DE19820399A1 - Flammgeschützte Polyesterformmassen - Google Patents

Flammgeschützte Polyesterformmassen

Info

Publication number
DE19820399A1
DE19820399A1 DE19820399A DE19820399A DE19820399A1 DE 19820399 A1 DE19820399 A1 DE 19820399A1 DE 19820399 A DE19820399 A DE 19820399A DE 19820399 A DE19820399 A DE 19820399A DE 19820399 A1 DE19820399 A1 DE 19820399A1
Authority
DE
Germany
Prior art keywords
molding compositions
weight
thermoplastic molding
compositions according
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19820399A
Other languages
English (en)
Inventor
Martin Klatt
Michael Nam
Herbert Fisch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to DE19820399A priority Critical patent/DE19820399A1/de
Priority to PCT/EP1999/002728 priority patent/WO1999057192A1/de
Priority to EP99920747A priority patent/EP1088026A1/de
Priority to JP2000547157A priority patent/JP2002513833A/ja
Publication of DE19820399A1 publication Critical patent/DE19820399A1/de
Priority to US09/674,540 priority patent/US6716899B1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5313Phosphinic compounds, e.g. R2=P(:O)OR'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Abstract

Thermoplastische Formmassen, enthaltend DOLLAR A A) 5 bis 96 Gew.-% eines Polyesters, DOLLAR A B) 1 bis 30 Gew.-% eines Phosphinsäuresalzes der Formel I und/oder eines Diphosphinsalzes der Formel II und/oder deren Polymere, DOLLAR F1 wobei die Substituenten folgende Bedeutung haben: DOLLAR A R·1·, R·2· ein linearer oder verzweigter C¶1¶- bis C¶6¶-Alkylrest, Phenylrest, Waserstoff, DOLLAR A R·3· ein linearer oder verzweigter C¶1¶- bis C¶10¶-Alkylenrest, Arylen-, Alkylarylen- oder Arylalkylenrest, DOLLAR A M Erdalkali-, Alkalimetall, Zn, Al, Fe, Bor, DOLLAR A m eine ganze Zahl von 1 bis 3, DOLLAR A n eine ganze Zahl von 1 und 3, DOLLAR A x 1 oder 2, DOLLAR A C) 1 bis 30 Gew.-% mindestens eines organischen phosphorhaltigen Flammschutzmittels, DOLLAR A D) 0 bis 5 Gew.-% mindestens eines Esters oder Amids gesättigter oder ungesättigter aliphatischer Carbonsäuren mit 10 bis 40 C-Atomen mit aliphatischen gesättigten Alkoholen oder Aminen mit 2 bis 40 C-Atomen, DOLLAR A E) 0 bis 60 Gew.-% weiterer Zusatzstoffe, DOLLAR A wobei die Summe der Gewichtsprozente der Komponenten A) bis E) 100% ergibt.

