WO2009081687A1 - 窒化物単結晶の育成装置 - Google Patents

窒化物単結晶の育成装置 Download PDF

Info

Publication number
WO2009081687A1
WO2009081687A1 PCT/JP2008/071593 JP2008071593W WO2009081687A1 WO 2009081687 A1 WO2009081687 A1 WO 2009081687A1 JP 2008071593 W JP2008071593 W JP 2008071593W WO 2009081687 A1 WO2009081687 A1 WO 2009081687A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction vessel
crucible
nitrogen gas
single crystal
pressure vessel
Prior art date
Application number
PCT/JP2008/071593
Other languages
English (en)
French (fr)
Inventor
Mikiya Ichimura
Original Assignee
Ngk Insulators, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ngk Insulators, Ltd. filed Critical Ngk Insulators, Ltd.
Priority to JP2009546993A priority Critical patent/JP5261401B2/ja
Publication of WO2009081687A1 publication Critical patent/WO2009081687A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • C30B9/04Single-crystal growth from melt solutions using molten solvents by cooling of the solution
    • C30B9/08Single-crystal growth from melt solutions using molten solvents by cooling of the solution using other solvents
    • C30B9/10Metal solvents

Definitions

  • the present invention relates to a nitride single crystal growth apparatus.
  • an inner reaction vessel is installed inside a pressure vessel, a crucible is installed in the inner reaction vessel, and a melt containing Na flux in the crucible. Is used to grow G a N single crystals.
  • a molten Na reservoir in a pipe that supplies nitrogen gas from the nitrogen cylinder to the inner reaction vessel, the Na pressure inside the inner reaction vessel is kept constant, and the pressure from the melt is increased. Suppresses evaporation of Na. Disclosure of the invention
  • the nitrogen gas in the nitrogen gas cylinder contains a certain amount of impurities depending on the grade. From the viewpoint of mass production, it is desirable to use low-cost nitrogen gas, but low-cost nitrogen gas generally has many impurities, and when introduced into a pressure vessel, the quality of the nitride single crystal Decreases.
  • An object of the present invention is to suppress a decrease in crystal quality due to impurities in nitrogen gas as a raw material in an apparatus for growing a nitride single crystal in a crucible using a solution containing a flux and a raw material. This is to prevent the crystal quality from deteriorating due to the failure of convection in the crucible.
  • the present invention is an apparatus for growing a nitride single crystal using a solution containing a flux and a raw material
  • a reaction vessel containing the crucible A pressure vessel for containing the reaction vessel and filling with at least nitrogen gas, an outer pipe for introducing at least nitrogen gas into the space inside the pressure vessel, and introducing nitrogen gas in the pressure vessel into the reaction vessel
  • a holding part for holding a molten metal or a molten earth metal for contacting nitrogen gas between the space in the pressure vessel and the crucible, and a drive mechanism for moving the reaction vessel It is characterized by being.
  • the outer pipe for introducing the nitrogen gas into the space in the pressure vessel and the supply member for introducing the nitrogen gas in the pressure vessel into the reaction vessel are separately provided. separated.
  • the nitrogen gas supplied from the gas cylinder through the outer pipe once enters the pressure vessel space and becomes the atmosphere of the pressure vessel space.
  • the nitrogen gas-containing atmosphere passes through a supply member separated from the outer pipe, and is supplied to the crucible in the inner reaction vessel. At this time, by bringing the alkali metal melt into contact with the nitrogen gas between the space in the pressure vessel and the crucible, impurities in the nitrogen gas can be removed and the crystal quality can be improved.
  • the crucible in the reaction vessel is given a motion, the convection of the solution is moderately promoted, and the crystal quality is stabilized and improved. be able to. Even if the reaction vessel is moved, the supply member of the reaction vessel is separated from the outer piping connected to the cylinder, so the outer piping does not move and does not become an obstacle.
  • FIG. 1 is a cross-sectional view schematically showing a growing apparatus according to an embodiment of the present invention.
  • FIG. 2 shows a reaction vessel 7 with a melt holding part that can be used in the apparatus of the present invention. It is sectional drawing shown typically.
  • FIG. 3 is a cross-sectional view schematically showing a reaction vessel 7 with a melt holding part that can be used in the apparatus of the present invention.
  • FIG. 4 is a cross-sectional view schematically showing a reaction vessel 7 with a melt holding part that can be used in the apparatus of the present invention.
  • FIG. 1 is a cross-sectional view schematically showing a crystal growth apparatus according to an embodiment of the present invention.
  • the inner reaction vessel 7 is installed in the pressure vessel 1 of the HIP (hot isostatic press) apparatus, and the crucible 11 is installed in the reaction vessel 7.
  • a gas cylinder (not shown) is installed outside the pressure vessel 1.
  • the gas cylinder may be only a nitrogen gas cylinder or a combination of a nitrogen gas cylinder and an inert gas cylinder. Supply at least nitrogen gas to the specified pressure and supply it into the pressure vessel 1 through the outer pipe 4 as shown by arrow A. This nitrogen gas (and inert gas if necessary) flows into the space 2 in the pressure vessel as indicated by the arrow B from the outer pipe 4.
  • the partial pressure of nitrogen gas in space 2 is monitored with a pressure gauge (not shown).
  • heaters 3 A, 3 B, and 3 C are installed around the reaction vessel 7 so that the growth temperature in the crucible 11 can be controlled.
  • a supply member 8 is attached to the inner reaction vessel 7, and at least nitrogen gas is supplied from the outer opening 8 a of the supply member 8 as indicated by an arrow C. This gas is supplied from the inner opening 8 b of the supply member 8 to the space 9 in the reaction vessel 7 as indicated by the arrow D. This gas is supplied from the space 9 to the crucible inner space 20 and dissolved in the solution 12 in the crucible 11. Then, a nitride single crystal is formed on the seed crystal 13 immersed in the solution 12.
  • a holding portion 10 for holding an alkali metal melt for contacting nitrogen gas is provided between the space 2 in the pressure vessel 1 and the crucible 11. This holding part 10 is attached in the middle of the inner pipe 8 in the schematic diagram of FIG. 1, but this is not necessary, and any force between the space 2 and the crucible 11 1 inner space 20 is held. Part 10 can be provided.
  • the reaction vessel 7 is in a state where it can be driven by the drive mechanism.
  • a reaction vessel 7 is placed and fixed on a table 6.
  • the table 6 is attached to the drive shaft 5 so that the reaction vessel 7 can be rotated as shown by an arrow E.
  • the holding unit 10 is attached to the supply member 8.
  • FIG. 2 is a cross-sectional view schematically showing the inner container 7 used in another embodiment.
  • the outer container 1, the heater, the drive mechanism, and the outer piping shown in FIG. 1 are not shown.
