WO2009081753A1 - 燃料電池システム及び燃料電池車両 - Google Patents

燃料電池システム及び燃料電池車両 Download PDF

Info

Publication number
WO2009081753A1
WO2009081753A1 PCT/JP2008/072553 JP2008072553W WO2009081753A1 WO 2009081753 A1 WO2009081753 A1 WO 2009081753A1 JP 2008072553 W JP2008072553 W JP 2008072553W WO 2009081753 A1 WO2009081753 A1 WO 2009081753A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
motor
power
operation mode
rotational speed
Prior art date
Application number
PCT/JP2008/072553
Other languages
English (en)
French (fr)
Inventor
Michio Yoshida
Tomoya Ogawa
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to DE112008003475.3T priority Critical patent/DE112008003475B4/de
Priority to KR1020107010434A priority patent/KR101151748B1/ko
Priority to CN2008801227689A priority patent/CN101909923B/zh
Priority to US12/810,471 priority patent/US9368850B2/en
Publication of WO2009081753A1 publication Critical patent/WO2009081753A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • H01M16/006Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers of fuel cells with rechargeable batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/34Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04365Temperature; Ambient temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04589Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04619Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • H01M8/0488Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04895Current
    • H01M8/0491Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/081Speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a fuel cell system and a fuel cell vehicle including the fuel cell system, and more particularly to control by an inverter for a motor that can be driven by power supply and generate regenerative power in the fuel cell system.
  • a fuel cell system using a fuel cell that generates electricity by an electrochemical reaction between a fuel gas and an oxidizing gas as an energy source has attracted attention.
  • the fuel cell system supplies high-pressure fuel gas from a fuel tank to the anode of the fuel cell, and pressurizes and supplies air as oxidizing gas to the cathode, causing these fuel gas and oxidizing gas to undergo an electrochemical reaction to generate electromotive force. Is generated. Development of vehicles equipped with such a fuel cell system is also underway.
  • An in-vehicle fuel cell system is mainly composed of a fuel cell, a secondary battery, a travel motor, and an auxiliary machine.
  • Patent Document 1 discloses that when an “N” position is selected, in order to prevent an excessive back electromotive voltage from being generated and to avoid a sense of incongruity due to the generation of a regenerative braking force, The target power calculation means uniformly sets the target voltage to zero so that the motor does not generate drive torque or regenerative torque.
  • a high potential avoidance control that suppresses the total voltage of the fuel cell from exceeding a predetermined threshold or a temperature increase of the fuel cell in a shorter time than normal operation
  • various power generation states such as warm-up operation. Therefore, as with normal electric vehicles, if the permission / non-permission of shutdown is controlled uniformly according to the number of rotations of the motor, the back electromotive voltage is larger than the maximum output voltage of the fuel cell depending on the power generation state of the fuel cell For example, the power supply control of the entire system may be affected.
  • an object of the present invention is to reduce the influence on power supply control in a fuel cell system having a motor that can be driven by power supply and can generate regenerative power.
  • a fuel cell system includes a fuel cell that generates electric power by an electrochemical reaction between a fuel gas and an oxidizing gas, a motor that can be driven by power supply and that can generate regenerative power, and the fuel cell.
  • a fuel cell that generates electric power by an electrochemical reaction between a fuel gas and an oxidizing gas
  • a motor that can be driven by power supply and that can generate regenerative power
  • the fuel cell By converting the DC power output from the AC power to the motor and supplying the motor, the inverter that controls the driving of the motor and the fuel cell are connected in parallel to the motor.
  • a rotational speed detector for detecting the rotational speed of the motor, and the current rotational speed of the motor
  • a control unit that determines whether or not to allow the inverter to stop controlling the motor, and the control unit determines the current rotational speed of the motor as the fuel cell. Perform the determination by comparing a rotation speed threshold that varies in accordance with the operation mode.
  • the permission or non-permission of inverter control stop (shutdown) for the motor is determined using the rotation speed threshold corresponding to the operation mode of the fuel cell. Occurrence of a counter electromotive voltage exceeding 1 is suppressed.
  • control unit permits the inverter to stop controlling the motor when the current rotational speed of the motor is smaller than a rotational speed threshold corresponding to the current operation mode of the fuel cell.
  • the control unit includes an internal memory that stores the rotation speed of the motor corresponding to the maximum output voltage in each operation mode of the fuel cell in association with the operation mode as a rotation speed threshold value.
  • One rotation speed threshold value corresponding to the current operation mode of the fuel cell is extracted from a plurality of rotation speed threshold values, and the determination is performed using the rotation speed threshold value. As described above, by preparing in advance the rotation speed threshold value set for each operation mode, the above determination can be made based on the rotation speed that is easy to measure and has few errors.
  • the plurality of operation modes include a normal operation mode and at least one of a high potential avoidance control mode and a warm-up operation mode.
  • the high potential avoidance control mode and the warm-up operation mode the maximum output voltage is lower than that in the normal operation mode. Therefore, by preparing a rotation speed threshold corresponding to these operation modes, the fuel cell system Power supply control can be performed more safely.
  • a fuel cell vehicle includes the above fuel cell system and at least an auxiliary machine used for driving the fuel cell.