Description

Die Erfindung betrifft thermoplastische Formmassen, enthaltend
  • A) 5 bis 96 Gew.-% eines Polyesters
  • B) 1 bis 30 Gew.-% eines Phosphinsäuresalzes der Formel I und/oder eines Diphosphinsäuresalzes der Formel II und/oder deren Polymere
    wobei die Substituenten folgende Bedeutung haben:
    R1, R2 ein linearer oder verzweigter C1- bis C6-Alkylrest, Phe­ nylrest, Wasserstoff,
    R3 ein linearer oder verzweigter C1- bis C10-Alkylenrest, Arylen-, Alkylarylen- oder Arylalkylenrest,
    n Erdalkali-, Alkalimetall, Zn, Al, Fe, Bor,
    m eine ganze Zahl von 1 bis 3,
    n eine ganze Zahl von 1 und 3,
    x 1 oder 2;
  • C) 1 bis 30 Gew.-% mindestens eines organischen phosphorhal­ tigen Flammschutzmittels,
  • D) 0 bis 5 Gew.-% mindestens eines Esters oder Amids gesät­ tigter oder ungesättigter aliphatischer Carbonsäuren mit 10 bis 40 C-Atomen mit aliphatischen gesättigten Alkoholen oder Aminen mit 2 bis 40 C-Atomen,
  • E) 0 bis 60 Gew.-% weiterer Zusatzstoffe,
wobei die Summe der Gewichtsprozente der Komponenten A) bis E) 100% ergibt.
Weiterhin betrifft die Erfindung die Verwendung der erfindungs­ gemäßen Formmassen zur Herstellung von Fasern, Folien und Form­ körpern sowie die hierbei erhältlichen Formkörper jeglicher Art.
Es besteht ein zunehmendes Marktinteresse für halogenfrei flamm­ geschützte Polyester. Wesentliche Anforderungen an das Flamm­ schutzmittel sind: helle Eigenfarbe, ausreichende Temperatur­ stabilität für die Einarbeitung in Thermoplaste, sowie dessen Wirksamkeit in verstärktem und unverstärktem Polymer (sog. Docht­ effekt bei Glasfasern).
Dabei sollte der Brandtest für unverstärkte Polyester gemäß UL 94 mit V-O bestanden werden. Für verstärkte Polyester sollte zumin­ dest die Klassifizierung V2 und/oder der Glühdrahttest bestanden werden.
Neben den halogenhaltigen Systemen kommen in Thermoplasten im Prinzip vier halogenfreie FR-Systeme zum Einsatz:
  • - Anorganische Flammschutzmittel, die um Wirksamkeit zu zeigen, in hohen Mengen eingesetzt werden müssen.
  • - Stickstoffhaltige FR-Systeme, wie Melamincyanurat, das eine eingeschränkte Wirksamkeit in Thermoplasten z. B. Polyamid zeigt. In verstärktem Polyamid ist es nur in Verbindung mit verkürzten Glasfasern wirksam. In Polyestern ist Melamin­ cyanurat allein nicht wirksam.
  • - Phosphorhaltige FR-Systeme, die in Polyestern allgemein nicht besonders wirksam sind.
  • - Phosphor/Stickstoffhaltige FR-Systeme, wie z. B. Ammonium­ polyphosphate oder Melaminphosphate, die für Thermoplaste, die bei Temperaturen über 200°C verarbeitet werden, keine ausreichende Thermostabilität besitzen.
Aus der JP-A 03/281 652 sind Polyalkylenterephthalate bekannt, welche Melamincyanurat und Glasfasern enthalten sowie ein phos­ phorhaltiges Flammschutzmittel. Diese Formmassen enthalten Deri­ vate der Phosphorsäure wie Phosphorsäureester (Wertigkeitsstufe +5), welche bei thermischer Belastung zum "Ausblühen" neigen.
Diese Nachteile zeigen sich auch für die Kombination von Melamin­ cyanurat (MC) mit Resorcinol-bis-(diphenylphosphat), welche aus der JP-A 05/070 671 bekannt ist. Weiterhin zeigen diese Formmas­ sen bei der Verarbeitung hohe Phenolwerte und nicht ausreichende mechanische Eigenschaften.
Aus der JP-A 09/157 503 sind Polyesterformmassen mit MC, Phosp­ horverbindungen und Schmiermitteln bekannt, welche weniger als 10% Verstärkungsmittel enthalten. Flammschutz- und mechanische Eigenschaften derartiger Formmassen sind verbesserungsbedürftig ebenso wie Migration und Phenolbildung bei der Verarbeitung.
Aus der EP-A 699 708 und BE-A 875 530 sind Phosphinsäuresalze als Flammschutzmittel für Polyester bekannt.
In der WO 97/05705 werden Kombinationen aus MC mit phosphorhalti­ gen Verbindungen und Schmiermitteln für Polyester offenbart.
Der vorliegenden Erfindung lag daher die Aufgabe zugrunde, flamm­ feste Polyesterformmassen zur Verfügung zu stellen, welche gemäß Ul 94 eine ausreichende Klassifizierung erzielen und den Glüh­ drahttest bestehen. Dabei sollte der Formbelag minimiert werden und die Fließfähigkeit bei der Verarbeitung verbessert werden.
Demgemäß wurden die eingangs definierten thermoplastischen Form­ massen gefunden. Bevorzugte Ausführungsformen sind den Unter­ ansprüchen zu entnehmen.
Als Komponente (A) enthalten die erfindungsgemäßen Formmassen 5 bis 96, bevorzugt 10 bis 70 und insbesondere 10 bis 60 Gew.-% eines thermoplastischen Polyesters.
Allgemein werden Polyester auf Basis von aromatischen Dicarbon­ säuren und einer aliphatischen oder aromatischen Dihydroxy­ verbindung verwendet.
Eine erste Gruppe bevorzugter Polyester sind Polyalkylentereph­ thalate mit 2 bis 10 C-Atomen im Alkoholteil.
Derartige Polyalkylenterephthalate sind an sich bekannt und in der Literatur beschrieben. Sie enthalten einen aromatischen Ring in der Hauptkette, der von der aromatischen Dicarbonsäure stammt. Der aromatische Ring kann auch substituiert sein, z. B. durch Ha­ logen wie Chlor und Brom oder durch C1-C4-Alkylgruppen wie Methyl-, Ethyl-, i- bzw. n-Propyl- und n-, i- bzw. t-Butylgrup­ pen.
Diese Polyalkylenterephthalate können durch Umsetzung von aroma­ tischen Dicarbonsäuren, deren Estern oder anderen esterbildenden Derivaten mit aliphatischen Dihydroxyverbindungen in an sich be­ kannter Weise hergestellt werden.
Als bevorzugte Dicarbonsäuren sind 2,6-Naphthalindicarbonsäure, Terephthalsäure und Isophthalsäure oder deren Mischungen zu nen­ nen. Bis zu 30 mol-%, vorzugsweise nicht mehr als 10 mol-% der aromatischen Dicarbonsäuren können durch aliphatische oder cyclo­ aliphatische Dicarbonsäuren wie Adipinsäure, Azelainsäure, Sebacinsäure, Dodecandisäuren und Cyclohexandicarbonsäuren er­ setzt werden.
Von den aliphatischen Dihydroxyverbindungen werden Diole mit 2 bis 6 Kohlenstoffatomen, insbesondere 1,2-Ethandiol, 1,3-Propan­ diol, 1,4-Butandiol, 1,6-Hexandiol, 1,4-Hexandiol, 1,4-Cyclo­ hexandiol, 1,4-Cyclohexandimethylanol und Neopentylglykol oder deren Mischungen bevorzugt.
Als besonders bevorzugte Polyester (A) sind Polyalkylentereph­ thalate, die sich von Alkandiolen mit 2 bis 6 C-Atomen ableiten, zu nennen. Von diesen werden insbesondere Polyethylenterephtha­ lat, Polypropylenterephthalat und Polybutylenterephthalat oder deren Mischungen bevorzugt. Weiterhin bevorzugt sind PET und/oder PBT, welche bis zu 1 Gew.-%, vorzugsweise bis zu 0,75 Gew.-% 1,6-Hexandiol und/oder 5-Methyl-1,5-Pentandiol als weitere Mono­ mereinheiten enthalten.
Die Viskositätszahl der Polyester (A) liegt im allgemeinen im Be­ reich von 50 bis 220, vorzugsweise von 80 bis 160 (gemessen in einer 0,5 gew.-%igen Lösung in einem Phenol/o-Dichlorbenzolge- misch (Gew.-Verh. 1 : 1 bei 25°C) gemäß ISO 1628.
Insbesondere bevorzugt sind Polyester, deren Carboxylendgruppen­ gehalt bis zu 100 mval/kg, bevorzugt bis zu 50 mval/kg und ins­ besondere bis zu 40 mval/kg Polyester beträgt. Derartige Poly­ ester können beispielsweise nach dem Verfahren der DE-A 44 01 055 hergestellt werden. Der Carboxylendgruppengehalt wird üblicher­ weise durch Titrationsverfahren (z. B. Potentiometrie) bestimmt.
Insbesondere bevorzugte Formmassen enthalten als Komponente A) eine Mischung aus Polyethylenterephthalat (PET) und Polybutylen­ terephthalat (PBT). Der Anteil des Polyethylenterephthalates be­ trägt vorzugsweise in der Mischung bis zu 50, insbesondere 10 bis 30 Gew.-%, bezogen auf 100 Gew.-% A).
Derartige erfindungsgemäße Formmassen zeigen sehr gute Flamm­ schutzeigenschaften und bessere mechanische Eigenschaften.
Weiterhin ist es vorteilhaft PET Rezyklate (auch scrap-PET ge­ nannt) in Mischung mit Polyalkylenterephthalaten wie PBT einzu­ setzen.
Unter Rezyklaten versteht man im allgemeinen:
  • 1. sog. Post Industrial Rezyklat: hierbei handelt es sich um Produktionsabfälle bei der Polykondensation oder bei der Ver­ arbeitung z. B. Angüsse bei der Spritzgußverarbeitung, Anfahr­ ware bei der Spritzgußverarbeitung oder Extrusion oder Ran­ dabschnitte von extrudierten Platten oder Folien.
  • 2. Post Consumer Rezyklat: hierbei handelt es sich um Kunst­ stoffartikel, die nach der Nutzung durch den Endverbraucher gesammelt und aufbereitet werden. Der mengenmäßig bei weitem dominierende Artikel sind blasgeformte PET Flaschen für Mine­ ralwasser, Softdrinks und Säfte.
Beide Arten von Rezyklat können entweder als Mahlgut oder in Form von Granulat vorliegen. Im letzteren Fall werden die Rohrezyklate nach der Auftrennung und Reinigung in einem Extruder aufgeschmol­ zen und granuliert. Hierdurch wird meist das Handling, die Rie­ selfähigkeit und die Dosierbarkeit für weitere Verarbeitungs­ schritte erleichtert.
Sowohl granulierte als auch als Mahlgut vorliegende Rezyklate können zum Einsatz kommen, wobei die maximale Kantenlänge 6 mm, vorzugsweise kleiner 5 mm betragen sollte.
Aufgrund der hydrolytischen Spaltung von Polyestern bei der Ver­ arbeitung (durch Feuchtigkeitsspuren) empfiehlt es sich, das Re­ zyklat vorzutrocknen. Der Restfeuchtegehalt nach der Trocknung beträgt vorzugsweise 0,01 bis 0,7, insbesondere 0,2 bis 0,6%.
Als weitere Gruppe sind voll aromatische Polyester zu nennen, die sich von aromatischen Dicarbonsäuren und aromatischen Dihydroxy­ verbindungen ableiten.
Als aromatische Dicarbonsäuren eignen sich die bereits bei den Polyalkylenterephthalaten beschriebenen Verbindungen. Bevorzugt werden Mischungen aus 5 bis 100 mol-% Isophthalsäure und 0 bis 95 mol-% Terephthalsäure, insbesondere Mischungen von etwa 80% Terephthalsäure mit 20% Isophthalsäure bis etwa äquivalente Mischungen dieser beiden Säuren verwendet.
Die aromatischen Dihydroxyverbindungen haben vorzugsweise die allgemeine Formel
in der Z eine Alkylen- oder Cycloalkylengruppe mit bis zu 8 C- Atomen, eine Arylengruppe mit bis zu 12 C-Atomen, eine Carbonyl­ gruppe, eine Sulfonylgruppe, ein Sauerstoff- oder Schwefelatom oder eine chemische Bindung darstellt und in der m den Wert 0 bis 2 hat. Die Verbindungen I können an den Phenylengruppen auch C1-C6-Alkyl- oder Alkoxygruppen und Fluor, Chlor oder Brom als Substituenten tragen.
Als Stammkörper dieser Verbindungen seien beispielsweise
Dihydroxydiphenyl,
Di-(hydroxyphenyl)alkan,
Di-(hydroxyphenyl)cycloalkan,
Di-(hydroxyphenyl)sulfid,
Di-(hydroxyphenyl)ether,
Di-(hydroxyphenyl)keton,
di-(hydroxyphenyl)sulfoxid,
α,α'-Di-(hydroxyphenyl)-dialkylbenzol,
Di-(hydroxyphenyl)sulfon, Di-(hydroxybenzoyl)benzol,
Resorcin und
Hydrochinon sowie deren kernalkylierte oder kernhalogenierte Derivate genannt.
Von diesen werden
4,4'-Dihydroxydiphenyl,
2,4-Di-(4'-hydroxyphenyl)-2-methylbutan,
α,α'-Di-(4-hydroxyphenyl)-p-diisopropylbenzol,
2,2-Di(3'-methyl-4'-hydroxyphenyl)propan und
2,2-Di-(3'-chlor-4'-hydroxyphenyl)propan,
sowie insbesondere
2,2-Di-(4'-hydroxyphenyl)propan,
2,2-Di(3',5-dichlordihydroxyphenyl)propan,
1,1-Di-(4'-hydroxyphenyl)cyclohexan,
3,4'-Dihydroxybenzophenon,
4,4'-Dihydroxydiphenylsulfon und
2,2-Di(3',5'-dimethyl-4'-hydroxyphenyl)propan
oder deren Mischungen bevorzugt.
