WO2009081545A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2009081545A1
WO2009081545A1 PCT/JP2008/003807 JP2008003807W WO2009081545A1 WO 2009081545 A1 WO2009081545 A1 WO 2009081545A1 JP 2008003807 W JP2008003807 W JP 2008003807W WO 2009081545 A1 WO2009081545 A1 WO 2009081545A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
electrostatic
region
indoor unit
temperature
Prior art date
Application number
PCT/JP2008/003807
Other languages
English (en)
French (fr)
Inventor
Hiroki Hasegawa
Masatoshi Takahashi
Yasuhito Mukai
Narito Yamaguchi
Daisuke Kawazoe
Ikuo Akamine
Tsugio Kubo
Masaru Yonezawa
Yasushi Jinno
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008034546A external-priority patent/JP4171769B1/ja
Priority claimed from JP2008034553A external-priority patent/JP4262771B1/ja
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to CN2008801220035A priority Critical patent/CN101903710B/zh
Priority to EP08863837.4A priority patent/EP2236951B1/en
Priority to RU2010130466/12A priority patent/RU2482398C2/ru
Publication of WO2009081545A1 publication Critical patent/WO2009081545A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/12Air-humidification, e.g. cooling by humidification by forming water dispersions in the air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0057Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in or on a wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0071Indoor units, e.g. fan coil units with means for purifying supplied air
    • F24F1/0076Indoor units, e.g. fan coil units with means for purifying supplied air by electric means, e.g. ionisers or electrostatic separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0042Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater characterised by the application of thermo-electric units or the Peltier effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/30Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by ionisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/50Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by odorisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy

Definitions

  • the present invention relates to an air conditioner including an indoor unit having an air cleaning function for purifying indoor air.
  • Some conventional air conditioners have a deodorizing function, for example, adsorb odor components with an air cleaning pre-filter provided at an air inlet of an indoor unit, or have an oxidative decomposition function provided in the middle of an air passage. Odor components are adsorbed by the deodorizing unit.
  • the air conditioner with a deodorizing function removes odor components contained in the air sucked from the suction port and deodorizes it, the odor components contained in the indoor air and the odor adhering to curtains, walls, etc. The component could not be removed.
  • an odorous component contained in the indoor air is provided by providing an electrostatic atomizer in the air passage of the indoor unit, and blowing out the electrostatic mist generated by the electrostatic atomizer with a nanometer-size electrostatic mist.
  • An air conditioner that removes odorous components adhering to curtains, walls, and the like has also been proposed (see, for example, Patent Document 1 or 2).
  • the electrostatic atomizer is composed of Peltier elements, and is provided with suction temperature detection means and humidity detection means for detecting the temperature and humidity of the air sucked into the indoor unit, and the detection results of the suction temperature detection means and the humidity detection means
  • the water required for electrostatic atomization could be obtained without supplying water by controlling the drive power supply of the Peltier element and the high voltage power supply that applies a high voltage to the high voltage electrode.
  • the air conditioner described in Patent Document 3 requires a cooling surface temperature measuring means for measuring the temperature of the cooling surface of the Peltier element, and the control means uses the cooling surface measured by the cooling surface temperature measuring means.
  • the voltage of the Peltier device driving power source is controlled so that the surface temperature is close to the dew point temperature, and there is a problem that the configuration is complicated and the cost is increased.
  • the air conditioner described in Patent Document 4 has a configuration that does not have the suction temperature detection means and the humidity detection means, and the indoor humidity is high, and the distance between the water condensed on the high voltage electrode and the counter electrode is shortened. Area where no noise is generated or electrostatic mist with the desired particle size does not occur, and conversely the indoor humidity is low, and even if the Peltier element exhibits its maximum capacity, it cannot reach the dew point temperature and ozone is not generated. There is a problem that the electrostatic atomizer operates unnecessarily even in a region where it may occur or in a region where the dew point temperature is below freezing point, and the life of the electrostatic atomizer is shortened or energy saving cannot be achieved.
  • the present invention has been made in view of such problems of the prior art, and sets an operation permission region in which the electrostatic atomizer can generate desired electrostatic mist without generating abnormal noise or ozone.
  • the operation of the electrostatic atomizer is permitted only when the temperature and humidity of the air sucked into the indoor unit is within the permitted operation range, so the life of the electrostatic atomizer is increased or energy saving is achieved.
  • An object of the present invention is to provide an inexpensive air conditioner with a simple configuration.
  • the present invention is an air conditioner including an indoor unit having an air cleaning function for purifying indoor air, the electrostatic atomizer for generating electrostatic mist, and the indoor unit.
  • Suction temperature detecting means for detecting the temperature of the air sucked in and humidity detecting means for detecting the humidity of the air sucked into the indoor unit are provided, and the electrostatic capacity is detected based on the temperature and humidity of the air sucked into the indoor unit.
  • An operation permission area of the atomizing device is set, and when the temperature detected by the suction temperature detection means and the humidity detected by the humidity detection means are within the operation permission area, the operation of the electrostatic atomization device is performed.
  • the operation of the electrostatic atomizer is prohibited, and at least Wherein the humidity of the air sucked into the indoor unit is set to the operation permission region outside the case of the first predetermined value or more as excessive dew condensation region.
  • an air conditioner including an indoor unit having a human body detection sensor that detects the presence or absence of a person and an electrostatic atomizer that generates electrostatic mist.
  • a skin care mode for controlling the wind direction in the direction of the predetermined area so that electrostatic mist reaches the predetermined area, and the detection
  • the room care mode is provided so that the electrostatic mist reaches an upper or far region.
  • the operation permission area of the electrostatic atomizer is set based on the temperature and humidity of the air sucked into the indoor unit, and the temperature and humidity detection means detected by the suction temperature detection means. Since the operation of the electrostatic atomizer is permitted when the detected humidity is within the operation permission area, the operation of the electrostatic atomizer is prohibited when the detected humidity is outside the operation permission area.
  • the structure can prevent the generation of abnormal noise and ozone without causing an increase in cost, and can achieve a long life or energy saving of the electrostatic atomizer.
  • Electrostatic mist is supplied to the occupants to improve the occupant's skin quality.
  • the odor may be attached if the electrostatic mist is made to reach the upper or far region. Electrostatic mist is supplied to the expected wall surface, curtain, etc., and deodorization or sterilization can be performed efficiently and effectively, and a comfortable indoor environment can be realized.
  • FIG. 1 is a perspective view of an indoor unit of an air conditioner according to the present invention showing a state in which a part is removed.
  • 2 is a schematic longitudinal sectional view of the indoor unit of FIG. 3 is a perspective view of the electrostatic atomizer provided in the indoor unit of FIG.
  • FIG. 4 is a front view showing a part of the frame of the indoor unit of FIG. 1 and the electrostatic atomizer.
  • FIG. 5 is a schematic configuration diagram of the electrostatic atomizer.
  • FIG. 6 is a block diagram of the electrostatic atomizer.
  • FIG. 7 is a perspective view showing a state where the electrostatic atomizer is attached to the indoor unit main body.
  • FIG. 8 is a perspective view of a modified example showing the attachment state of the electrostatic atomizer to the indoor unit main body.
  • 9 is a side view of the indoor unit of FIG. 1 showing the positional relationship between the electrostatic atomizer and the ventilation fan unit.
  • FIG. 10 is a perspective view showing a modification of the electrostatic atomizer.
  • 11 is a side view of the indoor unit of FIG. 1 showing the positional relationship between the electrostatic atomizer of FIG. 11 and the ventilation fan unit.
  • FIG. 12 is a graph showing the operation permission area of the electrostatic atomizer.
  • FIG. 13 is a block diagram showing transmission and reception of signals between the control unit of the indoor unit and the control unit of the electrostatic atomizer.
  • FIG. 14A is a front view of an indoor unit of an air conditioner according to the present invention including a human body detection device.
  • 14B is a front view of the indoor unit of FIG. 14A with the cover of the human body detection device removed.
  • 14C is a side view of the indoor unit of FIG. 14A.
  • FIG. 15A is a perspective view of the indoor unit in a state where the front panel opens the front suction port.
  • 15B is a side view of the indoor unit of FIG. 15A.
  • 16 is a longitudinal sectional view of the indoor unit of FIG. 14A.
  • FIG. 17A is a front view of the human body detection device.
  • 17B is a side view of the human body detection device of FIG. 17A.
  • 17C is a perspective view of the human body detection device of FIG. 17A.
  • FIG. 18A is a schematic diagram showing a change in the visual field range based on a change in the attachment position of the human body detection device.
  • FIG. 18B is another schematic diagram illustrating a change in the visual field range based on a change in the attachment position of the human body detection device.
  • FIG. 18C is still another schematic diagram showing a change in the visual field range based on a change in the attachment position of the human body detection device.
  • FIG. 18D is still another schematic diagram showing a change in the visual field range based on a change in the attachment position of the human body detection device.
  • FIG. 19 is a schematic diagram showing a human body position determination region detected by each sensor unit provided in the human body detection device.
  • FIG. 20 is a schematic diagram of the area division detected by the three sensor units.
  • FIG. 21 is a flowchart for setting region characteristics in each region shown in FIG.
  • FIG. 22 is a flowchart for finally determining the presence or absence of a person in each area shown in FIG.
  • FIG. 23 is a timing chart showing the presence / absence determination of a person by each sensor unit.
  • FIG. 24 is a schematic plan view of a residence where the indoor unit of FIG. 14A is installed.
  • FIG. 25 is a graph showing a long-term cumulative result of each sensor unit in the residence of FIG.
  • FIG. 26 is a schematic plan view of another residence in which the indoor unit of FIG. 14A is installed.
  • FIG. 27 is a graph showing the long-term cumulative result of each sensor unit in the residence of FIG. FIG.
  • FIG. 28 is a longitudinal sectional view of the indoor unit showing the operating state of the upper and lower blades provided in the indoor unit of FIG. 14A.
  • FIG. 29 is a schematic diagram showing the set rotational speed of the indoor fan when air-conditioning each area shown in FIG. 19 is performed.
  • FIG. 30 is a schematic diagram showing the set angles of the upper and lower blades and the left and right blades when heating each area shown in FIG.
  • FIG. 31 is a schematic diagram showing the setting angles of the upper and lower blades and the left and right blades when standing up or unstable when cooling each area shown in FIG.
  • FIG. 32 is a schematic diagram showing the set angles of the upper and lower blades and the left and right blades at the time of cooling when cooling each area shown in FIG.
  • FIG. 34A is a schematic diagram showing an arrangement mode when air-conditioning two areas
  • FIG. 34B is a schematic diagram showing another arrangement mode when air-conditioning two areas.
  • FIG. 34C is a schematic diagram showing still another arrangement mode when air-conditioning two areas.
  • FIG. 34D is a schematic diagram showing still another arrangement mode when air-conditioning two areas.
  • FIG. 34E is a schematic diagram showing still another arrangement mode when air-conditioning two areas.
  • FIG. 35A is a schematic diagram showing an arrangement mode when air-conditioning three areas
  • FIG. 35B is a schematic diagram showing another arrangement mode when air-conditioning three areas.
  • FIG. 35A is a schematic diagram showing an arrangement mode when air-conditioning three areas
  • FIG. 35B is a schematic diagram showing another arrangement mode when air-conditioning three areas.
  • FIG. 35C is a schematic diagram showing still another arrangement mode when air-conditioning three areas.
  • FIG. 36 is a schematic diagram showing the setting angles of the upper and lower blades and the left and right blades when the electrostatic atomization operation is performed in the absence.
  • FIG. 37 is a schematic diagram showing the set rotational speed of the indoor fan when the electrostatic atomization operation is performed in the absence.
  • FIG. 38 is a timing chart when power saving operation is achieved by controlling the air volume of the indoor fan and the capacity of the compressor provided in the outdoor unit.
  • FIG. 39 is a timing chart showing temperature control during heating.
  • FIG. 40 is a timing chart showing temperature control during cooling.
  • FIGS. 1 and 2 show the indoor unit of the air conditioner according to the present invention.
  • the indoor unit has a front suction port 2a and a top suction port 2b as suction ports for sucking room air into the main body 2, and the front suction port 2a has a movable front panel that can be opened and closed.
  • front panel movable front panel that can be opened and closed.
  • front panel 4 when the air conditioner is stopped, the front panel 4 is in close contact with the main body 2 and closes the front suction port 2a, whereas the air conditioner is operated. At the time, the front panel 4 moves in a direction away from the main body 2 to open the front suction port 2a.
  • a prefilter 5 is provided on the downstream side of the front suction port 2 a and the upper surface suction port 2 b for removing dust contained in the air, and a front suction is provided on the downstream side of the prefilter 5.
  • Air is blown from the heat exchanger 6 for exchanging heat with the indoor air sucked from the mouth 2a and the upper surface suction port 2b, the indoor fan 8 for conveying the heat exchanged by the heat exchanger 6, and the indoor fan 8.
  • the upper and lower blades 12 change the air blowing direction up and down, and the left and right blades 14 change the air blowing direction left and right.
  • the upper portion of the front panel 4 is connected to the upper portion of the main body 2 via a plurality of arms (not shown) provided at both ends thereof, and a drive motor connected to one of the plurality of arms ( By driving and controlling the air conditioner, the front panel 4 moves forward from the position when the air conditioner is stopped (closed position of the front suction port 2a) during the air conditioner operation.
  • the upper and lower blades 12 are connected to the lower portion of the main body 2 through a plurality of arms (not shown) provided at both ends thereof.
  • a ventilation fan unit 16 for ventilating room air is provided at one end of the indoor unit (on the left side when viewed from the front of the indoor unit and on the bypass channel 22 side of a partition wall 46c described later).
  • an electrostatic atomizer 18 having an air cleaning function that generates electrostatic mist and purifies indoor air is provided behind the ventilation fan unit 16.
  • FIG. 1 shows a state in which a main body cover (not shown) covering the front panel 4 and the main body 2 is removed
  • FIG. 2 clearly shows a connection position between the indoor unit main body 2 and the electrostatic atomizer 18. Therefore, the electrostatic atomizer 18 accommodated in the main body 2 is separated from the main body 2.
  • the electrostatic atomizer 18 actually has the shape shown in FIG. 3 and is attached to the left side of the main body 2 as shown in FIG. 1 or FIG.
  • the electrostatic atomizer 18 includes a main channel that communicates from the front suction port 2 a and the upper suction port 2 b to the blowout port 10 via the heat exchanger 6, the indoor fan 8, and the like.
  • a high-voltage transformer 24 and a bypass blower fan 26 serving as a high-voltage power source are provided on the upstream side of the bypass flow path 22 and are provided in the middle of the bypass flow path 22 that bypasses the heat exchanger 6 and the indoor fan 8.
  • An electrostatic atomizing unit 30 and a silencer 32 that are provided and have a heat radiation portion 28 that promotes heat radiation of the electrostatic atomization unit 30 are provided on the downstream side of the bypass flow path 22.
  • the casing 34 constituting a part of the bypass flow path 22 is arranged. Contained.
  • the assembly is improved and the flow path is formed by the casing 34, so that space is saved and the flow of air by the bypass blower fan 26 is changed to a high voltage that is a heat generating part.
  • the transformer 24 and the heat radiating section 28 can be reliably applied and cooled, and the electrostatic mist generated from the electrostatic atomization unit 30 can be reliably introduced into the air outlet 10 of the air conditioner. Electric mist can be discharged into the air-conditioned room.
  • the casing 34 is arranged in the vertical direction so that the direction of the airflow flowing through the inside of the casing 34 is parallel to the direction of the airflow flowing through the main flow path 20 when viewed from the front of the indoor unit body 2. As a result, it can be disposed adjacent to the position overlapping the ventilation fan unit 16 when viewed from the front of the indoor unit main body 2, and further space saving is achieved.
  • the high-voltage transformer 24 is not necessarily accommodated in the casing 34, but is cooled by the ventilation of the bypass flow path, so that it is accommodated in the casing 34 from the viewpoint of suppressing temperature rise or saving space. preferable.
  • the electrostatic atomization unit 30 includes a plurality of Peltier elements 36 having a heat radiating surface 36a and a cooling surface 36b, and the above-described heat radiating portion connected in thermal contact with the heat radiating surface 36a. (E.g., radiation fins) 28, a discharge electrode 38 installed in thermal contact with the cooling surface 36b via an electrical insulating material (not shown), and a predetermined distance from the discharge electrode 38. It is comprised with the counter electrode 40 arrange
  • the Peltier drive power supply 44 and the high voltage transformer 24 are electrically connected to the control unit 42 (see FIG. 1) disposed in the vicinity of the ventilation fan unit 16, and the Peltier element 36 and the discharge electrode 38 are electrically connected to the Peltier drive power supply 44 and the high voltage transformer 24, respectively.
  • the frame-connected structure can be regarded as the counter electrode 40.
  • the electrostatic atomization unit 30 configured as described above, when the control unit 42 controls the Peltier drive power supply 44 to cause a current to flow through the Peltier element 36, heat is transferred from the cooling surface 36 b toward the heat radiating surface 36 a, and the discharge electrode 38. Condensation occurs on the discharge electrode 38 due to a decrease in temperature. Further, when the high voltage transformer 24 is controlled by the control unit 42 and a high voltage is applied to the discharge electrode 38 to which the condensed water has adhered, a discharge phenomenon occurs in the condensed water, and electrostatic mist having a particle size of nanometer size is generated. appear. In the present embodiment, since a negative high voltage power source is used as the high voltage transformer 24, the electrostatic mist is negatively charged.
  • the main flow path 20 includes a rear wall 46 a of the base frame 46 constituting the main body 2, and both side walls extending forward from both ends of the rear wall 46 a ( 7 shows only the left side wall 46b, a rear wall 48a of the rear guider 48 formed below the underframe 46, and both side walls extending forward from both ends of the rear wall 48a (left side in FIG. 7).
  • 48b a partition wall separating the bypass channel 22 from the main channel 20 by one side wall (left side wall) 46b of the underframe 46 and one side wall (left side wall) 48b of the rear guider 48.
  • 46c is constituted.
  • the bypass suction port 22a of the bypass channel 22 is formed on one side wall 46b of the frame 46, while the bypass outlet 22b of the bypass channel 22 is formed on one side wall 48b of the rear guider 48.
  • the electrostatic atomizer 18 includes a Peltier element 36 for replenishing moisture.
  • dew condensation is likely to occur not only on the pin-shaped discharge electrode 38 of the Peltier element 36 but also on the entire Peltier element 36.
  • the high-temperature air that has passed through the heat exchanger 6 has a low relative humidity, so there is a very high possibility that no condensation will occur on the discharge electrode 38 of the Peltier element 36.
  • the main flow path 20 and the bypass flow path 22 are separated by the partition wall 46c, and an electrostatic atomizer 18 that generates electrostatic mist is provided in the bypass flow path 22.
  • Air that has not passed through and that has not been adjusted in temperature and humidity is supplied to the electrostatic atomizer 18.
  • safety is improved by effectively preventing the occurrence of condensation on the entire Peltier element 36 of the electrostatic atomization unit 30 during cooling.
  • electrostatic mist can be reliably generated during heating.
  • the bypass passage 22 includes a bypass suction pipe 22c, a casing 34, and a bypass outlet pipe 22d, and the bypass suction pipe 22c having one end connected to the bypass suction port 22a formed in the frame side wall 46b is located on the left side (
  • the bypass outlet 22d which extends in a direction substantially orthogonal to the left side wall 46b and extends in a direction substantially parallel to the front panel 4, is connected to one end of the casing 34 and further connected to the other end of the casing 34.
  • the other end of the rear guider 48 is connected to the bypass outlet 22b of the side wall 48b.
  • bypass channel 22 by comprising a part of bypass channel 22 with casing 34, space saving can be achieved, and electrostatic atomization unit can be formed via bypass outlet pipe 22d by comprising these in series.
  • the electrostatic mist can be reliably attracted from 18 toward the main flow path 20, and the electrostatic mist can be discharged into the air-conditioned room.
  • the bypass suction port 22a is located between the prefilter 5 and the heat exchanger 6, that is, downstream of the prefilter 5 and upstream of the heat exchanger 6, and is sucked from the front suction port 2a and the upper suction port 2b. Since the dust contained in the air is effectively removed by the pre-filter 5, it is possible to prevent the dust from entering the electrostatic atomizer 18. Thereby, it can prevent effectively that dust accumulates on the electrostatic atomization unit 30, and can discharge
  • the prefilter 5 serves as a prefilter for the electrostatic atomizer 18 and the main flow path 20, but this requires maintenance to clean only the prefilter 5. Since it is not necessary to care for each separately, the care can be simplified.
  • bypass air outlet 22b is positioned in the vicinity of the air outlet 10 on the downstream side of the heat exchanger 6 and the indoor fan 8, and the electrostatic mist discharged from the bypass air outlet 22b rides on the air flow in the main flow path 20. It spreads and fills the entire room.
  • the bypass outlet 22b is arranged on the downstream side of the heat exchanger 6 as described above. If the bypass air outlet 22b is arranged on the upstream side of the heat exchanger 6, since the heat exchanger 6 is made of metal, the electrostatic mist that is charged particles is This is because most of the heat exchanger 6 (about 80 to 90% or more) is absorbed.
  • the bypass outlet 22b is arranged on the downstream side of the indoor fan 8.
  • bypass outlet 22b is arranged on the upstream side of the indoor fan 8, turbulent flow exists in the indoor fan 8 and passes through the indoor fan 8. This is because a part (about 50%) of the electrostatic mist is absorbed in the process of air colliding with various parts of the indoor fan 8.
  • the main flow path 20 side of one side wall 48b of the rear guider 48 provided with the bypass outlet 22b is given a predetermined speed to the air flow by the indoor fan 8, so that the main flow path 20 side of the side wall 48b is bypassed.
  • a pressure difference is generated on the side of the path 22, a negative pressure portion in which the main channel 20 side is relatively low in pressure relative to the bypass channel 22, and air is attracted from the bypass channel 22 toward the main channel 20.
  • the bypass blower fan 26 has a small capacity, and the bypass blower fan 26 may not be provided in some cases.
  • bypass outlet pipe 22d is provided on the partition wall 46c (side wall 48b of the rear guider 48) so as to be directed in a direction substantially orthogonal to the air flow in the main channel 20 at the junction with the main channel 20 (bypass outlet 22b). It is connected.
  • the electrostatic atomization unit 30 generates the electrostatic mist by utilizing the discharge phenomenon as described above, so that the discharge sound is inevitably accompanied and the discharge sound has directivity. is there.
  • bypass passage 22 to the front panel 4 substantially parallel to the front panel 4 at the junction of the bypass passage 22 and the main passage 20 (bypass outlet 22b), a person in front of the indoor unit or diagonally forward
  • the noise it is possible to reduce the noise by configuring so that the discharge sound is not directed as much as possible.
  • the main flow path 20 and the bypass flow path 22 are separated by the partition wall 46 c, and the electrostatic atomizer 18 that generates electrostatic mist bypasses the heat exchanger 6 and communicates with the main flow path 20. Since the air that has not been passed through the heat exchanger 6 and has not been adjusted in temperature and humidity is supplied to the electrostatic atomizer 18 because it is provided in the path 22, the Peltier element 36 of the electrostatic atomization unit 30 is used during cooling. Effectively preventing the occurrence of dew condensation on the whole, safety is improved, and electrostatic mist can be reliably generated during heating, regardless of the operation mode of the air conditioner, that is, the season The electrostatic mist can be generated stably regardless of the above.
  • FIG. 9 shows the attachment state of the electrostatic atomizer 18 when the indoor unit body 2 is viewed from the side.
  • the electrostatic atomizer 18 has a shape corresponding to the rear space of the ventilation fan unit 16. Present and housed in the space.
  • FIG. 10 shows an electrostatic atomizer 18A that does not have a casing 34, and this electrostatic atomizer 18A is incorporated in the indoor unit body 2 as shown in FIG. Alternatively, it is incorporated into a broken line region 18B shown in FIG. 11 (substantially the same position as the electrostatic atomizer unit 30 and the silencer 32 provided on the downstream side of the bypass flow path 22 in the electrostatic atomizer 18 shown in FIG. 9). It is. These are disposed at a position overlapping the ventilation fan unit 16 when the electrostatic atomizer 18A is viewed from the front or top surface of the indoor unit, and the electrostatic atomizer 18A is disposed at the opening 62 and the damper 64 of the ventilation fan unit 16. Is disposed in a portion where the suction air by the ventilation fan unit 16 flows.
  • the electrostatic atomizing device 18A of FIG. 10 includes an electrostatic atomizing unit 30 having a heat radiating portion 28 and a silencer 32 integrally attached, and the electrostatic atomizing unit 30 portion excluding the heat radiating portion 28;
  • the silencer 32 is accommodated in each housing (unit housing 66 and silencer housing 68), and one of the bypass blowing pipes 22d is connected to and communicated with the silencer housing 68, and the other of the bypass blowing pipes 22d is connected to the main flow path 20. Communicate.
  • the housing portion 22e that is separated from the main flow path 20 by the partition wall 46c and formed between the left side surface of the main body cover (not shown) and in which the ventilation fan unit 16, the electrostatic atomizer 18A, and the like are disposed is described above.
  • the bypass blow-out pipe 22d is also accommodated to constitute the bypass flow path 22.
  • the bypass blow-out pipe 22d can reduce noise in a direction directed to the air flow of the main flow path 20. However, this is not always necessary, and the bypass blower pipe 22d directly bypasses the silencer housing 68. You may connect to the outlet 22b. Thereby, the structure of 18 A of electrostatic atomizers can be simplified more. However, it is the same as the bypass outlet pipe 22d that consideration of the direction is necessary for noise reduction.
  • the air sucked into the main body 2 through the prefilter 5 is sucked into the accommodating portion 22e from the bypass suction port 22a on the downstream side of the prefilter 5, and the direction of the airflow is the air flowing through the main channel 20
  • the indoor unit main body 2 flows in the accommodating portion 22e in parallel with the flow direction when viewed from the front.
  • the heat radiating portion 28 is cooled by the air flowing through the housing portion 22e, and taken into the electrostatic atomizing unit 30 through an opening (not shown) formed in the unit housing 66.
  • the space around the ventilation fan unit 16 that overlaps the ventilation fan unit 16 when viewed from the front or top surface of the indoor unit becomes the bypass flow path 22, and the ventilation fan unit 16, the electrostatic atomizer 18 ⁇ / b> A, etc. Space can be saved by effectively utilizing the accommodating portion 22e.
  • the high voltage transformer 24 is disposed at an arbitrary portion in the housing portion 22e such as the ventilation fan unit 16 and the electrostatic atomizer 18A, and the bypass blower fan 26 is not provided.
  • bypass flow path 22 is described in detail above by configuring the bypass flow path 22 so that the air flow flows in parallel with the air flow passing through the main flow path 20 as viewed from the front.
