WO2009081533A1 - フレア補正装置 - Google Patents

フレア補正装置 Download PDF

Info

Publication number
WO2009081533A1
WO2009081533A1 PCT/JP2008/003743 JP2008003743W WO2009081533A1 WO 2009081533 A1 WO2009081533 A1 WO 2009081533A1 JP 2008003743 W JP2008003743 W JP 2008003743W WO 2009081533 A1 WO2009081533 A1 WO 2009081533A1
Authority
WO
WIPO (PCT)
Prior art keywords
flare
image
subject
unsaturated
component
Prior art date
Application number
PCT/JP2008/003743
Other languages
English (en)
French (fr)
Inventor
Kazunaga Miyake
Masato Nishizawa
Satoru Masuda
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Publication of WO2009081533A1 publication Critical patent/WO2009081533A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/61Noise processing, e.g. detecting, correcting, reducing or removing noise the noise originating only from the lens unit, e.g. flare, shading, vignetting or "cos4"
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2101/00Still video cameras

Definitions

  • the present invention relates to a flare correction apparatus that corrects a subject image in which flare caused by an optical system such as a lens occurs.
  • flare is an image of light that is generated when a very bright light source is directed toward the lens when the camera captures an object.
  • a flare correction apparatus for correcting a subject image in which flare occurs.
  • the conventional apparatus acquires the black level correction value based on the histogram of the luminance signal output from the image sensor and the correction characteristic measured in advance according to the characteristic of the optical system.
  • the conventional apparatus performs black correction for correcting the image signal output from the image sensor using the black level correction value, and removes flare in the image signal.
  • Such a technique is disclosed in, for example, Japanese Patent Application Laid-Open No. 2006-165937.
  • FIG. 14A shows, as an example of a subject image in which flare occurs, an image obtained by photographing a vehicle traveling at night and a pedestrian in the vicinity thereof with a camera.
  • the flare 52 spreads around the light source 51 (headlight) in the image. Therefore, the pedestrian 41 near the light source 51 is difficult to see.
  • FIG. 14B shows the luminance distribution along the line AA passing through the light source 51 of FIG. 14A. As shown in FIG. 14B, in the luminance distribution 42 of the subject image, the luminance around the light source 51 increases due to the occurrence of flare.
  • FIG. 14C shows the luminance distribution along line AA after flare correction.
  • correction for removing the flare is performed using the uniform subtraction component 43 over the entire screen.
  • the luminance level of the image decreases by the subtraction component 43 in the entire screen.
  • the contrast of the whole screen can be raised and it becomes easy to see the pedestrian 41 which was hard to see. Then, it is possible to obtain a subject image in which the entire screen is settled.
  • the conventional flare correction apparatus has the following problems. That is, the flare 52 increases the luminance around the light source 51, but does not increase the luminance level of the entire screen uniformly. Nevertheless, in the prior art, the subtraction component 43 is set uniformly over the entire screen. Therefore, when the subtraction component 43 for flare correction is set large, as shown in FIG. 14C, black sun sets 44a and 44b (over--) at positions other than the periphery of the light source 51 in the luminance distribution 45 of the subject image after flare correction. darkened part (image), where the gradation is almost zero in the low-luminance part). The image becomes too black in the shadow area due to excessive subtraction. Further, a part of the flare component remains around the light source 51, and the flare 52 may not be completely removed.
  • the present invention has been made under the above-described background, and its object is to appropriately remove flare generated around the light source and suppress flare in the subject image while effectively suppressing flare.
  • An object of the present invention is to provide a flare correction apparatus that can perform the above-described process.
  • the flare correction apparatus of the present invention captures a subject image acquisition unit that acquires a subject image obtained by imaging the subject, and captures the subject so that the luminance level is not saturated even when the light source is included in the subject.
  • the unsaturated image acquisition unit that acquires the unsaturated image obtained by this, and the position of the light source and the position of the flare component are included in the subject image based on the position of the light source obtained from the unsaturated image.
  • a flare component calculating unit that calculates a flare component and a flare component removing unit that removes the flare component from the subject image are provided.
  • another aspect of the present invention is an imaging device, and this imaging device has a configuration including the flare correction device described above.
  • Another aspect of the present invention is a flare correction method, which acquires a subject image obtained by imaging a subject and does not saturate the brightness level even when the subject includes a light source.
  • an unsaturated image obtained by imaging the subject is acquired and included in the subject image so that the position of the light source and the position of the flare component correspond to each other based on the position of the light source obtained from the unsaturated image.
  • the flare component is calculated, and the flare component is removed from the subject image.
  • another aspect of the present invention is a flare removal program that is executed by a computer and removes flare from an image.
  • This program obtains a subject image obtained by imaging a subject, and obtains an unsaturated image obtained by imaging the subject so that the luminance level is not saturated even if the subject includes a light source. Then, based on the position of the light source obtained from the unsaturated image, the flare component included in the subject image is calculated so that the position of the light source corresponds to the position of the flare component, and the flare component is removed from the subject image Is executed on the computer.
  • the present invention calculates the flare component included in the subject image based on the position of the light source obtained from the unsaturated image so that the position of the light source corresponds to the position of the flare component. Then, the present invention removes the flare component thus calculated from the subject image. Therefore, flare generated around the light source can be appropriately removed while suppressing occurrence of black sun in the subject image, and flare correction can be performed effectively.
  • FIG. 1 is a functional block diagram illustrating an imaging apparatus with a flare correction apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing a hardware configuration of an imaging apparatus with a flare correction apparatus according to the first embodiment of the present invention.
  • FIG. 3 is a diagram showing a processing flow of the flare correction processing program.
  • FIG. 4 is a diagram showing a processing flow of a flare correction routine in the flare correction processing program.
  • FIG. 5A is a schematic diagram of a subject image.
  • FIG. 5B is a diagram showing a luminance distribution along a cutting line passing through the light source in the subject image.
  • FIG. 6A is a schematic diagram of an unsaturated image.
  • FIG. 1 is a functional block diagram illustrating an imaging apparatus with a flare correction apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing a hardware configuration of an imaging apparatus with a flare correction apparatus according to the first embodiment of the present invention.
  • FIG. 3 is a
  • FIG. 6B is a diagram illustrating a luminance distribution along a cutting line passing through a light source in an unsaturated image.
  • FIG. 7 is a flowchart showing a flare component calculation routine
  • FIG. 8A is a diagram showing a result of convolution of an unsaturated image and a flare PSF.
  • FIG. 8B shows a calculation result of the flare component
  • FIG. 9 is a diagram showing the flow of the flare component removal routine
  • FIG. 10A is a diagram showing a flare subtraction component
  • FIG. 10B shows a flare correction result.
  • FIG. 11A is a diagram showing a luminance distribution and a flare component of a subject image in which flare occurs.
  • FIG. 11B shows a luminance distribution after flare correction.
  • FIG. 11C is a diagram showing a subject image after flare correction.
  • FIG. 11A is a diagram showing a luminance distribution and a flare component of a subject image in which flare occurs.
  • FIG. 11B shows a luminance distribution after
  • FIG. 12 is a functional block diagram showing an imaging apparatus with a flare correction apparatus according to the second embodiment of the present invention.
  • FIG. 13 is a diagram showing a processing flow of a flare correction routine in the flare correction processing program.
  • FIG. 14A is a diagram illustrating an example of a subject image in which flare occurs.
  • FIG. 14B is a diagram showing a luminance distribution of a subject image in which flare occurs.
  • FIG. 14C is a diagram showing the luminance distribution of the subject image after flare correction according to the prior art.
  • the flare correction apparatus of the present invention captures a subject image acquisition unit that acquires a subject image obtained by imaging the subject, and captures the subject so that the luminance level is not saturated even when the light source is included in the subject.
  • the unsaturated image acquisition unit that acquires the unsaturated image obtained by this, and the position of the light source and the position of the flare component are included in the subject image based on the position of the light source obtained from the unsaturated image.
  • a flare component calculating unit that calculates a flare component and a flare component removing unit that removes the flare component from the subject image are provided.
  • the flare component calculation unit may calculate the flare component by a convolution operation that convolves a blur function representing a luminance distribution when a point light source is imaged with an unsaturated image.
  • the flare component can be accurately calculated by convolving the blur function with the unsaturated image.
  • the exposure time when shooting an unsaturated image may be set shorter than the exposure time when shooting a subject image.
  • the flare correction apparatus may include an unsaturated image reduction unit that reduces the unsaturated image acquired by the unsaturated image acquisition unit, and the flare component calculation unit includes the unsaturated image reduced by the unsaturated image reduction unit.
  • a flare component included in the subject image may be calculated based on the image.
  • the flare correction apparatus may include a flare component enlargement unit that enlarges the flare component, and the flare component removal unit may remove the flare component enlarged by the flare component enlargement unit from the subject image.
  • FIG. 1 shows functional blocks of an imaging apparatus provided with the flare correction apparatus according to the first embodiment.
