WO2009081763A1 - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
WO2009081763A1
WO2009081763A1 PCT/JP2008/072636 JP2008072636W WO2009081763A1 WO 2009081763 A1 WO2009081763 A1 WO 2009081763A1 JP 2008072636 W JP2008072636 W JP 2008072636W WO 2009081763 A1 WO2009081763 A1 WO 2009081763A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
cavity
semiconductor device
functional element
manufacturing
Prior art date
Application number
PCT/JP2008/072636
Other languages
English (en)
French (fr)
Inventor
Satoshi Yamamoto
Hirokazu Hashimoto
Original Assignee
Fujikura Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd. filed Critical Fujikura Ltd.
Priority to JP2009518659A priority Critical patent/JP5028486B2/ja
Priority to US12/810,279 priority patent/US8211751B2/en
Priority to CN2008801207153A priority patent/CN101897018B/zh
Priority to EP08864653.4A priority patent/EP2219215A4/en
Publication of WO2009081763A1 publication Critical patent/WO2009081763A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00317Packaging optical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0102Surface micromachining
    • B81C2201/0104Chemical-mechanical polishing [CMP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0102Surface micromachining
    • B81C2201/0105Sacrificial layer
    • B81C2201/0108Sacrificial polymer, ashing of organics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0118Processes for the planarization of structures
    • B81C2201/0125Blanket removal, e.g. polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/01Packaging MEMS
    • B81C2203/0118Bonding a wafer on the substrate, i.e. where the cap consists of another wafer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/01Packaging MEMS
    • B81C2203/0145Hermetically sealing an opening in the lid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a semiconductor device capable of reducing the size and thickness of a package such as an image sensor or a micro electro mechanical system (MEMS) device, and a manufacturing method thereof.
  • a semiconductor device capable of reducing the size and thickness of a package such as an image sensor or a micro electro mechanical system (MEMS) device, and a manufacturing method thereof.
  • MEMS micro electro mechanical system
  • Non-patent document 2 a method for forming a cavity in a wafer level package, a method has been proposed in which a pre-patterned photosensitive resin is used as an adhesive so that a portion without a resin forms a cavity after the substrates are bonded together.
  • a first object of the present invention is to provide a semiconductor device manufacturing method capable of manufacturing a semiconductor device that can contribute to miniaturization of devices and electronic devices on which the devices are mounted by a simpler process.
  • the present invention provides a semiconductor device in which unevenness and cracks due to the presence or absence of cavities are avoided and the substrate is more uniformly thinned, and can contribute to miniaturization of devices and electronic devices on which the devices are mounted. Is the second purpose.
  • a first substrate having optical transparency and a second substrate having a functional element on one surface are bonded together so that the functional element faces the first substrate.
  • the first substrate and the second substrate are supplied with a photosensitive resin at a bonding portion, and the photosensitive resin is exposed and cured.
  • the through-hole forming step it is desirable to form the cavity by removing a predetermined portion of the cured photosensitive resin.
  • the modified portion is formed by irradiating a predetermined position of the first substrate with a laser beam, and the modified portion is removed. It is desirable to form.
  • the method for manufacturing a semiconductor device of the present invention it is preferable that the method further includes a sealing portion forming step of forming a sealing portion for hermetically sealing the cavity after the formation of the step through hole.
  • a semiconductor device according to the present invention includes: a first substrate having optical transparency; a second substrate having a functional element on one surface and bonded so that the functional element faces the first substrate; and the first substrate.
  • the functional element is preferably an image sensor.
  • the functional element is preferably a pressure sensor element.
  • the present invention after bonding the first substrate and the second substrate, at least one of the substrates is thinned, and then the cavity is formed.
  • the occurrence of unevenness and cracks after grinding due to the presence or absence of cavities can be avoided, and a more uniform and thin wafer can be ground.
  • the thickness of the package can be made thinner than before.
  • the present invention the occurrence of unevenness and cracks due to the presence or absence of cavities is avoided, and the substrate is made thinner more uniformly. Accordingly, it is possible to provide a semiconductor device that can contribute to miniaturization of devices and electronic devices on which the devices are mounted.
  • FIG. 1 is a cross-sectional view showing an example of a semiconductor device according to the present invention.
  • 2A is a cross-sectional view showing a method of manufacturing the semiconductor device shown in FIG. 1 in the order of steps.
  • 2B is a cross-sectional view showing the method of manufacturing the semiconductor device shown in FIG. 1 in the order of steps.
  • 2C is a cross-sectional view showing a method of manufacturing the semiconductor device shown in FIG. 1 in the order of steps.
  • 2D is a cross-sectional view showing a method of manufacturing the semiconductor device shown in FIG. 1 in the order of steps.
  • 2E is a cross-sectional view showing the method of manufacturing the semiconductor device shown in FIG. 1 in the order of steps.
  • FIG. 1 is a cross-sectional view showing an example of a semiconductor device according to the present invention.
  • FIG. 3 is a schematic cross-sectional view showing another example of the semiconductor device according to the present invention.
  • 4A is a cross-sectional view showing a method of manufacturing the semiconductor device shown in FIG. 3 in the order of steps.
  • 4B is a cross-sectional view showing the method of manufacturing the semiconductor device shown in FIG. 3 in the order of steps.
  • 4C is a cross-sectional view showing the method of manufacturing the semiconductor device shown in FIG. 3 in the order of steps.
  • 4D is a cross-sectional view showing the method of manufacturing the semiconductor device shown in FIG. 3 in the order of steps.
  • 4E is a cross-sectional view showing a method of manufacturing the semiconductor device shown in FIG. 3 in the order of steps.