  • FIG. 1 is a system configuration diagram showing a main configuration of a fuel cell vehicle including a fuel cell system according to an embodiment of the present invention. It is a figure for demonstrating the setting method of the rotation speed threshold value corresponding to an operation mode. It is a flowchart which shows the shutdown control method by a control apparatus.
  • SYMBOLS 10 Control apparatus (control part), 11 ... Internal memory, 20 ... Battery (electric storage part), 40 ... Fuel cell, 50 ... Auxiliary machinery (auxiliary machine), 60 ... Inverter, 61 ... Traction motor (motor), 64 ... Rotation speed detector
  • FIG. 1 is a diagram showing a main configuration of a fuel cell vehicle including a fuel cell system according to an embodiment of the present invention.
  • a fuel cell system mounted on a vehicle such as a fuel cell vehicle (FCHV), an electric vehicle, or a hybrid vehicle is assumed. , Airplanes, robots, etc.).
  • the vehicle 100 travels using a traction motor (hereinafter also simply referred to as a motor) 61 connected to wheels 63L and 63R via the reduction gear 12 as a driving force source.
  • the power source of the traction motor 61 is the power system 1.
  • the direct current output from the power supply system 1 is converted into a three-phase alternating current by the inverter 60 and supplied to the traction motor 61.
  • the traction motor 61 can also function as a generator during braking.
  • the power supply system 1 includes a fuel cell 40, a battery (power storage unit) 20, a DC / DC converter 30, and the like.
  • the fuel cell 40 is means for generating electric power from the supplied reaction gas (fuel gas and oxidant gas), and uses various types of fuel cells such as a solid polymer type, a phosphoric acid type, and a molten carbonate type. Can do.
  • the fuel cell 40 includes a polymer electrolyte membrane 41 made of a proton conductive ion exchange membrane or the like formed of a fluorine resin or the like, and a platinum catalyst (electrode catalyst) is applied to the surface of the polymer electrolyte membrane 41. Yes.
  • the catalyst applied to the polymer electrolyte membrane 41 is not limited to a platinum catalyst, but can be applied to a platinum cobalt catalyst (hereinafter simply referred to as a catalyst).
  • Each cell constituting the fuel cell 40 includes a membrane / electrode assembly 44 in which an anode electrode 42 and a cathode electrode 43 are formed on both surfaces of a polymer electrolyte membrane 41 by screen printing or the like.
  • the fuel cell 40 has a stack structure in which a plurality of single cells are stacked in series.
  • a fuel gas such as hydrogen gas is supplied from the fuel gas supply source 70 to the fuel electrode (anode) of the fuel cell 40, while an oxidizing gas such as air is supplied from the oxidizing gas supply source 80 to the oxygen electrode (cathode). Supplied.
  • the fuel gas supply source 70 is composed of, for example, a hydrogen tank, various valves, and the like, and controls the amount of fuel gas supplied to the fuel cell 40 by adjusting the valve opening, the ON / OFF time, and the like.
  • the oxidizing gas supply source 80 includes, for example, an air compressor, a motor that drives the air compressor, an inverter, and the like, and adjusts the amount of oxidizing gas supplied to the fuel cell 40 by adjusting the rotational speed of the motor.
  • FC voltage The output voltage (hereinafter referred to as FC voltage) and output current (hereinafter referred to as FC current) of the fuel cell 40 are detected by a voltage sensor 92 and a current sensor 93, respectively.
  • FC temperature The internal temperature of the fuel cell 40 (hereinafter referred to as FC temperature) is detected by a temperature sensor 94.
  • the battery 20 is a chargeable / dischargeable secondary battery, and is composed of, for example, a nickel metal hydride battery. Of course, any chargeable / dischargeable battery (for example, a capacitor) other than the secondary battery may be provided instead of the battery 20.
  • the battery 20 is inserted in the discharge path of the fuel cell 40 and connected in parallel with the fuel cell 40.
  • the battery 20 and the fuel cell 40 are connected in parallel to an inverter 60 for a traction motor, and a DC / DC converter 30 is provided between the battery 20 and the inverter 60.
  • the inverter 60 is, for example, a pulse width modulation type PWM inverter constituted by a plurality of switching elements, and converts the DC power output from the fuel cell 40 or the battery 20 in accordance with a control command given from the control device 10 into a three-phase AC. It is converted into electric power and supplied to the traction motor 61.
  • the traction motor 61 is a motor for driving the wheels 63 ⁇ / b> L and 63 ⁇ / b> R, and the rotation speed of the motor 61 is controlled by the inverter 60. Further, the rotational speed of the motor 61 is detected by the rotational speed detector 64 and sent to the control device 10.
  • the DC / DC converter 30 is a full bridge converter configured by, for example, four power transistors and a dedicated drive circuit (all not shown).
  • the DC / DC converter 30 increases or decreases the DC voltage input from the battery 20 and outputs it to the fuel cell 40 side.
  • the DC / DC converter 30 increases or decreases the DC voltage input from the fuel cell 40 or the like to the battery 20 side. It has a function to output.
  • charging / discharging of the battery 20 is realized by the function of the DC / DC converter 30.
  • the battery 20 is a power source for these auxiliary machines 50.
  • the vehicle auxiliary equipment refers to various electric power devices (lighting equipment, air conditioning equipment, hydraulic pump, etc.) used during vehicle operation, and the FC auxiliary equipment is used to operate the fuel cell 40. It refers to various power devices (air compressors, pumps, etc. used for supplying fuel gas and oxidizing gas).
  • control device 10 is configured as a microcomputer having a CPU, a ROM, and a RAM therein.
  • the control device 10 includes a pressure regulating valve 71 provided in the fuel gas passage, a pressure regulating valve 81 provided in the oxidizing gas passage, a fuel gas supply source 70, an oxidizing gas supply source 80, and a battery 20 based on the input sensor signals. , DC / DC converter 30, inverter 60, and the like are controlled.
  • the control device 10 includes, for example, the supply pressure of the fuel gas detected by the pressure sensor 91, the FC voltage of the fuel cell 40 detected by the voltage sensor 92, and the FC current of the fuel cell 40 detected by the current sensor 93.
