WO2009067938A1 - Système et procédé de commande et de régulation de la vitesse d'une électrovanne hydraulique à débit proportionnel - Google Patents

Système et procédé de commande et de régulation de la vitesse d'une électrovanne hydraulique à débit proportionnel Download PDF

Info

Publication number
WO2009067938A1
WO2009067938A1 PCT/CN2008/073091 CN2008073091W WO2009067938A1 WO 2009067938 A1 WO2009067938 A1 WO 2009067938A1 CN 2008073091 W CN2008073091 W CN 2008073091W WO 2009067938 A1 WO2009067938 A1 WO 2009067938A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
electro
flow valve
proportional flow
current
Prior art date
Application number
PCT/CN2008/073091
Other languages
English (en)
French (fr)
Inventor
Peike Shi
Original Assignee
Sany Heavy Industry Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sany Heavy Industry Co., Ltd. filed Critical Sany Heavy Industry Co., Ltd.
Priority to KR1020107014359A priority Critical patent/KR101167281B1/ko
Priority to US12/744,929 priority patent/US20110024654A1/en
Priority to EP08854527A priority patent/EP2233990A4/en
Publication of WO2009067938A1 publication Critical patent/WO2009067938A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B19/00Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
    • F15B19/002Calibrating
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/26Automatic controllers electric in which the output signal is a pulse-train
    • G05B11/28Automatic controllers electric in which the output signal is a pulse-train using pulse-height modulation; using pulse-width modulation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41432Feedforward of current
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41435Adapt coefficients, parameters of feedforward
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42065Feedforward combined with pid feedback