  • FIG. 1 is a schematic cross-sectional view showing an example of the semiconductor device of the present embodiment.
  • the semiconductor device 1A (1) includes a first substrate 11 having optical transparency and a functional element 13 on one surface, and is bonded to the first substrate 11 so that the functional element 13 faces the first substrate 11.
  • the second substrate 12 thus formed, a cavity 15 disposed in a bonding portion of the first substrate 11 and the second substrate 12 and corresponding to the functional element 13, and communicated with the cavity 15
  • the disposed through hole 16 and a sealing portion 17 for sealing the cavity 15 and the through hole 16 are provided.
  • the semiconductor device 1 ⁇ / b> A the first substrate 11 and the second substrate 12 are bonded together with a photosensitive resin 14.
  • the semiconductor device 1A of the present invention the occurrence of irregularities and cracks due to the presence or absence of a cavity is avoided, and the substrate is thinned more uniformly. Thereby, it can contribute to size reduction of a device and the electronic device in which they are mounted.
  • the first substrate 11 is not particularly limited, but suitable examples include a transparent substrate made of a semiconductor such as glass or silicon, a single crystal such as sapphire, a resin, or a composite material thereof.
  • the first substrate 11 is preferably a glass substrate that is transparent in the visible region (for example, manufactured by Pyrex (registered trademark)) so that the semiconductor device 1A can be applied to an image sensor package.
  • the thickness of the first substrate 11 is not particularly limited, but is preferably about 150 ⁇ m to 1 mm, for example.
  • the second substrate 12 is made of, for example, a semiconductor substrate.
  • the semiconductor substrate may be a semiconductor wafer such as a silicon wafer, or a semiconductor chip obtained by cutting (dicing) the semiconductor wafer into chip dimensions.
  • the functional element 13 is mounted on the surface of the second substrate 12.
  • a boron (boron) diffusion layer for electrically connecting the functional element 13 to an external electronic circuit or the like, and penetrating the front and back surfaces of the second substrate 12 are provided.
  • a penetrating electrode is provided.
  • the functional element 13 is an imaging element such as a CCD element or a pressure sensor element.
  • Other examples of the functional element 13 include, for example, an IC chip, an optical element, a micro relay, a micro switch, an acceleration sensor, a high frequency filter, a micro mirror, a micro reactor, a ⁇ -TAS, a DNA chip, a MEMS device, and a micro fuel cell. Etc. can be used.
  • a method for manufacturing such a semiconductor device 1A will be described.
  • a first substrate 11 having optical transparency and a second substrate 12 having a functional element 13 on one surface are disposed so that the functional element 13 faces the first substrate 11.
  • Steps ⁇ for forming a cavity 15 and a through hole 16 communicating with the cavity 15 in at least a part of the part are sequentially provided.
  • substrate 12 are bonded together by supplying the photosensitive resin 14 to a bonding part, and exposing and hardening in a post process.
  • a glass substrate (pyrex (registered trademark), 4 inches, thickness 500 ⁇ m) transparent in the visible region was used so as to be applicable to an image sensor package.
  • a Si substrate (4 inches, thickness 525 ⁇ m) on which a MEMS device and an image sensor were arranged as the functional element 13 on one surface was used.
  • one through hole 16 is formed in advance at a location where the cavity 15 is formed.
  • the photosensitive resin 14 For example, a polyimide resin, an epoxy resin, a silicone resin etc. can be used.
  • the method for applying the resin is not particularly limited, and for example, a method such as stamping, dispensing, spin coating, spray coating, or the like can be used.
  • the photosensitive resin 14 a negative type that cures the exposed portion was used.
  • step ⁇ at least one of the first substrate 11 and the second substrate 12 is thinned [step ⁇ ].
  • the second substrate 12 is ground and thinned.
  • the second substrate 12 Si substrate
  • the second substrate 12 was mechanically ground and then polished, so that the thickness of the second substrate 12 was 100 ⁇ m.
  • a cavity 15 is formed in at least a part of the bonded portion of the first substrate 11 and the second substrate 12 [step ⁇ ].
  • the previously formed through hole 16 is in communication with the cavity 15.
  • the cavity 15 is formed by removing a predetermined portion of the cured photosensitive resin 14.
  • the photosensitive resin 14 is irradiated with light from the first substrate 11 side, exposed and cured.
  • the photosensitive resin 14 where the cavity 15 is to be formed is not exposed (shown as a non-exposed portion 14a in the figure), and is removed by a chemical solution in a subsequent process. Thereby, this part can be used as the cavity 15.
  • the reason for irradiating light from the first substrate 11 side is that the first substrate 11 is made of glass, so that the light is transmitted and the photosensitive resin 14 can be exposed.
  • the resin in the non-exposed portion 14a is removed with a chemical solution to form a cavity 15.
  • the through hole 16 formed in the first substrate 11 was used for introducing the chemical into the non-exposed portion 14a.
  • the through hole 16 may be formed in the first substrate 11 in advance, or may be newly formed after the substrates are bonded together.
  • a sealing portion 17 that hermetically seals the cavity 15 is formed [step ⁇ ].
  • the through hole 16 may be closed with a sealing portion 17 made of low melting point glass or resin.
  • the cavity 15 can be hermetically sealed.
  • the second substrate 12 on the cavity 15 thinned by grinding can be used as a flexible diaphragm, and a new function such as pressure sensing can be added.
  • the semiconductor device 1A as shown in FIG. 1 is obtained.
  • the semiconductor device 1A thus obtained, the occurrence of irregularities and cracks due to the presence or absence of cavities is avoided, and the substrate is thinned more uniformly, thereby reducing the size of the devices and electronic devices on which they are mounted. Can contribute.
  • the second substrate 12 and the first substrate 11 may be a combination other than the present embodiment, or may be Pyrex (registered trademark) substrates or other glass and Si wafers. Further, the thickness can be appropriately set to about 150 ⁇ m to 1 mm.