  • a signal indicating the FC temperature detected by the temperature sensor 94, the rotational speed of the motor 61 detected by the rotational speed detector 64, or the like is input.
  • control device 10 has an operation unit 2 operated by a user to select a vehicle shift position (for example, P: parking mode, R: reverse mode, N: neutral mode, D: drive mode, etc.). It is connected. When the shift position is changed, a shift position detection signal is sent from the operation unit 2 to the control device 10.
  • a vehicle shift position for example, P: parking mode, R: reverse mode, N: neutral mode, D: drive mode, etc.
  • the control device 10 determines whether or not to stop the inverter drive of the traction motor 61, that is, whether or not to allow shutdown (shutdown control). At that time, the control device 10 makes this determination based on the rotational speed of the motor 61 at that time, using a threshold value of the rotational speed that varies depending on the operation mode of the fuel cell 40.
  • the operation mode of the fuel cell 40 includes a high potential avoidance control mode in which the upper limit of the output voltage is set lower than normal, a warm-up operation mode, and the like.
  • the maximum value VMAX of the inverter voltage (for example, the open end voltage of the fuel cell stack) is the upper limit of the allowable back electromotive voltage. Accordingly, the upper limit rotational speed NCONST corresponding to the upper limit voltage VMAX is set as the rotational speed threshold.
  • the high potential avoidance control mode is an operation mode in which the output voltage of the fuel cell 40 is forcibly lowered below a predetermined voltage threshold (high potential avoidance voltage threshold) in order to suppress the progress of deterioration of the fuel cell.
  • the high potential avoidance voltage threshold is a voltage lower than the open circuit voltage of the fuel cell 40, is obtained in advance by experiments or the like, and is stored in the internal memory 11 of the control device 10 at the time of manufacture and shipment.
  • the switching to the high potential avoidance control mode is controlled based on, for example, the FC voltage or FC current. Specifically, when the FC voltage and the FC voltage are included in a predetermined region of the characteristic map prepared in advance, the control device 10 sends a control signal to each unit so as to enter the high potential avoidance mode.
  • the maximum output voltage Va of the fuel cell 40 in the high potential avoidance control mode in other words, the high potential avoidance voltage threshold is the upper limit of the allowable back electromotive voltage. Accordingly, the upper limit rotational speed Na corresponding to the maximum output voltage Va is set as the threshold value.
  • the warm-up operation mode is an operation that promotes self-heating due to the power generation of the fuel cell 40 at a low temperature start (that is, increases the amount of heat generation) and raises the temperature of the fuel cell 40 in a shorter time than the normal operation. It is a mode.
  • the reaction gas oxidizing gas or fuel gas
  • the reaction gas is made insufficient to increase the power loss compared to the normal operation, that is, the power generation efficiency of the fuel cell 40 is reduced and the heat generation amount is increased. This is realized by a low-efficiency operation to be performed or an operation to increase the amount of heat generated by power generation by increasing the output current of the fuel cell 40.
  • the conversion to the warm-up operation mode is controlled based on the FC temperature, for example. Specifically, when the FC temperature is lower than a predetermined temperature threshold, the control device 10 sends a control signal to each unit so as to enter the warm-up operation mode.
  • the maximum output voltage Vb during the warm-up operation is the upper limit of the allowable back electromotive voltage. Therefore, the upper limit rotation speed Nb corresponding to the maximum output voltage Vb is set as the threshold value.
  • step S01 when a shift position detection signal is input from the operation unit 2 to the control device 10, the control device 10 determines whether or not the signal represents a “N (neutral)” range (step S01). S02).
  • step S03 the control device 10 determines whether or not the current operation mode of the fuel cell 40 is the warm-up operation mode.
  • step S11 the control device 10 sets the upper limit rotation speed Nb in the warm-up operation mode as the rotation speed threshold value.
  • step S04 the control device 10 determines whether or not the operation mode of the fuel cell 40 is the high potential avoidance mode.
  • step S12 the control device 10 sets the upper limit rotational speed Na in the high potential avoidance control mode as the rotational speed threshold value.
  • step S05 the control device 10 sets the upper limit rotation speed NCONST in the normal operation mode as the rotation speed threshold value.
  • step S06 the control device 10 compares the current rotational speed of the motor 61 with the rotational speed threshold set in any of steps S11, S12, and S05. Then, when the current rotational speed is smaller than the rotational speed threshold, the shutdown is permitted (step S07). Thereby, inverter control with respect to the motor 61 stops.
  • step S13 if the current rotational speed is greater than or equal to the rotational speed threshold, the shutdown is not permitted (step S13). This prevents the generation of counter electromotive force exceeding the maximum output voltage (VMAX, Vb, Va) in each operation mode. In this case, the shutdown is permitted when the operation mode of the fuel cell 40 is switched, or when the rotational speed of the motor 61 becomes smaller than the threshold value due to a brake operation or natural deceleration.
  • the auxiliary machines are connected to the battery side with respect to the DC / DC converter, but the auxiliary machines are connected to the DC / DC converter.
  • the present invention may be applied to a configuration connected to the fuel cell side. In this case, exceeding the rated voltage of the auxiliary inverter due to an excessive counter electromotive voltage can also be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 燃料ガスと酸化ガスとの電気化学反応によって発電する燃料電池40と、電力供給を受けて駆動可能かつ回生電力を発生可能なモータ61と、燃料電池から出力される直流電力を交流電力に変換してモータに供給することによりモータの駆動を制御するインバータ60と、モータに対して燃料電池とは並列に接続され、燃料電池の発電電力およびモータの回生電力を充電可能かつ充電電力をモータに放電可能なバッテリ20と、モータの回転数を検知する回転数検知器64と、モータの現在の回転数に基づいて、インバータのモータに対する制御の停止を許可するか否かを決定する制御装置10とを備え、該制御装置は、モータの現在の回転数を、燃料電池の運転モードに応じて異なる閾値と比較することにより決定を行う。

