と、前記第1連結部と前記第2連結部との間の伝達部と、を有する弾性体と、
     前記弾性体の前記伝達部の表面に設けられ、前記伝達部の歪みを電気的に検出する抵抗と、
     前記第1連結部と前記第2連結部及び前記伝達部以外の前記弾性体の領域上に設けられ、前記抵抗に電気的に接続された電極と、
     を具備する薄膜歪センサ。
  2.  前記電極が設けられる領域は、前記第2連結部に対して前記伝達部と反対側に設けられる請求項1記載の薄膜歪センサ。
  3.  前記電極が設けられる領域は、前記伝達部の横に設けられる請求項1記載の薄膜歪センサ。
  4.  前記弾性体は金属により形成される請求項1記載の薄膜歪センサ。
  5.  前記弾性体の前記第1連結部は、前記第1被計測体と結合するための第1溶接領域であり、前記第2連結部は、前記第2被計測体と結合するための第2溶接領域である請求項1記載の薄膜歪センサ。
  6.  第1構造体と、
     第2構造体と、
     前記第1構造体と前記第2構造体との間に設けられ、前記第1構造体と前記第2構造体を連結する複数の第3構造体と、
     前記第1構造体と前記第2構造体との間に設けられた第1薄膜歪センサ及び第2薄膜歪センサを具備し、
     第1薄膜歪センサ及び第2薄膜歪センサのそれぞれは、
     前記第1構造体に連結される第1連結部と、前記第2構造体に連結される第2連結部と、前記第1連結部と前記第2連結部との間の伝達部とを有する弾性体と、
     前記伝達部の表面に設けられ、前記伝達部の歪みを電気的に検出する抵抗と、
     前記第1連結部と前記第2連結部及び前記伝達部以外の前記弾性体の領域上に設けられ、前記抵抗に電気的に接続された電極と、
     を具備するトルクセンサ。
  7.  前記弾性体の前記第1連結部は、前記第1構造体と結合するための第1溶接領域であり、前記第2連結部は、前記第2構造体と結合するための第2溶接領域である請求項6記載のトルクセンサ。
  8.  前記電極が設けられる領域は、前記第2連結部に対して前記伝達部と反対側に設けられる請求項6記載のトルクセンサ。
  9.  前記電極が設けられる領域は、前記伝達部の横に設けられる請求項6記載のトルクセンサ。
  10.  前記弾性体は金属により形成される請求項6記載のトルクセンサ。
PCT/JP2017/042905 2017-02-13 2017-11-29 薄膜歪センサとそれを用いたトルクセンサ WO2018146916A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017023884A JP2018132312A (ja) 2017-02-13 2017-02-13 薄膜歪センサとそれを用いたトルクセンサ
JP2017-023884 2017-02-13

Publications (1)

Publication Number Publication Date
WO2018146916A1 true WO2018146916A1 (ja) 2018-08-16

Family

ID=63107349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042905 WO2018146916A1 (ja) 2017-02-13 2017-11-29 薄膜歪センサとそれを用いたトルクセンサ

Country Status (2)

