WO2009081670A1 - 被覆超硬プラグおよびそれを用いた冷間引抜方法 - Google Patents

被覆超硬プラグおよびそれを用いた冷間引抜方法 Download PDF

Info

Publication number
WO2009081670A1
WO2009081670A1 PCT/JP2008/070911 JP2008070911W WO2009081670A1 WO 2009081670 A1 WO2009081670 A1 WO 2009081670A1 JP 2008070911 W JP2008070911 W JP 2008070911W WO 2009081670 A1 WO2009081670 A1 WO 2009081670A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
plug
coated
pipe
tialn
Prior art date
Application number
PCT/JP2008/070911
Other languages
English (en)
French (fr)
Inventor
Kazuhiro Uchida
Osamu Kanda
Original Assignee
Sumitomo Metal Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries, Ltd. filed Critical Sumitomo Metal Industries, Ltd.
Priority to CN200880122713.8A priority Critical patent/CN101909775B/zh
Priority to JP2008553962A priority patent/JP4333819B2/ja
Priority to KR1020107008203A priority patent/KR101157347B1/ko
Priority to TW097147830A priority patent/TWI382885B/zh
Publication of WO2009081670A1 publication Critical patent/WO2009081670A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/16Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes
    • B21C1/22Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes specially adapted for making tubular articles
    • B21C1/24Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes specially adapted for making tubular articles by means of mandrels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C3/00Profiling tools for metal drawing; Combinations of dies and mandrels
    • B21C3/16Mandrels; Mounting or adjusting same
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments

Definitions

  • the present invention relates to a coated carbide plug suitable for processing of Cr-based alloy steel and a cold drawing method. More specifically, coating with a titanium aluminum nitride (TiAlN) film provides excellent seizure resistance and wear resistance.
  • TiAlN titanium aluminum nitride
  • the present invention relates to a coated carbide plug and a cold drawing method using the same.
  • ⁇ Cold drawing is used for finishing steel pipes that are used for nuclear power pipes and high-temperature / high-pressure boilers and require high dimensional accuracy.
  • a mouth squeezed part is formed by narrowing one end of the raw tube, and then the raw pipe is pickled and lubricated, and the mouth squeezed part is chucked by a cold drawing machine chuck. Grasping and pulling out the raw tube as the carriage moves, and drawing to the target dimension.
  • FIG. 1 is a diagram schematically illustrating a method for reducing the diameter and reducing the thickness of a raw tube by cold drawing.
  • the plug 1 When drawing the blank 3, the plug 1 is inserted into the blank 3 concentrically with the die 2 and the blank 3, and one end of the plug 1 is held by the mandrel 4. Pull out in the direction of the white arrow.
  • the outer surface of the drawn raw tube 3 is reduced by the die 2 and reduced in diameter, while the inner surface of the raw tube 3 is constrained along the parallel portion 1a of the plug, and the thinning process is performed. Therefore, among the target dimensions after drawing, the outer diameter dimension is determined by the die hole diameter, and the inner diameter dimension is determined by the diameter of the plug parallel portion 1a.
  • the working length is increased over the entire length of the raw pipe (for example, 20 m / drawing pass), and high surface pressure is maintained, so friction with the raw pipe increases. If the friction between the blank tube and the die or plug cannot be reduced, seizure due to local concentration of frictional heat will occur.
  • the applicant of the present invention has drawn a WC-Co cemented carbide material for the R-shaped die and the plug during the drawing process, and a drawing with a two-layer coating on the surface of the plug in order to reduce friction with the blank tube. It is proposed to use a tool (see Japanese Patent Application Laid-Open No. 07-60335).
  • cemented carbide is frequently used as a drawing tool in cold working.
  • This cemented carbide is an alloy made by sintering a powder of hard metal carbide.
  • WC tungsten carbide
  • Co cobalt
  • TiCN titanium carbon nitride
  • TaC tantalum carbide
  • cemented carbide is widely used as a material for drawing tools because it has a low hardness drop at high temperatures and is very difficult to wear.
  • TiCN titanium
  • Carbide plugs with a hard material (carbon nitride) coated on the tool surface are the mainstream.
  • the TiCN coating is formed by CVD (chemical vapor deposition) or PVD (physical vapor deposition).
  • the base tube is immersed in the oxalate treatment bath to form the base of the oxalate coating on the inner and outer surfaces, and then a metal soap mainly composed of sodium stearate Form a layer.
  • the present invention has been made in view of the above-described problems in the drawing process, with Cr-based alloy steel as a steel type, and when drawing a base tube in which a silicate film is formed on the base of a lubricating film,
  • a carbide plug whose surface is coated with a TiAlN film, it prevents seizure flaws that occur during drawing, extends the life of the plug, and enables high-quality cold-worked products to be manufactured with high efficiency.
  • An object of the present invention is to provide a carbide plug and a cold drawing method using the same.
  • the present inventors use various coated carbide plugs to form a base tube in which a phosphate film is formed on the base of the lubricating film and an oxalate film on the base of the lubricating film.
  • the behavior of the coating film on the surface of the cemented carbide plug during the drawing process was observed.
  • the present invention has been completed on the basis of the above findings, and the gist of the invention is a coated carbide plug (1) below and a cold drawing method (2) below.
  • TiAlN titanium aluminum nitride
  • the thickness of the titanium aluminum nitride (TiAlN) film be 3 to 10 ⁇ m.
  • the “Cr alloy steel” defined in the present invention can be exemplified by JIS G 3462, alloy steel pipes of STBA 25-26, and can be a steel type with a typical Cr content of 5-9 mass%. Furthermore, steel types with a high Cr content, for example, 13Cr steel equivalent to SUS420 with a typical Cr content of 12 to 14% by mass, and stainless steel equivalent to SUS304 with a Cr content of 18 to 20% by mass are also targeted. it can. Steel pipes drawn with these steel types can be applied to boiler superheater tubes, air preheater tubes, etc., or heat exchangers, condenser tubes, catalyst tubes, etc. in the chemical industry and petroleum industry.
  • the coated carbide plug of the present invention the surface is coated even in the case of drawing a base tube in which Cr alloy steel or stainless steel is used as the steel grade and the silicate film is formed on the base of the lubricating film.
  • the TiAlN film is not peeled off, seizure flaws generated in the drawing process can be prevented, the plug life can be extended, and high-quality cold-worked products with excellent dimensional accuracy can be manufactured with high efficiency. it can.
  • FIG. 1 is a diagram schematically illustrating a method of reducing the diameter and reducing the thickness of an element pipe by cold drawing.
  • FIG. 2 is a diagram showing an example of a chemical conversion treatment process that can be applied to the raw tube targeted by the present invention.
  • FIG. 3 is a diagram showing the results of investigating the plug life in Example 1.
  • FIG. 4 is a diagram showing the results of examining the plug life in Example 2.
  • the steel types targeted by the coated carbide plug of the present invention are Cr-based alloy steel and stainless steel (hereinafter collectively referred to as “Cr-based alloy steel”) having a typical Cr content of 5 to 20% by mass.
  • Cr-based alloy steel having a typical Cr content of 5 to 20% by mass.
  • the method of manufacturing the raw tube is not particularly limited. Usually, a blank for a seamless steel pipe is manufactured by hot rolling using a mandrel mill manufacturing method with excellent production efficiency.
  • the accepted “Cr alloy steel” element tube is subjected to heat treatment for softening the element tube, for example, under conditions of 800 ° C. annealing.
  • the raw pipe subjected to the drawing process is subjected to descaling by pickling immediately after softening of the raw pipe, the scale on the inner and outer surfaces of the raw pipe is removed, and lubrication is performed.
  • FIG. 2 is a diagram showing a process example of chemical conversion treatment that can be applied to a blank tube to which the present invention is applied.
  • pickling is performed as a first treatment step to remove the oxide scale adhering to the surface with softening of the tube, and further removing rust generated on the surface.
