WO2009081757A1 - 光情報記録装置及び方法 - Google Patents
光情報記録装置及び方法 Download PDFInfo
- Publication number
- WO2009081757A1 WO2009081757A1 PCT/JP2008/072561 JP2008072561W WO2009081757A1 WO 2009081757 A1 WO2009081757 A1 WO 2009081757A1 JP 2008072561 W JP2008072561 W JP 2008072561W WO 2009081757 A1 WO2009081757 A1 WO 2009081757A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- recording
- optical information
- power
- information recording
- ratio
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/252—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
- G11B7/256—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers improving adhesion between layers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/004—Recording, reproducing or erasing methods; Read, write or erase circuits therefor
- G11B7/0045—Recording
- G11B7/00456—Recording strategies, e.g. pulse sequences
Definitions
- the present invention relates to an optical information recording medium using an organic dye having an absorption spectrum at a wavelength ⁇ of 405 nm as a recording layer, which oscillates at a wavelength in the vicinity of 405 nm (hereinafter abbreviated as “blue-violet laser”). )) To a technique for appropriately recording data.
- CD-R write-once CD
- DVD ⁇ R write-once DVD
- HD-DVD-R write-once HD-DVD
- An optical information recording medium such as a write-once Blu-ray disc (hereinafter abbreviated as “BD-R”) on one surface of a light-transmitting disc-shaped substrate, It has a structure in which a protective layer is formed as necessary. Further, a spiral or concentric groove called a groove is formed on one surface of the substrate on which the recording layer and the reflective layer are formed, and a convex part called a land is formed between adjacent grooves. .
- BD-R write-once Blu-ray disc
- Such an optical information recording medium is recorded by forming a recording mark by irradiating a recording layer on the groove while tracking a recording laser beam along the groove by an optical information recording / reproducing apparatus.
- the length nT of this recording mark (the period of the reference clock is T, and the length that is an integer multiple of n is nT), the length nT between the recording mark and another recording mark (hereinafter referred to as a space), and these Reproduction is performed by irradiating the array with laser light for reproduction and converting the reflected light into a reproduction signal.
- CD-R and DVD-R which are write-once optical information recording media that use conventional organic dyes for the recording layer, have good thermal reactivity of the organic dyes used, so power is as much as possible in the areas where spaces are formed.
- P2T 2T recording mark
- P8T 8T recording mark
- the ratio ⁇ s of the space forming power Ps to the write power Pw is equal to the ratio ⁇ c of the cooling pulse power Pc to the write power Pw. Note that when the recording mark P8T is formed by the multi-pulse type write strategy, a plurality of pulses of the write power Pw are formed, and a period in which the bias power Pb is output is provided after each pulse.
- HD-DVD-R and BD-R which are write-once optical information recording media for blue-violet lasers using an organic dye having an absorption spectrum at a wavelength ⁇ of 405 nm for the recording layer, are used for CD-R and DVD-R. It is known that the thermal reactivity is less than the organic dye used.
- writing to CD-R, DVD-R, etc. as shown in FIG. 2, cooling is performed with a power value lower than the write power Pw in the area after the pulse width dTs of the cooling pulse to form a space. Mark formation is facilitated by a write strategy in which a space formation power Ps having a power value higher than the pulse power Pc is applied to provide residual heat and a cooling pulse width dTs is provided.
- JP 2006-48898 discloses HD-DVD-R and BD-R which are write-once optical information recording media for blue-violet lasers using an inorganic material having an absorption spectrum at a wavelength ⁇ of 405 nm as a recording layer.
- recording can be performed accurately on a recording layer having high light transmittance without causing thermal interference with the preceding and following recording marks and cross-erasing with the recording marks of adjacent tracks.
- Techniques for forming marks are disclosed. Specifically, when recording on a semi-transmissive recording film having a high light transmittance, the laser beam is pulse-modulated so as to be a pulse train including a write pulse of recording power and a cooling pulse of base power.
- the data to be recorded is modulated to the length of the recording mark along the track of the recording layer, and when the length of the recording mark is 1 clock cycle, T is an integer multiple of T nT It corresponds to.
- the nT recording mark corresponding to nT is recorded by (n ⁇ 1) write pulses, and when recording a recording mark of 4T or more, the pulse width is 0.8T before the last write pulse. What inserts a cooling pulse of 2T or less is disclosed.
- this publication is a document on a write strategy relating to phase change recording of an inorganic material. This document includes a write-once type for a blue-violet laser using an organic dye having a wavelength ⁇ of an absorption spectrum at 405 nm as a recording layer. No mention is made of optical recording media. JP 2006-48898 A
- an object of the present invention is to provide a novel technique for ensuring good recording characteristics for a write-once optical information recording medium for a blue-violet laser using an organic dye having an absorption spectrum at a wavelength ⁇ of 405 nm as a recording layer. Is to provide.
- An optical information recording apparatus is an optical information recording medium using an organic dye having a predetermined absorptance for light having a wavelength of 405 nm as a recording layer, and a near range including a wavelength of 405 nm. Information is recorded by forming a recording mark and a space by irradiating a laser with a wavelength.
- This optical information recording apparatus has a write power necessary for forming a recording mark, a space forming power for forming a space with a power value lower than the write power, and immediately after the last pulse at the time of recording mark formation.
- the pulse width of the cooling pulse and the ratio of the write power as the denominator and the space forming power as the numerator are the planes of rectangular coordinates with this ratio as one coordinate axis and the pulse width of the cooling pulse as the other coordinate axis. (1) is determined from a good area measured in advance.
- the optical information recording apparatus is the optical information recording apparatus according to the first aspect, wherein the pulse width of the cooling pulse and the ratio of the write power as the denominator and the space formation power as the numerator are: In the rectangular coordinate plane with the ratio as one coordinate axis and the pulse width of the cooling pulse as the other coordinate axis, the numerical value in the range of the good region of either coordinate axis is fixed, and the good region of the other coordinate axis is The numerical value is determined based on the result of test recording at a plurality of locations within the range.
- An optical information recording apparatus for recording on an optical information recording medium using an organic dye as a recording layer has a predetermined ratio of a cooling pulse width and a space forming power to a write power. Is appropriately set so as to form a “good area” in a rectangular coordinate plane in which the pulse width of the cooling pulse is one coordinate axis and a predetermined ratio is the other coordinate axis. Is appropriately executed, and good recording characteristics are ensured.
- the optical information recording apparatus not only one of them is optimized, but the value of the coordinate axis on the optimized side is fixed, and the values of the remaining coordinate axes are further fixed.
- the optimization numerical value may be determined based on the result of test recording in the range of a good area. By doing so, writing to the optical information recording medium is more optimized, and it is possible to carry out with preferable recording.
- the above-mentioned favorable area is (0.2, 1.9375T) on a rectangular coordinate plane having the predetermined ratio and the pulse width of the cooling pulse as coordinate axes when recording at double speed recording. , (0.2, 1.5T), (0.3, 1.125T) and (0.3, 0.875T) (where T represents the period of the reference clock).
- the range is connected by a straight line. Since this range is common to the double speed recording in the inventions of the respective aspects, description of the following aspects is omitted.
- the pulse width of the cooling pulse and the predetermined ratio of the space forming power to the write power are set so as to satisfy the requirements determined by the standards and the like. Note that other areas may be appropriate for speeds other than double speed recording.
- the acquisition means has a ratio of a write power for forming a recording mark as a denominator and a space forming power for forming a space whose power value is lower than the write power as a numerator, and a pulse width of a cooling pulse.
- the range and the pulse width range of the cooling pulse that forms a good region in the rectangular coordinate plane are acquired from the memory serving as the recording source of the optical information recording apparatus or the optical information recording medium serving as the recording source. It may be.
- the optical information recording apparatus will be described mainly with respect to differences from the optical information recording apparatus according to the first aspect.
