WO2009082842A1 - Equipement industriel pour le craquage en continu de matière plastique - Google Patents

Equipement industriel pour le craquage en continu de matière plastique Download PDF

Info

Publication number
WO2009082842A1
WO2009082842A1 PCT/CN2007/003858 CN2007003858W WO2009082842A1 WO 2009082842 A1 WO2009082842 A1 WO 2009082842A1 CN 2007003858 W CN2007003858 W CN 2007003858W WO 2009082842 A1 WO2009082842 A1 WO 2009082842A1
Authority
WO
WIPO (PCT)
Prior art keywords
inner cylinder
outer cylinder
cylinder
cylinder body
heat carrier
Prior art date
Application number
PCT/CN2007/003858
Other languages
English (en)
French (fr)
Inventor
Bin Niu
Original Assignee
Bin Niu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bin Niu filed Critical Bin Niu
Priority to JP2010539985A priority Critical patent/JP5373816B2/ja
Priority to CA2728566A priority patent/CA2728566C/en
Priority to US12/735,290 priority patent/US8728282B2/en
Priority to EP07855859A priority patent/EP2233439B1/en
Publication of WO2009082842A1 publication Critical patent/WO2009082842A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/07Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of solid raw materials consisting of synthetic polymeric materials, e.g. tyres
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B49/00Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated
    • C10B49/16Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with moving solid heat-carriers in divided form
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/10Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1003Waste materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics

Definitions

  • the present invention is a plastic cracker that achieves industrial continuous production.
  • the object of the present invention is to design a plastic continuous cracker which is simple in structure, small in size and low in operating cost.
  • the technical solution of the present invention comprises an outer cylinder body and an inner cylinder body. Both ends of the inner cylinder body are in communication with the outer cylinder body, and at least one of the outer cylinder body and the inner cylinder body is provided with a heating mechanism, and the outer cylinder body is fixed on the inner wall a spiral belt, the inner cylinder body is provided with a conveying mechanism opposite to the feeding direction of the outer cylinder body, the inlet end of the inner cylinder body is provided with a solid heat carrier introduction mechanism between the outer cylinder body; and the solid body formed by cracking is disposed in the outer cylinder body Separation mechanism of solid heat carrier; oil and gas outlet and solid product outlet on the outer cylinder.
  • the outer cylinder or the inner cylinder may be used as a cracking chamber as needed, and the other as a cavity for returning the solid heat carrier, but the outer cylinder is generally considered from the viewpoint of the volume of the object to be transported and the like.
  • the inner cylinder is used to return the solid heat carrier.
  • the solid heat carrier can be heated simultaneously to increase its temperature to meet the temperature requirements of the cracking reaction. In this way, the solid heat carrier forms a circulation in the cylinder, which not only simplifies the structure, but also reduces the occupied space.
  • the solid heat carrier does not have thermal energy loss in the cylinder, and the operating cost of the equipment is greatly reduced.
  • the transportation of the solid heat medium in the inner cylinder can be achieved in various ways, such as designing the inner cylinder as a tilting drum; or installing a screw in a horizontally fixed inner cylinder;
  • the inner cylinder is designed as a rotating drum, and a spiral belt is fixed on the inner wall thereof, so that the solid heat carrier is sent from one end to the other end as the inner cylinder rotates. .
  • the structure of feeding the solid heat carrier or the mixture of the solid heat carrier and the raw material from the outer cylinder to the inner cylinder can be variously.
  • the lower end can be its inlet end;
  • an additional lifting mechanism can also be provided.
  • the lifting mechanism can also be realized directly through the inner cylinder and the spiral belt on the inner wall, that is, the inner cylinder and the spiral belt therein can form a straw, even if the end of the inner cylinder forms a helicoid with the spiral belt, and the spiral surface Between the end and the inner cylinder and the inner spiral belt A gutter that opens to the circumferential direction is formed.
  • the heating mechanism in the inner cylinder can be disposed on the cylinder wall or in the middle of the inner cylinder along the axial direction of the inner cylinder. .
  • the heating mechanism in the inner cylinder can adopt a pipe body which is integrally connected with the inner cylinder body, and both ends of the heating mechanism are connected to the outer cylinder body and connected to the driving mechanism.
  • the separation of the solid product from the solid heat carrier after the cracking reaction is generally achieved by providing a screen in the cylinder.
  • the inlet of the inner cylinder should be The solid heat carrier introduction mechanism at the end is disposed on the screen.
  • the present invention designs the screen into a cylindrical shape, and has a baffle at the outer end thereof to prevent the solid heat carrier from flowing outside the screen; between the outer wall of the screen and the outer cylinder There is a spiral belt that sends the solid product to its outlet, and at this time, the inlet end of the inner cylinder is placed in the screen.
  • the outlet of the oil and gas produced by the cracking is designed near the inlet end of the raw material of the outer cylinder.
  • the specific structure of the present invention can be adopted in the following manner: It comprises a rotating outer cylinder and an inner cylinder body, and the outer ends of the outer cylinder body and the outer casing of the outer cylinder body are connected by dynamic sealing, and a heating chamber with an inlet and outlet of the heat carrier is formed therebetween
  • the two ends of the outer cylinder are connected to the head by a dynamic seal;
  • the heating tube in the inner cylinder is connected to the inner cylinder through a spiral belt, and the heating tube passes through the sealing head and is connected with the sealing head through a dynamic seal.
  • the front port of the inner cylinder is also associated with the raw material inlet of the outer cylinder so that the raw material is heated to react with it.
  • the outer cylinder body may be provided with a connecting portion having a small diameter at both ends, and a corresponding spiral inner belt is disposed on the outer wall of the inner cylinder adjacent to the raw material inlet; and the inner wall of the other connecting portion is disposed on the inner wall The spiral belt, thereby achieving smooth delivery of the raw materials and the reaction product.
  • Figure 1 is a partial cross-sectional view of the ninth embodiment
  • Figure 2 is an A-A view of Figure 1;
  • Figure 3 is a right perspective view of the screen and the inner cylinder portion of Figure 1;
  • Figure 4 is a cross-sectional view of the screen portion of Figure 1;
  • Figure 5 is a front elevational view of the right side of the inner cylinder of Figure 1;
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the embodiment includes an outer cylinder body and an inner cylinder body. Both ends of the inner cylinder body communicate with the outer cylinder body, and the outer cylinder body is provided with a heating mechanism, and the inner wall of the outer cylinder body body is fixed with a spiral belt.
  • the inner cylinder is provided with a conveying mechanism opposite to the feeding direction of the outer cylinder, and the conveying mechanism is in the form of a screw.
  • the inlet end of the inner cylinder is provided with a lifting mechanism for feeding the solid heat carrier from the outer cylinder to the inner cylinder.
  • the outer cylinder is provided with a solid body and a solid heat medium screening mechanism formed by cracking; the outer cylinder has an oil and gas outlet and a solid product outlet corresponding to the screening mechanism.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the embodiment includes an outer cylinder body and an inner cylinder body. Both ends of the inner cylinder body communicate with the outer cylinder body, and the outer cylinder body is provided with a heating mechanism, and the inner wall of the outer cylinder body body is fixed with a spiral belt.
  • the outer wall of the inner cylinder is provided with a heating mechanism, and the outer cylinder body is provided with a conveying mechanism opposite to the feeding direction of the outer cylinder, and the conveying mechanism is in the form of a screw.
  • the inlet end of the inner cylinder is provided with a lifting mechanism for feeding the solid heat carrier from the outer cylinder to the inner cylinder.
  • the outer cylinder is provided with a solid body formed by cracking and a solid heat medium screening mechanism; the outer cylinder has an oil and gas outlet and a solid product outlet corresponding to the screening mechanism.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the embodiment includes an outer cylinder body and an inner cylinder body. Both ends of the inner cylinder body communicate with the outer cylinder body, and the outer cylinder body is provided with a heating mechanism, and the inner wall of the outer cylinder body body is fixed with a spiral belt.
  • the inner cylinder is provided with a conveying mechanism opposite to the feeding direction of the outer cylinder, and the conveying mechanism is a spiral belt fixed to the inner wall of the inner cylinder.
  • the inlet end of the inner cylinder is provided with a lifting mechanism for feeding the solid heat carrier from the outer cylinder to the inner cylinder.
  • the outer cylinder is provided with a solid body formed by cracking and a solid heat medium screening mechanism; the outer cylinder has an oil and gas outlet and a solid product outlet corresponding to the screening mechanism.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the embodiment includes an outer cylinder body and an inner cylinder body. Both ends of the inner cylinder body communicate with the outer cylinder body, and the outer cylinder body is provided with a heating mechanism, and the inner wall of the outer cylinder body body is fixed with a spiral belt.