Selbstverständlich kann man auch Mischungen von Polyalkylen­ terephthalaten und vollaromatischen Polyestern einsetzen. Diese enthalten im allgemeinen 20 bis 98 Gew.-% des Polyalkylentereph­ thalates und 2 bis 80 Gew.-% des vollaromatischen Polyesters.
Unter Polyestern im Sinne der vorliegenden Erfindung sollen auch Polycarbonate verstanden werden, die durch Polymerisation von aromatischen Dihydroxyverbindungen, insbesondere Bis-(4-hydroxy­ phenyl)2,2-propan (Bisphenol A) oder dessen Derivaten, z. B. mit Phosgen erhältlich sind. Entsprechende Produkte sind an sich be­ kannt und in der Literatur beschrieben sowie größtenteils auch im Handel erhältlich. Die Menge der Polycarbonate beträgt bis zu 90 Gew.-%, vorzugsweise bis zu 50 Gew.-%, bezogen auf 100 Gew.-% der Komponente (A).
Selbstverständlich können auch Polyesterblockcopolymere wie Copolyetherester verwendet werden. Derartige Produkte sind an sich bekannt und in der Literatur, z. B. in der US-A 3 651 014, beschrieben. Auch im Handel sind entsprechende Produkte erhält­ lich, z. B. Hytrel® (DuPont).
Als Komponente B) enthalten die erfindungsgemäßen Formmassen 0,1 bis 30, vorzugsweise 1 bis 25 und insbesondere 10 bis 20 Gew.-% eines Phosphinsäuresalzes der Formel (I) und/oder ein Diphosphin­ säuresalzes der Formel (II) und/oder deren Polymere
wobei die Substituenten folgende Bedeutung haben:
R1, R2 Wasserstoff, C1- bis C6-Alkyl, vorzugsweise C1- bis C4-Al­ kyl, linear oder verzweigt, z. B. Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, tert.-Butyl, n-Pentyl; Phenyl; wobei bevorzugt mindestens ein Rest R1 oder R2, insbesondere R1 und R2 Wasserstoff ist;
R3 C1- bis C10-Alkylen, linear oder verzweigt, z. B. Methy­ len, Ethylen, n-Propylen, iso-Propylen, n-Butylen, tert.- Butylen, n-Pentylen, n-Octylen, n-Dodecylen;
Arylen, z. B. Phenylen, Naphthylen;
Alkylarylen, z. B. Methyl-phenylen, Ethyl-phenylen, tert.- Butyl-phenylen, Methyl-naphthylen, Ethyl-naphthylen, tert.-Butyl-naphthylen;
Arylalkylen, z. B. Phenyl-methylen, Phenyl-ethylen, Phe­ nyl-propylen, Phenyl-butylen;
M ein Erdalkali-, Alkalimetall, Al, Zn, Fe, Bor;
m eine ganze Zahl von 1 bis 3;
n eine ganze Zahl von 1 und 3 und
x 1 oder 2.
Besonders bevorzugt sind Verbindungen der Formel II, in denen R1 und R2 Wasserstoff ist, wobei M vorzugsweise Zn oder Al ist und Calciumphosphinat ganz besonders bevorzugt ist.
Derartige Produkte sind im Handel z. B. als Calciumphosphinat er­ hältlich.
Geeignete Salze der Formel I oder II, in denen nur ein Rest R1 oder R2 Wasserstoff bedeutet, sind z. B. Salze der Phenylphosphin­ säure, wobei deren Na- und/oder Ca-Salze bevorzugt sind.
Geeignete organische phosphorhaltige Flammschutzmittel C) sind in den erfindungsgemäßen Formmassen enthalten in Mengen von 1 bis 30, vorzugsweise 1 bis 25 und insbesondere 5 bis 20 Gew.-% bezogen auf das Gesamtgewicht der Komponenten A) bis E).
Bei der Komponente C) handelt es sich um organische Phosphor ent­ haltende Verbindungen, in denen der Phosphor die Wertigkeitsstufe -3 bis +5 besitzt. Unter der Wertigkeitsstufe soll der Begriff "Oxidationsstufe" verstanden werden, wie er im Lehrbuch der Anor­ ganischen Chemie von A. F. Hollemann und E. Wiberg, Walter des Gruyter und Co. (1964, 57. bis 70. Auflage), Seite 166 bis 177, wiedergegeben ist. Phosphorverbindungen der Wertigkeitsstufen -3 bis +5 leiten sich von Phosphin (-3), Diphosphin (-2), Phosphino­ xid (-1), elementarem Phosphor (+0), hypophosphoriger Säure (+1), phosphoriger Säure (+3), Hypodiphosphorsäure (+4) und Phosphor­ säure (+5) ab.
Aus der großen Zahl von phosphorhaltigen Verbindungen seien nur einige Beispiele erwähnt.
Beispiele für Phosphorverbindungen der Phosphin-Klasse, die die Wertigkeitsstufe -3 aufweisen, sind aromatische Phosphine, wie Triphenylphosphin, Tritolylphosphin, Trinonylphosphin, Trinaph­ thylphosphin u. a. Besonders geeignet ist Triphenylphosphin.
Beispiele für Phosphorverbindungen der Diphosphinklasse, die die Wertigkeitsstufe -2 aufweisen, sind Tetraphenyldiphosphin, Tetra­ naphthyldiphosphin u. a. Besonders geeignet ist Tetranaphthyldi­ phosphin.
Phosphorverbindungen der Wertigkeitsstufe -1 leiten sich vom Phosphinoxid ab.
Geeignet sind Phosphinoxide der allgemeinen Formel III
wobei R1, R2 und R3 gleiche oder verschiedene Alkyl-, Aryl-, Alkylaryl- oder Cycloalkylgruppen mit 8 bis 40 C-Atomen bedeuten.
Beispiele für Phosphinoxide sind Triphenylphosphinoxid, Tritolyl­ phosphinoxid, Trisnonylphenylphosphinoxid, Tricyclohexylphosphin­ oxid, Tris-(n-butyl)-phosphinoxid, Tris-(n-hexyl)-phosphinoxid, Tris-(n-octyl)-phosphinoxid, Tris-(cyanoethyl)-phosphinoxid, Benzylbis-(cyclohexyl)-phosphinoxid, Benzylbisphenylphosphinoxid, Phenylbis-(n-hexyl)-phosphinoxid. Bevorzugt sind weiterhin oxi­ dierte Umsetzungsprodukte aus Phosphin mit Aldehyden, insbeson­ dere aus t-Butylphosphin mit Glyoxal. Besonders bevorzugt einge­ setzt werden Triphenylphosphinoxid, Tricyclohexlyphosphinoxid und Tris-(n-octyl)-phosphinoxid.
Ebenso geeignet ist Triphenylphosphinsulfid und dessen wie oben beschriebene Derivate der Phosphinoxide und Triphenylphosphat.
Phosphor der Wertigkeitsstufe ±0 ist der elementare Phosphor. In Frage kommen roter und schwarzer Phosphor. Bevorzugt ist roter Phosphor.
Phosphorverbindungen der "Oxidationsstufe" +1 sind z. B. Hypo­ phosphite. Beispiele sind organische Hypophosphite, wie Cellulo­ sehypophosphitester, Ester der hypophosphorigen Säuren mit Dio­ len, wie z. B. von 1,10-Dodecyldiol. Auch substituierte Phosphin­ säuren und deren Anhydride, wie z. B. Diphenylphosphinsäure, kön­ nen eingesetzt werden. Des weiteren kommen in Frage Di-p-Tolyl­ phosphinsäure, Di-Kresylphosphinsäureanhydrid. Es kommen aber auch Verbindungen wie Hydrochinon-, Ethylenglykol-, Propylengly­ kol-bis(diphenylphosphinsäure)ester u. a. in Frage. Ferner sind geeignet Aryl(Alkyl)phosphinsäureamide, wie z. B. Diphenyl­ phosphinsäure-dimethylamid und Sulfonamidoaryl(alkyl)phosphinsäu­ rederivate, wie z. B. p-Tolylsulfonamidodiphenylphosphinsäure. Bevorzugt eingesetzt werden Hydrochinon- und Ethylenglykol­ bis-(diphenylphosphinsäure)ester und das Bisdiphenylphosphinat des Hydrochinons.
Phosphorverbindungen der Oxidationsstufe +3 leiten sich von der phosphorigen Säure ab. Geeignet sind cyclische Phosphonate, die sich vom Pentaerythrit, Neopentylglykol oder Brenzkatechin ableiten wie z. B.
wobei R einen C1- bis C4-Alkylrest, bevorzugt Methylrest, X = 0 oder 1 bedeutet (Amgard® P45 der Firma Albright & Wilson).
Ferner ist Phosphor der Wertigkeitsstufe +3 in Triaryl(al­ kyl)phosphiten, wie z. B. Triphenylphosphit, Tris(4-decylphe­ nyl)phosphit, Tris(2,4-di-tert.-butylphenyl)phosphit oder Phenyl­ didecylphosphit u. a. enthalten. Es kommen aber auch Diphosphite, wie z. B. Propylenglykol-1,2-bis(diphosphit) oder cyclische Phosp­ hite, die sich vom Pentaerythrit, Neopentylglykol oder Brenzkate­ chin ableiten, in Frage.
Besonders bevorzugt werden Methylneopentylglycolphosphonat und -phosphit sowie Dimethylpentaerythritdiphosphonat und -phosphit.
Als Phosphorverbindungen der Oxidationsstufe +4 kommen vor allem Hypodiphosphate, wie z. B. Tetraphenylhypodiphosphat oder Bisneo­ pentylhypodiphosphat in Betracht.
Als Phosphorverbindungen der Oxidationsstufe +5 kommen vor allem alkyl- und arylsubstituierte Phosphate in Betracht. Beispiele sind Phenylbisdodecylphosphat, Phenylethylhydrogenphosphat, Phe­ nyl-bis(3,5,5-trimethylhexyl)phosphat, Ethyldiphenylphosphat, 2-Ethylhexyldi(tolyl)phosphat, Diphenylhydrogenphosphat, Bis(2-ethylhexyl)-p-tolylphosphat, Tritolylphosphat, Bis(2-ethyl­ hexyl)-phenylphosphat, Di(nonyl)phenylphosphat, Phenylmethylhy­ drogenphosphat, Di(dodecyl)-p-tolylphosphat, p-Tolyl­ bis(2,5,5-trimethylhexyl)phosphat oder 2-Ethylhexyldiphenylphosp­ hat. Besonders geeignet sind Phosphorverbindungen, bei denen je­ der Rest ein Aryloxi-Rest ist. Ganz besonders geeignet ist Tri­ phenylphosphat und Resorcinol-bis-(diphenylphosphat) (RDP) und dessen kernsubstituierten Derivate der allgemeinen Formel IV
in der die Substituenten folgende Bedeutung haben:
R4-R7 ein aromatischer Rest mit 6 bis 20 C-Atomen, bevorzugt ein Phenylrest, welcher mit Alkylgruppen mit 1 bis 4 C- Atomen bevorzugt Methyl, substituiert sein kann,
R8 ein zweiwertiger Phenolrest, bevorzugt
und n ein Durchschnittswert zwischen 0,1 und 100, bevorzugt 0,5 bis 50, insbesondere 0,8 bis 10 und ganz besonders 1 bis 5.
Die im Handel erhältlichen RDP-Produkte unter den Warenzeichen Fyroflex®-RDP (Akzo Nobel) sowie CR 733-S (Daihachi) sind bedingt durch das Herstellverfahren Gemische aus ca. 85% RDP mit ca. 2,5% Triphenylphosphat sowie ca. 12,5% oligomeren Anteilen, in denen der Oligomerisierungsgrad meist kleiner 10 beträgt.
Des weiteren können auch cyclische Phosphate eingesetzt werden. Besonders geeignet ist hierbei Diphenylpentaerythritdiphosphat und Phenylneopentylphosphat.
Außer den oben angeführten niedermolekularen Phosphorverbindungen kommen noch oligomere und polymere Phosphorverbindungen in Frage.
Solche polymeren, halogenfreien organischen Phosphorverbindungen mit Phosphor in der Polymerkette entstehen beispielsweise bei der Herstellung von pentacyclischen, ungesättigten Phosphindihaloge­ niden, wie es beispielsweise in der DE-A 20 36 173 beschrieben ist. Das Molekulargewicht gemessen durch Dampfdruckosmometrie in Dimethylformamid, der Polyphospholinoxide soll im Bereich von 500 bis 7.000, vorzugsweise im Bereich von 700 bis 2.000 liegen.
Der Phosphor besitzt hierbei die Oxidationsstufe -1.
Ferner können anorganische Koordinationspolymere von Aryl(Al­ kyl)-phosphinsäuren wie z. B. Poly-β-natrium(I)-methylphenylphosp­ hinat eingesetzt werden. Ihre Herstellung wird in DE-A 31 40 520 angegeben. Der Phosphor besitzt die Oxidationszahl +1.
Weiterhin können solche halogenfreien polymeren Phosphorverbin­ dungen durch die Reaktion eines Phosphonsäurechlorids, wie z. B. Phenyl-, Methyl-, Propyl-, Styryl- und Vinylphosphonsäuredichlo­ rid mit bifunktionellen Phenolen, wie z. B. Hydrochinon, Resorcin, 2,3,5-Trimethylhydrochinon, Bisphenol-A, Tetramethylbisphenol-A entstehen.
Weitere halogenfreie polymere Phosphorverbindungen, die in den erfindungsgemäßen Formmassen enthalten sein können, werden durch Reaktion von Phosphoroxidtrichlorid oder Phosphorsäureesterdich­ loriden mit einem Gemisch aus mono-, bi- und trifunktionellen Phenolen und anderen Hydroxylgruppen tragenden Verbindungen her­ gestellt (vgl. Houben-Weyl-Müller, Thieme-Verlag Stuttgart, Orga­ nische Phosphorverbindungen Teil II (1963)). Ferner können poly­ mere Phosphonate durch Umesterungsreaktionen von Phosphonsäuree­ stern mit bifunktionellen Phenolen (vgl. DE-A 29 25 208) oder durch Reaktionen von Phosphonsäureestern mit Diaminen oder Diami­ den oder Hydraziden (vgl. US-PS 4 403 075) hergestellt werden. In Frage kommt aber auch das anorganische Poly(ammoniumphosphat).
Es können auch oligomere Pentaerythritphosphite, -phosphate und -phosphonate gemäß EP-B 8 486, z. B. Mobil Antiblaze® 19 (einge­ tragenes Warenzeichen der Firma Mobil Oil) verwendet werden.