  • a supply member 8 is attached to the reaction vessel 7, and at least nitrogen gas is supplied from the outer opening 8 a of the supply member 8 as indicated by an arrow C. This gas flows out from the inner opening 8 b of the supply member 8.
  • a melt reservoir 10 A is fixed to the inner end of the supply member 8, and in the melt reservoir 10 A, an Al-strength metal or Al-strength earth metal melt 1 4 is housed. The end portion of the supply member 8 is immersed in the melt 14.
  • the gas supplied from the supply member 8 passes through the melt 14 and flows into the space 9 as indicated by the arrow D from the surface of the melt 14.
  • This gas is supplied from the space 9 to the crucible space 20 and is dissolved in the solution 12 in the crucible 11. Then, a nitride single crystal is formed on the seed crystal 13 immersed in the solution 12.
  • FIG. 3 is a cross-sectional view schematically showing an inner container 7 used in another embodiment. is there.
  • the outer container 1, the heater, the drive mechanism, and the outer piping shown in FIG. 1 are not shown.
  • a ring-shaped supply member 8 A is attached to the upper outer peripheral surface of the reaction vessel 7.
  • the supply member 8 A is composed of an upper member 21 attached to the lid of the reaction vessel 7 and a lower member 2 2 attached to the main body of the reaction vessel 7, and the upper member 21 and the lower member 2 2 Is fastened with bolts 15. Between the upper member 2 1 and the lower member 2 2, there is a gas supply path 2 3 and a holding part 1
  • a melt 14 made of alkali metal or alkaline earth metal is accommodated in the holding section 10 B.
  • a flow path forming protrusion 24 is formed on the upper member 21, and an end portion of the flow path forming protrusion 24 is immersed in the melt 14 held in the holding part 10 B.
  • FIG. 4 is a cross-sectional view schematically showing a reaction vessel according to this embodiment.
  • the outer container 1, the heater, the drive mechanism, and the outer piping shown in FIG. 1 are not shown.
  • a supply unit 8 is attached to the upper side of the reaction vessel 7. At least nitrogen gas is supplied from the outer opening 8a of the supply member 8 as shown by the arrow C. This gas flows out from the inner opening 8 b of the supply pipe 8 into the space 9.
  • a flow path forming material 18 is installed and fixed.
  • a crucible 11 is accommodated inside the flow path forming material 18, and a holding part 10 C for accommodating the melt 14 is provided between the crucible 11 and the reaction vessel 7. In the melt 14, the end portion 18 a of the flow path forming material 18 is immersed.
  • the gas supplied from the supply unit 8 flows through the space 9 between the flow path forming material 1 8 and the reaction vessel 7, passes through the melt 1 4, and the flow path forming material 1 8 and the crucible 1 1 Assemble the space 19 between and as shown by arrow D.
  • the gas is supplied to the crucible inner space 20 and is dissolved in the solution 12 in the crucible 11. Then, a nitride single crystal is formed on the seed crystal 13 immersed in the solution 12.
  • a holding part for a melt of alkali metal or alkaline earth metal is provided.
  • this metal lithium, sodium, potassium, magnesium, calcium, strontium, and barium are preferable, and sodium is most preferable.
  • the gas supply part on the reaction vessel side is preferably a pipe, but is not limited to this, and may be any form that can form a gas supply path.
  • the gas supply unit on the reaction vessel side and the outer piping on the pressure vessel side need not be in direct contact with each other and are not physically constrained to each other. As a result, even if the reaction vessel moves and the spatial positional relationship between the outer pipe and the supply section changes, the outer pipe does not break.
  • a drive mechanism for moving the reaction vessel is provided.
  • the motion applied to the reaction vessel is not particularly limited, and examples include rotation 'revolution ⁇ swing' swing motion (precession) ⁇ peristalsis, vertical motion ⁇ left and right motion.
  • reaction vessel may be revolved, rotated, or swung along the horizontal plane.
  • the swing motion refers to the motion of rotating around the vertical line with the center line of the reaction vessel tilted from the vertical line.
  • the vibration period when the reaction vessel is moved up and down, left and right, and rocked is preferably 1 rpm or more, and more preferably 5 rpm or more in order to increase the effect of preventing miscellaneous crystals. Further, from the viewpoint of preventing problems due to the collision of the seed crystal in the crucible, the vibration period when the reaction vessel is moved up and down, left and right, and rocked is preferably 20 rpm or less. More preferably, it is set to rpm or less.
  • a stirring medium can be further introduced into the solution 12.
  • the material of the solid material that constitutes at least the surface of the stirring medium must not react with the flux. Therefore, this material is appropriately selected by those skilled in the art depending on the type of flux used.
  • the entire stirring medium may be made of such a material, or only the surface of the stirring medium may be made of such a material.
  • the material of the stirring medium is preferably metal tantalum, but metals such as metal tungsten, metal molypden, etc., aluminum, itria.
  • oxide ceramics such as strong rucia, single crystals such as sapphire, carbide ceramics such as tungsten carbide and tantalum carbide, and nitride ceramics such as aluminum nitride, titanium nitride, and zirconium nitride can also be used.
  • the surface of a solid material made of another material can be coated with a material that does not react with the solution as described above. Therefore, for example, a stirring medium in which a steel ball is coated with metal tantalum is also preferable.
  • the form of the stirring medium is not particularly limited, but is preferably a pulque body, and preferably has a shape that easily rolls on an inclined surface.
  • rotating bodies such as spheres, spheroids, pyramids such as triangular pyramids, quadrangular pyramids, hexagonal pyramids, cones, verticals
  • a polyhedron such as a rectangular parallelepiped can be exemplified.
  • the diameter of each stirring medium is preferably 1 mm or more, more preferably 5 mni or more. However, if the stirring medium becomes too large, the weight increases, so the diameter is preferably 15 mm or less, more preferably 10 mm or less.
  • the furnace material of the pressure vessel is not particularly limited, but high alumina refractory brick (isolite, ISO-COR (trade name), graphite refractory (GRAFSHIELD (trade name)), hollow sphere Examples thereof include electrofused alumina (alumina bubbles).
  • the material of the heating element is not particularly limited, and examples thereof include tantalum, SiC, SiC coated graphite, nichrome, and force super (trade name).
  • the apparatus for heating the raw material mixture to produce a solution is not particularly limited.
  • This apparatus is preferably a hot isostatic pressing apparatus, but other atmospheric pressurizing furnaces may be used.
  • the flux for producing the solution is not particularly limited, but one or more metals selected from the group consisting of Al-rich metal and Al-rich earth metal or alloys thereof are preferable.
  • This metal is particularly preferably sodium, lithium, or force, and most preferably sodium.
