DE19904814A1 - Flammgeschützte Polyester/Polycarbonatblends - Google Patents

Flammgeschützte Polyester/Polycarbonatblends

Info

Publication number
DE19904814A1
DE19904814A1 DE1999104814 DE19904814A DE19904814A1 DE 19904814 A1 DE19904814 A1 DE 19904814A1 DE 1999104814 DE1999104814 DE 1999104814 DE 19904814 A DE19904814 A DE 19904814A DE 19904814 A1 DE19904814 A1 DE 19904814A1
Authority
DE
Germany
Prior art keywords
molding compositions
acid
thermoplastic molding
compositions according
polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE1999104814
Other languages
English (en)
Inventor
Martin Klatt
Michael Nam
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to DE1999104814 priority Critical patent/DE19904814A1/de
Publication of DE19904814A1 publication Critical patent/DE19904814A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5313Phosphinic compounds, e.g. R2=P(:O)OR'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34928Salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5393Phosphonous compounds, e.g. R—P(OR')2
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Abstract

Thermoplastische Formmassen, enthaltend DOLLAR A A) 20 bis 98 Gew.-% eines Polyesters DOLLAR A B) 1 bis 50 Gew.-% eines Polycarbonats DOLLAR A C) 1 bis 40 Gew.-% eines Phosphinsäuresalzes der Formel I und/oder eines Diphosphinsäuresalzes der Formel II und/oder deren Polymere DOLLAR F1 wobei die Substituenten folgende Bedeutung haben: DOLLAR A R·1·, R·2· ein linearer oder verzweigter C¶1¶- bis C¶10¶-Alkylenrest, Phenylrest, Wasserstoff DOLLAR A R·3· ein linearer oder verzweigter C¶1-C10-¶Alkylenrest, Arylen-, Alkylarylen- oder Arylalkylenrest, DOLLAR A M Erdalkali-, Alkalimetall, Zn, Al, Fe, Bor, DOLLAR A m eine ganze Zahl von 1 bis 3, DOLLAR A n eine ganze Zahl von 1 und 3, DOLLAR A x 1 oder 2; DOLLAR A D) 0 bis 40 Gew.-% eines stickstoffhaltigen Flammschutzmittels DOLLAR A E) 0 bis 5 Gew.-% mindestens eines Esters oder Amids gesättigter oder ungesättigter aliphatischer Carbonsäuren mit 10 bis 40 C-Atomen mit aliphatischen gesättigten Alkoholen oder Aminen mit 2 bis 40 C-Atomen DOLLAR A F) 0 bis 60 Gew.-% weiterer Zusatzstoffe, DOLLAR A wobei die Summe der Gewichtsprozente der Komponenten A) bis F) 100% ergibt.