  • sulfuric acid (10 to 13%) is used as the acid to be used, and free acidity and iron concentration are used as management items.
  • the treatment temperature is room temperature and the immersion time is 30 minutes. After this pickling, washing with water (for example, about several minutes) is performed to wash away the acid remaining on the surface.
  • the base tube is immersed in a caustic soda solution for neutralization.
  • the neutral pipe surface can be stabilized by this neutralization.
  • the substrate is immersed in an oxalate treatment bath to form a base of an oxalate film on the surface of the raw tube.
  • the oxalate treatment bath to be used is controlled so that the total acidity of oxalic acid is about 9 to 12 points, and the treatment conditions are such that the treatment temperature is 80 ° C. and the immersion time is 5 minutes.
  • hot water washing for example, at a treatment temperature of 50 ° C. for about several minutes is performed.
  • the steel type of the base tube is carbon steel or low alloy steel (for example, the Cr content is 2% by mass or less)
  • a phosphate coating is generally performed to form a phosphate coating on the surface of the base tube.
  • the Cr content of the treated steel exceeds 5% by mass, the base of the phosphate film cannot be formed sufficiently.
  • it is premised on performing an oxalate film
  • the formed silicate film and the soap-based lubricant are reacted to form a lubricating layer on the surface.
  • the treatment for forming the lubricating layer is generally performed by reacting sodium stearate with a oxalate film to form a metal soap layer, but the manufacturing method of the present invention is not limited thereto.
  • the treatment conditions for forming the lubricating layer are as follows: the treatment temperature is about 80 ° C. and the immersion time is 15 minutes.
  • the raw tube subjected to the chemical conversion treatment is dried by the first to third treatment steps.
  • the coated carbide plug of the present invention is composed of a WC-Co-based or WC-TiCN-TaC-Co-based alloy substrate, and the surface thereof is coated with a TiAlN (titanium aluminum nitride) film.
  • the film to be coated can be formed by any method such as CVD (chemical vapor deposition) or PVD (physical vapor deposition). be able to.
  • the processing range extends over the entire length of the raw tube, so the processing length is longer than 20m / drawing path, which is harsh compared to other cold processing, such as press processing. Cold working under mild conditions. For this reason, conventionally, a carbide plug having a TiCN (titanium carbon nitride) film coated on the surface thereof has been used in order to ensure wear resistance during pipe drawing.
  • TiCN titanium carbon nitride
  • the thickness of the TiAlN film is preferably 3 to 10 ⁇ m on the surface of the substrate.
  • the thickness of the TiAlN film is less than 3 ⁇ m, the wear resistance is insufficient, and seizure flaws are likely to occur in the drawn steel pipe.
  • the thickness exceeds 10 ⁇ m, the coating becomes too thick and becomes brittle, so that the coating film is easily lost.
  • the cold drawing method of the present invention includes a pickling process for removing oxidized scale and rust on the pipe surface, and a oxalate film on the neutralized pipe surface as a chemical conversion treatment applied to the pipe made of “Cr alloy steel”.
  • a coated carbide plug coated with a TiAlN film with a thickness of 3 to 10 ⁇ m is inserted into the inner surface of the tube to be processed, and then contracted. It is characterized by diameter and thinning.
  • Example 1 As a test element tube of Example 1, a steel grade was prepared as JIS STBA26 (9Cr-1Mo steel) and finished and rolled by the Mannesmann mandrel mill method. The received pipe was subjected to a heat treatment at 800 ° C. for 10 minutes in a roller hearth furnace to soften the pipe, and subsequently, the scale of the inner and outer surfaces of the pipe was removed by pickling and lubrication was performed.
  • JIS STBA26 9Cr-1Mo steel
  • sulfuric acid (10 to 13%) is used and pickling is performed at a processing temperature of room temperature and a processing time of 30 minutes. After washing and neutralization, the processing temperature is 75 to 85 ° C. In this state, the oxalate film was treated for 5 minutes, and the treatment temperature was 75 to 85 ° C., and the treatment time was 15 minutes. Sodium stearate was reacted with the silicate film to form a metal soap layer.
  • the drawing process schedule is as follows: the raw tube size is 34.0 mm outer diameter x 3.3 mm wall thickness, the drawing dimension is 25.80 mm outer diameter x 2.60 mm wall thickness, and the cross-section reduction rate Rd expressed by the following equation (1) was 40.5%.
  • Drawing is performed with the structure shown in FIG. 1, and a die is a cemented carbide die.
  • the drawing plug is a TiAlN film coated carbide plug (invention example) and a TiCN film coated carbide plug (comparative example). Each plug life was investigated.
  • the plug life was determined by the drawing length (m) per coated carbide plug, and the criterion was whether or not seizure occurred or coating peeling occurred.
  • FIG. 3 is a diagram showing the results of investigating the plug life in Example 1.
  • FIG. 3 As is clear from the results shown in FIG. 3, when the coated carbide plug of the TiAlN film according to the present invention was used, the plug life was 2900 m in the drawing length, which is a comparative example. When a TiCN film coated carbide plug was used, the plug life was 1000 m in terms of the drawn length.
  • Example 2 As a test element pipe of Example 2, a pipe made of stainless steel equivalent to JIS SUS304 and finished and rolled by the Mannesmann mandrel mill method was prepared. The received raw tube was subjected to heat treatment at 1230 ° C. for 2 minutes in a roller hearth furnace, removed from the scale by pickling, and then lubricated by chemical conversion treatment.
  • the drawing process schedule is as follows: the raw tube size is 54.0 mm outer diameter x 7.9 mm wall thickness, the drawing dimension is 44.50 mm outer diameter x 6.30 mm wall thickness, and the cross-section reduction rate Rd expressed by the above equation (1) was 33.9%.
  • Example 2 Similarly to Example 1, a carbide die was used as a die, and a drawing process was performed using a TiAlN film coated carbide plug (invention example) and a TiCN film coated carbide plug (comparative example) as a drawing plug. And the life of each plug was investigated.
  • the plug life was 18000 m in the drawing length, whereas the coated carbide plug of the TiCN film as the comparative example was used. When used, the plug life was 7400 m in terms of the drawing length.
  • the steel pipe obtained by the cold drawing method using this can be used as a seamless steel pipe for cold finishing because it has excellent dimensional accuracy, can be made into a high-quality cold-worked product, and can be manufactured with high efficiency. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Metal Extraction Processes (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