  • the bypass flow path 22 can be easily formed, and the number of parts can be reduced.
  • the prefilter of the electrostatic atomizer 18A and the prefilter of the main flow path 20 can be shared by the prefilter 5. Since the sharing effect is as described above, the details are omitted here.
  • an opening 46d may be formed in the vicinity of the lower portion of the base frame 46 corresponding to the rear portion of the ventilation fan unit 16 so that a pipe (not shown) connecting the indoor unit and the outdoor unit can be drawn out.
  • the bypass suction port 22a described above is one opening in the housing portion 22e formed in the partition wall 46c (the frame side wall 46b) in order to suck air into the housing portion 22e, and communicates with the outside of the indoor unit through the prefilter 5.
  • the accommodating portion 22e is an opening that directly communicates with the outside of the indoor unit and sucks ambient air. In such a case, the accommodating portion 22e serves as a bypass flow path that also bypasses the prefilter 5.
  • the air sucked into the electrostatic atomizer 18A flows from the opening 46d and does not pass through the prefilter 5, so that a separate prefilter for the electrostatic atomizer 18A is provided as necessary. Just do it. Further, even in the configuration in which the opening 46d is formed, the electrostatic atomizer 18A is disposed at a position overlapping the ventilation fan unit 16 when viewed from the front or top surface of the indoor unit, and the housing portion 22e is effectively used. Similarly, space saving can be achieved.
  • the main flow path 20 side of the bypass outlet 22b is a negative pressure part that is attracted by the pressure difference generated by the indoor fan 8 being given a predetermined speed to the air flow. Even if the bypass blower fan 26 is not provided, the heat radiating portion 28 is cooled by the air drawn toward the main passage 20 from the accommodating portion 22e which is a bypass passage via the bypass outlet pipe 22d, and the electrostatic atomizing unit 30 is provided. The electrostatic mist generated by the above is attracted to the main channel 20 and can be discharged into the air-conditioned room.
  • the heat dissipating part 28 is arranged in the vicinity of the opening 62 and the damper 64 as shown by the broken line area 18B, the air is sucked into the opening 62, so that it is also cooled by the air sucked by the ventilation fan unit 16. .
  • the heat radiating portion 28 of the electrostatic atomizer 18 ⁇ / b> A is disposed close to the opening 62 provided in the ventilation fan unit 16, so that heat is radiated by the air sucked into the opening 62.
  • the part 28 is further cooled, and heat radiation from the electrostatic atomization unit 30 is promoted.
  • the damper 64 is not provided. Therefore, by disposing the heat radiating unit 28 close to the suction port of the ventilation fan unit 16, the heat radiating unit 28 is efficiently arranged. To be cooled.
  • the container 22e is provided with the electrostatic atomizer 18A that separates the main channel 20 and the container 22e serving as the bypass channel by the partition wall 46c and generates electrostatic mist. Therefore, since air that has not passed through the heat exchanger 6 and is not adjusted in temperature and humidity is supplied to the electrostatic atomizer 18A, dew condensation occurs on the entire Peltier element 36 of the electrostatic atomizer unit 30 during cooling. Effectively preventing this from occurring, safety is improved, and electrostatic mist can be reliably generated during heating, and it is quiet regardless of the operation mode of the air conditioner, that is, regardless of the season. Electric mist can be generated stably.
  • a plurality of parameters are set as operation permission conditions for the electrostatic atomizers 18 and 18A, and electrostatic atomization is performed only when all parameters indicate the operation permission for the electrostatic atomizers 18 and 18A. While permitting the operation of the devices 18 and 18A, when at least one parameter does not indicate the operation permission, the operation of the electrostatic atomizers 18 and 18A is prohibited, so that the energy saving or the life of the Peltier element 36 is observed. Thus, unnecessary operation of the electrostatic atomizers 18 and 18A is prevented and abnormal operation is prevented.
  • the following parameters are set as operation permission conditions.
  • the indoor unit is provided with a suction temperature sensor 92 (see FIG. 13) for detecting the temperature of the sucked air in the vicinity of the suction port (the front suction port 2a or the upper suction port 2b), and detects the humidity of the sucked air.
  • a humidity sensor 94 (see FIG. 13) is provided on the power supply board of the indoor unit, for example, and sets the operation permission area of the electrostatic atomizers 18 and 18A based on the temperature and humidity of the air sucked into the indoor unit.
  • the operation of the electrostatic atomizers 18 and 18A is permitted, while the detected temperature and humidity are When outside the operation permission area, the operation of the electrostatic atomizers 18 and 18A is prohibited.
  • the electrostatic atomizers 18 and 18A By prohibiting the operation, generation of abnormal noise and ozone can be prevented and the life of the electrostatic atomizer can be increased or energy saving can be achieved.
  • the operation permission area of the electrostatic atomizers 18 and 18A will be described with reference to the graph of FIG. As shown in FIG. 12, based on the temperature and humidity of the air sucked into the indoor unit, an excessive dew condensation region, a first performance outside region, and a sub-freezing region are set, and regions other than these regions are set as operation permission regions. Is set.
  • the excessive dew condensation region is a state where the humidity is high (first predetermined value or more) and the distance between the water condensed on the discharge electrode 38 and the counter electrode 40 is shortened to be close to a short circuit, and abnormal noise is generated by the short circuit current. Or electrostatic mist having a desired particle diameter is not generated.
  • the first out-of-performance region is a region where humidity is low (less than a second predetermined value smaller than the first predetermined value) and the dew point temperature cannot be reached even if the Peltier element 36 exhibits its maximum capacity. There is a possibility that ozone is generated because it is not a discharge between condensed water and the counter electrode 40 but a discharge between the discharge electrode 38 and the counter electrode 40. Further, the sub-freezing region is a region where the dew point temperature determined from the wet air diagram is below the freezing point.
  • the humidity in the room is high, and the distance between the water excessively condensed on the high voltage electrode and the counter electrode is shortened. As a result, it is possible to prevent the generation of abnormal noise and the generation of electrostatic mist having a desired particle diameter.
  • the indoor humidity is low and the dew point temperature cannot be reached even when the Peltier element exhibits its maximum capacity. Ozone can be prevented from being generated.
  • the dew point temperature is unnecessarily operated even in the sub-freezing region, and the life of the electrostatic atomizers 18 and 18A is shortened. Or energy saving cannot be achieved.
  • an upper limit temperature is set.
  • this region can be called a second out-of-performance region. That is, as described above, when an electric current is passed through the Peltier element 36, heat is transferred from the cooling surface 36b toward the heat radiating surface 36a, and the temperature of the discharge electrode 38 is reduced, so that condensation occurs on the discharge electrode 38 and heat radiating surface.
  • the heat moved to 36 a is radiated from the heat radiating unit 28, the size of the heat radiating unit 28 is limited from the viewpoint of the storage property of the electrostatic atomization unit 30.
  • the size of the heat dissipating unit 28 is set in consideration of surely normal operation at least at the maximum set temperature (for example, 30 ° C.) during heating operation, and a temperature that is equal to or higher than the maximum set temperature (for example, 32 to 35 ° C.).
  • the electrostatic atomization unit 30 is set so as to operate normally.
  • the temperature is higher than the maximum set temperature, the possibility that normal operation is hindered increases as the temperature increases. Therefore, when the detected temperature exceeds the maximum set temperature during the heating operation as the upper limit temperature, it is regarded as a second out-of-performance region in which normal operation of the electrostatic atomizing unit 30 is hindered.
  • the size of the heat dissipating part 28 is similarly limited.
  • the electrostatic atomizers 18 and 18A are used after the room temperature has decreased to 30 ° C. or less, which is the upper limit temperature here. Will work.
  • the rotational speed of the indoor fan 8 of (ii) will be described.
  • the heat moved from the cooling surface 36b of the Peltier element 36 toward the heat radiating surface 36a is radiated by the heat radiating portion 28, but the rotational speed of the indoor fan 8 detected by the rotational speed detecting means 96 (see FIG. 13) is the predetermined rotational speed.
  • the rotational speed of the indoor fan 8 is equal to or higher than the predetermined rotational speed, the operation of the electrostatic atomizers 18 and 18A is permitted.
  • the rotational speed is less than the predetermined rotational speed, the electrostatic atomizers 18 and 18A Driving is prohibited.
  • the abnormality of the electrostatic atomizers 18 and 18A of (iii) above a failure of the high voltage transformer 24 (abnormality of the output voltage) and a failure of the Peltier drive power supply 44 (abnormality of the output voltage) are set.
  • the control unit 42 see FIG. 13
  • the electrostatic atomizers 18 and 18A are operated.
  • an abnormality is detected due to any failure, the operation of the electrostatic atomizers 18 and 18A is prohibited. Thereby, it can prevent that the electrostatic atomizer 18 and 18A drive
  • FIG. 13 is a block diagram showing transmission and reception of signals between the control unit 72 of the indoor unit and the control unit 42 of the electrostatic atomizers 18 and 18A.
  • the output of the suction temperature sensor 92, the output of the humidity sensor 94, and the output of the rotation speed detection means 96 are input to the control unit 72 of the indoor unit and the electrostatic atomizers 18 and 18A.
  • the control unit 42 monitors the output value of the high voltage transformer 24 and the output value of the Peltier drive power supply 44.
  • the suction temperature sensor 92 and the humidity sensor 94 are used for controlling the refrigeration cycle in the air conditioning operation of air conditioning or dehumidification.
  • the control unit 72 of the indoor unit has the temperature detected by the suction temperature sensor 92 and the humidity detected by the humidity sensor 94 within the operation permission area of the electrostatic atomizers 18 and 18A, and the room detected by the rotation speed detection means 96. Only when the rotational speed of the fan 8 is equal to or higher than the predetermined rotational speed and an abnormal signal from the control unit 42 of the electrostatic atomizer 18, 18 ⁇ / b> A is not input to the controller 72, the electrostatic atomizer 18, An operation permission signal is output to the control unit 42 of 18A, and upon receiving the operation permission signal, the control unit 42 of the electrostatic atomizers 18 and 18A controls the high voltage transformer 24 and the Peltier drive power supply 44.
  • the temperature detected by the suction temperature sensor 92 and the humidity detected by the humidity sensor 94 are outside the operation permission area of the electrostatic atomizers 18 and 18A, or the rotational speed of the indoor fan 8 detected by the rotational speed detection means 96 is predetermined. If the rotational speed is less than or the abnormal signal from the control unit 42 of the electrostatic atomizers 18 and 18A is input to the controller 72 of the indoor unit, the electrostatic atomizers 18 and 18A from the controller 72 The operation permission signal is not output to the controller 42, and the operation of the electrostatic atomizers 18 and 18A is prohibited.
  • the operation permission signal is output from the control unit 72 of the indoor unit to the control unit 42 of the electrostatic atomizer 18, 18 ⁇ / b> A, but the power ON signal is used instead of the operation permission signal. May be output.
  • the suction temperature sensor 92 and the humidity sensor 94 have a simple configuration that does not require a cooling surface temperature measuring means for measuring the temperature of the cooling surface of the Peltier element.
  • the detection means used also in the air-conditioning operation other than the operation of 18A can also be used, and the cost increase can be prevented.
  • the indoor units other than the electrostatic atomizers 18 and 18A are set.
  • the operation of the electrostatic atomizers 18 and 18A is permitted. , 18A may be prohibited.
  • Table 1 shows an example of the power consumption of the indoor unit. Assuming that the allowable power consumption of the indoor unit is 18 W, and the constant power consumed by the microcomputer (control unit 72) is 10 W, the remaining power It is necessary to operate the electrostatic atomizers 18 and 18A, the upper and lower blades 12 and the left and right blades 14, or other driving units in parallel using 8W. Therefore, the operation of the electrostatic atomizers 18 and 18A is permitted when the total power consumption calculated excluding the electrostatic atomizers 18 and 18A is equal to or less than the allowable power value (for example, 14 W), while the allowable power is allowed. When the value is exceeded, the operation of the electrostatic atomizers 18 and 18A is set to be prohibited. With the above configuration, it is possible to prevent exceeding the allowable power of the indoor unit.
  • the allowable power value for example, 14 W
  • the human body detection device that detects the position of the person is provided in the indoor unit main body 2, and the air conditioning control that is performed based on the position of the person detected by the human body detection device will be described.
  • FIG. 15A, FIG. 15B and FIG. 16 show an indoor unit of an air conditioner according to the present invention provided with a human body detection device.
  • the front panel 4 has a front inlet.
  • FIG. 15A and FIG. 15B show a state in which the front panel 4 opens the front suction port 2a, whereas 2a shows the closed state.
  • the main body 2 includes an upper and lower blade 12 that changes the air blowing direction up and down, a left and right blade 14 that changes the air blowing direction left and right, and a lower portion of the front suction port 2 a.
  • a middle blade 114 that opens and closes on the air outlet 10 side of the front suction port 2a is attached to the main body 2 via a middle blade drive mechanism 116 so as to be swingable.
  • the upper portion of the front panel 4 is connected to the upper portion of the main body 2 via two arms 118 and 120 provided at both ends thereof, and drive control of a drive motor (not shown) connected to the arms 118 is performed.
  • the front panel 4 moves forward and obliquely upward from the position when the air conditioner is stopped (closed position of the front suction port 2a).
  • the upper and lower blades 12 are connected to the lower portion of the main body 2 via two arms 122 and 124 provided at both ends thereof, and a driving method thereof will be described later.
  • FIGS. 14B and 14C a plurality of (for example, five) sensor units 126, 128, 130, 132, and 134 protrude from the main plane of the front panel 4 at the top of the front panel 4.
  • the sensor unit 126, 128, 130, 132, 134 is attached as a human body detection device, and is held by a sensor holder 136 as shown in FIGS. 17A to 17C.
  • the human body detection device is covered with a cover 100 as shown in FIG. 14A, and FIG. 14B shows a state where the cover 100 is removed.
  • the respective sensor units 126, 128, 130, 132, and 134 are provided on the upper portion of the front panel 4, as shown in FIG. 18A, in the visual field range of each sensor unit 126, 128, 130, 132, and 134 (described later). This is to enlarge the human body position determination area) and secure the far field of view to the maximum extent. Further, as shown in FIG. 18B, the visual field range can be secured farther by moving the front panel 4 forward from the stop position at the start of operation, and as shown in FIG. 18C, the front panel 4 The field of view can be further expanded by moving the button diagonally upward from the stop position.
  • the positions of the sensor units 126, 128, 130, 132, and 134 are not limited to the upper part of the front panel 4, and even when the front panel is not movable, the human body detection device is placed on the upper part of the front panel or the main body. By attaching to the upper part, the visual field range can be expanded compared to the case of attaching to the lower part.
  • each sensor unit 126, 128, 130, 132, 134 is provided so as to protrude from the main plane of the front panel 4, so that each sensor unit 126, 128, 130, 132, 134 is provided.
  • blind spots are generated by the components of the indoor unit (for example, the upper and lower blades 12 and the front panel 4 with the front suction port 2a opened). It is possible to prevent and expand the visual field range.
  • each sensor unit 126, 128, 130, 132, 134 is provided on the front panel 4, so that when the front panel 4 opens the front suction port 2a, it is attached to the front panel 4. It will move and will protrude further forward.
  • the sensor unit 126 includes a circuit board 126a, a lens 126b attached to the circuit board 126a, and a human body detection sensor (not shown) mounted inside the lens 126b.
  • the human body detection sensor is configured by, for example, an infrared sensor that detects the presence or absence of a person by detecting infrared radiation emitted from the human body, and a pulse that is output in response to a change in the amount of infrared detected by the infrared sensor.
  • the presence or absence of a person is determined by the circuit board 126a based on the signal. That is, the circuit board 126a acts as presence / absence determination means for determining the presence / absence of a person.
  • FIG. 19 shows human body position determination areas detected by the sensor units 126, 128, 130, 132, and 134.
  • the sensor units 126, 128, 130, 132, and 134 each have a person in the next area. Can be detected.
  • Sensor unit 126 Area A + C + D
  • Sensor unit 128 Area B + E + F
  • Sensor unit 130 region C + G
  • Sensor unit 132 Area D + E + H
  • Sensor unit 134 area F + I
  • the area that can be detected by the sensor units 126 and 128 partially overlaps the area that can be detected by the sensor units 130, 132, and 134.
  • a smaller number of sensor units are used to detect the presence or absence of a person in each of the areas A to I.
  • FIG. 20 shows a region to be detected when three human body detection sensors are provided.
  • the presence or absence of a person in a region near the indoor unit is detected by one human body detection sensor.
  • the presence or absence of a person in an area far from the machine is detected by two human body detection sensors.
  • the sensor units 126, 128, 130, 132, and 134 are replaced with the first sensor 126, the second sensor 128, the third sensor 130, The fourth sensor 132 and the fifth sensor 134 are referred to. Since the areas C, D, E, and F are detected by two sensors, the areas other than the overlapping areas (areas A, B, G, H, and I) are detected by one sensor. Therefore, it is called a normal area.
  • the overlapping area is divided into left overlapping areas C and D and right overlapping areas E and F.
  • FIG. 21 is a flowchart for setting region characteristics to be described later in each of the regions A to I using the first to fifth sensors 126, 128, 130, 132, and 134.
  • FIG. FIG. 11 is a flowchart for determining which area of areas A to I is used by using the fifth to fifth sensors 126, 128, 130, 132, and 134, and determining the position of the person with reference to these flowcharts. The method will be described below.
  • step S1 the presence or absence of a person in the left overlapping region is first determined at a predetermined cycle T1 (for example, 5 seconds), and in step S2, a predetermined sensor output is cleared under a predetermined condition.
  • a predetermined cycle T1 for example, 5 seconds
  • Table 2 shows a method for determining the left overlapping region, and when any of the three reaction results shown in Table 2 is satisfied, the outputs of the first sensor 126 and the third sensor 130 are cleared. .
  • 1 is defined as a response
  • 0 is defined as no response
  • clear is defined as 1 ⁇ 0.
  • step S3 it is further determined whether or not a person is present in the right overlapping region in the above-described predetermined period T1, and in step S4, a predetermined sensor output is cleared under a predetermined condition.
  • Table 3 shows a method for determining the right overlapping region. When one of the three reaction results shown in Table 3 is satisfied, the outputs of the second sensor 128 and the fifth sensor 134 are cleared. .
  • step S5 the presence / absence of a person in the normal region is determined based on Table 4 in the above-described predetermined period T1, and in step S6, all sensor outputs are cleared.
  • the first to fifth sensors 126, 128, 130, 132, and 134 are used to determine in which of the areas A to I a person exists. Using the outputs from the sensors 126, 128, 130, 132, and 134, the result of the presence / absence determination of a person in each of the areas A to I is shown.
  • each of the areas A to I is classified into a first area where people are good (places where people are good), a second area where people are short (areas where people simply pass, areas where stay time is short) And a third area (a non-living area where people hardly go, such as walls and windows).
  • the first region, the second region, and the third region are referred to as a life category I, a life category II, and a life category III, respectively, and the life category I, the life category II, and the life category III are respectively a region characteristic I. It can also be said that the region of region characteristic II, region of region characteristic II, region of region characteristic III.
  • life category I region characteristic I
  • life category II region characteristic II
  • life category III region characteristic III
  • the area of life may be broadly classified according to the frequency of the presence or absence of a person.
  • FIG. 24 shows a case where the indoor unit of the air conditioner according to the present invention is installed in an LD of 1 LDK composed of one Japanese-style room, LD (living room / dining room) and kitchen, and is indicated by an ellipse in FIG. The area shows the well-placed place where the subject reported.
  • step S7 it is determined whether or not the cumulative operation time of a predetermined air conditioner has elapsed. If it is determined in step S7 that the predetermined time has not elapsed, the process returns to step S1. On the other hand, if it is determined that the predetermined time has elapsed, two reaction results accumulated in the predetermined time in each region A to I are obtained. Each area A to I is discriminated as one of the life categories I to III by comparing with the threshold value.
  • a first threshold value and a second threshold value smaller than the first threshold value are set, and in step S8, the long-term accumulation result of each region A to I is set. Is determined to be greater than the first threshold, and the region determined to be greater is determined to be the life category I in step S9. If it is determined in step S8 that the long-term cumulative result of each region A to I is less than the first threshold value, whether or not the long-term cumulative result of each region A to I is greater than the second threshold value in step S10. The region determined to be large is determined to be the life category II in step S11, while the region determined to be small is determined to be the life category III in step S12.
  • the areas E, F, and I are determined as the life category I
  • the areas B and H are determined as the life category II
  • the areas A, C, D, and G are determined as the life category III.
  • FIG. 26 shows a case where the indoor unit of the air conditioner according to the present invention is installed in another LD of 1 LDK, and FIG. 27 discriminates each region A to I based on the long-term accumulation result in this case. Results are shown.
  • the regions C, E, and G are determined as the life category I
  • the regions A, B, D, and H are determined as the life category II
  • the regions F and I are determined as the life category III.
  • step S27 it is determined whether or not a predetermined number M (for example, 15 times) of reaction results in the period T1 has been obtained. If it is determined that the period T1 has not reached the predetermined number M, the process returns to step S21. If it is determined that the period T1 has reached the predetermined number M, in step S28, the total number of reaction results in the period T1 ⁇ M is used as the cumulative reaction period number, and the cumulative reaction period number for one time is calculated.
  • a predetermined number M for example, 15 times
  • step S29 If it is determined, the process returns to step S21. On the other hand, if it is determined that the predetermined number of times has been reached, in step S30, the person in each of the areas A to I is determined based on the already determined area characteristics and the predetermined number of accumulated reaction periods. Presence or absence of is estimated.
  • step S31 by subtracting 1 from the number of times (N) of cumulative reaction period calculations in step S31 and returning to step S21, the calculation of the cumulative reaction period times for a predetermined number of times is repeatedly performed.
  • Table 6 shows a history of reaction results for the latest one time (time T1 ⁇ M).
  • ⁇ A0 means the number of cumulative reaction periods for one time in the region A.
  • the cumulative reaction period number for one time immediately before ⁇ A0 is ⁇ A1
  • the cumulative reaction period number for one previous time is ⁇ A2,...
  • N 4
  • the history for the past four times ( ⁇ A4, ⁇ A3) , .SIGMA.A2, .SIGMA.A1), for life category I it is determined that there is a person if the cumulative reaction period is one or more.
  • life category II if there are two or more cumulative reaction periods in the past four histories, it is determined that there is a person
  • life category III the past four histories Among them, if the cumulative reaction period number of 2 times or more is 3 times or more, it is determined that there is a person.
  • the presence / absence of the person is similarly estimated from the past four histories, life categories, and cumulative reaction period times.
  • the presence / absence of a person is estimated using a smaller number of sensors than the number of the discrimination areas A to I. Since there is a possibility that the position is incorrect, avoiding human position estimation in a single predetermined period regardless of whether it is an overlapping area, the region characteristics obtained by accumulating the region determination results for each predetermined period over a long period, and for each predetermined period The region determination results are accumulated N times, and the location of the person is estimated from the past history of the accumulated reaction period times of each region obtained, thereby obtaining the position estimation result of the person with high probability.
  • the area to be air-conditioned by the indoor unit of the air conditioner according to the present invention is divided into a plurality of areas A to I by the first to fifth sensors 126, 128, 130, 132, 134,
  • the region characteristics (life categories I to III) of the regions A to I are determined, and the time required for the presence estimation and the time required for the absence estimation are changed according to the region characteristics of the regions A to I.
  • the time required to estimate the presence / absence of an area determined as life category II as a standard in the area determined as life category I, there is a person at a shorter time interval than the area determined as life category II. In contrast, when there are no more people in the area, the absence of the person is estimated at a longer time interval than the area identified as Living Category II, thereby shortening the time required for the presence estimation.
  • the time required for estimation is set to be long.
  • the presence of a person is estimated at a longer time interval than the area determined to be life category II.
  • the time required for the presence estimation is set longer, and the time required for the absence estimation is set shorter. Furthermore, as described above, the life division of each region changes depending on the long-term accumulation result, and accordingly, the time required for the presence estimation and the time required for the absence estimation are variably set.
  • Wind direction control Further, the rotational speed control of the indoor fan 8 and the wind direction control of the upper and lower blades 12 and the left and right blades 14 are performed according to the air conditioning setting in each of the areas A to I. These controls will be described below.