- An acquisition means for acquiring a good area obtained from a pre-recorded recording source on the plane of the rectangular coordinates described above based on a preferable range of the ratio and a preferable range of the pulse width of the cooling pulse, and a value of the write power And means for optimizing the ratio value included in the ratio range based on the result of a plurality of test recordings in the test recording area of the optical information recording medium, the optimum value of the write power, and the optimum value of the write power Setting means for setting the value of the space forming power obtained from the value and the optimum value of the ratio and the value of the pulse width of the cooling pulse, and means for recording information on the optical information recording medium according to the setting means Is.
- the ratio of the space forming power to the write power is set to an optimum value in the “good region” in the plane rectangular coordinates, and is appropriately set in accordance with the current environment. And good recording can be ensured.
- means for recording means for recording.
- the setting may be performed by optimizing the write power, the pulse width of the cooling pulse, and the ratio.
- An optical information recording method is an optical information recording medium using an organic dye having a predetermined absorptance with respect to light having a wavelength of 405 nm as a recording layer, and a near range including a wavelength of 405 nm.
- This is a procedure for recording information by forming a recording mark and a space by irradiating a laser of a wavelength.
- the write power required to form the recording mark the space formation power that is lower than the write power and required to form a space, and the space output immediately after the last pulse at the time of recording mark formation.
- the space forming power is determined by the write power read from the recording source in advance and the ratio.
- the pulse width of the cooling pulse is the cooling with the write power as the denominator and the space forming power as the numerator.
- a step of determining based on a ratio specified from a good region determined from a result measured in advance is performed.
- the optical information recording method is the optical information recording method according to the first aspect described above, wherein the pulse width of the cooling pulse and the ratio of the write power as the denominator and the space formation power as the numerator In the plane of a rectangular coordinate with the ratio as one coordinate axis and the pulse width of the cooling pulse as the other coordinate axis, the numerical value in the range of a good region of either coordinate axis is fixed and the other coordinate axis is good The numerical value is determined based on the result of test recording at a plurality of locations within the range of the appropriate area.
- the cooling pulse width and the predetermined ratio of the space forming power to the write power are cooled.
- the optical information recording method has the same concept as the optical information recording method according to the first aspect.
- the ratio of the write power for forming a recording mark as a denominator and the space forming power for forming a space having a power value lower than the write power as a numerator is set as one coordinate axis, and the recording mark is formed.
- the pulse width of the cooling pulse corresponding to a plurality of fixed values of the above ratio in the plane of the rectangular coordinate with the other coordinate axis being the pulse width of the cooling pulse output immediately after the last pulse and having a power value lower than the space forming power.
- the method includes an acquisition step of acquiring a good area obtained based on a preferable range from a recording source that has been recorded in advance. Furthermore, the method includes a step of optimizing the write power value and the pulse width value included in the range of the pulse width of the cooling pulse based on a plurality of test recording results for the test recording area of the optical information recording medium. In addition, the method includes a setting step of setting an optimum value of the write power, a value of the space forming power obtained from the optimum value of the write power and the ratio, and an optimum value of the pulse width of the cooling pulse. And according to this setting step, the step of recording information on the optical information recording medium is included.
- the pulse width of the cooling pulse is adjusted to a value that is optimal in a good region in the plane rectangular coordinates, so that an appropriate setting suitable for the current environment is made. And good recording characteristics can be secured.
- the optical information recording method has the same concept as the optical information recording method according to the first aspect.
- the ratio of the write power for forming a recording mark as a denominator and the space forming power for forming a space having a power value lower than the write power as a numerator is set as one coordinate axis.
- the ratio of the above-mentioned ratio corresponding to a plurality of fixed values of the pulse width of the cooling pulse in the plane of the rectangular coordinate with the other coordinate axis being the pulse width of the cooling pulse output immediately after the last pulse and having a power value lower than the space forming power.
- It includes an acquisition step of acquiring a good area obtained based on a preferred range from a pre-recorded recording source.
- This includes a setting step for setting the value of the space forming power obtained from the optimum value of power and the optimum value of the ratio and the value of the pulse width of the cooling pulse.
- the method includes a step of recording information on the optical information recording medium.
- the ratio of the space formation power to the write power is set to an appropriate value suitable for the current environment by adjusting it to the optimum value in the “good area” in the plane of the rectangular coordinates. And good recording can be ensured.
- the optical information recording method has the same concept as the optical information recording method according to the first aspect.
- This optical information recording method uses a write power for forming a recording mark as a denominator, a power value lower than the write power and a space forming power for forming a space as a numerator and a coordinate axis as one coordinate axis.
- the pulse width of the cooling pulse corresponding to the preferable range of the above ratio in the plane of the rectangular coordinate having the other coordinate axis as the pulse width of the cooling pulse output immediately after the last pulse and having a power value lower than the space forming power It includes an acquisition step of acquiring a good area obtained based on the range from a pre-recorded recording source.
- it includes a setting step for setting the optimum value of the write power, the value of the space forming power obtained from the optimum value of the write power and the optimum value of the ratio, and the optimum value of the pulse width of the cooling pulse.
- the method includes a step of recording information on the optical information recording medium.
- the write power, the pulse width of the cooling pulse, and the above ratio may be optimized and set, and both the DC jitter [%] and the asymmetry value clear the standard of the standard.
- the heat interference amount [ns] also satisfies the requirements determined by the standards and the like.
- the optical information recording apparatus may be realized by a combination of a program and hardware for causing the processor to perform the processing as described above. It is stored in a storage medium such as a disk, an optical disk such as a CD-ROM, a magneto-optical disk, a semiconductor memory, a hard disk, or a nonvolatile memory of a storage device or processor. Moreover, it may be distributed with a digital signal via a network. Note that data being processed is temporarily stored in a storage device such as a processor memory.
- FIG. 1 is a diagram illustrating an example of a conventional write strategy.
- FIG. 2 is a diagram illustrating an example of a write strategy for a high-density optical information recording medium.
- FIG. 3 is a diagram illustrating a relationship between the write power Pw and the DCJ when dTs is changed.
- FIG. 4 is a diagram showing the relationship between the space formation power Ps and the amount of thermal interference or DCJ in the case of an optical information recording medium using an inorganic material for the recording layer.
- FIG. 1 is a diagram illustrating an example of a conventional write strategy.
- FIG. 2 is a diagram illustrating an example of a write strategy for a high-density optical information recording medium.
- FIG. 3 is a diagram illustrating a relationship between the write power Pw and the DCJ when dTs is changed.
- FIG. 4 is a diagram showing the relationship between the space formation power Ps and the amount of thermal interference or DCJ in the case of an optical information recording medium using an inorganic
- FIG. 5 is a diagram showing the relationship between the space formation power Ps and the amount of thermal interference or DCJ in the case of an optical information recording medium for a blue-violet laser using an organic material having an absorption spectrum at a wavelength ⁇ of 405 nm as a recording layer.
- FIG. 6 is a diagram illustrating an example of a multi-pulse type write strategy.
- Figure 8 is a diagram showing a range of dTs that the epsilon s base.
- FIG. 11 is a diagram illustrating the relationship between ⁇ s and asymmetry values.
- FIG. 12 is a diagram showing the relationship between ⁇ s and dTs for obtaining good recording characteristics.
- FIG. 13 is a diagram illustrating a range of ⁇ s based on dTs.
- FIG. 14 is a functional block diagram according to the embodiment of the present invention.
- FIG. 14 is a functional block diagram according to the embodiment of the present invention.
- FIG. 15 is a diagram showing a first processing flow in the embodiment of the present invention.
- FIG. 16 is a diagram showing a second processing flow in the embodiment of the present invention.
- FIG. 17 is a diagram showing a third processing flow in the embodiment of the present invention.
- FIG. 18 is a diagram showing a fourth processing flow in the embodiment of the present invention.
- FIG. 19 is a diagram showing a data structure stored in the optical information recording medium.
- FIG. 20 is a diagram illustrating an example of a castle type write strategy.
- FIG. 3 shows the write power Pw when two dTs are used as parameters on the horizontal axis, and shows DC jitter (Data To Clock Jitter: fluctuation of the digital signal in the time axis direction, hereinafter abbreviated as DCJ) [%. ]
- DCJ Data To Clock Jitter: fluctuation of the digital signal in the time axis direction
- One of the two dTs is a white square graph representing dTs in an optimal state, and the other is a black diamond graph representing dTs in an inappropriate state.