Als Komponente D) können die erfindungsgemäßen Formmassen 0 bis 5, vorzugsweise 0,05 bis 3 und insbesondere 0,1 bis 2 Gew.-% min­ destens eines Esters oder Amids gesättigter oder ungesättigter aliphatischer Carbonsäuren mit 10 bis 40, bevorzugt 16 bis 22 C- Atomen mit aliphatischen gesättigten Alkoholen oder Aminen mit 2 bis 40, vorzugsweise 2 bis 6 C-Atomen enthalten.
Die Carbonsäuren können 1- oder 2-wertig sein. Als Beispiele sei­ en Pelargonsäure, Palmitinsäure, Laurinsäure, Margarinsäure, Do­ decandisäure, Behensäure und besonders bevorzugt Stearinsäure, Caprinsäure sowie Montansäure (Mischung von Fettsäuren mit 30 bis 40 C-Atomen) genannt.
Die aliphatischen Alkohole können 1- bis 4-wertig sein. Beispiele für Alkohole sind n-Butanol, n-Octanol, Stearylalkohol, Ethylen­ glykol, Propylenglykol, Neopentylglykol, Pentaerythrit, wobei Glycerin und Pentaerythrit bevorzugt sind.
Die aliphatischen Amine können 1- bis 3-wertig sein. Beispiele hierfür sind Stearylamin, Ethylendiamin, Propylendiamin, Hexame­ thylendiamin, Di(6-Aminohexyl)amin, wobei Ethylendiamin und Hexa­ methylendiamin besonders bevorzugt sind. Bevorzugte Ester oder Amide sind entsprechend Glycerindistearat, Glycerintristearat, Ethylendiamindistearat, Glycerinmonopalmitrat, Glycerintrilaurat, Glycerinmonobehenat und Pentaerythrittetrastearat.
Es können auch Mischungen verschiedener Ester oder Amide oder Ester mit Amiden in Kombination eingesetzt werden, wobei das Mi­ schungsverhältnis beliebig ist.
Als Komponente E) können die erfindungsgemäßen Formmassen 0 bis 60, insbesondere bis zu 50 Gew.-% weiterer Zusatzstoffe enthal­ ten.
Übliche Zusatzstoffe E) sind beispielsweise in Mengen bis zu 40, vorzugsweise bis zu 30 Gew.-% kautschukelastische Polymerisate (oft auch als Schlagzähmodifier, Elastomere oder Kautschuke be­ zeichnet).
Ganz allgemein handelt es sich dabei um Copolymerisate, die bevor­ zugt aus mindestens zwei der folgenden Monomeren aufgebaut sind:
Ethylen, Propylen, Butadien, Isobuten, Isopren, Chloropren, Vinylacetat, Styrol, Acrylnitril und Acryl- bzw. Methacrylsäure­ ester mit 1 bis 18 C-Atomen in der Alkoholkomponente.
Derartige Polymere werden z. B. in Houben-Weyl, Methoden der orga­ nischen Chemie, Bd. 14/1 (Georg-Thieme-Verlag, Stuttgart, 1961), Seiten 392 bis 406 und in der Monographie von C. B. Bucknall, "Toughened Plastics" (Applied Science Publishers, London, 1977) beschrieben.
Im folgenden werden einige bevorzugte Arten solcher Elastomerer vorgestellt.
Bevorzugte Arten von solchen Elastomeren sind die sog. Ethylen- Propylen (EPM) bzw. Ethylen-Propylen-Dien-(EPDM)-Kautschuke.
EPM-Kautschuke haben im allgemeinen praktisch keine Doppelbindun­ gen mehr, während EPDM-Kautschuke 1 bis 20 Doppelbindungen/100 C- Atome aufweisen können.
Als Dien-Monomere für EPDM-Kautschuke seien beispielsweise konju­ gierte Diene wie Isopren und Butadien, nicht-konjugierte Diene mit 5 bis 25 C-Atomen wie Penta-1,4-dien, Hexa-1,4-dien, He­ xa-1,5-dien, 2,5-Dimethylhexa-1,5-dien und Octa-1,4-dien, cycli­ sche Diene wie Cyclopentadien, Cyclohexadiene, Cyclooctadiene und Dicyclopentadien sowie Alkenylnorbornene wie 5-Ethyliden-2-nor­ bornen, 5-Butyliden-2-norbornen, 2-Methallyl-5-norbornen, 2-Iso­ propenyl-5-norbornen und Tricyclodiene wie 3-Methyl-tri­ cyclo(5.2.1.0.2.6)-3,8-decadien oder deren Mischungen genannt. Bevorzugt werden Hexa-1,5-dien, 5-Ethylidennorbornen und Dicyclo­ pentadien. Der Diengehalt der EPDM-Kautschuke beträgt vorzugswei­ se 0,5 bis 50, insbesondere 1 bis 8 Gew.-%, bezogen auf das Ge­ samtgewicht des Kautschuks.
EPM- bzw. EPDM-Kautschuke können vorzugsweise auch mit reaktiven Carbonsäuren oder deren Derivaten gepfropft sein. Hier seien z. B. Acrylsäure, Methacrylsäure und deren Derivate, z. B. Glyci­ dyl(meth)acrylat, sowie Maleinsäureanhydrid genannt.
Eine weitere Gruppe bevorzugter Kautschuke sind Copolymere des Ethylens mit Acrylsäure und/oder Methacrylsäure und/oder den Estern dieser Säuren. Zusätzlich können die Kautschuke noch Di­ carbonsäuren wie Maleinsäure und Fumarsäure oder Derivate dieser Säuren, z. B. Ester und Anhydride, und/oder Epoxy-Gruppen enthal­ tende Monomere enthalten. Diese Dicarbonsäurederivate bzw. Epoxy­ gruppen enthaltende Monomere werden vorzugsweise durch Zugabe von Dicarbonsäure- bzw. Epoxygruppen enthaltenden Monomeren der all­ gemeinen Formeln I oder II oder III oder IV zum Monomerengemisch in den Kautschuk eingebaut
R1C(COOR2) = C(COOR3)R4 (I)
wobei R1 bis R9 Wasserstoff oder Alkylgruppen mit 1 bis 6 C-Atomen darstellen und m eine ganze Zahl von 0 bis 20, g eine ganze Zahl von 0 bis 10 und p eine ganze Zahl von 0 bis 5 ist.
Vorzugsweise bedeuten die Reste R1 bis R9 Wasserstoff, wobei m für 0 oder 1 und g für 1 steht. Die entsprechenden Verbindungen sind Maleinsäure, Fumarsäure, Maleinsäureanhydrid, Allylglycidylether und Vinylglycidylether.
Bevorzugte Verbindungen der Formeln I, II und IV sind Maleinsäu­ re, Maleinsäureanhydrid und Epoxygruppen enthaltende Ester der Acrylsäure und/oder Methacrylsäure, wie Glycidylacrylat, Glyci­ dylmethacrylat und die Ester mit tertiären Alkoholen, wie t-Bu­ tylacrylat. Letztere weisen zwar keine freien Carboxylgruppen auf, kommen in ihrem Verhalten aber den freien Säuren nahe und werden deshalb als Monomere mit latenten Carboxylgruppen bezeich­ net.
Vorteilhaft bestehen die Copolymeren aus 50 bis 98 Gew.-% Ethy­ len, 0,1 bis 20 Gew.-% Epoxygruppen enthaltenden Monomeren und/­ oder Methacrylsäure und/oder Säureanhydridgruppen enthaltenden Monomeren sowie der restlichen Menge an (Meth)acrylsäureestern.
Besonders bevorzugt sind Copolymerisate aus
50 bis 98, insbesondere 55 bis 95 Gew.-% Ethylen,
0,1 bis 40, insbesondere 0,3 bis 20 Gew.-% Glycidylacrylat und/o­ der Glycidylmethacrylat, (Meth)acrylsäure und/oder Maleinsäureanhydrid, und
1 bis 45, insbesondere 10 bis 40 Gew.-% n-Butylacrylat und/oder 2-Ethylhexylacrylat.
Weitere bevorzugte Ester der Acryl- und/oder Methacrylsäure sind die Methyl-, Ethyl-, Propyl- und i- bzw. t-Butylester.
Daneben können auch Vinylester und Vinylether als Comonomere ein­ gesetzt werden.
Die vorstehend beschriebenen Ethylencopolymeren können nach an sich bekannten Verfahren hergestellt werden, vorzugsweise durch statistische Copolymerisation unter hohem Druck und erhöhter Tem­ peratur. Entsprechende Verfahren sind allgemein bekannt.
Bevorzugte Elastomere sind auch Emulsionspolymerisate, deren Her­ stellung z. B. bei Blackley in der Monographie "Emulsion Polymeri­ zation" beschrieben wird. Die verwendbaren Emulgatoren und Kata­ lystoren sind an sich bekannt.
Grundsätzlich können homogen aufgebaute Elastomere oder aber sol­ che mit einem Schalenaufbau eingesetzt werden. Der schalenartige Aufbau wird durch die Zugabereihenfolge der einzelnen Monomeren bestimmt; auch die Morphologie der Polymeren wird von dieser Zug­ abereihenfolge beeinflußt.
Nur stellvertretend seien hier als Monomere für die Herstellung des Kautschukteils der Elastomeren Acrylate wie z. B. n-Butylacry­ lat und 2-Ethylhexylacrylat, entsprechende Methacrylate, Butadien und Isopren sowie deren Mischungen genannt. Diese Monomeren kön­ nen mit weiteren Monomeren wie z. B. Styrol, Acrylnitril, Vinyle­ thern und weiteren Acrylaten oder Methacrylaten wie Methylmetha­ crylat, Methylacrylat, Ethylacrylat und Propylacrylat copolymeri­ siert werden.
Die Weich- oder Kautschukphase (mit einer Glasübergangstemperatur von unter 0°C) der Elastomeren kann den Kern, die äußere Hülle oder eine mittlere Schale (bei Elastomeren mit mehr als zweischa­ ligem Aufbau) darstellen; bei mehrschaligen Elastomeren können auch mehrere Schalen aus einer Kautschukphase bestehen.
Sind neben der Kautschukphase noch eine oder mehrere Hartkompo­ nenten (mit Glasübergangstemperaturen von mehr als 20°C) am Aufbau des Elastomeren beteiligt, so werden diese im allgemeinen durch Polymerisation von Styrol, Acrylnitril, Methacrylnitril, α-Me­ thylstyrol, p-Methylstyrol, Acrylsäureestern und Methacrylsäuree­ stern wie Methylacrylat, Ethylacrylat und Methylmethacrylat als Hauptmonomeren hergestellt. Daneben können auch hier geringere Anteile an weiteren Comonomeren eingesetzt werden.
In einigen Fällen hat es sich als vorteilhaft herausgestellt, Emulsionspolymerisate einzusetzen, die an der Oberfläche reaktive Gruppen aufweisen. Derartige Gruppen sind z. B. Epoxy-, Carboxyl-, latente Carboxyl-, Amino- oder Amidgruppen sowie funktionelle Gruppen, die durch Mitverwendung von Monomeren der allgemeinen Formel
eingeführt werden können,
wobei die Substituenten folgende Bedeutung haben können:
R10 Wasserstoff oder eine C1- bis C4-Alkylgruppe,
R11 Wasserstoff, eine C1- bis C8-Alkylgruppe oder eine Arylgruppe, insbesondere Phenyl,
R12 Wasserstoff, eine C1- bis C10-Alkyl-, eine C6- bis C12-Aryl­ gruppe oder -OR13,
R13 eine C1- bis C8-Alkyl- oder C6- bis C12-Arylgruppe, die gege­ benenfalls mit O- oder N-haltigen Gruppen substituiert sein können,
X eine chemische Bindung, eine C1- bis C10-Alkylen- oder C6- C12-Arylengruppe oder
Y O-Z oder NH-Z und
Z eine C1- bis C10-Alkylen- oder C6- bis C12-Arylengruppe.
Auch die in der EP-A 208 187 beschriebenen Pfropfmonomeren sind zur Einführung reaktiver Gruppen an der Oberfläche geeignet.
Als weitere Beispiele seien noch Acrylamid, Methacrylamid und substituierte Ester der Acrylsäure oder Methacrylsäure wie (N-t- Butylamino)-ethylmethacrylat, (N,N-Dimethylamino)ethylacrylat, (N,N-Dimethylamino)-methylacrylat und (N,N-Diethylamino)ethyla­ crylat genannt.
Weiterhin können die Teilchen der Kautschukphase auch vernetzt sein. Als Vernetzer wirkende Monomere sind beispielsweise Bu­ ta-1,3-dien, Divinylbenzol, Diallylphthalat und Dihydrodicyclo­ pentadienylacrylat sowie die in der EP-A 50 265 beschriebenen Verbindungen.
Ferner können auch sogenannten pfropfvernetzende Monomere (graft­ linking monomers) verwendet werden, d. h. Monomere mit zwei oder mehr polymerisierbaren Doppelbindungen, die bei der Polymerisati­ on mit unterschiedlichen Geschwindigkeiten reagieren. Vorzugswei­ se werden solche Verbindungen verwendet, in denen mindestens eine reaktive Gruppe mit etwa gleicher Geschwindigkeit wie die übrigen Monomeren polymerisiert, während die andere reaktive Gruppe (oder reaktive Gruppen) z. B. deutlich langsamer polymerisiert (polymerisieren). Die unterschiedlichen Polymerisationsgeschwin­ digkeiten bringen einen bestimmten Anteil an ungesättigten Dop­ pelbindungen im Kautschuk mit sich. Wird anschließend auf einen solchen Kautschuk eine weitere Phase aufgepfropft, so reagieren die im Kautschuk vorhandenen Doppelbindungen zumindest teilweise mit den Pfropfmonomeren unter Ausbildung von chemischen Bindun­ gen, d. h. die aufgepfropfte Phase ist zumindest teilweise über chemische Bindungen mit der Pfropfgrundlage verknüpft.