  • Wind direction control during heating is performed by controlling the wind direction in front of the person's feet in the area where it is determined that there is a person, so that warm air reaches the vicinity of the feet, and during air conditioning, the wind direction control is performed above the person's head. By controlling, the cool air reaches above the head.
  • the wind direction is adjusted by the rotation speed of the indoor fan 8 and the angle of the upper and lower blades 12 or the left and right blades 14.
  • FIG. 28 shows the rotation control of the upper and lower blades 12, and when the air conditioner is stopped, as shown in (a), the front panel 4, the upper and lower blades 12, and the middle blade 14 are all closed.
  • the state shown in (a) is changed to the state shown in (c) through the state shown in (b).
  • the arms 118 and 120 are driven and controlled so that the front panel 4 is separated from the front suction port 2a, and the arms 122 and 124 are driven and controlled so that the upper and lower blades 12 are separated from the outlet 10.
  • the state shown in (a) is passed through the state shown in (a) and shown in (d).
  • the air blown out from the air outlet 10 is guided obliquely downward by the upper and lower blades 12, but the downstream end of the upper and lower blades 12 is curved toward the main body side, so that it is above the room. Warm air that tends to accumulate can be sent down the room.
  • (e) is used during cooling before stabilization, and the blown air is directed to the human body (airflow for the human body).
  • FIG. 29 shows the set number of rotations of the indoor fan 8 when air conditioning is performed in each of the areas A to I.
  • A1, A2, and A3 are reference values of areas at short distance, medium distance, and long distance from the indoor unit, respectively.
  • A4 is the rotation speed difference due to the difference in the area when the distance is the same, and is set as follows, for example.
  • A1 800 rpm (during heating), 700 rpm (during cooling)
  • A2 1000 rpm (during heating), 900 rpm (during cooling)
  • A3 1200rpm (during heating), 1100rpm (during cooling)
  • A4 100 rpm (common for cooling and heating)
  • relative position is introduced as an expression representing the positional relationship with the indoor unit such as the distance from the indoor unit in each region, the angle from the front of the indoor unit, and the height difference.
  • the degree of air conditioning that is easy to air-condition and difficult to air-condition in each area is expressed by the expression of air-conditioning requirement.
  • the set rotational speed of the indoor fan 8 when performing air conditioning in each of the areas A to I is set higher as the air conditioning requirement level is higher. That is, as the position of the area to be air-conditioned is farther from the indoor unit, the set rotational speed of the indoor fan 8 is set to be higher, and when the distance from the indoor unit is the same, the region shifted to the left and right from the front of the indoor unit The set rotational speed of the fan 8 is set high. Further, when there is one area to be air-conditioned, it is set to the set rotation speed (air volume) of that area, and when there are a plurality of areas to be air-conditioned, it is set to the set rotation speed of the area where the degree of air conditioning requirement is high.
  • FIG. 30 shows the set angles of the upper and lower blades 12 and the left and right blades 14 during heating
  • B1, B2, and B3 are reference upper and lower blade angles of areas at short distance, medium distance, and long distance from the indoor unit, respectively.
  • B4 is the angle difference between the upper and lower blades due to the difference in the area when the distance is the same
  • C1 and C2 are the reference left and right blade angles of the left and right areas (the counterclockwise direction is the counterclockwise direction)
  • C3 and C4 are the area differences.
  • the difference in angle between the left and right blades 14 due to the difference is set as follows, for example.
  • the angle of the upper and lower blades 12 is an angle when measured in the counterclockwise direction with 0 ° when the line connecting the front and rear ends of the blade is horizontal when the blade is convex upward, and this position is the reference. That is.
  • the upper and lower blades 12 are set to a first angle (for example, 70 °), and the rotational speed of the indoor fan 8 is set to the first rotational speed ( For example, it is set to 800 rpm), and the wind direction is controlled to the edge on the indoor unit side (in front of the human foot) in the area A or B so that the warm air reaches the vicinity of the foot.
  • a first angle for example, 70 °
  • the rotational speed of the indoor fan 8 is set to the first rotational speed ( For example, it is set to 800 rpm)
  • the wind direction is controlled to the edge on the indoor unit side (in front of the human foot) in the area A or B so that the warm air reaches the vicinity of the foot.
  • the upper and lower blades 12 are set to a second angle (for example, 55 °) smaller than the first angle
  • the rotation speed of the indoor fan 8 is set to a second rotation speed (for example, 1000 rpm) that is higher than the first rotation speed, and at the edge of the indoor unit side in the region C, D, E, or F (before the human foot).
  • the wind direction is controlled so that warm air reaches the vicinity of the feet.
  • the upper and lower blades 12 are set to a third angle (for example, 45 °) smaller than the second angle, and the indoor fan 8
  • the number of revolutions is set to a third number of revolutions (for example, 1200 rpm) higher than the second number of revolutions, and the wind direction is controlled at the edge (in front of the human foot) on the indoor unit side in the region G, H, or I.
  • the warm air is made to reach the vicinity.
  • FIG. 31 shows the set angles of the upper and lower blades 12 and the left and right blades 14 at the time of rising or cooling in an unstable region
  • E1, E2, and E3 are the short-distance, medium-distance, and long-distance regions of the indoor unit, respectively.
  • the reference upper and lower blade angle, E4 is the difference in angle between the upper and lower blades due to the difference in area when the distance is the same
  • F1 and F2 are the reference left and right blade angle in the left and right regions (counterclockwise is the positive direction)
  • F3 and F4 is an angle difference between the left and right blades 14 due to a difference in area, and is set as follows, for example.
  • FIG. 32 shows the set angles of the upper and lower blades 12 and the left and right blades 14 during cooling in the stable region, where H1 is a reference upper and lower blade angle in the case of ceiling airflow, and H2 is a reference in the case of tearing airflow.
  • the upper and lower blade angles, H3 is the upper limit blade angle difference due to the difference in distance
  • I1 and I2 are the reference left and right blade angles in the left and right regions (counterclockwise is the positive direction)
  • I3 and I4 are The angle difference between the blades 14 is set as follows, for example.
  • the stable region is a state where the current indoor air conditioning state is a set condition (for example, a set temperature).
  • the ceiling airflow is the airflow when the upper and lower blades 12 are positioned at the lower part of the outlet 10 and all the blown air is received by the concave surfaces of the blades and the air is sent out.
  • the upper and lower blades 12 are positioned slightly above the ceiling air flow, and a part (a small amount) of the blowing air is also flowed to the convex surface side of the blade (below the blade). This is the airflow when the wind is sent out in a state where condensation is unlikely to occur.
  • the upper and lower blades 12 When cooling the area A or B close to the indoor unit, the upper and lower blades 12 are set downward by a predetermined angle (for example, 5 °) from the horizontal, and the rotational speed of the indoor fan 8 is the first rotational speed (during heating).
  • the number of rotations is less than the first number of rotations, for example, 700 rpm, and is set so that the cold air reaches above the head of the region A or B and the cold air falls in a shower shape.
  • the upper and lower blades 12 when cooling the region C, D, E, or F at a medium distance from the indoor unit, the upper and lower blades 12 are set to be substantially horizontal, and the rotational speed of the indoor fan 8 is a second higher than the first rotational speed.
  • the rotation speed is lower than the second rotation speed during heating, for example, 900 rpm), and is set so that the cold air reaches the region C, D, E or F above the head. Further, when cooling the region G, H, or I farthest from the indoor unit, the upper and lower blades 12 are set upward by a predetermined angle (for example, 5 °) from the horizontal, and the rotational speed of the indoor fan 8 is the second. It is set to a third rotational speed higher than the rotational speed (a rotational speed less than the third rotational speed at the time of heating, for example, 1100 rpm), and is set so that the cold air reaches above the head of the region G, H, or I. ing.
  • a predetermined angle for example, 5 °
  • step S41 the presence / absence determination of a person in the areas A to I is first performed, and in step S42, one area determined to have a person, that is, one area to be air-conditioned.
  • step S43 air conditioning is performed based on the air volume and direction set according to the area. If it is determined in step S42 that there is not one area to be air-conditioned, it is determined in step S44 whether there are two areas to be air-conditioned. If there are two areas to be air-conditioned, the process proceeds to step S45.
  • step S45 the air volume is set to the set air volume in the area where the air conditioning requirement is high, and the arrangement mode of the two areas is identified as one of the five modes as shown in FIGS. 34A to 34E, and the next step In S46, control is performed as shown in Table 8 according to the identified mode.
  • mode 1 represents the case of two areas adjacent to each other with a medium distance and the front of the indoor unit
  • mode 2 represents the case of two areas adjacent to each other in the front-rear relationship with the angle substantially equal to the indoor unit.
  • mode 3 represents the case of two regions where the angle with the indoor unit is substantially the same and is separated in the longitudinal relationship
  • mode 4 represents the case of two regions where the distance to the indoor unit is substantially the same and the angle is different
  • Mode 5 represents the case of two regions that are separated, in other words, two regions that are different in distance and angle from the indoor unit.
  • the up and down wind direction in modes 1 to 4 is fixed to a low demand area during heating, while being fixed to a high demand area during cooling.
  • the vertical wind direction in mode 5 controls the operation of the upper and lower blades 12 and after stopping for a predetermined time (fixed angle) in the first region of the two regions (first and second regions), The operation of changing the wind direction toward the first region is repeated after changing the wind direction toward the second region and stopping in the second region for a predetermined time.
  • region is each set, for example according to the distance from an indoor unit, and it is preferable to lengthen a stop time, so that the distance from an indoor unit is far.
  • the left and right wind directions in mode 1 are fixed at the center of two adjacent areas. In modes 2 and 3, it is assumed that the two areas are in substantially the same direction with different distances when viewed from the indoor unit.
  • the wind direction is fixed in a highly requested area.
  • the left and right wind directions of mode 5 and the arrangement of two areas that are separated from each other are controlled in the left and right blades 14 in the same manner as the upper and lower blades 12 and stopped in the first region for a predetermined time. After changing the wind direction toward the second area and staying in the second area for a predetermined time, the operation of changing the wind direction toward the first area is repeated.
  • the stopping time of each area is set according to the relative position from the indoor unit to each area, for example, the angle from the front of the indoor unit, and it is preferable to increase the stopping time as the angle from the front of the indoor unit increases. .
  • step S47 three or more areas to be air-conditioned are selected from the two modes, the normal mode and the special mode, depending on the arrangement.
  • the special mode represents the case of a total of three areas, that is, a medium distance and two areas adjacent to each other across the front of the indoor unit, and one area that is a long distance and located in front of the indoor unit.
  • the case of three or more areas excluding is denoted as normal mode. If there are three or more areas to be air-conditioned, the air volume is set to the set air volume in the area with the highest air conditioning requirement level. If it is determined in step S47 that the special mode (center adjacent) shown in FIG. The wind direction is set in the same manner as in mode 1 in FIG. 34A.
  • step S47 determines whether the mode is not the special mode. If it is determined in step S47 that the mode is not the special mode, control in the normal mode shown in FIG. 35B or FIG. 35C is performed in step S49, and the vertical wind direction is the upper and lower blades 12 in the region closest to the indoor unit. And the angle of the upper and lower blades 12 are changed between the set angle of the upper and lower blades 12 in the region farthest from the indoor unit.
  • the left and right wind directions are set at the left end angle and the right end angle at the left and right blades 14 in the regions at both ends (regions C and I in FIG. 35B and regions C and H in FIG. 35C).
  • the wind direction is changed (swing) toward the region on the right end side
  • the operation (swing) for changing the wind direction toward the region on the left end side is repeated.
  • the operating speed of the left and right blades 14 at the time of swing is set slower than the operating speed of the left and right blades 14 in the modes 4 and 5 described above.
  • the stop time at the left end angle or the right end angle is set in accordance with, for example, the angle from the front of the indoor unit, and it is preferable that the stop time is increased as the angle from the front of the indoor unit increases.
  • step S43 After each air-conditioning control is performed in step S43, S46, S48 or S49, it returns to step S41.
  • the electrostatic mist is utilized more effectively by combining the wind direction control using the human body detection devices (sensor units 126, 128, 130, 132, and 134) described above and the electrostatic atomizers 18 and 18A. How to do will be described.
  • the electrostatic mist has a skin quality improving effect in addition to a deodorizing effect for removing odor components.
  • the effect of improving the skin quality is that if the electrostatic mist reaches the occupant's skin, it brings moisture to the human skin although there are individual differences.
  • the control for generating the human skin quality improvement effect when the person is present in the room is the skin care mode, and the person is in the room.
  • Control that is generated for the purpose of exerting a deodorizing effect in the room when it is not present, that is, when it is absent is referred to as a room care mode.
  • the electrostatic mist generated in the skin care mode reacts with an indoor odor component, a deodorizing effect is exhibited.
  • the air conditioner in the present embodiment includes a human body detection sensor that detects the presence or absence of a person as a human body detection device (sensor units 126, 128, 130, 132, and 134), and an electrostatic atomizer that generates electrostatic mist.
  • the indoor unit having 18 and 18A is provided, and the control is provided with two modes of a skin care mode performed when a person is present and a room care mode performed when a person is absent. That is, when it is determined that there is a person in a predetermined area in the detection range of the human body detection sensor, the direction of the wind is controlled in the direction of the predetermined area as the skin care mode, and the detected person or the predetermined area is quietly controlled.
  • the electric mist is caused to reach, and when it is determined that there is no person within the detection range of the human body detection sensor, the electrostatic mist is caused to reach an upper or far region as the room care mode.
  • the wind direction control described above was controlled according to the temperature in the room during heating and cooling and the temperature felt by the human body in the room, but electrostatic mist is generated in accordance with the cooling and heating operation. Alternatively, it may be generated in accordance with the blowing operation in which the refrigeration cycle is stopped.
  • Such a configuration makes it possible to bring moisture to human skin by electrostatic mist in the skin care mode. Also, in the room care mode, there are no people, so there is no need for consideration such as avoiding blowing airflow to people, and deodorizing odorous components attached to the walls and curtains over the entire ceiling and room. And sterilization can be performed efficiently and effectively, and a comfortable indoor environment can be realized.
  • the rotational speed control of the indoor fan 8 and the wind direction control of the upper and lower blades 12 and the left and right blades 14 are the same as the above-described wind direction control according to the air conditioning setting in each of the areas A to I.
  • the airflow direction is controlled so that the airflow is controlled in front of the person's feet in the area where it is determined that there is a person during heating, and the blowing air (cold air) reaches above the area where it is determined that there is a person during cooling. Control.
  • the electrostatic atomizers 18 and 18A are operated so that the electrostatic mist generated by the electrostatic atomizers 18 and 18A along with the warm air or the cold air reaches the occupant to perform skin care.
  • the indoor fan 8 is set so that the electrostatic mist reaches the region where the person is frequently present (region of the region characteristic I), instead of controlling the wind direction in the region where it is determined that the person is present.
  • Rotational speed control and wind direction control of the upper and lower blades 12 and the left and right blades 14 can also be performed.
  • the indoor fan 8 and the electrostatic atomizers 18 and 18A are operated to remove the adhering odor on the wall surface, curtain, floor surface, or ceiling, and FIG.
  • the left and right blades 14 are controlled.
  • Regions A, B, C, F, G, H, and I are regions located outside of the divided nine regions and are far from the indoor unit, and it is assumed that walls and curtains exist in these regions. Because it is done.
  • electrostatic mist can reach the ceiling where odors such as cigarettes are expected to adhere, and static airflow along the ceiling by the ceiling airflow. Since the electric mist collides with the wall surface and flows downward, the floor surface can be deodorized and sterilized.
  • the wind direction control can be performed by setting the angles of the upper and lower blades 12 and the left and right blades 14 as shown in FIG. J1: 0 ° -25 ° J2: 25 ° -50 ° J3: 50 ° to 90 ° K1: -5 ° to 5 ° K2: 0 ° to 15 ° K3: 0 ° -60 ° K4: 5 ° -20 ° K5: 15 ° -45 °
  • the indoor fan 8, the upper and lower blades 12, and the left and right blades 14 are controlled in consideration of the above-described region characteristics I, II, and III. That is, the region of the region characteristic I is a region where the frequency of people is high, and the frequency of people decreases in the order of the region characteristics I ⁇ II ⁇ III. Therefore, the indoor fan 8 and the upper and lower blades 12 and the left and right blades 14 are controlled in order from the region where the frequency of presence of people is increased, so that the electrostatic mist reaches the regions of the predetermined time domain characteristics I to III sequentially.
  • the predetermined time for reaching the electrostatic mist may be increased in the order of region characteristics III ⁇ II ⁇ I. .
  • the electrostatic mist is sufficiently supplied in the skin care mode performed when a person is in the room.
  • the fan 8, the upper and lower blades 12, and the left and right blades 14 may be controlled so that the electrostatic mist reaches the regions of predetermined time domain characteristics I to III sequentially.
  • the predetermined time for reaching the electrostatic mist is increased in the order of area characteristics I ⁇ II ⁇ III. It can also be made. By performing the wind direction control in this way, it is possible to remove odors that have not been sufficiently removed.
  • the deodorizing effect or the sterilizing effect can be further improved by increasing the predetermined time for reaching the electrostatic mist in the room care mode.
  • the maximum set rotational speed of the indoor fan 8 at the time of air conditioning is 1200 rpm.
  • the rotational speed of the indoor fan 8 is set to the wind direction.
  • the reach of the electrostatic mist can also be improved by taking into account the air resistance of the changing means (the upper and lower blades 12 and the left and right blades 14) as shown in FIG. L1: 1200rpm L2: 1300 rpm L3: 1400rpm
  • the air conditioning setting in the detected area is used. Then, the control returns to the above-described “in-room control” in which the rotational speed control of the indoor fan 8 and the wind direction control of the upper and lower blades 12 and the left and right blades 14 are performed.
  • the absence of a person can be considered when the air conditioner is in operation temporarily or when the air conditioner is stopped and exited. If you are temporarily absent during operation, as the absence time is prolonged, the air conditioning operation may start the room care mode as it is, or the room care mode will be performed as an energy saving operation described later Also good. When the user is absent due to the exit, the room care mode may be performed for a predetermined time by the air blowing operation.
  • the indoor unit is provided with a timer, and by using this timer, absence detection energy saving control and forgetting-off prevention control are performed as a power saving operation.
  • a method of performing the absence detection energy saving control and the forgetting-off prevention control as the room care mode will be described below.
  • FIG. 38 shows an example in which power saving operation is achieved by controlling the air volume (number of rotations) of the indoor fan 8 and the capacity of the compressor provided in the outdoor unit when a person is not in the room.
  • the air volume of the indoor fan 8 is increased, the heat exchange efficiency of the heat exchanger 6 is improved, and cooling or heating capacity is increased when the frequency of the compressor is the same, so that the room temperature is kept at the same set temperature. In this case, the frequency of the compressor can be reduced, and the required power consumption is reduced. Further, even if the air volume of the indoor fan 8 is increased in the absence, there is no problem of discomfort due to the air current being too strong and comfort due to increased noise of the indoor fan 8. At this time, electrostatic mist is generated and blown out at the same time, so that the electrostatic mist can be spread to every corner of the room, and deodorization and sterilization can be performed as a room care mode.
  • the timer starts counting.
  • time t1 for example, 10 minutes
  • the air volume of the indoor fan 8 is increased and the frequency of the compressor is gradually increased to the time t2 (for example, counting). Decrease until 30 minutes after starting.
  • the air volume of the indoor fan 8 is kept constant (limit value), and after the time t2, the compressor frequency is kept constant (limit value), but the time t2, time t3 (for example, count)
  • time t4 for example, 2 hours after the start of counting
  • time t5 for example, 4 hours after the start of counting
  • FIG. 39 shows an example of the temperature shift.
  • the set temperature Tset is 28 ° C. and the target temperature (limit value) is 20 ° C.
  • ⁇ T is a temperature difference between the set temperature Tset and the target temperature.
  • the target temperature is a limit value when the heating capacity is lowered with the goal of energy saving when no one is present.
  • the timer starts counting, and after the timer starts counting, time t1 ( For example, when the absence of a person is confirmed at 10 minutes), the set temperature Tset is automatically reduced by 2 ° C. (1 / 4 ⁇ T). Further, when the absence of a person is confirmed at time t2 (for example, 30 minutes after the start of counting), the set temperature Tset is automatically further reduced by 2 ° C. (1 / 4 ⁇ T).
  • the set temperature Tset is set to 2 ° C. (1 / 4 ⁇ T), respectively. Reduce automatically. As the set temperature Tset is automatically reduced in this way, the heating capacity can be reduced by reducing the frequency of the compressor. For example, the reduction performed until time t2 may be sequentially decreased over time t5.
  • the total temperature is reduced by 8 ° C. from the set temperature Tset to 20 ° C., which is equal to the target temperature. Therefore, the set temperature Tset is maintained at the target temperature until time t5 (for example, 4 hours after the start of counting).
  • time t5 for example, 4 hours after the start of counting.
  • the operation of the air conditioner is stopped to prevent forgetting to turn off the air conditioner. In this way, energy saving control by absence detection can be performed, and wasteful heating operation can be prevented and power consumption can be reduced.
  • the electrostatic mist can be spread to every corner of the room, and deodorization and sterilization can be performed as the room care mode.
  • the temperature is returned to the set temperature Tset before time t1.
  • the temperature shift width (reduced temperature) is set as shown in Table 9 according to the temperature difference ⁇ T between the set temperature Tset and the target temperature, and the temperature shift width is smaller as the temperature difference ⁇ T is smaller.
  • the set temperature Tset is lower than the target temperature, the current temperature is maintained.
  • the absence of a person is confirmed at time t5
  • the operation of the air conditioner is stopped in the same manner as in the example of FIG. is there.
  • FIG. 40 shows an example of a temperature shift.
  • the set temperature Tset is 20 ° C. and the target temperature (limit value) is 28 ° C.
  • ⁇ T is a temperature difference between the set temperature Tset and the target temperature.
  • the timer starts counting, and after the timer starts counting, time t1 ( For example, when the absence of a person is confirmed at 10 minutes, the set temperature Tset is automatically increased by 2 ° C. (1 / 4 ⁇ T). Further, when the absence of a person is confirmed at time t2 (for example, 30 minutes after the start of counting), the set temperature Tset is automatically further increased by 2 ° C. (1 / 4 ⁇ T).
  • the set temperature Tset is set to 2 ° C. (1 / 4 ⁇ T), respectively. Increases automatically.
  • the total temperature is increased by 8 ° C. from the set temperature Tset to 28 ° C., which is equal to the target temperature. Therefore, the set temperature Tset is maintained at the target temperature until time t5 (for example, 4 hours after the start of counting).
  • time t5 for example, 4 hours after the start of counting.
  • the operation of the air conditioner is stopped to prevent forgetting to turn off the air conditioner. In this way, energy saving control based on absence detection can be performed, and wasteful cooling operation can be prevented and power consumption can be reduced.
  • the electrostatic mist can be spread to every corner of the room, and deodorization and sterilization can be performed as the room care mode.
  • the temperature is returned to the set temperature Tset before time t1.
  • the temperature shift width (increased temperature) is set as shown in Table 10 according to the temperature difference ⁇ T between the set temperature Tset and the target temperature.
  • the air conditioner according to the present invention allows the operation of the electrostatic atomizer only when the temperature and humidity of the air sucked into the indoor unit are within the operation permission area of the electrostatic atomizer, Since the lifetime of the electrostatic atomizer or energy saving can be achieved without generating abnormal noise or ozone, it is extremely useful as various air conditioners including general household air conditioners. In addition, for those with skin care mode or room care mode, a comfortable indoor environment can be realized by improving the human skin quality or purifying the room according to the presence or absence of the person. Especially, it is useful as an air conditioner for general households.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Human Computer Interaction (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 室内機に吸い込まれる空気の温度と湿度に基づいて静電霧化装置18,18Aの運転許可領域を設定し、吸込温度手段92により検知された温度と湿度手段94により検知された湿度が運転許可領域内の場合には静電霧化装置18,18Aの運転を許可する一方、吸込温度手段92により検知された温度と湿度手段94により検知された湿度が運転許可領域外の場合には静電霧化装置18,18Aの運転を禁止するようにした。