- DCJ has a range of write power Pw that can achieve 7% or less determined by the Blu-ray Disc standard (hereinafter abbreviated as standard). If the dTs is in an inappropriate state, the DCJ cannot achieve 7% or less determined by the standard even if the write power Pw is changed.
- standard Blu-ray Disc standard
- Patent Document 1 discloses a technique for optimizing the pulse width dTs of a cooling pulse for a write-once optical information recording medium using an inorganic material for a recording layer.
- FIG. 4 shows a case where recording is performed with the pulse width dTs of the cooling pulse fixed to 1.5 [T] and the space forming power Ps changed with respect to the BD-R using the inorganic material for the recording layer. Recording characteristics DCJ [%] and thermal interference amount [ns] are shown.
- the horizontal axis represents the space forming power Ps [mW]
- the left vertical axis represents the thermal interference amount [ns]
- the right vertical axis represents DCJ [%]
- the white square represents the space forming power.
- the amount of heat interference [ns] when Ps is changed is represented, and the black diamonds represent DCJ [%] when the pace forming power Ps is changed. It is recorded on the optical information recording medium after the mark length mark A recorded after the shortest space after a certain length mark and after the longest space after a certain length mark. The mark length B with the same code length was measured, and the amount of thermal interference was measured based on the difference between the mark lengths A and B. As shown in FIG. 4, when an inorganic material is used for the recording layer, neither the DCJ nor the thermal interference amount changes much even if the space forming power Ps changes. On the other hand, FIG.
- FIG. 5 shows a case where recording is performed with the pulse width dTs of the cooling pulse fixed at 1.5 [T] and the space forming power Ps changed with respect to the BD-R using the organic material as the recording layer. Shows the recording characteristics and thermal interference amount.
- FIG. 5 is a graph similar to FIG. 4, but when the space forming power Ps is changed, the amount of thermal interference varies greatly. As the amount of heat interference decreases, the DCJ exceeds the maximum reference value of 7% and deteriorates. Thus, it can be seen that the write-once type optical information recording medium using an organic material for the recording layer is affected by thermal interference and the recording characteristics DCJ [%] deteriorates. Therefore, it has been found that in a write once optical information recording medium using an organic material for the recording layer, it is necessary to optimize not only the pulse width dTs of the cooling pulse but also the space formation power Ps according to each medium. .
- the ratio ⁇ s (Ps / Pw: hereinafter, “ratio ⁇ s or ⁇ or ⁇ ”, where the write power Pw is the denominator and the space forming power Ps is the numerator. s ”)
- the influence of thermal interference can be eliminated and the recording characteristics can be improved.
- the ratio ⁇ s of the space forming power Ps to the write power Pw is too low, the residual heat for forming the mark becomes insufficient and the asymmetry value does not reach the standard value. Therefore, the lower limit value and the cooling pulse are added to the ratio ⁇ s.
- An upper limit value of the pulse width dTs is set.
- the ratio ⁇ s becomes too high, the space forming power Ps becomes too high and the organic dye reacts and the recording characteristics DCJ [%] deteriorates, so an upper limit is set for the ratio ⁇ s. .
- the pulse width dTs of the cooling pulse is too short, the rear end portion of the recording mark is not recorded sharply, and the recording characteristics DCJ [%] are deteriorated, so a lower limit is set for the pulse width dTs of the cooling pulse. .
- the inventors of the present application have found the following in recording on a write-once type optical information recording medium using an organic material for the recording layer as described above.
- the ratio ⁇ s has an upper limit value and a lower limit value that become a preferable range
- the pulse width dTs of the cooling pulse also has an upper limit value and a lower limit value that become a preferable range
- the space forming power Ps also has an upper limit value and a lower limit value that are preferable ranges.
- a so-called multi-pulse type write strategy composed of a top pulse, an intermediate pulse, a last pulse, a cooling pulse, and a space formation pulse is applied to an optical information recording medium.
- a write strategy it is important to emit light from the light source by controlling the write power Pw for the top pulse, intermediate pulse, and last pulse, the cooling power Pc for the cooling pulse, and the space formation power Ps for the space formation pulse.
- a data recording method is used in which a recording mark is formed with a laser beam modulated so as to be emitted from the light source by controlling the bias power Pb.
- ⁇ s is fixed to 0.24, and the cooling pulse width dTs is changed to 1.75 [T], 1.625 [T], 1.5 [T], and 1.125 [T].
- the DC jitter is 7% or less. Therefore, according to this requirement, the DCT always exceeds 7% at dTs of 1.75 [T] and dTs of 1.125 [T].
- FIG. 8 shows numerical values in the case of double speed recording 2X.
- ⁇ s is 0.20
- dTs needs to be 1.5 to 1.9325 [T].
- epsilon s is 0.22
- dTs should be to free 1.375 1.75 [T].
- ⁇ s is 0.24
- dTs needs to be 1.25 to 1.625 [T].
- ⁇ s is 0.26
- dTs needs to be 1.125 to 1.5 [T].
- ⁇ s is 0.28
- dTs needs to be 1.0 to 1.3125 [T]. It was found that when ⁇ s is 0.30, dTs needs to be 0.875 to 1.125 [T].
- the write power Pw is If adjusted, if ⁇ s is as low as 0.18, the amount of thermal interference can be suppressed, so that the DCJ value satisfies the standard.
- the requirement that the asymmetry value, which is another requirement defined in the standard, is 0.15 or less cannot be satisfied.
- the horizontal axis represents ⁇ s and the vertical axis represents the asymmetry value. That is, if ⁇ s is not greater than about 0.2, the asymmetry value exceeds 0.15.
- the straight line connecting (0.2, 1.9375) and ((0.3, 1.125) with ( ⁇ s , dTs) does not meet the standard.
- a straight line connecting (0.3, 1.125) and (0.3, 0.875) with ( ⁇ s , dTs) represents a boundary where the DCJ characteristics do not meet the standard.
- a straight line connecting ( ⁇ s , dTs) between (0.2, 1.5) and (0.3, 0.875) represents a boundary where the DCJ characteristic does not meet the standard.
- ( ⁇ s , dTs) connecting (0.2, 1.9375) and (0.2, 1.5) represents a boundary where the asymmetry characteristics do not meet the standards. If there is, it is within the range of the standard, but the outside on the line includes a range that does not satisfy the standard.
- FIG. 8 relative to the epsilon s, showed a table defining a range of the pulse width dTs of the cooling pulse Pc, 13, based on the pulse width dTs of the cooling pulse Pc, and the range of epsilon s Indicates the table to be defined.
- the table in FIG. 13 is also a table in the case of double speed recording 2X. In this case, if dTs is 1.9325, ⁇ s needs to be 0.20. If dTs is 1.75, ⁇ s needs to be 0.20 to 0.22. If dTs is 1.625, ⁇ s needs to be 0.20 to 0.24. If dTs is 1.5, ⁇ s needs to be 0.20 to 0.26.
- ⁇ s needs to be 0.22 to 0.26. If dTs is 1.25, ⁇ s needs to be 0.24 to 0.28. If dTs is 1.125, ⁇ s needs to be 0.26 to 0.30.
- one coordinate axis has a ratio ⁇ s in which the write power Pw for forming the recording mark is the denominator and the space formation power Ps having a power value lower than the write power Pw is the numerator.
- the other coordinate axis is the pulse width dTs of the cooling power Pc (power value is lower than the space formation power Ps) output immediately after the last pal at the time of recording mark formation.
- the ratio ⁇ s within a predetermined range is determined, the range of the pulse width dTs of the cooling power Pc is determined.
- An optimum value can be selected by performing several trial writings within the range of the pulse width dTs in the power calibration area (hereinafter referred to as PCA area) of the optical information recording medium.
- PCA area the power calibration area
- the optimum value can be selected by making several trial writings with the ratio ⁇ s within the good range of the plane rectangular coordinates.