Description

燃料電池システム及び燃料電池車両
 本発明は、燃料電池システム及びこれを備える燃料電池車両に関し、特には、燃料電池システムにおいて、電力供給を受けて駆動可能かつ回生電力を発生可能なモータに対するインバータによる制御に関する。
 近年、燃料ガスと酸化ガスとの電気化学反応によって発電する燃料電池をエネルギー源とする燃料電池システムが注目されている。燃料電池システムは、燃料電池のアノードに燃料タンクから高圧の燃料ガスを供給するとともに、カソードに酸化ガスとしての空気を加圧供給し、これら燃料ガスと酸化ガスとを電気化学反応させ、起電力を発生させるものである。このような燃料電池システムを搭載した車両の開発も進められている。車載用の燃料電池システムは、燃料電池と二次電池と走行モータと補機とを主体として構成されている。
 ところで、通常の電動車両においては、シフトポジションが「D(ドライブ)」レンジの際に、バッテリからインバータ等を介して走行用モータに電力を供給することにより回転させ、その駆動力を駆動輪に伝達する。一方、シフトポジションが「N(ニュートラル)」レンジになると、インバータ制御を停止するため、走行用モータが成り行きに任せて回転数に応じた逆起電力を発生する状態となる(シャットダウンと呼ばれる)。即ち、駆動輪から逆伝達された駆動力により走行用モータを回転させ、それによって発生した逆起電圧により、インバータを介してバッテリを充電する。
 ところが、モータの回転数が高い状態でシフトポジションが「N」レンジになると、過大な逆起電圧が発生することになり、バッテリ及びコンバータに過電圧がかかって、耐久性が低下するおそれがある。そこで、従来においては、シフトポジションが「N」レンジになった際に、モータの回転数が所定の閾値以下である場合にはシャットダウンさせ、回転数が該閾値よりも高い場合にはシャットダウンさせないように制御されている。
 関連する技術として、特許文献1には、「N」ポジションの選択時に、過剰な逆起電圧が発生するのを防止すると共に、回生制動力の発生による違和感を回避するために、「N」ポジションでは、目標電力算出手段が目標電圧を一律にゼロに設定し、モータが駆動トルクも回生トルクも発生しないようにすることが開示されている。
特開平9-23508号公報
 しかしながら、燃料電池システムを搭載した電動車両においては、燃料電池の総電圧が所定の閾値以上になることを抑制する高電位化回避制御や、通常の運転よりも短時間で燃料電池を昇温させるための暖機運転等の様々な発電状態(運転モード)がある。そのため、通常の電動車両と同様に、モータの回転数に応じて一律にシャットダウンの許可・不許可を制御すると、燃料電池の発電状態によっては、燃料電池の最大出力電圧よりも逆起電圧が大きくなる等、システム全体の電力供給制御に影響を及ぼすおそれがある。
 そこで、本発明は、電力供給を受けて駆動可能かつ回生電力を発生可能なモータを有する燃料電池システムにおいて、電力供給制御に対する影響を低減することを目的とする。
 本発明の1つの観点に係る燃料電池システムは、燃料ガスと酸化ガスとの電気化学反応によって発電する燃料電池と、電力供給を受けて駆動可能かつ回生電力を発生可能なモータと、前記燃料電池から出力される直流電力を交流電力に変換して前記モータに供給することにより、前記モータの駆動を制御するインバータと、前記モータに対して前記燃料電池とは並列に接続され、前記燃料電池の発電電力および前記モータの回生電力を充電可能かつ充電電力を前記モータに放電可能な蓄電部と、前記モータの回転数を検知する回転数検知器と、前記モータの現在の回転数に基づいて、前記インバータの前記モータに対する制御の停止を許可するか否かを決定する制御部とを備え、前記制御部は、前記モータの現在の回転数を、前記燃料電池の運転モードに応じて異なる回転数閾値と比較することにより前記決定を行う。
 本発明の1つの観点によれば、燃料電池の運転モードに応じた回転数閾値を用いて、モータに対するインバータ制御の停止(シャットダウン)の許可・不許可を決定するので、燃料電池の最大出力電圧を超える逆起電圧の発生が抑制される。
 ここで、前記制御部は、前記モータの現在の回転数が、前記燃料電池の現在の運転モードに対応する回転数閾値より小さい場合に、前記インバータの前記モータに対する制御の停止を許可する。
 前記制御部は、前記燃料電池の各運転モードにおける最大出力電圧に対応する前記モータの回転数を、回転数閾値として運転モードに関連付けて格納する内部メモリを有しており、前記制御部は、複数の回転数閾値の内から、前記燃料電池の現在の運転モードに対応する1つの回転数閾値を抽出し、該回転数閾値を用いて前記決定を行う。
 このように、運転モードごとに設定された回転数閾値を予め用意しておくことにより、測定が容易で誤差の少ない回転数に基づいて上記決定を行うことができるようになる。
 前記複数の運転モードは、通常の運転モードと、高電位化回避制御モード及び暖機運転モードの内の少なくとも1つとを含む。高電位化回避制御モード及び暖機運転モードは、通常の運転モードに比較して最大出力電圧が低いので、これらの運転モードに対応する回転数閾値を用意しておくことにより、燃料電池システムにおける電力供給制御をより安全に行うことができる。
 また、本発明に係る燃料電池車両は、上記燃料電池システムと、少なくとも前記燃料電池の運転に使用される補機とを備える。
 本発明によれば、燃料電池の最大出力電圧を超える逆起電圧の発生や、蓄電部への過充電を抑制することができるので、燃料電池システムにおける電力供給制御への影響を低減することができる。従って、このような燃料電池システムを搭載した電動車両においては、安定した電力供給制御の下で走行することが可能となる。
本発明の一実施形態に係る燃料電池システムを含む燃料電池車両の要部構成を示すシステム構成図である。 運転モードに対応する回転数閾値の設定方法を説明するための図である。 制御装置によるシャットダウン制御方法を示すフローチャートである。