  • the photosensitive resin 14 may also be a positive type resin whose exposed portion is removed by a chemical solution. Furthermore, there may be a plurality of through holes 16 for introducing the chemical solution.
  • FIG. 3 is a schematic cross-sectional view showing an example of the semiconductor device of the present embodiment.
  • the semiconductor device 1B (1) includes a light-transmitting first substrate 21 and a functional element 23 on one surface, and is bonded to the first substrate 21 so that the functional element 23 faces the first substrate 21.
  • the second substrate 22 thus formed, a cavity 24 disposed in a portion corresponding to the functional element 23, which is a bonding portion of the first substrate 21 and the second substrate 22, and communicated with the cavity 24
  • the disposed through hole 25 and a sealing portion 26 for sealing the cavity 24 and the through hole 25 are provided.
  • the semiconductor device 1B of the present invention avoids the occurrence of unevenness and cracks due to the presence or absence of the cavity 24, and the substrate is thinned more uniformly, thereby contributing to the downsizing of the device and the electronic equipment on which the device is mounted. can do.
  • substrate 22, and the functional element 13 mentioned above can be used for the 1st board
  • a method for manufacturing such a semiconductor device 1B will be described.
  • a first substrate 21 having optical transparency and a second substrate 22 having a functional element 23 on one surface are arranged so that the functional element 23 faces the first substrate 21.
  • Bonding step ⁇ , step ⁇ for thinning at least one of the first substrate 21 and the second substrate 22 (here, the second substrate 22), and a bonding portion of the first substrate 21 and the second substrate 22 Step ⁇ for forming a cavity 24 and a through hole 25 communicating with the cavity 24 in at least a part thereof is sequentially provided.
  • the present invention after the first substrate 21 and the second substrate 22 are bonded together, one of the substrates is thinned, and then the cavity 24 is formed. Accordingly, it is possible to avoid the occurrence of unevenness and cracks after grinding due to the presence or absence of the cavity 24, and it is possible to grind a more uniform and thin wafer. Thereby, the thickness of the package can be made thinner than before. As a result, in the present invention, a semiconductor device that can contribute to miniaturization of devices and electronic devices on which the devices are mounted can be manufactured in a simpler process.
  • 4A to 4E are schematic cross-sectional views showing the respective steps in the manufacturing method of the present embodiment. Hereinafter, each step will be described in detail. In the following description, specific examples are described, but the present invention is not limited to these.
  • a first substrate 21 having optical transparency and a second substrate 22 provided with a functional element 23 on one side are opposed to the first substrate 21.
  • the second substrate 22 and the first substrate 21 are bonded together.
  • a Pyrex (registered trademark) glass substrate (4 inches, thickness 500 ⁇ m) is used as the first substrate 21, and a Si substrate in which a MEMS device or an image sensor is arranged as a functional element 23 on one side as the second substrate 22. (4 inches, thickness 525 ⁇ m) was used, and both were bonded by anodic bonding.
  • step ⁇ at least one of the first substrate 21 and the second substrate 22 is thinned [step ⁇ ]. After the first substrate 21 and the second substrate 22 are bonded together, the second substrate 22 is ground and thinned. In the present embodiment, the second substrate 22 was mechanically ground and then polished, so that the thickness of the second substrate 22 was 100 ⁇ m.
  • a cavity 24 and a through hole 25 communicating with the cavity 24 are formed in at least a part of the bonded portion of the first substrate 21 and the second substrate 22 [ Step ⁇ ].
  • the modified portions 21a and 21b are formed by irradiating the predetermined position of the first substrate 21 with the laser beam L, and the modified portions 21a and 21b are removed, whereby the through holes 25 and Each cavity 24 is formed.
  • the laser beam L modifies the vicinity of the bonding interface between the first substrate 21 and the second substrate 22.
  • the modified portion 21a is formed in the vertical direction from the surface of the first substrate 21, that is, the Pyrex (registered trademark) glass, and then the Pyrex (registered trademark) glass near the bonding interface is formed in the cavity to be formed.
  • the modified portion 21b was formed by modifying so as to correspond to the size of 24.
  • a femtosecond laser average output: 800 mW, pulse width: 250 fs, repetition frequency: 2 kHz, wavelength: 800 nm
  • the Pyrex (registered trademark) glass is focused and irradiated.
  • the reforming parts 21a and 21b were formed.
  • the modified portions 21a and 21b are etched with a chemical solution to form a cavity 24 and a through hole 25.
  • the modified portions 21a and 21b are etched faster than the unmodified portions, so that the cavity 24 and the through hole 25 can be formed as a result.
  • a sealing portion 26 for hermetically sealing the cavity 24 is formed [step ⁇ ].
  • the through hole 25 may be closed with a sealing portion 26 made of low melting point glass or resin.
  • the cavity 24 can be hermetically sealed.
  • the first substrate 21 on the cavity 24 thinned by grinding can be used as a flexible diaphragm, and a new function such as pressure sensing can be added.
  • the semiconductor device 1B as shown in FIG. 3 is obtained.
  • the semiconductor device 1B obtained in this way the occurrence of irregularities and cracks due to the presence or absence of cavities is avoided, and the substrate is thinned more uniformly. Thereby, it can contribute to size reduction of a device and the electronic device in which they are mounted.
  • first substrate 21 and the second substrate 22 may be a combination other than the present embodiment, or may be Pyrex (registered trademark) substrates or other glass and Si wafers.
  • the wavelength of the laser beam L is appropriately set so that it can pass through the substrate.
  • the thickness can be appropriately set to about 150 ⁇ m to 1 mm.
  • the bonding method is not limited to anodic bonding, and room temperature bonding or an adhesive may be used. Further, a plurality of longitudinal reforming sections may be provided.
  • the present invention can be widely applied to a semiconductor device having a cavity and a manufacturing method thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Micromachines (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