Definitions

  • the invention relates to the technical field of hydraulic system flow control, in particular to an electro-hydraulic proportional flow valve speed control system and method.
  • the electro-hydraulic proportional flow valve is a hydraulic valve whose output is proportional to the input signal. It continuously and proportionally controls the pressure, flow and direction of the flow in a given input electrical signal.
  • the control of the speed of the hydraulic actuator is mostly used in two control systems, one The control system is where the speed accuracy is low.
  • the control system uses an open-loop speed control system consisting of PWM regulation technology and artificial rough observation.
  • Figure 1 is a schematic diagram of the above open loop control system. As shown in Fig.
  • the open loop control system includes a PWM generating device 11, an electro-hydraulic proportional flow valve 12, and a hydraulic actuator 13 in which an artificial visual observation speed is utilized.
  • a PWM generating device 11 In the process of controlling the speed, because of the low control quality requirements, the speed of the hydraulic actuator is visually observed by the operator, and the operator manually adjusts the PWM duty ratio to roughly adjust the actuator speed to meet the requirements.
  • the quality of the system control channel is low, and the speed of the hydraulic actuator needs to be adjusted by manual judgment, and the error is large.
  • the control system uses a closed-loop speed control system consisting of pulse width modulation (PWM) regulation technology and sensor measurement technology.
  • PWM pulse width modulation
  • 2 is a schematic diagram of the above closed loop control system.
  • the closed loop control system includes a PWM adjusting device 21, an electro-hydraulic proportional flow valve 22, a hydraulic actuator 23, and a speed measuring device 24.
  • the working principle of the electro-hydraulic proportional flow there is a specific relationship between the flow rate and the opening degree of the spool.
  • the current flowing through the spool of the electro-hydraulic proportional flow valve (hereinafter referred to as the spool current) has a specific relationship with the opening degree of the spool, and the flow rate can be obtained by the relationship between the current and the opening degree of the spool.
  • the relationship between the current and the PWM duty cycle has a certain relationship, so that the relationship between the PWM duty cycle and the flow rate can be derived. Therefore, in the process of controlling the speed of the hydraulic actuator, only the PWM adjustment device 21 needs to be adjusted. PWM duty cycle is OK
  • the hydraulic actuator 23 is caused to generate a corresponding displacement and speed, and the speed detecting means 24 compares the detected speed with the given speed to form a speed control closed loop control system.
  • the technical problem to be solved by the present invention is to provide an electro-hydraulic proportional flow valve speed control system and method, which can improve the quality of the forward control channel of the speed control system.
  • the present invention provides an electro-hydraulic proportional flow valve speed control system, comprising a PWM adjusting device, an electro-hydraulic proportional flow valve and a hydraulic actuator, wherein the PWM signal of the PWM adjusting device drives an electro-hydraulic proportional flow valve And driving the hydraulic actuator to operate, the system further comprises a displacement speed measuring module, an electro-hydraulic proportional flow valve characteristic measuring module and a feedforward control module, wherein the displacement speed measuring module measures the displacement or speed of the hydraulic actuator Sending the result to the electro-hydraulic proportional flow rate characteristic measuring module, wherein the electro-hydraulic proportional flow rate characteristic measuring module measures the minimum operating current, the maximum operating current, and the maximum speed of the hydraulic actuator of the electro-hydraulic proportional flow valve, and Transmitting the measurement result to the feedforward control module, wherein the feedforward control module generates a correspondence between the motion speed of the hydraulic actuator and the spool current by using the measurement result, and according to the correspondence, the feedforward control The module
  • the speed measuring module compares the measured speed of movement of the hydraulic actuator with a given speed of the system to obtain a speed error signal.
  • the system also includes a current regulation module for adjusting the speed error signal and inputting to the PWM adjustment device.
  • the system also includes a spool current sensing module, the spool current detecting device and the electro-hydraulic ratio
  • the spool of the flow valve is connected to form a spool current feedback control loop together with the PWM regulating device.
  • the present invention also provides an electro-hydraulic proportional flow valve speed control method, comprising: measuring a maximum operating speed of a hydraulic actuator, a maximum operating current of a spool of an electro-hydraulic proportional flow valve, and a minimum operating current;
  • the spool current control loop is driven by the spool current corresponding to the given speed of the system.
  • the measurement is an online or offline measurement.
  • the present invention has the following advantages:
  • the electro-hydraulic proportional flow valve speed control system of the invention performs inner loop current compensation and speed feedforward control of the speed control system by using spool current feedback and feedforward control method based on off-line measurement of electro-hydraulic proportional flow valve characteristics.
  • the response quality and control precision of the forward channel of the speed control system are greatly improved, and the adjustment amount of the speed feedback channel is reduced, thereby achieving the purpose of improving the quality of the closed loop control.
  • the corresponding relationship between the moving speed of the hydraulic actuator and the spool current can be determined, and then the system is given the speed control of the actuator.
  • the speed value is directly converted to the spool current reference value as a feedforward control signal, and is input to the spool current feedback control loop to drive the electro-hydraulic proportional flow valve to operate. Therefore, in the case where the speed accuracy requirement is low, the control quality of the open loop speed control system is improved.
  • FIG. 1 is a schematic diagram of an open loop control system in the prior art
  • FIG. 2 is a schematic diagram of a closed loop control system in the prior art
  • FIG. 3 is a schematic diagram of a speed control system of an electro-hydraulic proportional flow valve according to a first embodiment of the present invention
  • FIG. 4 is a graph showing a relationship between a spool current and a flow rate of an electro-hydraulic proportional flow valve
  • Figure 5 shows the relationship between the speed of the hydraulic actuator and the spool current of the electro-hydraulic proportional flow valve. line graph;
  • Figure 6 is a schematic diagram of the minimum operating current measurement process of the hydraulic actuator
  • Figure 7 is a schematic diagram of the maximum operating current measurement process of the hydraulic actuator
  • FIG. 8 is a schematic diagram of an electro-hydraulic proportional flow valve speed control system according to a second embodiment of the present invention
  • FIG. 9 is a schematic diagram of an electro-hydraulic proportional flow valve speed control system according to a third embodiment of the present invention.
  • the electro-hydraulic proportional flow valve speed control system includes a PWM adjusting device 34, an electro-hydraulic proportional flow valve 35, and a spool current detecting device 36, and a spool of the electro-hydraulic proportional flow valve 35.
  • the coil is coupled to the spool current sensing device 36 and forms a spool current feedback control loop with the PWM regulator 34.
  • the basic form of the PWM adjusting device 34 is an equivalent inductance and equivalent resistance of the electro-hydraulic proportional flow valve, a parallel freewheeling diode, connected to the power source via a high-power triode or a FET, and the PWM signal controls the conduction of the triode or the FET.
  • the voltage waveform of the electro-hydraulic proportional flow valve coil is a rectangular wave with a certain period and adjustable pulse width. Since the pulse period is much smaller than the response period of the hydraulic system, and the working principle of the electro-hydraulic proportional flow valve, the electro-hydraulic proportional flow The flow rate of the valve (corresponding to the speed of movement of the hydraulic actuator) is only responsive to the average of the spool current.
  • the spool current detecting device 36 compares the detected spool current with the spool given current, and the compared difference is converted by the PWM adjusting device 34 into a PWM output signal having a corresponding duty ratio to form a driving electro-hydraulic proportional flow valve.
  • the spool current of 35 follows the given current value, which can suppress the influence of factors such as power supply voltage fluctuation and uneven distribution of valve core resistance on the spool current.
  • the electro-hydraulic proportional flow rate control system of the present invention further includes an electro-hydraulic proportional flow rate characteristic measuring module 32, a displacement speed measuring module 38, and a feedforward control module 31.
  • the properties of the displacement and velocity parameters are the same. The following is only an example of speed.
  • Displacement speed measurement module 38 to hydraulic actuator 37 The parameters such as speed or displacement are measured, and the result is sent to the electro-hydraulic proportional flow valve characteristic measuring module 32.
  • the electro-hydraulic proportional flow valve characteristic measuring module 32 performs offline measurement on the minimum operating current Imin of the electro-hydraulic proportional flow valve, the maximum operating current Imax, and the maximum speed MaxSpeed of the hydraulic actuator, and transmits the measurement result to the feedforward control module 31.
  • the feedforward control module 31 uses the test result of the electro-hydraulic proportional flow valve characteristic measuring module 32 to generate a database list of the correspondence between the moving speed of the hydraulic actuator and the spool current.
  • the actuator speed control is performed, the given speed value of the system is directly converted into the spool current reference value as a feedforward control signal, and is input to the spool current feedback control loop to drive the electro-hydraulic proportional flow valve to operate.