符号の説明
 10…制御装置(制御部)、11…内部メモリ、20…バッテリ(蓄電部)、40…燃料電池、50…補機類(補機)、60…インバータ、61…トラクションモータ(モータ)、64…回転数検知器
 以下、本発明に係る実施の形態について図面を参照しながら説明する。
 図1は、本発明の一実施形態に係る燃料電池システムを備える燃料電池車両の要部構成を示す図である。
 本実施形態では、燃料電池自動車(FCHV;Fuel Cell Hybrid Vehicle)、電気自動車、ハイブリッド自動車等の車両に搭載される燃料電池システムを想定するが、車両のみならず各種移動体(例えば、二輪車や船舶、飛行機、ロボット等)にも適用可能である。
 この車両100は、減速ギア12を介して車輪63L、63Rに連結されたトラクションモータ(以下、単にモータとも言う)61を駆動力源として走行する。トラクションモータ61の電源は、電源システム1である。電源システム1から出力される直流は、インバータ60で三相交流に変換され、トラクションモータ61に供給される。トラクションモータ61は制動時に発電機としても機能することができる。電源システム1は、燃料電池40、バッテリ(蓄電部)20、DC/DCコンバータ30等から構成される。
 燃料電池40は、供給される反応ガス(燃料ガス及び酸化ガス)から電力を発生する手段であり、固体高分子型、燐酸型、溶融炭酸塩型等の種々のタイプの燃料電池を利用することができる。燃料電池40は、フッ素系樹脂等によって形成されたプロトン伝導性のイオン交換膜等から成る高分子電解質膜41を備え、高分子電解質膜41の表面には白金触媒(電極触媒)が塗布されている。
 なお、高分子電解質膜41に塗布する触媒は白金触媒に限らず、白金コバルト触媒(以下、単に触媒という)等にも適用可能である。燃料電池40を構成する各セルは、高分子電解質膜41の両面にアノード極42とカソード極43とをスクリーン印刷等によって形成した膜・電極接合体44を備えている。燃料電池40は、複数の単セルを直列に積層したスタック構造を有している。
 燃料電池40の燃料極(アノード)には、燃料ガス供給源70から水素ガス等の燃料ガスが供給される一方、酸素極(カソード)には、酸化ガス供給源80から空気等の酸化ガスが供給される。
 燃料ガス供給源70は、例えば水素タンクや様々な弁等から構成され、弁開度やON/OFF時間等を調整することにより、燃料電池40に供給する燃料ガス量を制御する。
 酸化ガス供給源80は、例えばエアコンプレッサやエアコンプレッサを駆動するモータ、インバータ等から構成され、該モータの回転数等を調整することにより、燃料電池40に供給する酸化ガス量を調整する。
 この燃料電池40の出力電圧(以下、FC電圧)及び出力電流(以下、FC電流)は、それぞれ電圧センサ92及び電流センサ93によって検出される。また、燃料電池40の内部温度(以下、FC温度)は、温度センサ94によって検出される。
 バッテリ20は、充放電可能な二次電池であり、例えばニッケル水素バッテリ等により構成されている。もちろん、バッテリ20の代わりに二次電池以外の充放電可能なあらゆる蓄電器(例えばキャパシタ)を設けても良い。このバッテリ20は、燃料電池40の放電経路に介挿され、燃料電池40と並列に接続されている。バッテリ20と燃料電池40とはトラクションモータ用のインバータ60に並列接続されており、バッテリ20とインバータ60の間にはDC/DCコンバータ30が設けられている。
 インバータ60は、例えば複数のスイッチング素子によって構成されたパルス幅変調方式のPWMインバータであり、制御装置10から与えられる制御指令に応じて燃料電池40またはバッテリ20から出力される直流電力を三相交流電力に変換し、トラクションモータ61へ供給する。トラクションモータ61は、車輪63L、63Rを駆動するためのモータであり、かかるモータ61の回転数はインバータ60によって制御される。また、モータ61の回転数は、回転数検知器64によって検知され、制御装置10に送出される。
 DC/DCコンバータ30は、例えば4つのパワー・トランジスタと専用のドライブ回路(いずれも図示略)によって構成されたフルブリッジ・コンバータである。DC/DCコンバータ30は、バッテリ20から入力されたDC電圧を昇圧または降圧して燃料電池40側に出力する機能、燃料電池40等から入力されたDC電圧を昇圧または降圧してバッテリ20側に出力する機能を備えている。また、DC/DCコンバータ30の機能により、バッテリ20の充放電が実現される。
 バッテリ20とDC/DCコンバータ30の間には、車両補機やFC補機等の補機類50が接続されている。バッテリ20は、これら補機類50の電源となる。なお、車両補機とは、車両の運転時等に使用される種々の電力機器(照明機器、空調機器、油圧ポンプ等)をいい、FC補機とは、燃料電池40の運転に使用される種々の電力機器(燃料ガスや酸化ガスの供給に供されるエアコンプレッサやポンプ等)をいう。
 上述した各要素の運転は制御装置(制御部)10によって制御される。制御装置10は、内部にCPU、ROM、RAMを備えたマイクロコンピュータとして構成されている。
 制御装置10は、入力される各センサ信号に基づいて燃料ガス通路に設けられた調圧弁71や酸化ガス通路に設けられた調圧弁81、燃料ガス供給源70、酸化ガス供給源80、バッテリ20、DC/DCコンバータ30、インバータ60等、システム各部を制御する。この制御装置10には、例えば圧力センサ91によって検出される燃料ガスの供給圧力や、電圧センサ92によって検出される燃料電池40のFC電圧や、電流センサ93によって検出される燃料電池40のFC電流や、温度センサ94によって検出されるFC温度や、回転数検知器64によって検出されるモータ61の回転数等を表す信号が入力される。