Description

Die Erfindung betrifft thermoplastische Formmassen, enthaltend
  • A) 20 bis 98 Gew.-% eines Polyesters
  • B) 1 bis 50 Gew.-% eines Polycarbonats
  • C) 1 bis 40 Gew.-% eines Phosphinsäuresalzes der Formel I und/oder eines Diphosphinsäuresalzes der Formel II und/oder deren Polymere
    wobei die Substituenten folgende Bedeutung haben:
    R1, R2 ein linearer oder verzweigter C1- bis C6-Alkylrest, Phenylrest, Wasserstoff,
    R3 ein linearer oder verzweigter C1- bis C10-Alkylen­ rest, Arylen-, Alkylarylen- oder Arylalkylenrest,
    M Erdalkali-, Alkalimetall, Zn, Al, Fe, Bor,
    m eine ganze Zahl von 1 bis 3,
    n eine ganze Zahl von 1 und 3,
    x 1 oder 2;
  • D) 0 bis 40 Gew.-% eines stickstoffhaltigen Flammschutzmit­ tels
  • E) 0 bis 5 Gew.-% mindestens eines Esters oder Amids ge­ sättigter oder ungesättigter aliphati­ scher Carbonsäuren mit 10 bis 40 C-Ato­ men mit aliphatischen gesättigten Alko­ holen oder Aminen mit 2 bis 40 C-Atomen
  • F) 0 bis 60 Gew.-% weiterer Zusatzstoffe
wobei die Summe der Gewichtsprozente der Komponenten A) bis F) 100% ergibt.
Weiterhin betrifft die Erfindung die Verwendung der erfindungs­ gemäßen Formmassen zur Herstellung von Fasern, Folien und Form­ körpern sowie die hierbei erhältlichen Formkörper jeglicher Art.
Es besteht ein zunehmendes Marktinteresse für halogenfrei flamm­ geschützte Polyester. Wesentliche Anforderungen an das Flamm­ schutzmittel sind: helle Eigenfarbe, ausreichende Temperatur­ stabilität für die Einarbeitung in Thermoplaste, sowie dessen Wirksamkeit in verstärktem und unverstärktem Polymer (sog. Docht­ effekt bei Glasfasern).
Dabei sollte der Brandtest gemäß UL 94 mit V2 zumindest bestanden werden.
Insbesondere für den Einsatz in der Elektrotechnik müssen Poly­ ester mit Flammschutzmitteln versehen sein. Als halogenfreie Flammschutzmittel sind Phosphinate beispielsweise geeignet:
EP-A 699 708, WO 97/05 705 und DE-A 196 14 424.
Phosphinate neigen jedoch zur Migration, insbesondere bei feucht­ warmen Klimaverhältnissen. Ein derartiges Ausblühen führt zu Kon­ taktbelägen und in der Folge zu Kurzschlüssen des Systems.
Aufgabe der vorliegenden Erfindung war es daher, Polyesterform­ massen zur Verfügung zu stellen, welche gute Flammschutzeigen­ schaften und eine verminderte Migrationsneigung aufweisen.
Demgemäß wurden die eingangs definierten Formmassen gefunden. Be­ vorzugte Ausführungsformen sind den Unteransprüchen zu entnehmen.
Überraschenderweise führt ein teilweiser Ersatz der Polyesterma­ trix durch Polycarbonate zu einer geringen Migrationsneigung von phosphinathaltigen flammgeschützten Polyestern.
Als Komponente (A) enthalten die erfindungsgemäßen Formmassen 20 bis 98, bevorzugt 25 bis 88 und insbesondere 25 bis 80 Gew.-% eines thermoplastischen Polyesters.
Allgemein werden Polyester auf Basis von aromatischen Dicarbon­ säuren und einer aliphatischen oder aromatischen Dihydroxy­ verbindung verwendet.
Eine erste Gruppe bevorzugter Polyester sind Polyalkylentereph­ thalate mit 2 bis 10 C-Atomen im Alkoholteil.
Derartige Polyalkylenterephthalate sind an sich bekannt und in der Literatur beschrieben. Sie enthalten einen aromatischen Ring in der Hauptkette, der von der aromatischen Dicarbonsäure stammt. Der aromatische Ring kann auch substituiert sein, z. B. durch Ha­ logen wie Chlor und Brom oder durch C1-C4-Alkylgruppen wie Methyl-, Ethyl-, i- bzw. n-Propyl- und n-, i- bzw. t-Butylgrup­ pen.
Diese Polyalkylenterephthalate können durch Umsetzung von aroma­ tischen Dicarbonsäuren, deren Estern oder anderen esterbildenden Derivaten mit aliphatischen Dihydroxyverbindungen in an sich be­ kannter Weise hergestellt werden.
Als bevorzugte Dicarbonsäuren sind 2,6-Naphthalindicarbonsäure, Terephthalsäure und Isophthalsäure oder deren Mischungen zu nen­ nen. Bis zu 30 mol-%, vorzugsweise nicht mehr als 10 mol-% der aromatischen Dicarbonsäuren können durch aliphatische oder cyclo­ aliphatische Dicarbonsäuren wie Adipinsäure, Azelainsäure, Sebacinsäure, Dodecandisäuren und Cyclohexandicarbonsäuren er­ setzt werden.
Von den aliphatischen Dihydroxyverbindungen werden Diole mit 2 bis 6 Kohlenstoffatomen, insbesondere 1,2-Ethandiol, 1,4-Butan­ diol, 1,6-Hexandiol, 1,4-Hexandiol, 1,4-Cyclohexandiol, 1,4-Cy­ clohexandimethylanol und Neopentylglykol oder deren Mischungen bevorzugt.
Als besonders bevorzugte Polyester (A) sind Polyalkylentereph­ thalate, die sich von Alkandiolen mit 2 bis 6 C-Atomen ableiten, zu nennen. Von diesen werden insbesondere Polyethylenterephthalat und Polybutylenterephthalat oder deren Mischungen bevorzugt. Wei­ terhin bevorzugt sind PET und/oder PBT, welche bis zu 1 Gew.-%, vorzugsweise bis zu 0,75 Gew.-% 1,6-Hexandiol und/oder 2-Me­ thyl-1,5-Pentandiol als weitere Monomereinheiten enthalten.
Die Viskositätszahl der Polyester (A) liegt im allgemeinen im Be­ reich von 50 bis 220, vorzugsweise von 80 bis 160 (gemessen in einer 0,5 gew.-%igen Lösung in einem Phenol/o-Dichlorbenzolge­ misch (Gew.-Verh. 1 : 1 bei 25°C) gemäß ISO 1628.
Insbesondere bevorzugt sind Polyester, deren Carboxylendgruppen­ gehalt bis zu 100 mval/kg, bevorzugt bis zu 50 mval/kg und ins­ besondere bis zu 40 mval/kg Polyester beträgt. Derartige Poly­ ester können beispielsweise nach dem Verfahren der DE-A 44 01 055 hergestellt werden. Der Carboxylendgruppengehalt wird üblicher­ weise durch Titrationsverfahren (z. B. Potentiometrie) bestimmt.
Insbesondere bevorzugte Formmassen enthalten als Komponente A) eine Mischung aus Polyethylenterephthalat (PET) und Polybutylen­ terephthalat (PBT). Der Anteil des Polyethylenterephthalates be­ trägt vorzugsweise in der Mischung bis zu 50, insbesondere 10 bis 30 Gew.-%, bezogen auf 100 Gew.-% A).
Derartige erfindungsgemäße Formmassen zeigen sehr gute Flamm­ schutzeigenschaften und bessere mechanische Eigenschaften.
Weiterhin ist es vorteilhaft PET Rezyklate (auch scrap-PET ge­ nannt) in Mischung mit Polyalkylenterephthalaten wie PBT einzu­ setzen.
Unter Rezyklaten versteht man im allgemeinen:
  • 1. sog. Post Industrial Rezyklat: hierbei handelt es sich um Produktionsabfälle bei der Polykondensation oder bei der Ver­ arbeitung z. B. Angüsse bei der Spritzgußverarbeitung, Anfahr­ ware bei der Spritzgußverarbeitung oder Extrusion oder Rand­ abschnitte von extrudierten Platten oder Folien.
  • 2. Post Consumer Rezyklat: hierbei handelt es sich um Kunst­ stoffartikel, die nach der Nutzung durch den Endverbraucher gesammelt und aufbereitet werden. Der mengenmäßig bei weitem dominierende Artikel sind blasgeformte PET Flaschen für Mineralwasser, Softdrinks und Säfte.
Beide Arten von Rezyklat können entweder als Mahlgut oder in Form von Granulat vorliegen. Im letzteren Fall werden die Rohrezyklate nach der Auftrennung und Reinigung in einem Extruder aufgeschmol­ zen und granuliert. Hierdurch wird meist das Handling, die Rieselfähigkeit und die Dosierbarkeit für weitere Verarbeitungs­ schritte erleichtert.
Sowohl granulierte als auch als Mahlgut vorliegende Rezyklate können zum Einsatz kommen, wobei die maximale Kantenlänge 6 mm, vorzugsweise kleiner 5 mm betragen sollte.
Aufgrund der hydrolytischen Spaltung von Polyestern bei der Ver­ arbeitung (durch Feuchtigkeitsspuren) empfiehlt es sich, das Re­ zyklat vorzutrocknen. Der Restfeuchtegehalt nach der Trocknung beträgt vorzugsweise 0,01 bis 0,7, insbesondere 0,2 bis 0,6%.
Als weitere Gruppe sind voll aromatische Polyester zu nennen, die sich von aromatischen Dicarbonsäuren und aromatischen Dihydroxy­ verbindungen ableiten.
Als aromatische Dicarbonsäuren eignen sich die bereits bei den Polyalkylenterephthalaten beschriebenen Verbindungen. Bevorzugt werden Mischungen aus 5 bis 100 mol-% Isophthalsäure und 0 bis 95 mol-% Terephthalsäure, insbesondere Mischungen von etwa 80% Terephthalsäure mit 20% Isophthalsäure bis etwa äquivalente Mischungen dieser beiden Säuren verwendet.
Die aromatischen Dihydroxyverbindungen haben vorzugsweise die allgemeine Formel I