  • the following metals can be illustrated as materials other than the flux added to a raw material mixture and a single-crystal raw material.
  • a small amount of an impurity element can be added as a dopant.
  • silicon can be added as an n- type dopant.
  • the following single crystals can be suitably grown by the growing method of the present invention.
  • the heating temperature and pressure in the single crystal growth process are not particularly limited because they are selected depending on the type of single crystal.
  • the heating temperature can be, for example, 800 to 1.500 ° C.
  • the pressure is not particularly limited, but the pressure is preferably IMP a or more, and more preferably 5 MPa or more.
  • the upper limit of the pressure is not particularly specified, but can be, for example, 20 OMPa or less.
  • the material of the crucible for carrying out the reaction is not particularly limited as long as it is an airtight material that is durable under the intended heating and pressurizing conditions.
  • These materials include high melting point metals such as metal tantalum, tungsten, and molybdenum, oxides such as alumina, sapphire, and yttria, nitride ceramics such as aluminum nitride, titanium nitride, zirconium nitride, and boron nitride, tungsten
  • high melting point metals such as metal tantalum, tungsten, and molybdenum
  • oxides such as alumina, sapphire, and yttria
  • nitride ceramics such as aluminum nitride, titanium nitride, zirconium nitride, and boron nitride
  • tungsten examples include carbides of refractory metals such as carpide and tantalum carbide, and pyrolysis products such as p-BN (pyrolytic BN) and p-Gr (pyrolytic graphite). 'Hereinafter, more specific single crystals and their growth
  • a gallium nitride single crystal can be grown using a flux containing at least sodium metal.
  • This flux is mixed with gallium source material.
  • gallium source material a gallium simple metal, a gallium alloy, or a gallium compound can be applied, but a gallium simple metal is also preferable in terms of handling.
  • This flux can contain metals other than sodium, such as lithium.
  • the ratio of use of the raw material for the gallium and the flux raw material such as sodium may be appropriate, but in general, the use of an excess amount of sodium is considered. Of course, this is not limiting.
  • a gas other than nitrogen in the atmosphere is not limited, but an inert gas is preferable, and argon, helium, and neon are particularly preferable.
  • the partial pressure of gases other than nitrogen is the total pressure minus the nitrogen gas partial pressure.
  • the temperature of the gallium nitride single crystal there is no upper limit on the growth temperature of the gallium nitride single crystal, but since it becomes difficult for the crystal to grow if the growth temperature is too high, it is preferable to set the temperature to 150 ° C. or lower. From this point of view, 1 More preferably, the temperature is 200 ° C. or lower.
  • the material of the growth substrate for epitaxial growth of various nitride single crystals is not limited, but sapphire, A 1 N template, G a N template, G a N free-standing substrate, silicon single crystal, Si C single crystal, Mg O single crystal, spinel (Mg A l 2 0 4 ), L i A 1 0 2 , L i G a 0 2 , L a A 1 O 3, L a G a 0 3 , N d the G a 0 3, etc.
  • Bae Robusukai preparative composite oxide can be exemplified.
  • A is a rare earth element; D is one or more elements selected from the group consisting of niobium opium tantalum.
  • S CAM S c A l Mg 0 4 Also it can use.
  • the present invention is also effective when growing an A 1 N single crystal by pressurizing a melt containing a flux containing at least aluminum and alkaline earth in a nitrogen-containing atmosphere under specific conditions. Was confirmed.
  • GaN template substrate 13 is a substrate obtained by epitaxially growing a GaN single crystal thin film on a sapphire substrate by 3 ⁇ m.
  • the gas was replaced with nitrogen gas.
  • the pressure in the pressure vessel 1 after gas replacement was about 1 atm.
  • the temperature was raised and pressurized to 850 ° C and 40 atm over 1 hour. Nitrogen gas introduction was started after the furnace temperature reached the melting point of Na (98 ° C) or higher and Na contained in the pipe 8 attached to the reaction vessel 7 melted. Nitrogen gas was introduced slowly so that Na in the piping was not pushed into the reaction vessel.
  • reaction vessel 7 After reaching 850 ° C and 40 atm, the reaction vessel 7 started to rotate and was kept in the stirring state considered to be optimal for 200 hours.
  • the reaction vessel 7 and the crucible 11 were taken out of the apparatus and treated with ethanol to dissolve Na. After that, it was put on thin hydrochloric acid to remove the remaining Ga, and the GaN single crystal was taken out.
  • the weight of the obtained GaN single crystal was 55 g.
  • a single peak with a half-value width of 30 arcsec was observed.
  • a gallium nitride single crystal was grown.
  • GaN template substrate 13 Metal Ga 40 g and metal Na 80 g were weighed together with a GaN template substrate 13 having a diameter of 2 inches into an alumina crucible 11 having an inner diameter of 65 mm.
  • metal Na2 Og and a crucible 11 which will later become a melt 14 are placed, and the crucible 11 is covered with an alumina channel forming material 18 and then the reaction vessel 7 is sealed.
  • a series of operations were carried out in the glove box so that the raw materials were not oxidized.
  • the GaN template substrate 13 is a substrate in which a GaN single crystal thin film is 3 ⁇ m epitaxially grown on a sapphire substrate.
  • the temperature was raised and pressurized to 850 ° C and 40 atm over 1 hour. Nitrogen gas introduction was started after the furnace temperature reached the melting point of Na (98 ° C) or higher and molten Na accumulated in the holding part 10 C. Holding part 10 Na in 0C is not pushed into the reaction vessel. Nitrogen gas was slowly introduced.
  • the reaction vessel 7 taken out from the apparatus was heated to about 150 ° C. in the glove box to dissolve the Na in the holding portion 10 C, and the flow path forming material 18 and the crucible 11 were recovered. . Thereafter, Na and unreacted Ga in the crucible 11 were removed with ethanol and dilute hydrochloric acid, and a GaN single crystal was taken out.
  • the weight of the obtained GaN single crystal was 44.
  • a single peak with a half-value width of 30 arcsec was observed.
  • an appearance inspection was performed, it was a transparent crystal having a uniform thickness with step growth marks.
  • the weight of the obtained GaN single crystal was 45 g.
  • double curves with half-widths of 30 arcsec and 45 arcsec were observed.
  • it was a brown crystal with non-uniform thickness.
  • a GaN template substrate is a substrate obtained by epitaxially growing a GaN single crystal thin film on a sapphire substrate.
  • Example 1 The temperature was increased to 850 ° C and 40 atmospheres over 1 hour. Nitrogen gas introduction was started after the furnace temperature exceeded the melting point of Na (98 ° C). Nitrogen gas was introduced slowly in the same manner as in Example 1.
  • Example 1 is the same as Example 1.
  • the weight of the obtained GaN single crystal was 15 g.
  • a broad peak with a half-width of 300 arcsec was observed.
  • aluminum nitride the same results as in Example 1 were obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