- the ratio ⁇ s is clarified, if either the write power Pw or the cooling power Pc and the pulse width dTs of the cooling power Pc are determined, the optimum recording for an optical information recording medium such as a BD-R is performed. It becomes possible to do. By applying this principle, it is possible to provide an optical information recording apparatus and method for optimal recording on an optical information recording medium such as a BD-R.
- the drive system according to the embodiment of the present invention includes an optical information recording / reproducing apparatus 100 and an input / output system (not shown) including a display unit and an operation unit such as a remote controller.
- the optical information recording / reproducing apparatus 100 includes a memory 127 that stores data in the middle of processing, data of processing results, reference data in processing, and the like, and a memory circuit 126 in which a program for performing processing described below is recorded.
- a control circuit 125 including a CPU (Central Processing Unit) and the like, an interface unit (hereinafter abbreviated as I / F) 128 that is an interface with an input / output system, and an RF signal that is a reproduction signal.
- I / F interface unit
- the characteristic value detection unit 124 for detecting the maximum amplitude level or the minimum amplitude level, and the 2T to 8T code (for example, 9T of the synchronization code in the case of the standard are also identified from the RF signal as the reproduction signal.
- the data to be recorded output from the equalizer 131 and the data demodulating circuit 123, the pickup unit 110, and the control circuit 125 that perform processing and the like are subjected to predetermined modulation, and a laser diode (hereinafter referred to as “LD”). (Abbreviated)) Rotation control of the optical information recording medium 150 for blue-violet laser using the data modulation circuit 129 output to the driver 121, the LD driver 121, and an organic dye having an absorption spectrum at a wavelength ⁇ of 405 nm for the recording layer And a servo control circuit 132 for the pickup unit 110.
- LD laser diode
- the memory 127 has data of a combination of the pulse width dTs of the cooling pulse Pc that satisfies the conditions described in the principle of the present embodiment and the ratio ⁇ s of the space forming power Ps to the write power Pw, that is, a good region.
- the table as shown in FIG. 8 or the table as shown in FIG. 13 may be stored as it is as a good area for each recording speed and each media ID. It is assumed that values used as initial values are also specified. Further, only a particularly used portion of the table as shown in FIG. 8 or the table as shown in FIG. 13 may be stored. Further, only one set of the above combinations may be stored for each recording speed and each media ID and used as it is. Each data stored in this way is read and used effectively when recording as a recording source.
- the pickup unit 110 includes an objective lens 114, a beam splitter 116, a detection lens 115, a collimator lens 113, an LD 111, and a photodetector (hereinafter abbreviated as “PD”) 112.
- an actuator (not shown) operates according to control of a servo control unit (not shown), and focusing and tracking are performed.
- the control circuit 125 is connected to a memory 127, a characteristic value detection unit 124, a data demodulation circuit 123, an I / F 128, an LD driver 121, a data modulation circuit 129, a servo control circuit 132, a rotation control unit (not shown), and the like.
- the characteristic value detection unit 124 is connected to the PD 112, the control circuit 125, and the like.
- the LD driver 121 is connected to the data modulation circuit 129, the control circuit 125, and the LD 111.
- the control circuit 125 is also connected to the input / output system via the I / F 128.
- the control circuit 125 causes the data modulation circuit 129 to perform a predetermined modulation process on data to be recorded on the optical information recording medium 150.
- the data modulation circuit 129 outputs the modulated data to the LD driver 121.
- the LD driver 121 drives the LD 111 with the received data in accordance with a write strategy and parameters that are designated recording conditions to output laser light.
- the laser light is applied to the optical information recording medium 150 through the collimating lens 113, the beam splitter 116, and the objective lens 114, thereby forming marks and spaces in the optical information recording medium 150.
- the LD driver 121 drives the LD 111 to output laser light.
- the laser light is irradiated onto the optical information recording medium 150 through the collimating lens 113, the beam splitter 116, and the objective lens 114.
- the reflected light from the optical information recording medium 150 is input to the PD 112 via the objective lens 114, the beam splitter 116, and the detection lens 115.
- the PD 112 converts the reflected light from the optical information recording medium 150 into an electrical signal and outputs it to the characteristic value detection unit 124 and the like.
- the equalizer 131, the data demodulation circuit 123, and the like perform predetermined decoding processing on the output reproduction signal, and the decoded data is sent to the display unit of the input / output system via the control circuit 125 and the I / F 128. Output and display the playback data.
- the characteristic value detection unit 124 is not used in normal reproduction.
- the control circuit 125 reads the media ID recorded on the optical information recording medium 150 by reproducing it through the PD 112, the equalizer 131, and the data demodulation circuit 123 (step S1). Further, the control circuit 125 receives an instruction of a recording speed from the user via the I / F 128, for example, and specifies the recording speed (step S3). The recording speed may be specified by another method, for example, a preset recording speed may be specified. Then, the control circuit 125 reads the read medium ID and various write strategy data corresponding to the specified recording speed from the recording source of the memory 127 and sets them in the LD driver 121 as an initial setting (step S5).
- the control circuit 125 fixes the write power Pw and the ratio ⁇ s of the space formation power Ps to the write power Pw to the read values.
- the pulse width dTs of the cooling pulse is changed in a regular width within the range shown in FIG. 8 or FIG. 12, and the optimization process of the pulse width dTs of the cooling pulse is performed (step). S7).
- the pulse width dTs of the cooling pulse ranges from 1.25 [T] to 1.625 [T] from the same table as in FIG. The pulse width varies depending on the resolution of the LSI.
- OPC Optimum Power Control
- step S7 for determining the optimum value of the pulse width dTs of the cooling pulse is completed.
- step S9 the optimum value of the write power Pw is also obtained by a known process (OPC) (step S9).
- control circuit 125 determines the optimized write power Pw, the space formation power Ps determined by the ratio ⁇ s of the space formation power Ps to the write power Pw, and the pulse width dTs of the optimized cooling pulse. Is set in the LD driver 121, and data recording is performed according to this setting (step S11).
- step S7 and subsequent steps will be described.
- the control circuit 125 fixes the write power Pw and the pulse width dTs of the cooling pulse to the read values based on the initial setting in step S5.
- the control circuit 125 Based on the fixed pulse width dTs, implementing the optimization of the ratio epsilon s is varied in a regular width ratio epsilon s of the space forming power to the write power Pw in the range shown in FIG. 13 or FIG. 12 (Step S17). For example, when the read dTs is 1.375 [T], the space forming power ratio ⁇ s is in the range of 0.22 to 0.26 from FIG.
- the ratio varies depending on the LSI decomposition capability.
- the decomposition capability is 0.01, and the five conditions of 0.22, 0.23, 0.24, 0.25, and 0.26 are changed. did.
- This optimization process is obtained by a known process (OPC). That is, in a test recording area of the optical information recording medium 150, a write strategy of a predetermined write power Pw, a pulse width dTs of the cooling pulse Pc, and a ratio ⁇ s of space formation power to the changed write power Pw, Test recording is performed each time, for example, asymmetry value and ⁇ value are calculated for each case, and the case where the asymmetry value and ⁇ value are the best is adopted as the optimum value.
- the characteristic value detection unit 124 detects a characteristic value necessary for calculating an asymmetry value and a ⁇ value. In this way, the process of step S17 for determining the optimum value of the ratio ⁇ s is terminated. Subsequently, based on the pulse width dTs of the fixed cooling pulse and the optimized ratio ⁇ s , the optimum value of the write power Pw is also obtained by a known process (OPC) (step S19).
- OPC a known process
- control circuit 125 determines the optimized write power Pw, the space formation power Ps determined by the optimized ratio ⁇ s of the space formation power Ps with respect to the write power Pw, and the pulse width dTs of the cooling pulse. Is set in the LD driver 121, and data recording is performed with a write strategy according to this setting (step S21).
- step S7 the control circuit 125 fixes the write power Pw and the ratio ⁇ s of the space formation power Ps to the write power Pw to the read values based on the initial setting in step S5.
- the pulse width dTs of the cooling pulse is changed in a regular width within the range shown in FIG. 8 or FIG. 12, and the optimization process of the pulse width dTs of the cooling pulse is performed (step). S27).
- the pulse width dTs of the cooling pulse ranges from 1.25 [T] to 1.625 [T] from FIG.