in der Z eine Alkylen- oder Cycloalkylengruppe mit bis zu 8 C- Atomen, eine Arylengruppe mit bis zu 12 C-Atomen, eine Carbonyl­ gruppe, eine Sulfonylgruppe, ein Sauerstoff- oder Schwefelatom oder eine chemische Bindung darstellt und in der m den Wert 0 bis 2 hat. Die Verbindungen I können an den Phenylengruppen auch C1-C6-Alkyl- oder Alkoxygruppen und Fluor, Chlor oder Brom als Substituenten tragen.
Als Stammkörper dieser Verbindungen seinen beispielsweise
Dihydroxydiphenyl,
Di-(hydroxyphenyl)alkan,
Di-(hydroxyphenyl)cycloalkan,
Di-(hydroxyphenyl)sulfid,
Di-(hydroxyphenyl)ether,
Di-(hydroxyphenyl)keton,
di-(hydroxyphenyl)sulfoxid,
α,α'-Di-(hydroxyphenyl)-dialkylbenzol,
Di-(hydroxyphenyl)sulfon, Di-(hydroxybenzoyl)benzol,
Resorcin und
Hydrochinon sowie deren kernalkylierte oder kernhalogenierte Derivate genannt.
Von diesen werden
4,4'-Dihydroxydiphenyl,
2,4-Di-(4'-hydroxyphenyl)-2-methylbutan,
α,α'-Di-(4-hydroxyphenyl)-p-diisopropylbenzol,
2,2-Di(3'-methyl-4'-hydroxyphenyl)-propan und
2,2-Di-(3'-chlor-4'-hydroxyphenyl)propan,
sowie insbesondere
2,2-Di-(4'-hydroxyphenyl)propan
2,2-Di(3',5-dichlordihydroxyphenyl)propan,
1,1-Di-(4'-hydroxyphenyl)cyclohexan,
3,4'-Dihydroxybenzophenon,
4,4'-Dihydroxydiphenylsulfon und
2,2-Di(3',5'-dimethyl-4'-hydroxyphenyl)propan
oder deren Mischungen bevorzugt.
Selbstverständlich kann man auch Mischungen von Polyalkylen­ terephthalaten und vollaromatischen Polyestern einsetzen. Diese enthalten im allgemeinen 20 bis 98 Gew.-% des Polyalkylentereph­ thalates und 2 bis 80 Gew.-% des vollaromatischen Polyesters.
Selbstverständlich können auch Polyesterblockcopolymere wie Copolyetherester verwendet werden. Derartige Produkte sind an sich bekannt und in der Literatur, z. B. in der US-A 3 651 014, beschrieben. Auch im Handel sind entsprechende Produkte erhält­ lich, z. B. Hytrel® (DuPont).
Als Komponente B) enthalten die Formmassen erfindungsgemäß ein oder eine Mischung aus zwei oder mehr unterschiedlichen Polycar­ bonaten. Bevorzugte erfindungsgemäße Formmassen enthalten von 1 bis 50 Gew.- %, bezogen auf das Gesamtgewicht der Formmassen der Komponente B. Besonders bevorzugt sind Formmassen gemäß der Er­ findung, die von 5 bis 40 Gew.-%, insbesondere von 5 bis 30 Gew.-%, bezogen auf das Gesamtgewicht der Formmassen, der Komponente B enthalten.
Bevorzugt werden als Komponente B halogenfreie Polycarbonate ein­ gesetzt. Geeignete halogenfreie Polycarbonate sind beispielsweise solche auf Basis von Diphenolen der allgemeinen Formel
worin Q eine Einfachbindung, eine C1- bis C8-Alkylen-, eine C2- bis C3-Alkyliden-, eine C3- bis C6-Cycloalkylidengruppe, eine C6- bis C12-Arylengruppe sowie -O-, -S- oder -SO2- bedeutet und m eine ganze Zahl von 0 bis 2 ist.
Die Diphenole können an den Phenylenresten auch Substituenten ha­ ben wie C1- bis C6-Alkyl oder C1- bis C6-Alkoxy.
Bevorzugte Diphenole der Formel sind beispielsweise Hydrochinon, Resorcin, 4,4'-Dihydroxydiphenyl, 2,2-Bis-(4-hydroxy­ phenyl)-propan, 2,4-Bis-(4-hydroxyphenyl)-2-methylbutan, 1,1-Bis-(4-hydroxyphenyl)-cyclohexan. Besonders bevorzugt sind 2,2-Bis-(4-hydroxyphenyl)-propan und 1,1-Bis-(4-hydroxy­ phenyl)-cyclohexan, sowie 1,1-Bis-(4-hydroxyphenyl)-3,3,5-tri­ methylcyclohexan.
Sowohl Homopolycarbonate als auch Copolycarbonate sind als Kompo­ nente B geeignet, bevorzugt sind neben dem Bisphenol A-Homopoly­ merisat die Copolycarbonate von Bisphenol A.
Die geeigneten Polycarbonate können in bekannter Weise verzweigt sein, und zwar vorzugsweise durch den Einbau von 0,05 bis 2,0 mol-%, bezogen auf die Summe der eingesetzten Diphenole, an mindestens trifunktionellen Verbindungen, beispielsweise solchen mit drei oder mehr als drei phenolischen OH-Gruppen.
Als besonders geeignet haben sich Polycarbonate erwiesen, die relative Viskositäten ηrel von 1,10 bis 1,50, insbesondere von 1,25 bis 1,40 aufweisen. Dies entspricht mittleren Molekularge­ wichten Mw (Gewichtsmittelwert) von 10 000 bis 200 000, vorzugs­ weise von 20 000 bis 80 000.
Die Diphenole der allgemeinen Formel sind an sich bekannt oder nach bekannten Verfahren herstellbar.
Die Herstellung der Polycarbonate kann beispielsweise durch Umsetzung der Diphenole mit Phosgen nach dem Phasengrenzflächen­ verfahren oder mit Phosgen nach dem Verfahren in homogener Phase (dem sogenannten Pyridinverfahren) erfolgen, wobei das jeweils einzustellende Molekulargewicht in bekannter Weise durch eine entsprechende Menge an bekannten Kettenabbrechern erzielt wird. (Bezüglich polydiorganosiloxanhaltigen Polycarbonaten siehe beispielsweise DE-OS 33 34 782).
Geeignete Kettenabbrecher sind beispielsweise Phenol, p-t-Butyl­ phenol aber auch langkettige Alkylphenole wie 4-(1,3-Tetramethyl­ butyl)-phenol, gemäß DE-OS 28 42 005 oder Monoalkylphenole oder Dialkylphenole mit insgesamt 8 bis 20 C-Atomen in den Alkylsub­ stituenten gemäß DE-A 35 06 472, wie p-Nonylphenyl, 3,5-di-t-Bu­ tylphenol, p-t-Octylphenol, p-Dodecylphenol, 2-(3,5-dimethyl-hep­ tyl)-phenol und 4-(3,5-Dimethylheptyl)-phenol.
Halogenfreie Polycarbonate im Sinne der vorliegenden Erfindung bedeutet, daß die Polycarbonate aus halogenfreien Diphenolen, halogenfreien Kettenabbrechern und gegebenenfalls halogenfreien Verzweigern aufgebaut sind, wobei der Gehalt an untergeordneten ppm-Mengen an verseifbarem Chlor, resultierend beispielsweise aus der Herstellung der Polycarbonate mit Phosgen nach dem Phasen­ grenzflächenverfahren, nicht als halogenhaltig im Sinne der Erfindung anzusehen ist. Derartige Polycarbonate mit ppm-Gehalten an verseifbarem Chlor sind halogenfreie Polycarbonate im Sinne vorliegender Erfindung.
Als Komponente C) enthalten die erfindungsgemäßen Formmassen 1 bis 40, vorzugsweise 5 bis 30 und insbesondere 10 bis 20 Gew.-% eines Phosphinsäuresalzes der Formel (I) und/oder eines Diphosp­ hinsäuresalzes der Formel (II) und/oder deren Polymere
wobei die Substituenten folgende Bedeutung haben:
R1, R2 Wasserstoff, C1- bis C6-Alkyl, vorzugsweise C1- bis C4-Al­ kyl, linear oder verzweigt, z. B. Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, tert.-Butyl, n-Pentyl; Phenyl; wobei bevorzugt mindestens ein Rest R1 oder R2, insbesondere R1 und R2 Wasserstoff ist;
R3 C1- bis C10-Alkylen, linear oder verzweigt, z. B. Methy­ len, Ethylen, n-Propylen, iso-Propylen, n-Butylen, tert.- Butylen, n-Pentylen, n-Octylen, n-Dodecylen;
Arylen, z. B. Phenylen, Naphthylen;
Alkylarylen, z. B. Methyl-phenylen, Ethyl-phenylen, tert.- Butyl-phenylen, Methyl-naphthylen, Ethyl-naphthylen, tert.-Butyl-naphthylen;
Arylalkylen, z. B. Phenyl-methylen, Phenyl-ethylen, Phe­ nyl-propylen, Phenyl-butylen;
M ein Erdalkali-, Alkalimetall, Al, Zn, Fe, Bor;
m eine ganze Zahl von 1 bis 3;
n eine ganze Zahl von 1 und 3 und
x 1 oder 2.
Besonders bevorzugt sind Verbindungen der Formel II, in denen R1 und R2 Wasserstoff ist, wobei M vorzugsweise Zn oder Al ist und Calciumphosphinat ganz besonders bevorzugt ist.
Derartige Produkte sind im Handel z. B. als Calciumphosphinat er­ hältlich.
Geeignete Salze der Formel I oder II, in denen nur ein Rest R1 oder R2 Wasserstoff bedeutet, sind z. B. Salze der Phenylphosphin­ säure, wobei deren Na- und/oder Ca-Salze bevorzugt sind.
Als Komponente D) können die erfindungsgemäßen thermoplastischen Formmassen 0 bis 40, bevorzugt 5 bis 30, und insbesondere 5 bis 15 Gew.-% eines stickstoffhaltigen Flammschutzmittels enthalten.
Das gemäß der Erfindung (Komponente D) bevorzugt geeignete Mela­ mincyanurat ist ein Reaktionsprodukt aus vorzugsweise äquimolaren Mengen von Melamin (Formel III) und Cyanursäure bzw. Isocyanur­ säure (Formeln IIIa und IIIb)
Man erhält es z. B. durch Umsetzung von wäßrigen Lösungen der Aus­ gangsverbindungen bei 90 bis 100°C. Das im Handel erhältliche Pro­ dukt ist ein weißes Pulver mit einer mittleren Korngröße d50 von 1,5-7 µm.
Weitere geeignete Verbindungen (oft auch als Salze oder Addukte bezeichnet) sind Melaminborat, -oxalat, -phosphat prim., -phos­ phat sec. und -pyrophosphat sec., Neopentylglycolborsäuremelamin sowie polymeres Melaminphosphat (CAS-Nr. 56386-64-2).
Geeignete Guanidinsalze sind
CAS-Nr.
G-carbonat 593-85-1
G-cyanurat prim. 70285-19-7
G-phosphat prim. 5423-22-3
G-phosphat sec. 5423-23-4
G-sulfat prim. 646-34-4
G-sulfat sec. 594-14-9
Pentaerythritborsäureguanidin N. A.