  • the inner cylinder is provided with a conveying mechanism opposite to the feeding direction of the outer cylinder, and the conveying mechanism is a spiral belt fixed to the inner wall of the inner cylinder.
  • the inlet end of the inner cylinder is provided with an introduction mechanism for feeding the solid heat carrier from the outer cylinder to the inner cylinder, and the solid heat carrier introduction mechanism of the inlet end of the inner cylinder is the spiral belt and the inner cylinder in the inner cylinder Formed a copy.
  • the outer cylinder is provided with a solid body formed by cracking and a solid heat medium screening mechanism; the outer cylinder has an oil and gas outlet and a solid product outlet corresponding to the screening mechanism.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the embodiment includes an outer cylinder body and an inner cylinder body. Both ends of the inner cylinder body are connected to the outer cylinder body, and the outer cylinder body is provided with a heating mechanism, and the inner wall of the outer cylinder body body is fixed with a spiral belt.
  • the inner cylinder is provided with an outer cylinder A conveying mechanism having opposite feeding directions, the conveying mechanism being a spiral belt fixed to the inner wall of the inner cylinder.
  • a heating mechanism is disposed along the central axis of the inner cylinder.
  • the inlet end of the inner cylinder is provided with an introduction mechanism for feeding the solid heat carrier from the outer cylinder to the inner cylinder, and the solid heat carrier introduction mechanism of the inlet end of the inner cylinder is the spiral belt and the inner cylinder in the inner cylinder Formed a copy.
  • the outer cylinder is provided with a solid body formed by cracking and a solid heat medium screening mechanism; the outer cylinder has an oil and gas outlet and a solid product outlet corresponding to the screening mechanism.
  • the oil and gas outlet is near the end of the outer cylinder with the inlet of the feedstock.
  • the embodiment includes an outer cylinder body and an inner cylinder body. Both ends of the inner cylinder body are in communication with the outer cylinder body, and at least one of the outer cylinder body and the inner cylinder body is provided with a heating mechanism, and the spiral belt is fixed on the inner wall of the outer cylinder body
  • the inner cylinder body is provided with a conveying mechanism opposite to the feeding direction of the outer cylinder body, the inlet end of the inner cylinder body is provided with a solid heat carrier introduction mechanism between the outer cylinder body, and the outer cylinder body is provided with solid matter and solid state carried by cracking. Separation mechanism of the hot body; the outer cylinder has an oil and gas outlet and a solid product outlet.
  • the separating mechanism of this embodiment is a screen fixed to the lower end of the inlet end of the inner cylinder, and the other structure adopts any one of the above embodiments.
  • the embodiment includes an outer cylinder body and an inner cylinder body. Both ends of the inner cylinder body are in communication with the outer cylinder body, and at least one of the outer cylinder body and the inner cylinder body is provided with a heating mechanism, and the spiral belt is fixed on the inner wall of the outer cylinder body
  • the inner cylinder body is provided with a conveying mechanism opposite to the feeding direction of the outer cylinder body, the inlet end of the inner cylinder body is provided with a solid heat carrier introduction mechanism between the outer cylinder body, and the outer cylinder body is provided with solid matter and solid state carried by cracking. Separation mechanism of the hot body; the outer cylinder has an oil and gas outlet and a solid product outlet.
  • the separating mechanism of this embodiment is an annular screen fixed at the inlet end of the inner cylinder, and the outer end of the screen is provided with a baffle, and the screen and the outer cylinder are connected by a spiral belt.
  • Other structures of this embodiment employ any one of the above embodiments.
  • the embodiment comprises an outer cylinder body and a inner cylinder body.
  • the outer cylinder body has a large diameter, and the spiral belt is fixed on the inner wall of the portion, and the right end is provided with an annular screen through the spiral belt, and the right end of the screen has a baffle.
  • the main body portion of the outer cylinder is mounted in the outer casing, and both ends of the outer casing are connected to the outer cylinder by a dynamic seal.
  • the housing has a heat carrier inlet and outlet.
  • the outer body of the outer cylinder body has a small diameter extension portion, and the extension portion is wound with a sprocket for connecting with the power mechanism through the chain.
  • the extension part is connected to the left and right heads respectively through the dynamic seal, the left head is provided with a feed port and an oil and gas outlet, and the right head is provided with a gray discharge port of the solid product.
  • the outer cylinder body has a heat carrier conveying pipe disposed on the axis thereof, and two ends of the outer cylinder are pierced out and connected to the head by a dynamic seal.
  • An inner cylinder is fixed on the periphery of the heat carrier conveying pipe by a spiral belt.
  • the left end of the inner cylinder corresponds to the position of the feeding port, and the left end of the inner cylinder is in the annular screen.
  • the right end of the inner cylinder is a spiral surface, and the end of the spiral surface forms a copying pipe between the inner spiral belt and the inner cylinder. It is used to send the solid heat medium to the inner cylinder.
  • the embodiment includes an outer cylinder 13 and an inner cylinder 14.
  • the outer cylinder 13 has a large diameter.
  • the spiral belt 16 is fixedly fixed to the inner wall of the outer portion, and the right end is mounted by the spiral belt 18.
  • the annular screen 26 has a baffle at the right end of the screen 26.
  • the main body portion of the outer cylinder 13 is mounted in the outer casing, and both ends of the outer casing are connected to the outer cylinder 13 by a dynamic seal.
  • the housing has a heat carrier inlet and outlet.
  • the outer cylinder body 13 has a smaller diameter extension at both ends of the main body, and the extension portion is wound with a sprocket, which is connected to the power mechanism via the chain 21.
  • the extension portion is respectively connected to the left and right heads by a dynamic seal, and the left seal 5 is provided with a feed port 9 and an oil and gas outlet 10, and the right seal 22 is provided with a ash discharge port 25 of a solid product.
  • the outer cylinder 14 has a heat carrier conveying pipe 17 disposed on its axis, and its two ends pass through the two heads 5, 22. and are connected to the two heads by a dynamic seal.
  • An inner cylinder 14 is fixed to the periphery of the heat carrier duct 17 by a spiral belt 15, and the left end of the inner cylinder 14 corresponds to the position of the feed port 9, and the left end thereof is guided into the annular screen 26.
  • the right end of the inner cylinder 14 is a helicoid, and the end of the spiral surface forms a baffle between the inner spiral belt 15 and the inner cylinder 14 for feeding the solid heat medium to the inner cylinder 14.
  • a spiral belt 12 is fixed to the outer wall of the inner cylinder 14, and these spiral belts 12 are used to feed the raw material to the main portion of the outer cylinder 13.
  • the inner wall of the outer cylinder 13 is fixed with spiral belts 20 which are used to supply the solid product separated from the solid heat carrier to the ash discharge port 25.
  • the raw material of the embodiment After the raw material of the embodiment is fed, it is mixed with the preset solid heat carrier to enter the outer cylinder for cracking reaction, and the generated oil and gas is discharged from the oil and gas outlet, and the solid matter formed is separated in the sieve, and the solid heat carrier is separated.
  • the inner cylinder is returned to the left end of the outer cylinder, mixed with the subsequently fed raw material, and again participates in the cracking reaction.
  • the separated solid matter is sent to the ash discharge port for discharge. Thereby the continuous operation of the invention is achieved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Description