Beispiele für solche pfropfvernetzende Monomere sind Allylgruppen enthaltende Monomere, insbesondere Allylester von ethylenisch un­ gesättigten Carbonsäuren wie Allylacrylat, Allylmethacrylat, Diallylmaleat, Diallylfumarat, Diallylitaconat oder die entspre­ chenden Monoallylverbindungen dieser Dicarbonsäuren. Daneben gibt es eine Vielzahl weiterer geeigneter pfropfvernetzender Monome­ rer; für nähere Einzelheiten sei hier beispielsweise auf die US- PS 4 148 846 verwiesen.
Im allgemeinen beträgt der Anteil dieser vernetzenden Monomeren an dem schlagzäh modifizierenden Polymer bis zu 5 Gew.-%, vor­ zugsweise nicht mehr als 3 Gew.-%, bezogen auf das schlagzäh mo­ difizierende Polymere.
Nachfolgend seien einige bevorzugte Emulsionspolymerisate aufge­ führt. Zunächst sind hier Pfropfpolymerisate mit einem Kern und mindestens einer äußeren Schale zu nennen, die folgenden Aufbau haben:
Diese Pfropfpolymerisate, insbesondere ABS- und/oder ASA-Polymere in Mengen bis zu 40 Gew.-%, werden vorzugsweise zur Schlagzäh­ modifizierung von PBT, gegebenenfalls in Mischung mit bis zu 40 Gew.-% Polyethylenterephthalat eingesetzt. Entsprechende Blend-Produkte sind unter dem Warenzeichen Ultradur®S (ehemals Ultrablend®S der BASF AG) erhältlich. ABS/ASA-Mischungen mit Polycarbonaten sind unter dem Warenzeichen Terblend® (BASF AG) im Handel erhältlich.
Anstelle von Pfropfpolymerisaten mit einem mehrschaligen Aufbau können auch homogene, d. h. einschalige Elastomere aus Bu­ ta-1,3-dien, Isopren und n-Butylacrylat oder deren Copolymeren eingesetzt werden. Auch diese Produkte können durch Mitverwendung von vernetzenden Monomeren oder Monomeren mit reaktiven Gruppen hergestellt werden.
Beispiele für bevorzugte Emulsionspolymerisate sind n-Butylacry­ lat/(Meth)acrylsäure-Copolymere, n-Butylacrylat/Glycidylacrylat- oder n-Butylacrylat/Glycidylmethacrylat-Copolymere, Pfropfpolyme­ risate mit einem inneren Kern aus n-Butylacrylat oder auf Buta­ dienbasis und einer äußeren Hülle aus den vorstehend genannten Copolymeren und Copolymere von Ethylen mit Comonomeren, die reak­ tive Gruppen liefern.
Die beschriebenen Elastomere können auch nach anderen üblichen Verfahren, z. B. durch Suspensionspolymerisation, hergestellt wer­ den.
Siliconkautschuke, wie in der DE-A 37 25 576, der EP-A 235 690, der DE-A 38 00 603 und der EP-A 319 290 beschrieben, sind eben­ falls bevorzugt.
Selbstverständlich können auch Mischungen der vorstehend aufge­ führten Kautschuktypen eingesetzt werden.
Als faser- oder teilchenförmige Füllstoffe seien Kohlen­ stoffasern, Glasfasern, Glaskugeln, amorphe Kieselsäure, Asbest, Calciumsilicat, Calciummetasilicat, Magnesiumcarbonat, Kaolin, Kreide, gepulverter Quarz, Glimmer, Bariumsulfat und Feldspat ge­ nannt, die in Mengen bis zu 50 Gew.-%, insbesondere 1 bis 40%, insbesondere 20 bis 35 Gew.-% eingesetzt werden.
Als bevorzugte faserförmige Füllstoffe seien Kohlenstoffasern, Aramid-Fasern und Kaliumtitanat-Fasern genannt, wobei Glasfasern als E-Glas besonders bevorzugt sind. Diese können als Rovings oder Schnittglas in den handelsüblichen Formen eingesetzt werden.
Die faserförmigen Füllstoffe können zur besseren Verträglichkeit mit dem Thermoplasten mit einer Silanverbindung oberflächlich vorbehandelt sein.
Geeignete Silanverbindungen sind solche der allgemeinen Formel
(X-(CH2)n)k-Si-(O-CmH2m+1)2-k
in der die Substituenten folgende Bedeutung haben:
n eine ganze Zahl von 2 bis 10, bevorzugt 3 bis 4
m eine ganze Zahl von 1 bis 5, bevorzugt 1 bis 2
k eine ganze Zahl von 1 bis 3, bevorzugt 1.
Bevorzugte Silanverbindungen sind Aminopropyltrimethoxysilan, Aminobutyltrimethoxysilan, Aminopropyltriethoxysilan, Aminobutyl­ triethoxysilan sowie die entsprechenden Silane, welche als Substituent X eine Glycidylgruppe enthalten.
Die Silanverbindungen werden im allgemeinen in Mengen von 0,05 bis 5, vorzugsweise 0,5 bis 1,5 und insbesondere 0,8 bis 1 Gew.-% (bezogen auf D) zur Oberflächenbeschichtung eingesetzt.
Geeignet sind auch nadelförmige mineralische Füllstoffe.
Unter nadelförmigen mineralischen Füllstoffen wird im Sinne der Erfindung ein mineralischer Füllstoff mit stark ausgeprägtem nadelförmigen Charakter verstanden. Als Beispiel sei nadelförmi­ ger Wollastonit genannt. Vorzugsweise weist das Mineral ein L/D-(Länge/Durchmesser)-Verhältnis von 8 : 1 bis 35 : 1, bevor­ zugt von 8 : 1 bis 11 : 1 auf. Der mineralische Füllstoff kann gegebenenfalls mit den vorstehend genannten Silanverbindungen vorbehandelt sein; die Vorbehandlung ist jedoch nicht unbedingt erforderlich.
Als weitere Füllstoffe seien Kaolin, calciniertes Kaolin, Wollastonit, Talkum und Kreide genannt.
Als Komponente E) können die erfindungsgemäßen thermoplastischen Formmassen übliche Verarbeitungshilfsmittel wie Stabilisatoren, Oxidationsverzögerer, Mittel gegen Wärmezersetzung und Zersetzung durch ultraviolettes Licht, Gleit- und Entformungsmittel, Färbe­ mittel wie Farbstoffe und Pigmente, Keimbildungsmittel, Weichma­ cher usw. enthalten.
Als Beispiele für Oxidationsverzögerer und Wärmestabilisatoren sind sterisch gehinderte Phenole und/oder Phosphite, Hydrochi­ none, aromatische sekundäre Amine wie Diphenylamine, verschiedene substituierte Vertreter dieser Gruppen und deren Mischungen in Konzentrationen bis zu 1 Gew.-%, bezogen auf das Gewicht der thermoplastischen Formmassen genannt.
Als UV-Stabilisatoren, die im allgemeinen in Mengen bis zu 2 Gew.-%, bezogen auf die Formmasse, verwendet werden, seien ver­ schiedene substituierte Resorcine, Salicylate, Benzotriazole und Benzophenone genannt.
Es können anorganische Pigmente, wie Titandioxid, Ultramarinblau, Eisenoxid und Ruß, weiterhin organische Pigmente, wie Phthalo­ cyanine, Chinacridone, Perylene sowie Farbstoffe, wie Nigrosin und Anthrachinone als Farbmittel zugesetzt werden.
Als Keimbildungsmittel können Natriumphenylphosphinat, Aluminium­ oxid, Siliziumdioxid sowie bevorzugt Talkum eingesetzt werden.
Gleit- und Entformungsmittel, welche verschieden von D) sind und üblicherweise in Mengen bis zu 1 Gew.-% eingesetzt werden, sind bevorzugt langkettige Fettsäuren (z. B. Stearinsäure oder Behen­ säure), deren Salze (z. B. Ca- oder Zn-Stearat) oder Montanwachse (Mischungen aus geradkettigen, gesättigten Carbonsäuren mit Ket­ tenlängen von 28 bis 32 C-Atomen) sowie niedermolekulare Poly­ ethylen- bzw. Polypropylenwachse.
Als Beispiele für Weichmacher seien Phthalsäuredioctylester, Phthalsäuredibenzylester, Phthalsäurebutylbenzylester, Kohlen­ wasserstofföle, N-(n-Butyl)benzolsulfonamid genannt.
Die erfindungsgemäßen Formmassen können noch 0 bis 2 Gew.-% fluorhaltige Ethylenpolymerisate enthalten. Hierbei handelt es sich um Polymerisate des Ethylens mit einem Fluorgehalt von 55 bis 76 Gew.-%, vorzugsweise 70 bis 76 Gew.-%.
Beispiele hierfür sind Polytetrafluorethylen (PTFE), Tetrafluore­ thylen-hexafluorpropylen-Copolymere oder Tetrafluorethylen-Copo­ lymerisate mit kleineren Anteilen (in der Regel bis zu 50 Gew.-%) copolymerisierbarer ethylenisch ungesättigter Monomerer. Diese werden z. B. von Schildknecht in "Vinyl and Related Polymers", Wiley-Verlag, 1952, Seite 484 bis 494 und von Wall in "Fluorpoly­ mers" (Wiley Interscience, 1972) beschrieben.
Diese fluorhaltigen Ethylenpolymerisate liegen homogen verteilt in den Formmassen vor und weisen bevorzugt eine Teilchengröße d50 (Zahlenmittelwert) im Bereich von 0,05 bis 10 µm, insbesondere von 0,1 bis 5 µm auf. Diese geringen Teilchengrößen lassen sich besonders bevorzugt durch Verwendung von wäßrigen Dispersionen von fluorhaltigen Ethylenpolymerisaten und deren Einarbeitung in eine Polyesterschmelze erzielen.
Die erfindungsgemäßen thermoplastischen Formmassen können nach an sich bekannten Verfahren hergestellt werden, in dem man die Aus­ gangskomponenten in üblichen Mischvorrichtungen wie Schnecken­ extrudern, Brabender-Mühlen oder Banbury-Mühlen mischt und an­ schließend extrudiert. Nach der Extrusion kann das Extrudat abge­ kühlt und zerkleinert werden. Es können auch einzelne Komponenten vorgemischt werden und dann die restlichen Ausgangsstoffe einzeln und/oder ebenfalls gemischt hinzugegeben werden. Die Mischtempe­ raturen liegen in der Regel bei 230 bis 290°C.
Nach einer bevorzugten Arbeitsweise können die Komponenten B) bis D) sowie gegebenenfalls übliche Zusatzstoffe E) mit einem Poly­ esterpräpolymeren gemischt, konfektioniert und granuliert werden. Das erhaltene Granulat wird in fester Phase anschließend unter Inertgas kontinuierlich oder diskontinuierlich bei einer Temperatur unterhalb des Schmelzpunktes der Komponente A) bis zur gewünschten Viskosität kondensiert.
Die erfindungsgemäßen thermoplastischen Formmassen zeichnen sich durch gute mechanische Eigenschaften und gute Flammschutzeigen­ schaften bei gleichzeitig bestandenem Glühdrahttest aus. Die Ver­ arbeitung erfolgt weitestgehend ohne Veränderung der Polymer­ matrix und verbesserter Fließfähigkeit und der Formbelag wird stark reduziert. Sie eignen sich zur Herstellung von Fasern, Fo­ lien und Formkörpern, insbesondere für Anwendungen im Elektro- und Elektronikbereich. Diese Anwendungen sind insbesondere Lam­ penteile wie Lampenfassungen und -halterungen, Stecker und Stec­ kerleisten, Spulenkörper, Gehäuse für Kondensatoren oder Schalt­ schütze sowie Sicherungsschalter, Relaisgehäuse und Reflektoren.
Beispiele
Komponente A): Polybutylenterephthalat mit einer Viskositätszahl von 130 ml/g und einem Carboxylendgruppengehalt von 34 mval/kg (Ultradur® B 4500 der BASF AG) (VZ gemessen in 0,5 gew.-%iger Lösung aus Phenol/o-Dichlorbenzol), 1 : 1-Mischung bei 25°C gemäß ISO 1628.
Komponente B/1: Calciumphosphinat
Komponente B/2: Al(CH3
C2
H5
PO2
)3
Komponente C:
Resorcinol-bis(diphenylphosphat) (CR 733-S der Firma Daihachi)
Komponente D: Pentaerythrittetrastearat (Loxiol® VPG 861 der Firma Henkel KGaA)
Komponente E: Schnittglasfaser mit einer Dicke von 10 µm (epoxisilanisierte Schlichte).
Die Komponenten A) bis E) wurden auf einem Zweischneckenextruder bei 250 bis 260°C abgemischt und in ein Wasserbad extrudiert. Nach Granulierung und Trocknung wurden auf einer Spritzgußmaschine Prüfkörper gespritzt und geprüft.
Der Brandtest erfolgte nach UL 94 an 1/16-Zoll-Prüfkörpern mit üblicher Konditionierung.
Die Prüfung der Stabilität bei erhöhten Gebrauchstemperaturen wurde wie folgt durchgeführt: Es wurden Formteile (Plättchen 60 × 60 × 2 mm, ca. 11 g) gespritzt. Jeweils ein Formteil wurde auf der Analysenwaage abgewogen und in einer Aluminiumschale im Um­ luftofen auf die angegebene Temperatur aufgeheizt.
Nach der jeweiligen Lagerzeit (3 Tage bei 150°C) wurden die unter Vakuum abgekühlten Proben auf der Analysenwaage zurückgewogen und der Gewichtsverlust bestimmt.
Die Fließfähigkeit wurde mit einer Fließspirale (1,5 mm) bei ei­ nem Spritzdruck von 37 bar gemessen bei 260°C.
Der Glühdrahttest erfolgte an Plättchen 60 × 60 mm mit 1 mm Dicke bei 960°C. Dabei wurde für 30 sec der Glühdraht auf den Testkörper gehalten und die Nachbrenndauer des Formteils in sec und die Flammhöhe in mm ermittelt.
Die Zusammensetzung der Formmassen und die Ergebnisse der Messungen sind der Tabelle zu entnehmen.
Tabelle