Description

空気調和機
 本発明は、室内空気を浄化する空気清浄機能を有する室内機を備えた空気調和機に関するものである。
 従来の空気調和機には脱臭機能を備えたものがあり、例えば室内機の吸込口に設けた空気清浄用プレフィルタにより臭気成分を吸着したり、送風路の途中に設けた酸化分解機能を有する脱臭ユニットにより臭気成分を吸着したりしている。
 しかしながら、脱臭機能を有する空気調和機は、吸込口から吸い込まれた空気中に含まれる臭気成分を取り除いて脱臭するため、室内の空気中に含まれる臭気成分や、カーテンや壁等に付着した臭気成分を除去することはできなかった。
 そこで、室内機の送風路に静電霧化装置を設け、静電霧化装置により発生した粒子径がナノメートルサイズの静電ミストを空気とともに室内に吹き出すことで、室内空気に含まれる臭気成分や、カーテンや壁等に付着した臭気成分を除去するようにした空気調和機も提案されている(例えば、特許文献1あるいは2参照。)。
 また、静電霧化装置をペルチェ素子で構成するとともに、室内機に吸い込まれる空気の温度と湿度を検知する吸込温度検知手段と湿度検知手段を設け、吸込温度検知手段と湿度検知手段の検知結果に基づいてペルチェ素子の駆動電源と高電圧電極に高電圧を印可する高電圧電源を制御することで、給水を行うことなく静電霧化に必要な水を得られるようにしたものも提案されている(例えば、特許文献3参照。)。
 さらに、吸込温度検知手段と湿度検知手段を設けることなく、結露水量と静電霧化時に発生する放電電流量との相関関係を利用して、検知した放電電流に基づいてペルチェ素子駆動電源をフィードバック制御することで、安定した静電霧化制御を行うようにしたものも提案されている(例えば、特許文献4参照。)。
特開2005-282873号公報 特開2006-234245号公報 特開2006-149538号公報 特開2007-21373号公報
 しかしながら、特許文献3に記載の空気調和機にあっては、ペルチェ素子の冷却面の温度を測定する冷却面温度測定手段が必要で、制御手段は、この冷却面温度測定手段により測定された冷却面の温度を露点温度に近づけるようにペルチェ素子駆動電源の電圧を制御しており、構成が複雑でコストアップを惹起するという問題がある。
 また、特許文献4に記載の空気調和機は、吸込温度検知手段と湿度検知手段を持たない構成で、室内の湿度が高く、高電圧電極に結露した水と対向電極との距離が短くなることに伴い異音が発生したり、所望の粒子径を有する静電ミストが発生しない領域や、逆に室内の湿度が低く、ペルチェ素子が最大能力を発揮しても露点温度まで到達できずオゾンが発生する可能性のある領域や、露点温度が氷点下の領域でも静電霧化装置が不必要に動作し、静電霧化装置の寿命が短くなったり、省エネを達成できないという問題がある。
 本発明は、従来技術の有するこのような問題点に鑑みてなされたものであり、異音やオゾンを発生することなく静電霧化装置が所望の静電ミストを発生できる運転許可領域を設定し、室内機に吸い込まれた空気の温度と湿度が運転許可領域内の場合にのみ静電霧化装置の運転を許可するようにしたので、静電霧化装置の高寿命化あるいは省エネを達成することができる簡素な構成で安価な空気調和機を提供することを目的としている。
 上記目的を達成するため、本発明は、室内空気を浄化する空気清浄機能を有する室内機を備えた空気調和機であって、静電ミストを発生させる静電霧化装置と、前記室内機に吸い込まれる空気の温度を検知する吸込温度検知手段と、前記室内機に吸い込まれる空気の湿度を検知する湿度検知手段とを設け、前記室内機に吸い込まれる空気の温度と湿度に基づいて前記静電霧化装置の運転許可領域を設定し、前記吸込温度検知手段により検知された温度と前記湿度検知手段により検知された湿度が前記運転許可領域内の場合には前記静電霧化装置の運転を許可する一方、前記吸込温度検知手段により検知された温度と前記湿度検知手段により検知された湿度が前記運転許可領域外の場合には前記静電霧化装置の運転を禁止し、かつ、少なくとも前記室内機に吸い込まれる空気の湿度が第1の所定値以上の場合を過剰結露領域として前記運転許可領域外に設定したことを特徴とする。
 本発明の別の態様は、人の在否を検知する人体検知センサと静電ミストを発生する静電霧化装置とを有する室内機を備えた空気調和機であって、前記人体検知センサの検知範囲において所定の領域に人がいると判定された場合には、前記所定の領域の方向に風向制御して前記所定の領域に静電ミストを到達させるようにする肌ケアモードと、前記検知範囲内に人がいないと判定された場合には、上方又は遠方の領域に静電ミストが到達するようにする部屋ケアモードとを有することを特徴とする。
 本発明の空気調和機によれば、室内機に吸い込まれる空気の温度と湿度に基づいて静電霧化装置の運転許可領域を設定し、吸込温度検知手段により検知された温度と湿度検知手段により検知された湿度が運転許可領域内の場合には静電霧化装置の運転を許可する一方、運転許可領域外の場合には静電霧化装置の運転を禁止するようにしたので、簡素な構成でコストアップを惹起することなく異音やオゾンの発生を未然に防止することができるとともに、静電霧化装置の高寿命化あるいは省エネを達成することができる。
 また、肌ケアモードとして、人体検知センサにより人がいると判定された領域、あるいは人がいる頻度が高い領域特性を持つ領域に風向制御して当該領域に静電ミストを到達させるようにすると、静電ミストが居住者に供給され居住者の肌質が改善される。
 さらに、部屋ケアモードとして、人体検知センサの検知範囲内に人がいないと判定された場合には、上方又は遠方の領域に静電ミストを到達させるようにすると、臭いが付着していることが予想される壁面やカーテン等に静電ミストが供給され、脱臭あるいは除菌を効率的かつ効果的に行うことができ、快適な室内環境を実現できる。
図1は一部を取り除いた状態を示す本発明に係る空気調和機の室内機の斜視図 図2は図1の室内機の概略縦断面図 図3は図1の室内機に設けられた静電霧化装置の斜視図 図4は図1の室内機の枠体の一部と静電霧化装置を示す正面図 図5は静電霧化装置の概略構成図 図6は静電霧化装置のブロック図 図7は室内機本体に対する静電霧化装置の取付状態を示す斜視図 図8は室内機本体に対する静電霧化装置の取付状態を示す変形例の斜視図 図9は静電霧化装置と換気ファンユニットとの位置関係を示す図1の室内機の側面図 図10は静電霧化装置の変形例を示す斜視図 図11は図11の静電霧化装置と換気ファンユニットとの位置関係を示す図1の室内機の側面図 図12は静電霧化装置の運転許可領域を示すグラフ 図13は室内機の制御部と静電霧化装置の制御部の信号の授受を示すブロック図 図14Aは人体検知装置を備えた本発明にかかる空気調和機の室内機の正面図 図14Bは図14Aの室内機において人体検知装置のカバーを取り外した状態の正面図 図14Cは図14Aの室内機の側面図 図15Aは前面パネルが前面吸込口を開放した状態の室内機の斜視図 図15Bは図15Aの室内機の側面図 図16は図14Aの室内機の縦断面図 図17Aは人体検知装置の正面図 図17Bは図17Aの人体検知装置の側面図 図17Cは図17Aの人体検知装置の斜視図 図18Aは人体検知装置の取付位置の変化に基づく視野範囲の変化を示す概略図 図18Bは人体検知装置の取付位置の変化に基づく視野範囲の変化を示す別の概略図 図18Cは人体検知装置の取付位置の変化に基づく視野範囲の変化を示すさらに別の概略図 図18Dは人体検知装置の取付位置の変化に基づく視野範囲の変化を示すさらに別の概略図 図19は人体検知装置に設けられた各センサユニットで検知される人体位置判別領域を示す概略図 図20は三つのセンサユニットにより検知される領域区分の概略図 図21は図19に示される各領域に領域特性を設定するためのフローチャート 図22は図19に示される各領域における人の在否を最終的に判定するフローチャート 図23は各センサユニットによる人の在否判定を示すタイミングチャート 図24は図14Aの室内機が設置された住居の概略平面図 図25は図24の住居における各センサユニットの長期累積結果を示すグラフ 図26は図14Aの室内機が設置された別の住居の概略平面図 図27は図26の住居における各センサユニットの長期累積結果を示すグラフ 図28は図14Aの室内機に設けられた上下羽根の作動状態を示す室内機の縦断面図 図29は図19に示される各領域の空調を行う場合の室内ファンの設定回転数を示す概略図 図30は図19に示される各領域の暖房を行う場合の上下羽根と左右羽根の設定角度を示す概略図 図31は図19に示される各領域の冷房を行う場合の立ち上がりあるいは不安定時の上下羽根と左右羽根の設定角度を示す概略図 図32は図19に示される各領域の冷房を行う場合の安定時の上下羽根と左右羽根の設定角度を示す概略図 図33は空調すべき領域の数に応じて行われる風向制御を示すフローチャート 図34Aは二つの領域を空調する場合の配置モードを示す概略図 図34Bは二つの領域を空調する場合の別の配置モードを示す概略図 図34Cは二つの領域を空調する場合のさらに別の配置モードを示す概略図 図34Dは二つの領域を空調する場合のさらに別の配置モードを示す概略図 図34Eは二つの領域を空調する場合のさらに別の配置モードを示す概略図 図35Aは三つの領域を空調する場合の配置モードを示す概略図 図35Bは三つの領域を空調する場合の別の配置モードを示す概略図 図35Cは三つの領域を空調する場合のさらに別の配置モードを示す概略図 図36は不在時に静電霧化運転を行う場合の上下羽根と左右羽根の設定角度を示す概略図 図37は不在時に静電霧化運転を行う場合の室内ファンの設定回転数を示す概略図 図38は室内ファンの風量と室外機に設けられた圧縮機の能力を制御することにより省電力運転を達成する場合のタイミングチャート 図39は暖房時の温度制御を示すタイミングチャート 図40は冷房時の温度制御を示すタイミングチャート
符号の説明
2 室内機本体、 2a 前面吸込口、2b 上面吸込口、
4 前面パネル、 5 プレフィルタ、 6 熱交換器、 
8 室内ファン、 10 吹出口、 12 上下羽根、 
14 左右羽根、 16 換気ファンユニット、 
18,18A 静電霧化装置、 20 主流路、 
22 バイパス流路、 22a バイパス吸入口、
22b バイパス吹出口、 22c バイパス吸入管、
22d バイパス吹出管、 22e 収容部、 
24 高電圧トランス、26 バイパス送風ファン、
28 放熱部、 30 静電霧化ユニット、 32 サイレンサ、
34 ケーシング、 36 ペルチェ素子、 36a 放熱面、
36b 冷却面、 38 放電電極、 40 対向電極、
42 制御部、 44 ペルチェ駆動電源、 46 台枠、
46a 後部壁、 46b 側壁、 46c 隔壁、 
46d 開口、 48 リヤガイダ、 48a 後部壁、
48b 側壁、 58 排気口、 62 開口部、
64 ダンパ、 66 ユニットハウジング、 
68 サイレンサハウジング、 72 制御部、 
92 吸込温度センサ、94 湿度センサ、 96 回転数検知手段、
100 カバー、 114 中羽根、 116 中羽根駆動機構、
118,120,122,124 アーム、
126,128,130,132,134 センサユニット、
126a,128a,130a,132a,134a 回路基板、
126b,128b,130b,132b,134b レンズ、
136 センサホルダ。
 以下、本発明の実施の形態について、図面を参照しながら説明する。
(空気調和機の全体構成)
 空気調和機は、通常冷媒配管で互いに接続された室外機と室内機とで構成されており、図1及び図2は、本発明にかかる空気調和機の室内機を示している。
 図1及び図2に示されるように、室内機は、本体2に室内空気を吸い込む吸込口として前面吸込口2a及び上面吸込口2bを有し、前面吸込口2aには開閉自在の可動前面パネル(以下、単に「前面パネル」という)4を有しており、空気調和機停止時は、前面パネル4は本体2に密着して前面吸込口2aを閉じているのに対し、空気調和機運転時は、前面パネル4は本体2から離反する方向に移動して前面吸込口2aを開放する。
 本体2の内部には、前面吸込口2a及び上面吸込口2bの下流側に設けられ空気中に含まれる塵埃を除去するためのプレフィルタ5と、このプレフィルタ5の下流側に設けられ前面吸込口2a及び上面吸込口2bから吸い込まれた室内空気と熱交換するための熱交換器6と、熱交換器6で熱交換した空気を搬送するための室内ファン8と、室内ファン8から送風された空気を室内に吹き出す吹出口10を開閉するとともに空気の吹き出し方向を上下に変更する上下羽根12と、空気の吹き出し方向を左右に変更する左右羽根14とを備えている。また、前面パネル4の上部は、その両端部に設けられた複数のアーム(図示せず)を介して本体2の上部に連結されており、複数のアームの一つに連結された駆動モータ(図示せず)を駆動制御することで、空気調和機運転時、前面パネル4は空気調和機停止時の位置(前面吸込口2aの閉塞位置)から前方に向かって移動する。上下羽根12も同様に、その両端部に設けられた複数のアーム(図示せず)を介して本体2の下部に連結されている。
(静電霧化装置の構成)
 また、室内機の一方の端部(室内機正面から見て左側端部で、後述する隔壁46cのバイパス流路22側)には、室内空気を換気するための換気ファンユニット16が設けられており、換気ファンユニット16の後方には、静電ミストを発生させて室内空気を浄化する空気清浄機能を有する静電霧化装置18が設けられている。
 なお、図1は前面パネル4及び本体2を覆う本体カバー(図示せず)を取り除いた状態を示しており、図2は室内機本体2と静電霧化装置18との接続位置を明確にするために本体2の内部に収容されている静電霧化装置18を本体2とは分離した状態を示している。静電霧化装置18は実際には図3に示される形状を呈し、図1あるいは図4に示されるように、本体2の左側部に取り付けられている。
 図2乃至図4に示されるように、静電霧化装置18は、前面吸込口2a及び上面吸込口2bから熱交換器6、室内ファン8等を経由して吹出口10に連通する主流路20において、熱交換器6と室内ファン8とをバイパスするバイパス流路22の途中に設けられており、バイパス流路22の上流側に高電圧電源となる高電圧トランス24とバイパス送風ファン26が設けられ、バイパス流路22の下流側に静電霧化ユニット30の放熱を促進する放熱部28を有する静電霧化ユニット30とサイレンサ32が設けられている。したがって、上流側から順に高電圧トランス24、バイパス送風ファン26、放熱部28、静電霧化ユニット30、及びサイレンサ32が配置された状態で、バイパス流路22の一部を構成するケーシング34に収容されている。このようにケーシング34に収容することにより、組み立て性が向上し、ケーシング34で流路を形成するので、省スペース化を図るとともに、バイパス送風ファン26による空気の流れを、発熱部である高電圧トランス24や放熱部28に確実に当てて冷却することができるとともに、静電霧化ユニット30から発生した静電ミストを確実に空気調和機の吹出口10に導入することができ、発生した静電ミストを被空調室内に放出させることができる。
 また、ケーシング34は、ケーシング34の内部を流れる空気流の方向が、主流路20を流れる空気流の方向に対して、室内機本体2の正面から見て平行にとなるように縦方向に配置されており、これにより室内機本体2の正面から見て換気ファンユニット16と重なる位置に隣接配置することができ、さらに省スペース化を達成している。
 なお、高電圧トランス24は必ずしもケーシング34内に収容する必要はないが、バイパス流路の通風により冷却されるため、温度上昇の抑制あるいは省スペース化の点で、ケーシング34内に収容するのが好ましい。
 ここで、従来公知の静電霧化ユニット30について図5及び図6を参照しながら説明する。
 図5に示されるように、静電霧化ユニット30は、放熱面36aと冷却面36bとを有する複数のペルチェ素子36と、放熱面36aに熱的に密着して接続された上述した放熱部(例えば、放熱フィン)28と、冷却面36bに電気絶縁材(図示せず)を介して熱的に密着して立設された放電電極38と、この放電電極38に対し所定距離だけ離隔して配置された対向電極40とで構成されている。
 また、図6に示されるように、換気ファンユニット16の近傍に配置された制御部42(図1参照)に、ペルチェ駆動電源44と高電圧トランス24は電気的に接続されており、ペルチェ素子36及び放電電極38はペルチェ駆動電源44及び高電圧トランス24にそれぞれ電気的に接続されている。
 なお、静電霧化ユニット30として放電電極38から高電圧放電させて静電ミストを発生させるためには、対向電極40を設けなくても可能である。例えば、放電電極38に高電圧電源の一方の端子を接続し、他方の端子をフレーム接続するようにしておけば、フレーム接続された構造体の放電電極38に近接した部分と放電電極38との間で放電することとなる。そのような構成の場合には、そのフレーム接続された構造体を対向電極40と見なすことができる。
 上記構成の静電霧化ユニット30において、制御部42によりペルチェ駆動電源44を制御してペルチェ素子36に電流を流すと、冷却面36bから放熱面36aに向かって熱が移動し、放電電極38の温度が低下することで放電電極38に結露する。さらに、制御部42により高電圧トランス24を制御して、結露水が付着した放電電極38に高電圧を印可すると、結露水に放電現象が発生して粒子径がナノメートルサイズの静電ミストが発生する。なお、本実施の形態においては、高電圧トランス24としてマイナス高電圧電源を用いているので、静電ミストは負に帯電している。
 また、本実施の形態においては、図7に示されるように、主流路20は、本体2を構成する台枠46の後部壁46aと、この後部壁46aの両端部より前方に延びる両側壁(図7では左側壁のみ示す)46bと、台枠46の下方に形成されたリヤガイダ(送風ガイド)48の後部壁48aと、この後部壁48aの両端部より前方に延びる両側壁(図7では左側壁のみ示す)48bとで形成されており、台枠46の一方の側壁(左側壁)46bとリヤガイダ48の一方の側壁(左側壁)48bとでバイパス流路22を主流路20から分離する隔壁46cを構成している。さらに、台枠46の一方の側壁46bにバイパス流路22のバイパス吸入口22aが形成される一方、リヤガイダ48の一方の側壁48bにバイパス流路22のバイパス吹出口22bが形成されている。
 空気調和機の場合、冷房時においては、室内機の熱交換器6を通過した低温の空気は相対湿度が高く、静電霧化装置18において、水分を補給するためにペルチェ素子36を備えた場合に、ペルチェ素子36のピン状の放電電極38のみならずペルチェ素子36全体に結露が発生しやすくなる。一方、暖房時においては、熱交換器6を通過した高温の空気は相対湿度が低いため、ペルチェ素子36の放電電極38に結露しない可能性が極めて高い。
 そこで上記構成のように、主流路20とバイパス流路22を隔壁46cで分離し、静電ミストを発生させる静電霧化装置18をバイパス流路22に設けたことにより、熱交換器6を通過せず温湿度調整がなされていない空気が静電霧化装置18に供給される。これにより、冷房時においては静電霧化ユニット30のペルチェ素子36全体に結露が発生することを有効に防止することで安全性が向上する。また、暖房時においては静電ミストを確実に発生させることができる。
 バイパス流路22は、バイパス吸入管22cとケーシング34とバイパス吹出管22dから構成されており、台枠側壁46bに形成されたバイパス吸入口22aに一端が接続されたバイパス吸入管22cは左方(左側壁46bに略直交し、前面パネル4に略平行な方向)に延びて、その他端はケーシング34の一端に接続され、さらにケーシング34の他端に一端が接続されたバイパス吹出管22dは下方に延びて右方に折曲され、その他端はリヤガイダ48の一方の側壁48bのバイパス吹出口22bに接続されている。このようにバイパス流路22の一部をケーシング34で構成することで、省スペース化を達成することができるとともに、これらを一連に構成することでバイパス吹出管22dを介して静電霧化ユニット18から静電ミストを主流路20に向けて確実に誘引することができ、静電ミストを被空調室内に放出させることができる。
 バイパス吸入口22aはプレフィルタ5と熱交換器6との間、すなわちプレフィルタ5の下流側で熱交換器6の上流側に位置しており、前面吸込口2a及び上面吸込口2bより吸い込まれた空気に含まれる塵埃はプレフィルタ5により有効に除去されるので、静電霧化装置18に塵埃が侵入することを抑制できる。これにより、静電霧化ユニット30に塵埃が堆積することを有効に防止でき、静電ミストを安定的に放出することができる。
 このように本実施の形態においては、プレフィルタ5で静電霧化装置18と主流路20のプレフィルタを兼ねる構成となっているが、これによりメンテナンスはプレフィルタ5のみを清掃すればよく、それぞれ別に手入れをする必要がないので、手入れを簡略化することができる。
 一方、バイパス吹出口22bは熱交換器6及び室内ファン8の下流側で吹出口10の近傍に位置しており、バイパス吹出口22bから吐出された静電ミストが主流路20の空気流に乗って拡散し部屋全体に充満するように構成されている。このようにバイパス吹出口22bを熱交換器6の下流側に配置したのは、熱交換器6の上流側に配置すると、熱交換器6は金属製のため、荷電粒子である静電ミストは熱交換器6にその大部分(約8~9割以上)が吸収されるからである。また、バイパス吹出口22bを室内ファン8の下流側に配置したのは、室内ファン8の上流側に配置すると、室内ファン8の内部には乱流が存在し、室内ファン8の内部を通過する空気が室内ファン8の様々な部位に衝突する過程で静電ミストの一部(約5割程度)が吸収されるからである。
 また、バイパス吹出口22bを設けたリヤガイダ48の一方の側壁48bの主流路20側は、室内ファン8により空気流に所定の速度が付与されることで、側壁48bの主流路20側とバイパス流路22側において圧力差が生じ、バイパス流路22に対し主流路20側が相対的に低圧となる負圧部となっており、バイパス流路22から主流路20に向かって空気が誘引される。したがって、バイパス送風ファン26は小容量のもので済み、場合によってはバイパス送風ファン26を設けなくてもよい。
 さらに、バイパス吹出管22dは、主流路20との合流点(バイパス吹出口22b)において主流路20内の空気流に対し略直交する方向に指向するように隔壁46c(リヤガイダ48の側壁48b)に接続されている。これは、静電霧化ユニット30は、上述したように放電現象を利用して静電ミストを発生させていることから、必然的に放電音を伴い、放電音には指向性があるからである。したがって、バイパス流路22と主流路20の合流点(バイパス吹出口22b)において、バイパス流路22を前面パネル4に略平行に接続することで、室内機の前方あるいは斜め前方にいる人に対して、放電音が極力指向しないように構成して騒音を低減することができる。
 また、図8に示されるように、バイパス吹出管22dを主流路20との合流点において隔壁46cに対し傾斜させ、主流路20内の空気流に対し上流側に指向するように接続すると、より一層放電音による騒音の低減に効果がある。
 なお、バイパス吹出管22dの指向する方向が主流路20内の空気流の下流方向に指向して接続した場合においても、その延長線が吹出口10から外部に出ないようにしておけば、発生する放電音が吹出口10から直接外部に出る量が少なく、直接的に使用者の耳に入射することも少ないため、騒音低減効果を奏することができる。
 以上説明したように、主流路20とバイパス流路22を隔壁46cで分離し、静電ミストを発生させる静電霧化装置18を熱交換器6をバイパスして主流路20に連通するバイパス流路22に設けたので、熱交換器6を通過せず温湿度調整がなされていない空気が静電霧化装置18に供給されるので、冷房時においては静電霧化ユニット30のペルチェ素子36全体に結露が発生することを有効に防止することで安全性が向上するとともに、暖房時においては静電ミストを確実に発生させることができ、空気調和機の運転モードに関わらず、すなわち、季節に関係なく静電ミストを安定的に発生させることができる。
 なお、図9は、室内機本体2を側面から見た場合の静電霧化装置18の取付状態を示しており、静電霧化装置18は換気ファンユニット16の後部空間に対応する形状を呈し、当該空間に収容されている。
 図10はケーシング34を持たない静電霧化装置18Aを示しており、この静電霧化装置18Aは、図11に示されるように室内機本体2に組み込まれる。あるいは、図11に示される破線領域18B(図9に示される静電霧化装置18においてバイパス流路22の下流側に設けられた静電霧化ユニット30とサイレンサ32と略同じ位置)に組み込まれる。これらは、静電霧化装置18Aを室内機の正面又は上面から見て換気ファンユニット16と重なる位置に配設するとともに、静電霧化装置18Aを換気ファンユニット16の開口部62及びダンパ64の近傍で、換気ファンユニット16による吸引空気が流れる部分に配置するものである。
 さらに詳述すると、図10の静電霧化装置18Aは、放熱部28を有する静電霧化ユニット30とサイレンサ32が一体的に取り付けられ、放熱部28を除く静電霧化ユニット30部分とサイレンサ32はそれぞれのハウジング(ユニットハウジング66とサイレンサハウジング68)に収容され、サイレンサハウジング68にバイパス吹出管22dの一方が接続されて連通し、バイパス吹出管22dの他方が主流路20に接続されて連通している。この場合、隔壁46cにより主流路20から分離され、図示しない本体カバーの左側面との間に形成されて、換気ファンユニット16、静電霧化装置18A等が配設された収容部22eが前述したバイパス吸入管22cとケーシング34との代わりとなるとともに、バイパス吹出管22dまでも収容してバイパス流路22として構成することになる。
 なお、バイパス吹出管22dは、主流路20の空気流に対して指向する向きで騒音低減が図れることは上述したとおりであるが、必ずしも必要というものではなく、サイレンサハウジング68を直接的にバイパス吹出口22bに接続してもよい。これにより、静電霧化装置18Aの構成をより簡素化することができる。ただし、騒音低減のために向きの配慮が必要なことはバイパス吹出管22dと同様である。
 これにより、プレフィルタ5を介して本体2内に吸い込まれる空気は、プレフィルタ5の下流側のバイパス吸入口22aより収容部22eに吸い込まれ、その空気流の方向は、主流路20を流れる空気流の方向に対して、室内機本体2を正面から見て平行に収容部22e内を流れることになる。このように収容部22e内を流れた空気により放熱部28は冷却されるとともに、ユニットハウジング66に形成された開口部(図示せず)より静電霧化ユニット30に取り込まれる。
 このように構成することで、室内機の正面又は上面から見て換気ファンユニット16と重なる換気ファンユニット16の周囲空間がバイパス流路22となり、換気ファンユニット16、静電霧化装置18A等の収容部22eを有効に活用して省スペース化を達成することができる。なお、この構成では、高電圧トランス24は換気ファンユニット16、静電霧化装置18A等の収容部22eにおける任意の部位に配置され、バイパス送風ファン26は設けられない。
 また、このようにバイパス流路22を、主流路20を通過する空気流に対して、室内機本体2を正面から見て平行に空気流が流れるように構成することにより、上で詳述したように隔壁46cという簡略な構成で主流路20とバイパス流路22を分岐することができるため、容易にバイパス流路22が形成でき、部品点数を削減することができる。
 さらに、本構成とすることで、静電霧化装置18Aのプレフィルタと主流路20のプレフィルタをプレフィルタ5で共有化することができる。共有化の効果については、先述の通りであるので、ここでは詳細は省略する。
 なお、換気ファンユニット16の後部にあたる台枠46の下部近傍において、室内機と室外機とを接続する配管(図示せず)を引き出せるように開口46dを形成してもよい。上述したバイパス吸入口22aは、収容部22eに空気を吸い込むために隔壁46c(台枠側壁46b)に形成された収容部22eにおける1つの開口であり、室内機の外部とはプレフィルタ5を通して連通していたが、台枠46の下部に形成された開口46dにおいては、収容部22eが室内機の外部と直接連通して周囲の空気を吸い込む開口となる。このような場合には、収容部22eはプレフィルタ5をもバイパスするバイパス流路となる。したがって、静電霧化装置18Aに吸い込まれる空気は開口46dから流入したものとなってプレフィルタ5を通過しないことになるので、必要に応じて別途静電霧化装置18A用のプレフィルタを設ければよい。また、開口46dを形成した構成でも室内機の正面又は上面から見て換気ファンユニット16と重なる位置に静電霧化装置18Aが配設されていることは変わらず、収容部22eを有効に活用して省スペース化を達成することができるのは同様である。
 上述したように、バイパス吹出口22bの主流路20側は、室内ファン8により空気流に所定の速度が付与されることで圧力差が発生して誘引される負圧部となっているので、バイパス送風ファン26は設けなくても、バイパス吹出管22dを介してバイパス流路である収容部22eから主流路20に向かって誘引される空気により放熱部28は冷却され、静電霧化ユニット30により発生した静電ミストが主流路20に誘引され、被空調室内に放出させることができる。また、放熱部28は、破線領域18Bのように開口部62及びダンパ64の近傍で、開口部62に吸い込まれる空気が流れる部分に配置したことから換気ファンユニット16による吸引空気によっても冷却される。