 本発明に係る半導体装置の製造方法は、光透過性を有する第一基板と、一面に機能素子を備えた第二基板とを、前記機能素子が前記第一基板と対向するように貼り合わせる、貼り合わせ工程と;前記第一基板及び前記第二基板の少なくとも一方を薄板化する、薄板化工程と;前記第一基板と前記第二基板の貼り合せ部の少なくとも一部に、キャビティ及びこのキャビティに連通する貫通孔を形成する、貫通孔形成工程と;を備える。本発明によると、キャビティの有無による研削後の凹凸やクラックの発生を回避して、基板をより均一に薄板化することが可能である。また、デバイス及びそれらが搭載される電子機器の小型化に貢献できる半導体装置を、より簡便な工程で製造可能である。

Description

半導体装置及びその製造方法
 本発明は、イメージセンサやMEMS(Micro Electro Mechanical System)デバイス等のパッケージの小型化、薄型化を可能とする半導体装置及びその製造方法に関する。
 本願は、2007年12月25日に出願された日本国特許出願第2007-331695号に対し優先権を主張し、その内容をここに援用する。
 近年、携帯電話など電子機器の小型化、高機能化に伴い、それらに使われる電子デバイス等にも更なる小型化が要求されている。これを実現するためには、デバイス自身の小型化だけでなく、デバイスのパッケージにも小型化、高機能化に向けた技術開発が必須となっている。デバイスのパッケージを小型化する技術の一つとして、ウエハレベルパッケージ技術を駆使した各種デバイスパッケージが提案されており、MEMSデバイスやイメージセンサヘの応用が期待されている(例えば、非特許文献1参照)。
 MEMSデバイスやイメージセンサデバイスのパッケージにおいては、微小機械の駆動スペースやマイクロレンズの収納スペースを確保するため、ある大きさのキャビティ(空間)を確保する必要がある。
 従来、ウエハレベルパッケージにおいてキャビティを形成する方法として、予めパターニングされた感光性樹脂を接着剤として用いることにより、基板貼り合わせ後、樹脂のない部分がキャビティを形成するといった方法が提案されている(非特許文献2参照)。
 しかしながら、この方法を用いたウエハレベルパッケージの作製では、既にキャビティが形成された、貼り合わせ後の基板を研削して薄板化を実施するため、キャビティがある部分とない部分とで研削時の加重の加わり方が異なり、研削後の基板表面には、キャビティの有無に対応したパターンで凹凸が発生したり、場合によっては基板にクラックが発生するといった問題が生じていた。これにより基板の薄板化には限界があった。
伊藤達也、「電子材料」2007年1月号、p.60-64 S.Yamamoto他、ICEP2006予稿集、p.259-264
 本発明は、このような従来の実情に鑑みて考案されたものであり、キャビティの有無による研削後の凹凸やクラックの発生を回避して、基板をより均一に薄板化することが可能であり、デバイス及びそれらが搭載される電子機器の小型化に貢献できる半導体装置を、より簡便な工程で製造可能な、半導体装置の製造方法を提供することを第一の目的とする。
 また、本発明は、キャビティの有無による凹凸やクラックの発生が回避されて、基板がより均一に薄板化されており、デバイス及びそれらが搭載される電子機器の小型化に貢献できる半導体装置の提供を第二の目的とする。
 本発明に係る半導体装置の製造方法は、光透過性を有する第一基板と、一面に機能素子を備えた第二基板とを、前記機能素子が前記第一基板と対向するように貼り合わせる、貼り合わせ工程と;前記第一基板及び前記第二基板の少なくとも一方を薄板化する、薄板化工程と;前記第一基板と前記第二基板の貼り合せ部の少なくとも一部に、キャビティ及びこのキャビティに連通する貫通孔を形成する貫通孔形成工程と;を備える。
 本発明の半導体装置の製造方法では、前記貼り合わせ工程において、前記第一基板と前記第二基板とを、貼り合わせ部分に感光性樹脂を供給し、この感光性樹脂を露光して硬化させることによって貼り合わせ;前記貫通孔形成工程において、硬化後の前記感光性樹脂の所定部分を除去することによって前記キャビティを形成することが望ましい。
 本発明の半導体装置の製造方法では、前記貫通孔形成工程において、前記第一基板の所定位置にレーザー光を照射して改質部を形成し、この改質部を除去することによって、前記キャビティを形成することが望ましい。
 本発明の半導体装置の製造方法において、前記工程貫通孔形成の後に、前記キャビティを気密封止する封止部を形成する封止部形成工程を、さらに備えることが望ましい。
 本発明に係る半導体装置は、光透過性を有する第一基板と;一面に機能素子を備え、この機能素子が前記第一基板と対向するように貼り合わされた第二基板と;前記第一基板と前記第二基板の貼り合せ部であって前記機能素子に対応する部分に配されたキャビティと;このキャビティに連通して配された貫通孔と;を備える。
 本発明の半導体装置において、前記機能素子は、撮像素子であることが望ましい。
 本発明の半導体装置において、前記機能素子は、圧力センサ素子であることが望ましい。
 本発明では、第一基板と第二基板とを貼り合わせた後に、少なくとも一方の基板を薄板化し、その後にキャビティを形成している。これにより、キャビティの有無による研削後の凹凸やクラックの発生を回避することができ、より均一で薄いウエハの研削が可能となる。これにより、従来よりもパッケージの厚さをより薄くすることが可能となる。その結果、本発明ではデバイス及びそれらが搭載される電子機器の小型化に貢献できる半導体装置を、より簡便な工程で製造可能な、半導体装置の製造方法を提供することができる。
 また、本発明では、キャビティの有無による凹凸やクラックの発生が回避されて、基板がより均一に薄板化されている。これによりデバイス及びそれらが搭載される電子機器の小型化に貢献できる半導体装置を提供することができる。
図1は、本発明に係る半導体装置の一例を示す断面図である。 図2Aは、図1に示す半導体装置の製造方法を工程順に示す断面図である。 図2Bは、図1に示す半導体装置の製造方法を工程順に示す断面図である。 図2Cは、図1に示す半導体装置の製造方法を工程順に示す断面図である。 図2Dは、図1に示す半導体装置の製造方法を工程順に示す断面図である。 図2Eは、図1に示す半導体装置の製造方法を工程順に示す断面図である。 図3は、本発明に係る半導体装置の他の一例を示す模式的断面図である。 図4Aは、図3に示す半導体装置の製造方法を工程順に示す断面図である。 図4Bは、図3に示す半導体装置の製造方法を工程順に示す断面図である。 図4Cは、図3に示す半導体装置の製造方法を工程順に示す断面図である。 図4Dは、図3に示す半導体装置の製造方法を工程順に示す断面図である。 図4Eは、図3に示す半導体装置の製造方法を工程順に示す断面図である。
符号の説明
 1A,1B(1)  半導体装置
 11,21  第一基板
 12,22  第二基板
 13,23  機能素子
 14  感光性樹脂
 15,24  キャビティ
 16,25  貫通孔