Neopentylglycolborsäureguanidin N. A.
Harnstoffphosphat grün 4861-19-2
Harnstoffcyanurat 57517-11-0
Ammelin 645-92-1
Ammelid 645-93-2
Melem 1502-47-2
Melon 32518-77-7
Unter Verbindungen im Sinne der vorliegenden Erfindung sollen so­ wohl z. B. Benzoguanamin selbst und dessen Addukte bzw. Salze als auch die am Stickstoff substituierten Derivate und dessen Addukte bzw. Salze verstanden werden.
Weiterhin geeignet sind Ammoniumpolyphosphat (NH4PO3)n mit n ca. 200 bis 1000 bevorzugt 600 bis 800, und Tris(hydroxyethyl)iso­ cyanurat (THEIC) der Formel IV
oder dessen Umsetzungsprodukte mit aromatischen Carbonsäuren Ar(COOH)m, welche gegebenenfalls in Mischung miteinander vorliegen können, wobei Ar ein ein-, zwei- oder dreikerniges aromatisches Sechsringsystem bedeutet und m 2, 3 oder 4 ist.
Geeignete Carbonsäuren sind beispielsweise Phthalsäure, Isoph­ thalsäure, Terephthalsäure, 1,3,5-Benzoltricarbonsäure, 1,2,4-Benzoltricarbonsäure, Pyromellithsäure, Mellophansäure, Prehnitsäure, 1-Naphthoesäure, 2-Naphthoesäure, Naphthalindicar­ bonsäuren und Anthracencarbonsäuren.
Die Herstellung erfolgt durch Umsetzung des Tris(hydroxy­ ethyl)isocyanurats mit den Säuren, ihren Alkylestern oder ihren Halogeniden gemäß den Verfahren der EP-A 584 567.
Derartige Umsetzungsprodukte stellen ein Gemisch von monomeren und oligomeren Estern dar, welche auch vernetzt sein können. Der Oligomerisierungsgrad beträgt üblicherweise 2 bis ca. 100, vor­ zugsweise 2 bis 20. Bevorzugt werden Mischungen von THEIC und/­ oder dessen Umsetzungsprodukte mit phosphorhaltigen Stickstoff­ verbindungen, insbesondere (NH4PO3)n oder Melaminpyrophosphat oder polymeres Melaminphosphat eingesetzt. Das Mischungsverhältnis z. B. von (NH4PO3)n zu THEIC beträgt vorzugsweise 90 bis 50 zu 10 bis 50, insbesondere 80 bis 50 zu 50 bis 20 Gew.-%, bezogen auf die Mischung derartiger Komponenten B).
Weiterhin geeignet sind Benzoguanamin-Verbindungen der Formel V
in der R,R' geradkettige oder verzweigte Alkylreste mit 1 bis 10 C-Atomen, bevorzugt Wasserstoff bedeutet und insbesondere deren Addukte mit Phosphorsäure, Borsäure und/oder Pyrophosphorsäure.
Bevorzugt sind ferner Allantoin-Verbindungen der Formel VI
wobei R,R' die in Formel V angegebene Bedeutung haben sowie deren Salze mit Phosphorsäure, Borsäure und/oder Pyrophosphorsäure so­ wie Glycolurile der Formel VII oder dessen Salze mit den obenge­ nannten Säuren
in der R die in Formel V genannte Bedeutung hat.
Geeignete Produkte sind im Handel oder gemäß DE-A 196 14 424 er­ hältlich.
Das gemäß der Erfindung verwendbare Cyanguanidin (Formel VIII) erhält man z. B. durch Umsetzung von Kalkstickstoff (Calciumcyan­ amid) mit Kohlensäure, wobei das entstehende Cyanamid bei pH 9 bis 10 zu Cyanguanidin dimerisiert.
Das im Handel erhältliche Produkt ist ein weißes Pulver mit einem Schmelzpunkt von 209°C bis 211°C.
Als Komponente E) können die erfindungsgemäßen Formmassen 0 bis 5, vorzugsweise 0,05 bis 3 und insbesondere 0,1 bis 2 Gew.-% min­ destens eines Esters oder Amids gesättigter oder ungesättigter aliphatischer Carbonsäuren mit 10 bis 40, bevorzugt 16 bis 22 C-Atomen mit aliphatischen gesättigten Alkoholen oder Aminen mit 2 bis 40, vorzugsweise 2 bis 6 C-Atomen enthalten.
Die Carbonsäuren können 1- oder 2-wertig sein. Als Beispiele sei­ en Pelargonsäure, Palmitinsäure, Laurinsäure, Margarinsäure, Do­ decandisäure, Behensäure und besonders bevorzugt Stearinsäure, Caprinsäure sowie Montansäure (Mischung von Fettsäuren mit 30 bis 40 C-Atomen) genannt.
Die aliphatischen Alkohole können 1- bis 4-wertig sein. Beispiele für Alkohole sind n-Butanol, n-Octanol, Stearylalkohol, Ethylen­ glykol, Propylenglykol, Neopentylglykol, Pentaerythrit, wobei Glycerin und Pentaerythrit bevorzugt sind.
Die aliphatischen Amine können 1- bis 3-wertig sein. Beispiele hierfür sind Stearylamin, Ethylendiamin, Propylendiamin, Hexa­ methylendiamin, Di(6-Aminohexyl)amin, wobei Ethylendiamin und Hexamethylendiamin besonders bevorzugt sind. Bevorzugte Ester oder Amide sind entsprechend Glycerindistearat, Glycerintri­ stearat, Ethylendiamindistearat, Glycerinmonopalmitrat, Glycerin­ trilaurat, Glycerinmonobehenat und Pentaerythrittetrastearat.
Es können auch Mischungen verschiedener Ester oder Amide oder Ester mit Amiden in Kombination eingesetzt werden, wobei das Mi­ schungsverhältnis beliebig ist.
Als Komponente F) können die erfindungsgemäßen Formmassen 0 bis 60, insbesondere bis zu 50 Gew.-% weiterer Zusatzstoffe und Ver­ arbeitungshilfsmittel enthalten, welche verschieden von C), D), E) sind.
Übliche Zusatzstoffe F) sind beispielsweise in Mengen bis zu 40, vorzugsweise bis zu 30 Gew.-% kautschukelastische Polymerisate (oft auch als Schlagzähmodifier, Elastomere oder Kautschuke be­ zeichnet).
Ganz allgemein handelt es sich dabei um Copolymerisate die bevor­ zugt aus mindestens zwei der folgenden Monomeren aufgebaut sind:
Ethylen, Propylen, Butadien, Isobuten, Isopren, Chloropren, Vinylacetat, Styrol, Acrylnitril und Acryl- bzw. Methacrylsäure­ ester mit 1 bis 18 C-Atomen in der Alkoholkomponente.
Derartige Polymere werden z. B. in Houben-Weyl, Methoden der orga­ nischen Chemie, Bd. 14/1 (Georg-Thieme-Verlag, Stuttgart, 1961), Seiten 392 bis 406 und in der Monographie von C. B. Bucknall, "Toughened Plastics" (Applied Science Publishers, London, 1977) beschrieben.
Im folgenden werden einige bevorzugte Arten solcher Elastomerer vorgestellt.
Bevorzugte Arten von solchen Elastomeren sind die sog. Ethylen- Propylen (EPM) bzw. Ethylen-Propylen-Dien-(EPDM)-Kautschuke.
EPM-Kautschuke haben im allgemeinen praktisch keine Doppelbindun­ gen mehr, während EPDM-Kautschuke 1 bis 20 Doppelbindungen/100 C- Atome aufweisen können.
Als Dien-Monomere für EPDM-Kautschuke seien beispielsweise konju­ gierte Diene wie Isopren und Butadien, nicht-konjugierte Diene mit 5 bis 25 C-Atomen wie Penta-1,4-dien, Hexa-1,4-dien, He­ xa-1,5-dien, 2,5-Dimethylhexa-1,5-dien und Octa-1,4-dien, cycli­ sche Diene wie Cyclopentadien, Cyclohexadiene, Cyclooctadiene und Dicyclopentadien sowie Alkenylnorbornene wie 5-Ethyliden-2-nor­ bornen, 5-Butyliden-2-norbornen, 2-Methallyl-5-norbornen, 2-Iso­ propenyl-5-norbornen und Tricyclodiene wie 3-Methyl-tri­ cyclo(5.2.1.0.2.6)-3,8-decadien oder deren Mischungen genannt. Bevorzugt werden Hexa-1,5-dien, 5-Ethylidennorbornen und Dicyclo­ pentadien. Der Diengehalt der EPDM-Kautschuke beträgt vorzugswei­ se 0,5 bis 50, insbesondere 1 bis 8 Gew.-%, bezogen auf das Ge­ samtgewicht des Kautschuks.
EPM- bzw. EPDM-Kautschuke können vorzugsweise auch mit reaktiven Carbonsäuren oder deren Derivaten gepfropft sein. Hier seien z. B. Acrylsäure, Methacrylsäure und deren Derivate, z. B. Glyci­ dyl(meth)acrylat, sowie Maleinsäureanhydrid genannt.
Eine weitere Gruppe bevorzugter Kautschuke sind Copolymere des Ethylens mit Acrylsäure und/oder Methacrylsäure und/oder den Estern dieser Säuren. Zusätzlich können die Kautschuke noch Di­ carbonsäuren wie Maleinsäure und Fumarsäure oder Derivate dieser Säuren, z. B. Ester und Anhydride, und/oder Epoxy-Gruppen enthal­ tende Monomere enthalten. Diese Dicarbonsäurederivate bzw. Epoxy­ gruppen enthaltende Monomere werden vorzugsweise durch Zugabe von Dicarbonsäure- bzw. Epoxygruppen enthaltenden Monomeren der all­ gemeinen Formeln I oder II oder III oder IV zum Monomerengemisch in den Kautschuk eingebaut
wobei R1 bis R9 Wasserstoff oder Alkylgruppen mit 1 bis 6 C-Atomen darstellen und m eine ganze Zahl von 0 bis 20, g eine ganze Zahl von 0 bis 10 und p eine ganze Zahl von 0 bis 5 ist.
Vorzugsweise bedeuten die Reste R1 bis R9 Wasserstoff, wobei m für 0 oder 1 und g für 1 steht. Die entsprechenden Verbindungen sind Maleinsäure, Fumarsäure, Maleinsäureanhydrid, Allylglycidylether und Vinylglycidylether.
Bevorzugte Verbindungen der Formeln I, II und IV sind Maleinsäu­ re, Maleinsäureanhydrid und Epoxygruppen enthaltende Ester der Acrylsäure und/oder Methacrylsäure, wie Glycidylacrylat, Glyci­ dylmethacrylat und die Ester mit tertiären Alkoholen, wie t-Bu­ tylacrylat. Letztere weisen zwar keine freien Carboxylgruppen auf, kommen in ihrem Verhalten aber den freien Säuren nahe und werden deshalb als Monomere mit latenten Carboxylgruppen bezeich­ net.