- the pulse width varies depending on the LSI resolution capability.
- the decomposition ability is 0.0625 [T]
- the test is performed by changing seven conditions of 1.25T, 1.3125T, 1.375T, 1.4375T, 1.5T, 1.5625T, and 1.625T. Recorded. Since these optimization processes are the same as those in step S9, the description is omitted because they are obtained by a known process (OPC). In any case, in the same process as in step S9, the process of step S27 for determining the optimum value of the pulse width dTs of the cooling pulse is ended.
- step S29 the ratio ⁇ s of the space forming power to the write power Pw is changed by a regular width within the range shown in FIG. 12 or 13 to optimize the ratio ⁇ s .
- Processing is performed (step S29).
- dTs derived by the optimization process in step S27 is 1.375 [T]
- the space forming power ratio ⁇ s is in the range of 0.22 to 0.26 from FIG.
- the ratio varies depending on the LSI decomposition capability. In this case, assuming that the decomposition capability is 0.01, test recording is performed by changing five conditions of 0.22, 0.23, 0.24, 0.25, and 0.26.
- step S30 The method of performing test recording in the test recording area of the optical information recording medium 150 each time and adopting the case where the asymmetry value or ⁇ value is the best value is the same as described above, and the description thereof will be omitted.
- the process of step S29 for determining the optimum value of the ratio ⁇ s ends.
- the optimum value of the write power Pw is also obtained by a known process (OPC) (step S30).
- control circuit 125 optimizes the write power Pw, the space formation power Ps determined by the optimized ratio ⁇ s of the space formation power Ps to the write power Pw, and the cooling pulse.
- the pulse width dTs is set in the LD driver 121, and data recording is performed with a write strategy in accordance with this setting (step S31).
- the optimum value is set so that a good recording environment can be prepared.
- the memory 127 stores only one combination of the ratio ⁇ s of the space forming power Ps to the write power Pw having the relationship shown in FIG. 8, FIG. 13 or FIG. 12 and the pulse width dTs of the cooling pulse. If yes, the processing as shown in FIG. 18 is performed.
- the control circuit 125 reads the media ID recorded on the optical information recording medium 150 by reproducing it through the PD 112, the equalizer 131, and the data demodulation circuit 123 (step S1). Further, the control circuit 125 receives an instruction of a recording speed from the user via the I / F 128, for example, and specifies the recording speed (step S3). Then, the control circuit 125 reads various strategy data corresponding to the read media ID and the specified recording speed from the memory 127 or the like, and sets them in the LD driver 121 (step S5).
- a combination of the ratio ⁇ s of the space forming power Ps to the write power Pw having the relationship shown in FIG. 8, FIG. 13 or FIG. 12 and the pulse width dTs of the cooling pulse is also read in this step.
- Ps calculated from the Pw and ⁇ s and a pulse width dTs of the cooling pulse are set.
- a known process for optimizing the write power Pw is performed (step S37).
- the characteristic value detection unit 124 detects a characteristic value for calculating an asymmetry value or a ⁇ value, and outputs it to the control circuit 125.
- the control circuit 125 calculates an asymmetry value or ⁇ value to calculate an optimum write power Pw.
- control circuit 125 sets the optimum write power Pw and the like calculated in step S37 in the LD driver 121, and performs data recording (step S41).
- a space forming power Ps calculated from the optimum values of ⁇ s and the write power Pw is also set.
- the set values of ⁇ s and dTs having a predetermined relationship may be stored in the memory 127. In some cases, it is stored in a BCA (Burst Cutting Area) of the unrecorded optical information recording medium 150.
- BCA Burst Cutting Area
- the lead-in area is largely divided into a system lead-in area, a connection area, and a data lead-in area.
- the system lead-in area includes an initial zone, a buffer zone, a control data zone, and a buffer. -Includes zones.
- the connection area includes a connection zone.
- the data lead-in area includes a guard track zone, a disc test zone, a drive test zone, a guard track zone, an RMD duplication zone, a recording management zone, an R-physical format information zone, and a reference code. -Includes zones.
- the recording condition data zone 170 is included in the control data zone of the system lead-in area.
- the recording condition data zone 170 may hold ⁇ s and dTs having a predetermined relationship as described in the section of the principle of the present invention, and read out from this area for use.
- the present invention is not limited to this.
- the functional block diagram of FIG. 14 is shown for explaining the embodiment, and may not necessarily match an actual circuit or module configuration.