 17,26  封止部
 以下、本発明に係る半導体装置の一実施形態を図面に基づいて説明する。
<第一実施形態>
 まず、本発明の第一実施形態について説明する。
 図1は、本実施形態の半導体装置の一例を示す模式的断面図である。
 この半導体装置1A(1)は、光透過性を有する第一基板11と、一面に機能素子13を備え、この機能素子13が前記第一基板11と対向するように第一基板11と貼り合わせられてなる第二基板12と、前記第一基板11と前記第二基板12の貼り合せ部であって前記機能素子13に対応する部分に配されたキャビティ15と、このキャビティ15に連通して配された貫通孔16と、キャビティ15及び貫通孔16を封止する封止部17と、を備えている。
 この半導体装置1Aでは、第一基板11と第二基板12とは、感光性樹脂14によって貼り合わせられている。
 本発明の半導体装置1Aは、キャビティの有無による凹凸やクラックの発生が回避されて、基板がより均一に薄板化されている。これによりデバイス及びそれらが搭載される電子機器の小型化に貢献することができる。
 第一基板11としては、特に限定されないが、好適なものとしては、ガラス、シリコン等の半導体、サファイア等の単結晶、樹脂、又はこれらの複合材からなる透明基板が例示できる。特に、半導体装置1Aをイメージセンサパッケージにも適用できるように、第一基板11は、可視領域において透明なガラス基板(例えばパイレックス(登録商標)製)を用いることが好ましい。第一基板11の厚さも特に限定されないが、例えば150μm~1mm程度が好適である。
 第二基板12は、例えば半導体基板からなる。半導体基板としては、シリコンウエハ等の半導体ウエハでもよく、半導体ウエハをチップ寸法に切断(ダイシング)した半導体チップであってもよい。
 また、第二基板12の表面には機能素子13が実装されている。この第二基板12においては、特に図示はしないが、機能素子13を外部の電子回路等と導通させるためのホウ素(ボロン)の拡散層や、第二基板12の表面と裏面に貫通して設けられる貫通電極などが設けられている。
 機能素子13は、本実施形態では、例えばCCD素子等の撮像素子又は圧力センサ素子である。
 また、機能素子13の他の例としては、例えばICチップ、光素子、マイクロリレー、マイクロスイッチ、加速度センサ、高周波フィルタ、マイクロミラー、マイクロリアクター、μ-TAS、DNAチップ、MEMSデバイス、マイクロ燃料電池等を用いることができる。
 次に、このような半導体装置1Aの製造方法について説明する。
 本発明の半導体装置の製造方法は、光透過性を有する第一基板11と、一面に機能素子13を備えた第二基板12とを、この機能素子13が第一基板11と対向するように貼り合わせる工程αと、前記第一基板11及び前記第二基板12の少なくとも一方(ここでは第二基板12)を薄板化する工程βと、前記第一基板11と前記第二基板12の貼り合せ部の少なくとも一部に、キャビティ15及びこのキャビティ15に連通する貫通孔16を形成する工程γと、を順に備える。
 本発明では、第一基板11と第二基板12とを貼り合わせた後に、一方の基板を薄板化し、その後にキャビティ15を形成している。これにより、キャビティ15の有無による研削後の凹凸やクラックの発生を回避することができ、より均一で薄い基板の研削が可能となる。
 これにより、従来よりもパッケージの厚さをより薄くすることが可能となる。その結果、本発明ではデバイス及びそれらが搭載される電子機器の小型化に貢献できる半導体装置を、より簡便な工程で製造可能である。
 図2A~2Eは、本実施形態の製造方法において各工程を示す模式的断面図である。
 以下、各工程について詳細に説明する。なお、以下の説明では、具体的な例を挙げて説明しているが、本発明はこれらに限定されるものではない。
 (1)まず、図2Aに示すように、光透過性を有する第一基板11と、一面に機能素子13を備えた第二基板12とを、この機能素子13が第一基板11と対向するように貼り合わせる[工程α]。
 本実施形態では、第一基板11と第二基板12とを、貼り合わせ部分に感光性樹脂14を供給し、後工程で露光、硬化させることにより貼り合わせる。
 第一基板11としては、イメージセンサパッケージにも適用できるように可視領域において透明なガラス基板(パイレックス(登録商標)、4インチ、厚さ500μm)を用いた。
 第二基板12としては、一面に機能素子13としてMEMSデバイスやイメージセンサを配したSi基板 (4インチ、厚さ525μm)を用いた。
 なお、第一基板11には、キャビティ15が形成される箇所に予め貫通孔16が1本形成されている。
 感光性樹脂14としては、特に限定されるものではないが、例えばポリイミド樹脂、エポキシ樹脂、シリコーン樹脂等を用いることができる。
 樹脂の塗布方法は特に限定されるものでないが、例えばスタンピング、ディスペンス、スピンコート、スプレーコート等の手法を用いることが可能である。
 ここでは感光性樹脂14として、露光された箇所が硬化するネガタイプのものを用いた。
 (2)次に、図2Bに示すように、前記第一基板11及び前記第二基板12の少なくとも一方を薄板化する[工程β]。
 第一基板11と第二基板12とを貼り合せた後、第二基板12の研削をおこない薄板化する。本実施例においては、第二基板12(Si基板)を機械的に研削した後、ポリッシュ加工をおこない、第二基板12の厚さが100μmとなるようにした。
 (3)次に、図2Cに示すように、前記第一基板11と前記第二基板12の貼り合せ部の少なくとも一部に、キャビティ15を形成する[工程γ]。これにより、予め形成された貫通孔16は、キャビティ15に連通した状態になる。
 ここで、本実施形態においては、硬化後の感光性樹脂14の所定部分を除去することによって前記キャビティ15を形成する。
 まず、感光性樹脂14に対して第一基板11側から光を照射し露光して硬化させる。この際、キャビティ15を形成したい箇所の感光性樹脂14を非露光とし(図中に非露光部14aとして示す)、後工程において薬液により除去している。これによりこの箇所をキャビティ15とすることができる。なお、第一基板11側から光を照射するのは、第一基板11がガラスからなるため、光が透過し感光性樹脂14の露光ができるからである。
 次に、図2Dに示すように、非露光部14aの樹脂を薬液により除去し、キャビティ15を形成する。この際、非露光部14aへの薬液の導入には、第一基板11に形成した貫通孔16を用いた。この貫通孔16は、予め第一基板11に形成されていても良く、また、基板貼り合せ後に新たに形成しても良い。
 (5)その後、図2Eに示すように前記キャビティ15を気密封止する封止部17を形成する[工程δ]。
 キャビティ15の形成後、上記貫通孔16を低融点ガラスや樹脂などからなる封止部17により閉塞してもよい。これによりキャビディ15を気密封止することができる。また、研削により薄板化されたキャビティ15上の第二基板12を、可撓性のあるダイアフラムとして利用することもでき、圧力のセンシングなど新たな機能を付加することもできる。