Vorteilhaft bestehen die Copolymeren aus 50 bis 98 Gew.-% Ethy­ len, 0,1 bis 20 Gew.-% Epoxygruppen enthaltenden Monomeren und/­ oder Methacrylsäure und/oder Säureanhydridgruppen enthaltenden Monomeren sowie der restlichen Menge an (Meth)acrylsäureestern.
Besonders bevorzugt sind Copolymerisate aus
50 bis 98, insbesondere 55 bis 95 Gew.-% Ethylen,
0,1 bis 40, insbesondere 0,3 bis 20 Gew.-% Glycidylacrylat und/­ oder Glycidylmethacrylat, (Meth)acrylsäure und/oder Maleinsäureanhydrid, und
1 bis 45, insbesondere 10 bis 40 Gew.-% n-Butylacrylat und/oder 2-Ethylhexylacrylat.
Weitere bevorzugte Ester der Acryl- und/oder Methacrylsäure sind die Methyl-, Ethyl-, Propyl- und i- bzw. t-Butylester.
Daneben können auch Vinylester und Vinylether als Comonomere ein­ gesetzt werden.
Die vorstehend beschriebenen Ethylencopolymeren können nach an sich bekannten Verfahren hergestellt werden, vorzugsweise durch statistische Copolymerisation unter hohem Druck und erhöhter Tem­ peratur. Entsprechende Verfahren sind allgemein bekannt.
Bevorzugte Elastomere sind auch Emulsionspolymerisate, deren Her­ stellung z. B. bei Blackley in der Monographie "Emulsion Polymeri­ zation" beschrieben wird. Die verwendbaren Emulgatoren und Kata­ lystoren sind an sich bekannt.
Grundsätzlich können homogen aufgebaute Elastomere oder aber sol­ che mit einem Schalenaufbau eingesetzt werden. Der schalenartige Aufbau wird durch die Zugabereihenfolge der einzelnen Monomeren bestimmt; auch die Morphologie der Polymeren wird von dieser Zug­ abereihenfolge beeinflußt.
Nur stellvertretend seien hier als Monomere für die Herstellung des Kautschukteils der Elastomeren Acrylate wie z. B. n-Butylacry­ lat und 2-Ethylhexylacrylat, entsprechende Methacrylate, Butadien und Isopren sowie deren Mischungen genannt. Diese Monomeren kön­ nen mit weiteren Monomeren wie z. B. Styrol, Acrylnitril, Vinyle­ thern und weiteren Acrylaten oder Methacrylaten wie Methylmetha­ crylat, Methylacrylat, Ethylacrylat und Propylacrylat copolymeri­ siert werden.
Die Weich- oder Kautschukphase (mit einer Glasübergangstemperatur von unter 0°C) der Elastomeren kann den Kern, die äußere Hülle oder eine mittlere Schale (bei Elastomeren mit mehr als zweischa­ ligem Aufbau) darstellen; bei mehrschaligen Elastomeren können auch mehrere Schalen aus einer Kautschukphase bestehen.
Sind neben der Kautschukphase noch eine oder mehrere Hartkompo­ nenten (mit Glasübergangstemperaturen von mehr als 20°C) am Aufbau des Elastomeren beteiligt, so werden diese im allgemeinen durch Polymerisation von Styrol, Acrylnitril, Methacrylnitril, α-Me­ thylstyrol, p-Methylstyrol, Acrylsäureestern und Methacrylsäuree­ stern wie Methylacrylat, Ethylacrylat und Methylmethacrylat als Hauptmonomeren hergestellt. Daneben können auch hier geringere Anteile an weiteren Comonomeren eingesetzt werden.
In einigen Fällen hat es sich als vorteilhaft herausgestellt, Emulsionspolymerisate einzusetzen, die an der Oberfläche reaktive Gruppen aufweisen. Derartige Gruppen sind z. B. Epoxy-, Carboxyl-, latente Carboxyl-, Amino- oder Amidgruppen sowie funktionelle Gruppen, die durch Mitverwendung von Monomeren der allgemeinen Formel
eingeführt werden können,
wobei die Substituenten folgende Bedeutung haben können:
R10 Wasserstoff oder eine C1- bis C4-Alkylgruppe,
R11 Wasserstoff, eine C1- bis C8-Alkylgruppe oder eine Arylgruppe, insbesondere Phenyl,
R12 Wasserstoff, eine C1- bis C10-Alkyl-, eine C6- bis C12-Aryl­ gruppe oder -OR13,
R13 eine C1- bis C8-Alkyl- oder C6- bis C12-Arylgruppe, die gege­ benenfalls mit O- oder N-haltigen Gruppen substituiert sein können,
X eine chemische Bindung, eine C1- bis C10-Alkylen- oder C6- C12-Arylengruppe oder
Y O-Z oder NH-Z und
Z eine C1- bis C10-Alkylen- oder C6- bis C12-Arylengruppe.
Auch die in der EP-A 208 187 beschriebenen Pfropfmonomeren sind zur Einführung reaktiver Gruppen an der Oberfläche geeignet.
Als weitere Beispiele seien noch Acrylamid, Methacrylamid und substituierte Ester der Acrylsäure oder Methacrylsäure wie (N-t- Butylamino)-ethylmethacrylat, (N,N-Dimethylamino)ethylacrylat, (N,N-Dimethylamino)-methylacrylat und (N,N-Diethylamino)ethyla­ crylat genannt.
Weiterhin können die Teilchen der Kautschukphase auch vernetzt sein. Als Vernetzer wirkende Monomere sind beispielsweise Bu­ ta-1,3-dien, Divinylbenzol, Diallylphthalat und Dihydrodicyclo­ pentadienylacrylat sowie die in der EP-A 50 265 beschriebenen Verbindungen.
Ferner können auch sogenannten pfropfvernetzende Monomere (graft­ linking monomers) verwendet werden, d. h. Monomere mit zwei oder mehr polymerisierbaren Doppelbindungen, die bei der Polymerisati­ on mit unterschiedlichen Geschwindigkeiten reagieren. Vorzugswei­ se werden solche Verbindungen verwendet, in denen mindestens eine reaktive Gruppe mit etwa gleicher Geschwindigkeit wie die übrigen Monomeren polymerisiert, während die andere reaktive Gruppe (oder reaktive Gruppen) z. B. deutlich langsamer polymerisiert (polymerisieren). Die unterschiedlichen Polymerisationsgeschwin­ digkeiten bringen einen bestimmten Anteil an ungesättigten Dop­ pelbindungen im Kautschuk mit sich. Wird anschließend auf einen solchen Kautschuk eine weitere Phase aufgepfropft, so reagieren die im Kautschuk vorhandenen Doppelbindungen zumindest teilweise mit den Pfropfmonomeren unter Ausbildung von chemischen Bindun­ gen, d. h. die aufgepfropfte Phase ist zumindest teilweise über chemische Bindungen mit der Pfropfgrundlage verknüpft.
Beispiele für solche pfropfvernetzende Monomere sind Allylgruppen enthaltende Monomere, insbesondere Allylester von ethylenisch un­ gesättigten Carbonsäuren wie Allylacrylat, Allylmethacrylat, Diallylmaleat, Diallylfumarat, Diallylitaconat oder die entspre­ chenden Monoallylverbindungen dieser Dicarbonsäuren. Daneben gibt es eine Vielzahl weiterer geeigneter pfropfvernetzender Monome­ rer; für nähere Einzelheiten sei hier beispielsweise auf die US-PS 4 148 846 verwiesen.
Im allgemeinen beträgt der Anteil dieser vernetzenden Monomeren an dem schlagzäh modifizierenden Polymer bis zu 5 Gew.-%, vor­ zugsweise nicht mehr als 3 Gew.-%, bezogen auf das schlagzäh mo­ difizierende Polymere.
Nachfolgend seien einige bevorzugte Emulsionspolymerisate aufge­ führt. Zunächst sind hier Pfropfpolymerisate mit einem Kern und mindestens einer äußeren Schale zu nennen, die folgenden Aufbau haben:
Diese Pfropfpolymerisate, insbesondere ABS- und/oder ASA-Polymere in Mengen bis zu 40 Gew.-%, werden vorzugsweise zur Schlagzäh­ modifizierung von PBT, gegebenenfalls in Mischung mit bis zu 40 Gew.-% Polyethylenterephthalat eingesetzt. Entsprechende Blend-Produkte sind unter dem Warenzeichen Ultradur®S (ehemals Ultrablend®S der BASF AG) erhältlich.
Anstelle von Pfropfpolymerisaten mit einem mehrschaligen Aufbau können auch homogene, d. h. einschalige Elastomere aus Bu­ ta-1,3-dien, Isopren und n-Butylacrylat oder deren Copolymeren eingesetzt werden. Auch diese Produkte können durch Mitverwendung von vernetzenden Monomeren oder Monomeren mit reaktiven Gruppen hergestellt werden.
Beispiele für bevorzugte Emulsionspolymerisate sind n-Butylacry­ lat/(Meth)acrylsäure-Copolymere, n-Butylacrylat/Glycidylacrylat- oder n-Butylacrylat/Glycidylmethacrylat-Copolymere, Pfropfpolyme­ risate mit einem inneren Kern aus n-Butylacrylat oder auf Buta­ dienbasis und einer äußeren Hülle aus den vorstehend genannten Copolymeren und Copolymere von Ethylen mit Comonomeren, die reak­ tive Gruppen liefern.
Die beschriebenen Elastomere können auch nach anderen üblichen Verfahren, z. B. durch Suspensionspolymerisation, hergestellt wer­ den.
Siliconkautschuke, wie in der DE-A 37 25 576, der EP-A 235 690, der DE-A 38 00 603 und der EP-A 319 290 beschrieben, sind eben­ falls bevorzugt.
Selbstverständlich können auch Mischungen der vorstehend aufge­ führten Kautschuktypen eingesetzt werden.