窒化物単結晶の育成装置において、原料となる窒素ガス中の不純物による結晶品質の低下を抑制するのと同時に、坩堝内での対流の不全による結晶品質の低下を防止する。本発明の装置は、溶液12を収容するための坩堝11、坩堝11を収容する反応容器7、反応容器7を収容し、少なくとも窒素ガスを充填するための圧力容器1、圧力容器1内の空間2に少なくとも窒素ガスを導入するための外側配管4、圧力容器1内の窒素ガスを反応容器7内へと導入するための供給部材8であって、外側配管4とは分離されている供給部材8、圧力容器1内の空間2と坩堝11との間で窒素ガスと接触させるためのアルカリ金属またはアルカリ土類金属の溶融物を保持する保持部10、および反応容器11を動かすための駆動機構5を備える。

Description

明細書
窒化物単結晶の育成装置 発明の属する技術分野
本発明は、 窒化物単結晶の育成装置に関するものである。 背景技術
WO 2 0 0 7 - 1 0 2 6 1 0では、 N aフラックスを用いて G a N単 結晶を育成するのに際して、 フラックスを含む溶液中に球状の撹拌媒体 を浸漬し、 坩堝を揺動させながら G a N単結晶を育成している。
また、 WO 2 0 0 7— 1 0 8 3 3 8では、 N aフラックスを用いて G a N単結晶を育成するのに際して、 坩堝内でフラックスおよび原科を溶 融させて G a N単結晶を育成すると共に、 坩堝の外にカーボンなどの酸 素吸収材を設置している。 これによつて、 圧力容器内のヒーターなどか ら発生する酸素を吸着し、酸素が融液内に溶解することを防止している。 また、 特開 2 0 0 7— 2 54 1 84では、 圧力容器の内側に坩堝を設 置し、 坩堝内で Na フラックスを含む融液を用いて G a N単結晶を育成 している。 ここで、 窒素ボンベから圧力容器へと窒素ガスを供給する配 管に溶融 N a溜まりを設置することで、 圧力容器内部の N a圧力を一定 に保持し、 融液からの N aの蒸発を抑制している。
また、 特開 2 0 0 7— 1 6 1 5 2 9では、 圧力容器の内側に内側反応 容器を設置し、 内側反応容器内に坩堝を設置し、 坩堝内で N aフラック スを含む融液を用いて G a N単結晶を育成している。 ここで、 窒素ボン ベから内側反応容器へと窒素ガスを供給する配管に溶融 N a溜まりを設 置することで、 内側反応容器の内部の N a圧力を一定に保持し、 融液か らの N aの蒸発を抑制している。 発明の開示
本発明者が更に量産を検討していく と、 以下の問題点が残されている ことがわかった。 即ち、 窒素ガスボンベ中の窒素ガス中には、 等級によ つては、 ある程度の不純物が含まれる。 量産の観点からは、 低コス トの 窒素ガスを使用することが望ましいが、 しかし低コストの窒素ガスは一 般に不純物が多く、 これを圧力容器内に導入すると、 窒化物単結晶の品 質が低下する。
特開 2 0 0 7— 2 5 4 1 8 4、 特開 2 0 0 7— 1 6 1 5 2 9記载のよ うに、 窒素ガスボンベから窒素ガスを坩堝へと供給するための配管に溶 融 N a溜まりを形成すると、 反応容器内の N a濃度が一定に保持される だけでなく、 窒素ガス内の不純物は除去されるものと考えられる。 しか し、 特開 2 0 0 7— 2 5 4 1 84、 特開 2 0 0 7— 1 6 1 5 2 9記載の 方法では、 坩堝を例えば回転させると、 溶融 N a溜まりが固定されてい る配管が変形し、 破壌されてしまう。 このため、 WO 2 0 0 7— 1 0 2 6 1 0記載のように、 育成中に坩堝に運動を与えることができず、 この ために坪内の融液の対流が充分ではなく、 単結晶の品質が低下したり、 基板上での単結晶膜厚が不揃いとなる。
本発明の課題は、 フラックスおよび原料を含む溶液を使用して坩堝内 で窒化物単結晶を育成する装置において、 原料となる窒素ガス中の不純 物による結晶品質の低下を抑制するのと同時に、 坩堝内での対流の不全 による結晶品質の低下を防止することである。
本発明は、 フラックスおよび原料を含む溶液を使用して窒化物単結晶 を育成する装置であって、
溶液を収容するための坩堝、
坩堝を収容する反応容器、 反応容器を収容し、 少なく とも窒素ガスを充填するための圧力容器、 圧力容器内の空間に少なく とも窒素ガスを導入するための外側配管、 圧力容器内の窒素ガスを反応容器内へと導入するための供給部材であ つて、 外側配管とは分離されている供給部材、
圧力容器内の空間と坩堝との間で窒素ガスと接触させるためのアル力 リ金属またはアル力リ土類金属の溶融物を保持する保持部、 および 反応容器を動かすための駆動機構を備えていることを特徴とする。 本発明によれば、 圧力容器内の空間に窒素ガスを導入するための外側 配管と、 圧力容器内の窒素ガスを反応容器内へと導入するための供給部 材とを別個に設け、 両者を分離した。 この結果、 ガスボンベから外側配 管を通して供給された窒素ガスは、 いったん圧力容器内空間に入り、 圧 力容器内空間の雰囲気となる。 そして、 この窒素ガス含有雰囲気は、 外 側配管とは分離された供給部材を通過し、 内側反応容器内の坩堝に供給 される。 このとき、 圧力容器内の空間と坩堝との間でアルカリ金属溶融 物を窒素ガスと接触させることで、 窒素ガス中の不純物を除去し、 結晶 品質を向上させることができる。
これと同時に、 本発明によれば、 反応容器を動かすための駆動機構を 設けることで、 反応容器内の坩堝に運動を与え、 溶液の対流を適度に促 進し、 結晶品質を安定、 向上させることができる。 反応容器を動かして も、 反応容器の供給部材は、 ボンベにつながる外側配管とは分離されて いるので、 外側配管が動くことはなく、 障害にはならない。 図面の簡単な説明
図 1は、 本発明の一実施形態に係る育成装置を模式的に示す断面図で ある。
図 2は、 本発明の装置で使用可能な溶融物保持部付きの反応容器 7を 模式的に示す断面図である。
図 3は、 本発明の装置で使用可能な溶融物保持部付きの反応容器 7を 模式的に示す断面図である。
図 4は、 本発明の装置で使用可能な溶融物保持部付きの反応容器 7を 模式的に示す断面図である。 発明を実施するための最良の形態
図 1は、 本発明の一実施形態に係る結晶育成装置を模式的に示す断面 図である。
本例では、 H I P (熱間等方圧プレス) 装置の圧力容器 1の中に内側 反応容器 7を設置し、 反応容器 7内に坩堝 1 1を設ける。 圧力容器 1の 外部には、 図示しないガスボンベを設ける。 ガスボンベは, 窒素ガスボ ンべだけであってよく、 あるいは、 窒素ガスボンベと不活性ガスボンべ との組み合わせであってよい。 少なく とも窒素ガスを所定圧力とし、 外 側配管 4を通して圧力容器 1内に矢印 Aのように供給する。 この窒素ガ ス (および必要に応じて不活性ガス) は、 外側配管 4から矢印 Bのよう に圧力容器内の空間 2に流入する。 空間 2における窒素ガスの分圧は、 図示しない圧力計によって監視する。 圧力容器 1中では、 反応容器 7の 周囲にヒーター 3 A、 3 B、 3 Cが設置されており、 坩堝 1 1内の育成 温度を制御可能となっている。