  • the imaging device 1 includes a lens 11, an imaging device 12, a flare correction device 13, and a corrected image output unit 14.
  • the lens 11 forms an image of the subject on the light receiving surface of the image sensor 12.
  • the image sensor 12 is configured by a CCD (Charge Coupled Device) or the like, and generates a signal of an object image formed on the light receiving surface via the lens 11.
  • the flare correction device 13 corrects the subject image by removing the flare component in the subject image generated by the image sensor 12.
  • the corrected image output unit 14 outputs the subject image corrected by the flare correction device 13.
  • the flare correction apparatus 13 includes an unsaturated image acquisition unit 131, a flare component calculation unit 132, a subject image acquisition unit 133, and a flare component removal unit 134.
  • the subject image acquisition unit 133 acquires a subject image captured by the image sensor 12.
  • the unsaturated image acquisition unit 131 acquires an unsaturated image obtained by imaging the subject with the imaging element 12 with low sensitivity that does not saturate the luminance level even when the subject includes a light source.
  • the flare component calculation unit 132 calculates the flare component included in the subject image based on the unsaturated image acquired by the unsaturated image acquisition unit 131.
  • the flare component removing unit 134 removes the flare component calculated by the flare component calculating unit 132 from the subject image.
  • FIG. 2 shows the hardware configuration of the imaging apparatus with a flare correction apparatus of the present invention.
  • the imaging device 1 includes a lens 11, an imaging device 12, an AFE (Analog Front End) 21, a drive control unit 22, a display unit 23, and operation buttons 24. And a microprocessor unit 25.
  • the lens 11 and the image sensor 12 have the same configuration as that shown in FIG.
  • the lens 11 forms an optical image of the subject OJ.
  • the optical image is formed on the image sensor 12.
  • the AFE 21 amplifies the image signal obtained from the image sensor 12.
  • the drive control unit 22 controls the image sensor 12 and the AFE 21.
  • the display unit 23 displays the captured subject image.
  • the operation button 24 is used for inputting an operation command.
  • the microprocessor unit 25 controls the entire imaging apparatus 1.
  • the microprocessor unit 25 includes an image input I / F (Inter Face) 251, a photographing sensitivity control I / F 252, a CPU (Central Processing Unit) 253, a corrected image output I / F 254, a memory 255, and an operation A command reading I / F 256 is provided, and these components are connected to each other via an internal bus.
  • the image input I / F 251 reads an image signal from the image sensor 12 via the AFE 21.
  • the imaging sensitivity control I / F 252 outputs a sensitivity control command to the drive control unit 22.
  • the CPU 253 executes a program for controlling the imaging device 1.
  • the corrected image output I / F 254 outputs a subject image signal to the display unit 23.
  • the memory 255 stores various processing programs.
  • the memory 255 also stores a flare correction processing program for executing each function of the flare correction apparatus 13 described with reference to FIG. This program is executed by the CPU 253, whereby the function of the flare correction device 13 can be incorporated into the imaging device 1. That is, each configuration in FIG. 1 is realized by the microprocessor unit 25 in FIG. 2, and more specifically, realized by the CPU 253 executing the flare correction processing program in the memory 255.
  • the operation command read I / F 256 reads an operation command input from the operation button 24.
  • the imaging element 12 As an operation of the entire imaging apparatus, the imaging element 12 generates an electrical image signal of the subject image formed by the lens 11 under the control of the drive control unit 22.
  • the image signal is processed by the microprocessor unit 25 via the AFE 21 and displayed on the display unit 23.
  • the image signal is stored in a recording medium (not shown).
  • FIG. 3 shows a processing flow of the flare correction processing program.
  • This program is executed by the CPU 253, and the microprocessor unit 25 functions as a flare correction device.
  • the CPU 253 executes a flare correction routine (S31), and then outputs a flare correction image to the display unit 23 (S32).
  • FIG. 4 shows the flare correction routine executed in step S31 of FIG.
  • the CPU 253 executes the flare correction processing program, it functions as the various components in FIG. 1 and performs the flare correction processing in FIG. Therefore, in the following, the flare correction of FIG. 4 will be described mainly using the configuration of FIG.
  • the unsaturated image acquisition unit 131 of FIG. 1 acquires the unsaturated image is (S41), and the subject image acquisition unit 133 acquires the subject image ia (S42).
  • the unsaturated image is an image captured with low sensitivity so that the luminance level is not saturated even when a light source is included in the subject.
  • the subject image ia is an image obtained by capturing the subject with normal appropriate sensitivity. Since the unsaturated image is is captured with a sensitivity lower than the appropriate sensitivity, the unsaturated image is can be referred to as a low sensitivity image, and the subject image ia can also be referred to as an appropriate sensitivity image.
  • the subject image ia can also be called a normal image.
  • the unsaturated image is and the subject image ia can be obtained by controlling the exposure time.
  • the CPU 253 functions as the unsaturated image acquisition unit 131 and the subject image acquisition unit 133 and controls the drive control unit 22. Then, the CPU 253 (the unsaturated image acquisition unit 131 and the subject image acquisition unit 133) controls the mechanical shutter or the electronic shutter to cause the imaging device 1 to perform shooting with a short exposure time and an appropriate exposure time. As a result, an image signal with a short exposure time and an image signal with an appropriate exposure time can be obtained by the image sensor 12.
  • These image signals are read in the form of digital data via the AFE 21 and the image input I / F 251 and acquired as an unsaturated image is and a subject image.
  • the shutter value for acquiring the unsaturated image ia is set to a value that does not saturate the light source in the image. This shutter value may be preset and stored in the memory 255.
  • the gain of the AFE 21 may be controlled to acquire the unsaturated image is and the subject image ia.
  • the AFE 21 amplifies the image signal obtained by the image sensor 12.
  • the CPU 253 functions as the unsaturated image acquisition unit 131 and the subject image acquisition unit 133, controls the drive control unit 22, and changes the gain of the AFE 21.
  • the gain value for obtaining the unsaturated image ia is set to a value that does not saturate the light source in the image. This gain value may be set in advance and stored in the memory 255.
  • the unsaturated image is and the subject image ia are photographed almost at the same time.
  • the acquisition order of the unsaturated image is and the subject image ia may be reversed, that is, step S41 and step S42 may be interchanged.
  • FIG. 5A and 5B show the subject image ia.
  • FIG. 5A is a schematic diagram of the subject image is, and FIG. 5B shows a luminance distribution on the AA line passing through the light source 51 in FIG. 5A.
  • 6A and 6B show the unsaturated image ia.
  • 6A is a schematic diagram of the unsaturated image ia, and FIG. 6B shows a luminance distribution on the BB line passing through the light source 51 in FIG. 6A.
  • the flare 52 generated in the subject image ia is a portion where the light source 51 is blurred, as shown in FIG. 5B. Therefore, in the present embodiment, the flare component is calculated using a blur function (PSF: point spread function) representing the luminance distribution of blur.
  • PSF point spread function
  • the present embodiment uses a flare PSF that represents the characteristics of blur due to flare.
  • the flare PSF is a luminance distribution when a point light source is photographed. Since flare is a phenomenon caused by the optical system in the imaging apparatus 1, the flare PSF has a characteristic characteristic of the imaging apparatus 1. This unique flare PSF may be calculated by simulation of the optical system when the imaging apparatus 1 is designed. Further, the flare PSF may be acquired by photographing a point light source at the time of prototype imaging device. The flare PSF obtained in this way is recorded in the flare component calculation program and used for flare correction.
  • FIG. 7 is a processing flow of the flare component calculation routine executed in S43 of FIG. 8A and 8B are diagrams for explaining the flare component calculation processing.
  • FIG. 8A shows the result of convolution of the unsaturated image and the flare PSF
  • FIG. 8B shows the calculation result of the flare component.
  • 8A and 8B show the luminance distribution corresponding to the BB line in FIG. 6B.
  • the flare component calculation unit 132 performs a convolution operation that convolves the unsaturated image is and the flare PSF (S71).
  • FIG. 8A shows the convolution result.
  • the unsaturated image is and the flare PSF are indicated by dotted lines. Only the light source 51 is shown in the unsaturated image is. Therefore, the convolution of the unsaturated image is and the flare PSF corresponds to a process of pasting the flare PSF at the position of the light source 51 in the image.
  • the flare PSF is a luminance distribution around the point light source, and the light source 51 is a set of point light sources. Therefore, the convolution operation repeatedly pastes the flare PSF over the entire range of the light source 51. As a result, the curved shape of FIG. 8A is obtained as a whole.
  • the flare component calculation uses the unsaturated image is.
  • the unsaturated image is is an image in which only the light source 51 is shown. This means that the position of the light source 51 can be obtained from the unsaturated image is.
  • the flare component is calculated based on the position of the light source 51 obtained from the unsaturated image is so that the position of the light source 51 corresponds to the position of the flare component.
  • the function of the flare component is pasted to the light source position in the image (that is, the entire light source range) by convolving the unsaturated image is and the function of the flare component.
  • the flare component removing unit 134 removes the flare component from the subject image ia (S44).
  • the solid line indicates the flare component
  • the dotted line indicates the luminance distribution 82 of the subject image ia.
  • the luminance of the flare component 81 exceeds the saturation value at the position of the light source 51, whereas the luminance level of the subject image ia is saturated at the position of the light source 51.
  • the present embodiment detects a saturated region where the luminance level is saturated in the subject image ia. In the present embodiment, the flare component 81 is not subtracted from the subject image ia in the saturation region.
  • FIG. 9 is a processing flow of the flare component removal routine in S44 of FIG. 10A and 10B are diagrams for explaining the flare component removal processing.
  • FIG. 10A shows the flare subtraction component
  • FIG. 10B shows the flare correction result.