 以上のようにして図1に示したような半導体装置1Aが得られる。
 このようにして得られる半導体装置1Aでは、キャビティの有無による凹凸やクラックの発生が回避されて、基板がより均一に薄板化されている、これによりデバイス及びそれらが搭載される電子機器の小型化に貢献することができる。
 なお、第二基板12と第一基板11は、本実施例以外の組み合わせでもよく、パイレックス(登録商標)基板同士、あるいは他のガラスとSiウエハなどでも構わない。また、その厚さも150μm~1mm程度まで適宜設定できる。感光性樹脂14についても、露光部が薬液により除去されるようなポジ型の樹脂でも良い。更に、薬液導入のための貫通孔16の本数も複数本あっても良い。
<第二実施形態>
 次に、本発明の第二実施形態について説明する。
 図3は、本実施形態の半導体装置の一例を示す模式的断面図である。
 この半導体装置1B(1)は、光透過性を有する第一基板21と、一面に機能素子23を備え、この機能素子23が前記第一基板21と対向するように第一基板21と貼り合わせられてなる第二基板22と、前記第一基板21と前記第二基板22の貼り合せ部であって前記機能素子23に対応する部分に配されたキャビティ24と、このキャビティ24に連通して配された貫通孔25と、キャビティ24及び貫通孔25を封止する封止部26と、を備えている。
 本発明の半導体装置1Bは、キャビティ24の有無による凹凸やクラックの発生が回避されて、基板がより均一に薄板化されている、これによりデバイス及びそれらが搭載される電子機器の小型化に貢献することができる。
 第一基板21、第二基板22及び機能素子23は、それぞれ上述した第一基板11、第二基板22及び機能素子13と同様のものを用いることができる。
 次に、このような半導体装置1Bの製造方法について説明する。
 本発明の半導体装置の製造方法は、光透過性を有する第一基板21と、一面に機能素子23を備えた第二基板22とを、この機能素子23が第一基板21と対向するように貼り合わせる工程αと、前記第一基板21及び第二基板22の少なくとも一方(ここでは第二基板22)を薄板化する工程βと、前記第一基板21と前記第二基板22の貼り合せ部の少なくとも一部に、キャビティ24及びこのキャビティ24に連通する貫通孔25を形成する工程γと、を順に備える。
 本発明では、第一基板21と第二基板22とを貼り合わせた後に、一方の基板を薄板化し、その後にキャビティ24を形成している。これにより、キャビティ24の有無による研削後の凹凸やクラックの発生を回避することができ、より均一で薄いウエハの研削が可能となる。これにより、従来よりもパッケージの厚さをより薄くすることが可能となる。
 その結果、本発明ではデバイス及びそれらが搭載される電子機器の小型化に貢献できる半導体装置を、より簡便な工程で製造可能である。
 図4A~4Eは、本実施形態の製造方法において各工程を示す模式的断面図である。
 以下、各工程について詳細に説明する。なお、以下の説明では、具体的な例を挙げて説明しているが、本発明はこれらに限定されるものではない。
 (1)まず、図4Aに示すように、光透過性を有する第一基板21と、一面に機能素子23を備えた第二基板22とを、この機能素子23が第一基板21と対向するように貼り合わせる[工程α]。
 まず、第二基板22と第一基板21を貼り合せる。本実施例においては、第一基板21としてパイレックス(登録商標)ガラス基板(4インチ、厚さ500μm)を用い、第二基板22として一面に機能素子23としてMEMSデバイスやイメージセンサを配したSi基板 (4インチ、厚さ525μm)を用い、陽極接合により両者を貼り合せた。
 (2)次に、図4Bに示すように、前記第一基板21及び前記第二基板22の少なくとも一方を薄板化する[工程β]。
 第一基板21と第二基板22の貼り合せ後、第二基板22の研削を行い薄板化する。本実施例においては、第二基板22を機械的に研削した後、ポリッシュ加工をおこない、第二基板22の厚さが100μmとなるようにした。
 (3)次に、図4Cに示すように、前記第一基板21と前記第二基板22の貼り合せ部の少なくとも一部に、キャビティ24及びこのキャビティ24に連通する貫通孔25を形成する[工程γ]。
 ここで本実施形態では、前記第一基板21の所定位置にレーザー光Lを照射して改質部21a,21bを形成し、この改質部21a,21bを除去することによって、貫通孔25及びキャビティ24をそれぞれ形成する。
 第一基板21と第二基板22との接合界面付近をレーザー光Lにより改質する。本実施例においては、初めに第一基板21、つまりパイレックス(登録商標)ガラスの表面から垂直方向に改質部21aを形成し、次いで接合界面付近のパイレックス(登録商標)ガラスを、形成したいキャビティ24の大きさに対応するように改質して改質部21bを形成した。本実施例においては、レーザー光Lとしてフェムト秒レーザー(平均出力:800mW、パルス幅:250fs、繰返し周波数:2kHz、波長:800nm)を用い、パイレックス(登録商標)ガラス内部に集光照射することにより改質部21a,21bを形成した。
 さらに、図4Dに示すように、改質部21a,21bを薬液によりエッチングし、キャビティ24及び貫通孔25を形成する。ここで改質部21a,21bは、改質されていない部分に比べて早くエッチングされるため、結果としてキャビティ24及び貫通孔25をそれぞれ形成することができる。
 (5)その後、図4Eに示すように前記キャビティ24を気密封止する封止部26を形成する[工程δ]。
 キャビティ24の形成後、上記貫通孔25を低融点ガラスや樹脂などからなる封止部26により閉塞してもよい。これによりキャビディ24を気密封止することができる。また、研削により薄板化されたキャビティ24上の第一基板21を、可撓性のあるダイアフラムとして利用することもでき、圧力のセンシングなど新たな機能を付加することもできる。
 以上のようにして図3に示したような半導体装置1Bが得られる。
 このようにして得られる半導体装置1Bでは、キャビティの有無による凹凸やクラックの発生が回避されて、基板がより均一に薄板化されている。これによりデバイス及びそれらが搭載される電子機器の小型化に貢献することができる。
 なお、第一基板21と第二基板22は、本実施例以外の組み合わせでもよく、パイレックス(登録商標)基板同士、あるいは他のガラスとSiウエハなどでも構わない。その場合、レーザー光Lの波長は、この基板を透過できるように適宜設定される。また、その厚さも150μm~1mm程度まで適宜設定できる。接合方法についても、陽極接合に限定されるものではなく、常温接合や接着剤を用いても良い。更に縦方向の改質部を複数本としても良い。
 以上、本発明の好ましい実施例を説明したが、本発明はこれら実施例に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。本発明は前述した説明によって限定されることはなく、添付のクレームの範囲によってのみ限定される。
 本発明は、キャビティを有する半導体装置及びその製造方法について、広く適用可能である。