  • a current adjustment module 33 is further included, and the speed signal output by the system given speed signal and the displacement speed measuring module 38 is compared in the comparator, and the obtained speed control error signal input is obtained.
  • Current regulation module 33 controls the speed control error signal and mixes it with the feedforward control signal to input to the spool current feedback control circuit.
  • the current regulation module 33 complements the feedforward control function to further improve system control accuracy.
  • the key point of the electro-hydraulic proportional flow valve speed control system of the present invention is to utilize a feedforward control mode, which can reduce the dependence on the closed loop speed control loop, thereby improving the control precision of the speed control.
  • the basis of the feedforward control method is to obtain the corresponding relationship between the spool current and the speed of the hydraulic actuator.
  • the working principle of the flow-type electro-hydraulic proportional flow valve, the flow rate of the electro-hydraulic proportional flow valve corresponds to the operating speed of the actuator, and the flow rate corresponding to a certain spool current is determined by the following three parameters: 1.
  • the minimum operating current Imin of the spool When the spool current reaches this value, there is a small flow rate in the electro-hydraulic proportional flow valve, the actuator starts to move slightly, and the flow rate is less than this value. 2.
  • the maximum operating current Imax of the spool when the spool current reaches this value, the spool is just right. Open to maximum, continue to increase the spool current It can increase the flow rate, and when the spool current is reduced from this value, the flow rate can be reduced accordingly. 3.
  • the maximum speed of the actuator is Maxspeed, which corresponds to the maximum flow Maxflow of the electro-hydraulic proportional flow valve.
  • the operating speed of the hydraulic actuator is proportional to the flow rate of the electro-hydraulic proportional flow valve, and according to the characteristics of the electro-hydraulic proportional flow valve, the electro-hydraulic proportional flow valve flow and the spool current from Imin
  • the relationship between Imax and Imax is shown in the curve in Fig. 4.
  • the hydraulic actuator shown in Fig. 5 can be derived.
  • the spool current shown in Figure 5 has a strong practical significance in relation to the actuator speed in the range of Imin to Imax. As shown in Fig. 5, in the range from Imin to Imax, there is a linear relationship between the electro-hydraulic proportional flow valve spool current and the moving speed of the hydraulic actuator. Obtaining this linear relationship curve, the hydraulic actuator speed can be known. Corresponding relationship curve with the electro-hydraulic proportional flow valve spool current, and then the equation formula of the corresponding relationship between the hydraulic actuator speed and the electro-hydraulic proportional flow valve spool current.
  • the formula is built in the feedforward control module 31, and the corresponding electro-hydraulic proportional flow valve spool current can be directly calculated in the built-in formula of the feedforward control module 31 by a given speed value, and the PWM current is directly used to drive the PWM.
  • the regulating device 34 and the electro-hydraulic proportional flow valve 35 enable precise control of the speed of the hydraulic actuator without relying on speed feedback.
  • the electro-hydraulic proportional flow valve characteristic measuring module 32 in the electro-hydraulic proportional flow valve speed control system of the present invention is an offline working module, that is, the electro-hydraulic proportional flow valve characteristic measuring module 32 is for Imin of the electro-hydraulic proportional flow valve.
  • the Imax and Maxspeed characteristic tests and normal speed control are performed separately in time.
  • FIG. 6 is a schematic diagram of the minimum operating current measurement process of the hydraulic actuator.
  • step 601 is first executed, and the preset minimum operating current Imin is an empirical value of a minimum operating current, for example, 290 mA.
  • the purpose of the method is to capture the minimum operating current faster in the vicinity of the empirical value, and pre- Set the value range of the valve current of the electro-hydraulic proportional flow valve [LowLimit, HighLimit] to [lmA, 999 mA], and the actual electro-hydraulic proportional flow valve spool current will not exceed this range.
  • the electro-hydraulic proportional flow valve spool current driving hydraulic system that outputs the Imin value operates for a period of time, such as: 30 seconds (step 602); continuously measures the displacement or speed of the hydraulic actuator to determine whether it is in motion (step 603). If there is action, it can be concluded that the minimum operating current of the electro-hydraulic proportional flow valve spool will not be greater than when The former Imin value adjusts the HighLimit value in the value area to the current Imin value (step 604); otherwise, adjusts LowLimit to the current Imin value (step 605).
  • step 607 it is judged whether HighLimit and LowLimit are close enough, for example: the difference is less than or equal to 1 mA (step 607); if it is small enough, the current value of Imin is set to the minimum action current value, and the minimum action current is off-line measurement (step 608) Otherwise adjust the value of Imin (step 606), starting from the preset minimum current experience value, and doing a incremental or decremental search with a fixed current difference (this difference can be called a step size, for example, 16 mA), when determining the minimum When the operating current should be within a certain step, the intermediate value loop is searched in this step to reduce the spool current value area until the value is small enough.
  • a step size for example, 16 mA
  • Figure 7 is a schematic diagram of the maximum operating current measurement process of the hydraulic actuator.
  • the maximum rated current value that the electro-hydraulic proportional flow valve spool coil can withstand is set as the maximum operating current value of the spool (step 701), and the current value is necessarily greater than the actual maximum operating current of the spool. value.
  • the maximum current value is then used to drive the hydraulic system to operate (step 702).
  • the method for determining the reduction of the spool current may be such that a larger value can be taken after the maximum speed test is completed, causing the spool current to drop to near the maximum operating current. In other embodiments, the spool current is reduced. A smaller value can be taken, for example 20 mA.
  • a speed Speed value corresponding to the spool current value can be obtained (step 705). It is then determined whether the Speed is significantly less than the maximum speed MaxSpeed, for example less than 0.8 times the MaxSpeed value (step 707), and if so, the speed Speed value and the spool current value Imax' at the moment are recorded. According to the linear equation:
  • Imax Imin+ ( Imax'- Imin ) * MaxSpeed/Speed
  • the maximum operating current Imax is solved (step 708) and the test is completed. Otherwise continue to reduce the electro-hydraulic proportional flow valve spool current (step 706) and perform a new round of speed test until the conditions are met.
  • FIG. 8 is a schematic diagram of a speed control system for an electro-hydraulic proportional flow valve according to a second embodiment of the present invention.
  • the electro-hydraulic proportional flow valve speed control system of the present embodiment is different from the electro-hydraulic proportional flow valve speed control system shown in FIG. 3 in that the current regulating module 33 and the speed of the hydraulic actuator are removed.
  • the speed control error between the given speed and the given speed is directly input to the feedforward control signal mix.
  • the current regulating module 33 is omitted, in the application where the accuracy requirement is not very high, the feedforward control function of the present invention mainly depends on the control accuracy requirement.
  • FIG. 9 is a schematic diagram of a speed control system of an electro-hydraulic proportional flow valve according to a third embodiment of the present invention.
  • the difference from the electro-hydraulic proportional flow valve speed control system shown in FIG. 3 is that the spool current detecting module 36 is removed, so that It becomes a single closed-loop electro-hydraulic proportional flow valve speed control system with feedforward control function, which is different from the double closed loop system with two closed-loop systems of current and displacement (speed) shown in Fig. 3.
  • the control effect of the feedforward control mode is enhanced, and even a single closed-loop control system can achieve relatively high control accuracy.
  • the electro-hydraulic proportional flow valve characteristic measuring module 32, the feedforward control module 31 and the current regulating module of the electro-hydraulic proportional flow valve speed control system of the invention can be realized by software.
  • the electro-hydraulic proportional flow valve speed control system of the invention performs inner loop current compensation and speed feedforward control of the speed control system by using spool current feedback and feedforward control method based on off-line measurement of electro-hydraulic proportional flow valve characteristics.
  • the response quality and control precision of the forward channel of the speed control system are greatly improved, and the adjustment amount of the speed feedback channel is reduced, thereby achieving the purpose of improving the quality of the closed loop control.
  • a way to improve the quality of coordinated control is provided.
  • the multi-section boom is required to coordinate the action together, which is a superposition of a plurality of speed control systems, which requires that the speed of each boom can be accurately controlled.
  • the response speed should be as fast as possible, and the above control system can achieve this function well.
  • the values of various characteristic parameters of the electro-hydraulic proportional flow valve will change.
  • the new parameter value can be quickly determined by performing an electro-hydraulic proportional flow valve characteristic measurement module to recover and improve.
  • the system controls the quality.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Magnetically Actuated Valves (AREA)
  • Flow Control (AREA)
  • Servomotors (AREA)
  • Control Of Transmission Device (AREA)