 なお、図11に示されるように、静電霧化装置18Aの放熱部28を換気ファンユニット16に設けられた開口部62に近接して配置することで、開口部62に吸い込まれる空気により放熱部28がより冷却され、静電霧化ユニット30からの放熱が促進される。また、換気ファンユニット16として換気専用のファンを使用した場合、ダンパ64は設けられることがないので、換気ファンユニット16の吸込口に放熱部28を近接配置することで、放熱部28は効率よく冷却される。
 以上説明したように、上記構成によれば、主流路20とバイパス流路となる収容部22eとを隔壁46cで分離し、静電ミストを発生させる静電霧化装置18Aを収容部22eに設けたので、熱交換器6を通過せず温湿度調整がなされていない空気が静電霧化装置18Aに供給されるので、冷房時においては静電霧化ユニット30のペルチェ素子36全体に結露が発生することを有効に防止することで安全性が向上するとともに、暖房時においては静電ミストを確実に発生させることができ、空気調和機の運転モードに関わらず、すなわち、季節に関係なく静電ミストを安定的に発生させることができる。
(静電霧化装置の運転制御)
 この制御は、静電霧化装置18,18Aの運転許可条件として複数のパラメータを設定し、全てのパラメータが静電霧化装置18,18Aの運転許可を示している場合にのみ静電霧化装置18,18Aの運転を許可する一方、少なくとも一つのパラメータが運転許可を示していない場合には静電霧化装置18,18Aの運転を禁止することで、省エネあるいはペルチェ素子36の寿命の観点から静電霧化装置18,18Aの不要な運転を防止するとともに異常な運転を防止するためのものである。
 本実施の形態では、運転許可条件として次のようなパラメータが設定されている。
 (i)室内空気の温度及び湿度が静電霧化装置18,18Aの運転許可領域内の場合
 (ii)室内ファン8の回転数が所定回転数以上の場合
 (iii)静電霧化装置18,18Aが異常でない場合
 上記(i)の静電霧化装置18,18Aの運転許可領域についてまず説明する。
 室内機には、吸い込まれる空気の温度を検知する吸込温度センサ92(図13参照)が吸込口(前面吸込口2aあるいは上面吸込口2b)の近傍に設けられ、吸い込まれる空気の湿度を検知する湿度センサ94(図13参照)が、例えば室内機の電源基板に設けられており、室内機に吸い込まれる空気の温度と湿度に基づいて静電霧化装置18,18Aの運転許可領域を設定して、吸込温度センサ92が検知した温度と湿度センサ94が検知した湿度がこの運転許可領域内の場合には静電霧化装置18,18Aの運転を許可する一方、検知された温度及び湿度が運転許可領域外の場合には静電霧化装置18,18Aの運転を禁止している。
 上記構成によれば、冷却面温度測定手段が不要で簡素な構成でコストアップを惹起することなく、検知された温度及び湿度が運転許可領域外の場合には静電霧化装置18,18Aの運転を禁止することで異音やオゾンの発生を未然に防止することができるとともに、静電霧化装置の高寿命化あるいは省エネを達成することができる。
 図12のグラフを参照しながら、静電霧化装置18,18Aの運転許可領域を説明する。図12に示されるように、室内機に吸い込まれる空気の温度と湿度に基づいて、過剰結露領域と第1の性能外領域と氷点下領域が設定され、これらの領域を除く領域が運転許可領域として設定されている。過剰結露領域とは、湿度が高く(第1の所定値以上)、放電電極38に結露した水と対向電極40との距離が短くなることで短絡に近い状態となり、短絡電流により異音が発生したり、所望の粒子径を有する静電ミストが発生しなくなったりする領域である。また、第1の性能外領域とは、湿度が低く(前記第1の所定値より小さい第2の所定値以下)、ペルチェ素子36が最大能力を発揮しても露点温度まで到達できない領域のことであり、結露水と対向電極40との間の放電ではなく、放電電極38と対向電極40との間の放電となるためオゾンが発生する虞がある。さらに、氷点下領域とは、湿り空気線図から求められる露点温度が氷点下となる領域のことである。
 すなわち、過剰結露領域を設定して静電霧化装置18,18Aの運転を禁止することによって、室内の湿度が高く、高電圧電極に過剰に結露した水と対向電極との距離が短くなることに伴って異音が発生してしまうことや、所望の粒子径を有する静電ミストが発生しなくなってしまうことを防止することができる。
 また、第1の性能外領域を設定して静電霧化装置18,18Aの運転を禁止することによって、室内の湿度が低く、ペルチェ素子が最大能力を発揮しても露点温度まで到達できずにオゾンが発生してしまうことを防止することができる。
 また、氷点下領域を設定して静電霧化装置18,18Aの運転を禁止することによって、露点温度が氷点下の領域でも不必要に動作し、静電霧化装置18,18Aの寿命が短くなったり、省エネを達成できなくなったりしてしまうことを防止することができる。
 なお、図12のグラフにおいて、上限温度が設定されているが、この上限温度以上の領域は放熱部28のサイズに依存するので、この領域は第2の性能外領域ということができる。すなわち、上述したように、ペルチェ素子36に電流を流すと、冷却面36bから放熱面36aに向かって熱が移動し、放電電極38の温度が低下することで放電電極38に結露し、放熱面36aに移動した熱は放熱部28から放熱するが、静電霧化ユニット30の収納性の点から放熱部28のサイズには制約がある。放熱部28のサイズは、少なくとも暖房運転時の最高設定温度(例えば、30℃)では確実に正常動作することを考慮して設定され、この最高設定温度以上の温度(例えば、32~35℃)でも静電霧化ユニット30がおおむね正常に動作するようには設定されている。しかしながら、この最高設定温度以上になると温度が高くなるにつれて正常な動作が妨げられる可能性も高くなってくる。したがって、検知温度が上限温度としての暖房運転時の最高設定温度を超えると、静電霧化ユニット30の正常な動作が妨げられる第2の性能外領域と見なしている。なお、冷房運転においても放熱部28のサイズに制約されるのは同様であり、例えばここでの上限温度である30℃以下にまで室内温度が低下してから静電霧化装置18,18Aが動作することになる。
 すなわち、第2の性能外領域を設定することによって、上限温度を超えてペルチェ素子36の動作が不安定な状態で静電霧化装置18,18Aを運転してしまうことを防止することができる。
 次に、上記(ii)の室内ファン8の回転数について説明する。
 ペルチェ素子36の冷却面36bから放熱面36aに向かって移動した熱は放熱部28で放熱するが、回転数検知手段96(図13参照)により検知された室内ファン8の回転数が所定回転数(例えば、約400rpm)に満たない場合、放熱部28における放熱が不十分となり、ペルチェ素子36により所望の冷却性能を発揮できない。そこで、室内ファン8の回転数が所定回転数以上の場合には、静電霧化装置18,18Aの運転を許可する一方、所定回転数未満の場合には静電霧化装置18,18Aの運転を禁止している。
 これにより、放熱不足でペルチェ素子36の動作が不安定になることを防止したり、ペルチェ素子36の冷却性能が発揮できずに放電電極38に所定の結露水が得られずにオゾンが発生することを防止したりすることができる。なお、室内ファン8の回転数が低いときには静電霧化装置18,18Aの放電音が目立つようになることもあり、所定回転数未満の場合には静電霧化装置18,18Aの運転を停止することで、そのような騒音の発生を回避することができる。
 さらに、上記(iii)の静電霧化装置18,18Aの異常として、高電圧トランス24の故障(出力電圧の異常)及びペルチェ駆動電源44の故障(出力電圧の異常)を設定し、静電霧化装置18,18Aの異常検知手段を含んだ制御部42(図13参照)により高電圧トランス24あるいはペルチェ駆動電源44の故障が検知されない場合には、静電霧化装置18,18Aの運転を許可する一方、いずれかの故障により異常が検知されると静電霧化装置18,18Aの運転を禁止している。これにより、静電霧化装置18,18Aが異常をかかえたまま運転してしまうことを防止することができる。
 図13は室内機の制御部72と静電霧化装置18,18Aの制御部42の信号の授受を示すブロック図である。
 図13に示されるように、吸込温度センサ92の出力、湿度センサ94の出力及び回転数検知手段96の出力は室内機の制御部72に入力されるとともに、静電霧化装置18,18Aの制御部42は高電圧トランス24の出力値及びペルチェ駆動電源44の出力値を監視している。ここで、吸込温度センサ92及び湿度センサ94は、冷暖房や除湿の空調運転における冷凍サイクルの制御に用いられているものを使用している。
 室内機の制御部72は、吸込温度センサ92が検知した温度と湿度センサ94が検知した湿度が静電霧化装置18,18Aの運転許可領域内にあり、回転数検知手段96が検知した室内ファン8の回転数が所定回転数以上で、かつ、静電霧化装置18,18Aの制御部42からの異常信号が制御部72に入力されていない場合にのみ、静電霧化装置18,18Aの制御部42に運転許可信号を出力し、運転許可信号を受けて静電霧化装置18,18Aの制御部42は、高電圧トランス24及びペルチェ駆動電源44を制御する。
 一方、吸込温度センサ92が検知した温度と湿度センサ94が検知した湿度が静電霧化装置18,18Aの運転許可領域外か、回転数検知手段96が検知した室内ファン8の回転数が所定回転数未満か、あるいは、静電霧化装置18,18Aの制御部42からの異常信号が室内機の制御部72に入力された場合には、制御部72から静電霧化装置18,18Aの制御部42に運転許可信号は出力されず、静電霧化装置18,18Aの運転は禁止される。
 なお、図13のブロック図において、室内機の制御部72から静電霧化装置18,18Aの制御部42に運転許可信号を出力するようにしたが、運転許可信号に代えて電源ONの信号を出力するようにしてもよい。
 以上のような構成とすれば、ペルチェ素子の冷却面の温度を測定する冷却面温度測定手段等を必要としない簡素な構成で、吸込温度センサ92及び湿度センサ94は静電霧化装置18,18Aの運転以外の空調運転でも使用する検知手段を兼用することができてコストアップになることを防止することができる。
 また、静電霧化装置18,18Aの運転許可条件として上述した(i)~(iii)のパラメータを設定したが、これらのパラメータに加え、静電霧化装置18,18Aを除く室内機の消費電力を制御部72で算出し、算出された消費電力が許容電力値以下の場合に静電霧化装置18,18Aの運転を許可する一方、許容電力値を超えると静電霧化装置18,18Aの運転を禁止するようにしてもよい。
 以下、このパラメータについて表1を参照しながらさらに詳述する。
Figure JPOXMLDOC01-appb-T000001
 表1は室内機の消費電力の1例を示しており、室内機の許容消費電力を18Wと仮定し、マイコン(制御部72)等の定常的に消費される電力を10Wとすると、残りの8Wを用いて、静電霧化装置18,18Aや、上下羽根12及び左右羽根14あるいはその他の駆動部を並列運転させる必要がある。したがって、静電霧化装置18,18Aを除いて算出した消費電力の合計値が許容電力値(例えば、14W)以下の場合に静電霧化装置18,18Aの運転を許可する一方、許容電力値を超えると静電霧化装置18,18Aの運転を禁止するように設定される。上記構成により、室内機の許容電力を超えることを防止することができる。
 次に、室内機本体2に人の位置を検知する人体検知装置を設け、人体検知装置により検知された人の位置に基づいて行われる空調制御について説明する。
 図14A~図14C、図15A,図15B及び図16は、人体検知装置を備えた本発明にかかる空気調和機の室内機を示しており、図14A~図14Cは前面パネル4が前面吸込口2aを閉じた状態を示しているのに対し、図15A及び図15Bは前面パネル4が前面吸込口2aを開放した状態を示している。
 図16に示されるように、本体2の内部には、空気の吹き出し方向を上下に変更する上下羽根12と、空気の吹き出し方向を左右に変更する左右羽根14に加え、前面吸込口2aの下方の本体2には、前面吸込口2aの吹出口10側で開閉する中羽根114が中羽根駆動機構116を介して揺動自在に取り付けられている。さらに、前面パネル4上部は、その両端部に設けられた2本のアーム118,120を介して本体2上部に連結されており、アーム118に連結された駆動モータ(図示せず)を駆動制御することで、空気調和機運転時、前面パネル4は空気調和機停止時の位置(前面吸込口2aの閉塞位置)から前方斜め上方に向かって移動する。また、上下羽根12は、その両端部に設けられた2本のアーム122,124を介して本体2下部に連結されているが、その駆動方法については後述する。
(人体検知装置の構成)
 図14B及び図14Cに示されるように、前面パネル4の上部には、複数(例えば、五つ)のセンサユニット126,128,130,132,134が前面パネル4の主平面から突出した状態で人体検知装置として取り付けられており、これらのセンサユニット126,128,130,132,134は、図17A~図17Cに示されるように、センサホルダ136に保持されている。なお、人体検知装置は、図14Aに示されるようにカバー100で覆われており、図14Bはカバー100を取り外した状態を示している。
 各センサユニット126,128,130,132,134を前面パネル4の上部に設けたのは、図18Aに示されるように、各センサユニット126,128,130,132,134の視野範囲(後述する人体位置判別領域)を拡大して遠方視野を最大限確保するためである。また、図18Bに示されるように、運転開始時に前面パネル4を停止位置より前方に移動させることでより遠くまで視野範囲を確保することができるとともに、図18Cに示されるように、前面パネル4を停止位置より斜め上方に移動させることで視野範囲をさらに拡大することができる。なお、各センサユニット126,128,130,132,134の位置は前面パネル4の上部に限定されるわけではなく、また、前面パネルが可動でない場合でも、人体検知装置を前面パネルの上部あるいは本体上部に取り付けることにより下部に取り付けた場合に比べ視野範囲を拡大することができる。
 また、図18Dに示されるように、各センサユニット126,128,130,132,134を前面パネル4の主平面から突出させて設けることで、各センサユニット126,128,130,132,134をより前方に配置することができ、図18B~図18Dに示されるように、室内機の構成部(例えば、上下羽根12や、前面吸込口2aを開放状態の前面パネル4など)による死角発生を防止して視野範囲を拡大させることができる。
 本実施の形態では、各センサユニット126,128,130,132,134は前面パネル4に設けられているので、前面パネル4が前面吸込口2aを開放状態としたときには前面パネル4に付随して移動することとなり、更に前方に突出することとなる。
 また、センサユニット126は、回路基板126aと、回路基板126aに取り付けられたレンズ126bと、レンズ126bの内部に実装された人体検知センサ(図示せず)とで構成されており、この構成は、他のセンサユニット128,130,132,134についても同様である。さらに、人体検知センサは、例えば人体から放射される赤外線を検知することにより人の在否を検知する赤外線センサにより構成されており、赤外線センサが検知する赤外線量の変化に応じて出力されるパルス信号に基づいて回路基板126aにより人の在否が判定される。すなわち、回路基板126aは人の在否判定を行う在否判定手段として作用する。
(人体検知装置による人位置推定)
 図19は、センサユニット126,128,130,132,134で検知される人体位置判別領域を示しており、センサユニット126,128,130,132,134は、それぞれ次の領域に人がいるかどうかを検知することができる。
 センサユニット126:領域A+C+D
 センサユニット128:領域B+E+F
 センサユニット130:領域C+G
 センサユニット132:領域D+E+H
 センサユニット134:領域F+I
 すなわち、本発明にかかる空気調和機の室内機においては、センサユニット126,128で検知できる領域と、センサユニット130,132,134で検知できる領域が一部重なっており、領域A~Iの数よりも少ない数のセンサユニットを使用して各領域A~Iにおける人の在否を検知するようにしている。
 また、少なくとも三つの人体検知センサを室内機の上部に取り付けることで、室内における人体の位置を室内機に対して遠近方向と左右方向、すなわち室内フロアのどこにいるのかを二次元的に把握することができる。図20は三つの人体検知センサを設けた場合の検知される領域を示しており、図20の例では、室内機の近傍の領域における人の在否が一つの人体検知センサで検知され、室内機から遠い領域における人の在否が二つの人体検知センサで検知される。
 図19に戻って本実施の形態をさらに説明するが、以下の説明ではセンサユニット126,128,130,132,134を第1のセンサ126、第2のセンサ128、第3のセンサ130、第4のセンサ132、第5のセンサ134という。また、領域C,D,E,Fは二つのセンサで検知されるので、重なり領域というのに対し、重なり領域以外の領域(領域A,B,G,H,I)は一つのセンサで検知されるので、通常領域という。また、重なり領域は、左の重なり領域C,Dと右の重なり領域E,Fに分けられる。
 図21は、第1乃至第5のセンサ126,128,130,132,134を使用して、領域A~Iの各々に後述する領域特性を設定するためのフローチャートで、図22は、第1乃至第5のセンサ126,128,130,132,134を使用して、領域A~Iのどの領域に人がいるか否かを判定するフローチャートであり、これらのフローチャートを参照しながら人の位置判定方法について以下説明する。
 ステップS1において、所定の周期T1(例えば、5秒)で左の重なり領域における人の在否がまず判定され、ステップS2において、所定の条件で所定のセンサ出力をクリアする。
 表2は、左の重なり領域の判定方法を示しており、表2に示される三つの反応結果のいずれかに該当する場合は、第1のセンサ126及び第3のセンサ130の出力をクリアする。ここで、1は反応有り、0は反応無し、クリアは1→0にすることと定義する。
Figure JPOXMLDOC01-appb-T000002
 ステップS3では、上述した所定の周期T1で右の重なり領域における人の在否がさらに判定され、ステップS4において、所定の条件で所定のセンサ出力をクリアする。
 表3は、右の重なり領域の判定方法を示しており、表3に示される三つの反応結果のいずれかに該当する場合は、第2のセンサ128及び第5のセンサ134の出力をクリアする。
Figure JPOXMLDOC01-appb-T000003
 また、表2及び表3に示される六つの反応結果のいずれかに該当する場合は、第4のセンサ132の出力もクリアし、ステップS5に移行する。ステップS5においては、上述した所定の周期T1で通常領域における人の在否が表4に基づいて判定され、ステップS6において、全てのセンサ出力をクリアする。
Figure JPOXMLDOC01-appb-T000004
 さらに、図23を参照して第1乃至第3のセンサ126,128,130からの出力のみを使用して領域A,B,Cにおける人の在否を判定する場合について説明する。
 図23に示されるように、時間t1の直前の周期T1において第1乃至第3のセンサ126,128,130がいずれもOFF(パルス無し)の場合、時間t1において領域A,B,Cに人はいないと判定する(A=0,B=0,C=0)。次に、時間t1から周期T1後の時間t2までの間に第1のセンサ126のみON信号を出力し(パルス有り)、第2及び第3のセンサ128,130がOFFの場合、時間t2において領域Aに人がいて、領域B,Cには人がいないと判定する(A=1,B=0,C=0)。さらに、時間t2から周期T1後の時間t3までの間に第1及び第3のセンサ126,130がON信号を出力し、第2のセンサ128がOFFの場合、時間t3において領域Cに人がいて、領域A、Bには人がいないと判定する(A=0,B=0,C=1)。以下、同様に周期T1毎に各領域A,B,Cにおける人の在否が判定される。
 実際には、第1乃至第5のセンサ126,128,130,132,134を使用して、領域A~Iのどの領域に人が存在するかどうかの判定が行われ、表5は全てのセンサ126,128,130,132,134からの出力を使用して各領域A~Iにおける人の在否判定結果を示している。
Figure JPOXMLDOC01-appb-T000005
 なお、表5において、表2乃至表4に示される位置判定以外の位置判定は、ステップS1,S3,S5におけるそれぞれの判定結果を組み合わせて行っている。
 この判定結果に基づいて各領域A~Iを、人が良くいる第1の領域(良くいる場所)、人のいる時間が短い第2の領域(人が単に通過する領域、滞在時間の短い領域等の通過領域)、人のいる時間が非常に短い第3の領域(壁、窓等人が殆ど行かない非生活領域)とに判別する。以下、第1の領域、第2の領域、第3の領域をそれぞれ、生活区分I、生活区分II、生活区分IIIといい、生活区分I、生活区分II、生活区分IIIはそれぞれ、領域特性Iの領域、領域特性IIの領域、領域特性IIIの領域ということもできる。また、生活区分I(領域特性I)、生活区分II(領域特性II)を併せて生活領域(人が生活する領域)とし、これに対し、生活区分III(領域特性III)を非生活領域(人が生活しない領域)とし、人の在否の頻度により生活の領域を大きく分類してもよい。
 この判別は、図21のフローチャートにおけるステップS7以降で行われ、この判別方法について図24及び図25を参照しながら説明する。
 図24は、一つの和室とLD(居間兼食事室)とキッチンとからなる1LDKのLDに本発明にかかる空気調和機の室内機を設置した場合を示しており、図24における楕円で示される領域は被験者が申告した良くいる場所を示している。
 上述したように、周期T1毎に各領域A~Iにおける人の在否が判定されるが、周期T1の反応結果(判定)として1(反応有り)あるいは0(反応無し)を出力し、これを複数回繰り返した後、ステップS7において、所定の空調機の累積運転時間が経過したかどうかを判定する。ステップS7において所定時間が経過していないと判定されると、ステップS1に戻る一方、所定時間が経過したと判定されると、各領域A~Iにおける当該所定時間に累積した反応結果を二つの閾値と比較することにより各領域A~Iをそれぞれ生活区分I~IIIのいずれかに判別する。
 長期累積結果を示す図25を参照して、さらに詳述すると、第1の閾値及び第1の閾値より小さい第2の閾値を設定して、ステップS8において、各領域A~Iの長期累積結果が第1の閾値より多いかどうかを判定し、多いと判定された領域はステップS9において生活区分Iと判別する。また、ステップS8において、各領域A~Iの長期累積結果が第1の閾値より少ないと判定されると、ステップS10において、各領域A~Iの長期累積結果が第2の閾値より多いかどうかを判定し、多いと判定された領域は、ステップS11において生活区分IIと判別する一方、少ないと判定された領域は、ステップS12において生活区分IIIと判別する。
 図25の例では、領域E,F,Iが生活区分Iとして判別され、領域B,Hが生活区分IIとして判別され、領域A,C,D,Gが生活区分IIIとして判別される。
 また、図26は別の1LDKのLDに本発明にかかる空気調和機の室内機を設置した場合を示しており、図27はこの場合の長期累積結果を元に各領域A~Iを判別した結果を示している。図26の例では、領域C,E,Gが生活区分Iとして判別され、領域A,B,D,Hが生活区分IIとして判別され、領域F,Iが生活区分IIIとして判別される。
 なお、上述した領域特性(生活区分)の判別は所定時間毎に繰り返されるが、判別すべき室内に配置されたソファー、食卓等を移動することがない限り、判別結果が変わることは殆どない。
 次に、図22のフローチャートを参照しながら、各領域A~Iにおける人の在否の最終判定について説明する。
 ステップS21~S26は、上述した図21のフローチャートにおけるステップS1~S6と同じなので、その説明は省略する。ステップS27において、所定数M(例えば、15回)の周期T1の反応結果が得られたかどうかが判定され、周期T1は所定数Mに達していないと判定されると、ステップS21に戻る一方、周期T1が所定数Mに達したと判定されると、ステップS28において、周期T1×Mにおける反応結果の合計を累積反応期間回数として、1回分の累積反応期間回数を算出する。この累積反応期間回数の算出を複数回繰り返し、ステップS29において、所定回数分(例えば、N=4)の累積反応期間回数の算出結果が得られたかどうかが判定され、所定回数に達していないと判定されると、ステップS21に戻る一方、所定回数に達したと判定されると、ステップS30において、既に判別した領域特性と所定回数分の累積反応期間回数を元に各領域A~Iにおける人の在否を推定する。
 なお、ステップS31において累積反応期間回数の算出回数(N)から1を減算してステップS21に戻ることで、所定回数分の累積反応期間回数の算出が繰り返し行われることになる。
 表6は最新の1回分(時間T1×M)の反応結果の履歴を示しており、表6中、例えばΣA0は領域Aにおける1回分の累積反応期間回数を意味している。
Figure JPOXMLDOC01-appb-T000006
 ここで、ΣA0の直前の1回分の累積反応期間回数をΣA1、さらにその前の1回分の累積反応期間回数をΣA2・・・とし、N=4の場合、過去4回分の履歴(ΣA4、ΣA3、ΣA2、ΣA1)のうち、生活区分Iについては、1回以上の累積反応期間回数が1回でもあれば、人がいると判定する。また、生活区分IIについては、過去4回の履歴のうち、1回以上の累積反応期間回数が2回以上あれば、人がいると判定するとともに、生活区分IIIについては、過去4回の履歴のうち、2回以上の累積反応期間回数が3回以上あれば、人がいると判定する。
 次に、上述した人の在否判定から時間T1×M後には、同様に過去の4回分の履歴と生活区分と累積反応期間回数から人の在否の推定が行われる。
 すなわち、本発明にかかる空気調和機の室内機においては、判別領域A~Iの数よりも少ない数のセンサを使用して人の在否を推定することから、所定周期毎の推定では人の位置を誤る可能性があるので、重なり領域かどうかに関わらず単独の所定周期では人の位置推定を行うことを避け、所定周期毎の領域判定結果を長期累積した領域特性と、所定周期毎の領域判定結果をN回分累積し、求めた各領域の累積反応期間回数の過去の履歴から人の所在地を推定することで、確率の高い人の位置推定結果を得るようにしている。
 表7は、このようにして人の在否を判定し、T1=5秒、M=12回に設定した場合の在推定に要する時間、不在推定に要する時間を示している。
Figure JPOXMLDOC01-appb-T000007
 このようにして、本発明にかかる空気調和機の室内機により空調すべき領域を第1乃至第5のセンサ126,128,130,132,134により複数の領域A~Iに区分した後、各領域A~Iの領域特性(生活区分I~III)を決定し、さらに各領域A~Iの領域特性に応じて在推定に要する時間、不在推定に要する時間を変更するようにしている。
 すなわち、空調設定を変更した後、風が届くまでには1分程度要することから、短時間(例えば、数秒)で空調設定を変更しても快適性を損なうのみならず、人がすぐいなくなるような場所に対しては、省エネの観点からあまり空調を行わないほうが好ましい。そこで、各領域A~Iにおける人の在否をまず検知し、特に人がいる領域の空調設定を最適化している。
 詳述すると、生活区分IIと判別された領域の在否推定に要する時間を標準として、生活区分Iと判別された領域では、生活区分IIと判別された領域より短い時間間隔で人の存在が推定されるのに対し、その領域から人がいなくなった場合には、生活区分IIと判別された領域より長い時間間隔で人の不存在を推定することにより、在推定に要する時間を短く、不在推定に要する時間は長く設定されることになる。逆に、生活区分IIIと判別された領域では、生活区分IIと判別された領域より長い時間間隔で人の存在が推定されるのに対し、その領域から人がいなくなった場合には、生活区分IIと判別された領域より短い時間間隔で人の不存在を推定することにより、在推定に要する時間を長く、不在推定に要する時間は短く設定されることになる。さらに、前述のように長期累積結果によりそれぞれの領域の生活区分は変わり、それに応じて、在推定に要する時間や不在推定に要する時間も可変設定されることになる。
(風向制御)
 また、各領域A~Iにおける空調設定に応じて、室内ファン8の回転数制御及び上下羽根12と左右羽根14の風向制御が行われるが、これらの制御について以下説明する。