 また、制御装置10には、車両のシフトポジション(例えば、P:パーキングモード、R:リバースモード、N:ニュートラルモード、D:ドライブモード等)を選択するためにユーザによって操作される操作部2が接続されている。シフトポジションが変更されると、シフトポジション検知信号が操作部2から制御装置10に送出される。
 さらに、制御装置10は、シフトポジションが「N」レンジに入った場合に、トラクションモータ61のインバータ駆動を停止するか否か、即ち、シャットダウンの許可・不許可を決定する(シャットダウン制御)。その際に、制御装置10は、その時のモータ61の回転数に基づいて、燃料電池40の運転モードに応じて異なる回転数の閾値を用いてこの決定を行う。
 次に、シャットダウン制御において用いられる回転数の閾値について、図2を参照しながら説明する。
 燃料電池40の運転モードには、通常の運転モードに加え、通常よりも出力電圧の上限が低く設定される高電位化回避制御モードや暖機運転モード等がある。
 通常の運転モードにおいては、インバータ電圧の最大値VMAX(例えば、燃料電池スタックの開放端電圧)が、許容される逆起電圧の上限となる。従って、この上限電圧VMAXに対応する上限回転数NCONSTが回転数閾値として設定される。
 高電位化回避制御モードとは、燃料電池の劣化の進行を抑制するために、燃料電池40の出力電圧を所定の電圧閾値(高電位回避電圧閾値)以下に強制的に下げる運転モードである。高電位回避電圧閾値は、燃料電池40の開放電圧よりも低い電圧であり、予め実験等により求められ、製造出荷時等に制御装置10の内部メモリ11に格納されている。また、高電位化回避制御モードへの転換は、例えば、FC電圧やFC電流に基づいて制御される。具体的には、制御装置10は、FC電圧及びFC電圧が予め用意された特性マップの所定の領域に含まれる場合に、高電位化回避モードに入るように各部に制御信号を送出する。
 このような高電位化回避制御モードにおいては、高電位化回避制御モードにおける燃料電池40の最大出力電圧Va、言い換えれば、高電位回避電圧閾値が、許容される逆起電圧の上限となる。従って、最大出力電圧Vaに対応する上限回転数Naが閾値として設定される。
 一方、暖機運転モードとは、低温始動時に、燃料電池40の発電に伴う自己発熱を促進し(つまり、発熱量を増大させ)、通常運転よりも短時間で燃料電池40を昇温させる運転モードのことである。暖機運転は、例えば、通常の運転に比して反応ガス(酸化ガス又は燃料ガス)を不足気味にして電力損失を大きくする、即ち、燃料電池40の発電効率を低下させて発熱量を増加させる低効率運転や、燃料電池40の出力電流を増大させることにより発電に伴う発熱量を増加させる運転により実現される。また、暖機運転モードへの転換は、例えば、FC温度に基づいて制御される。具体的には、制御装置10は、FC温度が所定の温度閾値より低い場合に、暖機運転モードに入るよう各部に制御信号を送出する。
 このような暖機運転モードにおいては、暖機運転時の最大出力電圧Vbが、許容される逆起電圧の上限となる。従って、最大出力電圧Vbに対応する上限回転数Nbが閾値として設定される。
 これらの上限回転数NMAX、Na、Nbは、それぞれの運転モードに関連付けられ、制御装置10の内部メモリ11に格納されている。
 次に、図3を参照しながら、制御装置10のシャットダウン制御動作について説明する。
 ステップS01において、操作部2から制御装置10にシフトポジション検知信号が入力されると、制御装置10は、この信号が「N(ニュートラル)」レンジを表す信号であるか否かを判定する(ステップS02)。
 シフトポジション検知信号が「N」レンジを表している場合に、ステップS03において、制御装置10は、燃料電池40の現在の運転モードが暖機運転モードであるか否かを判定する。
 燃料電池40が暖機運転モードである場合に、ステップS11において、制御装置10は、暖機運転モードにおける上限回転数Nbを回転数閾値に設定する。
 一方、燃料電池40が暖機運転モードではない場合に、ステップS04において、制御装置10は、燃料電池40の運転モードが高電位化回避モードであるか否かを判定する。
 燃料電池40が高電位化回避制御モードである場合に、ステップS12において、制御装置10は、高電位化回避制御モードにおける上限回転数Naを回転数閾値に設定する。
 燃料電池40が、暖機運転モード及び高電位化回避制御モードのいずれでもない場合に、ステップS05において、制御装置10は、通常の運転モードにおける上限回転数NCONSTを回転数閾値に設定する。
 ステップS06において、制御装置10は、現在のモータ61の回転数と、ステップS11、S12、S05のいずれかにおいて設定された回転数閾値とを比較する。そして、現在の回転数が回転数閾値よりも小さい場合に、シャットダウンを許可する(ステップS07)。それにより、モータ61に対するインバータ制御が停止する。
 一方、現在の回転数が回転数閾値以上である場合には、シャットダウンは許可されない(ステップS13)。それにより、各運転モードにおける最大出力電圧(VMAX、Vb、Va)を超える逆起電力の発生が防止される。この場合には、燃料電池40の運転モードが切り替わるか、又は、ブレーキ操作や自然の減速によりモータ61の回転数が閾値よりも小さくなった際に、シャットダウンが許可される。
 以上説明したように、本実施形態によれば、燃料電池の各運転モードにおける最大出力電圧(VMAX、Va、Vb)以上の逆電圧が発生するのを防ぐことができる。従って、バッテリやコンバータに過電圧がかかるのを抑制することができる。
 なお、本実施形態においては、図1に示すように、補機類がDC/DCコンバータに対してバッテリ側に接続されている構成となっているが、補機類がDC/DCコンバータに対して燃料電池側に接続されている構成に対して本発明を適用しても良い。この場合には、過大な逆起電圧による補機インバータの定格電圧超えも抑制することができる。