 Crを5質量%以上含有するCr系合金鋼の素管を冷間引抜加工する際、化成処理による潤滑皮膜の下地に蓚酸塩皮膜が形成された素管を採用し、引抜用プラグとして表面が窒化チタンアルミニウム(TiAlN)膜でコーティングされた被覆超硬プラグを用いることにより、プラグ表面にコーティングされたTiAlN膜の剥離が抑制されることから、焼付き疵の発生を防止することができ、プラグ寿命の延長を図ることが可能になる。  

Description

被覆超硬プラグおよびそれを用いた冷間引抜方法
 本発明は、Cr系合金鋼の加工に好適な被覆超硬プラグおよび冷間引抜方法に関し、さらに詳しくは、窒化チタンアルミニウム(TiAlN)膜でコーティングすることにより、耐焼き付き性および耐摩耗性に優れる被覆超硬プラグおよびそれを用いた冷間引抜方法に関するものである。
 原子力用配管や高温高圧ボイラーなどの用途に用いられ、高い寸法精度の要求される鋼管の仕上げ加工には冷間引抜加工が適用される。この冷間引抜加工を適用する場合には、素管の一端を細く絞った口絞り部を形成し、ついで素管を酸洗したのち潤滑処理し、口絞り部を冷間引抜機のチャックで掴み、キャリッジの移動にともなって素管を引き抜き、目標寸法に引抜加工を行う。
 図1は、冷間引抜によって素管を縮径および減肉加工する方法を概略的に説明する図である。素管3を引抜加工する際には、プラグ1をダイス2および素管3に対して同心状に素管3の内部に挿入し、プラグ1の片端をマンドレル4で保持して素管3を白抜き矢印の方向に引き抜く。
 このとき、引き抜かれる素管3の外面は、ダイス2によって絞られて縮径し、一方、素管3の内面は、プラグの平行部1aに沿って拘束され、減肉加工が行われる。したがって、引抜加工後の目標寸法のうち、外径寸法はダイス孔径によって定められ、内径寸法はプラグ平行部1aの直径によって定められる。
 図1に示す冷間引抜加工では、素管の全長に亘り加工長さが長くなるとともに(例えば、20m/引抜パス)、高面圧が維持されることから素管との摩擦が大きくなるため、素管とダイスまたはプラグとの間の摩擦を減少させることができない場合には、摩擦熱の局部的集中による焼付きを発生させることになる。
 このため、炭素鋼や合金鋼の冷間引抜加工において、ダイスまたはプラグと被加工管との摩擦を軽減し、引抜工具の磨耗を低減し、焼付き疵の発生を防止することが重要になる。このような観点から、引抜工具(ダイスまたはプラグ)の材質や形状、潤滑剤の選択、引抜速度や引抜スケジュールの最適化などについて種々の提案がなされている。
 例えば、本出願人は、引抜加工に際しR型ダイスおよびプラグの材質をWC-Co系超硬合金とし、さらに素管との摩擦を低減させるために、プラグの表面に二層コーティングを施した引抜工具を使用することを提案している(特開平07-60335号公報参照)。
 具体的には、R型ダイスと素管の接触角が40°を超えると、素管外面での焼付き発生率が急増し、40°以下であると、素管外面に焼付きが発生しないことから、二層コーティングを施した超硬プラグと、被加工管とダイスの接触角が40°以下となるような形状のR型ダイスを使用することを提案している。
 前述の通り、冷間加工における引抜工具として、超硬合金が多用されている。この超硬合金は、硬質の金属炭化物の粉末を焼結して作られる合金であり、一般的にはWC(タングステン・カーバイド)と結合剤(バインダ)であるCo(コバルト)を混合して焼結したものを言うが、用途に応じて、材料特性を向上させるためにTiCN(チタンカーボンナイトライド)やTaC(炭化タンタル)などが加えられる。
 引抜加工において、超硬合金は高温時の硬度低下が少なく、非常に摩耗しにくいことから引抜工具の材料として広く使われているが、さらに素管内面との摩擦が著しいプラグでは、TiCN(チタンカーボンナイトライド)の硬質物質を工具表面にコーティングした超硬プラグが主流になっている。通常、TiCNのコーティングは、CVD(化学気相成長)やPVD(物理気相成長)により形成される。
 炭素鋼および低合金鋼を鋼種とする素管を引抜加工する場合、素管のデスケーリングには硫酸洗が用いられ、潤滑処理には燐酸塩皮膜処理による化成処理が行われる。具体的な酸洗・潤滑処理の手順としては、デスケーリング後、素管の内外表面をアルカリ脱脂剤を用いて洗浄し、すすぎ水洗した素管を燐酸塩処理浴に浸漬し、内外表面に燐酸塩皮膜の下地を形成する。次いで、中和処理を行い、ステアリン酸ナトリウムを主成分とする金属石鹸層を形成する。
 一方、Cr含有量が5質量%以上と高いCr系合金鋼を鋼種とする素管を引抜加工する場合には、燐酸塩処理では反応しにくくなることから、後述する化成処理で説明するように、素管に燐酸塩皮膜の下地を形成するのに替えて、素管を蓚酸塩処理浴に浸漬し内外表面に蓚酸塩被膜の下地を形成したのち、ステアリン酸ナトリウムを主成分とする金属石鹸層を形成する。
 ところが、潤滑皮膜の下地に蓚酸塩皮膜が形成されたCr系合金鋼を引抜加工する場合に、表面にTiCNをコーティングした超硬プラグを使用すると、TiCN膜の剥離が発生し、著しくプラグ寿命が低下することが明らかになる。これにともなって、引抜加工された鋼管に焼付き疵が多発し、製品歩留りの低下や引抜加工の能率低下を余儀なくされることになる。
 本発明は、上述した引抜加工での問題点に鑑みてなされたものであり、Cr系合金鋼を鋼種とし、潤滑皮膜の下地に蓚酸塩皮膜が形成された素管を引抜加工する際に、表面がTiAlN膜でコーティングされた超硬プラグを用いることにより、引抜加工で発生する焼付き疵を防止し、プラグ寿命の延長を図るとともに、高品質の冷間加工製品を高能率で製造できる被覆超硬プラグとそれを用いた冷間引抜方法を提供することを目的としている。
 本発明者らは、上記の課題を解決するため、種々の被覆超硬プラグを用いて、潤滑皮膜の下地に燐酸塩皮膜が形成された素管と、潤滑皮膜の下地に蓚酸塩皮膜が形成された素管とに区分して、引抜加工にともなう超硬プラグ表面におけるコーティング膜の挙動を観察した。