Als faser- oder teilchenförmige Füllstoffe seien Kohlen­ stoffasern, Glasfasern, Glaskugeln, amorphe Kieselsäure, Asbest, Calciumsilicat, Calciummetasilicat, Magnesiumcarbonat, Kaolin, Kreide, gepulverter Quarz, Glimmer, Bariumsulfat und Feldspat ge­ nannt, die in Mengen bis zu 50 Gew.-%, insbesondere bis zu 40% eingesetzt werden.
Als bevorzugte faserförmige Füllstoffe seien Kohlenstoffasern, Aramid-Fasern und Kaliumtitanat-Fasern genannt, wobei Glasfasern als E-Glas besonders bevorzugt sind. Diese können als Rovings oder Schnittglas in den handelsüblichen Formen eingesetzt werden.
Die faserförmigen Füllstoffe können zur besseren Verträglichkeit mit dem Thermoplasten mit einer Silanverbindung oberflächlich vorbehandelt sein.
Geeignete Silanverbindungen sind solche der allgemeinen Formel
(X-(CH2)n)k-Si-(O-CmH2m+1)2-k
in der die Substituenten folgende Bedeutung haben:
n eine ganze Zahl von 2 bis 10, bevorzugt 3 bis 4
m eine ganze Zahl von 1 bis 5, bevorzugt 1 bis 2
k eine ganze Zahl von 1 bis 3, bevorzugt 1.
Bevorzugte Silanverbindungen sind Aminopropyltrimethoxysilan, Aminobutyltrimethoxysilan, Aminopropyltriethoxysilan, Aminobutyl­ triethoxysilan sowie die entsprechenden Silane, welche als Substituent X eine Glycidylgruppe enthalten.
Die Silanverbindungen werden im allgemeinen in Mengen von 0,05 bis 5, vorzugsweise 0,5 bis 1,5 und insbesondere 0,8 bis 1 Gew.-% (bezogen auf F) zur Oberflächenbeschichtung eingesetzt.
Geeignet sind auch nadelförmige mineralische Füllstoffe.
Unter nadelförmigen mineralischen Füllstoffen wird im Sinne der Erfindung ein mineralischer Füllstoff mit stark ausgeprägtem nadelförmigen Charakter verstanden. Als Beispiel sei nadelförmi­ ger Wollastonit genannt. Vorzugsweise weist das Mineral ein L/D-(Länge/Durchmesser)-Verhältnis von 8 : 1 bis 35 : 1, bevor­ zugt von 8 : 1 bis 11 : 1 auf. Der mineralische Füllstoff kann gegebenenfalls mit den vorstehend genannten Silanverbindungen vorbehandelt sein; die Vorbehandlung ist jedoch nicht unbedingt erforderlich.
Als weitere Füllstoffe seien Kaolin, calciniertes Kaolin, Wollastonit, Talkum und Kreide genannt.
Als Komponente F) können die erfindungsgemäßen thermoplastischen Formmassen übliche Verarbeitungshilfsmittel wie Stabilisatoren, Oxidationsverzögerer, Mittel gegen Wärmezersetzung und Zersetzung durch ultraviolettes Licht, Gleit- und Entformungsmittel, Färbe­ mittel wie Farbstoffe und Pigmente, Keimbildungsmittel, Weichma­ cher usw. enthalten.
Als Beispiele für Oxidationsverzögerer und Wärmestabilisatoren sind sterisch gehinderte Phenole und/oder Phosphite, Hydrochi­ none, aromatische sekundäre Amine wie Diphenylamine, verschiedene substituierte Vertreter dieser Gruppen und deren Mischungen in Konzentrationen bis zu 1 Gew.-%, bezogen auf das Gewicht der thermoplastischen Formmassen genannt.
Als UV-Stabilisatoren, die im allgemeinen in Mengen bis zu 2 Gew.-%, bezogen auf die Formmasse, verwendet werden, seien ver­ schiedene substituierte Resorcine, Salicylate, Benzotriazole und Benzophenone genannt.
Es können anorganische Pigmente, wie Titandioxid, Ultramarinblau, Eisenoxid und Ruß, weiterhin organische Pigmente, wie Phthalo­ cyanine, Chinacridone, Perylene sowie Farbstoffe, wie Nigrosin und Anthrachinone als Farbmittel zugesetzt werden.
Als Keimbildungsmittel können Natriumphenylphosphinat, Aluminium­ oxid, Siliziumdioxid sowie bevorzugt Talkum eingesetzt werden.
Gleit- und Entformungsmittel, welche verschieden von E) sind wer­ den üblicherweise in Mengen bis zu 1 Gew.-% eingesetzt. Es sind bevorzugt langkettige Fettsäuren (z. B. Stearinsäure oder Behen­ säure), deren Salze (z. B. Ca- oder Zn-Stearat) oder Montanwachse (Mischungen aus geradkettigen, gesättigten Carbonsäuren mit Ket­ tenlängen von 28 bis 32 C-Atomen) sowie niedermolekulare Poly­ ethylen- bzw. Polypropylenwachse.
Als Beispiele für Weichmacher seien Phthalsäuredioctylester, Phthalsäuredibenzylester, Phthalsäurebutylbenzylester, Kohlen­ wasserstofföle, N-(n-Butyl)benzolsulfonamid genannt.
Die erfindungsgemäßen Formmassen können noch 0 bis 2 Gew.-% fluorhaltige Ethylenpolymerisate enthalten. Hierbei handelt es sich um Polymerisate des Ethylens mit einem Fluorgehalt von 55 bis 76 Gew.-%, vorzugsweise 70 bis 76 Gew.-%.
Beispiele hierfür sind Polytetrafluorethylen (PTFE), Tetrafluore­ thylen-hexafluorpropylen-Copolymere oder Tetrafluorethylen-Copo­ lymerisate mit kleineren Anteilen (in der Regel bis zu 50 Gew.-%) copolymerisierbarer ethylenisch ungesättigter Monomerer. Diese werden z. B. von Schildknecht in "Vinyl and Related Polymers", Wiley-Verlag, 1952, Seite 484 bis 494 und von Wall in "Fluorpoly­ mers" (Wiley Interscience, 1972) beschrieben.
Diese fluorhaltigen Ethylenpolymerisate liegen homogen verteilt in den Formmassen vor und weisen bevorzugt eine Teilchengröße d50 (Zahlenmittelwert) im Bereich von 0,05 bis 10 µm, insbesondere von 0,1 bis 5 µm auf. Diese geringen Teilchengrößen lassen sich besonders bevorzugt durch Verwendung von wäßrigen Dispersionen von fluorhaltigen Ethylenpolymerisaten und deren Einarbeitung in eine Polyesterschmelze erzielen.
Die erfindungsgemäßen thermoplastischen Formmassen können nach an sich bekannten Verfahren hergestellt werden, in dem man die Aus­ gangskomponenten in üblichen Mischvorrichtungen wie Schnecken­ extrudern, Brabender-Mühlen oder Banbury-Mühlen mischt und an­ schließend extrudiert. Nach der Extrusion kann das Extrudat abge­ kühlt und zerkleinert werden. Es können auch einzelne Komponenten vorgemischt werden und dann die restlichen Ausgangsstoffe einzeln und/oder ebenfalls gemischt hinzugegeben werden. Die Mischtempe­ raturen liegen in der Regel bei 230 bis 290°C.
Nach einer bevorzugten Arbeitsweise können die Komponenten B) bis D) sowie gegebenenfalls übliche Zusatzstoffe E) mit einem Poly­ esterpräpolymeren gemischt, konfektioniert und granuliert werden. Das erhaltene Granulat wird in fester Phase anschließend unter Inertgas kontinuierlich oder diskontinuierlich bei einer Temperatur unterhalb des Schmelzpunktes der Komponente A) bis zur gewünschten Viskosität kondensiert.
Die erfindungsgemäßen thermoplastischen Formmassen zeichnen sich durch eine geringere Migrationsneigung und gute Flammschutzeigen­ schaften aus. Die Verarbeitung erfolgt weitestgehend ohne Verän­ derung der Polymermatrix und der Formbelag wird stark reduziert. Sie eignen sich zur Herstellung von Fasern, Folien und Form­ körpern, insbesondere für Anwendungen im Elektro- und Elektronik­ bereich. Diese Anwendungen sind insbesondere Lampenteile wie Lam­ penfassungen und -halterungen, Stecker und Steckerleisten, Spu­ lenkörper, Gehäuse für Kondensatoren oder Schaltschütze sowie Si­ cherungsschalter, Relaisgehäuse und Reflektoren.
Beispiele
Komponente A/1: Polybutylenterephthalat mit einer Viskositätszahl von 130 ml/g und einem Carboxylendgruppengehalt von 34 mval/kg (Ultradur® B 4520 der BASF AG) (VZ gemessen in 0,5 gew.-%iger Lösung aus Phenol/o-Dichlorbenzol), 1 : 1-Mischung bei 25°C, enthal­ tend 0,7 Gew.-% Pentaerythrittetrastearat (Komponente E), bezogen auf 100 Gew. -% A).
Komponente A/2: Polyethylenterephthalat mit einer VZ von 76 ml/g
Komponente B/1: Polycarbonat mit einer VZ von 59 ml/g, (auf Bisp­ henol-A-Basis) gemessen in Phenol/Dichlorbenzol (1 : 1) (Lexan® der Firma General Electric Plastics).
Komponente B/2: Polycarbonat (auf Bisphenol-A-Basis), Mahlgut aus Extrusionsabfällen mit einer VZ von 65 ml/g
Komponente C: Ca(H2PO2)2
Komponente D: Melamincyanurat
Komponente F/1: Irgafos® PEPQ der Firma Ciba Geigy
Komponente F/2: Zinkphosphat
Komponente F/3: Schnittglasfaser mit einer Dicke von 10 µm (epoxi­ silanisierte Schlichte).
Die Komponenten A) bis F) wurden auf einem Zweischneckenextruder bei 250 bis 260°C abgemischt und in ein Wasserbad extrudiert. Nach Granulierung und Trocknung wurden auf einer Spritzgußmaschine Prüfkörper gespritzt und geprüft.
Der Brandtest erfolgte nach UL 94 an 1/16- und 1/32-Zoll-Prüfkör­ pern mit üblicher Konditionierung. Die Migrationsneigung wurde am Stab nach Lagerung visuell untersucht durch Vergleich mit ungela­ gertem Stab. (Feuchtlagerung bei 85°C/85% Luftfeuchtigkeit über 7 Tage).
Die Zusammensetzung der Formmassen und die Ergebnisse der Messungen sind der Tabelle zu entnehmen.