内側反応容器 7には供給部材 8が取り付けられており、 供給部材 8の 外側開口 8 aから矢印 Cのように少なく とも窒素ガスを供給する。 この ガスは、 供給部材 8の内側開口 8 bから矢印 Dのように反応容器 7内空 間 9へと供給さる。 このガスは、 空間 9から坩堝内空間 2 0 と供給さ れ、 坩堝 1 1内の溶液 1 2に溶解する。 そして、 溶液 1 2に浸漬された 種結晶 1 3上に窒化物単結晶を生成させる。 本発明では、 圧力容器 1内の空間 2と坩堝 1 1 との間に窒素ガスと接 触させるためのアルカリ金属溶融物を保持する保持部 1 0を設ける。 こ の保持部 1 0は、 図 1の模式図では、 内側配管 8の途中に取り付けてあ るが、 その必要はなく、 空間 2と坩堝 1 1内空間 2 0との間のどこ力 こ 保持部 1 0を設けることができる。
また、 本発明では、 反応容器 7は駆動機構によって駆動可能な状態に なっている。 図 1の例では、 テーブル 6上に反応容器 7が載置および固 定されている。 テープル 6は駆動軸 5に取り付けられており、 これによ つて反応容器 7は矢印 Eのように回動可能である。
好適な実施形態においては、 例えば図 1に示すように、 保持部 1 0が 供給部材 8に取り付けられている。
図 2は、 他の実施形態に.使用する内側容器 7を模式的に示す断面図で ある。 図 2においては、 図 1に示した外側容器 1 ,、 ヒーター、 駆動機構 および外側配管を図示省略している。
反応容器 7には供給部材 8が取り付けられており、 供給部材 8の外側 開口 8 aから矢印 Cのように少なく とも窒素ガスを供給する。 このガス は、 供給部材 8の内側開口 8 bから流出する。 ここで、 供給部材 8の内 側末端には、 溶融物溜め 1 0 Aを固定しており、 溶融物溜め 1 0 A中に は、 アル力リ金属またはアル力リ土類金属の溶融物 1 4が収容されてい る。 供給部材 8の末端部分が溶融物 1 4内に浸漬されている。
この結果、 供給部材 8から供給されたガスは、 溶融物 1 4を通過し、 溶融物 1 4の表面から矢印 Dのように空間 9内へと流入する。 そして、 このガスは、 空間 9から坩堝内空間 2 0へと供給され、 坩堝 1 1内の溶 液 1 2に溶解する。 そして、 溶液 1 2に浸漬された種結晶 1 3上に窒化 物単結晶を生成させる。
図 3は、 他の実施形態に使用する内側容器 7を模式的に示す断面図で ある。 図 3においては、 図 1に示した外側容器 1、 ヒーター、 駆動機構 およぴ外側配管を図示省略している。
反応容器 7の上側外周面には、 リング状の供給部材 8 Aが取り付けら れている。 供給部材 8 Aは、 反応容器 7のふたに取り付けられた上側部 材 2 1と、反応容器 7の本体に取り付けられた下側部材 2 2とからなり、 上側部材 2 1と下側部材 2 2とはボルト 1 5によつて締結されている。 上側部材 2 1と下側部材 2 2との間にはガス供給路 2 3および保持部 1
O Bが形成されている。 保持部 1 0 B内には、 アルカリ金属またはアル 力リ土類金属からなる溶融物 1 4が収容されている。 上側部材 2 1には 流路形成突起 2 4が形成されており、 流路形成突起 2 4の末端部分は、 保持部 1 0 Bに保持された溶融物 1 4内に浸潰されている。
供給部材 8 Aの外側開口 8 aから矢印 Cのように少なく とも窒素ガス を供給する。 このガスは、 保持部 1 0 Bにおいて、 溶融物 1 4と接触し て不純物が除去され、 次いで供給部材 8の内側開口 8 bから矢印 Dのよ うに流出する。 そして、 このガスは、 空間 9から坩堝内空間 2 0へと供 給され、 坩堝 1 1内の溶液 1 2に溶解する。 そして、 溶液 1 2に浸漬さ れた種結晶 1 3上に窒化物単結晶を生成させる。
好適な実施形態においては、 反応容器内に設置される流路形成材を更 に備えており、 保持部が、 反応容器内の空間かつ坩堝の外側に設けられ ており、 流路形成材が金属溶融物に接触する。 図 4は、 この実施形態に 係る反応容器を模式的に示す断面図である。 図 4においては、 図 1に示 した外側容器 1、 ヒータ一、 駆動機構および外側配管を図示省略してい る。
反応容器 7の上側には供給部 8が取り付けられている。 供給部材 8の 外側開口 8 aから矢印 Cのように少なく とも窒素ガスを供給する。 この ガスは、 供給配管 8の内側開口 8 bから空間 9へと流出する。 反応容器 7内には、 流路形成材 1 8が設置、 固定されている。 流路形 成材 1 8の内側には坩堝 1 1が収容されており、 坩堝 1 1 と反応容器 7 との間には、 溶融物 1 4を収容する保持部 1 0 Cが設けられている。 こ の溶融物 1 4内に、 流路形成材 1 8の末端部 1 8 aが浸漬されている。 この結果、 供給部 8から供給されたガスは、 流路形成材 1 8と反応容器 7との間の空間 9を流れ、 溶融物 1 4を通過し、 流路形成材 1 8と坩堝 1 1との間の空間 1 9を矢印 Dのように上昇する。 次いで、 ガスは、 坩 堝内空間 2 0へと供給され、坩堝 1 1内の溶液 1 2に溶解する。そして、 溶液 1 2に浸漬された種結晶 1 3上に窒化物単結晶を生成させる。
本発明においては、 アルカリ金属またはアルカリ土類金属の溶融物の 保持部を設ける。 この金属としては、 リチウム、ナトリ ウム、カリ ウム、 マグネシウム、 カルシウム、 ス トロンチウム、 バリゥムが好ましく、 ナ トリゥムが最も好ましい。
反応容器側のガス供給部は、 配管であることが好ましいが、 これには 限定されず、 ガス供給路を形成可能な形態であればよい。 また、 反応容 器側のガス供給部と、 圧力容器側の外側配管とは、 互いに直接接触して いないことと、 互いに物理的に拘束されていないことが必要である。 こ れによって、 反応容器が運動して外側配管と供給部との空間的位置関係 が変化しても、 外側配管が破損しない。
本発明においては、 反応容器を動かすための駆動機構を設ける。 ここ で、 反応容器に加えられる運動は特に限定されず、 自転 '公転 ·揺動 ' 首振り運動 (歳差) ·摇動、 上下運動 ·左右運動を例示できる。
即ち、 反応容器を、 水平面に沿って公転、 自転、 首振り運動をさせて よい。 首振り運動とは、 反応容器の中心線を鉛直線から傾斜させた状態 で、 鉛直線の周りに回転させる運動をいう。
また、 図 1に示す駆動軸 5を、 矢印 Eのように回転させる代わりに、 矢印 Fのように上下動させることができ、 また, 矢印 Gのように左右に 振動させることができる。