工业连续化塑料裂解器 技术领域
本发明为一种通过实现工业连续生产的塑料裂解器。
背景技术
此前, 申请人已研制了塑料连续裂解的工艺及设备, 该工艺及设备中首 创了采用了固态载热体对塑料进行加热的方法,不仅成功地解决塑料在裂解 过程中的结焦等问题, 也实现了塑料连续裂解的工业化生产问题。但是, 在 该技术中, 固态载热体的返回及再加热过程、与裂解产生的固态物的分离机 构设置在裂解腔外, 使设备本身较为复杂。
发明内容 ,
本发明的目的在于: 设计一种结构简单、 体积小、 运行成本低廉的塑料 连续裂解器。
本发明的技术方案包括外筒体及内筒体, 内筒体的两端均与外筒体相 通, 外筒体及内筒体中的至少一个装有加热机构, 外筒体主体内壁上固定螺 旋带, 内筒体设置有与外筒体送料方向相反的输送机构, 内筒体的入口端设 置与外筒体之间的固态热载体导入机构;外筒体内设置有裂解生成的固态物 与固态载热体的分离机构; 外筒体上有油气出口及固态生成物出口。
对于本发明的结构, 可根据需要采用外筒体或内筒体作为裂解腔, 而另 一个作为将固态热载体返回的腔体, 但从被输送物的体积等方面考虑, 一般 将外筒体用于裂解, 而将内筒体用于送返固态载热体。 同时, 由于两个腔体 相通,在固态热载体返回时可以同时受热而提高其温度以满足裂解反应对温 度的要求。 这样, 固态热载体便在筒体内形成循环, 不仅使其结构简化, 并 减少占用空间, 而且, 固态热载体在筒体内循环没有热能的损失,' 使设备的 运行成本大大降低。
在本发明中, 内筒体中固态载热体的输送可通过多种方式实现, 如将内 筒体设计为倾斜的转筒; 或在水平的固定的内筒体中安装螺杆; 还可以将内 筒体设计为转筒, 在其内壁上固定螺旋带, 使固态载热体随内筒体的转动而 由一端送至另一端。 .
'将固态载热体或固态载热体与原料的混合物由外筒体送入内筒体的结 构有多种方式, 当内筒体倾斜时, 其低端可为其入口端; 当内筒体入口端较 高时, 也可以另外设置提升机构。提升机构还可以直接通过内筒体与其内壁 上的螺旋带实现, 即可以使内筒体与其中的螺旋带形成抄斗, 即使内筒体的 端部与螺旋带形成螺旋面,而螺旋面的端部与内筒体以及内侧的螺旋带之间 形成向周向开口的抄斗。
为补充固态载热体在裂解反应中失去的热量, 使其能够满足再次反应的 要求, 可以直接釆用在筒体内的设置较高温度的方法实现, 但为保证其吸收 足够的热量, 且加热成本较低, 应在外筒体及内筒体中分别设置加热机构, 内筒体中的加热机构可以在其筒壁上,也可以沿内筒体的轴向将其设置在内 筒体的中部。 此时, 内筒体中的加热机构可采用一管体, 它与内筒体连为一 体, 加热机构的两端穿出外筒体与驱动机构连接。
要实现裂解反应后固态生成物与固态载热体的分离, 一般是通过在筒体 内设置筛网实现的, 当内筒体作为送返固态载热体的通道时, 应将内筒体的 入口端的固态热载体导入机构设置于筛网上方。而且, 为方便同时输送分离 出的固态生成物, 本发明将筛网设计为筒状, 其外端有挡板, 防止固态载热 体流至筛网外; 筛网外壁与外筒体之间有将固态生成物送至其出口的螺旋 带, 此时, 将内筒体入口端的置于筛网内。
结合本发明中塑料的反应过程以及内筒体的结构, 本发明外将裂解产生 的油气的出口设计在靠近外筒体的原料入口端。
本发明的具体结构可采用以下方式: 它包括转动的外筒及内筒体, 外筒 体两端与其外侧的外壳之间通过动密封连接,它们之间形成带有热载体进出 口的加热腔; 外筒体两端通过动密封与封头连接; 内筒体中的加热管通过螺 旋带与内筒体连接, 加热管穿出封头并与封头通过动密封连接。
本发明中还将内筒体的前端口与外筒体的原料入口对应, 以便使原料及 时得到热量而发生反应。
基于传动的需要, 外筒体两端可设置有直径较小的连接部分, 与原料入 口邻近的连接部分中对应的内筒体外壁上设置有螺旋带;其另一连接部分的 内壁上设置有螺旋带, 由此实现原料及反应生成物的顺利输送。
附图说明
图 1为实施例九的部分剖视图; ,
图 2为图 1的 A-A视图;
图 3为图 1中筛网及内筒体部分的右视立体图;
图 4为图 1中筛网部分的剖视图;
图 5为图 1中内筒体右部的主视图;
其中, 1、 托轮支架座, 2、 托轮支架, 3、 封头支腿, 4、 托轮支架座, 5、 左封头, 6、 托轮支架, 7、 8、 动密封, 9、 进料口, 10、 油气出口, 11、 滚轮, 12、 螺旋带, 13、 外筒体, 14、 内筒体, 15、 16、 螺旋带, 17、 热载 体输送管, 18、 螺旋带, 19、 抄板, 20、 螺旋带, 21、 链条, 22、 右封头, 23、 滚轮, 24、 链轮, 25、 排灰口, 26、 筛网, 27、 保温层, 28、 螺旋带。 具体实施方式
实施例一:
本实施例包括外筒体及内筒体, 内筒体的两端均与外筒体相通, 外筒体 中装有加热机构, 外筒体主体内壁上固定螺旋带。 内筒体设置有与外筒体送 料方向相反的输送机构, 该输送机构采用螺杆形式。 内筒体的入口端设置将 固态热载体由与外筒体送入内筒体的提升机构。外筒体内设置有裂解生成的 固态物与固态载热体筛分机构;外筒体上有油气出口以及与筛分机构对应的 固态生成物出口。
实施例二:
本实施例包括外筒体及内筒体, 内筒体的两端均与外筒体相通, 外筒体 中装有加热机构, 外筒体主体内壁上固定螺旋带。 内筒体外壁上装有加热机 构, 外筒体内设置有与外筒体送料方向相反的输送机构, 该输送机构釆用螺 杆形式。内筒体的入口端设置将固态热载体由与外筒体送入内筒体的提升机 构。外筒体内设置有裂解生成的固态物与固态载热体筛分机构; 外筒体上有 油气出口以及与筛分机构对应的固态生成物出口。