 暖房時の風向制御は、人がいると判定された領域における人の足元手前に風向きを制御することで足元近傍に温風を到達させ、冷房時の風向制御は、人の頭上上方に風向きを制御することで頭上上方に冷風を到達させる。風向きは室内ファン8の回転数と、上下羽根12あるいは左右羽根14の角度により調節する。
 図28は、上下羽根12の回転制御を示しており、空気調和機停止時には、(a)に示されるように、前面パネル4と上下羽根12と中羽根14は全て閉塞した状態にある。
 冷房時は、吹き出し空気(冷風)を人の頭上上方に到達させるため(冷房天井気流)、(a)に示される状態から(b)に示される状態を経て(c)に示される状態に至る。まず、アーム118,120が駆動制御されて前面パネル4が前面吸込口2aから離反するとともに、アーム122,124が駆動制御されて上下羽根12が吹出口10から離反する。
 (c)の状態では、吹出口10から吹き出される空気は、上下羽根12により水平方向に導かれるが、上下羽根12の下流側端部が上方へ湾曲しているため、部屋の遠方まで空気を送ることができる。この時、吹出口10の上方、すなわち前面パネル4の下方は中羽根114により閉塞されており、吹出口10から吹き出した空気の一部が前面吸込口2aに導かれることはない。
 一方、暖房時は、吹き出し空気(温風)を人の足元近傍に到達させるため(暖房足元気流)、(a)に示される状態から(b)に示される状態を経て(d)に示される状態に至る。(d)の状態では、吹出口10から吹き出される空気は、上下羽根12により斜め下方に導かれるが、上下羽根12の下流側端部が本体側へ湾曲しているため、部屋の上方に溜まりやすい暖かい空気を部屋の下方に送ることができる。
 なお、(e)は、安定前の冷房時に利用され、吹き出し空気は人体に向けられる(人体向け気流)。
 図29は、各領域A~Iの空調を行う場合の室内ファン8の設定回転数を示しており、A1,A2,A3は室内機からそれぞれ近距離、中距離、遠距離にある領域の基準回転数で、A4は距離が同じ場合の領域の違いによる回転数差分であり、例えばそれぞれ次のように設定される。
 A1:800rpm(暖房時)、700rpm(冷房時)
 A2:1000rpm(暖房時)、900rpm(冷房時)
 A3:1200rpm(暖房時)、1100rpm(冷房時)
 A4:100rpm(冷暖共通)
 ここで、各領域における室内機からの距離、室内機正面からの角度、高低差等、室内機との位置関係を表す表現として、相対位置という表現を導入する。
 また、各領域において空調がし易い、空調がし難い度合いを空調要求度という表現により表し、空調要求度が高いほど空調がよりし難い、空調要求度が低いほど空調がよりし易いとする。例えば、室内機からの距離が遠いほど吹き出し空気が届き難く空調がし難いので空調要求度が高くなる。即ち、空調要求度と室内機からの相対位置には密接な関連性があり、本実施の形態では、室内機からの相対位置に応じて空調要求度を定める。
 したがって、各領域A~Iの空調を行う場合の室内ファン8の設定回転数は、空調要求度が高いほど高く設定されることを意味している。すなわち、空調すべき領域の位置が室内機より遠いほど室内ファン8の設定回転数は高く設定されるとともに、室内機からの距離が同じ場合には室内機の正面より左右にずれた領域ほど室内ファン8の設定回転数は高く設定される。また、空調すべき領域が一つの場合、その領域の設定回転数(風量)に設定され、空調すべき領域が複数の場合、空調要求度が高い領域の設定回転数に設定される。
 また、図30は、暖房時の上下羽根12と左右羽根14の設定角度を示しており、B1,B2,B3は室内機からそれぞれ近距離、中距離、遠距離にある領域の基準上下羽根角度で、B4は距離が同じ場合の領域の違いによる上下羽根の角度差分であるのに対し、C1及びC2は左右領域の基準左右羽根角度(左回りが正方向)で、C3及びC4は領域の違いによる左右羽根14の角度差分であり、例えばそれぞれ次のように設定される。なお、上下羽根12の角度とは、羽根が上に凸の状態で羽根の前後端を結んだ線が水平の場合を0°とし、この位置を基準にして反時計方向に計測した場合の角度のことである。
 B1:70°
 B2:55°
 B3:45°
 B4:10°
 C1:0°
 C2:15°
 C3:30°
 C4:45°
 すなわち、室内機に近い領域AあるいはBの暖房を行う場合、上下羽根12は、第1の角度(例えば、70°)に設定されるとともに、室内ファン8の回転数は第1の回転数(例えば、800rpm)に設定され、領域AあるいはBにおける室内機側の縁部(人の足元手前)に風向を制御し、足元近傍に温風を到達させるようにしている。また、室内機から中距離にある領域C,D,EあるいはFの暖房を行う場合、上下羽根12は、第1の角度より小さい第2の角度(例えば、55°)に設定されるとともに、室内ファン8の回転数は第1の回転数より高い第2の回転数(例えば、1000rpm)に設定され、領域C,D,EあるいはFにおける室内機側の縁部(人の足元手前)に風向を制御し、足元近傍に温風を到達させるようにしている。さらに、室内機から最も遠い領域G,HあるいはIの暖房を行う場合、上下羽根12は、第2の角度より小さい第3の角度(例えば、45°)に設定されるとともに、室内ファン8の回転数は第2の回転数より高い第3の回転数(例えば、1200rpm)に設定され、領域G,HあるいはIにおける室内機側の縁部(人の足元手前)に風向を制御し、足元近傍に温風を到達させるようにしている。
 図31は、立ち上がりあるいは不安定領域の冷房時の上下羽根12と左右羽根14の設定角度を示しており、E1,E2,E3は室内機からそれぞれ近距離、中距離、遠距離にある領域の基準上下羽根角度で、E4は距離が同じ場合の領域の違いによる上下羽根の角度差分であるのに対し、F1及びF2は左右領域の基準左右羽根角度(左回りが正方向)で、F3及びF4は領域の違いによる左右羽根14の角度差分であり、例えばそれぞれ次のように設定される。なお、立ち上がりとは、空気調和機の運転開始時のことで、不安定領域とは、現在の室内の空調状態が、設定した条件(例えば設定温度)になっていない状態のことである。
 E1:50°
 E2:35°
 E3:25°
 E4:10°
 F1:0°
 F2:15°
 F3:25°
 F4:35°
 また、図32は、安定領域の冷房時の上下羽根12と左右羽根14の設定角度を示しており、H1は天井気流の場合の基準上下羽根角度で、H2はにがし気流の場合の基準上下羽根角度で、H3は距離の違いによる上限羽根角度差分であるのに対し、I1及びI2は左右領域の基準左右羽根角度(左回りが正方向)で、I3及びI4は領域の違いによる左右羽根14の角度差分であり、例えばそれぞれ次のように設定される。なお、安定領域とは、現在の室内の空調状態が、設定した条件(例えば設定温度)になっている状態のことである。
 H1:180°
 H2:190°
 H3:5°
 I1:0°
 I2:15°
 I3:25°
 I4:35°
 ここで、天井気流とは、図28(c)に示されるように、上下羽根12を吹出口10の下部に位置させて吹き出し風を全て羽根の凹面で受けて風を送り出した場合の気流のことであり、にがし気流とは、上下羽根12を天井気流時より多少上部に位置させて、吹き出し風の一部(微量)を羽根の凸面側(羽根の下方)にも流し羽根凸面に結露が発生しにくい状態にして風を送り出した場合の気流のことである。
 室内機に近い領域AあるいはBの冷房を行う場合、上下羽根12は、水平より所定角度(例えば、5°)だけ下方に設定され、室内ファン8の回転数は第1の回転数(暖房時の第1の回転数より少ない回転数で、例えば、700rpm)に設定され、領域AあるいはBの頭上上方に冷風を到達させ、冷気がシャワー状に落ちてくるように設定されている。また、室内機から中距離にある領域C,D,EあるいはFの冷房を行う場合、上下羽根12は、略水平に設定され、室内ファン8の回転数は第1の回転数より高い第2の回転数(暖房時の第2の回転数より少ない回転数で、例えば、900rpm)に設定され、領域C,D,EあるいはFの頭上上方に冷風を到達させるように設定されている。さらに、室内機から最も遠い領域G,HあるいはIの冷房を行う場合、上下羽根12は、水平より所定角度(例えば、5°)だけ上方に設定され、室内ファン8の回転数は第2の回転数より高い第3の回転数(暖房時の第3の回転数より少ない回転数で、例えば、1100rpm)に設定され、領域G,HあるいはIの頭上上方に冷風を到達させるように設定されている。
 次に、空調すべき領域の数に応じて行われる風向制御について図33のフローチャートを参照しながら説明する。
 空気調和機の運転開始後、ステップS41において、領域A~Iにおける人の在否判定がまず行われ、ステップS42において、人がいると判定された領域が一つ、すなわち空調すべき領域が一つの場合、ステップS43において、その領域に応じて設定された風量、風向に基づいて空調が行われる。ステップS42において、空調すべき領域が一つではないと判定されると、ステップS44において、空調すべき領域が二つかどうかを判定し、空調すべき領域が二つの場合、ステップS45に移行する。
 ステップS45においては、風量は空調要求度の高い領域の設定風量に設定され、二つの領域の配置モードを図34A~図34Eに示されるように五つのモードのいずれかに識別し、次のステップS46において、識別されたモードに応じて表8のように制御する。
Figure JPOXMLDOC01-appb-T000008
 ここで、モード1は中距離であり、かつ室内機正面をはさんで隣接する2領域の場合を表し、モード2は室内機との角度が略一致し、前後関係に隣接する2領域の場合を表している。また、モード3は室内機との角度が略一致し、前後関係に離間する2領域の場合を表し、モード4は室内機との距離が略一致し、角度が異なる2領域の場合を表し、モード5は離間する2領域、換言すれば室内機との距離も角度も異なる2領域の場合を表している。
 モード1~4の上下風向は、暖房時は要求度の低い領域に固定される一方、冷房時は要求度の高い領域に固定される。また、モード5の上下風向は、上下羽根12の動作を制御して、二つの領域(第1及び第2の領域)のうち、第1の領域に所定時間停留(角度固定)した後、第2の領域に向かって風向を変え、第2の領域に所定時間停留した後、第1の領域向かって風向を変える動作を繰り返す。なお、各領域の停留時間は、例えば室内機からの距離に応じてそれぞれ設定され、室内機からの距離が遠いほど停留時間を長くするのが好ましい。
 また、モード1の左右風向は、隣接した二つの領域の中央に固定され、モード2及び3の場合、二つの領域が室内機から見て距離の異なる略同一方向にあると見なして、その左右風向は、要求度の高い領域に固定される。さらに、モード4及び離間する二つの領域の配置からなるモード5の左右風向は、上下羽根12の制御と同様に左右羽根14の動作を制御して、第1の領域に所定時間停留した後、第2の領域に向かって風向を変え、第2の領域に所定時間停留した後、第1の領域に向かって風向を変える動作を繰り返す。なお、各領域の停留時間は、各領域に対する室内機からの相対位置、例えば室内機正面からの角度に応じてそれぞれ設定され、室内機正面からの角度が大きいほど停留時間を長くするのが好ましい。
 また、ステップS44において空調すべき領域が二つではないと判定されると、ステップS47において、空調すべき三つ以上の領域をその配置に応じて通常モードと特殊モードの二つのモードのいずれかに判定する。ここで、特殊モードは、中距離であり、かつ室内機正面をはさんで隣接する2領域と、遠距離であり、かつ室内機正面に位置する1領域、計3領域の場合を表し、それを除く三つ以上の領域の場合を通常モードと表す。空調すべき領域が三つ以上の場合、風量は空調要求度の最も高い領域の設定風量に設定され、ステップS47において、図35Aに示される特殊モード(中央隣接)と判定されると、ステップS48において、風向は図34Aのモード1と同様に設定される。
 一方、ステップS47において、特殊モードではないと判定されると、ステップS49において、図35Bあるいは図35Cに示される通常モードの制御が行われ、上下風向は、室内機に最も近い領域の上下羽根12の設定角度と、室内機に最も遠い領域の上下羽根12の設定角度との間で上下羽根12の角度を変更する。
 また、通常モードの場合の左右風向は、両端の領域(図35Bでは領域CとI、図35Cでは領域CとH)における左右羽根14の設定角度を左端角度及び右端角度に設定して、左端角度に所定時間停留した後、右端側の領域に向かって風向を変え(スイング)、右端角度に所定時間停留した後、左端側の領域に向かって風向を変える動作(スイング)を繰り返す。なお、スイング時の左右羽根14の作動速度は、上述したモード4及び5における左右羽根14の作動速度より遅く設定される。また、左端角度あるいは右端角度における停留時間は、例えば室内機正面からの角度に応じてそれぞれ設定され、室内機正面からの角度が大きいほど停留時間を長くするのが好ましい。
 なお、ステップS43,S46,S48あるいはS49においてそれぞれの空調制御が行われた後、ステップS41に戻る。
(肌ケア及び部屋ケア制御)
 ここでは、これまで説明した人体検知装置(センサユニット126,128,130,132,134)を用いた風向制御と静電霧化装置18,18Aとを組み合わせて、静電ミストをより有効に活用する方法について説明する。先にも述べたように、静電ミストには臭気成分を除去する脱臭効果の他に、肌質改善効果を有する。この肌質改善効果というのは、静電ミストが居住者の肌に到達すれば、個人差はあるものの人の肌にうるおいをもたらすものである。
 本実施の形態においては、静電ミストを人が在室しているときに人の肌質改善効果の発揮を主な目的として発生させる制御を肌ケアモードとし、静電ミストを人が在室していない、すなわち不在のときに室内の脱臭効果の発揮を目的に発生させる制御を部屋ケアモードとする。なお、肌ケアモードで発生させた静電ミストが室内の臭気成分と反応した場合には脱臭効果を発揮することになる。
 本実施の形態における空気調和機は、人体検知装置(センサユニット126,128,130,132,134)として人の在否を検知する人体検知センサと、静電ミストを発生する静電霧化装置18,18Aとを有する室内機を備え、その制御は、人の在室時に行われる肌ケアモードと人の不在時に行われる部屋ケアモードの二つのモードが設けられている。すなわち、人体検知センサの検知範囲において所定の領域に人がいると判定された場合には、肌ケアモードとしてその所定の領域の方向に風向制御して、検知した人又はその所定の領域に静電ミストを到達させるようにし、人体検知センサの検知範囲内に人がいないと判定された場合には、部屋ケアモードとして上方又は遠方の領域に静電ミストを到達させるようにする。なお、先に説明した風向制御は、暖房時及び冷房時の室内の温度や室内にいる人の体に感じる温度に合わせて制御するものであったが、静電ミストは冷暖房運転に合わせて発生してもよいし、冷凍サイクルを停止した送風運転に合わせて発生してもよい。
 このような構成によって、肌ケアモードにおいては静電ミストにより人の肌にうるおいをもたらすことが可能になる。また、部屋ケアモードにおいては、人が不在なので吹き出し気流を人に当てないようにするなどの配慮が必要なく、上方の天井や部屋の周囲全体にわたって、壁及びカーテンなどに付着した臭気成分を脱臭したり、除菌したりすることを効率的かつ効果的に行うことができ、快適な室内環境を実現することが可能となる。
 ここからは、人体検知センサによって人が存在する方向や領域を詳細に検知して、きめ細かく制御する方法について説明する。
 人の在室時に行われる肌ケアモードにおいては、各領域A~Iにおける空調設定に応じて、室内ファン8の回転数制御及び上下羽根12と左右羽根14の風向制御を上述した風向制御と同様、暖房時は人がいると判定された領域における人の足元手前に風向きを制御するとともに、冷房時は人がいると判定された領域の上方に吹き出し空気(冷風)を到達させるように風向きを制御する。同時に、静電霧化装置18,18Aを作動させて、温風あるいは冷風とともに静電霧化装置18,18Aが発生した静電ミストを居住者に到達させ肌ケアを行うようにしている。
 また、肌ケアモードにおいては、人がいると判定された領域に風向制御するのではなく、人がいる頻度が高い領域(領域特性Iの領域)に静電ミストが到達するように室内ファン8の回転数制御及び上下羽根12と左右羽根14の風向制御を行うこともできる。
 一方、人の不在時に行われる部屋ケアモードにおいては、まず壁面やカーテンあるいは床面や天井の付着臭を除去するために、室内ファン8及び静電霧化装置18,18Aを作動させ、図29及び図32に示されるように冷房時に行われる天井気流で領域A,B,C,F,G,H,Iの順で静電ミストが当該領域に所定の時間到達するように上下羽根12及び左右羽根14を制御する。
 領域A,B,C,F,G,H,Iは、分割した9領域のうち外側に位置する領域で室内機からは遠方であり、これらの領域に壁やカーテンが存在していると想定されるからである。また、上方に吹き出す天井気流を採用することで、煙草等の臭いが付着していることが予想される天井にも静電ミストを到達させることができるとともに、天井気流により天井に沿って流れる静電ミストは壁面に衝突して下方に流れるので、床面の脱臭や除菌も行うことができる。
 ここで、領域A,Bは室内機の設置面(壁面)の近傍に位置しているため、天井気流ではこの設置面の脱臭・除菌を十分行えない可能性がある。そこで、図32の風向制御に代えて、図36に示されるように上下羽根12及び左右羽根14の角度を設定して風向制御を行うこともできる。
 J1: 0°~25°
 J2:25°~50°
 J3:50°~90°
 K1:-5°~5°
 K2: 0°~15°
 K3: 0°~60°
 K4: 5°~20°
 K5:15°~45°
 次に、上述した領域特性I,II,IIIを考慮して室内ファン8と上下羽根12及び左右羽根14の制御を行う。すなわち、領域特性Iの領域は人がいる頻度が高い領域であり、人がいる頻度は領域特性I→II→IIIの順で低下する。そこで、人がいる頻度が高い領域から順に室内ファン8と上下羽根12及び左右羽根14の制御を行って静電ミストを所定の時間領域特性I~IIIの領域に順次到達させる。また、人がいる頻度が高い領域は、臭いが付着している可能性が高いため、静電ミストを到達させる所定の時間を領域特性III→II→Iの順で増加させるようにしてもよい。このように風向制御を行うことにより、臭いが付着していても除去することができる。
 逆に、人がいる頻度が高い領域は、人の在室時に行われる肌ケアモードにおいて、静電ミストが十分供給されていると考えることもできるので、人がいる頻度が低い領域から順に室内ファン8と上下羽根12及び左右羽根14の制御を行って静電ミストを所定の時間領域特性I~IIIの領域に順次到達させるようにしてもよい。また、人がいる頻度が低い領域は、肌ケアモードにおいて臭いが十分除去されていないと考えることもできるので、静電ミストを到達させる所定の時間を領域特性I→II→IIIの順で増加させることもできる。このように風向制御を行うことにより、充分除去されずに残っていた臭いも除去することができる。
 あるいは、肌ケアモードにおいて人がいると判定された時間を積算する手段を設け、この積算手段で積算した時間に応じて静電ミストを到達させる時間を変更するようにしてもよい。すなわち、積算時間が長いほど、臭いが残っていると考えられるので、部屋ケアモードにおいて静電ミストを到達させる所定の時間を長くすることで、脱臭効果あるいは除菌効果をさらに向上させることができる。
 さらに、図29の例では、空調時の室内ファン8の最大設定回転数は1200rpmとなっているが、人の不在時には騒音等を考慮する必要が全くないので、室内ファン8の回転数を風向変更手段(上下羽根12及び左右羽根14)の空気抵抗を加味して図37のように設定し、静電ミストの到達性を向上させることもできる。
 L1:1200rpm
 L2:1300rpm
 L3:1400rpm
 このとき、さらに換気ファンユニット16を作動させ、室内空気を室外に放出すると、室内空気の浄化が促進される。
 なお、肌ケア及び部屋ケア制御の途中で第1乃至第5のセンサ126,128,130,132,134のいずれかにより人の入室を検知した場合には、検知した領域における空調設定に応じて、室内ファン8の回転数制御及び上下羽根12と左右羽根14の風向制御を行う上述した「在室時制御」に復帰する。
 また、人が不在になるのは、空気調和機の運転中で一時的な場合と、空気調和機を停止して退出する場合などが考えられる。運転中に一時的に不在になる場合は、不在時間が長引くのに応じて冷暖房運転はそのまま部屋ケアモードを開始するようにしてもよいし、後述する省エネ運転として部屋ケアモードを行うようにしてもよい。退出により不在になる場合は、送風運転で所定時間、部屋ケアモードを行うようにしてもよい。
(不在検知省エネ制御及び切り忘れ防止制御)
 室内機にはタイマーが設けられており、このタイマーを使用して省電力運転として不在検知省エネ制御及び切り忘れ防止制御が行われる。この不在検知省エネ制御及び切り忘れ防止制御を部屋ケアモードとして行う方法について以下説明する。
 図38は、人が室内に不在時に室内ファン8の風量(回転数)と室外機に設けられた圧縮機の能力を制御することにより省電力運転を達成する例を示している。
 すなわち、室内ファン8の風量を増大すると熱交換器6の熱交換効率が向上し、圧縮機の周波数が同じ場合には冷房あるいは暖房能力が増大するので、室内温度を同じ設定温度に保持するためには、圧縮機の周波数を低減することが可能となり、必要な消費電力は減少する。また、不在時に室内ファン8の風量を増大しても気流が強すぎることによる不快感や、室内ファン8の騒音増大による快適性の問題が生じることはない。そして、このとき同時に静電ミストを発生させて吹き出すことにより、部屋の隅々にまで静電ミストを行き渡らせることができ、部屋ケアモードとして脱臭と殺菌を行うことができる。
 図38に示されるように、第1乃至第5のセンサ126,128,130,132,134により全ての領域A~Iに人がいないことが検知(t0)されると、タイマーがカウントを開始し、タイマーによるカウント開始後、時間t1(例えば、10分)において人の不在が確認されると、室内ファン8の風量を増大させるとともに、圧縮機の周波数を段階的に時間t2(例えば、カウント開始後30分)まで減少させる。時間t1経過後は室内ファン8の風量は一定(限界値)に保持され、時間t2経過後は圧縮機の周波数は一定(限界値)に保持されるが、時間t2、時間t3(例えば、カウント開始後1時間)、時間t4(例えば、カウント開始後2時間)、時間t5(例えば、カウント開始後4時間)において人の不在が継続して確認されると、時間t5において空気調和機の運転を停止して、空気調和機の切り忘れを防止する。
 なお、時間t1から時間t5までの間に人の存在が検知されると、時間t1以前の設定風量及び設定周波数に復帰させる。
 次に別の省電力運転として、経過時間に応じて室内の設定温度を目標温度にまで変更する方法について、表9及び図39を参照しながら、まず暖房時の制御について説明する。
Figure JPOXMLDOC01-appb-T000009
 図39は温度シフトの一例を示しており、ここでは設定温度Tsetを28℃とし、目標温度(限界値)を20℃とした場合について説明する。なお、ΔTは設定温度Tsetと目標温度との差温である。ちなみに、目標温度は、人が不在のときに省エネを目標として暖房能力を低下させるときの限界値としている。
 第1乃至第5のセンサ126,128,130,132,134により全ての領域A~Iに人がいないことが検知されると、タイマーがカウントを開始し、タイマーによるカウント開始後、時間t1(例えば、10分)において人の不在が確認されると、2℃(1/4ΔT)だけ設定温度Tsetを自動的に低減する。さらに、時間t2(例えば、カウント開始後30分)において人の不在が確認されると、2℃(1/4ΔT)だけ設定温度Tsetを自動的にさらに低減する。以下、同様に時間t3(例えば、カウント開始後1時間)及び時間t4(例えば、カウント開始後2時間)において人の不在が確認されると、それぞれ2℃(1/4ΔT)だけ設定温度Tsetを自動的に低減する。このように設定温度Tsetを自動的に低減することにともない、暖房能力を低減するのは、圧縮機の周波数を低下させればよい。例えば、時間t2までに行う低下を、t5にかけて順次低下させればよい。
 時間t4においては、設定温度Tsetより合計8℃低減されて目標温度に等しい20℃になっているので、時間t5(例えば、カウント開始後4時間)までは設定温度Tsetを目標温度のまま維持するが、時間t5においても依然として人の不在が確認されると、空気調和機の運転を停止して、空気調和機の切り忘れを防止する。このようにして、不在検知による省エネ制御を行い、無駄な暖房運転を防いで消費電力を低減することができる。そして、このとき風量を増大させると同時に静電ミストを発生させて吹き出すことにより、部屋の隅々にまで静電ミストを行き渡らせることができ、部屋ケアモードとして脱臭と殺菌を行うことができる。
 なお、時間t1から時間t5までの間に人の存在が検知されると、時間t1以前の設定温度Tsetに復帰させる。
 また、温度シフト幅(低減温度)は設定温度Tsetと目標温度との差温ΔTに応じて表9のように設定され、差温ΔTが小さいほど温度シフト幅も小さい。また、設定温度Tsetが目標温度より低い場合は、現状温度に維持されるが、時間t5において人の不在が確認されると、空気調和機の運転を停止するのは図39の例と同じである。
 次に、表10及び図40を参照しながら、冷房時の制御について説明する。
Figure JPOXMLDOC01-appb-T000010
 図40は温度シフトの一例を示しており、ここでは設定温度Tsetを20℃とし、目標温度(限界値)を28℃とした場合について説明する。なお、ΔTは設定温度Tsetと目標温度との差温である。
 第1乃至第5のセンサ126,128,130,132,134により全ての領域A~Iに人がいないことが検知されると、タイマーがカウントを開始し、タイマーによるカウント開始後、時間t1(例えば、10分)において人の不在が確認されると、2℃(1/4ΔT)だけ設定温度Tsetを自動的に増大する。さらに、時間t2(例えば、カウント開始後30分)において人の不在が確認されると、2℃(1/4ΔT)だけ設定温度Tsetを自動的にさらに増大する。以下、同様に時間t3(例えば、カウント開始後1時間)及び時間t4(例えば、カウント開始後2時間)において人の不在が確認されると、それぞれ2℃(1/4ΔT)だけ設定温度Tsetを自動的に増大する。
 時間t4においては、設定温度Tsetより合計8℃増大されて目標温度に等しい28℃になっているので、時間t5(例えば、カウント開始後4時間)までは設定温度Tsetを目標温度のまま維持するが、時間t5においても依然として人の不在が確認されると、空気調和機の運転を停止して、空気調和機の切り忘れを防止する。このようにして、不在検知による省エネ制御を行い、無駄な冷房運転を防いで消費電力を低減することができる。そして、このとき風量を増大させると同時に静電ミストを発生させて吹き出すことにより、部屋の隅々にまで静電ミストを行き渡らせることができ、部屋ケアモードとして脱臭と殺菌を行うことができる。
 なお、時間t1から時間t5までの間に人の存在が検知されると、時間t1以前の設定温度Tsetに復帰させる。
 また、温度シフト幅(増大温度)は設定温度Tsetと目標温度との差温ΔTに応じて表10のように設定され、差温ΔTが小さいほど温度シフト幅も小さい。また、設定温度Tsetが目標温度より高い場合は、現状温度に維持されるが、時間t5において人の不在が確認されると、空気調和機の運転を停止するのは図40の例と同じである。
 また、上述した図38乃至図40の例はいずれも、通常運転中、所定時間人がいない場合には、通常運転時より消費電力が少ない省電力運転を行うものであり、その後さらに所定時間人がいない場合には、空気調和機の運転を停止して省エネを達成している(「通常運転」とは、「使用者が指示した運転」)。
 さらに、不在が長時間継続しているにもかかわらず、温度変化を惹起するおそれのあるカーテン等の人以外の外乱を人体検知センサが誤検知した場合、不在(無人)状態で通常運転をいつまでも継続することも考えられるので、時間t5より長い所定時間t6(例えば、24時間)経過すると運転を停止することで確実に切り忘れを防止することができる。また、時間t5あるいは時間t5より長い所定時間t6経過後の運転停止直前には本体やリモコンに音声やLEDランプ等で聴覚的あるいは視覚的に報知したり、画面に文字を表示したりするのが好ましい。さらに、時間t5あるいは時間t5より長い所定時間t6経過後の自動運転停止を行うか否かを選択できる自動停止選択手段をリモコン等に設けると使い勝手が向上する。
 本発明に係る空気調和機は、室内機に吸い込まれた空気の温度と湿度が静電霧化装置の運転許可領域内の場合にのみ静電霧化装置の運転を許可するようにしたので、異音やオゾンを発生することなく静電霧化装置の高寿命化あるいは省エネを達成することができるので、一般家庭用の空気調和機を含む様々な空気調和機として極めて有用である。また、肌ケアモードあるいは部屋ケアモード等を設けたものにあっては、人の在否に応じて人の肌質を改善したり部屋を浄化したりすることで快適な室内環境を実現できるので、特に一般家庭用の空気調和機として有用である。