反応容器を上下動、 左右動、 揺動させる際の振動周期は、 雑晶の防止 効果を上げるためには、 1 r p m以上とすることが好ましく、 5 r p m 以上とすることが更に好ましい。 また、 坩堝内での種結晶の衝突による 不具合を防止するという観点からは、 反応容器を上下動、 左右動、 揺動 させる際の振動周期は、 2 0 r p m以下とすることが好ましく、 1 5 r p m以下とすることが更に好ましい。
本発明においては、 溶液 1 2内に撹拌媒体を更に投入することができ る。 攪拌媒体の少なく とも表面を構成する固形物の材質は、 フラックス と反応しないことが必要である。 従ってこの材質は、 使用するフラック スの種類に応じて、 当業者が適宜選択する。 攪拌媒体の全体がこうした 材質からなっていてよく、 あるいは攪拌媒体の表面のみがこうした材質 からなつていてよい。 通常、 アルカリ金属, アルカリ土類金属を含有す るフラックスに適用する場合には、 攪拌媒体の材質は金属タンタルがも つとも好ましいが、 金属タングステン、 金属モリプデン、 等の金属、 ァ ルミナ、 イッ トリア、 力ルシア、 等の酸化物セラミックス、 サファイア などの単結晶、 タングステンカーパイ ド、 タンタルカーバイ ドなどの炭 化物セラミ ックス、 窒化アルミニウム、 窒化チタン、 窒化ジルコニウム 等の窒化物セラミ ックスも使用できる。 また、 他の材質からなる固形物 の表面を、 上述したような、 溶液と反応しない材質によって被覆するこ ともできる。 従って、 例えば鋼球を金属タンタルによって被覆した攪拌 媒体も好ましい。
攪拌媒体の形態は特に限定されないが、 パルク体であることが好まし く、 傾斜面上で転がりやすい形状が好ましい。 具体的には、 球状、 回転 楕円体などの回転体、 三角錐、 四角錐、 6角錐などの角錐状、 円錐、 立 方体などの多面体を例示できる。
攪拌媒体が大きいほど、 攪拌による雑晶生成の防止効果は高い。 この 観点からは、 各攪拌媒体の径は、 1 m m以上が好ましく、 5 m ni以上が 更に好ましい。 しかし、 攪拌媒体が大きくなりすぎると、 重量が重くな るので、 径は 1 5 m m以下が好ましく、 1 0 m m以下が更に好ましい。 本発明において、 圧力容器の炉材は特に限定されないが、 高アルミナ 質耐火煉瓦 (イソライ ト、 ISO-COR (以上商品名)、 グラフアイ ト系耐 火物 (GRAFSHIELD (商品名))、 中空球電融アルミナ (アルミナバブル) を例示できる。
また、 本発明において、 発熱体の材質は特に限定されないが、 タンタ ル、 SiC、 SiC コー ト したグラフアイ ト、 ニクロム、 力ンタルスーパ一 (商品名) を例示できる。
本発明の単結晶育成装置において、 原料混合物を加熱して溶液を生成 させるための装置は特に限定されない。 この装置は熱間等方圧プレス装 置が好ましいが、 それ以外の雰囲気加圧型加熱炉であってもよい。
溶液を生成するためのフラックスは特に限定されないが、 アル力リ金 属およびアル力リ土類金属からなる群より選ばれた一種以上の金属また はその合金が好ましい。 この金属としては、 ナトリウム、 リチウム、 力 ルシゥムが特に好ましく、 ナトリゥムが最も好ましい。
また、 原料混合物中に添加するフラックスおよび単結晶原料以外の物 質としては、 以下の金属を例示できる。
カ リ ウム、 ルビジウム、 セシウム、 マグネシウム、 ス トロンチウム、 バリ ウム、 錫
またドーパントとして少量の不純物元素を添加することができる。 例 えば、 n型ドーパントとしてシリコンを添加することができる。
本発明の育成方法によって、例えば以下の単結晶を好適に育成できる。 G a N、 A 1 N、 I nN、 これらの混晶 (A l G a l nN)ゝ B N 単結晶育成工程における加熱温度、 圧力は、 単結晶の種類によって選 択するので特に限定されない。 加熱温度は例えば 800〜 1.500°Cと することができる。 圧力も特に限定されないが、 圧力は IMP a以上で あることが好ましく、 5MP a以上であることが更に好ましい。 圧力の 上限は特に規定しないが、例えば 20 OMP a以下とすることができる。 反応を行うための坩堝の材質は特に限定されず、 目的とする加熱およ び加圧条件において耐久性のある気密性材料であればよい。 こう した材 料としては、 金属タンタル、 タングステン、 モリブデンなどの高融点金 属、 アルミナ、 サファイア、 イットリアなどの酸化物、 窒化アルミニゥ ム、 窒化チタン、 窒化ジルコニウム、 窒化ホウ素などの窒化物セラミツ クス、 タングステンカーパイ ド、 タンタルカーバイ ドなどの高融点金属 の炭化物、 p—BN (パイロリティック BN)、 p— Gr (パイロリテイツ クグラフアイ ト) などの熱分解生成体が挙げられる。 ' 以下、 更に具体的な単結晶およびその育成手順について例示する。
(窒化ガリゥム単結晶の育成例)
本発明を利用し、 少なく ともナトリゥム金属を含むフラックスを使用 して窒化ガリウム単結晶を育成できる。 このフラックスには、 ガリウム 原料物質を混合する。 ガリ ウム原料物質としては、 ガリウム単体金属、 ガリ ウム合金、 ガリウム化合物を適用できるが、 ガリウム単体金属が取 扱いの上からも好適である。
このフラックスには、 ナトリウム以外の金属、 例えばリチウムを含有 させることができる。 ガリ ウム原料物質とナトリ ゥムなどのフラックス 原料物質との使用割合は、 適宜であってよいが、 一般的には、 ナトリウ ム過剰量を用いることが考慮される。 もちろん、 このことは限定的では ない。 雰囲気中の窒素以外のガスは限定されないが、不活性ガスが好ましく、 アルゴン、ヘリゥム、ネオンが特に好ましい。窒素以外のガスの分圧は、 全圧から窒素ガス分圧を除いた値である。
窒化ガリゥム単結晶の育成温度の上限は特にないが、 育成温度が高す ぎると結晶が成長しにく くなるので、 1 5 0 0°C以下とすることが好ま しく、 この観点からは、 1 2 0 0 °C以下とすることが更に好ましい。 各種窒化物単結晶をェピタキシャル成長させるための育成用基板の材 質は限定されないが、 サファイア、 A 1 Nテンプレート、 G a Nテンプ レー ト、 G a N自立基板、 シリ コン単結晶、 S i C単結晶、 Mg O単結 晶、 スピネル (Mg A l 204)、 L i A 1 02、 L i G a 02、 L a A 1 O 3 , L a G a 03, N d G a 03等のぺロブスカイ ト型複合酸化物を 例示できる。 また組成式 〔 丄— y (S r! _ x B a x) y
[(A 1 ! _ z G a Z ) ! _u · D u] O 3 (Aは、 希土類元素である ; D は、 ニオブおょぴタンタルからなる群より選ばれた一種以上の元素であ る ; y = 0. 3〜0. 9 8 ; x = 0〜 l ; z = 0〜 l ; u = 0. 1 5〜 0. 4 9 ; X + z = 0. 1〜 2) の立方晶系のベロブスカイ ト構造複合 酸化物も使用できる。 また、 S CAM (S c A l Mg 04) も使用でき る。