Description

电液比例流量阀调速控制系统和方法
本申请要求于 2007 年 11 月 28 日提交中国专利局、 申请号为 200710168189.5、 发明名称为"电液比例流量阀调速控制系统和方法"的中国专 利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及液压系统流量控制技术领域,特别涉及一种电液比例流量阀调 速控制系统和方法。
背景技术
电液比例流量阀是一种输出量与输入信号成比例的液压阀。它可以按给定 的输入电信号连续地、 按比例地控制液流的压力、 流量和方向。 目前, 在利用 电液比例流量阀输出流量来控制液压执行元件(包括液压缸、 液压马达)动作 的过程中, 特别是控制液压执行元件的速度方面, 大多釆用了两种控制系统, 一种控制系统是对速度精度要求较低的场合, 控制系统釆用由 PWM调节技术 和人为粗略观测等组成的开环调速控制系统。图 1为上述开环控制系统示意图。 如图 1所示, 该开环控制系统包括 PWM产生装置 11、 电液比例流量阀 12、 液压 执行元件 13 , 该系统中利用人为视觉观测速度。 在控制速度的过程中, 因为对 控制品质的要求较低,人为视觉观测液压执行元件的速度, 由操作者手工调整 PWM占空比粗略调整执行机构速度以满足要求。 上述开环调速控制系统中, 系统控制通道品质较低, 液压执行元件的速度需要依赖人工的判断来进行调 整, 误差较大。
另一种是对速度精度要求较高的场合, 控制系统釆用由脉宽调制( PWM ) 调节技术和传感器测量技术等组成的闭环调速控制系统。 图 2为上述闭环控制 系统示意图, 如图 2所示, 该闭环控制系统包括 PWM调节装置 21、 电液比例流 量阀 22、液压执行元件 23和速度测量装置 24。根据电液比例流量阃的工作原理, 流量与阀芯开口度之间具有特定的关系。而流过电液比例流量阀的阀芯线圈的 电流(以下简称阀芯电流)与阀芯开口度之间又具有特定关系, 通过所述电流 与阀芯开口度的关系, 就可以得到流量与电流的关系, 而电流与 PWM占空比 又存在一定的关系, 这样就可以导出 PWM占空比与流量的关系, 因此, 在控 制液压执行元件速度的过程中, 只需由 PWM调节装置 21调整 PWM占空比就可 以得到所需的流量,从而使液压执行元件 23产生相应的位移及速度,再由速度 检测装置 24将检测到的速度与给定速度相比较, 形成一个调速闭环控制系统。
由于受电源电压波动和阀芯线圈电阻值分布(单个阀芯线圈电阻值随温度 改变而发生变化, 不同阀芯线圈电阻值即使在同样温度下也不一致)等因素的 影响, 在 PWM占空比一定时, 电液比例流量阀阀芯电流的一致性不佳, 最终 使电液比例流量阀的流量及液压执行元件的速度控制受到干扰。由于上述因素 的影响, 闭环调速控制系统的前向通道控制品质不高, 需要依靠速度反馈通道 制基本理论可知, 对反馈通道高度依赖并且不釆用其他类型的补偿控制方式, 必然会影响到控制系统的动态响应品质和静态控制精度。
发明内容
本发明所要解决的技术问题是提供一种电液比例流量阀调速控制系统和 方法, 能够提高调速控制系统前向控制通道品质。
为解决上述问题, 本发明提供了一种电液比例流量阀调速控制系统, 包括 PWM调节装置、 电液比例流量阀和液压执行元件, 所述 PWM调节装置的 PWM信号驱动电液比例流量阀并驱动液压执行元件动作, 所述系统还包括位 移速度测量模块、 电液比例流量阀特性测量模块和前馈控制模块, 所述位移速 度测量模块对所述液压执行元件的位移或速度进行测量并将结果送至所述电 液比例流量阃特性测量模块,所述电液比例流量阃特性测量模块对电液比例流 量阀的最小动作电流、最大动作电流和液压执行元件的最大速度进行测量, 并 将测量结果传输至前馈控制模块, 所述前馈控制模块利用所述测量结果, 生成 所述液压执行元件的运动速度与阀芯电流的对应关系,按照所述对应关系, 所 述前馈控制模块将与给定速度值对应的阀芯电流值输入到所述 PWM调节装 置驱动电液比例流量阀工作。
所述速度测量模块将测得的所述液压执行元件的运动速度与系统给定速 度进行比较获得速度误差信号。
所述系统还包括电流调节模块, 用于对所述速度误差信号进行调整, 并输 入到所述 PWM调节装置。
所述系统还包括阀芯电流检测模块,所述阀芯电流检测装置与所述电液比 例流量阀的阀芯线圈相连,与所述 PWM调节装置一起形成阀芯电流反馈控制 回路。
相应地, 本发明还提供了一种电液比例流量阀调速控制方法, 包括: 测量液压执行元件的最大动作速度、电液比例流量阀的阀芯最大动作电流 和最小动作电流;
利用所述最大动作速度、电液比例流量阀的最大动作电流和最小动作电流 获得液压执行元件的运动速度与阀芯电流之间的对应关系;
通过所述对应关系获取系统给定速度所对应的阀芯电流;
利用与系统给定速度所对应的阀芯电流驱动阀芯电流控制回路。
所述测量为在线或离线测量。
与现有技术相比, 本发明具有以下优点:
本发明的电液比例流量阀调速控制系统通过运用阀芯电流反馈和基于电 液比例流量阀特性离线测量的前馈控制方法,对调速控制系统进行内环电流补 偿和速度前馈控制,大幅度提高了调速控制系统前向通道的响应品质和控制精 度, 减小了速度反馈通道的调节量, 从而达到了提高闭环控制品质的目的。
另一方面, 由于开环控制系统中引入离线测量的前馈控制模块,使得液压 执行元件的运动速度与阀芯电流的对应关系可以确定,进而在进行执行机构速 度控制时, 将系统的给定速度值作为前馈控制信号直接换算为阀芯电流给定 值, 输入到阀芯电流反馈控制回路, 驱动电液比例流量阀工作。 因此, 在速度 精度要求较低的场合, 开环调速控制系统的控制品质得到提高。
附图说明
通过附图中所示的本发明的优选实施例的更具体说明 ,本发明的上述及其 它目的、特征和优势将更加清晰。在全部附图中相同的附图标记指示相同的部 分。
图 1为现有技术中开环控制系统示意图;
图 2为现有技术中闭环控制系统示意图;
图 3为根据本发明第一实施例的电液比例流量阀调速控制系统示意图; 图 4为电液比例流量阀的阀芯电流与流量间的关系曲线图;
图 5 为液压执行元件的速度与电液比例流量阀的阀芯电流之间的关系曲 线图;
图 6为液压执行元件的最小动作电流测量过程示意图;
图 7为液压执行元件的最大动作电流测量过程示意图;
图 8为根据本发明第二实施例的电液比例流量阀调速控制系统示意图; 图 9为根据本发明第三实施例的电液比例流量阀调速控制系统示意图。 具体实施方式
为使本发明的上述目的、 特征和优点能够更加明显易懂, 下面结合附图对 本发明的具体实施方式做详细的说明。
在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明 能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背 本发明内涵的情况下做类似推广。 因此本发明不受下面公开的具体实施的限 制。
图 3为根据本发明第一实施例的电液比例流量阀调速控制系统示意图。如 图 3所示,根据本发明实施例的电液比例流量阀调速控制系统包括 PWM调节 装置 34、 电液比例流量阀 35 以及阀芯电流检测装置 36, 电液比例流量阀 35 的阀芯线圈与阀芯电流检测装置 36相连,与 PWM调节装置 34—起形成阀芯 电流反馈控制回路。 PWM调节装置 34的基本形式是电液比例流量阀等效电 感加等效电阻, 并联续流二极管, 经大功率三极管或场效应管连接到电源, PWM信号控制三极管或场效应管的导通与截至, 使得电液比例流量阀线圈的 电压波形为周期一定、脉冲宽度可调的矩形波, 由于脉冲周期远小于液压系统 的响应周期,以及结合电液比例流量阀的工作原理,电液比例流量阀的流量(对 应于液压执行元件的运动速度)只响应阀芯电流的平均值。 阀芯电流检测装置 36将检测到的阀芯电流与阀芯给定电流相比较, 比较的差值通过 PWM调节 装置 34转换为具有相应占空比的 PWM输出信号, 形成驱动电液比例流量阀 35 的阀芯电流, 对给定电流值进行跟随, 从而能够抑制电源电压波动和阀芯 电阻值分布不均匀等因素对阀芯电流的影响。
本发明的电液比例流量阃调速控制系统还包括电液比例流量阃特性测量 模块 32,位移速度测量模块 38以及前馈控制模块 31。位移和速度参数的性质 相同, 以下仅以速度为例进行说明。 位移速度测量模块 38对液压执行元件 37 的速度或位移等参数进行测量, 将结果送至电液比例流量阀特性测量模块 32。 电液比例流量阀特性测量模块 32对电液比例流量阀的最小动作电流 Imin、 最 大动作电流 Imax以及液压执行元件的最大速度 MaxSpeed进行离线测量, 并 将测量结果传输至前馈控制模块 31。 前馈控制模块 31利用电液比例流量阀特 性测量模块 32的测试结果, 生成液压执行元件的运动速度与阀芯电流的对应 关系数据库列表。在进行执行机构速度控制时,将系统的给定速度值作为前馈 控制信号直接换算为阀芯电流给定值, 输入到阀芯电流反馈控制回路, 驱动电 液比例流量阀工作。