Claims (10)

1. Thermoplastische Formmassen, enthaltend
  • A) 5 bis 96 Gew.-% eines Polyesters,
  • B) 1 bis 30 Gew.-% eines Phosphinsäuresalzes der Formel I und/oder eines Diphosphinsäuresalzes der Formel II und/oder deren Polymere
    wobei die Substituenten folgende Bedeutung haben:
    R1, R2 ein linearer oder verzweigter C1- bis C6-Alkylrest, Phenylrest, Wasserstoff,
    R3 ein linearer oder verzweigter C1- bis C10-Alkylen­ rest, Arylen-, Alkylarylen- oder Arylalkylenrest,
    M Erdalkali-, Alkalimetall, Zn, Al, Fe, Bor,
    m eine ganze Zahl von 1 bis 3,
    n eine ganze Zahl von 1 und 3,
    x 1 oder 2;
  • C) 1 bis 30 Gew.-% mindestens eines organischen phosphor­ haltigen Flammschutzmittels,
  • D) 0 bis 5 Gew.-% mindestens eines Esters oder Amids ge­ sättigter oder ungesättigter aliphati­ scher Carbonsäuren mit 10 bis 40 C-Ato­ men mit aliphatischen gesättigten Alko­ holen oder Aminen mit 2 bis 40 C-Atomen,
  • E) 0 bis 60 Gew.-% weiterer Zusatzstoffe,
wobei die Summe der Gewichtsprozente der Komponenten A) bis E) 100% ergibt.
2. Thermoplastische Formmassen nach Anspruch 1, enthaltend als Flammschutzmittel C) mindestens ein Phosphinoxid der allge­ meinen Formel III
wobei R1, R2 und R3 gleiche oder verschiedene Alkyl-, Aryl-, Alkylaryl- oder Cycloalkylgruppen mit 8 bis 40 C-Atomen be­ deuten.
3. Thermoplastische Formmassen nach den Ansprüchen 1 oder 2, in denen die Komponente C) aus Triphenylphosphinoxid, Triphenyl­ phosphinsulfid, Triphenylphosphat, Resorcinol-bis(diphenyl­ phosphat) oder Triphenylphosphin oder deren Mischungen aufge­ baut ist.
4. Thermoplastische Formmassen nach den Ansprüchen 1 bis 3, ent­ haltend 1 bis 40 Gew.-% eines faserförmigen Füllstoffes als Komponente E).
5. Thermoplastische Formmassen nach den Ansprüchen 1 bis 4, in denen die Komponente D) Pentaerythrittetrastearat ist.
6. Thermoplastische Formmassen nach den Ansprüchen 1 bis 5, in denen die Komponente A) aus einer Mischung aus Polyethylen­ terephthalat und Polybutylenterephthalat besteht.
7. Thermoplastische Formmassen nach Anspruch 6, in denen der Anteil des Polyethylenterephthalates in der Mischung 10 bis 30 Gew.-% beträgt.
8. Thermoplastische Formmassen nach den Ansprüchen 6 oder 7, in denen das Polyethylenterephthalat aus einem Rezyklat mit einem Restfeuchtegehalt von 0,01 bis 0,7% besteht.
9. Verwendung der thermoplastischen Formmassen gemäß den Ansprü­ chen 1 bis 8, zur Herstellung von Fasern Folien und Form­ körpern.
10. Formkörper erhältlich aus den thermoplastischen Formmassen gemäß den Ansprüchen 1 bis 8.
DE19820399A 1998-05-07 1998-05-07 Flammgeschützte Polyesterformmassen Withdrawn DE19820399A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE19820399A DE19820399A1 (de) 1998-05-07 1998-05-07 Flammgeschützte Polyesterformmassen
PCT/EP1999/002728 WO1999057192A1 (de) 1998-05-07 1999-04-23 Flammgeschützte polyesterformmassen
EP99920747A EP1088026A1 (de) 1998-05-07 1999-04-23 Flammgeschützte polyesterformmassen
JP2000547157A JP2002513833A (ja) 1998-05-07 1999-04-23 難燃性ポリエステル成形材料
US09/674,540 US6716899B1 (en) 1998-05-07 2000-04-23 Flame-proofed polyester molding materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19820399A DE19820399A1 (de) 1998-05-07 1998-05-07 Flammgeschützte Polyesterformmassen