Claims (7)

  1.  光透過性を有する第一基板と、一面に機能素子を備えた第二基板とを、前記機能素子が前記第一基板と対向するように貼り合わせる、貼り合わせ工程と;
     前記第一基板及び前記第二基板の少なくとも一方を薄板化する、薄板化工程と;
     前記第一基板と前記第二基板の貼り合せ部の少なくとも一部に、キャビティ及びこのキャビティに連通する貫通孔を形成する、貫通孔形成工程と;を備える半導体装置の製造方法。
  2.  前記貼り合わせ工程において、前記第一基板と前記第二基板とを、貼り合わせ部分に感光性樹脂を供給し、この感光性樹脂を露光して硬化させることによって貼り合わせ;
     前記貫通孔形成工程において、硬化後の前記感光性樹脂の所定部分を除去することによって前記キャビティを形成する請求項1に記載の半導体装置の製造方法。
  3.  前記貫通孔形成工程において、前記第一基板の所定位置にレーザー光を照射して改質部を形成し、この改質部を除去することによって、前記キャビティを形成する請求項1に記載の半導体装置の製造方法。
  4.  前記貫通孔形成工程の後に、前記キャビティを気密封止する封止部を形成する、封止部形成工程を、さらに備える請求項1に記載の半導体装置の製造方法。
  5.  光透過性を有する第一基板と;
     一面に機能素子を備え、この機能素子が前記第一基板と対向するように貼り合わされた第二基板と;
     前記第一基板と前記第二基板の貼り合せ部であって前記機能素子に対応する部分に配されたキャビティと;
    このキャビティに連通して配された貫通孔と;を備える半導体装置。
  6.  前記機能素子は、撮像素子である請求項5に記載の半導体装置。
  7.  前記機能素子は、圧力センサ素子である請求項5に記載の半導体装置。
PCT/JP2008/072636 2007-12-25 2008-12-12 半導体装置及びその製造方法 WO2009081763A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009518659A JP5028486B2 (ja) 2007-12-25 2008-12-12 半導体装置の製造方法
US12/810,279 US8211751B2 (en) 2007-12-25 2008-12-12 Semiconductor device and method of manufacturing the same
CN2008801207153A CN101897018B (zh) 2007-12-25 2008-12-12 半导体装置及其制造方法
EP08864653.4A EP2219215A4 (en) 2007-12-25 2008-12-12 SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007331695 2007-12-25
JP2007-331695 2007-12-25

Publications (1)

Publication Number Publication Date
WO2009081763A1 true WO2009081763A1 (ja) 2009-07-02

Family

ID=40801069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072636 WO2009081763A1 (ja) 2007-12-25 2008-12-12 半導体装置及びその製造方法

Country Status (5)