Claims (5)

  1.  燃料ガスと酸化ガスとの電気化学反応によって発電する燃料電池と、
     電力供給を受けて駆動可能かつ回生電力を発生可能なモータと、
     前記燃料電池から出力される直流電力を交流電力に変換して前記モータに供給することにより、前記モータの駆動を制御するインバータと、
     前記モータに対して前記燃料電池とは並列に接続され、前記燃料電池の発電電力および前記モータの回生電力を充電可能かつ充電電力を前記モータに放電可能な蓄電部と、
     前記モータの回転数を検知する回転数検知器と、
     前記モータの現在の回転数に基づいて、前記インバータの前記モータに対する制御の停止を許可するか否かを決定する制御部と、
    を備え、
     前記制御部は、前記モータの現在の回転数を、前記燃料電池の運転モードに応じて異なる閾値と比較することにより前記決定を行う、燃料電池システム。
  2.  前記制御部は、前記モータの現在の回転数が、前記燃料電池の現在の運転モードに対応する回転数閾値より小さい場合に、前記インバータの前記モータに対する制御の停止を許可する、請求項1に記載の燃料電池システム。
  3.  前記制御部は、前記燃料電池の各運転モードにおける最大出力電圧に対応する前記モータの回転数を、回転数閾値として運転モードに関連付けて格納する内部メモリを有しており、
     前記制御部は、複数の回転数閾値の内から、前記燃料電池の現在の運転モードに対応する1つの回転数閾値を抽出し、該回転数閾値を用いて前記決定を行う、
    請求項1又は2に記載の燃料電池システム。
  4.  前記複数の運転モードは、通常の運転モードと、高電位化回避制御モード及び暖機運転モードの内の少なくとも1つとを含む、請求項1~3のいずれか1項に記載の燃料電池システム。
  5.  請求項1~4のいずれか1項に記載の燃料電池システムと、
     少なくとも前記燃料電池の運転に使用される補機と、
    を備える燃料電池車両。
PCT/JP2008/072553 2007-12-26 2008-12-11 燃料電池システム及び燃料電池車両 WO2009081753A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112008003475.3T DE112008003475B4 (de) 2007-12-26 2008-12-11 Brennstoffzellensystem und Brennstoffzellenfahrzeug
KR1020107010434A KR101151748B1 (ko) 2007-12-26 2008-12-11 연료전지시스템 및 연료전지 차량
CN2008801227689A CN101909923B (zh) 2007-12-26 2008-12-11 燃料电池系统及燃料电池车辆
US12/810,471 US9368850B2 (en) 2007-12-26 2008-12-11 Fuel cell system and fuel cell vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007334356A JP4424418B2 (ja) 2007-12-26 2007-12-26 燃料電池システム及び燃料電池車両
JP2007-334356 2007-12-26

Publications (1)

Publication Number Publication Date
WO2009081753A1 true WO2009081753A1 (ja) 2009-07-02

Family

ID=40801059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072553 WO2009081753A1 (ja) 2007-12-26 2008-12-11 燃料電池システム及び燃料電池車両

Country Status (6)

Country Link
US (1) US9368850B2 (ja)
JP (1) JP4424418B2 (ja)
KR (1) KR101151748B1 (ja)
CN (1) CN101909923B (ja)
DE (1) DE112008003475B4 (ja)
WO (1) WO2009081753A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110260470A1 (en) * 2010-04-23 2011-10-27 William Ahmadi Tribrid electric transportation system
KR101610392B1 (ko) 2010-06-28 2016-04-07 현대자동차주식회사 연료전지 시스템의 제어 방법
JP5722683B2 (ja) * 2011-03-31 2015-05-27 株式会社安川電機 車両の制御装置
JP5622693B2 (ja) * 2011-09-09 2014-11-12 本田技研工業株式会社 燃料電池車両
JP5957951B2 (ja) * 2012-02-24 2016-07-27 トヨタ自動車株式会社 燃料電池システム
KR101422927B1 (ko) * 2012-10-30 2014-07-23 삼성전기주식회사 모터 구동 장치, 모터 구동 제어 방법 및 그를 이용한 모터
JP5835376B2 (ja) * 2014-03-06 2015-12-24 トヨタ自動車株式会社 燃料電池システム及び燃料電池システムの制御方法
KR101592705B1 (ko) * 2014-06-11 2016-02-19 현대자동차주식회사 연료전지 시스템 및 그 제어 방법
CN112677781B (zh) * 2016-02-26 2023-04-25 上海恒劲动力科技有限公司 基于燃料电池和储能电池的混合动力电源系统及汽车
US9849806B1 (en) * 2016-06-01 2017-12-26 Ford Global Technologies, Llc Current based six step control
KR102336394B1 (ko) * 2017-03-17 2021-12-08 현대자동차주식회사 연료전지 공기 공급 제어방법 및 시스템
KR102371598B1 (ko) 2017-04-26 2022-03-07 현대자동차주식회사 배터리 충전량 제어 장치, 그를 포함한 시스템 및 그 방법
JP6780593B2 (ja) * 2017-07-07 2020-11-04 トヨタ自動車株式会社 燃料電池システムおよび燃料電池システムの制御方法
JP6881181B2 (ja) * 2017-09-21 2021-06-02 トヨタ自動車株式会社 燃料電池システムおよび燃料電池システムの制御方法
KR102198830B1 (ko) 2019-04-05 2021-01-05 울산대학교 산학협력단 에너지 회생기능을 가지는 pem 연료전지 지게차
KR102470708B1 (ko) * 2020-11-18 2022-11-28 에스퓨얼셀(주) 연료전지 지게차