 潤滑皮膜の下地に蓚酸塩皮膜が形成された素管を、TiCNをコーティングした超硬プラグを用いて引抜加工を行うと、蓚酸塩皮膜によってTiCN膜にエッチングが起こり、TiCN膜の剥離が発生し易くなる。
 これに対し、必ずしも論理付けられていないが、引抜加工にTiAlNをコーティングした超硬プラグを用いると、潤滑皮膜の下地に蓚酸塩皮膜が形成された素管を引抜加工する場合であっても、TiAlN膜にエッチングが起こることがなく、引抜加工で発生する焼付き疵を抑制することができ、プラグ寿命の延長を図ることができる。
 本発明は、上記知見に基づいて完成されたものであり、下記(1)の被覆超硬プラグ、および(2)の冷間引抜方法を要旨としている。
 (1)化成処理による潤滑皮膜の下地に蓚酸塩皮膜が形成されたCr系合金鋼の冷間引抜に用いられ、表面が窒化チタンアルミニウム(TiAlN)膜でコーティングされていることを特徴とする被覆超硬プラグである。
 この被覆超硬プラグでは、窒化チタンアルミニウム(TiAlN)膜の厚さを3~10μmにするのが望ましい。
 (2)Cr系合金鋼からなる被加工管に施す化成処理として、管表面の酸化スケールおよび錆びを取り除く酸洗工程、中和された管表面に蓚酸塩皮膜を形成する工程、および前記蓚酸塩皮膜の上に潤滑層を形成する工程を経たのち、窒化チタンアルミニウム(TiAlN)膜を3~10μmの厚さでコーティングした被覆超硬プラグを前記被加工管の内面に挿入し、縮径および減肉加工することを特徴とする冷間引抜方法である。
 本発明で規定する「Cr系合金鋼」は、JIS G 3462、STBA25~26の合金鋼鋼管が例示でき、代表的なCr含有量が5~9質量%となる鋼種を対象とできる。さらにCr含有量の高い鋼種、例えば代表的なCr含有量が12~14質量%となるSUS420相当の13Cr鋼や、Cr含有量が18~20質量%となるSUS304相当のステンレス鋼なども対象とできる。これらの鋼種で引抜加工された鋼管は、ボイラーの過熱器管、空気予熱器管など、または化学工業、石油工業の熱交換器、コンデンサ管、触媒管などに適用できる。
 本発明の被覆超硬プラグによれば、Cr系合金鋼やステンレス鋼を鋼種とし、潤滑皮膜の下地に蓚酸塩皮膜が形成された素管を引抜加工する場合であっても、表面にコーティングされたTiAlN膜が剥離することがなく、引抜加工で発生する焼付き疵を防止でき、プラグ寿命の延長を図るとともに、寸法精度に優れた高品質の冷間加工製品を高能率で製造することができる。
 図1は、冷間引抜によって素管を縮径および減肉加工する方法を概略的に説明する図である。
 図2は、本発明が対象とする素管に適用できる化成処理の工程例を示す図である。
 図3は、実施例1でプラグ寿命を調査した結果を示す図である。
 図4は、実施例2でプラグ寿命を調査した結果を示す図である。
 本発明の被覆超硬プラグが対象とする鋼種は、代表的なCr含有量が5~20質量%となるCr系合金鋼やステンレス鋼(以下、これらを総称して「Cr系合金鋼」という)であるが、素管の製造方法を特に限定するものではない。通常、継目無鋼管用の素管は、生産効率に優れるマンドレルミル製造法が適用され、熱間圧延により製造される。
 受け入れられた「Cr系合金鋼」素管は、素管軟化を図るための熱処理が、例えば800℃アニールの条件で行われる。引抜加工に供される素管は、素管軟化が行われた後、直ちに酸洗によるデスケーリングが行われ、素管の内外表面のスケールが除去され、潤滑処理が施される。
 図2は、本発明が対象とする素管に適用できる化成処理の工程例を示す図である。まず、第1の処理工程として酸洗を行って、素管軟化にともなって表面に付着する酸化スケールを除去し、さらには表面に発生した錆びを取り除く。通常、使用する酸としては硫酸(10~13%)が用いられ、管理項目として遊離酸度や鉄分濃度が用いられる。酸洗条件は、処理温度を室温として、浸漬時間30分が目安となる。この酸洗の後は、水洗(例えば、数分間程度)を行って、表面に残っている酸を洗い流す。
 上記の酸洗工程に次いで、素管を苛性ソーダ液に浸漬し中和を行う。この中和により、素管表面を安定化させることができる。その後、第2の処理工程として、蓚酸塩処理浴に浸漬し、素管表面に蓚酸塩皮膜の下地を形成する。使用する蓚酸塩処理浴は、蓚酸の全酸度が9~12ポイント程度で管理され、処理条件は、処理温度を80℃として、浸漬時間5分が目安となる。この蓚酸塩皮膜処理の後は、湯洗(例えば、処理温度50℃で数分間程度)を行う。
 素管の鋼種が炭素鋼または低合金鋼(例えば、Cr含有量が2質量%以下)であると、一般的には燐酸塩皮膜処理を行って、素管表面に燐酸塩皮膜を形成するが、処理鋼のCr含有量が5質量%を超えるようになると、充分に燐酸塩皮膜の下地を形成できなくなる。このため、本発明が採用する化成処理では、第2の処理工程として蓚酸塩皮膜処理を行うことを前提としている。
 その後、第3の処理工程として、形成された蓚酸塩皮膜と石鹸系潤滑剤と反応させて、表面に潤滑層を形成する。潤滑層を形成する処理としては、ステアリン酸ソーダを蓚酸塩皮膜と反応させて金属石鹸層を形成するのが一般的であるが、本発明の製造方法ではこれに限定されるものではない。潤滑層を形成する処理の条件は、処理温度を約80℃として、浸漬時間15分が目安となる。上記の第1~第3の処理工程により、化成処理が施された素管は乾燥される。
 本発明の被覆超硬プラグは、本体をWC-Co系、またはWC-TiCN-TaC-Co系の合金基体で構成され、その表面がTiAlN(窒化チタンアルミニウム)膜でコーティングされる。このコーティングされる膜は、CVD(化学気相成長)やPVD(物理気相成長)のいずれの方法によっても形成できることからいずれかに限定するものでなく、慣用される条件によって基体表面に被覆することができる。