实施例三:
本实施例包括外筒体及内筒体, 内筒体的两端均与外筒体相通, 外筒体 中装有加热机构, 外筒体主体内壁上固定螺旋带。 内筒体中设置有与外筒体 送料方向相反的输送机构, 该输送机构为固定于内筒体内壁上的螺旋带。 内 筒体的入口端设置将固态热载体由与外筒体送入内筒体的提升机构。外筒体 内设置有裂解生成的固态物与固态载热体筛分机构;外筒体上有油气出口以 及与筛分机构对应的固态生成物出口。
实施例四:
本实施例包括外筒体及内筒体, 内筒体的两端均与外筒体相通, 外筒体 中装有加热机构, 外筒体主体内壁上固定螺旋带。 内筒体中设置有与外筒体 送料方向相反的输送机构, 该输送机构为固定于内筒体内壁上的螺旋带。 内 筒体的入口端设置将固态热载体由与外筒体送入内筒体的导入机构,该机构 为内筒体入口端的固态热载体导入机构为内筒体中的螺旋带与其内筒体形 成的抄斗。外筒体内设置有裂解生成的固态物与固态载热体筛分机构; 外筒 体上有油气出口以及与筛分机构对应的固态生成物出口。
实施例五:
本实施例包括外筒体及内筒体, 内筒体的两端均与外筒体相通, 外筒体 中装有加热机构, 外筒体主体内壁上固定螺旋带。 内筒体中设置有与外筒体 送料方向相反的输送机构, 该输送机构为固定于内筒体内壁上的螺旋带。沿 内筒体中心轴设置有加热机构。内筒体的入口端设置将固态热载体由与外筒 体送入内筒体的导入机构,该机构为内筒体入口端的固态热载体导入机构为 内筒体中的螺旋带与其内筒体形成的抄斗。外筒体内设置有裂解生成的固态 物与固态载热体筛分机构;外筒体上有油气出口以及与筛分机构对应的固态 生成物出口。 油气出口靠近外筒体上的带有原料入口的一端。
实施例六:
本实施例包括外筒体及内筒体, 内筒体的两端均与外筒体相通, 外筒体 及内筒体中的至少一个装有加热机构, 外筒体主体内壁上固定螺旋带, 内筒 体设置有与外筒体送料方向相反的输送机构, 内筒体的入口端设置与外筒体 之间的固态热载体导入机构;外筒体内设置有裂解生成的固态物与固态载热 体的分离机构; 外筒体上有油气出口及固态生成物出口。本实施例的分离机 构为固定在内筒体入口端下方的筛网,其它结构采用上述实施例中的任意一 种。
实施例七:
本实施例包括外筒体及内筒体, 内筒体的两端均与外筒体相通, 外筒体 及内筒体中的至少一个装有加热机构, 外筒体主体内壁上固定螺旋带, 内筒 体设置有与外筒体送料方向相反的输送机构, 内筒体的入口端设置与外筒体 之间的固态热载体导入机构;外筒体内设置有裂解生成的固态物与固态载热 体的分离机构; 外筒体上有油气出口及固态生成物出口。本实施例的分离机 构为固定在内筒体入口端处的环形筛网, 筛网的外端设置有挡板, 筛网与外 筒体之间通过螺旋带连接。本实施例的其它结构采用上述实施例中的任意一 种。
实施例八:
本实施例包括外筒体及内筒体, 外筒体主体直径较大, 该部分中有螺旋 带固定在其内壁上, 其右端通过螺旋带装有环形筛网, 筛网右端有挡板。外 筒体的主体部分安装在外壳内, 外壳两端通过动密封与外筒体连接。外壳上 带有热载体进口和出口。外筒体主体两端有直径较小的延长部分, 延长部分 上绕有链轮,用于通过链条与动力机构连接。延长部分通过动密封分别与左、 右封头连接, 左封头上设置有进料口和油气出口, 右封头上设置有固态生成 物的排灰口。 外筒体内有其轴线设置有热载体输送管, 其两端穿出两封头, 并与封头通过动密封连接。 在热载体输送管的外围通过螺旋带固定有内筒 体, 内筒体的左端与进料口位置对应, 其左端探于环形筛网内。 内筒体的右 端为螺旋面, 该螺旋面的端部与其内侧的螺旋带以及内筒体之间形成抄斗, 用以将固态载热体送至内筒体中。
实施例九:
如图所示,本实施例包括外筒体 13及内筒体 14,外筒体 13主体直径较 大, 该部分中有螺旋带 16动固定在其内壁上, 其右端通过螺旋带 18装有环 形筛网 26, 筛网 26右端有挡板。外筒体 13的主体部分安装在外壳内, 外壳 两端通过动密封与外筒体 13连接。 外壳上带有热载体进口和出口。 外筒体 13主体两端有直径较小的延长部分, 延长部分上绕有链轮, 通过链条 21将 其与动力机构连接。 延长部分通过动密封分别与左、 右封头连接, 左封头 5 上设置有进料口 9和油气出口 10, 右封头 22上设置有固态生成物的排灰口 25。 外筒体 14内有其轴线设置有热载体输送管 17, 其两端穿出两封头 5、. 22, 并与两封头通过动密封连接。 在热载体输送管 17的外围通过螺旋带 15 固定有内筒体 14,,内筒体 14的左端与进料口 9位置对应, 其左端探于环形 筛网 26内。 内筒体 14的右端为螺旋面, 该螺旋面的端部与其内侧的螺旋带 15以及内筒体 14之间形成抄斗,用以将固态载热体送至内筒体 14中。在外 筒体 13的左部的延长部分, 内筒体 14的外壁上固定有螺旋带 12,这些螺旋 带 12用于将原料送至外筒体 13的主体部分。 而在外筒体 13右部的延长部 分,外筒体 13的内壁上固定有螺旋带 20,这些螺旋带 20动用于将与固态载 热体分离的固态生成物送至排灰口 25。
本实施例的原料送入后, 与其中预置的固态载热体混合进入外筒体进行 裂解反应, 生成的油气由油气出口排出, 生成的固态物在筛网中分离后, 固 态载热体进入内筒体返回外筒体左端, 与后续送入的原料混合, 再次参与至 裂解反应中。 分离出的固态物被输送至排灰口排出。 由此实现本发明的连续 工作。