  • the flare component removal unit 134 detects a saturated region of the subject image ia (S91). As a result of the detection, if the target portion is a saturated region (S92, YES), the flare component 81 is not subtracted from the subject image ia. On the other hand, when the target portion is not the saturated region (S92, NO), the flare component removing unit 134 subtracts the flare component 81 from the subject image ia (S93).
  • the flare component removal routine can subtract the flare subtraction component of FIG. 10A.
  • This subtraction component is a flare component from which the component portion corresponding to the luminance saturation region of the subject image ia has been removed.
  • flare components spreading around the light source 51 can be removed, as shown in FIG. 10B.
  • the dotted line indicates the flare subtraction component.
  • FIGS. 11A to 11C are diagrams for explaining a process of flare correction processing of a subject image obtained by imaging a vehicle traveling at night and a pedestrian in the vicinity thereof.
  • FIG. 11A shows the luminance distribution 42 of the subject image when the same scene as FIG. 14A is photographed.
  • the luminance distribution 42 is overlaid with the flare component 82.
  • the luminance component 42 of the subject image is acquired by the process of S41 in FIG. 4 described above, and the flare component 82 is acquired by the process of S43 of FIG.
  • FIG. 11B shows the result of subtracting the flare component 81 from the luminance component 42 of the subject image (as described with reference to FIG. 9, subtraction of the flare component from the subject image is performed in the saturation region of the subject image. Not) Before the correction, the brightness around the light source 51 is increased by the flare 52. However, as shown in FIG. 11B, the brightness around the light source 51 is reduced and the flare is corrected.
  • FIG. 11C shows the subject image after flare correction. As shown in FIG. 11C, in the subject image after the flare correction, the flare 52 around the light source 51 is removed, and the pedestrian 41 is clearly visible.
  • the unsaturated image is is used, and the flare component is obtained only at the actual flare position.
  • the flare component is subtracted only in the portion where the flare is generated.
  • luminance is not subtracted and flare correction is not performed.
  • FIG. 11B luminance remains on the entire screen. Therefore, it is possible to avoid black sink in portions other than the flare.
  • FIG. 11B is compared with FIG. 14C of the prior art.
  • FIG. 14C as a result of the subtraction component being uniformly subtracted from the entire screen, black sun is generated in portions other than the flare.
  • the luminance component remains on the entire screen, and black sun is avoided.
  • the present invention is more advantageous for the correction effect of the flare portion.
  • the magnitude of the flare component varies depending on the distance from the light source, the subtracted component is uniformly removed from the entire screen in FIG. 14C. Therefore, the luminance distribution around the light source is oblique in the image after flare correction. That is, the flare is not completely removed, and a part of the flare remains.
  • the flare component is accurately calculated by the above-described processing so that the flare component becomes larger as the light source is approached, based on the flare PSF. Thereby, the flare component can be removed more accurately.
  • the subject image is set so that the position of the light source corresponds to the position of the flare component based on the position of the light source obtained from the unsaturated image.
  • the flare component contained in is calculated. Therefore, the flare component included in the subject image can be accurately calculated.
  • the flare component thus accurately calculated is removed from the subject image.
  • the flare correction of the present invention does not use a uniform subtraction component for the entire subject image.
  • the present invention can perform different flare correction for each pixel according to the position of the flare component. As a result, flare generated around the light source can be appropriately removed while suppressing the occurrence of black sun in the subject image, and flare correction can be performed effectively.
  • the flare component can be accurately calculated by the convolution operation that convolves the blur function representing the luminance distribution when the point light source is imaged with the unsaturated image.
  • the exposure time when obtaining the unsaturated image is set shorter than the exposure time when obtaining the subject image. Therefore, an image having a lower sensitivity than the subject image can be obtained, and an unsaturated image can be suitably obtained.
  • the flare component calculation unit 132 performs a convolution operation between the unsaturated image is and the flare PSF.
  • the flare PSF spreads over a wide range, the amount of convolution calculation increases and the processing time increases, or a higher performance CPU is required.
  • the image used for convolution is reduced, thereby reducing the amount of calculation.
  • FIG. 12 is a functional block diagram showing an imaging apparatus provided with the flare correction apparatus according to the second embodiment of the present invention.
  • the configuration of the imaging device viewed from the hardware side is the same as that shown in FIG.
  • the same components as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the imaging device 3 includes a flare correction device 33 instead of the flare correction device 13 of FIG.
  • the flare correction apparatus 33 includes an unsaturated image acquisition unit 131, a flare component calculation unit 132, a subject image acquisition unit 133, a flare component removal unit 134, an unsaturated image reduction unit 331, and a flare component enlargement unit 332. I have.
  • the flare correction apparatus 33 of the present embodiment is different from the flare correction apparatus 13 of the first embodiment in that an unsaturated image reduction unit 331 and a flare component enlargement unit 332 are provided.
  • the unsaturated image reduction unit 331 changes the spatial resolution of the unsaturated image is acquired by the unsaturated image acquisition unit 131 and reduces the unsaturated image is at a predetermined reduction rate.
  • the flare component calculation unit 132 calculates the flare component included in the subject image ia based on the unsaturated image reduced by the unsaturated image reduction unit 331.
  • the flare component calculation process may be the same as in the first embodiment.
  • the image to be processed is a reduced unsaturated image (hereinafter referred to as a reduced unsaturated image).
  • the flare component calculation unit 132 uses a flare PSF reduced at the same reduction rate as the reduction rate of the unsaturated image is (hereinafter, reduced flare PSF).
  • the reduced flare PSF is recorded in the flare component calculation program.
  • the flare component calculation unit 132 calculates a reduced size flare component by performing a convolution operation that convolves the reduced flare PSF and the reduced unsaturated image (hereinafter, reduced flare component).
  • the flare component enlargement unit 332 changes the spatial resolution of the reduced flare component calculated by the flare component calculation unit 132, and enlarges the reduced flare component. As the enlargement ratio, the reciprocal of the reduction ratio is used.
  • the flare component removal unit 134 removes the flare component enlarged by the flare component enlargement unit 332 from the subject image ia.
  • the hardware configuration of the imaging device 3 is the same as that of the first embodiment, and only a part of the flare correction program installed in the microprocessor unit 25 is different.
  • FIG. 13 shows a processing flow of a flare correction routine in the flare correction program.
  • an unsaturated image reduction step S51 is inserted between S42 and S43.
  • a flare component expansion step S52 is inserted between S43 and S44.
  • the unsaturated image acquisition unit 131 acquires the unsaturated image is (S41), and the subject image acquisition unit 133 acquires the subject image ia. (S42). Similar to the first embodiment, the subject image and the unsaturated image are taken at approximately the same time. The execution order of S41 and S42 may be reversed.
  • the unsaturated image reduction unit 331 changes the spatial resolution of the unsaturated image is, reduces the unsaturated image is at a predetermined reduction rate, and generates a reduced unsaturated image (S51).
  • the flare calculation unit 132 calculates the flare component included in the subject image ia based on the reduced unsaturated image (S43).
  • the processing here is basically the same as in the first embodiment. However, the image to be processed is a reduced unsaturated image. Further, as described above, this processing uses the reduced flare PSF reduced at the same reduction rate as that of the unsaturated image is. Then, the flare calculation unit 132 calculates a reduced flare component by an operation of convolving the reduced unsaturated image and the reduced flare PSF.
  • the flare component enlargement unit 332 changes the spatial resolution of the reduced flare component to enlarge the reduced flare component to the flare component (S52), and the flare component removal unit 134 removes the enlarged flare component from the subject image ia ( S44). At this time, as described with reference to FIGS. 8A to 10B, the flare component is not subtracted from the subject image ia in the saturated region of the subject image ia.
  • the processing of the flare correction routine is performed, and the subject image subjected to the flare correction can be obtained.
  • the unsaturated image is is reduced in step S51 before the flare component is calculated, the flare component is calculated using the reduced image in step S43, and the flare component is enlarged in step S52 after the flare component is calculated.
  • the image size at the time of calculating the flare component in step S43 is small, the amount of calculation for convolution calculation can be reduced.
  • the enlargement process since the enlargement process is performed, the resolution of the flare component is lowered.
  • the high frequency band of the flare component decreases. Therefore, even if the resolution of the flare component is lowered, the influence on the correction result is small, and a good flare correction image can be obtained in step S44.
  • the unsaturated image is reduced.
  • a flare component included in the subject image is calculated based on the reduced unsaturated image. Therefore, the calculation amount and calculation time can be reduced.
  • the resolution of the flare component is low.
  • the high frequency band of the flare component decreases. For this reason, even if the resolution of the flare component is lowered, the influence on the correction result is small. In this way, the calculation amount and calculation time can be reduced without significantly affecting the correction.
  • the present invention has an effect that flare generated around the light source can be appropriately removed and flare correction can be effectively performed while suppressing the occurrence of black sun in the subject image.
  • the present invention is useful as a flare correction device or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Image Processing (AREA)

Abstract

 被写体画像に黒沈みが生じるのを抑止しつつ、光源周辺に生じるフレアを適切に除去でき、効果的にフレア補正を行うことができるフレア補正装置を提供する。フレア補正装置は、被写体を撮像することにより得られる被写体画像を取得する被写体画像取得部(131)と、被写体中に光源が含まれる場合であっても輝度レベルが飽和しないように、被写体を撮像することにより得られる不飽和画像を取得する不飽和画像取得部(133)と、不飽和画像から得られる光源の位置に基づいて、光源の位置とフレア成分の位置とが対応するように、被写体画像に含まれるフレア成分を算出するフレア成分算出部(132)と、フレア成分を被写体画像から除去するフレア成分除去部(134)とを備えている。

Description

フレア補正装置 関連する出願
 本出願では、2007年12月21日に日本国に出願された特許出願番号2007-329575の利益を主張し、当該出願の内容は引用することによりここに組み込まれているものとする。
 本発明は、例えばレンズ等の光学系に起因するフレアが生じた被写体画像を補正するフレア補正装置に関する。
 例えば夜間に走行する車両とその付近の歩行者をカメラにより撮影した場合の画像では、車両のヘッドライト周辺に光が広がって、車両付近の歩行者が見づらく、全体的に眩しく感じることがある。このような現象は、フレア(Flare)と呼ばれている。フレアは、カメラが被写体を撮像するときに極めて明るい光源がレンズに向けて当てられている場合に生じる光の像である。
 従来、フレアが生じている被写体画像を補正するためのフレア補正装置が知られている。従来の装置は、撮像素子から出力される輝度信号のヒストグラムと、光学系の特性に応じて予め測定された補正特性とに基づいて、黒レベル補正値を取得する。そして、従来装置は、撮像素子から出力される画像信号を黒レベル補正値を用いて補正する黒補正を行い、画像信号中のフレアを除去する。このような技術は、例えば、特開2006-165937号公報に開示されている。
 フレア部分の輝度レベルを下げるために、従来のフレア補正装置は、画面全体で一律の減算成分を使用して補正を行っている。以下、従来のフレア補正装置によるフレア補正方法について、図14A~図14Cを用いて説明する。
 図14Aは、フレアが生じた被写体画像の一例として、夜間に走行する車両とその付近の歩行者をカメラにより撮影した画像を示している。図14Aに示されるように、画像中で光源51(ヘッドライト)周辺にフレア52が広がっている。そのため、光源51付近の歩行者41が見づらくなっている。
 図14Bは、図14Aの光源51を通るA-A線に沿った輝度の分布を表す。図14Bに示されるように、被写体画像の輝度分布42においては、フレアが生じたために光源51周辺の輝度が上昇している。
 図14Cは、フレア補正後のA-A線に沿った輝度の分布を表している。従来のフレア補正装置では、フレア52の輝度を下げるために、画面全体で一律の減算成分43を用いて、フレアを除去する補正が行われる。その結果、図14Cに示されるように、画像の輝度レベルが、画面全体において減算成分43だけ減少する。これにより、画面全体のコントラストを上昇させることができ、見づらかった歩行者41が見やすくなる。そして、画面全体が落ち着いた被写体画像を得ることができる。
 しかしながら、従来のフレア補正装置には以下のような問題があった。すなわち、フレア52は光源51周辺の輝度を上昇させるが、画面全体の輝度レベルを均一に上昇させはしない。それにもかかわらず、従来技術では減算成分43が画面全体で一律に設定されている。そのため、フレア補正の減算成分43を大きく設定した場合に、図14Cに示されるように、フレア補正後の被写体画像の輝度分布45において、光源51周辺以外の位置で黒沈み44a、44b(over-darkened part (image)、低輝度部分で階調がほぼ0になる部分)が生じることがある。画像は、過度の減算により影領域で黒く成りすぎる。また、光源51周辺にはフレア成分の一部が残っており、フレア52が完全に除去されないことがある。
 本発明は、上記背景の下でなされたものであり、その目的は、被写体画像に黒沈みが生じるのを抑止しつつ、光源周辺に生じるフレアを適切に除去でき、効果的にフレア補正を行うことができるフレア補正装置を提供することにある。
 本発明のフレア補正装置は、被写体を撮像することにより得られる被写体画像を取得する被写体画像取得部と、被写体中に光源が含まれる場合であっても輝度レベルが飽和しないように被写体を撮像することにより得られる不飽和画像を取得する不飽和画像取得部と、不飽和画像から得られる光源の位置に基づいて、光源の位置とフレア成分の位置とが対応するように、被写体画像に含まれるフレア成分を算出するフレア成分算出部と、フレア成分を被写体画像から除去するフレア成分除去部とを備えている。
 また、本発明の別の態様は撮像装置であり、この撮像装置は上記のフレア補正装置を備えた構成を有している。
 また、本発明の別の態様はフレア補正方法であり、この方法は、被写体を撮像することにより得られる被写体画像を取得し、被写体中に光源が含まれる場合であっても輝度レベルが飽和しないように被写体を撮像することにより得られる不飽和画像を取得し、不飽和画像から得られる光源の位置に基づいて、光源の位置とフレア成分の位置とが対応するように、被写体画像に含まれるフレア成分を算出し、フレア成分を被写体画像から除去する。
 また、本発明の別の態様は、コンピュータにより実行されて、画像からフレアを除去するフレア除去プログラムである。このプログラムは、被写体を撮像することにより得られる被写体画像を取得し、被写体中に光源が含まれる場合であっても輝度レベルが飽和しないように被写体を撮像することにより得られる不飽和画像を取得し、不飽和画像から得られる光源の位置に基づいて、光源の位置とフレア成分の位置とが対応するように、被写体画像に含まれるフレア成分を算出し、フレア成分を被写体画像から除去する処理をコンピュータに実行させる。
 本発明は、不飽和画像から得られる光源の位置に基づいて、光源の位置とフレア成分の位置とが対応するように、被写体画像に含まれるフレア成分を算出する。そして、本発明のは、こうして算出されたフレア成分を被写体画像から除去する。したがって、被写体画像に黒沈みが生じるのを抑止しつつ、光源周辺に生じるフレアを適切に除去でき、効果的にフレア補正を行うことができる。
 以下に説明するように、本発明には他の態様が存在する。したがって、この発明の開示は、本発明の一部の態様の提供を意図しており、ここで記述され請求される発明の範囲を制限することは意図していない。
図1は、本発明の第1の実施の形態におけるフレア補正装置付きの撮像装置を示す機能ブロック図 図2は、本発明の第1の実施の形態におけるフレア補正装置付きの撮像装置のハードウエア構成を示す図 図3は、フレア補正処理プログラムの処理フローを示す図 図4は、フレア補正処理プログラム中のフレア補正ルーチンの処理フローを示す図 図5Aは、被写体画像の模式図 図5Bは、被写体画像中の光源を通る切断線に沿った輝度分布を示す図 図6Aは、不飽和画像の模式図 図6Bは、不飽和画像中の光源を通る切断線に沿った輝度分布を示す図 図7は、フレア成分算出ルーチンのフローを示す図 図8Aは、不飽和画像とフレアPSFとを畳み込んだ結果を示す図 図8Bは、フレア成分の算出結果を示す図 図9は、フレア成分除去ルーチンのフローを示す図 図10Aは、フレア減算成分を示す図 図10Bは、フレア補正結果を示す図 図11Aは、フレアが生じた被写体画像の輝度分布とフレア成分を示す図 図11Bは、フレア補正後の輝度分布を示す図 図11Cは、フレア補正後の被写体画像を示す図 図12は、本発明の第2の実施の形態におけるフレア補正装置付きの撮像装置を示す機能ブロック図 図13は、フレア補正処理プログラム中のフレア補正ルーチンの処理フローを示す図 図14Aは、フレアが生じた被写体画像の一例を示す図 図14Bは、フレアが生じた被写体画像の輝度分布を示す図 図14Cは、従来技術によるフレア補正後の被写体画像の輝度分布を示す図
符号の説明
 1、3 撮像装置
 11 レンズ
 12 撮像素子
 13、33 フレア補正装置
 14 補正画像出力部
 21 AFE
 22 駆動制御部
 23 表示部
 24 操作ボタン
 25 マイクロプロセッサ部
 131 不飽和画像取得部
 132 フレア成分算出部
 133 被写体画像取得部
 134 フレア成分除去部
 251 画像入力I/F
 252 撮影感度制御I/F
 253 CPU
 254 補正画像出力I/F
 255 メモリ
 256 操作指令読込みI/F
 331 不飽和画像縮小部
 332 フレア成分拡大部
 以下に本発明の詳細な説明を述べる。以下の詳細な説明と添付の図面は発明を限定するものではない。代わりに、発明の範囲は添付の請求の範囲により規定される。
 本発明のフレア補正装置は、被写体を撮像することにより得られる被写体画像を取得する被写体画像取得部と、被写体中に光源が含まれる場合であっても輝度レベルが飽和しないように被写体を撮像することにより得られる不飽和画像を取得する不飽和画像取得部と、不飽和画像から得られる光源の位置に基づいて、光源の位置とフレア成分の位置とが対応するように、被写体画像に含まれるフレア成分を算出するフレア成分算出部と、フレア成分を被写体画像から除去するフレア成分除去部とを備えている。
 この構成により、不飽和画像から得られる光源の位置に基づいて、光源の位置とフレア成分の位置とが対応するように、被写体画像に含まれるフレア成分が算出される。したがって、被写体画像に含まれるフレア成分が正確に算出される。そして、このように正確に算出されたフレア成分が被写体画像から除去される。本発明のフレア補正は、被写体画像全体に対して一律の減算成分を用いない。本発明は、フレア成分の位置に応じて、画素毎に異なるフレア補正を行うことができる。この結果、被写体画像に黒沈み(over-darkened part (image)、低輝度部分で階調がほぼ0になる部分)が生じるのを抑止しつつ、光源周辺に生じるフレアを適切に除去でき、効果的にフレア補正を行うことができる。
 また、フレア成分算出部は、点光源を撮像したときの輝度分布を表すボケ関数を不飽和画像に畳み込む畳込演算により、フレア成分を算出してよい。
 この構成では、ボケ関数を不飽和画像に畳み込むことにより、フレア成分を正確に算出することができる。
 また、不飽和画像を撮影するときの露光時間が、被写体画像を撮影するときの露光時間よりも短く設定されてよい。
 この構成により、不飽和画像を撮影するときの露光時間を被写体画像を撮影するときの露光時間よりも短くするので、被写体画像よりも低感度な画像が得られ、不飽和画像を好適に得ることができる。
 また、フレア補正装置は、不飽和画像取得部により取得される不飽和画像を縮小する不飽和画像縮小部を有してよく、フレア成分算出部は、不飽和画像縮小部により縮小された不飽和画像に基づいて、被写体画像に含まれるフレア成分を算出してよい。さらに、フレア補正装置は、フレア成分を拡大するフレア成分拡大部を有してよく、フレア成分除去部は、フレア成分拡大部により拡大されたフレア成分を被写体画像から除去してよい。
 この構成により、不飽和画像が縮小され、縮小された不飽和画像に基づいて、被写体画像に含まれるフレア成分が算出される。したがって、演算量および演算時間を低減することができる。また、この構成では、フレア成分の解像度は低くなる。しかし、フレアが広範囲に広がった場合、フレア成分の高周波帯域が減少する。したがって、フレア成分の解像度を低くしても補正結果への影響は小さい。このようにして、本発明は、補正へ大きな影響を及ぼすことなく、演算量と演算時間を低減できる。
(第1の実施の形態)
 以下、本発明の第1の実施の形態に係るフレア補正装置について、図面を用いて説明する。図1は、第1の実施の形態のフレア補正装置を備えた撮像装置の機能ブロックを示す。
 図1において、撮像装置1は、レンズ11と、撮像素子12と、フレア補正装置13と、補正画像出力部14とを備えている。レンズ11は被写体の像を撮像素子12の受光面に結像する。撮像素子12はCCD(Charge Coupled Device)等により構成され、レンズ11を介して受光面に結像される被写体の像の信号を生成する。フレア補正装置13は、撮像素子12により生成された被写体画像中のフレア成分を除去して、被写体画像を補正する。補正画像出力部14は、フレア補正装置13により補正された被写体画像を出力する。
 フレア補正装置13は、不飽和画像取得部131と、フレア成分算出部132と、被写体画像取得部133と、フレア成分除去部134とを備えている。被写体画像取得部133は、撮像素子12により撮像された被写体画像を取得する。不飽和画像取得部131は、被写体中に光源が含まれた場合であっても輝度レベルが飽和しないような低感度で撮像素子12により被写体を撮像することにより得られる不飽和画像を取得する。フレア成分算出部132は、不飽和画像取得部131により取得される不飽和画像に基づいて、被写体画像に含まれるフレア成分を算出する。フレア成分除去部134は、フレア成分算出部132により算出されるフレア成分を被写体画像から除去する。
 図2は、本発明のフレア補正装置付き撮像装置のハードウエア構成を示している。図2に示されるように、撮像装置1は、レンズ11と、撮像素子12と、AFE(Analog Front End:アナログフロントエンド)21と、駆動制御部22と、表示部23と、操作ボタン24と、マイクロプロセッサ部25とを備えている。レンズ11および撮像素子12は、図1で示される構成と同様である。レンズ11が被写体OJの光学像を形成する。光学像は撮像素子12上に結像される。
 AFE21は、撮像素子12から得られた画像信号を増幅する。駆動制御部22は、撮像素子12およびAFE21を制御する。表示部23は、撮像された被写体画像を表示する。操作ボタン24は操作指令を入力するために用いられる。マイクロプロセッサ部25は、撮像装置1全体を制御する。マイクロプロセッサ部25は、画像入力I/F(Inter Face:インターフェース)251と、撮影感度制御I/F252と、CPU(Central Processing Unit)253と、補正画像出力I/F254と、メモリ255と、操作指令読込みI/F256とを備え、これらの構成が内部バスを介して互いに接続されている。
 画像入力I/F251は、撮像素子12からAFE21を介して画像信号を読み込む。撮影感度制御I/F252は、駆動制御部22に対して感度制御指令を出力する。CPU253は、撮像装置1を制御するためのプログラムを実行する。補正画像出力I/F254は、表示部23に被写体の画像信号を出力する。メモリ255は、各種処理プログラムを記憶している。メモリ255は、図1で説明したフレア補正装置13の各機能を実行するためのフレア補正処理プログラムも記憶している。このプログラムがCPU253で実行され、これにより、撮像装置1にフレア補正装置13の機能を組み込むことができる。すなわち、図1の各構成が、図2のマイクロプロセッサ部25により実現され、より具体的には、メモリ255中のフレア補正処理プログラムをCPU253が実行することによって実現される。操作指令読込みI/F256は、操作ボタン24から入力される操作指令を読み込む。
  次に、本発明の第1の実施の形態におけるフレア補正装置付きの撮像装置1の動作について説明する。撮像装置全体の動作としては、撮像素子12が、駆動制御部22の制御下で、レンズ11により結像された被写体像の電気的な画像信号を生成する。この画像信号が、AFE21を経てマイクロプロセッサ部25で処理され、表示部23に表示される。また、画像信号は図示しない記録媒体に保存される。
 次に、撮像装置1に備えられたフレア補正装置の動作について説明する。図3は、フレア補正処理プログラムの処理フローを示している。このプログラムがCPU253により実行されて、マイクロプロセッサ部25がフレア補正装置として機能する。図示のように、CPU253は、フレア補正ルーチンを実行し(S31)、次に、フレア補正画像を表示部23に出力する(S32)。
 図4は、図3のステップS31で実行されるフレア補正ルーチンを示す。CPU253が、フレア補正処理プログラムを実行することにより、図1の各種構成として機能し、図4のフレア補正処理を行う。そこで、下記では、主として図1の構成を用いて図4のフレア補正を説明する。まず、図1の不飽和画像取得部131が不飽和画像isを取得し(S41)、被写体画像取得部133が被写体画像iaを取得する(S42)。
 不飽和画像isは、被写体中に光源が含まれる場合であっても輝度レベルが飽和しないように低感度で撮像された画像である。また、被写体画像iaは、通常の適正感度で被写体を撮像した画像である。不飽和画像isは適正感度より低い感度で撮像されているので、不飽和画像isを低感度画像といい、被写体画像iaを適正感度画像ということもできる。また、被写体画像iaは、通常画像ということもできる。
 不飽和画像isと被写体画像iaは、露光時間の制御により取得することができる。CPU253が不飽和画像取得部131及び被写体画像取得部133として機能し、駆動制御部22を制御する。そして、CPU253(不飽和画像取得部131及び被写体画像取得部133)が、メカニカルシャッター又は電子シャッターを制御して、短露光時間及び適正露光時間で撮影を撮像装置1に行わせる。これにより、撮像素子12で短露光時間の画像信号及び適正露光時間の画像信号が得られる。これら画像信号がAFE21及び画像入力I/F251を介してデジタルデータの形式で読み込まれ、不飽和画像is及び被写体画像として取得される。上記の不飽和画像iaを取得するためのシャッター値は、画像中の光源が飽和しないような値に設定されている。このシャッター値は、予め設定されていてよく、メモリ255に記憶されていてよい。
 あるいは、不飽和画像isと被写体画像iaを取得するために、AFE21のゲインが制御されてもよい。AFE21は、撮像素子12で得られる画像信号を増幅する。CPU253が不飽和画像取得部131及び被写体画像取得部133として機能し、駆動制御部22を制御し、AFE21のゲインを変更する。これにより、2つの画像信号が異なるゲインで処理されて、不飽和画像isと被写体画像iaが取得される。不飽和画像iaを取得するためのゲイン値は、画像中の光源が飽和しないような値に設定されている。このゲイン値は、予め設定されていてよく、メモリ255に記憶されていてよい。
 不飽和画像isと被写体画像iaはほぼ同時刻に続けて撮影される。不飽和画像isと被写体画像iaの取得順序は逆でもよく、すなわちステップS41とステップS42が入れ替えられてもよい。
 図5A及び図5Bは被写体画像iaを表している。図5Aは被写体画像isの模式図であり、図5Bは図5A中の光源51を通るA-A線上の輝度分布を示す。図6A及び図6Bは不飽和画像iaを表している。図6Aは不飽和画像iaの模式図であり、図6Bは図6A中の光源51を通るB-B線上の輝度分布を示す。
 図5Aに示されるように、被写体画像iaでは、光源51の周辺にフレア52が発生している。また、図5Bに実線で示されるように、光源51の中心部では、輝度が飽和値に達し、輝度レベルが飽和している。光源51の周辺では、光源51の中心から遠ざかるにつれて徐々に減少するように輝度が分布している。この結果、被写体画像iaの光源51の周辺に明るい部分が広がり、光源51がボケた状態となっている。図5Bの点線は、実際の光源51の輝度と位置を示している。
 図6Aに示されるように、不飽和画像isでは、光源51の周辺にフレアは生じていない。また、感度が低いため、光源51以外の被写体は写っていない。また、図6Bに示されるように、光源51の輝度レベルは飽和しておらず、光源51の位置に対応して輝度が分布している。
 次に、図4に戻り、フレア成分算出部132が、被写体画像iaに含まれるフレア成分を算出する(S43)。フレア成分は、フレア52の輝度分布をいう。フレア成分算出部132は、不飽和画像isの光源51の位置に基づいて、光源51の位置とフレア成分の位置とが対応するようにフレア成分を算出する。
 被写体画像iaに生じるフレア52は、図5Bに示されるように、光源51がボケた部分である。そこで、本実施の形態は、ボケの輝度分布を表すボケ関数(PSF:point spread function)を使用してフレア成分を算出する。特に、本実施の形態は、フレアによるボケの特徴を表したフレアPSFを用いている。フレアPSFは、点光源を撮影したときの輝度分布である。フレアは撮像装置1内の光学系に起因して生じる現象であるので、フレアPSFは撮像装置1に固有の特徴を有する。この固有のフレアPSFは、撮像装置1の設計時に光学系のシミュレーションにより算出されてよい。また、撮像装置試作時に点光源を撮影することにより、フレアPSFが取得されてよい。こうして得られるフレアPSFが、フレア成分算出のプログラム中に記録されており、フレア補正に使用される。
 図7は、図4のS43で実行されるフレア成分算出ルーチンの処理フローである。図8A及び図8Bは、フレア成分算出処理を説明するための図である。図8Aは不飽和画像とフレアPSFとを畳み込んだ結果を示し、図8Bはフレア成分の算出結果を示す。図8Aおよび図8Bは、図6BのB-B線に対応した輝度分布を示す。
 図7に示されるように、フレア成分算出部132は、不飽和画像isとフレアPSFとを畳み込む畳込演算を行う(S71)。図8Aは畳み込み結果を示している。図8Aでは、不飽和画像isと、フレアPSFが、点線で示されている。不飽和画像isには、光源51のみが写っている。したがって、不飽和画像isとフレアPSFの畳込みは、画像内の光源51の位置にフレアPSFを貼り付ける処理に相当する。フレアPSFが点光源の周囲の輝度分布であり、光源51が点光源の集合である。したがって、畳込演算は、光源51の全範囲に渡ってフレアPSFを繰り返し貼り付ける。その結果、全体として図8Aの曲線形状が得られる。
 図8Aの畳込み結果の曲線は、フレア成分の形状を表している。ただし、不飽和画像isと被写体画像iaでは感度が異なる。そのため、図8Aの畳込み結果は実際のフレア成分より小さい。そこで、次に、フレア成分算出部132が、感度比(通常感度/低感度)を算出する(S72)。感度比(通常感度/低感度)は、被写体画像iaを撮影したときの通常感度と、不飽和画像isを撮像したときの低感度との比である。そして、フレア成分算出部132は、当該感度比をS71で得られ畳込み結果に乗算することにより、通常感度に対応したフレア成分を算出する(S73)。この結果、図8Bに示されるように、不飽和画像の光源51の位置に対応した凸状の曲線で表されるフレア成分81を得ることができる。
 上記のように、フレア成分算出は、不飽和画像isを使用する。不飽和画像isは、光源51のみが写っている画像である。これは、不飽和画像isから光源51の位置が得られることを意味している。このことを利用し、不飽和画像isから得られる光源51の位置に基づいて、光源51の位置とフレア成分の位置が対応するように、フレア成分が算出されている。具体的には、不飽和画像isとフレア成分の関数を畳み込むことにより、フレア成分の関数が画像内の光源位置(すなわち光源範囲全体)に貼り付けられている。
 次に、図4に戻り、フレア成分除去部134が、被写体画像iaからフレア成分を除去する(S44)。ここで、図8Bにおいて、実線はフレア成分であり、点線は被写体画像iaの輝度分布82を示している。図8Bに示されるように、フレア成分81は光源51の位置で輝度が飽和値を超えているのに対し、被写体画像iaの輝度レベルは光源51の位置で飽和している。このため、フレア成分81を被写体画像iaからそのまま減算したとすると、被写体画像iaの輝度飽和領域で黒沈みが生じてしまう。そこで、本実施の形態は、被写体画像ia中で輝度レベルが飽和している飽和領域を検出する。そして、本実施の形態は、飽和領域では被写体画像iaからのフレア成分81の減算を行わない。
 図9は、図4のS44のフレア成分除去ルーチンの処理フローである。図10A及び図10Bは、フレア成分除去の処理を説明するための図である。図10Aはフレア減算成分を示し、図10Bはフレア補正結果を示す。図9に示されるように、まず、フレア成分除去部134が被写体画像iaの飽和領域を検出する(S91)。検出の結果、対象部分が飽和領域である場合(S92、YES)、被写体画像iaからフレア成分81が減算されない。一方、対象部分が飽和領域でない場合(S92、NO)、フレア成分除去部134が、被写体画像iaからのフレア成分81の減算を行う(S93)。このような処理が画像全体に対して行われ、その結果、フレア成分除去ルーチン(S44)は、図10Aのフレア減算成分を減算できる。この減算成分は、被写体画像iaの輝度飽和領域に対応する成分部分が除去されたフレア成分である。このような減算処理の結果、図10Bに示されるように、光源51周辺に広がるフレア成分を除去することができる。図10Bにおいて、点線はフレア減算成分を示している。
 以上により、図3のステップS31のフレア補正ルーチンの処理が終了し、フレア補正が施された被写体画像iaが得られる。フレア補正が施された被写体画像iaをフレア補正画像を呼ぶ。次に、CPU253がフレア補正プログラムの実行により、フレア補正画像を表示部23に出力して(S32)、フレア補正処理プログラムの処理を終了する。フレア補正画像は、補正画像出力I/F254を介して表示部23に出力される。図1では、補正画像出力部14が、フレア成分除去部134で処理されたフレア補正画像を出力する。
 次に、図11A~図11Cを参照し、図14Aと同じシーンを対象としたフレア補正処理の過程について説明する。図11A~図11Cは、夜間に走行する車両とその付近の歩行者を撮像した被写体画像のフレア補正処理の過程を説明するための図である。図11Aは、図14Aと同じシーンを撮影したときの被写体画像の輝度分布42を示す。輝度分布42は、フレア成分82とを重ね合わされている。ここで、被写体画像の輝度成分42は、上述の図4のS41の処理により取得され、フレア成分82は図4のS43の処理により取得される。
 図11Bは、被写体画像の輝度成分42からフレア成分81を減算した結果を示している(図9を用いて説明したように、被写体画像の飽和領域では、被写体画像からのフレア成分の減算は行われていない)。補正前はフレア52により光源51周辺の輝度が上昇しているが、図11Bに示されるように、光源51周辺の輝度が減少し、フレアが補正される。図11Cはフレア補正後の被写体画像を示す。図11Cに示されるように、フレア補正後の被写体画像では、光源51周辺のフレア52が除去されており、歩行者41がはっきりと写っている。
 本実施の形態では、不飽和画像isが用いられており、フレア成分が、実際のフレアの位置にのみ求められている。これにより、フレアが生じてる部分でのみ、フレア成分が減算される。フレアが生じていない部分では、輝度が減算されず、フレア補正が施されない。その結果、図11Bに示されるように、画面全体に輝度が残っている。したがって、フレア以外の部分の黒沈みを回避できる。この点に関し、図11Bと従来技術の図14Cを比較する。図14Cでは、画面全体から一律に減算成分が減算された結果、フレア以外の部分で黒沈みが生じている。図11Bでは、画面全体に輝度成分が残り、黒沈みが回避されている。
 さらに、図11Bと図14Cを比較すると、フレア部分の補正効果についても本発明の方が有利である。フレア成分の大きさは光源からの距離によって異なるにも拘わらず、図14Cでは画面全体から一律に減算成分が除去されている。そのため、フレア補正後の画像において、光源周囲の輝度分布が斜めである。つまり、フレアが完全に除去されず、フレアの一部が残っている。一方、本実施の形態では、上述した処理により、フレアPSFに基づいて、光源に近づくほどフレア成分が大きくなるように、正確にフレア成分が算出されている。これにより、フレア成分をより正確に除去することができている。
 このような本発明の第1の実施の形態のフレア補正装置によれば、不飽和画像から得られる光源の位置に基づいて、光源の位置とフレア成分の位置とが対応するように、被写体画像に含まれるフレア成分が算出される。したがって、被写体画像に含まれるフレア成分を正確に算出できる。そして、このように正確に算出されたフレア成分が被写体画像から除去される。本発明のフレア補正は、被写体画像全体に対して一律の減算成分を用いていない。本発明は、フレア成分の位置に応じて、画素毎に異なるフレア補正を行うことができる。この結果、被被写体画像に黒沈みが生じるのを抑止しつつ、光源周辺に生じるフレアを適切に除去でき、効果的にフレア補正を行うことができる。
 また、本実施の形態のフレア補正装置によれば、点光源を撮像したときの輝度分布を表すボケ関数を不飽和画像に畳み込む畳込演算により、フレア成分を正確に算出することができる。
 また、本実施の形態のフレア補正装置によれば、不飽和画像を得るときの露光時間が、被写体画像を得るときの露光時間よりも短く設定される。したがって、被写体画像よりも低感度な画像が得られ、不飽和画像を好適に得ることができる。
(第2の実施の形態)
 以下、本発明の第2の実施の形態に係るフレア補正装置について、図面を用いて説明する。上記の第1の実施の形態では、フレア成分算出部132が、不飽和画像isとフレアPSFとの畳込演算を行っている。フレアPSFが広範囲に広がっている場合、畳込演算の演算量が大きくなって処理時間が増加し、あるいは、より高性能なCPUが必要になる。第2の実施の形態は、以下に説明するように、畳込みに使われる画像を縮小し、これにより演算量を低減する。
 図12は、本発明の第2の実施の形態のフレア補正装置を備えた撮像装置を示す機能ブロック図である。この撮像装置をハードウエア面から見た構成は、図2と同様である。以下では、図1と同一の構成要素については、同一符号を付して、詳細な説明を省略する。
 図12に示されるように、撮像装置3は、図1のフレア補正装置13に代えて、フレア補正装置33を備えている。フレア補正装置33は、不飽和画像取得部131と、フレア成分算出部132と、被写体画像取得部133と、フレア成分除去部134と、不飽和画像縮小部331と、フレア成分拡大部332とを備えている。本実施形態のフレア補正装置33は、不飽和画像縮小部331とフレア成分拡大部332とを備えている点で、第1の実施の形態のフレア補正装置13と相違する。
 不飽和画像縮小部331は、不飽和画像取得部131により取得される不飽和画像isの空間解像度を変更し、不飽和画像isを所定の縮小率で縮小する。フレア成分算出部132は、不飽和画像縮小部331により縮小された不飽和画像に基づいて、被写体画像iaに含まれるフレア成分を算出する。フレア成分の算出処理は、第1の実施の形態と同様でよい。ただし、処理される画像が、縮小された不飽和画像(以下、縮小不飽和画像)。また、フレア成分算出部132は、不飽和画像isの縮小率と同一の縮小率で縮小されたフレアPSFを用いる(以下、縮小フレアPSF)。この縮小フレアPSFは、フレア成分算出のプログラム中に記録されている。フレア成分算出部132は、縮小フレアPSFと縮小不飽和画像とを畳込む畳込演算を行うことにより、縮小サイズのフレア成分を算出する(以下、縮小フレア成分)。フレア成分拡大部332は、フレア成分算出部132により算出される縮小フレア成分の空間解像度を変更して、縮小フレア成分を拡大する。拡大率としては、上記縮小率の逆数が用いられる。フレア成分除去部134は、フレア成分拡大部332により拡大されたフレア成分を被写体画像iaから除去する。
 上述した通り、撮像装置3のハードウエア構成は第1の実施の形態と同一であり、マイクロプロセッサ部25にてインストールされるフレア補正プログラムの一部だけが相違する。
 次に、第2の実施の形態におけるフレア補正装置付きの撮像装置の動作について、図に基づいて説明する。図13は、フレア補正プログラム中のフレア補正ルーチンの処理フローを示す。図4に示した第1の実施の形態における補正ルーチンとの相違点として、本実施の形態のフレア補正ルーチンの処理フローでは、S42およびS43の間に不飽和画像縮小のステップS51が挿入される。また、S43およびS44の間にフレア成分拡大ステップS52が挿入されている。
 図13に示されるように、CPU253がフレア補正プログラムの処理を実行すると、まず、不飽和画像取得部131が不飽和画像isを取得し(S41)、被写体画像取得部133が被写体画像iaを取得する(S42)。第1の実施の形態と同様に、被写体画像および不飽和画像は略同時刻に撮影される。S41およびS42の実行順は逆でもよい。
 次に、不飽和画像縮小部331が、不飽和画像isの空間解像度を変更して、不飽和画像isを所定の縮小率で縮小して、縮小不飽和画像を生成する(S51)。フレア算出部132は、縮小不飽和画像に基づいて、被写体画像iaに含まれるフレア成分を算出する(S43)。ここでの処理は、基本的に第1の実施の形態と同様である。ただし、処理される画像が縮小不飽和画像である。また、この処理は、上述の通り、不飽和画像isの縮小率と同一の縮小率で縮小された縮小フレアPSFを用いる。そして、フレア算出部132が縮小不飽和画像と縮小フレアPSFを畳み込む演算により、縮小フレア成分を算出する。フレア成分拡大部332が縮小フレア成分の空間解像度を変更して、縮小フレア成分をフレア成分へ拡大し(S52)、フレア成分除去部134が、拡大されたフレア成分を被写体画像iaから除去する(S44)。このとき、図8A~図10Bを用いて説明したように、被写体画像iaの飽和領域では、被写体画像iaからのフレア成分の減算は行われない。
 以上により、フレア補正ルーチンの処理が行われ、フレア補正が施された被写体画像を得ることができる。上記の処理では、フレア成分算出前にステップS51で不飽和画像isが縮小され、ステップS43で縮小画像を用いてフレア成分が算出され、フレア成分算出後にステップS52でフレア成分が拡大されている。この構成により、ステップS43のフレア成分算出時の画像サイズが小さいので、畳込み計算の演算量を小さくできる。その反面、拡大処理を行っているので、フレア成分の解像度は低くなる。しかし、フレア成分が広い範囲に広がった場合、フレア成分の高周波帯域は減少する。したがって、フレア成分の解像度が低くなっても、補正結果への影響は小さく、ステップS44では良好なフレア補正画像が得られる。
 このような本発明の第2の実施の形態のフレア補正装置によれば、不飽和画像が縮小される。そして、縮小された不飽和画像に基づいて、被写体画像に含まれるフレア成分が算出される。したがって、演算量および演算時間を低減することができる。また、この構成では、フレア成分の解像度は低くなる。しかし、フレアが広範囲に広がった場合、フレア成分の高周波帯域は減少する。そのため、フレア成分の解像度を低くしても補正結果への影響は小さい。このようにして、補正へ大きな影響を及ぼすことなく、演算量と演算時間を低減できる。
 以上に現時点で考えられる本発明の好適な実施の形態を説明したが、本実施の形態に対して多様な変形が可能なことが理解され、そして、本発明の真実の精神と範囲内にあるそのようなすべての変形を添付の請求の範囲が含むことが意図されている。
 以上のように、本発明は、被写体画像に黒沈みが生じるのを抑止しつつ、光源周辺に生じるフレアを適切に除去でき、効果的にフレア補正を行うことができるという効果を有する。本発明は、フレア補正装置等として有用である。

Claims (7)

  1.  被写体を撮像することにより得られる被写体画像を取得する被写体画像取得部と、
     前記被写体中に光源が含まれる場合であっても輝度レベルが飽和しないように前記被写体を撮像することにより得られる不飽和画像を取得する不飽和画像取得部と、
     前記不飽和画像から得られる前記光源の位置に基づいて、前記光源の位置とフレア成分の位置とが対応するように、前記被写体画像に含まれるフレア成分を算出するフレア成分算出部と、
     前記フレア成分を前記被写体画像から除去するフレア成分除去部とを備えたことを特徴とするフレア補正装置。
  2.  前記フレア成分算出部は、点光源を撮像したときの輝度分布を表すボケ関数を前記不飽和画像に畳み込む畳込演算により、前記フレア成分を算出することを特徴とする請求項1に記載のフレア補正装置。
  3.  前記不飽和画像を撮影するときの露光時間が、前記被写体画像を撮影するときの露光時間よりも短く設定されていることを特徴とする請求項1に記載のフレア補正装置。
  4.  前記不飽和画像取得部により取得される前記不飽和画像を縮小する不飽和画像縮小部を有し、前記フレア成分算出部は、前記不飽和画像縮小部により縮小された前記不飽和画像に基づいて、前記被写体画像に含まれるフレア成分を算出し、
     さらに、前記フレア成分を拡大するフレア成分拡大部を有し、前記フレア成分除去部は、前記フレア成分拡大部により拡大された前記フレア成分を前記被写体画像から除去することを特徴とする請求項1に記載のフレア補正装置。
  5.  請求項1に記載のフレア補正装置を備えたことを特徴とする撮像装置。
  6.  被写体を撮像することにより得られる被写体画像を取得し、
     前記被写体中に光源が含まれる場合であっても輝度レベルが飽和しないように前記被写体を撮像することにより得られる不飽和画像を取得し、
     前記不飽和画像から得られる前記光源の位置に基づいて、前記光源の位置とフレア成分の位置とが対応するように、前記被写体画像に含まれるフレア成分を算出し、
     前記フレア成分を前記被写体画像から除去することを特徴とするフレア補正方法。
  7.  コンピュータにより実行されて、画像からフレアを除去するフレア除去プログラムであって、
     被写体を撮像することにより得られる被写体画像を取得し、
     前記被写体中に光源が含まれる場合であっても輝度レベルが飽和しないように前記被写体を撮像することにより得られる不飽和画像を取得し、
     前記不飽和画像から得られる前記光源の位置に基づいて、前記光源の位置とフレア成分の位置とが対応するように、前記被写体画像に含まれるフレア成分を算出し、
     前記フレア成分を前記被写体画像から除去する処理を前記コンピュータに実行させることを特徴とするフレア補正プログラム。
PCT/JP2008/003743 2007-12-21 2008-12-12 フレア補正装置 WO2009081533A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007329575A JP2009152921A (ja) 2007-12-21 2007-12-21 フレア補正装置
JP2007-329575 2007-12-21

Publications (1)

Publication Number Publication Date
WO2009081533A1 true WO2009081533A1 (ja) 2009-07-02

Family

ID=40800851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/003743 WO2009081533A1 (ja) 2007-12-21 2008-12-12 フレア補正装置

Country Status (2)

Country Link
JP (1) JP2009152921A (ja)
WO (1) WO2009081533A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013537318A (ja) * 2010-09-14 2013-09-30 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィシステム内のフレア効果の補正
JP2016163171A (ja) * 2015-03-02 2016-09-05 キヤノン株式会社 画像処理装置、撮像装置、画像処理方法、画像処理プログラム、および、記憶媒体
WO2022059139A1 (ja) * 2020-09-17 2022-03-24 三菱電機株式会社 画像表示装置および画像表示方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4995359B1 (ja) * 2011-03-23 2012-08-08 パナソニック株式会社 画像処理装置、撮像装置及び画像処理方法
WO2012127552A1 (ja) * 2011-03-23 2012-09-27 パナソニック株式会社 画像処理装置、撮像装置及び画像処理方法
JP2019135468A (ja) 2018-02-05 2019-08-15 株式会社タムロン 擾乱光判別装置、擾乱光分離装置、擾乱光判別方法及び擾乱光分離方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11122539A (ja) * 1997-10-17 1999-04-30 Olympus Optical Co Ltd 撮像装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11122539A (ja) * 1997-10-17 1999-04-30 Olympus Optical Co Ltd 撮像装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013537318A (ja) * 2010-09-14 2013-09-30 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィシステム内のフレア効果の補正
JP2016163171A (ja) * 2015-03-02 2016-09-05 キヤノン株式会社 画像処理装置、撮像装置、画像処理方法、画像処理プログラム、および、記憶媒体
WO2022059139A1 (ja) * 2020-09-17 2022-03-24 三菱電機株式会社 画像表示装置および画像表示方法
JP7355252B2 (ja) 2020-09-17 2023-10-03 三菱電機株式会社 画像表示装置および画像表示方法

Also Published As

Publication number Publication date
JP2009152921A (ja) 2009-07-09

Similar Documents

Publication Publication Date Title
JP5047048B2 (ja) 画像処理装置、撮像装置、制御方法、プログラム、及び記憶媒体
JP5132401B2 (ja) 画像処理装置及び画像処理方法
EP1931130B1 (en) Image processing apparatus, image processing method, and program
EP3113476B1 (en) Image processing apparatus, image capturing apparatus, image processing method, image capturing method, and program
JP5787648B2 (ja) 画像処理装置及び画像処理装置の制御方法
JP5020615B2 (ja) 画像処理装置及び撮像装置及び画像処理方法及びプログラム
WO2009081533A1 (ja) フレア補正装置
JP4963598B2 (ja) 画像処理装置及び撮像装置及び画像処理方法及びプログラム
JP2010073009A (ja) 画像処理装置
JP5257108B2 (ja) プロジェクタ、プロジェクションシステム、画像表示方法、及び画像表示プログラム
JP2011135563A (ja) 撮像装置および画像処理方法
JP5541205B2 (ja) 画像処理装置、撮像装置、画像処理プログラムおよび画像処理方法
JP5861924B2 (ja) 撮像装置
JP5177284B2 (ja) 被写体動き検出装置および方法
JP6873679B2 (ja) 撮像装置、撮像装置の制御方法及びプログラム
JP2009284009A (ja) 画像処理装置、撮像装置及び画像処理方法
JP2017038165A (ja) 画像処理装置、撮像装置、及び画像処理方法
JP2013106151A (ja) 画像処理装置及び画像処理方法
JP2009049575A (ja) 画像処理装置及び画像処理方法及びプログラム
JP5274697B2 (ja) 画像処理装置及び画像処理方法
JP5115297B2 (ja) 画像処理装置、撮像装置、画像処理方法およびプログラム
KR101360411B1 (ko) 레티넥스 기법을 이용한 영상처리방법
JP2010068465A (ja) 画像処理装置、撮像装置及び画像処理方法
JP6090565B2 (ja) 撮像装置、撮像方法及びプログラム
JP2007281545A (ja) 撮像装置,及び撮像方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08863441

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08863441

Country of ref document: EP

Kind code of ref document: A1