Claims (9)

  1. 室内空気を浄化する空気清浄機能を有する室内機を備えた空気調和機であって、
     静電ミストを発生させる静電霧化装置と、前記室内機に吸い込まれる空気の温度を検知する吸込温度検知手段と、前記室内機に吸い込まれる空気の湿度を検知する湿度検知手段とを設け、前記室内機に吸い込まれる空気の温度と湿度に基づいて前記静電霧化装置の運転許可領域を設定し、前記吸込温度検知手段により検知された温度と前記湿度検知手段により検知された湿度が前記運転許可領域内の場合には前記静電霧化装置の運転を許可する一方、前記吸込温度検知手段により検知された温度と前記湿度検知手段により検知された湿度が前記運転許可領域外の場合には前記静電霧化装置の運転を禁止し、かつ、少なくとも前記室内機に吸い込まれる空気の湿度が第1の所定値以上の場合を過剰結露領域として前記運転許可領域外に設定したことを特徴とする空気調和機。
  2. 前記室内機に吸い込まれる空気の湿度が前記第1の所定値より小さい第2の所定値以下の場合を前記静電霧化装置が最大能力を発揮しても露点温度まで到達できない第1の性能外領域に設定するとともに、湿り空気線図から求められる露点温度が氷点下となる領域を氷点下領域に設定し、前記第1の性能外領域と前記氷点下領域を除く領域を前記運転許可領域に設定したことを特徴とする請求項1に記載の空気調和機。
  3. 前記室内機に吸い込まれる空気の温度が所定値以上の場合を前記静電霧化装置の正常な動作が妨げられる第2の性能外領域に設定し、該第2の性能外領域を除く領域を前記運転許可領域に設定したことを特徴とする請求項2に記載の空気調和機。
  4. 前記室内機に設けられた室内ファンの回転数検知手段をさらに設け、該回転数検知手段により検知された前記室内ファンの回転数が所定回転数以上の場合には、前記静電霧化装置の運転を許可する一方、前記回転数検知手段により検知された前記室内ファンの回転数が前記所定回転数未満の場合には前記静電霧化装置の運転を禁止するようにしたことを特徴とする請求項1乃至3のいずれか1項に記載の空気調和機。
  5. 前記静電霧化装置の異常検知手段を設け、該異常検知手段により前記静電霧化装置の異常を検知しない場合には、前記静電霧化装置の運転を許可する一方、前記異常検知手段により前記静電霧化装置の異常を検知した場合には前記静電霧化装置の運転を禁止するようにしたことを特徴とする請求項1乃至4のいずれか1項に記載の空気調和機。
  6. 前記静電霧化装置を除く前記室内機の消費電力を算出する消費電力算出手段を設け、該消費電力算出手段により算出された消費電力の合計値が許容電力値以下の場合に前記静電霧化装置の運転を許可する一方、前記消費電力算出手段により算出された消費電力の合計値が前記許容電力値を超えると前記静電霧化装置の運転を禁止するようにしたことを特徴とする請求項1乃至5のいずれか1項に記載の空気調和機。
  7. 人の在否を検知する人体検知センサをさらに備え、前記人体検知センサの検知範囲において所定の領域に人がいると判定された場合には、前記所定の領域の方向に風向制御して前記所定の領域に静電ミストを到達させるようにする肌ケアモードと、前記検知範囲内に人がいないと判定された場合には、上方又は遠方の領域に静電ミストが到達するようにする部屋ケアモードとを有することを特徴とする請求項1乃至6のいずれか1項に記載の空気調和機。
  8. 人の在否を検知する人体検知センサと静電ミストを発生する静電霧化装置とを有する室内機を備えた空気調和機であって、
     前記人体検知センサの検知範囲において所定の領域に人がいると判定された場合には、前記所定の領域の方向に風向制御して前記所定の領域に静電ミストを到達させるようにする肌ケアモードと、前記検知範囲内に人がいないと判定された場合には、上方又は遠方の領域に静電ミストが到達するようにする部屋ケアモードとを有することを特徴とする空気調和機。
  9. 部屋ケアモードを、冷凍サイクルを停止した送風運転として行うことを特徴とする請求項7あるいは8に記載の空気調和機。
PCT/JP2008/003807 2007-12-21 2008-12-17 空気調和機 WO2009081545A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2008801220035A CN101903710B (zh) 2007-12-21 2008-12-17 空调机
EP08863837.4A EP2236951B1 (en) 2007-12-21 2008-12-17 Air conditioner
RU2010130466/12A RU2482398C2 (ru) 2007-12-21 2008-12-17 Воздушный кондиционер

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2007-329787 2007-12-21
JP2007-329785 2007-12-21
JP2007329785 2007-12-21
JP2007329787 2007-12-21
JP2008-034546 2008-02-15
JP2008034546A JP4171769B1 (ja) 2007-12-21 2008-02-15 空気調和機
JP2008-034553 2008-02-15
JP2008034553A JP4262771B1 (ja) 2007-12-21 2008-02-15 空気調和機

Publications (1)

Publication Number Publication Date
WO2009081545A1 true WO2009081545A1 (ja) 2009-07-02

Family

ID=40800863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/003807 WO2009081545A1 (ja) 2007-12-21 2008-12-17 空気調和機

Country Status (5)

Country Link
EP (1) EP2236951B1 (ja)
CN (1) CN101903710B (ja)
RU (1) RU2482398C2 (ja)
TW (1) TWI431226B (ja)
WO (1) WO2009081545A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150306533A1 (en) * 2014-04-25 2015-10-29 Fellowes, Inc. Air Purifier with Intelligent Sensors and Intellectual Airflow
EP2410253A3 (en) * 2010-07-21 2018-02-14 Kabushiki Kaisha Toshiba Energy consumption management system and energy consumption management apparatus
FR3083120A1 (fr) * 2018-07-02 2020-01-03 Cp2N Systeme de purification d'air par humidification controlee et ionisation, et circuit aeraulique equipe d'un tel systeme.

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103596597B (zh) * 2011-09-28 2015-07-08 三菱电机株式会社 空气清洁机
JP6399097B2 (ja) * 2014-10-02 2018-10-03 三菱電機株式会社 空気清浄機
JP6406432B2 (ja) * 2015-03-25 2018-10-17 三菱電機株式会社 空気清浄機
CN105937793B (zh) * 2016-06-14 2019-03-05 宁波奥克斯电气股份有限公司 一种空调加湿系统
EP3626622B1 (en) * 2018-09-21 2021-08-18 Panasonic Intellectual Property Management Co., Ltd. Liquid container, and electrostatic atomizing apparatus with liquid container
CN109604065A (zh) * 2018-11-29 2019-04-12 安徽宾肯电气股份有限公司 一种适用于高湿低温环境的静电除尘装置
US11692722B2 (en) 2020-06-26 2023-07-04 Panasonic Intellectual Property Management Co, Ltd. Humidifying device
JP7223082B1 (ja) * 2021-08-06 2023-02-15 ダイキン工業株式会社 空調室内機

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005282873A (ja) 2004-03-26 2005-10-13 Matsushita Electric Works Ltd 空気調和機
JP2006149538A (ja) 2004-11-26 2006-06-15 Matsushita Electric Ind Co Ltd 空気調和機の空気清浄装置
JP2006234245A (ja) 2005-02-23 2006-09-07 Matsushita Electric Works Ltd 空気清浄機能付き空気調和機
JP2007024390A (ja) * 2005-07-15 2007-02-01 Matsushita Electric Ind Co Ltd 空気清浄機
JP2007021373A (ja) 2005-07-15 2007-02-01 Matsushita Electric Works Ltd 静電霧化装置
JP2007137282A (ja) * 2005-11-18 2007-06-07 Japan Climate Systems Corp 空調装置
JP2008101875A (ja) * 2006-10-20 2008-05-01 Matsushita Electric Ind Co Ltd 空気調和機

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW342439B (en) * 1996-09-12 1998-10-11 Samsung Electronics Co Ltd Discharge current control apparatus of air conditioner and method thereof
JPH10227508A (ja) * 1997-02-18 1998-08-25 Matsushita Electric Ind Co Ltd 空気調和機
ES2382736T3 (es) * 2003-02-27 2012-06-13 Toshiba Carrier Corporation Aparato de ciclo de refrigeración
JP4552514B2 (ja) * 2004-05-26 2010-09-29 パナソニック株式会社 静電霧化装置付き温水洗浄便座
JP4123203B2 (ja) * 2004-07-15 2008-07-23 松下電器産業株式会社 空気調和機
JP4778276B2 (ja) * 2005-07-15 2011-09-21 パナソニック電工株式会社 空気調和機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005282873A (ja) 2004-03-26 2005-10-13 Matsushita Electric Works Ltd 空気調和機
JP2006149538A (ja) 2004-11-26 2006-06-15 Matsushita Electric Ind Co Ltd 空気調和機の空気清浄装置
JP2006234245A (ja) 2005-02-23 2006-09-07 Matsushita Electric Works Ltd 空気清浄機能付き空気調和機
JP2007024390A (ja) * 2005-07-15 2007-02-01 Matsushita Electric Ind Co Ltd 空気清浄機
JP2007021373A (ja) 2005-07-15 2007-02-01 Matsushita Electric Works Ltd 静電霧化装置
JP2007137282A (ja) * 2005-11-18 2007-06-07 Japan Climate Systems Corp 空調装置
JP2008101875A (ja) * 2006-10-20 2008-05-01 Matsushita Electric Ind Co Ltd 空気調和機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2236951A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2410253A3 (en) * 2010-07-21 2018-02-14 Kabushiki Kaisha Toshiba Energy consumption management system and energy consumption management apparatus
US20150306533A1 (en) * 2014-04-25 2015-10-29 Fellowes, Inc. Air Purifier with Intelligent Sensors and Intellectual Airflow
US9737842B2 (en) * 2014-04-25 2017-08-22 Fellowes, Inc. Air purifier with intelligent sensors and airflow
FR3083120A1 (fr) * 2018-07-02 2020-01-03 Cp2N Systeme de purification d'air par humidification controlee et ionisation, et circuit aeraulique equipe d'un tel systeme.

Also Published As

Publication number Publication date
EP2236951A4 (en) 2014-05-14
TW200936963A (en) 2009-09-01
EP2236951B1 (en) 2018-02-14
CN101903710B (zh) 2013-05-22
EP2236951A1 (en) 2010-10-06
RU2010130466A (ru) 2012-01-27
TWI431226B (zh) 2014-03-21
CN101903710A (zh) 2010-12-01
RU2482398C2 (ru) 2013-05-20

Similar Documents

Publication Publication Date Title
WO2009081545A1 (ja) 空気調和機
JP4262771B1 (ja) 空気調和機
JP4366405B2 (ja) 空気調和機
JP4125354B1 (ja) 空気調和機
JP2009002602A (ja) 空気調和機
JP5405943B2 (ja) 空気調和機
JP4125353B1 (ja) 空気調和機
JP5074225B2 (ja) 空気調和機
JP4168085B1 (ja) 空気調和機
JP5186240B2 (ja) 空気調和機
JP5058294B2 (ja) 空気調和機
JP2009002601A (ja) 空気調和機
JP2009002603A (ja) 空気調和機
JP4171769B1 (ja) 空気調和機
JP5089424B2 (ja) 空気調和機
JP5180615B2 (ja) 空気調和機
JP2009198108A (ja) 空気調和機
JP5186241B2 (ja) 空気調和機
JP2007071495A (ja) 空気調和機
TW200933097A (en) Air conditioner
JP4228027B1 (ja) 空気調和機
WO2009081546A1 (ja) 空気調和機
JP2009002604A (ja) 空気調和機
JP5114456B2 (ja) 空気調和機
JP2024041240A (ja) 空気調和装置、及び空気調和装置の制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880122003.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08863837

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3816/CHENP/2010

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008863837

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010130466

Country of ref document: RU