从控制理论的角度来看, 由于该控制作用来自速度闭环以外,且绕过速度 闭环的速度给定点, 直接加到速度控制回路以内, 属于前馈控制方式。 由于该 控制作用的存在, 在进行调速控制时, 在不存在速度反馈的情况下, 液压执行 元件的速度也能实现对给定速度的较好跟踪,其控制品质远高于图 2所示的系 统。 在存在速度反馈的情况下, 较之未釆用本前馈控制方法的系统, 图 3中所 示的"速度控制误差"将大为缩小, 从而显著减轻速度闭环的反馈调节负担, 大 幅度提高速度控制的控制精度和动态品质。
在本发明的电液比例流量阀调速控制系统中还包括电流调节模块 33 , 系 统给定速度信号与位移速度测量模块 38 输出的速度信号在比较器中进行比 较, 得到的速度控制误差信号输入电流调节模块 33。 电流调节模块 33对速度 控制误差信号进行控制运算后,与前馈控制信号混合输入到阀芯电流反馈控制 回路。 电流调节模块 33作为前馈控制作用的补充, 能够进一步提高系统控制 精度。
本发明的电液比例流量阀调速控制系统的关键点在于利用前馈控制方式, 该前馈控制能够降低对闭环速度控制回路的依赖,从而提高速度控制的控制精 度。釆用前馈控制方式的基础在于获得阀芯电流与液压执行元件的速度之间的 对应关系曲线。 居流量型电液比例流量阀的工作原理, 电液比例流量阀的流 量对应于执行机构动作速度, 一定的阀芯电流对应的流量由以下三个参数决 定: 一、 阀芯最小动作电流 Imin, 阀芯电流达到该值时电液比例流量阀中开 始有微小流量, 执行元件开始微动, 小于此值则无流量; 二、 阀芯最大动作电 流 Imax , 阀芯电流达到该值时阀芯刚好开启到最大, 继续增加阀芯电流也不 能增大流量, 而从该值开始减小阀芯电流时则可以相应减小流量; 三、 执行元 件的最大速度 Maxspeed, 该值对应于电液比例流量阀最大流量 Maxflow。
根据液压执行元件的工作原理 ,液压执行元件的动作速度与电液比例流量 阀的流量成比例关系, 而才艮据电液比例流量阀的特性, 电液比例流量阀流量与 阀芯电流从 Imin到 Imax之间的关系如图 4中的曲线所示,那么通过测量最大 流量 Maxflow下所对应的液压执行元件最大速度 Maxspeed ,以及 Imin和 Imax , 便可以推导出如图 5 所示的液压执行元件的速度与电液比例流量阀的阀芯电 流之间的对应关系。
图 5所示的阀芯电流在 Imin至 Imax的范围内与执行元件速度对应关系曲 线有很强的实用意义。 如图 5所示, 在从 Imin到 Imax的范围内, 电液比例流 量阀阀芯电流与液压执行元件的运动速度之间成线性关系,获得此线性关系曲 线, 就可得知液压执行元件速度与电液比例流量阀阀芯电流的对应关系曲线, 进而得出液压执行元件速度与电液比例流量阀阀芯电流的对应关系曲线方程 公式。 将该公式内置于前馈控制模块 31 , 则可通过给定速度值在前馈控制模 块 31的内置公式中直接计算出对应的电液比例流量阀阀芯电流, 利用该阀芯 电流直接驱动 PWM调节装置 34和电液比例流量阀 35 , 从而无须依赖速度反 馈就能够较为精确的控制液压执行元件的速度。
本发明的电液比例流量阀调速控制系统中的电液比例流量阀特性测量模 块 32是离线工作模块,也就是说, 电液比例流量阀特性测量模块 32对电液比 例流量阀的 Imin、 Imax和 Maxspeed特性测试和正常的调速控制在时间上是分 开进行的。
图 6为液压执行元件的最小动作电流测量过程示意图。如图 6所示, 首先 执行步骤 601 , 预设最小动作电流 Imin 为一最小动作电流的经验值, 例如 290mA, 这样做的目的是可以在经验值附近较快速地捕捉到最小动作电流,并 预设电液比例流量阀阀芯电流的取值区域 〔 LowLimit, HighLimit〕 为 〔lmA,999mA〕 , 实际的电液比例流量阀阀芯电流均不会超出此范围。 输出 Imin值的电液比例流量阀阀芯电流驱动液压系统工作一段时间 ,如: 30秒(步 骤 602 ) ; 期间连续测量液压执行元件的位移或速度, 判断其有无动作(步骤 603 ) 。 如果有动作, 则可断定电液比例流量阀阀芯最小动作电流不会大于当 前 Imin值, 将取值区域中的 HighLimit值调整为当前 Imin值(步骤 604 ); 反 之将 LowLimit调整为当前 Imin值(步骤 605 )。接着判断 HighLimit与 LowLimit 是否足够接近, 例如: 其差值小于或等于 1mA (步骤 607 ); 如果足够小, 则 将 Imin的当前值设置为最小动作电流值, 最小动作电流离线测量结束(步骤 608 ) ; 否则调整 Imin的值(步骤 606 ) , 从预设的最小电流经验值开始, 以 固定的电流差值(该差值可称之为步长, 例如 16mA )做递增或递减搜索, 当 确定最小动作电流应该在某一段步长内时,再在此段步长内取中间值循环进行 搜索, 缩小阀芯电流取值区域, 直至取值区域足够小为止。
图 7为液压执行元件的最大动作电流测量过程示意图。如图 7所示, 首先 将电液比例流量阀阀芯线圈所能承受的最大额定电流值设置为阀芯的最大动 作电流值(步骤 701 ) , 该电流值必然大于实际的阀芯最大动作电流值。 然后 利用该最大电流值驱动液压系统工作(步骤 702 ) 。 接着判断是否进行最大速 度 MaxSpeed测试(步骤 704 ),若是则进行液压执行元件的最大速度 MaxSpeed 测试, 接着减小电液比例流量阀阀芯电流(步骤 703 ) 。 阀芯电流的减小量取 值方法可以是在最大速度测试刚完成后可取一较大值,使阀芯电流突降到最大 动作电流附近, 在其它实施例中, 阀芯电流的减小量可以取一较小值, 例如 20mA。 速度测试完成后可以得到与该阀芯电流值相对应的速度 Speed值(步 骤 705 ) 。 接着判断该 Speed是否明显小于最大速度 MaxSpeed, 例如小于 MaxSpeed值的 0.8倍(步骤 707 ) , 如果是, 则记录此刻的速度 Speed值和阀 芯电流值 Imax'。 根据线性方程式:
Imax = Imin+ ( Imax'- Imin ) * MaxSpeed/Speed
求解出最大动作电流 Imax (步骤 708 ) , 测试完成。 否则继续减小电液比例流 量阀阀芯电流(步骤 706 ) , 进行新一轮速度测试, 直至条件成立。
图 8为根据本发明第二实施例的电液比例流量阀调速控制系统示意图。如 图 8所示,本实施例的电液比例流量阀调速控制系统与上述图 3所示的电液比 例流量阀调速控制系统的区别在于去掉了电流调节模块 33 , 液压执行元件的 速度和给定速度之间的速度控制误差直接输入前馈控制信号混合。虽然省去了 电流调节模块 33 , 但在精度要求不是非常高的应用场合, 主要依靠本发明的 前馈控制功能依然能够满足控制精度要求。 图 9为根据本发明第三实施例的电液比例流量阀调速控制系统示意图。如 图 9所示,在本实施例的电液比例流量阀调速控制系统中, 与图 3所示的电液 比例流量阀调速控制系统的区别在于去掉了阀芯电流检测模块 36 , 使之成为 具有前馈控制作用的单闭环电液比例流量阀调速控制系统,区别于图 3所示的 具备电流和位移(速度)两个闭环系统的双闭环系统。 通过前馈控制方式的控 制效果增强, 即使是单闭环控制系统也能够达到比较高的控制精度。
本发明的电液比例流量阀调速控制系统的电液比例流量阀特性测量模块 32、 前馈控制模块 31、 电流调节模块均可使用软件实现。
本发明的电液比例流量阀调速控制系统通过运用阀芯电流反馈和基于电 液比例流量阀特性离线测量的前馈控制方法,对调速控制系统进行内环电流补 偿和速度前馈控制,大幅度提高了调速控制系统前向通道的响应品质和控制精 度, 减小了速度反馈通道的调节量, 从而达到了提高闭环控制品质的目的。 特 别地,在需要多个执行机构协调动作的场合,提供了一种提高协调控制品质的 途径。例如在臂架类工程机械的臂架末端运动控制系统中, 需要多节臂架一起 协调动作, 是多个调速控制系统的叠加, 这就要求每节臂架的速度都能得到精 确控制, 同时响应速度要尽量快, 通过上述控制系统能够较好地实现此功能。
一般而言, 通过一段时间的工作, 电液比例流量阀各特性参数值均会有所 变化,此时可以通过执行一次电液比例流量阀特性测量模块快速测定新的参数 值, 以恢复和提高系统控制品质。
以上所述,仅是本发明的较佳实施例而已, 并非对本发明作任何形式上的 限制。 虽然本发明已以较佳实施例揭露如上, 然而并非用以限定本发明。 任何 熟悉本领域的技术人员, 在不脱离本发明技术方案范围情况下, 都可利用上述 揭示的方法和技术内容对本发明技术方案作出许多可能的变动和修饰 ,或修改 为等同变化的等效实施例。 因此, 凡是未脱离本发明技术方案的内容, 依据本 发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰, 均仍属 于本发明技术方案保护的范围内。