Country Link
JP (1) JP2018132312A (ja)
WO (1) WO2018146916A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112924059A (zh) * 2021-01-26 2021-06-08 上海同岩土木工程科技股份有限公司 一种条带式围岩压力监测装置、监测方法及安装方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7380981B2 (ja) * 2019-06-27 2023-11-15 ニデックドライブテクノロジー株式会社 トルク検出センサおよび動力伝達装置
JP2022146379A (ja) 2021-03-22 2022-10-05 日本電産コパル電子株式会社 トルクセンサ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05248925A (ja) * 1991-12-27 1993-09-28 Ishida Scales Mfg Co Ltd ロードセル、ロードセルの製造方法、計量器及び計量方法
WO2009084539A1 (ja) * 2007-12-27 2009-07-09 Alps Electric Co., Ltd. 荷重センサ
US20110000320A1 (en) * 2009-07-06 2011-01-06 Delatorre Leroy C Pressure isolated strain gauge torque sensor
JP2017172983A (ja) * 2016-03-18 2017-09-28 株式会社安川電機 ロボット及びトルクセンサ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63183526U (ja) * 1987-05-18 1988-11-25
JPH0989692A (ja) * 1995-09-25 1997-04-04 Nissan Motor Co Ltd ステアリングトルクセンサ
JP3419409B2 (ja) * 2002-11-05 2003-06-23 松下電器産業株式会社 歪検出装置
US7100458B2 (en) * 2003-05-22 2006-09-05 Crane Nuclear, Inc. Flexure system for strain-based instruments
JP2009053005A (ja) * 2007-08-27 2009-03-12 Hitachi Metals Ltd 半導体歪センサーおよび半導体歪センサーの取付け方法
JP5182032B2 (ja) * 2008-11-19 2013-04-10 アイシン精機株式会社 車両用シートの荷重検出装置
JP5024358B2 (ja) * 2009-01-08 2012-09-12 株式会社日本自動車部品総合研究所 作用力検出装置
JP5947494B2 (ja) * 2011-06-30 2016-07-06 トヨタ自動車株式会社 トルク計測装置の製造方法
JP5867688B2 (ja) * 2011-09-22 2016-02-24 国立大学法人 東京大学 触覚センサ及び多軸触覚センサ
DE102015201607A1 (de) * 2015-01-30 2016-08-04 Robert Bosch Gmbh Sensoranordnung zur indirekten Erfassung eines Drehmoments einer rotierbar gelagerten Welle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05248925A (ja) * 1991-12-27 1993-09-28 Ishida Scales Mfg Co Ltd ロードセル、ロードセルの製造方法、計量器及び計量方法
WO2009084539A1 (ja) * 2007-12-27 2009-07-09 Alps Electric Co., Ltd. 荷重センサ
US20110000320A1 (en) * 2009-07-06 2011-01-06 Delatorre Leroy C Pressure isolated strain gauge torque sensor
JP2017172983A (ja) * 2016-03-18 2017-09-28 株式会社安川電機 ロボット及びトルクセンサ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112924059A (zh) * 2021-01-26 2021-06-08 上海同岩土木工程科技股份有限公司 一种条带式围岩压力监测装置、监测方法及安装方法
CN112924059B (zh) * 2021-01-26 2022-09-23 上海同岩土木工程科技股份有限公司 一种条带式围岩压力监测装置、监测方法及安装方法

Also Published As

Publication number Publication date
JP2018132312A (ja) 2018-08-23

Similar Documents

Publication Publication Date Title
WO2018105209A1 (ja) トルクセンサ
WO2018146916A1 (ja) 薄膜歪センサとそれを用いたトルクセンサ
US8438931B2 (en) Semiconductor strain sensor
CN110352337B (zh) 应变体及具备该应变体的力传感器
WO2018105211A1 (ja) 起歪体およびその起歪体を備えた力覚センサ
JP2009053005A (ja) 半導体歪センサーおよび半導体歪センサーの取付け方法
JP4956450B2 (ja) 電子機器の回路基板支持構造
WO2015194413A1 (ja) 電流検出用抵抗器
WO2018186008A1 (ja) トルクセンサ
US20190376855A1 (en) Strain body and force sensor provided with the strain body
WO2021117855A1 (ja) トルクセンサ
JP2017512373A (ja) 配線部材およびその製造方法
JP6851893B2 (ja) トルクセンサ
US11187598B2 (en) Strain body and force sensor provided with the strain body
JP6999842B2 (ja) 薄膜歪センサとそれを用いたトルクセンサ
JP2017174843A (ja) シャント抵抗器
JP6842600B2 (ja) 温度センサ及び温度センサを備えた装置
US11630010B2 (en) Semiconductor device
US20220039262A1 (en) Flexible printed wiring board, joined body, pressure sensor and mass flow controller
WO2021090905A1 (ja) シャント抵抗モジュール及び、シャント抵抗モジュールの実装構造
JP7088442B1 (ja) 変形検出センサ
JP2007096054A (ja) フレキシブル配線基板の導通接合構造
JP2023161197A (ja) 荷重変換器及び荷重変換器の製造方法
JP2015201531A (ja) フラットケーブルが接続された回路基板構造体
JP2929163B2 (ja) 延長可能なフレキシブルリード線

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17895577

Country of ref document: EP

Kind code of ref document: A1