 管の冷間引抜加工では、加工範囲が素管の全長に亘ることから、加工長さが20m/引抜パスを超えるように長くなり、他の冷間加工、例えばプレス加工等に比べても過酷な条件下での冷間加工となる。このため、従来から、管の引抜加工に際して、耐摩耗性を確保するために、TiCN(チタンカーボンナイトライド)膜を表面にコーティングした超硬プラグが用いられてきた。
 ところが、「Cr系合金鋼」素管を引抜加工する場合には、前述の通り、化成処理による潤滑皮膜の下地として蓚酸塩皮膜が形成される。このような素管を、TiCN膜の被覆超硬プラグを用いて引抜加工を行うと、蓚酸塩皮膜によってTiCN膜にエッチングが発生し、TiCN膜の剥離が生じ易くなり、引抜加工された鋼管に焼付き疵が多発することになる。
 これに対し、「Cr系合金鋼」素管を引抜加工する場合に、TiAlN膜の被覆超硬プラグを用いると、蓚酸塩皮膜によってコーティング膜にエッチングが発生することがなく、コーティング膜の剥離を著しく低減することができる。このような、蓚酸塩皮膜に対するTiAlN膜の耐食性を示す挙動は、技術的に論理付けできないものの、本願発明者らの種々の検討に基づいて新たに見出されたものである。
 本発明の被覆超硬プラグは、その基体表面にTiAlN膜の厚さを3~10μmに形成するのが望ましい。TiAlN膜の厚さが3μm未満では耐摩耗性が不十分であり、引抜加工された鋼管に焼付き疵を発生し易くなる。一方、その厚さが10μmを超えると、コーティングが厚くなり過ぎて脆くなるため、コーティング膜が欠損し易くなる。
 本発明の冷間引抜方法は、「Cr系合金鋼」からなる被加工管に施す化成処理として、管表面の酸化スケールおよび錆びを取り除く酸洗工程、中和された管表面に蓚酸塩皮膜を形成する工程、および前記蓚酸塩皮膜の上に潤滑層を形成する工程を経たのち、TiAlN膜を3~10μmの厚さでコーティングした被覆超硬プラグを前記被加工管の内面に挿入し、縮径および減肉加工することを特徴としている。
 本発明の冷間引抜方法では、「Cr系合金鋼」素管を引抜加工する場合に、TiAlN膜の被覆超硬プラグを用いることにより、従来から主流となっていたTiCN膜の被覆超硬プラグに比べ、耐焼き付き性および耐摩耗性に優れ、大幅なプラグ寿命の延長を図ることができるとともに、引抜加工で発生する焼付き疵を防止できる。
 以下、本発明の効果を実施例に基づいて、具体的に説明する。
 (実施例1)
 実施例1の供試素管として、鋼種をJIS STBA26(9Cr-1Mo鋼)とし、マンネスマン・マンドレルミル法で仕上げ圧延された管を準備した。受け入れた素管は、素管軟化のためローラーハース炉で800℃×10分の熱処理を実施し、引き続いて、酸洗により素管の内外表面のスケールを除去し、潤滑処理を施した。
 引抜加工前の具体的な化成処理として、硫酸(10~13%)を用い処理温度が室温で処理時間が30分の酸洗を行い、水洗、中和後、処理温度が75~85℃の状態で処理時間が5分の蓚酸塩皮膜処理を行い、処理温度が75~85℃、処理時間が15分でステアリン酸ソーダを蓚酸塩皮膜と反応させて金属石鹸層を形成した。
 引抜加工スケジュールは、素管寸法を外径34.0mm×肉厚3.3mmとし、引抜寸法を外径25.80mm×肉厚2.60mmとし、下記(1)式で示される断面減少率Rdを40.5%とした。
 Rd={(D-D)/D}×100(%) ・・・ (1)
 ただし、D:加工前断面積(mm) D:加工後断面積(mm
 前記図1に示す構成で引抜加工を行い、ダイスは超硬ダイスを用い、引抜用プラグは、TiAlN膜の被覆超硬プラグ(本発明例)とTiCN膜の被覆超硬プラグ(比較例)とに区分して、それぞれのプラグ寿命を調査した。
 プラグ寿命は、それぞれの被覆超硬プラグ1個当たりの引抜延べ長さ(m)で判断したが、その判断基準は焼付き発生またはコーティング剥離発生の有無とした。
 図3は、実施例1でプラグ寿命を調査した結果を示す図である。図3に示す結果から明らかなように、本発明例であるTiAlN膜の被覆超硬プラグを用いた場合には、プラグ寿命は引抜延べ長さで2900mになったのに対し、比較例であるTiCN膜の被覆超硬プラグを用いた場合には、プラグ寿命は引抜延べ長さで1000mに留まった。
 (実施例2)
 実施例2の供試素管として、鋼種をJIS SUS304相当のステンレス鋼とし、マンネスマン・マンドレルミル法で仕上げ圧延された管を準備した。受け入れた素管は、ローラーハース炉で1230℃×2分の熱処理を実施し、酸洗によるスケール除去を行った後、化成処理による潤滑処理を施した。
 引抜加工スケジュールは、素管寸法を外径54.0mm×肉厚7.9mmとし、引抜寸法を外径44.50mm×肉厚6.30mmとし、上記(1)式で示される断面減少率Rdを33.9%とした。
 実施例1と同様に、ダイスとして超硬ダイスを用い、引抜用プラグとしてTiAlN膜の被覆超硬プラグ(本発明例)とTiCN膜の被覆超硬プラグ(比較例)とを用いて引抜加工を行い、それぞれのプラグ寿命を調査した。
 その結果、本発明例であるTiAlN膜の被覆超硬プラグを用いた場合には、プラグ寿命は引抜延べ長さで18000mであったのに対し、比較例であるTiCN膜の被覆超硬プラグを用いた場合には、プラグ寿命は引抜延べ長さで7400mに留まった。
 実施例1、2の結果から、化成処理による潤滑皮膜の下地に蓚酸塩皮膜が形成されたCr系合金鋼を引抜加工する際には、TiAlN膜の被覆超硬プラグを用いることにより、優れた耐焼き付き性および耐摩耗性を発揮し、引抜加工で発生する焼付き疵を有効に防止でき、プラグ寿命を大幅に延長できることが分かる。
 本発明の被覆超硬プラグによれば、Cr系合金鋼を鋼種とし、潤滑皮膜の下地に蓚酸塩皮膜が形成された素管を引抜加工する場合であっても、表面にコーティングされたTiAlN膜が剥離することがなく、耐焼き付き性および耐摩耗性に優れ、引抜加工で発生する焼付き疵を防止し、プラグ寿命の延長を図ることができる。
 これを用いた冷間引抜方法で得られた鋼管は、優れた寸法精度であり高品質の冷間加工製品とでき、しかも高能率で製造できることから、冷間仕上げ加工の継目無鋼管として広く適用できる。
 