(A 1 N単結晶の育成例)
本発明は、 少なくともアルミニウムとアル力リ土類を含むフラックス を含む融液を特定の条件下で窒素含有雰囲気中で加圧することによって、 A 1 N単結晶を育成する場合にも有効であることが確認できた。 実施例
(実施例 1 )
図 1及び図 2を参照しながら説明した方法に従って、 窒化ガリゥム単 結晶を育成した。
( 1 ) 原料の抨量
金属 Ga5 0 g、 金属 Nal O Ogを、 φ2ィンチの GaNテンプレート 基板 1 3 とともに、 内径 φ 70mm のアルミナ製坩堝 1 1内に秤量した。 供給配管 8の保持部 1 O A内に Na20g が封入されている反応容器 7内 に、 上記坩堝 1 1を密封した。 一連の作業は、 原料が酸化しないよう、 グローブボックス内で実施した。 GaNテンプレート基板 1 3 とは、 サフ アイァ基板上に GaN単結晶薄膜を 3μ mェピタキシャル成長させた基板 である。
(2) 圧力容器内への設置
上記反応容器 7を圧力容器 1内に設置したのち、 圧力容器 1を密封し た。
(3) 圧力容器 1内のガス置換
圧力容器 1内の大気を除去するために、 真空ポンプにて真空引きした 後、 窒素ガスを用いてガス置換した。 ガス置換後の圧力容器 1内の圧力 は、 およそ 1気圧とした。
(4) 昇温 ·窒素ガス導入
1時間かけて 850°C、 40気圧に昇温 ·加圧した。 炉内温度が Naの融 点(98°C)以上になり、 反応容器 7に付属する配管 8内に封入した Na が 融解した後に窒素ガスの導入を開始した。 配管内の Naが反応容器内に 押し出されないよう、 窒素ガスの導入はゆつく り と行った。
(5) 駆動機構の稼動
850°C、 40気圧に達した後に、 反応容器 7の回転を開始し、 最適と思 われる撹拌状態に 200時間保持した。
(6) 降温 ·窒素ガス排気
200時間保持後、 10時間かけて 100°C、 1気圧に降温 ·減圧した。 次 いで、 室温まで自然放冷した。
(7) 圧力容器からの取出し及びフラックス処理
装置から反応容器 7及び坩堝 1 1を取出し、 エタノールで処理するこ とにより、 Naを溶かした。 その後、 薄い塩酸につけ、 残った Gaを除去 し、 GaN単結晶を取出した。
(8) 結晶評価
得られた GaN単結晶の重量は 5 5 gであった。 (0002)面における X 線口ッキングカーブを測定したところ、半値幅 30arcsecのシングルピー クが観測された。 外観検查を行ったところ、 ステップ成長痕を有する厚 さの均一な透明結晶であった。
(実施例 2)
図 1及び図 4を参照しながら説明した方法に従って、 窒化ガリゥム単 結晶を育成した。
(1 ) 原料の秤量
金属 Ga40 g、 金属 Na80 gを、 φ 2インチの GaNテンプレート基 板 1 3とともに、 内径 φ 65mmのアルミナ製坩堝 1 1内に抨量した。 反 応容器 7内に、後に溶融物 1 4となる金属 Na2 Ogと坩堝 1 1を配置し、 , アルミナ製流路形成材 1 8で坩堝 1 1を覆った後、 反応容器 7を密封し た。 一連の作業は、 原料が酸化しないよう、 グローブボックス内で実施 した。 GaNテンプレート基板 1 3とは、 サファイア基板上に GaN単結 晶薄膜を 3 μ mェピタキシャル成長させた基板である。
(2) (3) は実施例 1 と同じである。
(4) 昇温 ·窒素ガス導入
1時間かけて 850°C、 40気圧に昇温 ·加圧した。 炉内温度が Naの融 点(98°C)以上になり、 保持部 1 0 C に溶融 Naが溜まった後に窒素ガス の導入を開始した。 保持部 1 0C内の Naが反応容器内に押し出されな いよう、 窒素ガスの導入はゆっく りと行った。
(5) (6) は、 実施例 1 と同じである。
(7) 圧力容器からの取出し及びフラックス処理
装置から取り出した反応容器 7を、 グローブボックス内で 1 5 0°C程 度に加熱することにより、 保持部 1 0 Cの Naを溶解し、 流路形成材 1 8及び坩堝 1 1を回収した。 その後、坩堝 1 1内の Na及び未反応の Ga をエタノール及び薄い塩酸で除去し、 GaN単結晶を取出した。
(8) 結晶評価
得られた GaN単結晶の重量は 44 であった。 (0002)面における X 線ロッキングカープを測定したところ、半値幅 30arcsecのシングルピ一 クが観測された。 外観検査を行ったところ、 ステップ成長痕を有する厚 さの均一な透明結晶であった。
(比較例 1)
図 1、 図 2に示すような装置を使用した。 ただし、 反応容器 7に駆動 機構 5を付けず、 従って育成時に坩堝に運動を加えないことにした。
この状態で、 実施例 1における ( 1 ) (2) (3) (4) (6) (7) と同 様の操作を行った。ただし、 「(5)駆動機構の稼動」は行わず、 8 5 0°C, 4 0気圧に達した後に、反応容器を静置したまま、 2 0 0時間保持した。 この結果、 以下のような結果を得た。
( 8 ) 結晶評価
得られた GaN単結晶の重量は 4 5 gであった。 (0002)面における X 線ロッキングカーブを測定しところ、 半値幅 30arcsec、 45arcsecのダブ ルビ一クが観測された。 また、 外観検査の結果、 厚さの不均一な褐色結 晶であった。
(比較例 2)
図 1、 図 2に示すような装置において、 溶融物を保持する保持部を設 けなかった。 そして以下のように結晶を育成し、 以下の結果を得た。
(1 ) 原料の秤量
金属 Ga5 0 g、 金属 Nal O Ogを、 φ2ィンチの GaNテンプレート 基板とともに、 内径 φ 70mmのアルミナ製坩堝 1 1内に秤量した。 付属 の供給配管 8内が空 (Na 未封入) の反応容器 7内に上記坩堝 1 1を密 封した。 一連の作業は、 原料が酸化しないようグローブボックス內で実 施した。 GaNテンプレート基板とは、 サファイア基板上に GaN単結晶 薄膜を ェピタキシャル成長させた基板である。
(2) (3) は実施例 1 と同じである。
(4) 昇温 · 窒素ガス導入
1時間かけて 850°C、 40気圧に昇温 '加圧した。 炉内温度が Naの融 点( 98 °C )以上になった後に窒素ガスの導入を開始した。 窒素ガスの導入 は、 実施例 1 と同様に、 ゆっく り と行った。
( 5) ( 6) ( 7) は、 実施例 1 と同じである。
(8) 結晶評価
得られた GaN 単結晶の重量は 1 5 gであった。 (0002)面における X 線ロッキングカーブを測定したところ、 半値幅 300arcsecのブロードピ ークが観測された。外観検査の結果、厚さの不均一な黒色結晶であった。 なお、 窒化アルミニウムについても、 実施例 1 と同様の結果を得た。 本発明の特定の実施形態を説明してきたけれども、 本発明はこれら特 定の実施形態に限定されるものではなく、 請求の範囲の範囲から離れる ことなく、 種々の変更や改変を行いながら実施できる。