Publications (1)

Publication Number Publication Date
DE19820399A1 true DE19820399A1 (de) 1999-11-11

Family

ID=7866963

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19820399A Withdrawn DE19820399A1 (de) 1998-05-07 1998-05-07 Flammgeschützte Polyesterformmassen

Country Status (5)

Country Link
US (1) US6716899B1 (de)
EP (1) EP1088026A1 (de)
JP (1) JP2002513833A (de)
DE (1) DE19820399A1 (de)
WO (1) WO1999057192A1 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10317487A1 (de) * 2003-04-16 2004-01-22 Ticona Gmbh Flammschutzmittel-Kombination und flammgeschützte thermoplastische Formmassen
EP1396523A1 (de) * 2002-09-06 2004-03-10 Clariant GmbH Kompaktierte Flammschutzmittelzusammensetzung
EP1396522A1 (de) * 2002-09-06 2004-03-10 Clariant GmbH Granulare Flammschutzmittelzusammensetzung
EP1396521A1 (de) * 2002-09-06 2004-03-10 Clariant GmbH Staubarme, pulverförmige Flammschutzmittelzusammensetzung, Verfahren zu deren Herstellung und deren Verwendung, sowie flammgeschützte Polymerformmassen
DE10244578A1 (de) * 2002-09-25 2004-04-08 Clariant Gmbh Flammwidrige duroplastische Massen
DE10359816A1 (de) * 2003-12-19 2005-07-28 Clariant Gmbh Flammschutzmittel-Stabilisator-Kombination für Polyester und Polyamide
US7094819B2 (en) 2001-08-09 2006-08-22 Asahi Kasei Chemicals Corporation Flame-retardant polytrimethylene terephthalate resin composition
DE102006013724B3 (de) * 2006-03-24 2007-04-19 Ems-Chemie Ag Wärme-und Flammschutzstabilisator und dessen Verwendung, Polymermasse enthaltend ein Additiv sowie diese Polymermasse enthaltende Formkörper, Filme, Fasern oder Formteile
EP1958950A1 (de) * 2003-12-19 2008-08-20 Clariant Produkte (Deutschland) GmbH Verwendung von Dialkylphosphinsäuresalzen