Claims (8)

1. Thermoplastische Formmassen, enthaltend
  • A) 20 bis 98 Gew.-% eines Polyesters
  • B) 1 bis 50 Gew.-% eines Polycarbonats
  • C) 1 bis 40 Gew.-% eines Phosphinsäuresalzes der Formel I und/oder eines Diphosphinsäuresalzes der Formel II und/oder deren Polymere
    wobei die Substituenten folgende Bedeutung haben:
    R1, R2 ein linearer oder verzweigter C1- bis C6-Alkylrest, Phenylrest, Wasserstoff,
    R3 ein linearer oder verzweigter C1- bis C10-Alkylen­ rest, Arylen-, Alkylarylen- oder Arylalkylenrest,
    M Erdalkali-, Alkalimetall, Zn, Al, Fe, Bor,
    m eine ganze Zahl von 1 bis 3,
    n eine ganze Zahl von 1 und 3,
    x 1 oder 2;
  • D) 0 bis 40 Gew.-% eines stickstoffhaltigen Flammschutzmit­ tels
    E) 0 bis 5 Gew.-% mindestens eines Esters oder Amids ge­ sättigter oder ungesättigter aliphati­ scher Carbonsäuren mit 10 bis 40 C-Ato­ men mit aliphatischen gesättigten Alko­ holen oder Aminen mit 2 bis 40 C-Atomen
  • E) 0 bis 60 Gew.-% weiterer Zusatzstoffe,
wobei die Summe der Gewichtsprozente der Komponenten A) bis F) 100% ergibt.
2. Thermoplastische Formmassen nach Anspruch 1, enthaltend als Komponente A) Polyalkylenterephthalate, welche sich von Al­ kandiolen mit 2 bis 10 C-Atomen ableiten.
3. Thermoplastische Formmassen nach den Ansprüchen 1 oder 2, enthaltend Polybutylenterephthalat als Komponente A).
4. Thermoplastische Formmassen nach den Ansprüchen 1 bis 3, in denen die Komponente D) aus Melaminverbindungen aufgebaut ist.
5. Thermoplastische Formmassen nach den Ansprüchen 1 bis 3, in denen R1 und R2 Wasserstoff bedeutet und M für Calcium oder Aluminium in den allgemeinen Formeln I und II steht.
6. Verwendung der thermoplastischen Formmassen gemäß den Ansprü­ chen 1 bis 5, zur Herstellung von Fasern Folien und Form­ körpern.
7. Formkörper erhältlich aus den thermoplastischen Formmassen gemäß den Ansprüchen 1 bis 5.
DE1999104814 1999-02-05 1999-02-05 Flammgeschützte Polyester/Polycarbonatblends Withdrawn DE19904814A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE1999104814 DE19904814A1 (de) 1999-02-05 1999-02-05 Flammgeschützte Polyester/Polycarbonatblends