Claims

权 利 要 求
1、 一种工业连续化塑料裂解器, 它包括外筒体及内筒体, 内筒体的两 端均与外筒体相通, 外筒体及内筒体中的至少一个装有加热机构, 外筒体主 体内壁上固定螺旋带, 内筒体设置有与外筒体送料方向相反的输送机构, 内 筒体的入口端设置与外筒体之间的固态热载体导入机构;外筒体内设置有裂 解生成的固态物与固态载热体的分离机构;外筒体上有油气出口及固态生成 物出口。
2、 根据权利要求 1所述的工业连续化塑料裂解器, 其特征是: 内筒体 为转筒, 其内壁上固定有螺旋带。
3、 根据权利要求 2所述的工业连续化塑料裂解器, 其特征是: 内筒体 入口端的固态热载体导入机构为内筒体中的螺旋带与其内筒体形成的抄斗。
4、 根据权利要求 2或 3所述的工业连续化塑料裂解器, 其特征是: 内 筒体中部设置沿其轴向的加热机构。 '
5、 根据权利要求 4所述的工业连续化塑料裂解器, 其特征是: 内筒体 中的加热机构为一管体, 它与内筒体连为一体, 加热机构的两端穿出外筒体 与驱动机构连接。
6、 根据权利要求 1或 2或 3所述的工业连续化塑料裂解器, 其特征是: 内筒体入口端的固态热载体导入机构设置于下部的筛网上方。
7、 根据权利要求 6所述的工业连续化塑料裂解器, 其特征是: 所述的 筛网呈筒状, 其外端有挡板, 筛网外壁与外筒体之间有螺旋带, 内筒体入口 端的置于筛网内。
8、 根据权利要求 1或 2或 3所述的工业连续化塑料裂解器, 其特征是: 外筒体上的裂解产生的油气的出口靠近外筒体的原料入口端。
9、 根据权利要求 1或 2或 3所述的工业连续化塑料裂解器, 其特征是: 它包括转动的外筒及内筒体,外筒体两端与其外侧的外壳之间通过动密封连 接, 它们之间形成带有热载体进出口的加热腔; 外筒体两端通过动密封与封 头连接; 内筒体中的加热管通过螺旋带与内筒体连接, 加热管穿出封头并与 封头通过动密封连接。
10、 根据权利要求 9所述的工业连续化塑料裂解器, 其特征是: 内筒体 的前端口与外筒体的原料入口对应。
11、 根据权利要求 9所述的工业连续化塑料裂解器, 其特征是: 外筒体 两端设置有直径较小的连接部分,与原料入口邻近的连接部分中对应的内筒 体外壁上设置有螺旋带; 其另一连接部分的内壁上设置有螺旋带动。
PCT/CN2007/003858 2007-12-27 2007-12-28 Equipement industriel pour le craquage en continu de matière plastique WO2009082842A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010539985A JP5373816B2 (ja) 2007-12-27 2007-12-28 プラスチックの工業用連続分解装置
CA2728566A CA2728566C (en) 2007-12-27 2007-12-28 An industrial continuous cracking device of plastics
US12/735,290 US8728282B2 (en) 2007-12-27 2007-12-28 Industrial continuous cracking device of plastics
EP07855859A EP2233439B1 (en) 2007-12-27 2007-12-28 Industrial equipment for continuous cracking plastic