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5255169B2 (ja) * 2000-11-24 2013-08-07 株式会社ダイセル 難燃性樹脂組成物
DE10241373A1 (de) * 2002-09-06 2004-03-18 Clariant Gmbh Oberflächenmodifizierte Phosphinsäuresalze
DE10243231B4 (de) * 2002-09-17 2004-10-28 Clariant Gmbh Brandschutzbeschichtung
DE10244576A1 (de) * 2002-09-25 2004-04-08 Clariant Gmbh Flammwidrige duroplastische Massen
DE10244579A1 (de) * 2002-09-25 2004-04-08 Clariant Gmbh Flammwidrige duroplastische Massen
DE10309385B4 (de) * 2003-03-03 2007-01-18 Clariant Produkte (Deutschland) Gmbh Flammschutzmittel-Stabilisator-Kombination für thermoplastische Polymere und ihre Verwendung sowie flammfest ausgerüstete Kunststoff-Formmassen
DE10309622A1 (de) * 2003-03-04 2004-09-23 Clariant Gmbh Schmelzbare Zinkphosphinate
DE10347012A1 (de) * 2003-10-07 2005-05-25 Clariant Gmbh Phosphorhaltige Flammschutzmittelagglomerate
US7199172B2 (en) * 2004-04-21 2007-04-03 Plastic Technologies, Inc. Metal phosphonates and related nanocomposites
JP2006117721A (ja) * 2004-10-19 2006-05-11 Wintech Polymer Ltd 難燃性熱可塑性ポリエステル樹脂組成物
US20060100330A1 (en) * 2004-11-10 2006-05-11 Natarajan Kavilipalayam M Composition for use in forming an article
DE102004056312B4 (de) * 2004-11-22 2006-11-23 Ems-Chemie Ag Verwendung von Verbindungen als Wärme- und Flammschutzstabilisatoren für Polymermassen
JP2006176613A (ja) * 2004-12-22 2006-07-06 Wintech Polymer Ltd 難燃性熱可塑性ポリエステル樹脂組成物及び照明部品
US7375167B2 (en) * 2005-05-09 2008-05-20 Basf Se Hydrolysis-resistance composition
US7163977B2 (en) * 2005-05-13 2007-01-16 Plastic Technologies, Inc. Method to reduce the aldehyde content of polymers
US20080107850A1 (en) * 2005-05-13 2008-05-08 Mark Rule Method to reduce the aldehyde content of polymers
US20070020422A1 (en) * 2005-05-13 2007-01-25 Mark Rule Method to reduce the aldehyde content of polymers
US20070080330A1 (en) * 2005-10-06 2007-04-12 Peters Edward N Flame retardant composition and method
US7488766B2 (en) * 2005-10-06 2009-02-10 Sabic Innovative Plastics Ip B.V. Polymer composition, method, and article
US7495047B2 (en) * 2005-10-06 2009-02-24 At&T Intellectual Property, I, L.P. Poly(arylene ether) composition, method, and article
CN101356220B (zh) * 2005-12-01 2011-12-07 苏普雷斯塔有限责任公司 包含二取代次膦酸盐和单取代次膦酸盐的混合物的阻燃剂组合物
US20070173572A1 (en) * 2006-01-20 2007-07-26 General Electric Company Flame retardant resin composition
TW200833705A (en) * 2006-11-15 2008-08-16 Shell Int Research Polymer composition containing flame retardant and process for producing the same
US8012436B2 (en) * 2007-09-04 2011-09-06 Shell Oil Company Quenching vessel
WO2009079496A1 (en) * 2007-12-18 2009-06-25 Shell Oil Company A process for producing a flame retardant polyester
DE102007061759A1 (de) 2007-12-20 2009-06-25 Bayer Materialscience Ag Flammgeschützte schlagzähmodifizierte Polycarbonat-Zusammensetzungen
DE102007061760A1 (de) 2007-12-20 2009-06-25 Bayer Materialscience Ag Flammgeschützte schlagzähmodifizierte Polyalkylenterephthalat/Polycarbonat-Zusammensetzungen
DE102007061762A1 (de) 2007-12-20 2009-06-25 Bayer Materialscience Ag Flammgeschützte schlagzähmodifizierte Polycarbonat-Zusammensetzungen
DE102007061761A1 (de) * 2007-12-20 2009-06-25 Bayer Materialscience Ag Flammgeschützte schlagzähmodifizierte Polycarbonat-Zusammensetzungen
DE102007061758A1 (de) * 2007-12-20 2009-06-25 Bayer Materialscience Ag Flammgeschützte schlagzähmodifizierte Polycarbonat-Zusammensetzungen
JP5242150B2 (ja) * 2007-12-21 2013-07-24 ウィンテックポリマー株式会社 複合成形体
MX2010010699A (es) * 2008-04-01 2010-11-04 Basf Se Composiciones termoplasticas retardadoras de flama.
TWI417329B (zh) * 2008-07-18 2013-12-01 Ticona Llc 阻燃劑聚合物組合物
WO2010045181A1 (en) * 2008-10-16 2010-04-22 E. I. Du Pont De Nemours And Company Flame retardant poly(trimethylene terephthalate) composition
DE102009052935A1 (de) * 2009-11-12 2011-05-19 Teijin Monofilament Germany Gmbh Spinngefärbte HMLS-Monofilamente, deren Herstellung und Anwendung
US20110237695A1 (en) * 2010-03-23 2011-09-29 Clariant International Ltd. Flame Retardant Combinations For Polyester Elastomers And Flame Retarded Extrusion Or Molding Compositions Therefrom
MX341534B (es) 2010-03-26 2016-08-24 Dow Global Tech Llc * Composicion de elastomero termoplastico pirorretardante con resistencia al blanqueo de ralladuras.
JP2011213769A (ja) * 2010-03-31 2011-10-27 Toray Ind Inc 難燃性樹脂組成物
US8686072B2 (en) 2010-06-29 2014-04-01 Sabic Innovative Plastics Ip B.V. Flame resistant polyester compositions, method of manufacture, and articles therof
US8716378B2 (en) 2010-06-29 2014-05-06 Sabic Innovative Plastics Ip B.V. Flame resistant polyester compositions, method of manufacture, and articles thereof
US8604105B2 (en) 2010-09-03 2013-12-10 Eastman Chemical Company Flame retardant copolyester compositions
CN102807738A (zh) 2011-05-30 2012-12-05 杜邦公司 阻燃共聚醚酯组合物和包含该阻燃共聚醚酯组合物的制品
CN102807739A (zh) 2011-05-30 2012-12-05 杜邦公司 阻燃共聚醚酯组合物和包含该阻燃共聚醚酯组合物的制品
WO2013048676A1 (en) 2011-09-30 2013-04-04 Ticona Llc Electrical conduit containing a fire-resisting thermoplastic composition
WO2013085724A1 (en) 2011-12-07 2013-06-13 E. I. Du Pont De Nemours And Company Flame-retardant copolyetherester composition and articles comprising the same
CN103146153A (zh) 2011-12-07 2013-06-12 杜邦公司 阻燃的共聚醚酯组合物及包含其的制品
KR102070206B1 (ko) 2012-06-06 2020-01-29 이 아이 듀폰 디 네모아 앤드 캄파니 개선된 절연 저항성을 갖는 무할로겐 난연성 열가소성 엘라스토머 조성물
KR101578604B1 (ko) * 2014-04-17 2015-12-17 성균관대학교산학협력단 내변색성과 내열성이 우수한 비할로겐 난연제 및 비할로겐 난연조제를 함유하는 폴리시클로헥실렌디메틸렌테레프탈레이트 수지 조성물
US11912830B2 (en) 2020-12-18 2024-02-27 International Business Machines Corporation Flame-retardant polydiketoenamines

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3629365A (en) * 1970-09-14 1971-12-21 Akzona Inc Flame retardant polyesters containing polyamides and phosphine oxides
ZA738245B (en) * 1972-10-25 1974-09-25 Hoechst Ag Flame resistant thermoplastic polyesters
US4180495A (en) 1978-04-13 1979-12-25 Pennwalt Corporation Polyester resins flame retarded by poly(metal phosphinate)s
JPS5592758A (en) * 1978-11-06 1980-07-14 Toray Ind Inc Resin composition
JPS59191756A (ja) * 1983-04-15 1984-10-30 Mitsubishi Rayon Co Ltd ポリエステル樹脂組成物
DE4033806A1 (de) * 1990-10-24 1992-04-30 Bayer Ag Lichtalterungsbestaendige polycarbonat-formmassen
DE69432398T2 (de) * 1993-12-28 2003-11-27 Kanegafuchi Chemical Ind Additiv für thermoplastische Harze und flammhemmende Harzzusammensetzungen
DE4430932A1 (de) * 1994-08-31 1996-03-07 Hoechst Ag Flammgeschützte Polyesterformmasse
DE19614424A1 (de) * 1996-04-12 1997-10-16 Hoechst Ag Synergistische Flammschutzmittel-Kombination für Polymere
DE19643280A1 (de) * 1996-10-21 1998-04-23 Basf Ag Flammgeschützte Formmassen
US5814690A (en) * 1997-09-22 1998-09-29 E. I. Du Pont De Nemours And Company Flame retarded poly(butylene terephthalate) composition

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7094819B2 (en) 2001-08-09 2006-08-22 Asahi Kasei Chemicals Corporation Flame-retardant polytrimethylene terephthalate resin composition
EP1396523A1 (de) * 2002-09-06 2004-03-10 Clariant GmbH Kompaktierte Flammschutzmittelzusammensetzung
EP1396522A1 (de) * 2002-09-06 2004-03-10 Clariant GmbH Granulare Flammschutzmittelzusammensetzung
EP1396521A1 (de) * 2002-09-06 2004-03-10 Clariant GmbH Staubarme, pulverförmige Flammschutzmittelzusammensetzung, Verfahren zu deren Herstellung und deren Verwendung, sowie flammgeschützte Polymerformmassen
US7148276B2 (en) 2002-09-06 2006-12-12 Clariant Gmbh Granular flame-retardant composition
DE10244578A1 (de) * 2002-09-25 2004-04-08 Clariant Gmbh Flammwidrige duroplastische Massen
DE10317487A1 (de) * 2003-04-16 2004-01-22 Ticona Gmbh Flammschutzmittel-Kombination und flammgeschützte thermoplastische Formmassen
DE10359816A1 (de) * 2003-12-19 2005-07-28 Clariant Gmbh Flammschutzmittel-Stabilisator-Kombination für Polyester und Polyamide
EP1958950A1 (de) * 2003-12-19 2008-08-20 Clariant Produkte (Deutschland) GmbH Verwendung von Dialkylphosphinsäuresalzen
US7635785B2 (en) 2003-12-19 2009-12-22 Clariant Deutschland GmbH Process for preparation of dialkylphosphinic salts
DE102006013724B3 (de) * 2006-03-24 2007-04-19 Ems-Chemie Ag Wärme-und Flammschutzstabilisator und dessen Verwendung, Polymermasse enthaltend ein Additiv sowie diese Polymermasse enthaltende Formkörper, Filme, Fasern oder Formteile
DE102006013724B8 (de) * 2006-03-24 2007-08-02 Ems-Chemie Ag Wärme-und Flammschutzstabilisator und dessen Verwendung, Polymermasse enthaltend ein Additiv sowie diese Polymermasse enthaltende Formkörper, Filme, Fasern oder Formteile

Also Published As

Publication number Publication date
US6716899B1 (en) 2004-04-06
EP1088026A1 (de) 2001-04-04
JP2002513833A (ja) 2002-05-14
WO1999057192A1 (de) 1999-11-11

Similar Documents

Publication Publication Date Title
DE19820399A1 (de) Flammgeschützte Polyesterformmassen
EP0932643B1 (de) Flammgeschützte formmassen
EP1084181B1 (de) Flammgeschützte polyesterformmassen
EP1423460B1 (de) Halogenfreie flammgeschützte polyester
DE19827845A1 (de) Flammgeschützte Polyesterformmassen
DE19920276A1 (de) Thermoplastische Formmassen
EP1117735B1 (de) Flammgeschützte polyesterformmassen
DE10160138A1 (de) Flammgeschütze Formmassen
EP0536587A1 (de) Anorganische Nebengruppenmetallsalze enthaltende thermoplastische Formmassen
EP1412429B1 (de) Flammgeschützte thermoplastische formmassen
DE19904814A1 (de) Flammgeschützte Polyester/Polycarbonatblends
DE19930527A1 (de) Polyester/Polycarbonat Blends
DE19820401A1 (de) Flammgeschützte Polyesterformmassen
EP0932642B1 (de) Flammgeschützte formmassen
EP1117739B1 (de) Flammgeschützte polyesterformmassen
EP3033387B1 (de) Flammgeschützte polyester
DE19820397A1 (de) Flammgeschützte Polyesterformmassen
DE102008038410A1 (de) Flammgeschützte Polyester
DE19840274A1 (de) Glasverstärkte Polyesterformmassen
WO2012013564A1 (de) Flammgeschützte formmassen
DE19913987A1 (de) Dimensionsstabile Polyester/Polycarbonat Blends

Legal Events

Date Code Title Description
8130 Withdrawal