Claims (3)

  1.  化成処理による潤滑皮膜の下地に蓚酸塩皮膜が形成されたCr系合金鋼の冷間引抜に用いられ、
     表面が窒化チタンアルミニウム(TiAlN)膜でコーティングされていることを特徴とする被覆超硬プラグ。
  2.  前記窒化チタンアルミニウム(TiAlN)膜の厚さが3~10μmであることを特徴とする請求項1に記載の被覆超硬プラグ。
  3.  Cr系合金鋼からなる被加工管に施す化成処理として、管表面の酸化スケールおよび錆びを取り除く酸洗工程、中和された管表面に蓚酸塩皮膜を形成する工程、および前記蓚酸塩皮膜の上に潤滑層を形成する工程を経たのち、
     窒化チタンアルミニウム(TiAlN)膜を3~10μmの厚さでコーティングした被覆超硬プラグを前記被加工管の内面に挿入し、縮径および減肉加工することを特徴とする冷間引抜方法。
     
PCT/JP2008/070911 2007-12-26 2008-11-18 被覆超硬プラグおよびそれを用いた冷間引抜方法 WO2009081670A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200880122713.8A CN101909775B (zh) 2007-12-26 2008-11-18 带涂层超硬顶头以及使用了该带涂层超硬顶头的冷拔方法
JP2008553962A JP4333819B2 (ja) 2007-12-26 2008-11-18 被覆超硬プラグを用いた冷間引抜方法
KR1020107008203A KR101157347B1 (ko) 2007-12-26 2008-11-18 피복 초경 플러그 및 그것을 이용한 냉간 인발 방법
TW097147830A TWI382885B (zh) 2007-12-26 2008-12-09 The use of drape super hard plunger cold drawing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-334379 2007-12-26
JP2007334379 2007-12-26

Publications (1)

Publication Number Publication Date
WO2009081670A1 true WO2009081670A1 (ja) 2009-07-02

Family

ID=40800985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/070911 WO2009081670A1 (ja) 2007-12-26 2008-11-18 被覆超硬プラグおよびそれを用いた冷間引抜方法

Country Status (5)