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0923508A (ja) * 1995-07-07 1997-01-21 Honda Motor Co Ltd 電動車両の制御装置
JP2001339923A (ja) * 2000-05-24 2001-12-07 Matsushita Electric Ind Co Ltd モータ
JP2007165104A (ja) * 2005-12-13 2007-06-28 Toyota Motor Corp 燃料電池システム及び移動体
JP2007236197A (ja) * 2002-06-04 2007-09-13 Toyota Motor Corp 電源装置
JP2007234554A (ja) * 2006-03-03 2007-09-13 Honda Motor Co Ltd 燃料電池システムおよびその運転方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07264709A (ja) 1994-03-24 1995-10-13 Mitsubishi Electric Corp 電気自動車の電動機制御装置
JP3877937B2 (ja) 2000-05-18 2007-02-07 株式会社エヌ・ティ・ティ・ドコモ フィードフォワード増幅器
EP1158652B1 (en) 2000-05-24 2007-09-26 Matsushita Electric Industrial Co., Ltd. Motor, electric vehicle and hybrid electric vehicle
US6917179B2 (en) * 2001-10-25 2005-07-12 Toyota Jidosha Kabushiki Kaisha Load driver and control method for safely driving DC load and computer-readable recording medium with program recorded thereon for allowing computer to execute the control
DE102005052019B4 (de) * 2004-11-02 2017-03-30 Honda Motor Co., Ltd. Verfahren zum Steuern/Regeln eines Leerlaufstopps eines Brennstoffzellensystems
WO2006095497A1 (ja) * 2005-03-09 2006-09-14 Toyota Jidosha Kabushiki Kaisha 負荷駆動装置、車両、および負荷駆動装置における異常処理方法
JP2006331775A (ja) 2005-05-25 2006-12-07 Toyota Motor Corp 燃料電池システム、その制御方法及びそれを搭載した車両
CN100491154C (zh) * 2006-06-07 2009-05-27 清华大学 一种车用燃料电池系统输出功率的控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0923508A (ja) * 1995-07-07 1997-01-21 Honda Motor Co Ltd 電動車両の制御装置
JP2001339923A (ja) * 2000-05-24 2001-12-07 Matsushita Electric Ind Co Ltd モータ
JP2007236197A (ja) * 2002-06-04 2007-09-13 Toyota Motor Corp 電源装置
JP2007165104A (ja) * 2005-12-13 2007-06-28 Toyota Motor Corp 燃料電池システム及び移動体
JP2007234554A (ja) * 2006-03-03 2007-09-13 Honda Motor Co Ltd 燃料電池システムおよびその運転方法

Also Published As

Publication number Publication date
CN101909923B (zh) 2013-06-26
CN101909923A (zh) 2010-12-08
DE112008003475B4 (de) 2022-03-17
KR101151748B1 (ko) 2012-06-15
JP4424418B2 (ja) 2010-03-03
DE112008003475T5 (de) 2011-01-20
US20100279187A1 (en) 2010-11-04
US9368850B2 (en) 2016-06-14
KR20100076020A (ko) 2010-07-05
JP2009158256A (ja) 2009-07-16

Similar Documents

Publication Publication Date Title
JP4424418B2 (ja) 燃料電池システム及び燃料電池車両
US7946365B2 (en) Control method for fuel cell vehicle, and fuel cell vehicle
JP4888519B2 (ja) 燃料電池システムおよびその制御方法
US8722266B2 (en) Fuel cell system
JP5041010B2 (ja) 燃料電池システム
JP4400669B2 (ja) 燃料電池システム
JP4274278B2 (ja) 燃料電池システム
US8027759B2 (en) Fuel cell vehicle system
US10128523B2 (en) Fuel cell system and control method for the same
EP1442922B1 (en) Control method for fuel cell vehicle
JP2009059558A (ja) 燃料電池システム
KR101151750B1 (ko) 연료전지시스템
JP4615379B2 (ja) 燃料電池システム
JP2018133147A (ja) 燃料電池システム
US8999591B2 (en) Fuel cell system for preventing excessive power generation
US8571732B2 (en) Vehicle skid control device
JP2011210512A (ja) 燃料電池システム
WO2013150619A1 (ja) 燃料電池システム
JP6788228B2 (ja) 燃料電池車両
JP2009093916A (ja) 燃料電池システム
JP4888654B2 (ja) 燃料電池システム
JP2009129679A (ja) 燃料電池システム
JP2005347087A (ja) 燃料電池システムおよびこれを備える動力出力装置並びに燃料電池車

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880122768.9

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08864317

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107010434

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120080034753

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 12810471

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112008003475

Country of ref document: DE

Date of ref document: 20110120

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 08864317

Country of ref document: EP

Kind code of ref document: A1