- the processing flow as long as the processing result is the same, the processing order may be changed, or the processing order may be executed in parallel.
Landscapes
- Optical Recording Or Reproduction (AREA)
- Optical Head (AREA)
Abstract
Description
図3は、二つのdTsをパラメータとした場合におけるライトパワーPwを横軸とし、DCジッタ(Data To Clock Jitter:デジタル信号の時間軸方向における揺れを示す。以下、DCJと略称する。)[%]を縦軸にしたグラフを表している。二つのdTsの一方は白抜き四角のグラフで、最適状態のdTsを表し、もう一方は黒塗り菱形のグラフで、不適切状態のdTsを表す。このように、dTsを最適状態に設定すれば、DCJは、ブルーレイディスク規格(以下、規格と略称する。)で決められた7%以下を達成できるライトパワーPwのレンジが存在する。不適切状態のdTsであると、DCJは、ライトパワーPwを変化させても規格で決められた7%以下を達成できない。図示していないが、スペース形成パワーPsについても同様の傾向がある。
本発明の実施の形態におけるドライブ・システムの機能ブロックを図14を用いて説明する。本発明の実施の形態に係るドライブ・システムは、光情報記録再生装置100と、表示部とリモートコントローラなどの操作部とを含む入出力システム(図示せず)とを含む。
Claims (25)
- 波長が405nmの光に対して所定の吸収率を有する有機色素を記録層に用いた光情報記録媒体に、前記405nmの波長を含む近傍範囲波長のレーザを照射することにより記録マークとスペースを形成して情報を記録する光情報記録装置において、
前記記録マークを形成するためのライトパワーと、前記ライトパワーよりパワー値が低く前記スペースを形成するためのスペース形成パワーと、前記記録マーク形成時のラストパルスの直後に出力され且つ前記スペース形成パワーよりパワー値が低いクーリングパルスのパルス幅とをそれぞれ設定する設定手段と、
前記設定手段に従って、前記光情報記録媒体に情報を記録する手段と、
を有し、
前記クーリングパルスのパルス幅と、前記ライトパワーを分母とし前記スペース形成パワーを分子とした比率とは、当該比率を一方の座標軸とし、前記クーリングパルスのパルス幅を他方の座標軸とする直角座標の平面において、予め測定された良好な領域から決定されるものである
ことを特徴とする光情報記録装置。 - 前記クーリングパルスのパルス幅と、前記ライトパワーを分母とし前記スペース形成パワーを分子とした比率とは、当該比率を一方の座標軸とし、前記クーリングパルスのパルス幅を他方の座標軸とする直角座標の平面において、前記良好な領域の範囲におけるいずれか一方の座標軸の数値を固定し、前記良好な領域の範囲における他方の座標軸の複数個所のテスト記録をした結果に基づいて数値を決定されるものである
請求項1記載の光情報記録装置。 - 前記良好な領域は、二倍速で記録する場合に、
前記直角座標の平面において、前記比率と前記クーリングパルスのパルス幅との値が(0.2,1.9375T)、(0.2,1.5T)、(0.3,1.125T)および(0.3,0.875T)(但しTは、基準クロックの周期を表す)である各点間を直線で結んだ範囲である
請求項1または2記載の光情報記録装置。 - 波長が405nmの光に対して所定の吸収率を有する有機色素を記録層に用いた光情報記録媒体に、前記405nmの波長を含む近傍範囲波長のレーザを照射することにより記録マークとスペースを形成して情報を記録する光情報記録装置において、
前記記録マークを形成するためのライトパワーを分母とし前記ライトパワーよりパワー値が低く前記スペースを形成するためのスペース形成パワーを分子とした比率を一方の座標軸とし、前記記録マーク形成時のラストパルスの直後に出力され且つ前記スペース形成パワーよりパワー値が低いクーリングパルスのパルス幅を他方の座標軸とする直角座標の平面において、前記比率の好ましい範囲と、前記クーリングパルスのパルス幅の好ましい範囲とで得られる良好な領域を、当該良好な範囲が予め記録された記録源から取得する取得手段と、
前記ライトパワーの値と、前記クーリングパルスのパルス幅の範囲に含まれるパルス幅の値とを、前記光情報記録媒体のテスト記録領域で複数個所のテスト記録した結果に基づき最適化する手段と、
前記ライトパワーの最適値と、当該ライトパワーの最適値と前記比率とから得られる前記スペース形成パワーの値と、前記クーリングパルスのパルス幅の最適値とを設定する設定手段と、
前記設定手段に従って、前記光情報記録媒体に情報を記録する手段と、
を有する光情報記録装置。 - 前記良好な領域は、二倍速で記録する場合に、
前記直角座標の平面において、前記比率と前記クーリングパルスのパルス幅との値が(0.2,1.9375T)、(0.2,1.5T)、(0.3,1.125T)および(0.3,0.875T)(但しTは、基準クロックの周期を表す)である各点間を直線で結んだ範囲である
請求項4記載の光情報記録装置。 - 前記良好な領域の取得手段は、前記光情報記録装置の記録源であるメモリまたは記録源である前記光情報記録媒体から読み込むことにより取得する
請求項4記載の光情報記録装置。 - 波長が405nmの光に対して所定の吸収率を有する有機色素を記録層に用いた光情報記録媒体に、前記405nmの波長を含む近傍範囲波長のレーザを照射することにより記録マークとスペースを形成して情報を記録する光情報記録装置において、
前記記録マークを形成するためのライトパワーを分母とし前記ライトパワーよりパワー値が低く前記スペースを形成するためのスペース形成パワーを分子とした比率を一方の座標軸とし、前記記録マーク形成時のラストパルスの直後に出力され前記スペース形成パワーよりパワー値が低いクーリングパルスのパルス幅を他方の座標軸とする直角座標の平面において、前記クーリングパルスのパルス幅の好ましい範囲と、前記比率の好ましい範囲とで得られる良好な領域を、当該良好な領域が予め記録された記録源から取得する取得手段と、
前記ライトパワーの値と、前記比率の範囲に含まれる比率の値とを、前記光情報記録媒体のテスト記録領域に複数のテスト記録をした結果に基づき最適化する手段と、
前記ライトパワーの最適値と、当該ライトパワーの最適値と前記比率の最適値とから得られる前記スペース形成パワーの値と、前記クーリングパルスのパルス幅の値とを設定する設定手段と、
前記設定手段に従って、前記光情報記録媒体に情報を記録する手段と、
を有する光情報記録装置。 - 前記良好な領域は、二倍速で記録する場合に、
前記直角座標の平面において、前記比率と前記クーリングパルスのパルス幅との値が(0.2,1.9375T)、(0.2,1.5T)、(0.3,1.125T)および(0.3,0.875T)(但しTは、基準クロックの周期を表す)である各点間を直線で結んだ範囲である
請求項7記載の光情報記録装置。 - 前記良好な領域の取得手段は、前記光情報記録装置の記録源であるメモリまたは記録源である前記光情報記録媒体から読み込むことにより取得する
請求項7記載の光情報記録装置。 - 波長が405nmの光に対して所定の吸収率を有する有機色素を記録層に用いた光情報記録媒体に、前記405nmの波長を含む近傍範囲波長のレーザを照射することにより記録マークとスペースを形成して情報を記録する光情報記録装置において、
前記記録マークを形成するためのライトパワーを分母とし前記ライトパワーよりパワー値が低く前記スペースを形成するためのスペース形成パワーを分子とした比率を一方の座標軸とし、前記記録マーク形成時のラストパルスの直後に出力され前記スペース形成パワーよりパワー値が低いクーリングパルスのパルス幅を他方の座標軸とする直角座標の平面において、前記比率の好ましい範囲と、前記クーリングパルスのパルス幅の好ましい範囲とで得られる良好な領域を、当該良好な領域が予め記録された記録源から取得する取得手段と、
前記ライトパワーの値と、前記比率の値と、前記比率に対応する前記クーリングパルスのパルス幅の値とを、前記光情報記録媒体のテスト記録領域に複数個所のテスト記録の結果に基づき最適化する手段と、
前記ライトパワーの最適値と、当該ライトパワーの最適値および前記比率の最適値から得られる前記スペース形成パワーの値と、前記クーリングパルスのパルス幅の最適値とを設定する設定手段と、
前記設定手段に従って、前記光情報記録媒体に情報を記録する手段と、
を有する光情報記録装置。 - 前記良好な領域は、二倍速で記録する場合に、
前記直角座標の平面において、前記比率と前記クーリングパルスのパルス幅との値が(0.2,1.9375T)、(0.2,1.5T)、(0.3,1.125T)および(0.3,0.875T)(但しTは、基準クロックの周期を表す)である各点間を直線で結んだ範囲である
請求項10記載の光情報記録装置。 - 前記良好な領域の取得手段は、前記光情報記録装置の記録源であるメモリまたは記録源である前記光情報記録媒体から読み込むことにより取得する
請求項10記載の光情報記録装置。 - 波長が405nmの光に対して所定の吸収率を有する有機色素を記録層に用いた光情報記録媒体に、前記405nmの波長を含む近傍範囲波長のレーザを照射することにより記録マークとスペースを形成して情報を記録する光情報記録方法において、
前記記録マークを形成するためのライトパワーと、前記ライトパワーよりパワー値が低く前記スペースを形成するためのスペース形成パワーと、前記記録マーク形成時のラストパルスの直後に出力され且つ前記スペース形成パワーよりパワー値が低いクーリングパルスのパルス幅とをそれぞれ設定する設定ステップと、
前記設定ステップによる設定に従って、前記光情報記録媒体に対して情報を記録するステップと、
を含み、
前記クーリングパルスのパルス幅と、前記ライトパワーを分母とし前記スペース形成パワーを分子とした比率とは、当該比率を一方の座標軸とし、前記クーリングパルスのパルス幅を他方の座標軸とする直角座標の平面において、予め測定された良好な領域から決定するものである
ことを特徴とする光情報記録方法。 - 前記クーリングパルスのパルス幅と、前記ライトパワーを分母とし前記スペース形成パワーを分子とした比率とは、当該比率を一方の座標軸とし、前記クーリングパルスのパルス幅を他方の座標軸とする直角座標の平面において、前記良好な領域の範囲におけるいずれか一方の座標軸の数値を固定し、前記良好な領域の範囲における他方の座標軸の複数個所のテスト記録をした結果に基づいて数値を決定するものである
請求項13記載の光情報記録方法。 - 前記良好な領域は、二倍速で記録する場合に、
前記直角座標の平面において、前記比率と前記クーリングパルスのパルス幅との値が(0.2,1.9375T)、(0.2,1.5T)、(0.3,1.125T)および(0.3,0.875T)(但しTは、基準クロックの周期を表す)である各点間を直線で結んだ範囲である
請求項13または14記載の光情報記録方法。 - 波長が405nmの光に対して所定の吸収率を有する有機色素を記録層に用いた光情報記録媒体に、前記405nmの波長を含む近傍範囲波長のレーザを照射することにより記録マークとスペースを形成して情報を記録する光情報記録方法であって、
前記記録マークを形成するためのライトパワーを分母とし前記ライトパワーよりパワー値が低く前記スペースを形成するためのスペース形成パワーを分子とした比率を一方の座標軸とし、前記記録マーク形成時のラストパルスの直後に出力され且つ前記スペース形成パワーよりパワー値が低いクーリングパルスのパルス幅を他方の座標軸とする直角座標の平面において、前記比率の好ましい範囲と前記クーリングパルスのパルス幅の好ましい範囲とに基づいて得られる良好な領域を、当該良好な領域が予め記録された記録源から取得する取得ステップと、