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1999104814 DE19904814A1 (de) 1999-02-05 1999-02-05 Flammgeschützte Polyester/Polycarbonatblends

Publications (1)

Publication Number Publication Date
DE19904814A1 true DE19904814A1 (de) 2000-08-10

Family

ID=7896610

Family Applications (1)

Application Number Title Priority Date Filing Date
DE1999104814 Withdrawn DE19904814A1 (de) 1999-02-05 1999-02-05 Flammgeschützte Polyester/Polycarbonatblends

Country Status (1)

Country Link
DE (1) DE19904814A1 (de)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003014212A1 (de) * 2001-08-07 2003-02-20 Basf Aktiengesellschaft Halogenfreie flammgeschützte polyester
DE10309385A1 (de) * 2003-03-03 2004-09-23 Clariant Gmbh Flammschutzmittel-Stabilisator-Kombination für thermoplastische Polymere
DE10331887A1 (de) * 2003-07-14 2005-02-17 Clariant Gmbh Flammschutzmittel-Zubereitung
WO2005059018A1 (en) * 2003-12-17 2005-06-30 General Electric Company Flame-retardant polyester composition
DE10359816A1 (de) * 2003-12-19 2005-07-28 Clariant Gmbh Flammschutzmittel-Stabilisator-Kombination für Polyester und Polyamide
EP1958950A1 (de) * 2003-12-19 2008-08-20 Clariant Produkte (Deutschland) GmbH Verwendung von Dialkylphosphinsäuresalzen
US7482398B2 (en) * 2003-07-14 2009-01-27 Clariant Produkte (Deutschland) Gmbh Elastic covering material having improved flame retardant properties and production thereof
DE102007041594A1 (de) * 2007-09-01 2009-03-05 Clariant International Limited Flammwidrige Polyestercompounds
DE102007061760A1 (de) 2007-12-20 2009-06-25 Bayer Materialscience Ag Flammgeschützte schlagzähmodifizierte Polyalkylenterephthalat/Polycarbonat-Zusammensetzungen
WO2010112375A1 (en) * 2009-03-31 2010-10-07 Dsm Ip Assets B.V. Polymer composition containing polybutylene terephthalate and flame retardant additives
US7812077B2 (en) 2003-12-17 2010-10-12 Sabic Innovative Plastics Ip B.V. Polyester compositions, method of manufacture, and uses thereof
US7829614B2 (en) 2008-12-30 2010-11-09 Sabic Innovative Plastics Ip B.V. Reinforced polyester compositions, methods of manufacture, and articles thereof
US8138244B2 (en) 2008-12-30 2012-03-20 Sabic Innovative Plastics Ip B.V. Reinforced polyester compositions, method of manufacture, and articles thereof
US8188172B2 (en) 2003-12-17 2012-05-29 Sabic Innovative Plastics Ip B.V. Polyester compositions, method of manufacture, and uses thereof
WO2013087584A1 (de) 2011-12-13 2013-06-20 Bayer Intellectual Property Gmbh Flammgeschützte polyalkylenterephthalat/polycarbonat-zusammensetzungen
US8680167B2 (en) 2006-01-27 2014-03-25 Sabic Innovative Plastics Ip B.V. Molding compositions containing fillers and modified polybutylene terephthalate (PBT) random copolymers derived from polyethylene terephthalate (PET)
US8686072B2 (en) 2010-06-29 2014-04-01 Sabic Innovative Plastics Ip B.V. Flame resistant polyester compositions, method of manufacture, and articles therof
US8716378B2 (en) 2010-06-29 2014-05-06 Sabic Innovative Plastics Ip B.V. Flame resistant polyester compositions, method of manufacture, and articles thereof
DE102013012618A1 (de) * 2013-07-23 2015-01-29 Vpw Nink Gmbh Kunststoffprofilplatte mit verbesserter Alterungsbeständigkeit

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ297838B6 (cs) * 2001-08-07 2007-04-11 Basf Aktiengesellschaft Termoplastické výchozí materiály pro výrobu plastu, zpusob jejich výroby a jejich pouzití
WO2003014212A1 (de) * 2001-08-07 2003-02-20 Basf Aktiengesellschaft Halogenfreie flammgeschützte polyester
US7169838B2 (en) 2001-08-07 2007-01-30 Basf Aktiengesellschaft Halogen-free flameproof polyester
DE10309385A1 (de) * 2003-03-03 2004-09-23 Clariant Gmbh Flammschutzmittel-Stabilisator-Kombination für thermoplastische Polymere
DE10309385B4 (de) * 2003-03-03 2007-01-18 Clariant Produkte (Deutschland) Gmbh Flammschutzmittel-Stabilisator-Kombination für thermoplastische Polymere und ihre Verwendung sowie flammfest ausgerüstete Kunststoff-Formmassen
DE10331887A1 (de) * 2003-07-14 2005-02-17 Clariant Gmbh Flammschutzmittel-Zubereitung
US7482398B2 (en) * 2003-07-14 2009-01-27 Clariant Produkte (Deutschland) Gmbh Elastic covering material having improved flame retardant properties and production thereof
US8034870B2 (en) 2003-12-17 2011-10-11 Sabic Innovative Plastics Ip B.V. Flame-retardant polyester composition
US8188172B2 (en) 2003-12-17 2012-05-29 Sabic Innovative Plastics Ip B.V. Polyester compositions, method of manufacture, and uses thereof
WO2005059018A1 (en) * 2003-12-17 2005-06-30 General Electric Company Flame-retardant polyester composition
US7812077B2 (en) 2003-12-17 2010-10-12 Sabic Innovative Plastics Ip B.V. Polyester compositions, method of manufacture, and uses thereof
US7635785B2 (en) 2003-12-19 2009-12-22 Clariant Deutschland GmbH Process for preparation of dialkylphosphinic salts
DE10359816A1 (de) * 2003-12-19 2005-07-28 Clariant Gmbh Flammschutzmittel-Stabilisator-Kombination für Polyester und Polyamide
EP1958950A1 (de) * 2003-12-19 2008-08-20 Clariant Produkte (Deutschland) GmbH Verwendung von Dialkylphosphinsäuresalzen
US8680167B2 (en) 2006-01-27 2014-03-25 Sabic Innovative Plastics Ip B.V. Molding compositions containing fillers and modified polybutylene terephthalate (PBT) random copolymers derived from polyethylene terephthalate (PET)
EP2031019A3 (de) * 2007-09-01 2010-04-28 Clariant Finance (BVI) Limited Flammwidrige Polyestercompounds
DE102007041594A1 (de) * 2007-09-01 2009-03-05 Clariant International Limited Flammwidrige Polyestercompounds
WO2009080244A1 (de) * 2007-12-20 2009-07-02 Bayer Materialscience Ag Flammgeschützte schlagzähmodifizierte polyalkylenterephthalat/polycarbonat-zusammensetzungen
DE102007061760A1 (de) 2007-12-20 2009-06-25 Bayer Materialscience Ag Flammgeschützte schlagzähmodifizierte Polyalkylenterephthalat/Polycarbonat-Zusammensetzungen
US7829614B2 (en) 2008-12-30 2010-11-09 Sabic Innovative Plastics Ip B.V. Reinforced polyester compositions, methods of manufacture, and articles thereof
US8138244B2 (en) 2008-12-30 2012-03-20 Sabic Innovative Plastics Ip B.V. Reinforced polyester compositions, method of manufacture, and articles thereof
WO2010112375A1 (en) * 2009-03-31 2010-10-07 Dsm Ip Assets B.V. Polymer composition containing polybutylene terephthalate and flame retardant additives
US8686072B2 (en) 2010-06-29 2014-04-01 Sabic Innovative Plastics Ip B.V. Flame resistant polyester compositions, method of manufacture, and articles therof
US8716378B2 (en) 2010-06-29 2014-05-06 Sabic Innovative Plastics Ip B.V. Flame resistant polyester compositions, method of manufacture, and articles thereof
WO2013087584A1 (de) 2011-12-13 2013-06-20 Bayer Intellectual Property Gmbh Flammgeschützte polyalkylenterephthalat/polycarbonat-zusammensetzungen
US8779039B2 (en) 2011-12-13 2014-07-15 Bayer Intellectual Property Gmbh Flame retardant polyalkylene terphthalate/polycarbonate compositions
DE102013012618A1 (de) * 2013-07-23 2015-01-29 Vpw Nink Gmbh Kunststoffprofilplatte mit verbesserter Alterungsbeständigkeit

Similar Documents

Publication Publication Date Title
EP1084181B1 (de) Flammgeschützte polyesterformmassen
EP1423460B1 (de) Halogenfreie flammgeschützte polyester
EP0932643B1 (de) Flammgeschützte formmassen
EP0736571B1 (de) Flammgeschützte thermoplastische Formmassen
DE19904814A1 (de) Flammgeschützte Polyester/Polycarbonatblends
DE19827845A1 (de) Flammgeschützte Polyesterformmassen
DE19820399A1 (de) Flammgeschützte Polyesterformmassen
DE19920276A1 (de) Thermoplastische Formmassen
EP1511808B1 (de) Flammgeschützte schwarze thermoplastische formmassen
EP1117735B1 (de) Flammgeschützte polyesterformmassen
WO2004041933A1 (de) Flammgeschützte formmassen
DE19930527A1 (de) Polyester/Polycarbonat Blends
EP2976385B1 (de) Polyester für profilextrusion und/oder rohrextrusion
EP1117739B1 (de) Flammgeschützte polyesterformmassen
EP0932642B1 (de) Flammgeschützte formmassen
DE19820401A1 (de) Flammgeschützte Polyesterformmassen
EP3033387B1 (de) Flammgeschützte polyester
EP0621305B1 (de) Verfahren zur Herstellung von flammgeschützten thermoplastischen Formmassen auf der Basis von Polyestern.
DE19820397A1 (de) Flammgeschützte Polyesterformmassen
DE102011087869A1 (de) Lasermarkierbare flammgeschützte Formkörper
DE19840274A1 (de) Glasverstärkte Polyesterformmassen
DE19920913A1 (de) Halogenhaltige flammgeschützte Polyester
WO1999064515A1 (de) Thermoplastische polyesterformmassen mit verbesserter stabilität
DE19913987A1 (de) Dimensionsstabile Polyester/Polycarbonat Blends
DE19900891A1 (de) Verfahren zur Herstellung von Polyesterblends

Legal Events

Date Code Title Description
8130 Withdrawal