Claims

权 利 要 求
1、 一种电液比例流量阀调速控制系统, 包括 PWM调节装置、 电液比例 流量阀和液压执行元件 , 所述 PWM调节装置的 PWM信号驱动电液比例流量 阀并驱动液压执行元件动作, 所述系统还包括位移速度测量模块、 电液比例流 量阀特性测量模块和前馈控制模块,所述位移速度测量模块对所述液压执行元 件的位移或速度进行测量并将结果送至所述电液比例流量阃特性测量模块,所 述电液比例流量阀特性测量模块对电液比例流量阀的最小动作电流、最大动作 电流和液压执行元件的最大速度进行测量, 并将测量结果传输至前馈控制模 块, 所述前馈控制模块利用所述测量结果, 生成所述液压执行元件的运动速度 与阀芯电流的对应关系,按照所述对应关系, 所述前馈控制模块将与给定速度 值对应的阀芯电流值输入到所述 PWM调节装置驱动电液比例流量阀工作。
2、 如权利要求 1所述的控制系统, 其特征在于: 所述速度测量模块将测 得的所述液压执行元件的运动速度与系统给定速度进行比较获得速度误差信 号。
3、 如权利要求 2所述的控制系统, 其特征在于: 所述系统还包括电流调 节模块, 用于对所述速度误差信号进行调整, 并输入到所述 PWM调节装置。
4、 如权利要求 1所述的控制系统, 其特征在于: 所述系统还包括阀芯电 流检测模块, 所述阀芯电流检测装置与所述电液比例流量阀的阀芯线圈相连, 与所述 PWM调节装置一起形成阀芯电流反馈控制回路。
5、 一种电液比例流量阀调速控制方法, 包括:
测量液压执行元件的最大动作速度、电液比例流量阀的阀芯最大动作电流 和最小动作电流;
利用所述最大动作速度、电液比例流量阀的最大动作电流和最小动作电流 获得液压执行元件的运动速度与阀芯电流之间的对应关系;
通过所述对应关系获取系统给定速度所对应的阀芯电流;
利用与系统给定速度所对应的阀芯电流驱动阀芯电流控制回路。
6、 如权利要求 5所述的控制方法, 其特征在于: 所述测量为在线或离线 测量。
PCT/CN2008/073091 2007-11-28 2008-11-17 Système et procédé de commande et de régulation de la vitesse d'une électrovanne hydraulique à débit proportionnel WO2009067938A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020107014359A KR101167281B1 (ko) 2007-11-28 2008-11-17 전자-유압 비례 유량 밸브 속도 조절 제어 시스템 및 그 방법
US12/744,929 US20110024654A1 (en) 2007-11-28 2008-11-17 electro-hydraulic proportional flow valve speed regulating control system and its method
EP08854527A EP2233990A4 (en) 2007-11-28 2008-11-17 SYSTEM AND METHOD FOR CONTROLLING AND REGULATING THE SPEED OF A PROPORTIONAL FLOW HYDRAULIC SOLENOID VALVE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNB2007101681895A CN100564898C (zh) 2007-11-28 2007-11-28 电液比例流量阀调速控制系统和方法
CN200710168189.5 2007-11-28

Publications (1)

Publication Number Publication Date
WO2009067938A1 true WO2009067938A1 (fr) 2009-06-04

Family

ID=39389859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/073091 WO2009067938A1 (fr) 2007-11-28 2008-11-17 Système et procédé de commande et de régulation de la vitesse d'une électrovanne hydraulique à débit proportionnel

Country Status (6)