Country Link
JP (1) JP4333819B2 (ja)
KR (1) KR101157347B1 (ja)
CN (1) CN101909775B (ja)
TW (1) TWI382885B (ja)
WO (1) WO2009081670A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011167732A (ja) * 2010-02-19 2011-09-01 Showa Denko Kk 管状ワーク用引抜加工装置
EP3225319A4 (en) * 2014-11-25 2018-08-08 Nippon Steel & Sumitomo Metal Corporation Method for manufacturing rifled tube
JP2022051044A (ja) * 2020-09-18 2022-03-31 ナミテイ株式会社 中空スプラインシャフト及びその製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104785560A (zh) * 2015-03-31 2015-07-22 广东龙丰精密铜管有限公司 一种具有高硬工作表面的游动芯头
CN104985010A (zh) * 2015-07-09 2015-10-21 张家港市圣鼎源制管有限公司 一种高压油管内模
CN111041404B (zh) * 2019-12-09 2024-03-15 朗瑞(泰州)金属工具有限公司 一种钢管顶头的热处理方法
CN112371752B (zh) * 2020-10-20 2023-01-31 安徽德诠新材料科技有限公司 一种超薄壁铜管的加工制备方法
CN113481498A (zh) * 2021-06-30 2021-10-08 东风商用车有限公司 一种耐热钢线材的表面草酸化润滑处理方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58168420A (ja) * 1982-03-31 1983-10-04 Sumitomo Metal Ind Ltd 難加工材の冷間抽伸法
JP2005342744A (ja) * 2004-06-01 2005-12-15 Sanalloy Industry Co Ltd 焼結耐摩耗工具とその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02194159A (ja) * 1988-03-24 1990-07-31 Kobe Steel Ltd 耐摩耗性皮膜形成方法
JPH0716642A (ja) * 1993-07-06 1995-01-20 Nippon Steel Corp ステンレス鋼管の経済的冷牽方法
JPH0760335A (ja) * 1993-08-25 1995-03-07 Sumitomo Metal Ind Ltd 鋼管の引抜加工方法
TW587096B (en) * 2000-08-11 2004-05-11 Nihon Parkerizing Greases component containing in aqueous composition for forming protective membranes
DE10061436A1 (de) * 2000-12-09 2002-06-27 Plasmotec Gmbh & Co Kg Umformwerkzeug und Verfahren zu seiner Herstellung
CN1181219C (zh) * 2002-09-12 2004-12-22 上海交通大学 大孔径金刚石涂层拉拔模的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58168420A (ja) * 1982-03-31 1983-10-04 Sumitomo Metal Ind Ltd 難加工材の冷間抽伸法
JP2005342744A (ja) * 2004-06-01 2005-12-15 Sanalloy Industry Co Ltd 焼結耐摩耗工具とその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011167732A (ja) * 2010-02-19 2011-09-01 Showa Denko Kk 管状ワーク用引抜加工装置
EP3225319A4 (en) * 2014-11-25 2018-08-08 Nippon Steel & Sumitomo Metal Corporation Method for manufacturing rifled tube
US10632521B2 (en) 2014-11-25 2020-04-28 Nippon Steel Corporation Method for producing a rifled tube
JP2022051044A (ja) * 2020-09-18 2022-03-31 ナミテイ株式会社 中空スプラインシャフト及びその製造方法
JP7266888B2 (ja) 2020-09-18 2023-05-01 ナミテイ株式会社 中空スプラインシャフト及びその製造方法

Also Published As

Publication number Publication date
KR101157347B1 (ko) 2012-06-15
KR20100056561A (ko) 2010-05-27
TWI382885B (zh) 2013-01-21
JP4333819B2 (ja) 2009-09-16
CN101909775A (zh) 2010-12-08
JPWO2009081670A1 (ja) 2011-05-06
TW200932390A (en) 2009-08-01
CN101909775B (zh) 2013-01-02

Similar Documents

Publication Publication Date Title
JP4333819B2 (ja) 被覆超硬プラグを用いた冷間引抜方法
JP4311503B1 (ja) 内面リブ付鋼管の製造方法
CN106811277B (zh) 一种钛及钛合金管材拉拔润滑剂及其使用方法
JP4271573B2 (ja) ヘッダー加工用金属線材の製造方法
JP4900385B2 (ja) 高合金圧延用マンドレルバー、その表面処理方法および製造方法、ならびに継目無鋼管製造装置の操業方法
CN111014314A (zh) 一种钛管生产加工方法
JP5045819B2 (ja) 冷間引抜用素管およびその製造方法並びに冷間引抜管の製造方法
JP4720491B2 (ja) ステンレス鋼管の製造方法
JP6603665B2 (ja) シームレスな金属の中空体の製造における内部ツールとしての圧延ロッドおよび金属の中空体を製造する方法
JP5392134B2 (ja) 熱間圧延工具用潤滑剤および熱間継目無管製造用マンドレルバーの表面処理方法
JP4462378B2 (ja) 内面リブ付鋼管の製造方法
JP2000024706A (ja) 継目無鋼管の製造方法および耐食性に優れた継目無合金鋼鋼管
JP4788101B2 (ja) 冷間引抜鋼管の製造方法
JP2776256B2 (ja) 熱間加工用表面処理工具
JP3646628B2 (ja) マンドレルミルによる圧延方法
JP2591386B2 (ja) 熱間圧延用潤滑剤およびその潤滑剤を使用した管内面潤滑方法
EP3875184A1 (en) Press die and pressing method
CN115255001A (zh) 一种镍基高温合金无缝管及其制备方法和应用
JP3804397B2 (ja) 耐食性に優れるスケール付き鋼管
CN104043674A (zh) 一种黄不锈钢/钛合金双金属复合管的制备方法
TW202140164A (zh) 有底筒狀體之製造方法
CN104043673A (zh) 一种热镀锌钢管/钛双金属复合管的制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880122713.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2008553962

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08864558

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107008203

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08864558

Country of ref document: EP

Kind code of ref document: A1