Claims

請求の範囲
1 . フラックスおよび原料を含む溶液を使用して窒化物単結晶を育 成する装置であって、
前記溶液を収容するための坩堝、
前記坩堝を収容する反応容器、
前記反応容器を収容し、 少なく とも窒素ガスを充填するための圧力容
¾=、
前記圧力容器内の空間に少なくとも前記窒素ガスを導入するための外 側配管、
前記圧力容器内の前記窒素ガスを前記反応容器内へと導入するための 供給部材であって、 前記外側配管とは分離されている供給部材、 前記圧力容器内の前記空間と前記坩堝との間で前記窒素ガスと接触さ せるためのアル力リ金属またはアル力リ土類金属の溶融物を保持する保 持部、 および
前記反応容器を動かすための駆動機構
を備えていることを特徴とする、 窒化物単結晶の育成装置。
2 . 前記保持部が前記供給部材に取り付けられていることを特徴と する、 請求項 1記載の装置。
3 . 前記反応容器内に設置される流路形成材を更に備えており、 前 記保持部が、 前記反応容器内の空間かつ前記坩堝の外側に設けられてお り、 前記流路形成材が前記溶融物に接触することを特徴とする、 請求項 1記載の装置。
PCT/JP2008/071593 2007-12-21 2008-11-20 窒化物単結晶の育成装置 WO2009081687A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009546993A JP5261401B2 (ja) 2007-12-21 2008-11-20 窒化物単結晶の育成装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-329901 2007-12-21
JP2007329901 2007-12-21

Publications (1)

Publication Number Publication Date
WO2009081687A1 true WO2009081687A1 (ja) 2009-07-02

Family

ID=40800999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/071593 WO2009081687A1 (ja) 2007-12-21 2008-11-20 窒化物単結晶の育成装置

Country Status (2)

Country Link
JP (1) JP5261401B2 (ja)
WO (1) WO2009081687A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010084676A1 (ja) * 2009-01-21 2010-07-29 日本碍子株式会社 3b族窒化物結晶板製造装置
US7833347B2 (en) * 2006-03-23 2010-11-16 Ngk Insulators, Ltd. Process and apparatus for producing nitride single crystal
JP2011213582A (ja) * 2010-03-17 2011-10-27 Panasonic Corp 窒化物結晶製造方法および窒化物結晶製造装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005095682A1 (ja) * 2004-03-31 2005-10-13 Ngk Insulators, Ltd. 窒化ガリウム単結晶の育成方法および窒化ガリウム単結晶
JP2007254184A (ja) * 2006-03-22 2007-10-04 Ricoh Co Ltd 結晶製造装置および製造方法
JP2007254161A (ja) * 2006-03-20 2007-10-04 Ngk Insulators Ltd Iii族窒化物結晶の製造方法およびiii族窒化物結晶の製造装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005095682A1 (ja) * 2004-03-31 2005-10-13 Ngk Insulators, Ltd. 窒化ガリウム単結晶の育成方法および窒化ガリウム単結晶
JP2007254161A (ja) * 2006-03-20 2007-10-04 Ngk Insulators Ltd Iii族窒化物結晶の製造方法およびiii族窒化物結晶の製造装置
JP2007254184A (ja) * 2006-03-22 2007-10-04 Ricoh Co Ltd 結晶製造装置および製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7833347B2 (en) * 2006-03-23 2010-11-16 Ngk Insulators, Ltd. Process and apparatus for producing nitride single crystal
WO2010084676A1 (ja) * 2009-01-21 2010-07-29 日本碍子株式会社 3b族窒化物結晶板製造装置
JPWO2010084676A1 (ja) * 2009-01-21 2012-07-12 日本碍子株式会社 3b族窒化物結晶板製造装置
JP5607548B2 (ja) * 2009-01-21 2014-10-15 日本碍子株式会社 3b族窒化物結晶板製造装置
JP2011213582A (ja) * 2010-03-17 2011-10-27 Panasonic Corp 窒化物結晶製造方法および窒化物結晶製造装置

Also Published As

Publication number Publication date
JP5261401B2 (ja) 2013-08-14
JPWO2009081687A1 (ja) 2011-05-06

Similar Documents

Publication Publication Date Title
JP5177557B2 (ja) 窒化物単結晶の製造装置
JP5177555B2 (ja) 単結晶の育成方法
US8999059B2 (en) Process for producing a nitride single crystal and apparatus therefor
JP5459004B2 (ja) サファイア単結晶の製造方法
US8568532B2 (en) Method for growing single crystal of group III metal nitride and reaction vessel for use in same
JP5187848B2 (ja) 単結晶の製造方法
WO2007108338A1 (ja) 窒化物単結晶の製造方法および装置
JP6265995B2 (ja) 13族元素窒化物結晶の製造方法
WO2009081687A1 (ja) 窒化物単結晶の育成装置
WO2007108498A1 (ja) 窒化物単結晶の製造装置
WO2010140665A1 (ja) 周期表第13族金属化合物結晶の製造方法及び製造装置
JP2007119297A (ja) 高融点単結晶材料の製造方法
JP2010143782A (ja) 融液組成制御一方向凝固結晶成長装置および結晶成長方法
JP5454558B2 (ja) 結晶製造方法
JP2007254201A (ja) 単結晶の製造方法
JP4965465B2 (ja) 窒化物単結晶の製造方法
JP4399631B2 (ja) 化合物半導体単結晶の製造方法、及びその製造装置
JP7456849B2 (ja) 13族窒化物結晶の製造方法
JP2017036180A (ja) 13族窒化物結晶の製造方法および13族窒化物結晶の製造装置
WO2009157347A1 (ja) 窒化物単結晶の育成方法
JP2019052063A (ja) ニオブ酸カリウムナトリウム単結晶の製造方法
WO2008117571A1 (ja) 窒化物単結晶の製造方法
JPH11106283A (ja) ルツボ用サセプタ
JPH10251094A (ja) 二ホウ化ハフニウム単結晶の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08864868

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009546993

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08864868

Country of ref document: EP

Kind code of ref document: A1