Country Link
US (1) US20110024654A1 (zh)
EP (1) EP2233990A4 (zh)
KR (1) KR101167281B1 (zh)
CN (1) CN100564898C (zh)
RU (1) RU2446428C2 (zh)
WO (1) WO2009067938A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114458660A (zh) * 2021-12-24 2022-05-10 江苏徐工工程机械研究院有限公司 一种电控总线液压阀用控制系统及控制方法
CN116991095A (zh) * 2023-06-30 2023-11-03 江苏汇智高端工程机械创新中心有限公司 一种can总线电控单元和控制方法

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100564898C (zh) * 2007-11-28 2009-12-02 三一重工股份有限公司 电液比例流量阀调速控制系统和方法
CN101718368B (zh) * 2009-12-01 2011-12-21 三一重工股份有限公司 比例电磁阀控制方法、装置和应用该装置的工程机械
US9043296B2 (en) 2010-07-30 2015-05-26 Microsoft Technology Licensing, Llc System of providing suggestions based on accessible and contextual information
WO2013029254A1 (zh) * 2011-08-31 2013-03-07 长沙中联重工科技发展股份有限公司 电液比例阀调速控制方法、装置、系统以及工程机械设备
WO2013029255A1 (zh) * 2011-08-31 2013-03-07 长沙中联重工科技发展股份有限公司 电液比例阀调速控制方法、装置、系统以及工程机械设备
CN102384119B (zh) * 2011-08-31 2013-01-16 中联重科股份有限公司 电液比例阀调速控制方法、装置、系统以及工程机械设备
CN102393645A (zh) * 2011-11-07 2012-03-28 温州大学 一种高速电液比例调速系统的控制方法
CN102606786B (zh) * 2012-03-09 2013-06-12 三一重工股份有限公司 一种电动液压阀的控制装置、控制方法及电动液压阀
CN102720876B (zh) * 2012-05-17 2013-09-11 浙江工业大学 一种消除电液伺服阀空载流量特性死区的软配磨方法
EP2790072A1 (de) 2013-04-11 2014-10-15 Siemens Aktiengesellschaft Hydraulikanordnung mit entkoppeltem Betrieb zweier Ventileinrichtungen
JP6221828B2 (ja) * 2013-08-02 2017-11-01 株式会社デンソー 高圧ポンプの制御装置
CN103671308B (zh) * 2013-12-12 2016-07-20 湖南中联重科智能技术有限公司 一种液压控制设备、方法、系统及工程机械
CN104571149B (zh) * 2014-06-12 2017-10-17 北京七星华创电子股份有限公司 用于气体集成输送系统的质量流量控制装置及控制方法
CN104390044B (zh) * 2014-09-16 2017-02-08 深圳市麦格米特控制技术有限公司 一种基于可编程控制器的电液比例阀控制器
CN105156732B (zh) * 2015-08-19 2018-01-05 武汉船用机械有限责任公司 比例阀控制方法和装置
CN105465086B (zh) * 2016-01-25 2017-12-08 浙江大学城市学院 用于软土盾构机的力反馈型电液比例换向阀
CN105465084B (zh) * 2016-01-25 2017-12-01 浙江工业职业技术学院 全桥式力反馈弹性压扭联轴器型2d电液比例换向阀
CN105465454B (zh) * 2016-01-25 2018-04-13 杭州博忆科技有限公司 双向大流量型电液比例换向阀
JP6126712B1 (ja) * 2016-02-18 2017-05-10 Kyb株式会社 流体圧アクチュエータの制御装置
CN105958898B (zh) * 2016-06-01 2018-09-11 深圳德康威尔科技有限公司 音圈电机驱动器及其控制方法
CN106227138B (zh) * 2016-07-25 2019-07-12 三一重型能源装备有限公司 风机叶片模具翻转装置同步控制系统及方法
CN107975519B (zh) * 2016-10-21 2020-07-28 北京精密机电控制设备研究所 一种伺服液压能源双闭环控制系统及方法
CN106774463B (zh) * 2016-11-28 2020-03-31 中节能天融科技有限公司 一种高精度气体流量控制系统及方法
CN109372813B (zh) * 2018-11-30 2020-05-08 武汉船用机械有限责任公司 一种电液比例节流阀及其控制方法
DE102018220952A1 (de) 2018-12-04 2020-06-04 Robert Bosch Gmbh Verfahren zum Einstellen eines Stroms in einer Spule bei getakteter Ansteuerung
CN109281897B (zh) * 2018-12-10 2019-10-22 中联重科股份有限公司 用于工程机械的控制系统、方法及工程机械
CN111720372B (zh) * 2019-03-21 2022-06-21 宝山钢铁股份有限公司 一种高稳定性双滑铃丝杠控制系统及其控制方法
CN112127986B (zh) * 2020-10-09 2021-10-19 北京丰凯换热器有限责任公司 特种车辆独立散热系统温度控制系统
KR102196957B1 (ko) 2020-10-20 2020-12-30 신상열 유압포지셔너가 구비된 밸브제어시스템
CN112695842B (zh) * 2021-01-11 2022-09-20 锦霸科技股份有限公司 一种无压力罐恒压供水控制方法
CN112696238B (zh) * 2021-01-25 2022-11-15 东方电气自动控制工程有限公司 一种用于汽轮机蒸汽阀门的控制系统及方法
CN113323947B (zh) * 2021-06-03 2023-06-02 无锡晶晟科技股份有限公司 一种工程机械液压比例电磁阀测试装置及方法
CN113431925B (zh) * 2021-07-12 2022-08-16 南京工程学院 一种电液比例阀的故障预测方法
CN113431926A (zh) * 2021-07-12 2021-09-24 南京工程学院 一种电液比例阀及其高精度位置控制系统
CN113612448B (zh) * 2021-07-21 2024-02-27 同济大学 一种带有zvs软开关的数字式电液比例放大器
CN114321476B (zh) * 2021-12-06 2024-04-19 北京天玛智控科技股份有限公司 换向阀的控制方法及装置
CN114294273B (zh) * 2021-12-31 2022-10-14 江苏徐工工程机械研究院有限公司 液压控制系统、拖拉机和液压控制方法
CN115324758B (zh) * 2022-08-16 2024-02-13 中联重科股份有限公司 一种挖掘机功率控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5694006A (en) * 1979-12-27 1981-07-30 Mitsubishi Heavy Ind Ltd Speed control device for fluid pressure cylinder in fluid pressure system
CN1047135A (zh) * 1989-04-21 1990-11-21 维克斯公司 高分辨率脉冲宽度调制
JPH09291902A (ja) * 1996-04-26 1997-11-11 Tadano Ltd 油圧アクチュエ−タ用サ−ボ制御装置
CN2644398Y (zh) * 2003-03-13 2004-09-29 长沙中联重工科技发展股份有限公司 起重机用电液比例控制系统
CN1651665A (zh) * 2005-03-28 2005-08-10 广西柳工机械股份有限公司 挖掘机全功率控制系统及方法
CN101169141A (zh) * 2007-11-28 2008-04-30 三一重工股份有限公司 电液比例流量阀调速控制系统和方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3285266A (en) * 1963-08-19 1966-11-15 Zurik Corp De Pneumatic bridge force transducer
JP2798457B2 (ja) * 1989-12-28 1998-09-17 アイシン・エィ・ダブリュ株式会社 電子制御式自動変速機
US5184578A (en) * 1992-03-05 1993-02-09 Borg-Warner Automotive Transmission & Engine Components Corporation VCT system having robust closed loop control employing dual loop approach having hydraulic pilot stage with a PWM solenoid
DE4342057B4 (de) * 1993-12-09 2007-02-08 Bosch Rexroth Aktiengesellschaft Verfahren zur Adaption der Regelparameter einer elektrohydraulischen Achse
RU2074439C1 (ru) * 1994-07-12 1997-02-27 Государственный проектно-изыскательский институт "ГИПРОТРАНССИГНАЛСВЯЗЬ" Способ измерения механических перемещений в электромагнитных реле
US5500580A (en) * 1994-09-19 1996-03-19 Hr Textron Inc. Integrated compliance servovalve
KR0150133B1 (ko) * 1995-04-27 1998-10-01 김광호 비례 솔레노이드밸브 제어시스템
US5992383A (en) * 1996-05-28 1999-11-30 U.S. Philips Corporation Control unit having a disturbance predictor, a system controlled by such a control unit, an electrical actuator controlled by such a control unit, and throttle device provided with such an actuator
US6565064B2 (en) * 2001-03-21 2003-05-20 Delphi Technologies, Inc. Model-based position control for a solenoid actuated valve
US7917257B2 (en) * 2002-01-31 2011-03-29 General Electric Company Method for determining the rotational velocity of an axle and detecting a locked axle condition
US6622675B1 (en) * 2002-04-22 2003-09-23 Borgwarner Inc. Dual PWM control of a center mounted spool value to control a cam phaser
US6678584B2 (en) * 2002-05-03 2004-01-13 Fisher Controls International Llc Method and apparatus for performing diagnostics in a control loop of a control valve
US6736094B2 (en) * 2002-06-17 2004-05-18 Borgwarner Inc. VCT solenoid dither frequency control
RU2265906C2 (ru) * 2002-11-05 2005-12-10 Открытое акционерное общество "АВТОВАЗ" Способ управления двоичным электромагнитным исполнительным механизмом повышенной мощности
JP2004211669A (ja) * 2003-01-09 2004-07-29 Toshiba Corp サーボ弁制御装置およびサーボ弁制御システムの異常検出装置
DE502004005710D1 (de) * 2003-07-31 2008-01-24 Continental Teves Ag & Co Ohg Verfahren zum ermitteln des ansteuerstroms eines stellgeräts
GB2423555A (en) 2005-02-26 2006-08-30 Energetix Group Ltd Pulsed fluid supply to positive displacement expander