Country Link
US (1) US8211751B2 (ja)
EP (1) EP2219215A4 (ja)
JP (2) JP5028486B2 (ja)
CN (1) CN101897018B (ja)
WO (1) WO2009081763A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8316718B2 (en) * 2010-08-23 2012-11-27 Freescale Semiconductor, Inc. MEMS pressure sensor device and method of fabricating same
US8216882B2 (en) 2010-08-23 2012-07-10 Freescale Semiconductor, Inc. Method of producing a microelectromechanical (MEMS) sensor device
US8384168B2 (en) 2011-04-21 2013-02-26 Freescale Semiconductor, Inc. Sensor device with sealing structure
US8476087B2 (en) 2011-04-21 2013-07-02 Freescale Semiconductor, Inc. Methods for fabricating sensor device package using a sealing structure
US9252172B2 (en) * 2011-05-31 2016-02-02 Stats Chippac, Ltd. Semiconductor device and method of forming EWLB semiconductor package with vertical interconnect structure and cavity region
US9564413B2 (en) 2011-09-15 2017-02-07 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming semiconductor die with active region responsive to external stimulus
US9553162B2 (en) 2011-09-15 2017-01-24 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming semiconductor die with active region responsive to external stimulus
US9046546B2 (en) 2012-04-27 2015-06-02 Freescale Semiconductor Inc. Sensor device and related fabrication methods
JP6166057B2 (ja) * 2013-02-19 2017-07-19 京セラ株式会社 パッケージ用部材、およびパッケージ体
US9327965B2 (en) 2013-03-15 2016-05-03 Versana Micro Inc Transportation device having a monolithically integrated multi-sensor device on a semiconductor substrate and method therefor
KR102328149B1 (ko) * 2014-10-31 2021-11-18 에스케이하이닉스 주식회사 커브드 이미지 센서, 그 제조방법 및 이를 구비한 전자장치
EP3045909B1 (en) * 2015-01-14 2020-11-04 Sensirion AG Sensor package
CN110324767A (zh) * 2019-06-28 2019-10-11 歌尔股份有限公司 一种微型过滤器及声学设备
DE102020117194B4 (de) * 2020-06-30 2023-06-22 Schott Ag Hermetisch verschlossene Umhäusung und Verfahren zu deren Herstellung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005123561A (ja) * 2003-09-25 2005-05-12 Kyocera Corp 微小電気機械式装置の封止構造および封止方法ならびに微小電気機械式装置
JP2005228863A (ja) * 2004-02-12 2005-08-25 Seiko Epson Corp 半導体装置の製造方法、半導体装置及びセンサ
JP2007123444A (ja) * 2005-10-26 2007-05-17 Kyocera Corp 光素子収納用パッケージ、並びに、光装置およびその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7429495B2 (en) * 2002-08-07 2008-09-30 Chang-Feng Wan System and method of fabricating micro cavities
JP4342174B2 (ja) * 2002-12-27 2009-10-14 新光電気工業株式会社 電子デバイス及びその製造方法
US20050082654A1 (en) * 2003-09-26 2005-04-21 Tessera, Inc. Structure and self-locating method of making capped chips
FR2875927B1 (fr) 2004-09-24 2006-12-08 Commissariat Energie Atomique Procede de protection d'une puce electronique, puce electronique autoprotegee et procede de fabrication de la puce
JP4381274B2 (ja) * 2004-10-04 2009-12-09 シャープ株式会社 半導体装置およびその製造方法
KR20080023313A (ko) * 2005-06-30 2008-03-13 코닌클리케 필립스 일렉트로닉스 엔.브이. Mems 구성요소 제조 방법
JP4816051B2 (ja) * 2005-12-13 2011-11-16 大日本印刷株式会社 センサーパッケージおよびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005123561A (ja) * 2003-09-25 2005-05-12 Kyocera Corp 微小電気機械式装置の封止構造および封止方法ならびに微小電気機械式装置
JP2005228863A (ja) * 2004-02-12 2005-08-25 Seiko Epson Corp 半導体装置の製造方法、半導体装置及びセンサ
JP2007123444A (ja) * 2005-10-26 2007-05-17 Kyocera Corp 光素子収納用パッケージ、並びに、光装置およびその製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
S. YAMAMOTO ET AL., ICEP2006 PROCEEDINGS, pages 259 - 264
See also references of EP2219215A4 *
TATSUYA ITO, ELECTRONIC MATERIALS, January 2007 (2007-01-01), pages 60 - 64

Also Published As

Publication number Publication date
EP2219215A4 (en) 2014-08-06
EP2219215A1 (en) 2010-08-18
US8211751B2 (en) 2012-07-03
CN101897018A (zh) 2010-11-24
JP5028486B2 (ja) 2012-09-19
JPWO2009081763A1 (ja) 2011-05-06
CN101897018B (zh) 2012-07-18
JP2012142641A (ja) 2012-07-26
US20100276765A1 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
JP5028486B2 (ja) 半導体装置の製造方法
JP2007201260A (ja) 封止構造体及び封止構造体の製造方法及び半導体装置及び半導体装置の製造方法
TWI718260B (zh) 具有光圈的薄光電模組及其製造
JP2009054979A (ja) 電子装置および電子装置の製造方法
US20130307137A1 (en) Chip package and method for forming the same
CN101009230A (zh) 晶片级封装和切割的方法
JP2006147864A (ja) 半導体パッケージ及びその製造方法
JP4113062B2 (ja) 振動部品用パッケージとその製造方法及び電子デバイス
KR20020073538A (ko) 전기 부품용 봉입물 및 그의 제조 방법
US20070284681A1 (en) Apparatus and method for protective covering of microelectromechanical system (mems) devices
JP2008141208A (ja) フリップチップボンディング技術を用いる半導体パッケージおよびパッケージング方法
JP2018041084A (ja) 傾斜した光学窓を有するマイクロメカニカルデバイスの製造方法、及び、対応するマイクロメカニカルデバイス
KR20120066502A (ko) 가변초점 렌즈 구조체 및 그 제조방법과, 광학렌즈 모듈 및 그 제조방법
CN117410397A (zh) 芯片巨量转移方法及显示面板
CN103888887A (zh) 一种mems麦克风芯片切割方法
CN111599743A (zh) 复合式胶膜结合通孔玻璃载板结构生产晶圆的方法
US8937362B2 (en) Semiconductor device having a reinforcing member for filling a gap between a semiconductor chip and a cover member and manufacturing method for semiconductor device
JP4874766B2 (ja) 半導体装置の製造方法
JP2006041429A (ja) センサーユニットおよびその製造方法
JP5769482B2 (ja) ガラス封止型パッケージの製造方法、及び光学デバイス
JP2009295900A (ja) 封止構造の製造方法
JP2003068995A (ja) 薄膜デバイス基板の製造方法
CN113912001A (zh) 用于玻璃上传感器的方法和结构
KR20050013936A (ko) 반도체 장치 및 그 제조 방법
JPH11163654A (ja) 補強された圧電基板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880120715.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2009518659

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08864653

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008864653

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12810279

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE