WO2009080246A1 - Flammgeschützte schlagzähmodifizierte polycarbonat-zusammensetzungen - Google Patents

Flammgeschützte schlagzähmodifizierte polycarbonat-zusammensetzungen Download PDF

Info

Publication number
WO2009080246A1
WO2009080246A1 PCT/EP2008/010696 EP2008010696W WO2009080246A1 WO 2009080246 A1 WO2009080246 A1 WO 2009080246A1 EP 2008010696 W EP2008010696 W EP 2008010696W WO 2009080246 A1 WO2009080246 A1 WO 2009080246A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
composition according
component
sum
Prior art date
Application number
PCT/EP2008/010696
Other languages
English (en)
French (fr)
Inventor
Thomas Eckel
Vera Buchholz
Eckhard Wenz
Original Assignee
Bayer Materialscience Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Materialscience Ag filed Critical Bayer Materialscience Ag
Priority to JP2010538437A priority Critical patent/JP2011506706A/ja
Priority to CA2709953A priority patent/CA2709953A1/en
Priority to MX2010006308A priority patent/MX2010006308A/es
Priority to BRPI0821350-0A priority patent/BRPI0821350A2/pt
Priority to KR1020107013520A priority patent/KR101530404B1/ko
Priority to CN200880121778.0A priority patent/CN101981108B/zh
Priority to AT08864635T priority patent/ATE513010T1/de
Priority to EP08864635A priority patent/EP2225322B1/de
Publication of WO2009080246A1 publication Critical patent/WO2009080246A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5313Phosphinic compounds, e.g. R2=P(:O)OR'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers

Definitions

  • the present invention relates to impact-modified polycarbonate compositions containing a salt of a phosphinic acid and talc, the use of the polycarbonate compositions for the production of moldings and the moldings themselves.
  • thermoplastic molding compositions containing at least one metal salt of hypophosphorous acid and at least one aromatic polycarbonate resin and their mixture with a styrene-containing graft copolymer resin having a rubber content of 5-15%.
  • the proportions of the styrene-containing graft copolymer are 10-40% by weight.
  • the resulting molding compositions are characterized by good flame retardancy, high thermal stability under processing conditions and good weather resistance. Due to the low rubber content, other properties, in particular mechanical properties, are at a low level.
  • thermoplastic molding compositions comprising 5-96% by weight of a polyester or polycarbonate, 1-30% by weight of a phosphinic acid salt and / or a diphosphinic acid salt and / or their polymers, 1-30% by weight of at least one organic phosphorus Flame retardant, and possible other additives.
  • DE-A 102004049342 discloses thermoplastic molding compositions comprising 10-98% by weight of thermoplastic polymer, 0.01-50% by weight of hyperbranched polycarbonate or highly branched polyester or mixtures thereof, 1-40% by weight of halogen-free flame retardant selected from the group of P-containing or N-containing compounds or the PN condensates or mixtures thereof, and possible further additives.
  • JP-A 2001-335699 describes flame retardant resin compositions containing two or more thermoplastic resins selected from styrene resin, aromatic polyester resin, polyamide resin, polycarbonate resin and polyphenylene ether resin and one or more organic phosphinic acid salts, and possible other additives.
  • JP-A 2001-261973 (Daicel Chemical Industries Ltd.) describes compositions of thermoplastic resins and inorganic phosphinic acid salts.
  • a combination is given of PBT, calcium phosphinate and PTFE.
  • JP-A 2002-161211 discloses compositions of thermoplastic resins and flame retardants such as salts of phosphinic and phosphoric acids and their derivatives.
  • flame retardants such as salts of phosphinic and phosphoric acids and their derivatives.
  • Common flame retardants for polycarbonate / ABS blends are organic, aromatic phosphates. These compounds may be of low molecular weight, as a mixture of different oligomers or as a mixture of oligomers with low molecular weight compounds (e.g., WO-A 99/16828 and WO-A 00/31173). The good effect as
  • the object of the present invention is to provide impact-modified polycarbonate molding compositions having an optimum combination of high heat resistance, good flame retardancy, excellent mechanical properties and good resistance to chemicals and hydrolysis.
  • molding compositions or compositions comprising A) polycarbonate, B) rubber-modified graft polymer, C) a salt of a phosphinic acid and D) talc have the desired property profile.
  • Polyalkylene terephthalate preferably the composition is free of rubber-free vinyl (co) polymer and / or polyalkylene terephthalate, F) 0 to 50 parts by weight, preferably 0.5 to 25 parts by weight (in each case based on the sum of
  • Parts by weight of components A + B + C + D 100) additives, all parts by weight in the present application being normalized to give the sum of the parts by weight of components A + B + C + D in composition 100, the above technical Solve a task.
  • Too high a proportion of component B has the disadvantage that the fire behavior and the heat resistance (Vicat B) are deteriorated.
  • Aromatic polycarbonates and / or aromatic polyester carbonates according to component A which are suitable according to the invention are known from the literature or can be prepared by processes known from the literature (for example, see Schnell, Chemistry and Physics of Polycarbonates, Interscience Publishers, 1964, and DE-AS 1 495 626, DE -A 2 232 877, DE-A 2 703 376, DE-A 2 714 544, DE-A 3 000 610, DE-A 3 832 396, for the preparation of aromatic polyester carbonates, eg DE-A 3 077 934) ,
  • Diphenols for the preparation of the aromatic polycarbonates and / or aromatic polyester carbonates are preferably those of the formula (I)
  • A is a single bond, C 1 to C 5 -alkylene, C 2 to C 5 -alkylidene, C 5 to C 6 -cycloalkylidene, - O-, -SO-, -CO-, -S-, -SO 2 -, C 6 to C ] 2 arylene, to the other aromatic optionally
  • Heteroatom-containing rings may be condensed, or a radical of the formula (II) or (JS)
  • B are each C to C alkyl, preferably methyl, halogen, preferably chlorine and / or
  • Each bromine x is independently 0, 1 or 2
  • p is 1 or 0, and
  • R 5 and R 6 are individually selectable for each X 1 independently of one another hydrogen or C 1 to C fi -
  • Alkyl preferably hydrogen, methyl or ethyl
  • X 1 is carbon and m is an integer from 4 to 7, preferably 4 or 5, with the proviso that on at least one atom X 1 , R 5 and R 6 are simultaneously alkyl.
  • Preferred diphenols are hydroquinone, resorcinol, dihydroxydiphenols, bis (hydroxyphenyl) -C -alkanes, bis (hydroxyphenyl) -C-C-cycloalkanes, bis (hydroxyphenyl) ethers, bis (hydroxyphenyl) sulfoxides , Bis (hydroxyphenyl) -ketones, bis (hydroxyphenyl) -sulfones and ⁇ , ⁇ -bis (hydroxyphenyl) -diisopropyl-benzenes and their nuclear-brominated and / or nuclear-chlorinated derivatives.
  • diphenols are 4,4'-dihydroxydiphenyl, bisphenol A, 2,4-bis (4-hydroxyphenyl) -2-methylbutane, 1,1-bis- (4-hydroxyphenyl) -cyclohexane, 1, 1 - Bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 4,4'-dihydroxydiphenylsulfide, 4,4'-dihydroxydiphenylsulfone and their di- and tetrabrominated or chlorinated derivatives such as 2,2-bis (3-chloro-4-) hydroxyphenyl) -propane, 2,2-bis (3,5-dichloro-4-hydroxyphenyl) -propane or 2,2-bis (3,5-dibromo-4-hydroxyphenyl) -propane.
  • 2,2-bis (4-hydroxyphenyl) propane bisphenol-A
  • the diphenols can be used individually or as any mixtures. The diphenols are known from
  • Chain terminators suitable for the preparation of the thermoplastic, aromatic polycarbonates are, for example, phenol, p-chlorophenol, p-tert-butylphenol or 2,4,6-tribromophenol, but also long-chain alkylphenols, such as 4- [2- (2,4,4 -T ⁇ methylpentyl)] - phenol, 4- (l, 3-tetramethyl-butyl) -phenol according to DE-A 2,842,005 or monoalkylphenol or dialkylphenols having a total of 8 to 20 carbon atoms in the alkyl substituents such as 3,5-di-tert.
  • alkylphenols such as 4- [2- (2,4,4 -T ⁇ methylpentyl)] - phenol, 4- (l, 3-tetramethyl-butyl) -phenol according to DE-A 2,842,005 or monoalkylphenol or dialkylphenols having a total of 8 to 20 carbon atoms in the alkyl substituents such as 3,5-d
  • the amount of chain terminators to be used is generally between 0.5 mol% mol%, and 10 mol% mol%, based on the molar sum of the diphenols used in each case.
  • the thermoplastic, aromatic polycarbonates have weight average molecular weights (M w , measured, for example, by GPC, ultracentricity or scattered light measurement) of 10,000 to 200,000 g / mol, preferably 15,000 to 80,000 g / mol, particularly preferably 24,000 to 32,000 g / mol.
  • thermoplastic, aromatic polycarbonates may be branched in a known manner, preferably by the formation of from 0.05 to 2.0 mol%, based on the sum of the diphenols used, of trifunctional or more than trifunctional compounds, for example those containing three and more phenolic groups.
  • both homopolycarbonates and copolycarbonates are suitable.
  • inventive copolycarbonates according to component A it is also possible to use from 1 to 25% by weight, preferably from 2.5 to 25% by weight, based on the total amount of diphenols to be used, of hydroxyaryloxy endblocked polydiorganosiloxanes. These are known (US 3 419 634) and can be prepared by literature methods. The preparation of polydiorganosiloxane-containing copolycarbonates is described in DE-A 3 334 782.
  • Preferred polycarbonates are, in addition to the bisphenol A homopolycarbonates, the copolycarbonates of bisphenol A with up to 15 mol%, based on the molar amounts of diphenols, of other than preferred or particularly preferred diphenols, in particular 2,2-bis (3,5 dibromo-4-hydroxyphenyl) -propane.
  • Aromatic Dicarbon Acidihalogemde for the production of aromatic polyester carbonates are preferably the Diäuredichlo ⁇ de of isophthalic acid, terephthalic acid, diphenyl ether-4,4'-dicarboxylic acid and naphtha-2,6-dicarboxylic acid.
  • a carbonic monohalogen preferably phosgene
  • phosgene is additionally used as the bifunctional acid derivative.
  • the amount of chain terminators is in each case from 0.1 to 10 mol%, based on moles of diphenol in the case of the phenolic chain terminators and, in the case of monocarboxylic acid chloride terminators, per mole of dicarboxylic acid dichloride.
  • the aromatic polyester carbonates may also contain incorporated aromatic hydroxycarboxylic acids.
  • the aromatic polyester carbonates can be branched both linearly and in a known manner (see DE-A 2 940 024 and DE-A 3 007 934).
  • Suitable branching agents are, for example, trifunctional or polyfunctional carboxylic acid chlorides, such as tertiary acid acetone, cyanuric acid tetrachloride, 3,3 ', 4,4'-benzophenone tetracarboxylic acid tetrachloride, 1,4,5,8-naphthalene tetracarboxylic acid tetrachloride or pyrometallic tetrachloride, in amounts of 0 , 01 to 1.0 mol% (based on Dicarbonklaredichlo ⁇ de used) or trifunctional or polyfunctional phenols, such as Phloroglucm, 4,6-dimethyl-2,4,6-tri- (4-hydroxyphenyl) hept-2-ene , 4,6-dimethyl-2,4,6-t ⁇ - (4-hydroxyphenyl) -heptane, 1,3,5-T ⁇ - (4-hydroxyphenyl) -benzene, 1,1,1 -tn- (4- hydroxyphen
  • the proportion of carbonate structural units can vary as desired.
  • the proportion of carbonate groups is preferably up to 100 mol%, in particular up to 80 mol%, particularly preferably up to 50 mol%, based on the sum of ester groups and carbonate groups.
  • Both the ester and the carbonate portion of the aromatic polyester carbonates may be present in the form of blocks or randomly distributed in the polycondensate.
  • the relative solution viscosity ( ⁇ re i) of the aromatic polycarbonates and polyester carbonates is in the range of 1.18 to 1.4, preferably 1.20 to 1.32 (measured on solutions of 0.5 g of polycarbonate or polyester carbonate in 100 ml of methylene chloride solution at 25 ° C).
  • thermoplastic, aromatic polycarbonates and polyester carbonates can be used alone or in any desired mixture.
  • Component B comprises one or more graft polymers of
  • diene rubbers EP (D) M rubbers (ie those based on ethylene / propylene and optionally diene)
  • acrylate polyurethane
  • Silicone silicone acrylate
  • chloroprene ethylene / vinyl acetate rubbers.
  • the graft base B.2 generally has an average particle size (d 50 value) of 0.05 to 10 .mu.m, preferably 0.1 to 5 .mu.m, particularly preferably 0.2 to 1 .mu.m.
  • Monomers B.l are preferably mixtures of
  • B.1.2 1 to 50 parts by weight of vinyl cyanides (unsaturated nitriles, such as acrylonitrile and methacrylonitrile) and / or (MeUi) ACTyISaWe- (C 1 -C 8 ) -alkyl esters, such as methyl methacrylate, n-butyl acrylate, t-butyl acrylate, and / or derivatives (such as anhydrides and Imides) of unsaturated carboxylic acids, for example maleic anhydride and N-phenylmaleimide.
  • vinyl cyanides unsaturated nitriles, such as acrylonitrile and methacrylonitrile
  • ACTyISaWe C 1 -C 8 ) -alkyl esters, such as methyl methacrylate, n-butyl acrylate, t-butyl acrylate, and / or derivatives (such as anhydrides and Imides) of unsaturated carboxylic acids, for example
  • Preferred monomers B.1.1 are selected from at least one of the monomers styrene, ⁇ -methylstyrene and methyl methacrylate
  • preferred monomers B.1.2 are selected from at least one of the monomers acrylonitrile, maleic anhydride and methyl methacrylate.
  • Particularly preferred monomers are B.1.1 styrene and B.1.2 acrylonitrile.
  • Preferred grafting bases B.2 are silicone acrylate rubbers, diene rubbers (for example based on butadiene and isoprene) or mixtures of diene rubbers. Diene rubbers in the sense of the invention are also to be understood as meaning copolymers of diene rubbers or mixtures thereof with other copolymerizable monomers (for example according to B.1.1 and B.1.2).
  • the graft bases B.2 generally have a glass transition temperature of ⁇ 10 0 C, preferably ⁇ 0 0 C, more preferably ⁇ -10 0 C.
  • the gel content of the graft base B.2 is at least 20% by weight, in the case of graft bases B.2 prepared in the emulsion polymerization, preferably at least 40% by weight (measured in toluene).
  • the graft polymer of the components Bl and B.2 has a core-shell structure, wherein the component Bl forms the shell (also referred to as shell) and the component B.2 forms the core (see, for example, Ullmann's Encyclopedia of Industrial Chemistry, VCH-Verlag, Vol. A21, 1992, page 635 and page 656.
  • the graft copolymers B are prepared by free-radical polymerization, e.g. by emulsion, suspension, solution or bulk polymerization, preferably by emulsion or bulk polymerization.
  • Particularly suitable graft rubbers are also ABS polymers which are prepared in the emulsion polymerization process by redox initiation with an initiator system of organic hydroperoxide and ascorbic acid according to US Pat. No. 4,937,285.
  • the grafting monomers are not grafted completely completely to the grafting base in the grafting reaction.
  • graft polymers B are also used understood as products which are obtained by (co) polymerization of the graft monomers in the presence of the graft and incurred in the workup with.
  • Suitable acrylate rubbers according to B.2 of the polymers B are preferably polymers of alkyl acrylates, optionally with up to 40 wt .-%, based on B.2 other polymerizable, ethylenically unsaturated monomers.
  • Preferred polymerizable acrylic esters include C 1 to Cg alkyl esters, for example, methyl, ethyl, butyl, n-octyl and 2-ethylhexyl esters; Haloalkyl esters, preferably halogen-Q-Cg-alkyl esters, such as chloroethyl acrylate and mixtures of these monomers.
  • crosslinking monomers having more than one polymerizable double bond can be copolymerized.
  • Preferred examples of crosslinking monomers are esters of unsaturated monocarboxylic acids having 3 to 8 C atoms and unsaturated monohydric alcohols having 3 to 12 C atoms, or saturated polyols having 2 to 4 OH groups and 2 to 20 C atoms, such as ethylene glycol dimethacrylate, allyl methacrylate ; polyunsaturated heterocyclic compounds such as trivinyl and triallyl cyanurate; polyfunctional vinyl compounds such as di- and trivinylbenzenes; but also triallyl phosphate and diallyl phthalate.
  • Preferred crosslinking monomers are allyl methacrylate, ethylene glycol dimethacrylate, diallyl phthalate and heterocyclic compounds having at least three ethylenically unsaturated groups.
  • Particularly preferred crosslinking monomers are the cyclic monomers triallyl cyanurate, triallyl isocyanurate, triacryloylhexahydro-s-triazine, triallylbenzenes.
  • the amount of crosslinked monomers is preferably 0.02 to 5, in particular 0.05 to 2 wt .-%, based on the graft B.2.
  • Preferred "other" polymerizable, ethylenically unsaturated monomers which may optionally be used in addition to the acrylic acid esters for the preparation of the graft base B.2 are, for example, acrylonitrile, styrene, ⁇ -methylstyrene, acrylamides, vinyl-C 1 -C 6 -alkyl ethers, methyl methacrylate, butadiene.
  • Preferred acrylate rubbers as the graft base B.2 are emulsion polymers which have a gel content of at least 60% by weight.
  • Suitable silicone rubbers according to B.2. can be prepared by emulsion polymerization, as described for example in US 2891920 and US 3294725.
  • Other suitable graft bases according to B.2 are silicone rubbers with graft-active sites, as described in DE-OS 3,704,657, DE-OS 3,704,655, DE-OS 3 631 540 and DE-OS 3 631 539.
  • silicone acrylate rubbers are also suitable according to the invention.
  • silicone-acrylate rubbers are composite rubbers having graft-active sites containing 10 to 90% by weight of silicone rubber and 90 to 10% by weight of polyalkyl (meth) acrylate rubber, wherein the two rubber components mentioned are in the composite rubber interpenetrate each other so that they do not differ significantly.
  • the proportion of the silicone rubber component in the composite rubber is too high, the finished resin compositions have disadvantageous surface properties and degraded dyeability.
  • the proportion of the polyalkyl (meth) acrylate rubber component in the composite rubber is too high, the impact resistance of the finished resin composition is adversely affected).
  • Silicone acrylate rubbers are known and are described, for example, in US Pat. No. 5,807,914, EP 430134 and US Pat. No. 4,888,388.
  • a graft polymer prepared by emulsion polymerization with methyl methacrylate and silicone-acrylate composite rubber is graft polymer prepared by emulsion polymerization with methyl methacrylate and silicone-acrylate composite rubber
  • the graft polymer of component B) is a graft polymer prepared by mass, solution or mass-suspension polymerization, which has a rubber content (corresponding to the proportion of component B.2 in the graft polymer) of from 16 to 25 Wt .-%, preferably from 17 to 19 wt .-% and a graft shell, each based on the monomers of the graft shell 22 to 27 wt .-% of at least one of the monomers according to B.1.2 and 73 to 78 wt .-% contains at least one of the monomers according to B.1.1.
  • the graft polymer comprises a butadiene-styrene block copolymer rubber as graft base B.2 (core) and a shell of styrene (B.1.1) and acrylonitrile (B.1.2).
  • the graft polymer has a gel content (measured in acetone) of from 20 to 30% by weight, preferably from 22 to 26% by weight. If the graft polymer according to the invention contains a rubber content of less than 16% by weight, this has the disadvantage that the mechanical properties, in particular the notched impact strength and the resistance to chemicals, are at a level which is inadequate for many applications.
  • the gel content of the graft base B.2 is determined at 25 ° C. in a suitable solvent (M. Hoffmann, H. Kroemer, R. Kuhn, Polymeranalytik I and II, Georg Thieme Verlag, Stuttgart 1977).
  • the average particle size d 50 is the diameter, above and below which each 50 wt .-% of the particles are. It can be determined by ultracentrifuge measurement (W. Scholtan, H. Lange, Kolloid, Z. and Z. Polymere 250 (1972), 782-796).
  • Component C is the diameter, above and below which each 50 wt .-% of the particles are. It can be determined by ultracentrifuge measurement (W. Scholtan, H. Lange, Kolloid, Z. and Z. Polymere 250 (1972), 782-796).
  • the salt of a phosphinic acid (component C) in the sense of the invention is to be understood as meaning the salt of a phosphinic acid with an arbitrary metal cation. It is also possible to use mixtures of salts which differ in their metal cation.
  • Metal cations are the cations metals of the 1st main group (alkali metals, preferably Li + , Na + , K + ), the 2nd main group (alkaline earth metals, preferably Mg 2+ , Ca 2+ , Sr 2+ ,
  • a salt or a mixture of salts of a phosphinic acid of the formula (IV) is used,
  • the average particle size d 50 of the phosphinic acid salt (component C) is less than 80 .mu.m, preferably less than 60 .mu.m, more preferably d 50 is between 10 .mu.m and 55 .mu.m.
  • the average particle size d 50 is the diameter, above and below which each 50 wt .-% of the particles are. It is also possible to use mixtures of salts which differ in their mean particle size d 50 . These requirements of the particle size dso of the phosphinic acid salt are each associated with the technical effect that the flame retardance efficiency of the phosphinic acid salt is increased.
  • the phosphinic acid salt can be used either alone or in combination with other phosphorus-containing flame retardants.
  • the invention is not limited to, the invention.
  • compositions free of phosphorus-containing flame retardants selected from the group of mono- and oligomeric phosphoric and phosphonic acid esters, phosphonateamines and
  • Phosphazenes These other phosphorus-containing flame retardants such as the mono- and oligomeric phosphoric and phosphonic acid esters have the disadvantage over the phosphinic acid salts that they reduce the heat resistance of the molding compositions.
  • Talk means a naturally occurring or synthetically produced talc.
  • Pure talc has the chemical composition 3 MgO 4 SiO 2 H 2 O and thus an MgO content of 31.9 wt .-%, an SiO 2 content of 63.4 wt .-% and a content of chemically bound water of 4.8% by weight.
  • Talc is a silicate with a layered structure.
  • Naturally occurring talc materials generally do not have the above-mentioned composition for pure talc, as they are formed by partial replacement of the magnesium by other elements, by partial replacement of silicon, by e.g. Aluminum and / or by adhesions with other minerals such. Dolomite, magnesite and chlorite are contaminated.
  • the special types of talc of the preferred embodiment of the invention are characterized by a particularly high purity, characterized by an MgO content of 28 to 35 wt .-%, preferably 30 to 33 wt .-%, particularly preferably 30.5 to 32 wt. -% and an SiO 2 content of 55 to 65 wt .-%, preferably 58 to 64 wt .-%, particularly preferably 60 to 62.5 wt .-%.
  • Preferred talktypes are furthermore distinguished by an Al 2 O 3 content of less than 5% by weight, more preferably less than 1% by weight, in particular less than 0.7% by weight.
  • Luzenac ® A3 from Luzenac Naintsch Mineral works GmbH (Graz, Austria) .Talktypen that do not meet this requirement on the purity of the preferred embodiment of the invention, for example, Luzenac, are SE-Standard, Luzenac SE-Super, Luzenac SE-Micro and Luzenac ST 10, 15, 20, 30 and 60, all of which are sold by Luzenac Naintsch Mineraltechnike GmbH.
  • the talc according to component D in the form of finely ground types with an average particle size d 50 of 0.1 to 20 .mu.m, preferably 0.2 to 10 .mu.m, more preferably 1.1 to 5 .mu.m, most preferably 1 , 15 to 2.5 ⁇ m.
  • the average particle size d 50 is the diameter, above and below which each 50 wt .-% of the particles are. It is also possible to use mixtures of talc types which differ in their mean particle size d 50 . These requirements for the average particle size d 50 of the talc are each associated with the technical effect that the mechanical properties of the resulting molding compositions are improved.
  • the talc can be surface treated, e.g. be silanized to ensure better compatibility with the polymer. With regard to the processing and preparation of the molding compositions, the use of compacted talc is also advantageous.
  • Component E comprises one or more thermoplastic vinyl (co) polymers E.I. and / or polyalkylene terephthalates E.2.
  • Suitable as vinyl (co) polymers El polymers of at least one monomer from the group of vinyl aromatics, vinyl cyanides (unsaturated nitriles), (meth) acrylic acid (Ci-C 8 ) -
  • Alkyl esters unsaturated carboxylic acids and derivatives (such as anhydrides and imides) unsaturated
  • Carboxylic acids Particularly suitable are (co) polymers from E.1.1 50 to 99, preferably 60 to 80 parts by weight of vinylaromatics and / or ring-substituted vinylaromatics such as styrene, ⁇ -methylstyrene, p-methylstyrene, p-chlorostyrene) and / or (meth) Acrylic acid (C 1 -C 8 ) -alkyl esters, such as methyl methacrylate, ethyl methacrylate), and
  • E.1.2 1 to 50, preferably 20 to 40 parts by weight of vinyl cyanides (unsaturated nitriles) such as
  • Acrylonitrile and methacrylonitrile and / or (meth) acrylic acid (C 1 -C 8 ) -alkyl esters such as methyl methacrylate, n-butyl acrylate, t-butyl acrylate, and / or unsaturated carboxylic acids, such as maleic acid, and / or derivatives , such as anhydrides and imides, unsaturated
  • Carboxylic acids for example maleic anhydride and N-phenylmaleimide.
  • the vinyl (co) polymers El are resinous, thermoplastic and rubber-free.
  • the copolymer of E.1.1 styrene and E.1.2 acrylonitrile is particularly preferred.
  • the (co) polymers according to El are known and can be prepared by free-radical polymerization, in particular by emulsion, suspension, solution or bulk polymerization.
  • the (co) polymers preferably have average molecular weights Mw (weight average, determined by light scattering or sedimentation) of between 15,000 and 200,000.
  • the polyalkylene terephthalates of component E.2 are reaction products of aromatic dicarboxylic acids or their reactive derivatives, such as dimethyl esters or anhydrides, and aliphatic, cycloaliphatic or araliphatic diols and mixtures of these reaction products.
  • Preferred polyalkylene terephthalates contain at least 80 wt .-%, preferably at least 90 wt .-%, based on the dicarboxylic acid terephthalate and at least 80 wt .-%, preferably at least 90 mol%, based on the diol component of ethylene glycol and / or butanediol-1 , 4-residues.
  • the preferred polyalkylene terephthalates may contain, in addition to terephthalic acid residues, up to 20 mole%, preferably up to 10 mole%, of other aromatic or cycloaliphatic dicarboxylic acids having 8 to 14 carbon atoms or aliphatic dicarboxylic acids having 4 to 12 carbon atoms, e.g. Residues of phthalic acid, isophthalic acid, naphthalene-2,6-dicarboxylic acid, 4,4'-diphenyldicarboxylic acid, succinic acid, adipic acid, sebacic acid, azelaic acid, cyclohexanediacetic acid.
  • the preferred polyalkylene terephthalates in addition to ethylene glycol or butane-1,4-diol residues, may contain up to 20 mol%, preferably up to 10 mol%, of other aliphatic diols of 3 to 12 carbon atoms or cycloaliphatic diols of 6 to 21 carbon atoms.
  • Contain atoms eg Residues of 1,3-propanediol, 2-ethylpropanediol-1,3, neopentyl glycol, pentanediol 1, 5, 1,6-hexanediol, cyclohexane-dimethanol 1, 4, 3-ethylpentanediol-2,4, 2-methylpentanediol 2,4,2,2,4-trimethylpentanediol-1,3,2-ethylhexanediol-1,3,2,2-diethylpropanediol-1,3-hexanediol-2,5,1,4-di- ( ⁇ -hydroxyethoxy ) benzene, 2,2-bis (4-hydroxycyclohexyl) propane, 2,4-dihydroxy-1,1,3,3-tetramethylcyclobutane, 2,2-bis- (4-.beta.-hydroxyethoxy-phenyl )
  • the polyalkylene terephthalates can be branched by incorporation of relatively small amounts of 3- or 4-hydric alcohols or 3- or 4-basic carboxylic acids, for example according to DE-A 1 900 270 and US Pat. No. 3,692,744.
  • preferred branching agents are trimesic acid, trimellitic acid, trimethylolethane and -propane and pentaerythritol.
  • Particularly preferred are polyalkylene terephthalates which have been prepared solely from terephthalic acid and its reactive derivatives (for example their dialkyl esters) and ethylene glycol and / or 1,4-butanediol, and mixtures of these polyalkylene terephthalates.
  • Mixtures of polyalkylene terephthalates contain from 1 to 50% by weight, preferably from 1 to 30% by weight, of polyethylene terephthalate and from 50 to 99% by weight, preferably from 70 to 99% by weight, of polybutylene terephthalate.
  • the polyalkylene terephthalates preferably used have a Grenzvis- viscosity of 0.4 to 1.5 dl / g, preferably 0.5 to 1.2 dl / g, as measured in phenol / o-dichlorobenzene (1: 1 parts by weight) at 25 ° C in the Ubbelohde viscometer.
  • the polyalkylene terephthalates can be prepared by known methods (see, for example, Kunststoff-Handbuch, Volume VIII, pp. 695 et seq., Carl-Hanser-Verlag, Kunststoff 1973).
  • composition may contain further commercially available additives according to component F), such as flame retardant synergists, antidripping agents (for example compounds of the substance classes of fluorinated polyolefins, silicones and aramid fibers), lubricants and mold release agents
  • flame retardant synergists for example compounds of the substance classes of fluorinated polyolefins, silicones and aramid fibers
  • antidripping agents for example compounds of the substance classes of fluorinated polyolefins, silicones and aramid fibers
  • lubricants for example compounds of the substance classes of fluorinated polyolefins, silicones and aramid fibers
  • nucleating agents for example, pentaerythritol tetrastearate
  • stabilizers for example, sodium EDTA, sodium EDTA, sodium EDTA, sodium EDTA, sodium EDTA, sodium EDTA, sodium EDTA, sodium EDTA, sodium EDTA, sodium EDTA, sodium EDTA, sodium EDTA, sodium EDTA, sodium EDTA, sodium EDTA, sodium EDTA, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite
  • Alkyl sulfonates or polyamide-containing polymers acids, fillers and reinforcing materials (for example glass or carbon fibers, mica, kaolin, talc, CaCO 3 and glass flakes) and
  • the inventive thermoplastic molding compositions are prepared by mixing the respective components in a known manner and melt-compounded at temperatures of 26O 0 C to 300 0 C in conventional units such as internal mixers, extruders and twin-screw and melt-extruded.
  • the mixing of the individual constituents can be carried out in a known manner both successively and simultaneously, both at about 20 ° C. (room temperature) and at a higher temperature.
  • the invention also provides processes for the preparation of the molding compositions and the use of the molding compositions for the production of moldings and the moldings themselves.
  • the molding compositions of the invention can be used for the production of moldings of any kind. These can be produced by injection molding, extrusion and blow molding. Another form of processing is the production of moldings by deep drawing from previously prepared plates or films.
  • moldings are films, profiles, housing parts of any kind, e.g. for household appliances such as televisions, juicers, coffee machines, blenders; for office machines such as monitors, flat screens, notebooks, printers, copiers; Panels, pipes, electrical installation ducts, windows, doors and other profiles for the building sector (interior and exterior applications) and electrical and electronic parts such as switches, plugs and sockets, as well as body and interior components for commercial vehicles, in particular for the automotive sector.
  • household appliances such as televisions, juicers, coffee machines, blenders
  • office machines such as monitors, flat screens, notebooks, printers, copiers
  • Panels, pipes, electrical installation ducts, windows, doors and other profiles for the building sector (interior and exterior applications) and electrical and electronic parts such as switches, plugs and sockets, as well as body and interior components for commercial vehicles, in particular for the automotive sector.
  • the molding compositions according to the invention can also be used, for example, for the production of the following moldings or moldings: interior fittings for rail vehicles, ships, aircraft, buses and other motor vehicles, housings of electrical appliances containing small transformers, housings for information processing and transmission equipment, housings and panels for medical applications Apparatus, massage apparatus and housings therefor, toy vehicles for children, flat wall elements, housings for safety devices and for televisions, heat-insulated transport containers, fittings for plumbing and bathroom equipment, cover grids for fan openings and housings for garden tools.
  • interior fittings for rail vehicles, ships, aircraft, buses and other motor vehicles housings of electrical appliances containing small transformers, housings for information processing and transmission equipment, housings and panels for medical applications Apparatus, massage apparatus and housings therefor, toy vehicles for children, flat wall elements, housings for safety devices and for televisions, heat-insulated transport containers, fittings for plumbing and bathroom equipment, cover grids for fan openings and housings for garden tools.
  • M w of about 17,000 to 19,000 g / mol (determined by GPC).
  • Branched polycarbonate based on bisphenol A with a relative solution viscosity of ⁇ rel 1.34, measured in CH 2 Cl 2 as solvent at 25 ° C. and a concentration of 0.5 g / 100 ml, which is obtained by using 0.3 mol% isatin biscresol Branched to the sum of mol .-% of bisphenol A and isatinbiscresol.
  • ABS polymer with core-shell structure produced by bulk polymerization of 82% by weight, based on the ABS polymer, of a mixture of 24% by weight of acrylonitrile and 76% by weight of styrene in the presence of 18% by weight based on the ABS polymer of a polybutadiene-styrene block copolymer rubber having a styrene content of 26 wt .-%.
  • the gel content of the ABS polymer is 24% by weight (measured in acetone).
  • Component B-2 impact modifier, methyl methacrylate-modified silicone-acrylate rubber, Metablen SX ® 005 from Mitsubishi Rayon Co., Ltd., CAS 143106-82-5.
  • Component C Component C-I (comparative) Bisphenol A-based oligophosphate
  • Component F-1 Polytetrafluoroethylene (PTFE)
  • Component F-2 pentaerythritol tetrastearate
  • Component F-3 Irganox ® B900 (manufacturer: Ciba Specialty Chemicals Inc., Basel, Switzerland)
  • the feedstocks listed in Table 1 are compounded at a speed of 225 rpm and a throughput of 20 kg / h at a machine temperature of 260 0 C and granulated.
  • the finished granules are processed on an injection molding machine to the corresponding specimens (melt temperature 240 0 C, mold temperature 8O 0 C, flow front speed 240 mm / s).
  • the characterization is carried out in accordance with DIN EN ISO 180/1 A (notched Izod impact strength a ⁇ ), DIN EN ISO 527 (tensile Young's modulus and elongation at break), DIN ISO 306 (Vicat softening temperature, method B with 50 N load and a heating rate of 120 K / h), ISO 11443 (melt viscosity), DIN EN ISO 1133 (melt volume flow rate, MVR) and UL 94 V (on bars measuring 127 ⁇ 12.7 ⁇ 1.5 mm measured).
  • the MVR value before storage is referred to in Table 1 as the "MVR value of the original sample”.
  • Under chemical resistance (ESC behavior) is the time to break at 2.4% Randturadehnung after storage of the specimen in toluene / isopropanol (60/40 parts by volume) indicated at room temperature.
  • Compositions 3 and 4 according to the invention have improved Vicat heat distortion resistance, shorter afterburning time, better ESC behavior, a higher modulus of elasticity and better tear resistance and a higher resistance to hydrolysis compared to Comparative Examples 1 and 2. This technical effect is due to the difference that in the comparative examples as flame retardants an oligophosphate is used in place of the calcium phosphinate according to the invention.
  • the composition 6 according to the invention has a shorter afterburning time and better ESC behavior with unchanged Vicat heat distortion resistance. This technical effect is due to the difference that no talc is contained in Comparative Example 5.
  • the composition 8 according to the invention has improved Vicat heat distortion resistance, shorter afterburn time, a higher modulus of elasticity and better tear resistance. This technical effect is due to the difference that, in the comparative example, an oligophosphate is used as the flame retardant instead of the calcium phosphinate according to the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Die vorliegende Erfindung betrifft Polycarbonat-Zusammensetzungen, enthaltend A) 38 bis 99,3 Gew.-Teile (jeweils bezogen auf die Summe der Gewichtsteile der Komponenten A+B+C+D) aromatisches Polycarbonat und/oder aromatisches Polyestercarbonat, B) 0,5 bis 12 Gew.-Teile (jeweils bezogen auf die Summe der Gewichtsteile der Komponenten A+B+C+D) kautschukmodifiziertes Pfropfpolymerisat, C) 0,1 bis 25 Gew.-Teile (jeweils bezogen auf die Summe der Gewichtsteile der Komponenten A+B+C+D) eines Salzes einer Phosphinsäure, und D) 0,1 bis 25 Gew.-Teile (jeweils bezogen auf die Summe der Gewichtsteile der Komponenten A+B+C+D) Talk, die sich durch eine optimale Kombination aus hoher Wärmeformbeständigkeit, gutem Flammschutz, exzellenten mechanischen Eigenschaften und einer guten Chemikalien- und Hydrolysebeständigkeit auszeichnen, die Verwendung der Polycarbonat-Zusammensetzungen zur Herstellung von Formkörpern und die Formkörper selbst.

Description

Flammgeschützte schlagzähmodifizierte Polycarbonat-Zusammensetzungen
Die vorhegende Erfindung betrifft schlagzähmodifizierte Polycarbonat-Zusammensetzungen, welche ein Salz einer Phosphinsäure sowie Talk enthalten, die Verwendung der Polycarbonat- Zusammensetzungen zur Herstellung von Formkörpern und die Formkörper selbst.
WO-A 2005/044906 offenbart thermoplastische Formmassen enthaltend mindestens ein Metallsalz der Hypophosphorsäure und mindestens ein aromatisches Polycarbonatharz und deren Mischung mit einem styrolhaltigen Pfropfcopolymerharz mit einem Kautschukanteil von 5-15%. Die Anteile des styrolhaltigen Pfropfcopolymers betragen 10-40 Gew.-%. Die erhaltenen Formmassen zeichnen sich durch gute Flammwidrigkeit, hohe thermische Stabilität unter Verarbeitungsbedmgungen und guter Wetter-Resistenz aus. Aufgrund des niedrigen Kautschukanteiles sind andere Eigenschaften, insbesondere mechanische Eigenschaften auf einem niedrigen Niveau.
WO-A 1999/57192 beschreibt thermoplastische Formmassen enthaltend 5-96 Gew.% eines Polyesters oder Polycarbonat, 1-30 Gew.% eines Phosphinsäuresalzes und/oder eines Diphosphinsäuresalzes und/oder deren Polymere, 1-30 Gew.% mindestens eines organischen phosphorhalügen Flammschutzmittels, und mögliche weitere Additive.
DE-A 102004049342 offenbart thermoplastische Formmassen enthaltend 10-98 Gew.% thermoplastisches Polymer, 0,01 - 50 Gew.% hochverzweigtes Polycarbonat oder hochverzweigter Polyesters oder deren Mischungen, 1-40 Gew.% halogenfreies Flammschutzmittels ausgewählt aus der Gruppe der P-haltigen oder N-halügen Verbindungen oder der P-N-Kondensate oder deren Mischungen, und mögliche weitere Additive.
JP-A 2001-335699 beschreibt flammgeschützte Harzzusammensetzungen enthaltend zwei oder mehrere thermoplastische Harze ausgewählt aus Styrolharz, aromatsches Polyesterharz, Polyamidharz, Polycarbonatharz und Polyphenylenetherharz und ein oder mehrere (an)organische Phosphinsäuresalze, und mögliche weitere Additive.
JP-A 2001-261973 (Daicel Chemical Industries Ltd.) beschreibt Zusammensetzungen aus thermoplastischen Harzen und (an)orgamschen Phosphinsäuresalzen. Als Beispiel ist eine Kombination angeführt aus PBT, Calciumphosphinat und PTFE.
JP-A 2002-161211 offenbart Zusammensetzungen aus thermoplastischen Harzen und Flammschutzmitteln wie Salzen der Phosphin- und Phosphorsäure und deren Deπvate. Als Beispiel ist eine Kombination angeführt aus PBT, ABS, Polyoxyphenylen, Calciumphosphinat, einem Organophosphat und Glasfasern.
Nach dem Stand der Technik übliche Flammschutzmittel für Polycarbonat/ABS-Blends sind organische, aromatische Phosphate. Diese Verbindungen können niedermolekular, als Gemisch verschiedener Oligomeren oder als Gemisch von Oligomeren mit niedermolekularen Verbindungen vorliegen (z.B. WO-A 99/16828 und WO-A 00/31173). Der guten Wirksamkeit als
Flammschutzmittel steht die stark weich machende Wirkung dieser Verbindungen auf die polymeren Bestandteile als Nachteil entgegen, so dass die Wärmeformbeständigkeit dieser Formmassen für viele Anwendungen nicht zufriedenstellend ist.
Aufgabe der vorliegenden Erfindung ist die Bereitstellung von schlagzähmodifizierten Polycarbonat-Formmassen mit einer optimalen Kombination aus hoher Wärmeformbeständigkeit, gutem Flammschutz, exzellenten mechanischen Eigenschaften und einer guten Chemikalien- und Hydrolysebeständigkeit.
Es wurde nun überraschend gefunden, dass Formmassen bzw. Zusammensetzungen enthaltend A) Polycarbonat, B) kautschukmodifiziertes Pfropfpolymerisat, C) ein Salz einer Phosphinsäure und D) Talk das gewünschte Eigenschaftsprofil aufweisen.
Es wurde somit überraschend gefunden, dass Zusammensetzungen enthaltend A) 38 bis 99,3 Gew.-Teile, bevorzugt 61 bis 97 Gew.-Teile, besonders bevorzugt 71 bis 84 Gew.-Teile (jeweils bezogen auf die Summe der Gewichtsteile der Komponenten A+B+C+D) aromatisches Polycarbonat und/oder aromatisches Polyestercarbonat, B) 0,5 bis 12 Gew.-Teile, bevorzugt 1 bis 9 Gew.-Teile, besonders bevorzugt 2 bis 5 Gew.- Teile (jeweils bezogen auf die Summe der Gewichtsteile der Komponenten A+B+C+D) kautschukmodifϊziertes Pfropfpolymerisat,
C) 0,1 bis 25 Gew.-Teile, bevorzugt 1 bis 15 Gew.-Teile, besonders bevorzugt 7 bis 12 Gew.- Teile (jeweils bezogen auf die Summe der Gewichtsteile der Komponenten A+B+C+D) eines Salzes einer Phosphinsäure,
D) 0,1 bis 25 Gew.-Teile, bevorzugt 1 bis 15 Gew.-Teile, besonders bevorzugt 7 bis 12 Gew.- Teile (jeweils bezogen auf die Summe der Gewichtsteile der Komponenten A+B+C+D) Talk,
E) 0 bis 20 Gew.-Teile (bezogen auf die Summe der Gewichtsteile der Komponenten A+B+C+D = 100) kautschukfreies Vinyl(Co)Polymerisat und/oder
Polyalkylenterephthalat, bevorzugt ist die Zusammensetzung frei von kautschukfreiem Vinyl(Co)Polymerisat und/oder Polyalkylenterephthalat, F) 0 bis 50 Gew.-Teile, bevorzugt 0,5 bis 25 Gew.-Teile (jeweils bezogen auf die Summe der
Gewichtsteile der Komponenten A+B+C+D = 100) Zusatzstoffe, wobei alle Gewichtsteilangaben in der vorliegenden Anmeldung so normiert sind, dass die Summe der Gewichtsteile der Komponenten A+B+C+D in der Zusammensetzung 100 ergeben, die oben genannte technische Aufgabe lösen.
Ein zu hoher Anteil an Komponente B hat den Nachteil, dass das Brandverhalten und die Wärmeformbeständigkeit (Vicat B) verschlechtert sind.
Komponente A
Erfindungsgemäß geeignete aromatische Polycarbonate und/oder aromatische Polyestercarbonate gemäß Komponente A sind literaturbekannt oder nach literaturbekannten Verfahren herstellbar (zur Herstellung aromatischer Polycarbonate siehe beispielsweise Schnell, "Chemistry and Physics of Polycarbonates", Interscience Publishers, 1964 sowie die DE-AS 1 495 626, DE-A 2 232 877, DE- A 2 703 376, DE-A 2 714 544, DE-A 3 000 610, DE-A 3 832 396; zur Herstellung aromatischer Polyestercarbonate, z. B. DE-A 3 077 934).
Die Herstellung aromatischer Polycarbonate erfolgt z. B. durch Umsetzung von Diphenolen mit Kohlensäurehalogeniden, vorzugsweise Phosgen und/oder mit aromatischen Dicarbonsäuredihalogeniden, vorzugsweise Benzoldicarbonsäuredihalogeniden, nach dem Phasengrenzflächenverfahren, gegebenenfalls unter Verwendung von Kettenabbrechern, beispielsweise Monophenolen und gegebenenfalls unter Verwendung von trifünktionellen oder mehr als trifünktionellen Verzweigern, beispielsweise Triphenolen oder Tetraphenolen. Ebenso ist eine Herstellung über ein Schmelzepolymerisationsverfahren durch Umsetzung von Diphenolen mit beispielsweise Diphenylcarbonat möglich.
Diphenole zur Herstellung der aromatischen Polycarbonate und/oder aromatischen Polyestercarbonate sind vorzugsweise solche der Formel (I)
Figure imgf000004_0001
wobei - A -
A eine Einfachbindung, C1 bis C5-Alkylen, C2 bis C5-Alkyliden, C5 bis C6-Cycloalkyliden, - O-, -SO-, -CO-, -S-, -SO2-, C6 bis C]2-Arylen, an das weitere aromatische gegebenenfalls
Heteroatome enthaltende Ringe kondensiert sein können, oder ein Rest der Formel (II) oder (JS)
Figure imgf000005_0001
B jeweils C bis C -Alkyl, vorzugsweise Methyl, Halogen, vorzugsweise Chlor und/oder
Brom x jeweils unabhängig voneinander 0, 1 oder 2, p 1 oder 0 sind, und
R5 und R6 für jedes X1 individuell wählbar, unabhängig voneinander Wasserstoff oder C1 bis Cfi-
Alkyl, vorzugsweise Wasserstoff, Methyl oder Ethyl,
X1 Kohlenstoff und m eine ganze Zahl von 4 bis 7, bevorzugt 4 oder 5 bedeuten, mit der Maßgabe, dass an mindestens einem Atom X1, R5 und R6 gleichzeitig Alkyl sind.
Bevorzugte Diphenole sind Hydrochinon, Resorcin, Dihydroxydiphenole, Bis-(hydroxyphenyl)- C -C -alkane, Bis-(hydroxyphenyl)-C -C -cycloalkane, Bis-(hydroxyphenyl)-ether, Bis-(hydroxy- phenyl)-sulfoxide, Bis-(hydroxyphenyl)-ketone, Bis-(hydroxyphenyl)-sulfone und α,α-Bis-(hy- droxyphenyl)-diisopropyl-benzole sowie deren kernbromierte und/oder kernchlorierte Derivate.
Besonders bevorzugte Diphenole sind 4,4'-Dihydroxydiphenyl, Bisphenol-A, 2,4-Bis(4-hydroxy- phenyl)-2-methylbutan, 1 , 1 -Bis-(4-hydroxyphenyl)-cyclohexan, 1 , 1 -Bis-(4-hydroxyphenyl)-3.3.5- trimethylcyclohexan, 4,4'-Dihydroxydiphenylsulfid, 4,4'-Dihydroxydiphenylsulfon sowie deren di- und tetrabromierten oder chlorierten Derivate wie beispielsweise 2,2-Bis(3-Chlor-4-hydroxyphe- nyl)-propan, 2,2-Bis-(3,5-dichlor-4-hydroxyphenyl)-propan oder 2,2-Bis-(3,5-dibrom-4-hydroxy- phenyl)-propan. Insbesondere bevorzugt ist 2,2-Bis-(4-hydroxyphenyl)-propan (Bisphenol-A). Es können die Diphenole einzeln oder als beliebige Mischungen eingesetzt werden. Die Diphenole sind literaturbekannt oder nach literaturbekannten Verfahren erhältlich.
Für die Herstellung der thermoplastischen, aromatischen Polycarbonate geeignete Kettenabbrecher sind beispielsweise Phenol, p-Chlorphenol, p-tert.-Butylphenol oder 2,4,6-Tπbromphenol, aber auch langkettige Alkylphenole, wie 4-[2-(2,4,4-Tπmethylpentyl)]-phenol, 4-(l,3-Tetramethyl- butyl)-phenol gemäß DE-A 2 842 005 oder Monoalkylphenol oder Dialkylphenole mit insgesamt 8 bis 20 Kohlenstoffatomen in den Alkylsubstituenten, wie 3,5-di-tert.-Butylphenol, p-iso-Oc- tylphenol, p-tert.-Octylphenol, p-Dodecylphenol und 2-(3,5-Dimethylheptyl)-phenol und 4-(3,5- Dimethylheptyl)-phenol. Die Menge an einzusetzenden Kettenabbrechern beträgt im allgemeinen zwischen 0,5 mol-%mol-%, und 10 mol-%mol-%, bezogen auf die Molsumme der jeweils eingesetzten Diphenole.
Die thermoplastischen, aromatischen Polycarbonate haben mittlere Gewichtsmittelmolekular- gewichte (Mw, gemessen z. B. durch GPC, Ultrazentπfuge oder Streulichtmessung) von 10.000 bis 200.000 g/mol, vorzugsweise 15.000 bis 80.000 g/mol, besonders bevorzugt 24.000 bis 32 000 g/mol.
Die thermoplastischen, aromatischen Polycarbonate können in bekannter Weise verzweigt sein, und zwar vorzugsweise durch den Embau von 0,05 bis 2,0 mol-%, bezogen auf die Summe der eingesetzten Diphenole, an dreifunktionellen oder mehr als dreifunktionellen Verbindungen, beispielsweise solchen mit drei und mehr phenohschen Gruppen.
Geeignet sind sowohl Homopolycarbonate als auch Copolycarbonate. Zur Herstellung erfindungsgemäßer Copolycarbonate gemäß Komponente A können auch 1 bis 25 Gew.%, vorzugsweise 2,5 bis 25 Gew.%, bezogen auf die Gesamtmenge an einzusetzenden Diphenolen, Polydiorganosiloxane mit Hydroxyaryloxy-Endgruppen eingesetzt werden. Diese sind bekannt (US 3 419 634) und nach literaturbekannten Verfahren herstellbar. Die Herstellung Polydiorganosiloxanhaltiger Copolycarbonate ist in der DE-A 3 334 782 beschrieben.
Bevorzugte Polycarbonate sind neben den Bisphenol-A-Homopolycarbonaten die Copolycarbonate von Bisphenol-A mit bis zu 15 mol-%, bezogen auf die Molsummen an Diphenolen, anderen als bevorzugt oder besonders bevorzugt genannten Diphenolen, insbesondere 2,2-Bis(3,5-dibrom-4- hydroxyphenyl)-propan. Aromatische Dicarbonsäuredihalogemde zur Herstellung von aromatischen Polyestercarbonaten sind vorzugsweise die Disäuredichloπde der Isophthalsäure, Terephthalsäure, Diphenylether-4,4'- dicarbonsäure und der Naphthahn-2,6-dicarbonsäure.
Besonders bevorzugt sind Gemische der Disäuredichloπde der Isophthalsäure und der Terephthalsäure im Verhältnis zwischen 1:20 und 20:1.
Bei der Herstellung von Polyestercarbonaten wird zusätzlich ein Kohlensäurehalogemd, vorzugsweise Phosgen, als bifunktionelles Säurederivat mit verwendet.
Als Kettenabbrecher für die Herstellung der aromatischen Polyestercarbonate kommen außer den bereits genannten Monophenolen noch deren Chlorkohlensäureester sowie die Säurechloride von aromatischen Monocarbonsäuren, die gegebenenfalls durch Ci bis C22-Alkylgruppen oder durch Halogenatome substituiert sein können, sowie ahphatische C2 bis C22-Monocarbonsäurechloπde in Betracht.
Die Menge an Kettenabbrechern beträgt jeweils 0,1 bis 10 mol-%, bezogen im Falle der phenolischen Kettenabbrecher auf Mol Diphenol und im Falle von Monocarbonsäurechloπd- Kettenabbrecher auf Mol Dicarbonsäuredichloπd. Die aromatischen Polyestercarbonate können auch aromatische Hydroxycarbonsäuren eingebaut enthalten.
Die aromatischen Polyestercarbonate können sowohl linear als auch in bekannter Weise verzweigt sein (siehe dazu DE-A 2 940 024 und DE-A 3 007 934).
Als Verzweigungsmittel können beispielsweise drei- oder mehrfunktionelle Carbonsäurechloπde, wie Tπmesmsäuretπchloπd, Cyanursäuretπchloπd, 3,3'-,4,4'-Benzophenon-tetracarbonsäuretetra- chloπd, 1,4,5,8-Napthalintetracarbon-säuretetrachloπd oder Pyromelhthsäuretetrachloπd, in Mengen von 0,01 bis 1,0 mol-% (bezogen auf eingesetzte Dicarbonsäuredichloπde) oder drei- oder mehrfunktionelle Phenole, wie Phloroglucm, 4,6-Dimethyl-2,4,6-tri-(4-hydroxyphenyl)-hept-2-en, 4,6-Dimethyl-2,4-6-tπ-(4-hydroxyphenyl)-heptan, l,3,5-Tπ-(4-hydroxyphenyl)-benzol, 1,1,1 -Tn- (4-hydroxyphenyl)-ethan, Tn-(4-hydroxyphenyl)-phenylmethan, 2,2-Bis[4,4-bis(4-hydroxy-phe- nyl)-cyclohexyl]-propan, 2,4-Bis(4-hydroxyphenyl-isopropyl)-phenol, Tetra-(4-hydroxyphenyl)- methan, 2,6-Bis(2-hydroxy-5-methyl-benzyl)-4-methyl-phenol, 2-(4-Hydroxyphenyl)-2-(2,4-dihy- droxyphenyl)-propan, Tetra-(4-[4-hydroxyphenyl-isopropyl]-phenoxy)-methan, 1 ,4-Bis[4,4'-dihy- droxytn-phenyl)-methyl]-benzol, in Mengen von 0,01 bis 1,0 mol-% bezogen auf eingesetzte Diphenole verwendet werden. Phenohsche Verzweigungsmittel können mit den Diphenolen vorgelegt, Säurechlorid-Verzweigungsmittel können zusammen mit den Säuredichloriden eingetragen werden.
In den thermoplastischen, aromatischen Polyestercarbonaten kann der Anteil an Carbonatstruktureinheiten beliebig variieren. Vorzugsweise beträgt der Anteil an Carbonatgruppen bis zu 100 mol-%, insbesondere bis zu 80 mol-%, besonders bevorzugt bis zu 50 mol-%, bezogen auf die Summe an Estergruppen und Carbonatgruppen. Sowohl der Ester- als auch der Carbonatanteil der aromatischen Polyestercarbonate kann in Form von Blöcken oder statistisch verteilt im Polykondensat vorliegen.
Die relative Lösungsviskosität (ηrei) der aromatischen Polycarbonate und Polyestercarbonate liegt im Bereich 1,18 bis 1,4, vorzugsweise 1,20 bis 1,32 (gemessen an Lösungen von 0,5 g Polycarbonat oder Polyestercarbonat in 100 ml Methylenchlorid-Lösung bei 25°C).
Die thermoplastischen, aromatischen Polycarbonate und Polyestercarbonate können allein oder im beliebigen Gemisch eingesetzt werden.
Komponente B Die Komponente B umfasst ein oder mehrere Pfropfpolymerisate von
B.l 5 bis 95, vorzugsweise 30 bis 90 Gew.-%, wenigstens eines Vinylmonomeren auf
B.2 95 bis 5, vorzugsweise 70 bis 10 Gew.-% wenigstens einer Pfropfgrundlage ausgewählt aus der Gruppe bestehend aus Dienkautschuke, EP(D)M-Kautschuke (d.h. solche auf Basis Ethylen/Propylen und gegebenenfalls Dien), Acrylat-, Polyurethan-, Silikon-, Silikonacrylat-, Chloropren und Ethylen/Vinylcetat-Kautschuke.
Die Pfropfgrundlage B.2 hat im allgemeinen eine mittlere Teilchengröße (d50-Wert) von 0,05 bis 10 μm, vorzugsweise 0,1 bis 5 μm, besonders bevorzugt 0,2 bis 1 μm.
Monomere B.l sind vorzugsweise Gemische aus
B.1.1 50 bis 99 Gew.-Teilen Vinylaromaten und/oder kernsubstituierten Vinylaromaten (wie Styrol, α-Methylstyrol, p-Methylstyrol, p-Chlorstyrol) und/oder (Meth)Acrylsäure-(Ci- C8)-Alkylester, wie Methylmethacrylat, Ethylmethacrylat), und
B.1.2 1 bis 50 Gew.-Teilen Vinylcyanide (ungesättigte Nitrile wie Acrylnitril und Methacrylnitril) und/oder (MeUi)ACTyISaWe-(C1 -C8)- Alkylester, wie Methylmethacrylat, n-Butylacrylat, t-Butylacrylat, und/oder Derivate (wie Anhydride und Imide) ungesättigter Carbonsäuren, beispielsweise Maleinsäureanhydrid und N-Phenyl- Maleinimid.
Bevorzugte Monomere B.1.1 sind ausgewählt aus mindestens einem der Monomere Styrol, α-Me- thylstyrol und Methylmethacrylat, bevorzugte Monomere B.1.2 sind ausgewählt aus mindestens einem der Monomere Acrylnitril, Maleinsäureanhydrid und Methylmethacrylat. Besonders bevorzugte Monomere sind B.1.1 Styrol und B.1.2 Acrylnitril.
Bevorzugte Pfropfgrundlagen B.2 sind Silikonacrylatkautschuke, Dienkautschuke (beispielsweise auf Basis Butadien und Isopren) oder Gemische von Dienkautschuken. Unter Dienkautschuke im erfindungsgemäßen Sinne sind auch Copolymerisate von Dienkautschuken oder deren Gemischen mit weiteren copolymerisierbaren Monomeren (z.B. gemäß B.1.1 und B.1.2) zu verstehen. Die Pfropfgrundlagen B.2 weisen im allgemeinen eine Glasübergangstemperatur von < 100C, vorzugsweise < 00C, besonders bevorzugt < -100C auf.
Besonders bevorzugte Polymerisate B sind beispielsweise ABS-Polymerisate (Emulsions-, Masse- und Suspensions-ABS), wie sie z.B. in der DE-OS 2 035 390 (=US-PS 3 644 574) oder in der DE- OS 2 248 242 (=GB-PS 1 409 275) bzw. in Ullmanns, Enzyklopädie der Technischen Chemie, Bd. 19 (1980), S. 280 ff. beschrieben sind. Der Gelanteil der Pfropfgrundlage B.2 beträgt mindestens 20 Gew.-%, im Falle von im Emulsionspolymerisation hergestellten Pfropfgrundlagen B.2 vorzugsweise mindestens 40 Gew.-% (in Toluol gemessen).
Vorzugsweise weist das Pfropfpolymerisat aus den Komponenten B.l und B.2 eine Kern-Schale- Struktur auf, wobei die Komponente B.l die Schale bildet (auch als Hülle bezeichnet) und die Komponente B.2 den Kern ausbildet (siehe bspw. Ullmann's Encyclopedia of Industrial Chemistry, VCH-Verlag, Vol. A21, 1992, Seite 635 und Seite 656.
Die Pfropfcopolymerisate B werden durch radikalische Polymerisation, z.B. durch Emulsions-, Suspensions-, Lösungs- oder Massepolymerisation, vorzugsweise durch Emulsions- oder Massepolymerisation hergestellt.
Besonders geeignete Pfropfkautschuke sind auch ABS-Polymerisate, die im Emulsionspolymerisationsverfahren durch Redox-Initiierung mit einem Initiatorsystem aus organischem Hydroperoxid und Ascorbinsäure gemäß US-P 4 937 285 hergestellt werden.
Da bei der Pfropfreaktion die Pfropfmonomeren bekanntlich nicht unbedingt vollständig auf die Pfropfgrundlage aufgepfropft werden, werden erfϊndungsgemäß unter Pfropfpolymerisaten B auch solche Produkte verstanden, die durch (Co)Polymerisation der Pfropfmonomere in Gegenwart der Pfropfgrundlage gewonnen werden und bei der Aufarbeitung mit anfallen.
Geeignete Acrylatkautschuke gemäß B.2 der Polymerisate B sind vorzugsweise Polymerisate aus Acrylsäurealkylestern, gegebenenfalls mit bis zu 40 Gew.-%, bezogen auf B.2 anderen polymerisierbaren, ethylenisch ungesättigten Monomeren. Zu den bevorzugten polymerisierbaren Acrylsäureestern gehören C1 bis Cg-Alkylester, beispielsweise Methyl-, Ethyl-, Butyl-, n-Octyl- und 2-Ethylhexylester; Halogenalkylester, vorzugsweise Halogen-Q-Cg-alkylester, wie Chlorethylacrylat sowie Mischungen dieser Monomeren.
Zur Vernetzung können Monomere mit mehr als einer polymerisierbaren Doppelbindung copolymerisiert werden. Bevorzugte Beispiele für vernetzende Monomere sind Ester ungesättigter Monocarbonsäuren mit 3 bis 8 C-Atomen und ungesättigter einwertiger Alkohole mit 3 bis 12 C- Atomen, oder gesättigter Polyole mit 2 bis 4 OH-Gruppen und 2 bis 20 C-Atomen, wie Ethylenglykoldimethacrylat, Allylmethacrylat; mehrfach ungesättigte heterocyclische Verbindungen, wie Trivinyl- und Triallylcyanurat; polyfunktionelle Vinylverbindungen, wie Di- und Trivinylbenzole; aber auch Triallylphosphat und Diallylphthalat. Bevorzugte vernetzende Monomere sind Allylmethacrylat, Ethylenglykoldimethacrylat, Diallylphthalat und heterocyclische Verbindungen, die mindestens drei ethylenisch ungesättigte Gruppen aufweisen. Besonders bevorzugte vernetzende Monomere sind die cyclischen Monomere Triallylcyanurat, Triallylisocyanurat, Triacryloylhexahydro-s-triazin, Triallylbenzole. Die Menge der vernetzten Monomere beträgt vorzugsweise 0,02 bis 5, insbesondere 0,05 bis 2 Gew.-%, bezogen auf die Pfropfgrundlage B.2. Bei cyclischen vernetzenden Monomeren mit mindestens drei ethylenisch ungesättigten Gruppen ist es vorteilhaft, die Menge auf unter 1 Gew.-% der Pfropfgrundlage B.2 zu beschränken.
Bevorzugte "andere" polymerisierbare, ethylenisch ungesättigte Monomere, die neben den Acrylsäureestern gegebenenfalls zur Herstellung der Pfropfgrundlage B.2 dienen können, sind z.B. Acrylnitril, Styrol, α-Methylstyrol, Acrylamide, Vinyl-Ci-C6-alkylether, Methylmethacrylat, Butadien. Bevorzugte Acrylatkautschuke als Pfropfgrundlage B.2 sind Emulsionspolymerisate, die einen Gelgehalt von mindestens 60 Gew.-% aufweisen.
Geeignete Silikonkautschuke gemäß B.2. können durch Emulsionspolymerisation hergestellt werden, wie beispielsweise in US 2891920 und US 3294725 beschrieben. Weitere geeignete Pfropfgrundlagen gemäß B.2 sind Silikonkautschuke mit pfropfaktiven Stellen, wie sie in den DE- OS 3 704 657, DE-OS 3 704 655, DE-OS 3 631 540 und DE-OS 3 631 539 beschrieben werden. AIs Pfropfgrundlagen B.2 sind erfindungsgemäß auch Silikonacrylat-Kautschuke geeignet. Diese Silikonacrylat-Kautschuke sind Komposit-Kautschuke mit pfropfaktiven Stellen enthaltend 10 - 90 Gew.-% Silikonkautschuk- Anteil und 90 bis 10 Gew.-% Polyalkyl(meth)acrylatkautschuk- Anteil, wobei sich die beiden genannten Kautschuk-Komponenten im Komposit-Kautschuk gegenseitig durchdringen, so dass sie sich nicht wesentlich voneinander trennen lassen. Wenn im Komposit- Kautschuk der Anteil der Silikonkautschuk-Komponente zu hoch ist, haben die fertigen Harzzusammensetzungen nachteilige Oberflächeneigenschaften und eine verschlechterte Einfärbbarkeit. Wenn dagegen der Anteil der Polyalkyl(meth)acrylatkautschuk-Komponente im Komposit-Kautschuk zu hoch ist, wird die Schlagzähigkeit der fertigen Harzzusammensetzung nachteilig beeinflusst). Silikonacrylat-Kautschuke sind bekannt und beispielsweise beschrieben in US 5,807,914, EP 430134 und US 4888388. Vorzugsweise eingesetzt wird ein im Emulsionspolymerisation hergestelltes Pfropfpolymer mit B.l Methylmetacrylat und B.2 Silikonacrylat-Komposit-Kautschuk.
In einer bevorzugten Ausfuhrungsform handelt es sich bei dem Pfropfpolymerisat gemäß Komponente B) um ein im Masse-, Lösungs- oder Masse-Suspensions-Polymerisationsverfahren hergestelltes Pfropfpolymerisat, das einen Kautschukgehalt (entspricht dem Anteil der Komponente B.2 am Pfropfpolymerisat) von 16 bis 25 Gew.-%, vorzugsweise von 17 bis 19 Gew.-% aufweist sowie eine Pfropfhülle, die jeweils bezogen auf die Monomere der Pfropfhülle 22 bis 27 Gew.-% mindestens eines der Monomeren gemäß B.1.2 und 73 bis 78 Gew.-% mindestens eines der Monomeren gemäß B.1.1 enthält. Höchst bevorzugt enthält das Pfropfbolymerisat einen Butadien- Styrol-Blockcopolymerkautschuk als Pfropfgrundlage B.2 (Kern) und eine Hülle aus Styrol (B.1.1) und Acrylnitril (B.1.2). Das Pfropfpolymer weist einen Gelgehalt (gemessen in Aceton) von 20 bis 30 Gew.-%, vorzugsweise von 22 bis 26 Gew.-% auf. Enthält das erfmdungsgemäße Pfropfpolymerisat einen Kautschukgehalt von unter 16 Gew.-%, hat dies den Nachteil, dass die mechanischen Eigenschaften, insbesondere die Kerbschlagzähigkeit und die Chemikalienbeständigkeit, auf einem für viele Anwendungen nicht ausreichenden Niveau liegen.
Der Gelgehalt der Pfropfgrundlage B.2 wird bei 25°C in einem geeigneten Lösungsmittel bestimmt (M. Hoffmann, H. Krömer, R. Kuhn, Polymeranalytik I und II, Georg Thieme-Verlag, Stuttgart 1977).
Die mittlere Teilchengröße d50 ist der Durchmesser, oberhalb und unterhalb dessen jeweils 50 Gew.-% der Teilchen liegen. Er kann mittels Ultrazentrifugenmessung (W. Scholtan, H. Lange, Kolloid, Z. und Z. Polymere 250 (1972), 782-796) bestimmt werden. Komponente C
Unter dem Salz einer Phosphinsäure (Komponente C) im erfindungsgemäßen Sinne sind das Salz einer Phosphinsäure mit einem beliebigen Metallkation zu verstehen. Es können auch Mischungen von Salzen eingesetzt werden, die sich in Ihrem Metallkation unterscheiden. Bei den
Metallkationen handelt es sich um die Kationen Metalle der 1. Hauptgruppe (Alkalimetalle, vorzugsweise Li+, Na+, K+), der 2. Hauptgruppe (Erdalkalimetalle; vorzugsweise Mg2+, Ca2+, Sr2+,
Ba2+, besonders bevorzugt Ca2+) oder der 3. Hauptgruppe (Elemente der Borgruppe; vorzugsweise
Al3+) und/oder der 2., 7. oder 8. Nebengruppe (vorzugsweise Zn2+, Mn2+, Fe2+, Fe3+) des Periodensystems ist.
Vorzugsweise wird ein Salz oder eine Mischung von Salzen einer Phosphinsäure der Formel (IV) eingesetzt,
Figure imgf000012_0001
worin M1"* ein Metallkation der 1. Hauptgruppe (Alkalimetalle; m = 1), 2. Hauptgruppe (Erdalkalimetalle; m = 2) oder der 3. Hauptgruppe (m = 3) oder der 2., 7. oder 8. Nebengruppe (wobei m eine ganze Zahl von 1 bis 6, bevorzugt 1 bis 3 und besonders bevorzugt 2 oder 3 bedeutet) des Periodensystems ist.
Besonders bevorzugt sind in Formel (IV) für m = 1 die Metallkationen M+ = Li+, Na+, K+, für m = 2 die Metallkationen M2+ = Mg2+, Ca2+,Sr2+, Ba2+ und für m = 3 die Metallkationen M3+ = Al3+, höchst bevorzugt sind Ca2+ (m = 2) und Al3+ (m = 3).
In einer bevorzugten Ausfuhrungsform ist die mittlere Teilchengröße d50 des Phosphinsäuresalzes (Komponente C) kleiner als 80 μm, vorzugsweise kleiner als 60 μm, besonders bevorzugt ist d50 zwischen 10 μm und 55 μm. Die mittlere Teilchengröße d50 ist der Durchmesser, oberhalb und unterhalb dessen jeweils 50 Gew.-% der Teilchen liegen. Es können auch Mischungen von Salzen eingesetzt werden, die sich in ihrer mittleren Teilchengröße d50 unterscheiden. Diese Anforderungen an die Teilchengröße dso des Phosphinsäuresalzes sind jeweils mit dem technischen Effekt verbunden, dass die Flammschutzeffizienz des Phosphinsäuresalzes erhöht ist.
Das Phosphinsäuresalz kann entweder alleine oder in Kombination mit anderen phosphorhaltigen Flammschutzmitteln eingesetzt werden. Vorzugsweise sind die erfindungsgemäßen
Zusammensetzungen frei von phosphorhaltigen Flammschutzmitteln ausgewählt aus den Gruppe der Mono- und oligomeren Phosphor- und Phosphonsäureester, Phosphonatamine und
Phosphazene. Diese anderen phosphorhaltigen Flammschutzmitteln wie beispielsweise die Mono- und oligomeren Phosphor- und Phosphonsäureester besitzen gegenüber den Phosphinsäuresalzen den Nachteil, dass diese die Wärmeformbeständigkeit der Formmassen herabsetzen.
Komponente D
Unter Talk wird ein natürlich vorkommender oder synthetisch hergestellter Talk verstanden.
Reiner Talk hat die chemische Zusammensetzung 3 MgO 4 SiO2 H2O und somit einen MgO- Gehalt von 31,9 Gew.-%, einen SiO2-Gehalt von 63,4 Gew.-% und einen Gehalt an chemisch gebundenem Wasser von 4,8 Gew.-%. Talk ist ein Silikat mit Schichtstruktur.
Natürlich vorkommende Talkmaterialien besitzen im allgemeinen nicht die oben aufgeführte Zusammensetzung für reinen Talk, da sie durch partiellen Austausch des Magnesiums durch andere Elemente, durch partiellen Austausch von Silizium, durch z.B. Aluminium und/oder durch Verwachsungen mit anderen Mineralien wie z.B. Dolomit, Magnesit und Chlorit verunreinigt sind.
Bevorzugt eingesetzt werden spezielle Talksorten. Die speziellen Talksorten der bevorzugten Ausführungsform der Erfindung zeichnen sich aus durch eine besonders hohe Reinheit, gekennzeichnet durch einen MgO-Gehalt von 28 bis 35 Gew.-%, bevorzugt 30 bis 33 Gew.-%, besonders bevorzugt 30,5 bis 32 Gew.-% und einen SiO2-Gehalt von 55 bis 65 Gew.-%, bevorzugt 58 bis 64 Gew.-%, besonders bevorzugt 60 bis 62,5 Gew.-%. Bevorzugte Talktypen zeichnen sich des Weiteren durch einen Al2O3-Gehalt von kleiner als 5 Gew.-%, besonders bevorzugt kleiner als 1 Gew.-%, insbesondere kleiner als 0,7 Gew.-%, aus. Eine kommerziell verfügbare Talktype, die dieser Definition entspricht, ist z.B. Luzenac® A3 der Firma Luzenac Naintsch Mineralwerke GmbH (Graz, Österreich).Talktypen, welche diese Anforderung an die Reinheit der bevorzugten Ausführungsform der Erfindung nicht erfüllen, sind z.B. Luzenac SE-Standard, Luzenac SE-Super, Luzenac SE-Micro sowie Luzenac ST 10, 15, 20, 30 und 60, die allesamt von der Firma Luzenac Naintsch Mineralwerke GmbH vertrieben werden. Vorteilhaft ist insbesondere der Einsatz des Talkes gemäß Komponente D in Form von feinvermahlenen Typen mit einer mittleren Teilchengröße d50 von 0,1 bis 20 μm, bevorzugt 0,2 bis 10 μm, besonders bevorzugt 1,1 bis 5 μm, ganz besonders bevorzugt 1,15 bis 2,5 μm. Die mittlere Teilchengröße d50 ist der Durchmesser, oberhalb und unterhalb dessen jeweils 50 Gew.-% der Teilchen liegen. Es können auch Mischungen von Talk-Typen eingesetzt werden, die sich in ihrer mittleren Teilchengröße d50 unterscheiden. Diese Anforderungen an die mittlere Teilchengröße d50 des Talkes sind jeweils mit dem technischen Effekt verbunden, dass die mechanischen Eigenschaften der resultierenden Formmassen verbessert sind.
Der Talk kann oberflächenbehandelt, z.B. silanisiert sein, um eine bessere Verträglichkeit mit dem Polymer zu gewährleisten. Im Hinblick auf die Verarbeitung und Herstellung der Formmassen ist auch der Einsatz kompaktierter Talks vorteilhaft.
Komponente E
Die Komponente E umfasst ein oder mehrere thermoplastische Vinyl(Co)Polymerisate E.l und/oder Polyalkylenterephthalate E.2.
Geeignet sind als Vinyl(Co)Polymerisate E.l Polymerisate von mindestens einem Monomeren aus der Gruppe der Vinylaromaten, Vinylcyanide (ungesättigte Nitrile), (Meth)Acrylsäure-(Ci-C8)-
Alkylester, ungesättigte Carbonsäuren sowie Derivate (wie Anhydride und Imide) ungesättigter
Carbonsäuren. Insbesondere geeignet sind (Co)Polymerisate aus E.1.1 50 bis 99, vorzugsweise 60 bis 80 Gew.-Teilen Vinylaromaten und/oder kernsubstituierten Vinylaromaten wie Styrol, α-Methylstyrol, p-Methylstyrol, p-Chlorstyrol) und/oder (Meth)Acrylsäure-(Ci-C8)-Alkylester, wie Methylmethacrylat, Ethylmethacrylat), und
E.1.2 1 bis 50, vorzugsweise 20 bis 40 Gew.-Teilen Vinylcyanide (ungesättigte Nitrile) wie
Acryl-nitril und Methacrylnitril und/oder (Meth)Acryl-säure-(Ci-C8)-Alkylester, wie Methylmeth-acrylat, n-Butylacrylat, t-Butylacrylat, und/oder ungesättigte Carbonsäuren, wie Maleinsäure, und/oder Derivate, wie Anhydride und Imide, ungesättigter
Carbonsäuren, beispielsweise Maleinsäureanhydrid und N-Phenylmaleinimid).
Die Vinyl(co)polymerisate E.l sind harzartig, thermoplastisch und kautschukfrei. Besonders bevorzugt ist das Copolymerisat aus E.1.1 Styrol und E.1.2 Acrylnitril. Die (Co)Polymerisate gemäß E.l sind bekannt und lassen sich durch radikalische Polymerisation, insbesondere durch Emulsions-, Suspensions-, Lösungs- oder Massepolymerisation herstellen. Die (Co)Polymerisate besitzen vorzugsweise mittlere Molekulargewichte Mw (Gewichtsmittel, ermittelt durch Lichtstreuung oder Sedimentation) zwischen 15.000 und 200.000.
Die Polyalkylenterephthalate der Komponente E.2 sind Reaktionsprodukte aus aromatischen Dicarbonsäuren oder ihren reaktionsfähigen Derivaten, wie Dimethylestern oder Anhydriden, und aliphatischen, cycloaliphatischen oder araliphatischen Diolen sowie Mischungen dieser Reaktionsprodukte.
Bevorzugte Polyalkylenterephthalate enthalten mindestens 80 Gew.-%, vorzugsweise mindestens 90 Gew.-%, bezogen auf die Dicarbonsäurekomponente Terephthalsäurereste und mindestens 80 Gew.-%, vorzugsweise mindestens 90 mol-%, bezogen auf die Diolkomponente Ethylenglykol- und/oder Butandiol-1,4-Reste.
Die bevorzugten Polyalkylenterephthalate können neben Terephthalsäureresten bis zu 20 mol-%, vorzugsweise bis zu 10 mol-%, Reste anderer aromatischer oder cycloaliphatischer Dicarbonsäuren mit 8 bis 14 C-Atomen oder aliphatischer Dicarbonsäuren mit 4 bis 12 C-Atomen enthalten, wie z.B. Reste von Phthalsäure, Isophthalsäure, Naphthalin-2,6-dicarbonsäure, 4,4'-Diphenyldi- carbonsäure, Bernsteinsäure, Adipinsäure, Sebacinsäure, Azelainsäure, Cyclohexandiessigsäure.
Die bevorzugten Polyalkylenterephthalate können neben Ethylenglykol- bzw. Butandiol-1,4-Resten bis zu 20 mol-%, vorzugsweise bis zu 10 mol-%, andere aliphatische Diole mit 3 bis 12 C-Atomen oder cycloaliphatische Diole mit 6 bis 21 C-Atomen enthalten, z.B. Reste von Propandiol-1,3, 2- Ethylpropandiol- 1,3, Neopentylglykol, Pentandiol- 1 ,5 , Hexandiol- 1,6, Cyclohexan-dimethanol- 1 ,4, 3-Ethylpentandiol-2,4, 2-Methylpentandiol-2,4, 2,2,4-Trimethylpentandiol-l,3, 2-Ethylhexandiol- 1,3, 2,2-Diethylpropandiol-l,3, Hexandiol-2,5, l,4-Di-(ß-hydroxyethoxy)-benzol, 2,2-Bis-(4- hydroxycyclohexyl)-propan, 2,4-Dihydroxy- 1 , 1 ,3,3-tetramethyl-cyclobutan, 2,2-Bis-(4-ß- hydroxyethoxy-phenyl)-propan und 2,2-Bis-(4-hydroxypropoxyphenyl)-propan (DE-A 2 407 674, 2 407 776, 2 715 932).
Die Polyalkylenterephthalate können durch Einbau relativ kleiner Mengen 3- oder 4-wertiger Alkohole oder 3- oder 4-basischer Carbonsäuren, z.B. gemäß DE-A 1 900 270 und US-PS 3 692 744, verzweigt werden. Beispiele bevorzugter Verzweigungsmittel sind Trimesinsäure, Trimellithsäure, Trimethylolethan und -propan und Pentaerythrit. Besonders bevorzugt sind Polyalkylenterephthalate, die allein aus Terephthalsäure und deren reaktionsfähigen Derivaten (z.B. deren Dialkylestern) und Ethylenglykol und/oder Butandiol-1,4 hergestellt worden sind, und Mischungen dieser Polyalkylenterephthalate.
Mischungen von Polyalkylenterephthalaten enthalten 1 bis 50 Gew.-%, vorzugsweise 1 bis 30 Gew.-%, Polyethylenterephthalat und 50 bis 99 Gew.-%, vorzugsweise 70 bis 99 Gew.-%, Polybutylenterephthalat.
Die vorzugsweise verwendeten Polyalkylenterephthalate besitzen im allgemeinen eine Grenzvis- kosität von 0,4 bis 1,5 dl/g, vorzugsweise 0,5 bis 1,2 dl/g, gemessen in Phenol/o-Dichlorbenzol (1: 1 Gewichtsteile) bei 25°C im Ubbelohde-Viskosimeter.
Die Polyalkylenterephthalate lassen sich nach bekannten Methoden herstellen (s. z.B. Kunststoff- Handbuch, Band VIII, S. 695 ff, Carl-Hanser-Verlag, München 1973).
Komponente F
Die Zusammensetzung kann weitere handelsübliche Zusatzstoffe gemäß Komponente F) wie Flammschutzsynergisten, Antidrippingmittel (beispielsweise Verbindungen der Substanzklassen der fluorierten Polyolefine, der Silikone sowie Aramidfasern), Gleit- und Entformungsmittel
(beispielsweise Pentaerythrittetrastearat), Nukleiermittel, Stabilisatoren, Antistatika (beispielsweise
Leitruße, Carbonfasern, Carbon Nanotubes sowie organische Antistatika wie Polyalkylenether,
Alkyl-Sulfonate oder Polyamid-haltige Polymere), Säuren, Füll- und Verstärkungsstoffe (beispielsweise Glas- oder Karbonfasern, Glimmer, Kaolin, Talk, CaCO3 und Glasschuppen) sowie
Farbstoffe und Pigmente enthalten.
Herstellung der Formmassen und Formkörper
Die erfϊndungsgemäßen thermoplastischen Formmassen werden hergestellt, indem man die jeweiligen Bestandteile in bekannter Weise vermischt und bei Temperaturen von 26O0C bis 3000C in üblichen Aggregaten wie Innenknetern, Extrudern und Doppelwellenschnecken schmelzcom- poundiert und schmelzextrudiert. Die Vermischung der einzelnen Bestandteile kann in bekannter Weise sowohl sukzessive als auch simultan erfolgen, und zwar sowohl bei etwa 200C (Raumtemperatur) als auch bei höherer Temperatur.
Gegenstand der Erfindung sind ebenfalls Verfahren zur Herstellung der Formmassen und die Verwendung der Formmassen zur Herstellung von Formkörpern sowie die Formteile selbst.
Die erfindungsgemäßen Formmassen können zur Herstellung von Formkörpern jeder Art verwendet werden. Diese können durch Spritzguss, Extrusion und Blasformverfahren hergestellt werden. Eine weitere Form der Verarbeitung ist die Herstellung von Formkörpern durch Tiefziehen aus zuvor hergestellten Platten oder Folien.
Beispiele für solche Formkörper sind Folien, Profile, Gehäuseteile jeder Art, z.B. für Haushaltsgeräte wie Fernsehgeräte, Saftpressen, Kaffeemaschinen, Mixer; für Büromaschinen wie Monitore, Flatscreens, Notebooks, Drucker, Kopierer; Platten, Rohre, Elektroinstallationskanäle, Fenster, Türen und weitere Profile für den Bausektor (Innenausbau und Außenanwendungen) sowie Elektro- und Elektronikteile wie Schalter, Stecker und Steckdosen sowie Karosserie- bzw. Innenbauteile für Nutzfahrzeuge, insbesondere für den Automobilbereich.
Insbesondere können die erfindungsgemäßen Formmassen beispielsweise auch zur Herstellung von folgenden Formkörpern oder Formteilen verwendet werden: Innenausbauteile für Schienenfahrzeuge, Schiffe, Flugzeuge, Busse und andere Kraftfahrzeuge, Gehäuse von Kleintransformatoren enthaltenden Elektrogeräten, Gehäuse für Geräte zur Informationsverarbeitung und -Übermittlung, Gehäuse und Verkleidung von medizinischen Geräten, Massagegeräte und Gehäuse dafür, Spielfahrzeuge für Kinder, flächige Wandelemente, Gehäuse für Sicherheitseinrichtungen und für Fernsehgeräte, wärmeisolierte Transportbehältnisse, Formteile für Sanitär- und Badausrüstungen, Abdeckgitter für Lüfteröffhungen und Gehäuse für Gartengeräte.
Die folgenden Beispiele dienen der weiteren Erläuterung der Erfindung. Beispiele
Komponente A-I
Lineares Polycarbonat auf Basis Bisphenol-A mit einem gewichtsgemittelten Molekulargewicht Mw von 27500 g/mol (bestimmt durch GPC).
Komponente A-2
Lineares Polycarbonat auf Basis Bisphenol-A mit einem gewichtsgemittelten Molekulargewicht
Mwvon ca. 17000 bis 19000 g/mol (bestimmt durch GPC).
Komponente A-3
Verzweigtes Polycarbonat auf Basis Bisphenol A mit einer relativen Lösungsviskosität von eta rel = 1,34, gemessen in CH2C12 als Lösungsmittel bei 25°C und einer Konzentration von 0,5 g/100 ml, welches durch Einsatz von 0,3 mol-% Isatinbiscresol bezogen auf die Summe der mol.-% aus Bisphenol A und Isatinbiscresol verzweigt wurde.
Komponente B-I
ABS-Polymerisat mit Kern-Schale-Struktur hergestellt durch Masse-Polymerisation von 82 Gew.- % bezogen auf das ABS-Polymerisat einer Mischung aus 24 Gew.-% Acrylnitril und 76 Gew.-% Styrol in Gegenwart von 18 Gew.-% bezogen auf das ABS-Polymerisat eines Polybutadien-Styrol- Blockcopolymerkautschuks mit einem Styrolgehalt von 26 Gew.-%. Der Gelgehalt des ABS- Polymerisats beträgt 24 Gew.-% (gemessen in Aceton).
Komponente B-2 Schlagzähmodifϊkator, Methylmethacrylat-modifizierter Silikon-Acrylat-Kautschuk, Metablen® SX 005 der Firma Mitsubishi Rayon Co., Ltd., CAS 143106-82-5.
Komponente C Komponente C-I (Vergleich) Bisphenol-A-basierendes Oligophosphat
Figure imgf000018_0001
Komponente C-2
Calciumphosphinat, mittlere Teilchengröße d50 = 50 μm.
Komponente D-I Talk, HTP Ultra® der Firma Imi Fabi mit einem MgO-Gehalt von 31 ,0 Gew.-%, einem SiO2-Gehalt von 61,5 Gew.-% und einem Al2O3-GeImIt von 0,4 Gew.-%, mittlere Teilchengröße d50 = 0,5 μm.
Komponente D-2
Talk, Jetfine® 3CA der Firma Luzenac/Rio Tinto mit einem MgO-Gehalt von 32 Gew.-%, einem SiO2-Gehalt von 61 Gew.-% und einem Al2O3-Gehalt von 0,3 Gew.-%, mittlere Teilchengröße d50 = l,0μm.
Komponente F
Komponente F- 1 : Polytetrafluorethylen (PTFE) Komponente F-2: Pentaerythrittetrastearat
Komponente F-3: Irganox® B900 (Hersteller: Ciba Specialty Chemicals Inc., Basel, Schweiz)
Herstellung und Prüfung der Formmassen
Auf einem Zweischneckenextruder (ZSK-25) (Fa. Werner und Pfleiderer) werden die in Tabelle 1 aufgeführten Einsatzstoffe bei einer Drehzahl von 225 Upm und einem Durchsatz von 20 kg/h bei einer Maschinentemperatur von 2600C compoundiert und granuliert. Die fertigen Granulate werden auf einer Spritzgussmaschine zu den entsprechenden Probekörpern verarbeitet (Massetemperatur 2400C, Werkzeugtemperatur 8O0C, Fließfrontgeschwindigkeit 240 mm/s).
Die Charakterisierung erfolgt gemäß DIN EN ISO 180/1 A (Izod-Kerbschlagzähigkeit aκ), DIN EN ISO 527 (Zug-E-Modul und Reißdehnung), DIN ISO 306 (Vicat-Erweichungstemperatur, Verfahren B mit 50 N Belastung und einer Heizrate von 120 K/h), ISO 11443 (Schmelzeviskosität), DIN EN ISO 1133 (Schmelze-Volumen-Fließrate, melt volume-flow rate MVR) und UL 94 V (an Stäben der Abmessung 127 x 12,7 x 1,5 mm gemessen) .
Hydrolysetest: Als Maß für die Hydrolysebeständigkeit der so hergestellten Zusammensetzungen dient die Änderung des MVR gemessen nach ISO 1133 bei 2400C mit einer Stempellast von 5 kg bei einer Lagerung (Id = I Tag, 2d = 2 Tage, 5d = 5 Tage, 6d = 6 Tage, 7d = 7 Tage) des Granulats bei 950C und 100% relativer Luftfeuchte. Der MVR- Wert vor der entsprechenden Lagerung wird in Tabelle 1 als „MVR- Wert der Ausgangsprobe" bezeichnet. Unter Chemikalienbeständigkeit (ESC-Verhalten) wird die Zeit bis zum Bruch bei 2,4 % Randfaserdehnung nach Lagerung des Probekörpers in Toluol/Isopropanol (60/40 Vol. -Teile) bei Raumtemperatur angegeben.
Die erfϊndungsgemäßen Zusammensetzungen 3 und 4 weisen gegenüber den Vergleichsbeispielen 1 und 2 eine verbesserte Vicat- Wärmeformbeständigkeit, kürzere Nachbrennzeit, besseres ESC- Verhalten, einen höheren E-Modul und bessere Reißfestigkeit sowie eine höhere Hydrolysebeständigkeit auf. Dieser technische Effekt geht zurück auf den Unterschied, dass in den Vergleichsbeispielen als Flammschutzmittel ein Oligophosphat an Stelle des erfindungsgemäßen Calciumphosphinats eingesetzt wird.
Die erfindungsgemäßen Zusammensetzung 6 weist gegenüber den Vergleichsbeispiel 5 eine kürzere Nachbrennzeit und besseres ESC-Verhalten auf bei unverändert guter Vicat- Wärmeformbeständigkeit. Dieser technische Effekt geht zurück auf den Unterschied, dass im Vergleichsbeispiel 5 kein Talk enthalten ist.
Die erfindungsgemäßen Zusammensetzung 8 weist gegenüber den Vergleichsbeispiel 7 eine verbesserte Vicat- Wärmeformbeständigkeit, kürzere Nachbrennzeit, einen höheren E-Modul und bessere Reißfestigkeit auf. Dieser technische Effekt geht zurück auf den Unterschied, dass im Vergleichsbeispiel als Flammschutzmittel ein Oligophosphat an Stelle des erfϊndungsgemäßen Calciumphosphinats eingesetzt wird.
Tabelle 1 : Zusammensetzungen und ihre Eigenschaften
Figure imgf000021_0001
BR: Bruch
NBZ = Nachbrennzeit Tabelle 2: Zusammensetzungen und ihre Eigenschaften
Figure imgf000022_0001
BR: Bruch
NBZ = Nachbrennzeit

Claims

Patentansprüche
1. Zusammensetzungen enthaltend
A) 38 bis 99,3 Gew.-Teile (jeweils bezogen auf die Summe der Gewichtsteile der Komponenten A+B+C+D) aromatisches Polycarbonat und/oder aromatisches PoIy- estercarbonat,
B) 0,5 bis 12 Gew.-Teile (jeweils bezogen auf die Summe der Gewichtsteile der Komponenten A+B+C+D) kautschukmodifiziertes Pfropfpolymerisat,
C) 0,1 bis 25 Gew.-Teile (jeweils bezogen auf die Summe der Gewichtsteile der Komponenten A+B+C+D) eines Salzes einer Phosphinsäure, und
D) 0,1 bis 25 Gew.-Teile (jeweils bezogen auf die Summe der Gewichtsteile der Komponenten A+B+C+D) Talk.
2. Zusammensetzung gemäß Anspruch 1, enthaltend 2 bis 5 Gew.-Teile (jeweils bezogen auf die Summe der Gewichtsteile der Komponenten A+B+C+D) kautschukmodifiziertes
Pfropfpolymerisat gemäß Komponente B).
3. Zusammensetzung gemäß Anspruch 1 oder 2, enthaltend 7 bis 12 Gew.-Teile (jeweils bezogen auf die Summe der Gewichtsteile der Komponenten A+B+C+D) eines Salzes einer Phosphinsäure.
4. Zusammensetzung gemäß einem der Ansprüche 1 bis 3, enthaltend 7 bis 12 Gew.-Teile (jeweils bezogen auf die Summe der Gewichtsteile der Komponenten A+B+C+D) Talk.
5. Zusammensetzung gemäß einem der Ansprüche 1 bis 4 enthaltend 0 bis 20 Gew.-Teile (bezogen auf die Summe der Gewichtsteile der Komponenten A+B+C+D = 100) kautschukfreies Vinyl(Co)Polymerisat und/oder Polyalkylenterephthalat als Komponente E).
6. Zusammensetzung gemäß einem der Ansprüche 1 bis 4, die frei ist von kautschukfreiem Vinyl(Co)Polymerisat und/oder Polyalkylenterephthalat.
7. Zusammensetzung gemäß einem der Ansprüche 1 bis 6, enthaltend 0 bis 50 Gew.-Teile (jeweils bezogen auf die Summe der Gewichtsteile der Komponenten A+B+C+D = 100) Zusatzstoffe als Komponente F).
8. Zusammensetzung gemäß einem der Ansprüche 1 bis 7, enthaltend als Komponente B) ein oder mehrere Pfropfpolymerisate von
B.l 5 bis 95 Gew.-%, wenigstens eines Vinylmonomeren auf
B.2 95 bis 5 Gew.-% wenigstens einer Pfropfgrundlage ausgewählt aus der Gruppe bestehend aus Dienkautschuke, EP(D)M-Kautschuke (d.h. solche auf Basis
Ethylen/Propylen und gegebenenfalls Dien), Acrylat-, Polyurethan-, Silikon-, Silikonacrylat-, Chloropren und Ethylen/Vinylcetat-Kautschuke.
9. Zusammensetzung gemäß Anspruch 8, enthaltend als B.l Gemische aus B.1.1 50 bis 99 Gew.-Teilen Vinylaromaten und/oder kernsubstituierten Vinylaromaten und/oder (Meth)Acrylsäure-(Ci-C8)-Alkylester und
B.1.2 1 bis 50 Gew.-Teilen Vinylcyanide und/oder (Meth)Acrylsäure-(Ci-C8)-Alkylester, und/oder Derivate ungesättigter Carbonsäuren.
10. Zusammensetzung gemäß Anspruch 8 oder 9, enthaltend ein Pfropφolymerisat gemäß Komponente B) hergestellt im Masse-, Lösungs- oder Masse-Suspensions- Polymerisationsverfahren, das einen Kautschukgehalt (entspricht dem Anteil der Komponente B.2 am Pfropfpolymerisat) von 16 bis 25 Gew.-% aufweist sowie eine Pfropfhülle, die jeweils bezogen auf die Monomere der Pfropfhülle 22 bis 27 Gew.-% mindestens eines der Monomeren gemäß B.1.2 und 73 bis 78 Gew.-% mindestens eines der
Monomeren gemäß B .1.1 enthält.
11. Zusammensetzung gemäß einem der Ansprüche 8 bis 10, wobei das Pfropfpolymerisat einen Butadien-Styrol-Blockcopolymerkautschuk als Pfropfgrundlage B.2 und eine Hülle aus Styrol (B .1.1 ) und Acrylnitril (B .1.2) enthält.
12. Zusammensetzung gemäß einem der Ansprüche 1 bis 9, enthaltend als Komponente B) ein im Emulsionspolymerisation hergestelltes Pfropfpolymer mit B.l Methylmetacrylat und B .2 Silikonacrylat-Komposit-Kautschuk.
13. Zusammensetzung gemäß einem der Ansprüche 1 bis 12, enthaltend als Komponente C) ein Salz oder eine Mischung von Salzen einer Phosphinsäure, wobei das Metallkation Li+, Na+, K+, Mg2+, Ca2+, Sr2+, Ba2+, Al3+, Zn2+, Mn2+, Fe2+ und/oder Fe3+ ist.
14. Zusammensetzung gemäß Anspruch 13, enthaltend als Salz oder eine Mischung von Salzen eine Phosphinsäure der Formel (FV), O
. m+
H-P-O M H (IV) m worin
M1* ein Metallkation der 1. Hauptgruppe (Alkalimetalle; m = 1), 2. Hauptgruppe
(Erdalkalimetalle; m = 2) oder der 3. Hauptgruppe (m = 3) oder der 2., 7. oder 8. Nebengruppe (wobei m eine ganze Zahl von 1 bis 6, bedeutet) des Periodensystems ist.
15. Zusammensetzung gemäß Anspruch 14 wobei M* = Ca2+ und m = 2 ist oder M"* = Al3+ und m = 3 ist.
16. Zusammensetzung gemäß einem der Ansprüche 1 bis 15, wobei die mittlere Teilchengröße d50 des Phosphinsäuresalzes (Komponente C) kleiner als 80 μm ist.
17. Zusammensetzung gemäß einem der Ansprüche 1 bis 16, wobei die Zusammensetzung frei ist von phosphorhaltigen Flammschutzmitteln ausgewählt aus den Gruppe der Mono- und oligomeren Phosphor- und Phosphonsäureester, Phosphonatamine und Phosphazene.
18. Zusammensetzung gemäß einem der Ansprüche 1 bis 17, wobei die handelsüblichen Zusatzstoffe gemäß Komponente F) Flammschutzsynergisten, Antidrippingmittel, Gleit- und Entformungsmittel, Nukleiermittel, Stabilisatoren, Antistatika, Säuren, Füll- und
Verstärkungsstoffe sowie Farbstoffe und Pigmente sind.
19. Verwendung der Zusammensetzungen gemäß Anspruch 1 bis 18 zur Herstellung von Formkörpern.
20. Formkörper, enthaltend eine Zusammensetzung nach einem der Ansprüche 1 bis 18.
21. Formkörper nach Anspruch 20 dadurch gekennzeichnet, dass der Formkörper ein Teil eines Kraftfahrzeugs, Schienenfahrzeugs, Luftfahrzeugs oder Wasserfahrzeugs ist.
PCT/EP2008/010696 2007-12-20 2008-12-16 Flammgeschützte schlagzähmodifizierte polycarbonat-zusammensetzungen WO2009080246A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2010538437A JP2011506706A (ja) 2007-12-20 2008-12-16 防炎性耐衝撃性改良ポリカーボネート組成物
CA2709953A CA2709953A1 (en) 2007-12-20 2008-12-16 Flame-proof impact resistant-modified polycarbonate compositions
MX2010006308A MX2010006308A (es) 2007-12-20 2008-12-16 Composicion de policarbonato ignifugas y modificadas con resistencia elevada al impacto.
BRPI0821350-0A BRPI0821350A2 (pt) 2007-12-20 2008-12-16 Composições de policarbonato com modificada resistência ao impacto, à prova de chamas
KR1020107013520A KR101530404B1 (ko) 2007-12-20 2008-12-16 방염 내충격성-개질된 폴리카보네이트 조성물
CN200880121778.0A CN101981108B (zh) 2007-12-20 2008-12-16 抗冲击改性的阻燃性聚碳酸酯组合物
AT08864635T ATE513010T1 (de) 2007-12-20 2008-12-16 Flammgeschützte schlagzähmodifizierte polycarbonat-zusammensetzungen
EP08864635A EP2225322B1 (de) 2007-12-20 2008-12-16 Flammgeschützte schlagzähmodifizierte polycarbonat-zusammensetzungen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007061761.7 2007-12-20
DE102007061761A DE102007061761A1 (de) 2007-12-20 2007-12-20 Flammgeschützte schlagzähmodifizierte Polycarbonat-Zusammensetzungen

Publications (1)

Publication Number Publication Date
WO2009080246A1 true WO2009080246A1 (de) 2009-07-02

Family

ID=40368654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/010696 WO2009080246A1 (de) 2007-12-20 2008-12-16 Flammgeschützte schlagzähmodifizierte polycarbonat-zusammensetzungen

Country Status (14)

Country Link
US (1) US20090198010A1 (de)
EP (1) EP2225322B1 (de)
JP (1) JP2011506706A (de)
KR (1) KR101530404B1 (de)
CN (1) CN101981108B (de)
AT (1) ATE513010T1 (de)
BR (1) BRPI0821350A2 (de)
CA (1) CA2709953A1 (de)
DE (1) DE102007061761A1 (de)
ES (1) ES2366272T3 (de)
MX (1) MX2010006308A (de)
RU (1) RU2010129720A (de)
TW (1) TW200946591A (de)
WO (1) WO2009080246A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012038419A1 (de) * 2010-09-24 2012-03-29 Bayer Materialscience Ag Flammgeschützte schlagzähmodifizierte batteriegehäuse auf polycarbonatbasis ii
WO2017162769A1 (de) 2016-03-23 2017-09-28 Covestro Deutschland Ag Polycarbonat-zusammensetzungen mit verbesserter hydrolysebeständigkeit

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007061759A1 (de) * 2007-12-20 2009-06-25 Bayer Materialscience Ag Flammgeschützte schlagzähmodifizierte Polycarbonat-Zusammensetzungen
US8080599B2 (en) * 2009-09-23 2011-12-20 Sabic Innovative Plastics Ip B.V. Thermoplastic polyester compositions, methods of manufacture, and articles thereof
EP2377899A1 (de) 2010-04-14 2011-10-19 Styron Europe GmbH Carbonatmischungszusammensetzung mit verbesserter Widerstandsfähigkeit gegen Rissbildung aufgrund von Umweltbelastungen
KR101557567B1 (ko) 2011-06-28 2015-10-05 트린세오 유럽 게엠베하 폴리카보네이트 수지 조성물
EP2554597B1 (de) 2011-08-02 2014-12-31 Styron Europe GmbH Chemikalienbeständige und flammhemmende Polycarbonatpolyesterzusammensetzung
US9127155B2 (en) * 2012-04-11 2015-09-08 Sabic Global Technologies B.V. Phosphorus free flame retardant composition
EP3055348B1 (de) * 2013-10-08 2019-04-10 Covestro Deutschland AG Faserverbundwerkstoff, verwendung dafür und verfahren zu dessen herstellung
JP6836246B2 (ja) * 2015-10-30 2021-02-24 イタルマッチ ケミカルズ ソチエタ ペル アツィオーニITALMATCH CHEMICALS S.p.A. 熱可塑性衝撃改良スチレン系ポリマーをベースとした、環境にやさしい難燃性組成物および成形材料
WO2019225558A1 (ja) * 2018-05-22 2019-11-28 帝人株式会社 難燃性ポリカーボネート樹脂組成物
DE102021116975A1 (de) 2021-07-01 2023-01-05 R. Stahl Schaltgeräte GmbH Kunststoffteil und Verfahren zu seiner Herstellung
CN114573970B (zh) * 2022-03-28 2023-11-03 金发科技股份有限公司 一种聚碳酸酯组合物及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19753542A1 (de) * 1997-12-03 1999-06-10 Basf Ag Polycarbonatformmassen
DE19941823A1 (de) * 1999-09-02 2001-03-08 Bayer Ag Flammwidrige Polycarbonat-Blends
WO2004013228A1 (de) * 2002-07-29 2004-02-12 Bayer Materialscience Ag Schlagzähmodifizierte polycarbonat blends
WO2005044906A1 (en) * 2003-11-07 2005-05-19 Italmatch Chemicals S.P.A. Halogen-free flame retardant polycarbonate compositions
US20060287422A1 (en) * 2005-06-16 2006-12-21 General Electric Company Thermoplastic polycarbonate compositions with improved mechanical properties, articles made therefrom and method of manufacture

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2891920A (en) 1955-01-26 1959-06-23 Dow Corning Polymerization of organopolysiloxanes in aqueous emulsion
DE1495626B1 (de) 1960-03-30 1971-06-09 Bayer Ag Verfahren zum herstellen von polyestern
GB1024024A (en) 1963-04-08 1966-03-30 Dow Corning Improvements in or relating to polymerising or co-polymerising organosilicon compounds
US3419634A (en) 1966-01-03 1968-12-31 Gen Electric Organopolysiloxane polycarbonate block copolymers
FR1580834A (de) 1968-01-04 1969-09-12
US3644574A (en) 1969-07-17 1972-02-22 Eastman Kodak Co Shaped articles of blends of polyesters and polyvinyls
US4013613A (en) 1971-10-01 1977-03-22 General Electric Company Reinforced intercrystalline thermoplastic polyester compositions
DE2232877B2 (de) 1972-07-05 1980-04-10 Werner & Pfleiderer, 7000 Stuttgart Verfahren zur Herstellung von Polyestern
JPS5039599B2 (de) 1973-03-30 1975-12-18
DE2407776A1 (de) 1974-02-19 1975-09-04 Licentia Gmbh Schaltung zur regelung der betriebsspannung fuer die transistor-zeilenendstufe eines fernsehempfaengers
JPS5292295A (en) 1976-01-29 1977-08-03 Sumitomo Chem Co Ltd Preparation of aromatic polyester
IT1116721B (it) 1976-04-02 1986-02-10 Allied Chem Copolimero bisfenolo a tereftalato carbonato lavorabili in massa fusa
DE2715932A1 (de) 1977-04-09 1978-10-19 Bayer Ag Schnellkristallisierende poly(aethylen/alkylen)-terephthalate
DE2842005A1 (de) 1978-09-27 1980-04-10 Bayer Ag Polycarbonate mit alkylphenyl-endgruppen, ihre herstellung und ihre verwendung
JPS5594930A (en) 1979-01-10 1980-07-18 Sumitomo Chem Co Ltd Preparation of aromatic polyester by improved bulk polymerization process
DE2940024A1 (de) 1979-10-03 1981-04-16 Bayer Ag, 5090 Leverkusen Aromatische polyester, verfahren zu ihrer herstellung und ihre verwendung zur herstellung von spritzgussartikeln, folien und ueberzuegen
DE3007934A1 (de) 1980-03-01 1981-09-17 Bayer Ag, 5090 Leverkusen Aromatische polyestercarbonate, verfahren zu ihrer herstellung und ihre verwendung zur herstellung von spritzgussartikeln, folien und ueberzuegen
DE3334782A1 (de) 1983-04-19 1984-10-25 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung von polydiorganosiloxanen mit hydroxyaryloxy-endgruppen
DE3631539A1 (de) 1986-09-17 1988-03-24 Bayer Ag Alterungsbestaendige thermoplastische formmassen mit guter zaehigkeit
DE3631540A1 (de) 1986-09-17 1988-03-24 Bayer Ag Thermoplastische formmassen mit hoher alterungsbestaendigkeit und guter tieftemperaturzaehigkeit
DE3704657A1 (de) 1987-02-14 1988-08-25 Bayer Ag Teilchenfoermige mehrphasenpolymerisate
DE3704655A1 (de) 1987-02-14 1988-08-25 Bayer Ag Teilchenfoermige mehrphasenpolymerisate
US4888388A (en) 1987-09-21 1989-12-19 Mitsubishi Rayon Company Limited Polycarbonate resin composition
DE3738143A1 (de) 1987-11-10 1989-05-18 Bayer Ag Verwendung von redoxpfropfpolymerisaten zur verbesserung der benzinbestaendigkeit von thermoplastischen, aromatischen polycarbonat- und/oder polyestercarbonat-formmassen
DE3832396A1 (de) 1988-08-12 1990-02-15 Bayer Ag Dihydroxydiphenylcycloalkane, ihre herstellung und ihre verwendung zur herstellung von hochmolekularen polycarbonaten
EP0430134B1 (de) 1989-11-27 1996-07-31 Mitsubishi Rayon Co., Ltd. Hochschlagfeste Pfropfkopolymere und Harzzusammensetzungen
US5807914A (en) 1995-07-05 1998-09-15 Mitsubishi Engineering-Plastics Corporation Glass fiber-reinforced polycarbonate resin composition
DE19742868A1 (de) * 1997-09-29 1999-04-01 Bayer Ag Polycarbonat-ABS-Formmassen
US6063844A (en) * 1998-04-02 2000-05-16 General Electric Company Polycarbonate/rubber-modified graft copolymer resin blends having improved thermal stability
DE19820398A1 (de) * 1998-05-07 1999-11-11 Basf Ag Flammgeschützte Polyesterformmassen
DE19820399A1 (de) * 1998-05-07 1999-11-11 Basf Ag Flammgeschützte Polyesterformmassen
JP2004534860A (ja) * 1998-08-31 2004-11-18 ゼネラル・エレクトリック・カンパニイ ホスホルアミドを含有する難燃性樹脂組成物およびその製法
DE19853105A1 (de) 1998-11-18 2000-05-25 Bayer Ag Flammwidrige Polycarbonat-ABS-Formmassen
JP2001261973A (ja) 2000-03-16 2001-09-26 Daicel Chem Ind Ltd 熱可塑性樹脂組成物
JP2001335699A (ja) 2000-05-30 2001-12-04 Daicel Chem Ind Ltd 難燃性樹脂組成物
JP5255169B2 (ja) 2000-11-24 2013-08-07 株式会社ダイセル 難燃性樹脂組成物
US6613824B2 (en) * 2001-11-12 2003-09-02 General Electric Company Flame retardant resinous compositions and method
DE10213431A1 (de) * 2002-03-26 2003-10-09 Bayer Ag Schlagzähmodifizierte Polymer-Zusammensetzung
KR100957883B1 (ko) * 2002-07-29 2010-05-13 바이엘 머티리얼사이언스 아게 난연성 폴리카르보네이트 성형 화합물
DE10304159A1 (de) * 2003-02-03 2004-08-05 Bayer Ag Flammwidrige Polycarbonat-Blends
DE10309622A1 (de) * 2003-03-04 2004-09-23 Clariant Gmbh Schmelzbare Zinkphosphinate
DE102004049342A1 (de) * 2004-10-08 2006-04-13 Basf Ag Fließfähige Thermoplaste mit halogenfreiem Flammschutz
JP5405738B2 (ja) * 2005-02-23 2014-02-05 ポリプラスチックス株式会社 難燃性樹脂組成物
CN101218305B (zh) * 2005-07-08 2011-03-23 宝理塑料株式会社 阻燃性树脂组合物
DE102005058836A1 (de) * 2005-12-09 2007-06-14 Bayer Materialscience Ag Polycarbonat-Formmassen
JP5309355B2 (ja) * 2006-05-02 2013-10-09 大和化学工業株式会社 繊維の加工方法
DE102007061760A1 (de) * 2007-12-20 2009-06-25 Bayer Materialscience Ag Flammgeschützte schlagzähmodifizierte Polyalkylenterephthalat/Polycarbonat-Zusammensetzungen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19753542A1 (de) * 1997-12-03 1999-06-10 Basf Ag Polycarbonatformmassen
DE19941823A1 (de) * 1999-09-02 2001-03-08 Bayer Ag Flammwidrige Polycarbonat-Blends
WO2004013228A1 (de) * 2002-07-29 2004-02-12 Bayer Materialscience Ag Schlagzähmodifizierte polycarbonat blends
WO2005044906A1 (en) * 2003-11-07 2005-05-19 Italmatch Chemicals S.P.A. Halogen-free flame retardant polycarbonate compositions
US20060287422A1 (en) * 2005-06-16 2006-12-21 General Electric Company Thermoplastic polycarbonate compositions with improved mechanical properties, articles made therefrom and method of manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012038419A1 (de) * 2010-09-24 2012-03-29 Bayer Materialscience Ag Flammgeschützte schlagzähmodifizierte batteriegehäuse auf polycarbonatbasis ii
CN103180995A (zh) * 2010-09-24 2013-06-26 拜耳知识产权有限责任公司 基于聚碳酸酯ii的阻燃冲击改性电池组外壳
WO2017162769A1 (de) 2016-03-23 2017-09-28 Covestro Deutschland Ag Polycarbonat-zusammensetzungen mit verbesserter hydrolysebeständigkeit

Also Published As

Publication number Publication date
EP2225322A1 (de) 2010-09-08
CN101981108A (zh) 2011-02-23
ES2366272T3 (es) 2011-10-18
EP2225322B1 (de) 2011-06-15
KR20100098403A (ko) 2010-09-06
BRPI0821350A2 (pt) 2015-06-16
TW200946591A (en) 2009-11-16
JP2011506706A (ja) 2011-03-03
DE102007061761A1 (de) 2009-06-25
ATE513010T1 (de) 2011-07-15
CN101981108B (zh) 2014-01-29
CA2709953A1 (en) 2009-07-02
MX2010006308A (es) 2010-07-05
RU2010129720A (ru) 2012-01-27
US20090198010A1 (en) 2009-08-06
KR101530404B1 (ko) 2015-06-19

Similar Documents

Publication Publication Date Title
EP2225322B1 (de) Flammgeschützte schlagzähmodifizierte polycarbonat-zusammensetzungen
EP2382268B1 (de) Flammgeschützte schlagzähmodifizierte polycarbonat-zusammensetzungen
WO2008061644A1 (de) Schlagzähmodifizierte gefüllte polycarbonat-zusammensetzungen
DE102006055479A1 (de) Schlagzähmodifizierte gefüllte Polycarbonat-Zusammensetzungen
EP2928955B1 (de) Flammgeschützte polycarbonatformmassen v
EP2928954A1 (de) Flammgeschützte polycarbonatformmassen ii
EP2928949B1 (de) Flammgeschützte polycarbonatformmassen iv
WO2016202399A1 (de) Flammgeschütze polycarbonat-polyester-zusammensetzungen
EP2609153B1 (de) SCHLAGZÄHMODIFIZIERTE POLYESTER/POLYCARBONAT-ZUSAMMENSETZUNGEN MIT VERBESSERTER REIßDEHNUNG
EP2225316B1 (de) Flammgeschützte schlagzähmodifizierte polycarbonat-zusammensetzungen
EP2928952A1 (de) Flammgeschützte polycarbonatformmassen i
WO2014086832A1 (de) Flammgeschützte polycarbonatformmassen iii
EP2225317B1 (de) Flammgeschützte schlagzähmodifizierte polycarbonat-zusammensetzungen
EP2225327B1 (de) Flammgeschützte schlagzähmodifizierte polycarbonat-zusammensetzungen

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880121778.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08864635

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008864635

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 3942/DELNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: MX/A/2010/006308

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2709953

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20107013520

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010538437

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010129720

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0821350

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100618