前記ライトパワーの値と、前記クーリングパルスのパルス幅の範囲に含まれるクーリングパルスのパルス幅の値とを、前記光情報記録媒体のテスト記録領域に複数のテスト記録の結果に基づき最適化するステップと、
前記ライトパワーの最適値と、当該ライトパワーの最適値と前記比率とから得られる前記スペース形成パワーの値と、前記クーリングパルスのパルス幅の最適値とを設定する設定ステップと、
前記設定ステップに従って、前記光情報記録媒体に情報を記録するステップと、
を含む光情報記録方法。 - 前記良好な領域は、二倍速で記録する場合に、
前記直角座標の平面において、前記比率と前記クーリングパルスのパルス幅との値が(0.2,1.9375T)、(0.2,1.5T)、(0.3,1.125T)および(0.3,0.875T)(但しTは、基準クロックの周期を表す)である各点間を直線で結んだ範囲である
請求項16記載の光情報記録方法。 - 前記取得ステップにおいて、前記良好な領域を、前記光情報記録装置の記録源であるメモリまたは記録源である前記光情報記録媒体から読み込むことにより取得する
請求項16記載の光情報記録方法。 - 波長が405nmの光に対して所定の吸収率を有する有機色素を記録層に用いた光情報記録媒体に、前記405nmの波長を含む近傍範囲波長のレーザを照射することにより記録マークとスペースを形成して情報を記録する光情報記録方法であって、
前記記録マークを形成するためのライトパワーを分母とし前記ライトパワーよりパワー値が低く前記スペースを形成するためのスペース形成パワーを分子とした比率を一方の座標軸とし、前記記録マーク形成時のラストパルスの直後に出力され前記スペース形成パワーよりパワー値が低いクーリングパルスのパルス幅を他方の座標軸とする直角座標平面において、前記比率の好ましい範囲と前記クーリングパルスのパルス幅の好ましい範囲とに基づいて得られる良好な領域を、当該良好な領域が予め記録された記録源から取得する取得ステップと、
前記ライトパワーの値と、前記比率の範囲に含まれる比率の値とを、前記光情報記録媒体のテスト記録領域に複数個所のテスト記録をした結果に基づき最適化するステップと、
前記ライトパワーの最適値と、当該ライトパワーの最適値と前記比率の最適値とから得られる前記スペース形成パワーの値と、前記クーリングパルスのパルス幅の値とを設定する設定ステップと、
前記設定ステップによる設定に従って、前記光情報記録媒体に情報を記録するステップと、
を含む光情報記録方法。 - 前記良好な領域は、二倍速で記録する場合に、
前記直角座標の平面において、前記比率と前記クーリングパルスのパルス幅との値が(0.2,1.9375T)、(0.2,1.5T)、(0.3,1.125T)および(0.3,0.875T)(但しTは、基準クロックの周期を表す)である各点間を直線で結んだ範囲である
請求項19記載の光情報記録方法。 - 前記取得ステップにおいて、前記良好な領域を、前記光情報記録装置の記録源であるメモリまたは記録源である前記光情報記録媒体から読み込むことにより取得する
請求項19記載の光情報記録方法。 - 波長が405nmの光に対して所定の吸収率を有する有機色素を記録層に用いた光情報記録媒体に、前記405nmの波長を含む近傍範囲波長のレーザを照射することにより記録マークとスペースを形成して情報を記録する光情報記録方法であって、
前記記録マークを形成するためのライトパワーを分母とし前記ライトパワーよりパワー値が低く前記スペースを形成するためのスペース形成パワーを分子とした比率を一方の座標軸とし、前記記録マーク形成時のラストパルスの直後に出力され且つ前記スペース形成パワーよりパワー値が低いクーリングパルスのパルス幅を他方の座標軸とする直角座標の平面において、前記比率の好ましい範囲と前記クーリングパルスのパルス幅の好ましい範囲とに基づいて得られる良好な領域を、当該良好な領域が予め記録された記録源から取得する取得ステップと、
前記ライトパワーの値と、前記比率の値と、前記比率に対応する前記クーリングパルスのパルス幅の値とを、前記光情報記録媒体のテスト記録領域に複数のテスト記録の結果に基づき最適化するステップと、
前記ライトパワーの最適値と、当該ライトパワーの最適値および前記比率の最適値から得られる前記スペース形成パワーの値と、前記クーリングパルスのパルス幅の最適値とを設定する設定ステップと、
前記設定ステップによる設定に従って、前記光情報記録媒体に情報を記録するステップと、
を含む光情報記録方法。 - 前記良好な領域は、二倍速で記録する場合に、
前記直角座標の平面において、前記比率と前記クーリングパルスのパルス幅との値が(0.2,1.9375T)、(0.2,1.5T)、(0.3,1.125T)および(0.3,0.875T)(但しTは、基準クロックの周期を表す)である各点間を直線で結んだ範囲である
請求項22記載の光情報記録方法。 - 前記取得ステップにおいて、前記良好な領域を、前記光情報記録装置の記録源であるメモリまたは記録源である前記光情報記録媒体から読み込むことにより取得する
請求項22記載の光情報記録方法。 - 請求項13ないし24のいずれか1つ記載の光情報記録方法をプロセッサに実行させるためのプログラム。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08865737A EP2246851B1 (en) | 2007-12-26 | 2008-12-11 | Optical information recording device and method |
CN2008801228319A CN101911186B (zh) | 2007-12-26 | 2008-12-11 | 光信息记录装置和方法 |
US12/746,312 US8254229B2 (en) | 2007-12-26 | 2008-12-11 | Optical information recording apparatus and method |
ES08865737T ES2395598T3 (es) | 2007-12-26 | 2008-12-11 | Dispositivo y método de grabación de información óptico |
KR1020107014454A KR101229210B1 (ko) | 2007-12-26 | 2008-12-11 | 광 정보 기록 장치 및 방법 |
HK11104874.0A HK1150898A1 (en) | 2007-12-26 | 2011-05-17 | Optical information recording device and method |
US13/442,333 US8483026B2 (en) | 2007-12-26 | 2012-04-09 | Optical information recording apparatus and method |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007335293 | 2007-12-26 | ||
JP2007-335293 | 2007-12-26 | ||
JP2008292937A JP5336155B2 (ja) | 2007-12-26 | 2008-11-17 | 光情報記録装置および方法 |
JP2008-292937 | 2008-11-17 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/746,312 A-371-Of-International US8254229B2 (en) | 2007-12-26 | 2008-12-11 | Optical information recording apparatus and method |
US13/442,333 Continuation US8483026B2 (en) | 2007-12-26 | 2012-04-09 | Optical information recording apparatus and method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009081757A1 true WO2009081757A1 (ja) | 2009-07-02 |
Family
ID=40801063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/072561 WO2009081757A1 (ja) | 2007-12-26 | 2008-12-11 | 光情報記録装置及び方法 |
Country Status (8)
Country | Link |
---|---|
US (2) | US8254229B2 (ja) |
EP (2) | EP2485217A1 (ja) |
JP (1) | JP5336155B2 (ja) |
KR (1) | KR101229210B1 (ja) |
CN (1) | CN101911186B (ja) |
ES (1) | ES2395598T3 (ja) |
HK (1) | HK1150898A1 (ja) |
WO (1) | WO2009081757A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5336155B2 (ja) * | 2007-12-26 | 2013-11-06 | 太陽誘電株式会社 | 光情報記録装置および方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06203383A (ja) * | 1992-10-20 | 1994-07-22 | Nikon Corp | 光記録の熱遮断条件決定方法、同決定装置、 光記録方法及び光記録装置 |
JPH09282660A (ja) * | 1996-04-17 | 1997-10-31 | Hitachi Ltd | 情報記録方法及び情報記録装置 |
JPH1083553A (ja) * | 1996-09-05 | 1998-03-31 | Hitachi Ltd | 情報記録方法及び情報記録装置 |
JP2001176072A (ja) * | 1999-12-10 | 2001-06-29 | Hitachi Maxell Ltd | 情報の記録方法 |
JP2004178619A (ja) * | 2002-11-22 | 2004-06-24 | Ricoh Co Ltd | 情報記録方法 |
JP2006048898A (ja) | 2004-06-28 | 2006-02-16 | Tdk Corp | 光記録媒体への情報記録方法及び光記録装置 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5487059A (en) | 1992-10-20 | 1996-01-23 | Nikon Corporation | Heat shut off condition determination method and apparatus for optical recording, and optical recording method and apparatus |
TW322573B (ja) | 1996-04-17 | 1997-12-11 | Hitachi Ltd | |