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2007101162234A CN101469270B (zh) 2007-12-27 2007-12-27 工业连续化塑料裂解器
CN200710116223.4 2007-12-27

Publications (1)

Publication Number Publication Date
WO2009082842A1 true WO2009082842A1 (fr) 2009-07-09

Family

ID=40823744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/003858 WO2009082842A1 (fr) 2007-12-27 2007-12-28 Equipement industriel pour le craquage en continu de matière plastique

Country Status (6)

Country Link
US (1) US8728282B2 (zh)
EP (1) EP2233439B1 (zh)
JP (1) JP5373816B2 (zh)
CN (1) CN101469270B (zh)
CA (1) CA2728566C (zh)
WO (1) WO2009082842A1 (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010062960A2 (en) 2008-11-26 2010-06-03 Cedars-Sinai Medical Center METHODS OF DETERMINING RESPONSIVENESS TO ANTI-TNFα THERAPY IN INFLAMMATORY BOWEL DISEASE
CN102268279A (zh) * 2010-06-07 2011-12-07 上海连能机电科技有限公司 一种螺旋式塑料颗粒熔化装置
US9005402B2 (en) * 2011-05-14 2015-04-14 Interra Energy, Inc. Reciprocating reactor and methods for thermal decomposition of carbonaceous feedstock
CN102321273B (zh) * 2011-06-10 2012-11-21 济南友邦恒誉科技开发有限公司 粉尘分离及载体回送装置
CN102367387B (zh) * 2011-09-16 2013-07-17 浙江国裕资源再生利用科技有限公司 一种造纸废渣裂解装置
CN103102505A (zh) * 2011-11-15 2013-05-15 青岛东方循环能源有限公司 连续式裂解装置及其方法
GB2502126A (en) * 2012-05-17 2013-11-20 Oil From Waste Ltd Thermal decomposition of waste plastic
CN102925189A (zh) * 2012-11-23 2013-02-13 韩玉龙 一种内加热螺旋推进式废塑料裂解装置
KR20230109779A (ko) 2013-03-27 2023-07-20 세다르스-신나이 메디칼 센터 Tl1a 기능 및 관련된 신호전달 경로의 저해에 의한섬유증 및 염증의 완화 및 반전
EP4105236A1 (en) 2013-07-19 2022-12-21 Cedars-Sinai Medical Center Anti-tl1a (tnfsf15) antibody for treatment of inflammatory bowel disease
CN103614147B (zh) * 2013-12-08 2015-07-29 平遥县晟弘生物质能源开发有限公司 一种持续螺旋推进式炭化炉
KR20220153109A (ko) 2016-03-17 2022-11-17 세다르스-신나이 메디칼 센터 Rnaset2를 통한 염증성 장 질환의 진단 방법
CN105728401B (zh) * 2016-05-10 2018-04-10 常州塑金高分子科技有限公司 一种废旧塑料去除油污加热回收装置
WO2018081074A1 (en) 2016-10-26 2018-05-03 Cedars-Sinai Medical Center Neutralizing anti-tl1a monoclonal antibodies
CN107338065A (zh) * 2017-08-31 2017-11-10 中山市程博工业产品设计有限公司 一种煤、油页岩的隧道管薄层干馏装置
EP3784699A4 (en) 2018-04-25 2022-04-13 Prometheus Biosciences, Inc. OPTIMIZED ANTI-TL1A ANTIBODIES
GB2574834B (en) * 2018-06-19 2021-02-10 Waste To Energy Tech Ltd Pyrolysis system
WO2019243820A1 (en) 2018-06-19 2019-12-26 Waste to Energy Technology Ltd Material transfer system
CN109158408B (zh) * 2018-09-28 2023-11-21 济南恒誉环保科技股份有限公司 一种固体危废裂解工艺及成套设备
CN112391177B (zh) * 2019-08-14 2024-07-23 山东诺泰环保科技有限公司 一种裂解系统和裂解工艺
CN114901311A (zh) 2019-10-24 2022-08-12 普罗米修斯生物科学公司 Tnf样配体1a(tl1a)的人源化抗体及其用途
CN111073676A (zh) * 2019-12-30 2020-04-28 济南恒誉环保科技股份有限公司 一种工业连续化同轴多腔裂解器
CN113088305A (zh) * 2021-03-23 2021-07-09 宁波连通设备集团有限公司 一种热载体直接给热式多级串并联湍动床热解提馏反应器
CN113105916A (zh) * 2021-04-28 2021-07-13 山东省科学院能源研究所 一种生物质烘焙系统及其烘焙方法和应用
CN113801668B (zh) * 2021-10-09 2022-09-27 山东祥桓环境科技有限公司 一种球协同加热与破碎的干燥热解一体化装置及工艺
CN114292662B (zh) * 2021-12-24 2023-06-09 西南石油大学 一种油气钻井页岩钻屑双筒高效摩擦热解析装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50116573A (zh) * 1974-02-28 1975-09-11
JPS519169A (ja) * 1974-07-15 1976-01-24 Mitsubishi Metal Corp Hainetsukasoseigoseijushino netsubunkaisochi
JPH07117050A (ja) * 1993-10-21 1995-05-09 Hitachi Ltd 高分子廃棄物の処理方法及びその装置
JP2003277760A (ja) * 2002-03-26 2003-10-02 Ishikawajima Harima Heavy Ind Co Ltd 熱分解キルン
CN101074385A (zh) * 2007-04-28 2007-11-21 牛斌 废塑料连续裂解工艺及设备
JP2007332220A (ja) * 2006-06-13 2007-12-27 Toshiba Corp 熱分解処理装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR542441A (fr) * 1921-10-18 1922-08-11 Appareil de distillation en continu
US1751127A (en) * 1923-03-24 1930-03-18 Internat Coal Carbonization Co Rotary retort, kiln, or drum
US1842906A (en) * 1927-12-13 1932-01-26 Ig Farbenindustrie Ag Apparatus for the low temperature carbonization of oil-bearing materials
US1881826A (en) * 1927-12-22 1932-10-11 Coal Carbonization Company Apparatus for carbonization of coal
DE720933C (de) * 1938-09-27 1942-05-20 Dr Eduard Senfter Vorrichtung zum Schwelen von Kohlen
US3401923A (en) * 1966-02-17 1968-09-17 Wilmot Eng Co Dryer
JPS515274A (en) * 1974-07-04 1976-01-16 Nippon Chem Plant Consultant Kobunshijugobutsuno renzokushikinetsubunkaihannosochi
JP3889124B2 (ja) * 1997-08-08 2007-03-07 健 黒木 廃棄プラスチックの連続油化装置、廃棄プラスチックの連続油化方法
JP2000063559A (ja) * 1998-08-24 2000-02-29 Meidensha Corp 塩素含有高分子樹脂の処理方法と処理装置
EP1217318A1 (en) * 2000-12-19 2002-06-26 Sea Marconi Technologies Di Wander Tumiatti S.A.S. Plant for the thermal treatment of material and operation process thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50116573A (zh) * 1974-02-28 1975-09-11
JPS519169A (ja) * 1974-07-15 1976-01-24 Mitsubishi Metal Corp Hainetsukasoseigoseijushino netsubunkaisochi
JPH07117050A (ja) * 1993-10-21 1995-05-09 Hitachi Ltd 高分子廃棄物の処理方法及びその装置
JP2003277760A (ja) * 2002-03-26 2003-10-02 Ishikawajima Harima Heavy Ind Co Ltd 熱分解キルン
JP2007332220A (ja) * 2006-06-13 2007-12-27 Toshiba Corp 熱分解処理装置
CN101074385A (zh) * 2007-04-28 2007-11-21 牛斌 废塑料连续裂解工艺及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2233439A4 *

Also Published As

Publication number Publication date
CN101469270A (zh) 2009-07-01
EP2233439A1 (en) 2010-09-29
CN101469270B (zh) 2012-08-22
CA2728566C (en) 2012-07-17
EP2233439B1 (en) 2012-12-05
CA2728566A1 (en) 2009-07-09
US20100282590A1 (en) 2010-11-11
US8728282B2 (en) 2014-05-20
EP2233439A4 (en) 2011-10-05
JP5373816B2 (ja) 2013-12-18
JP2011508028A (ja) 2011-03-10

Similar Documents

Publication Publication Date Title
WO2009082842A1 (fr) Equipement industriel pour le craquage en continu de matière plastique
CN110578923B (zh) 一种裂解设备
WO2007115443A1 (en) A continuous pyrolyzing process for waste rubber or plastics
CN106433703B (zh) 一种循环热解炉及具有其的热解系统
CN201201932Y (zh) 工业连续化塑料裂解器
CN102875002B (zh) 一种污泥干燥装置以及污泥处理系统
CN110846063B (zh) 一种废旧轮胎胶粒高效处理系统
CN105855273A (zh) 用于保护气氛下加热处理物料的连续输送装置
CN211040976U (zh) 一种裂解设备
CN102250627A (zh) 活性炭制备中采用零排放式双筒旋转炭化炉的炭化系统
CN212741236U (zh) 一种用于低温易熔融的有机物料的热解装置
US9006505B2 (en) Method and device for processing plastic waste, especially polyolefins
CN111778049A (zh) 一种用于低温易熔融的有机物料的热解装置
CN201254557Y (zh) 工业连续化橡胶裂解器
CN216409602U (zh) 一种来料烘砂装置
CN214233964U (zh) 一种裂解筒、裂解设备及裂解系统
CN112745874A (zh) 一种裂解筒及裂解设备
CN217604555U (zh) 一种珍珠岩生产用干燥装置
RU2748629C1 (ru) Барабанно-винтовой агрегат для гранулирования техногенных материалов и их обработки
CN214416346U (zh) 一种裂解设备
CN212686973U (zh) 饭盒生产用螺旋送料机
CN221217626U (zh) 一种油污泥烘干回收机
CN114713137A (zh) 一种裂解筒、裂解设备及裂解系统
CN107962806A (zh) 生物质燃料成型机
CN212764687U (zh) 螺杆挤出机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07855859

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2728566

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2010539985

Country of ref document: JP

Ref document number: 12735290

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007855859

Country of ref document: EP