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5694006A (en) * 1979-12-27 1981-07-30 Mitsubishi Heavy Ind Ltd Speed control device for fluid pressure cylinder in fluid pressure system
CN1047135A (zh) * 1989-04-21 1990-11-21 维克斯公司 高分辨率脉冲宽度调制
JPH09291902A (ja) * 1996-04-26 1997-11-11 Tadano Ltd 油圧アクチュエ−タ用サ−ボ制御装置
CN2644398Y (zh) * 2003-03-13 2004-09-29 长沙中联重工科技发展股份有限公司 起重机用电液比例控制系统
CN1651665A (zh) * 2005-03-28 2005-08-10 广西柳工机械股份有限公司 挖掘机全功率控制系统及方法
CN101169141A (zh) * 2007-11-28 2008-04-30 三一重工股份有限公司 电液比例流量阀调速控制系统和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2233990A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114458660A (zh) * 2021-12-24 2022-05-10 江苏徐工工程机械研究院有限公司 一种电控总线液压阀用控制系统及控制方法
CN114458660B (zh) * 2021-12-24 2024-04-02 江苏徐工工程机械研究院有限公司 一种电控总线液压阀用控制系统及控制方法
CN116991095A (zh) * 2023-06-30 2023-11-03 江苏汇智高端工程机械创新中心有限公司 一种can总线电控单元和控制方法

Also Published As

Publication number Publication date
KR101167281B1 (ko) 2012-07-23
EP2233990A1 (en) 2010-09-29
CN100564898C (zh) 2009-12-02
RU2010124833A (ru) 2012-01-10
US20110024654A1 (en) 2011-02-03
CN101169141A (zh) 2008-04-30
EP2233990A4 (en) 2012-01-04
KR20100115734A (ko) 2010-10-28
RU2446428C2 (ru) 2012-03-27

Similar Documents

Publication Publication Date Title
WO2009067938A1 (fr) Système et procédé de commande et de régulation de la vitesse d'une électrovanne hydraulique à débit proportionnel
CN108980441B (zh) 基于pwm的比例电磁阀驱动方法
CN111749840B (zh) 一种调速器主配电气中位自动智能定位方法
CN112682561B (zh) 高速开关电磁阀的驱动控制系统及控制方法
CN103888045A (zh) 一种开关磁阻电机速度与加速度双闭环控制方法
CN109546917B (zh) 针对交流永磁同步电机执行机构的多路调节系统及方法
CN102287572A (zh) 一种智能阀门定位器的脉冲控制方法
CN111352450B (zh) 一种数字比例阀流量控制系统及方法
CN103995463A (zh) 一种基于混合控制的电液比例阀位置伺服驱动方法
CN101393425A (zh) 直流电机速度pid控制的参数调节系统及调节方法
CN105183024A (zh) 一种流量-压力双闭环气体压力控制方法及装置
CN202528404U (zh) 一种注塑机的控制系统
CN112343763B (zh) 一种逼近式水电站功率脉冲调节方法及调节系统
JPH0241645B2 (zh)
CN116972035A (zh) 工程机械以及流量匹配控制方法、装置、系统
CN100585520C (zh) 一种直流电机角位移pid控制方法
CN105156733B (zh) 一种自动定位控制方法
CN101393423B (zh) 直流电机角位移pid控制的参数调节系统的调节方法
Li et al. The research of a piezoelectric valve positioner control algorithm
CN105422550A (zh) 一种变转速液压动力源的复合补偿控制系统及方法
CN205297753U (zh) 基于并行双pid的发动机转速管理系统
Uzunov et al. Development of an Automated PLC System to Help Maintain the Internal Combustion Engine at a Constant Speed
CN105569895A (zh) 一种电控喷射系统及其控制方法
CN116512238B (zh) 液压多轴机械臂的控制方法、装置、存储介质及电子设备
CN213224247U (zh) 伺服压铸机开模定位控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08854527

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3764/DELNP/2010

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008854527

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107014359

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010124833

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 12744929

Country of ref document: US