JP2001176073A (ja) * | 1999-12-20 | 2001-06-29 | Ricoh Co Ltd | 光記録媒体の記録方法および記録装置 |
JP4419285B2 (ja) * | 2000-06-19 | 2010-02-24 | ソニー株式会社 | 光ディスク記録装置及び光ディスク記録方法 |
JP4560251B2 (ja) * | 2001-09-10 | 2010-10-13 | パイオニア株式会社 | 情報記録装置および情報記録方法 |
JP3820181B2 (ja) * | 2002-05-10 | 2006-09-13 | 株式会社リコー | 記録ストラテジ生成方法及び光情報記録媒体 |
EP1628293A4 (en) * | 2003-05-28 | 2007-10-17 | Ricoh Kk | INFORMATION RECORDING METHOD FOR RECORDING MULTINARY DATA UNDER OPTIMUM REGISTRATION CONDITIONS |
JP3740151B2 (ja) * | 2003-08-27 | 2006-02-01 | 株式会社リコー | 光記録方法及び光記録装置 |
US7646692B2 (en) * | 2004-03-10 | 2010-01-12 | Ricoh Company, Ltd. | Apparatus for recording dye based recordable DVD media and process for recording the same |
CN100416668C (zh) | 2004-06-28 | 2008-09-03 | Tdk股份有限公司 | 对光记录媒体的信息记录方法和光记录装置 |
JP4205642B2 (ja) | 2004-08-04 | 2009-01-07 | Ihi建機株式会社 | ブーム付コンクリートポンプ車のキャブ干渉防止装置 |
JP2006236476A (ja) * | 2005-02-24 | 2006-09-07 | Hitachi Maxell Ltd | 光記録媒体 |
EP1929470B1 (en) * | 2005-08-31 | 2012-01-18 | Ricoh Company, Ltd. | Phase-change optical information recording medium and method for recording and recording apparatus using the same |
JP2007257819A (ja) | 2006-02-22 | 2007-10-04 | Ricoh Co Ltd | 色素系追記型dvd媒体の記録方法及び装置 |
US7751290B2 (en) * | 2007-10-04 | 2010-07-06 | Lite-On It Corporation | Method and apparatus for determining write strategy parameter values for writing data on an optical disk |
JP5336155B2 (ja) * | 2007-12-26 | 2013-11-06 | 太陽誘電株式会社 | 光情報記録装置および方法 |
-
2008
- 2008-11-17 JP JP2008292937A patent/JP5336155B2/ja not_active Expired - Fee Related
- 2008-12-11 EP EP12166108A patent/EP2485217A1/en not_active Withdrawn
- 2008-12-11 ES ES08865737T patent/ES2395598T3/es active Active
- 2008-12-11 CN CN2008801228319A patent/CN101911186B/zh active Active
- 2008-12-11 EP EP08865737A patent/EP2246851B1/en active Active
- 2008-12-11 KR KR1020107014454A patent/KR101229210B1/ko not_active IP Right Cessation
- 2008-12-11 US US12/746,312 patent/US8254229B2/en active Active
- 2008-12-11 WO PCT/JP2008/072561 patent/WO2009081757A1/ja active Application Filing
-
2011
- 2011-05-17 HK HK11104874.0A patent/HK1150898A1/xx not_active IP Right Cessation
-
2012
- 2012-04-09 US US13/442,333 patent/US8483026B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06203383A (ja) * | 1992-10-20 | 1994-07-22 | Nikon Corp | 光記録の熱遮断条件決定方法、同決定装置、 光記録方法及び光記録装置 |
JPH09282660A (ja) * | 1996-04-17 | 1997-10-31 | Hitachi Ltd | 情報記録方法及び情報記録装置 |
JPH1083553A (ja) * | 1996-09-05 | 1998-03-31 | Hitachi Ltd | 情報記録方法及び情報記録装置 |
JP2001176072A (ja) * | 1999-12-10 | 2001-06-29 | Hitachi Maxell Ltd | 情報の記録方法 |
JP2004178619A (ja) * | 2002-11-22 | 2004-06-24 | Ricoh Co Ltd | 情報記録方法 |
JP2006048898A (ja) | 2004-06-28 | 2006-02-16 | Tdk Corp | 光記録媒体への情報記録方法及び光記録装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2246851A4 |
Also Published As
Publication number | Publication date |
---|---|
US8483026B2 (en) | 2013-07-09 |
JP5336155B2 (ja) | 2013-11-06 |
JP2009176402A (ja) | 2009-08-06 |
ES2395598T3 (es) | 2013-02-13 |
CN101911186B (zh) | 2012-12-12 |
US20100260019A1 (en) | 2010-10-14 |
CN101911186A (zh) | 2010-12-08 |
US8254229B2 (en) | 2012-08-28 |
US20120218875A1 (en) | 2012-08-30 |
KR101229210B1 (ko) | 2013-02-01 |
EP2246851B1 (en) | 2012-09-26 |
EP2246851A1 (en) | 2010-11-03 |
EP2246851A4 (en) | 2011-06-15 |
HK1150898A1 (en) | 2012-01-13 |
EP2485217A1 (en) | 2012-08-08 |
KR20100099228A (ko) | 2010-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4685745B2 (ja) | 記録方法及びそれを用いた光ディスク装置 | |
JP2008033981A (ja) | 光記録媒体の情報記録方法、光記録装置 | |
JP5336155B2 (ja) | 光情報記録装置および方法 | |
JP4545205B2 (ja) | 光ディスク記録再生信号の処理方法、光ディスク記録再生装置及びプログラム | |
JP2008305530A (ja) | 光情報記録装置、光情報記録方法及び光情報記録媒体 | |
JP2008016164A (ja) | 光ディスク装置および記録ストラテジ決定方法 | |
KR100966847B1 (ko) | 광 디스크의 기록 방법, 광 디스크의 기록 재생 장치 및 광디스크 | |
JP4303267B2 (ja) | 光記録媒体の情報記録方法、光記録装置 | |
JP4653779B2 (ja) | 記録条件決定方法、光ディスク記録再生装置及び光ディスク | |
JP5555583B2 (ja) | データ記録方法、光ディスク記録再生装置及び光ディスク | |
JP2010033686A (ja) | データ記録方法及び光ディスク記録再生装置 | |
JP4719724B2 (ja) | 光ディスク記録方法、光ディスク記録再生装置及び光ディスク | |
JP2009032306A (ja) | 光ディスクへの情報記録再生方法及びその装置 | |
JP2009059425A (ja) | 光ディスク装置 | |
JP2005092952A (ja) | 記録条件設定方法、記録方法、プログラム及び記録媒体、並びに光ディスク装置 | |
JP2009295242A (ja) | データ記録方法、光ディスク記録再生装置及び光ディスク | |
JP2004152427A (ja) | 記録条件の最適化方法、それを利用した記録方法及び装置 | |
US20080205216A1 (en) | Information recording apparatus capable of recording information in information recording medium, information recording method, and target value determining method | |
JP2009245592A (ja) | 光ディスク記録方法、光ディスク記録再生装置及び光ディスク | |
JP2012018713A (ja) | データ記録方法、光ディスク記録再生装置及び光ディスク | |
JP2008217891A (ja) | 情報記録媒体の記録条件調整方法および情報記録再生装置 | |
JP2009157980A (ja) | 光ディスク記録装置及び光ディスク記録方法 | |
JP2008097795A (ja) | 追記可能な光記録媒体とその記録再生方法及び記録再生装置 | |
JP2007507823A (ja) | 記録担体、並びに記録担体を走査する装置及び方法 | |
JP2009054280A (ja) | 光記録媒体の情報記録方法、光記録装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880122831.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08865737 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12746312 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20107014454 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008865737 Country of ref document: EP |