WO2013029254A1 - 电液比例阀调速控制方法、装置、系统以及工程机械设备 - Google Patents

电液比例阀调速控制方法、装置、系统以及工程机械设备 Download PDF

Info

Publication number
WO2013029254A1
WO2013029254A1 PCT/CN2011/079204 CN2011079204W WO2013029254A1 WO 2013029254 A1 WO2013029254 A1 WO 2013029254A1 CN 2011079204 W CN2011079204 W CN 2011079204W WO 2013029254 A1 WO2013029254 A1 WO 2013029254A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
frequency
electro
speed
proportional valve
Prior art date
Application number
PCT/CN2011/079204
Other languages
English (en)
French (fr)
Inventor
王帅
李学俊
李葵芳
尹君
李仁玉
Original Assignee
长沙中联重工科技发展股份有限公司
湖南中联重科专用车有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长沙中联重工科技发展股份有限公司, 湖南中联重科专用车有限责任公司 filed Critical 长沙中联重工科技发展股份有限公司
Priority to PCT/CN2011/079204 priority Critical patent/WO2013029254A1/zh
Publication of WO2013029254A1 publication Critical patent/WO2013029254A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • F15B21/087Control strategy, e.g. with block diagram
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/327Directional control characterised by the type of actuation electrically or electronically
    • F15B2211/328Directional control characterised by the type of actuation electrically or electronically with signal modulation, e.g. pulse width modulation [PWM]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6336Electronic controllers using input signals representing a state of the output member, e.g. position, speed or acceleration

Definitions

  • Electro-hydraulic proportional valve speed control method device, system and engineering machinery equipment
  • the invention relates to the field of control, and in particular to an electro-hydraulic proportional valve speed control method, device, system and engineering machinery device having the same. Background technique
  • the electro-hydraulic proportional valve is a hydraulic control valve between the hydraulic valve and the electro-hydraulic servo valve.
  • the electro-hydraulic proportional valve receives an external control signal, and adjusts the displacement of the spool according to the control signal to make the valve opening and control signal.
  • Pulse width modulation signals are often used as control signals for electro-hydraulic proportional valves.
  • the control system sends PWM signals with different frequencies and different duty cycles to the electro-hydraulic proportional valve.
  • the electro-hydraulic proportional valve proportionally adjusts the displacement of the spool according to the duty ratio of the PWM signal, so that the valve opening degree and the duty of the PWM signal are occupied. The ratio varies.
  • the valve body hole and the valve core In the electro-hydraulic proportional valve, due to the machining error, the valve body hole and the valve core always have a certain shape error, and the two cannot be absolutely concentric and non-tapered, which inevitably generates radial on the valve core. Unbalanced force pushes the spool to the other side, resulting in relatively large friction.
  • the friction between the electro-hydraulic proportional valve armature and the guide sleeve also limits the improvement of its control accuracy. Under the influence of friction, the actuator will not respond to the command signal instantaneously, which will produce obvious hysteresis and dead zone to the output. The existence of friction can not make the adjustment in time, and sometimes cause excessive adjustment, which makes the control quality of the control system change. difference.
  • the commonly used electro-hydraulic proportional valve speed control system is shown in Fig. 1.
  • the PWM generating device 10 generates a PWM signal according to the PWM setting value, and superimposes the PWM signal in the PWM signal.
  • the dither signal generated by the dither signal generating device 40 is then input to the electro-hydraulic proportional valve 20 together to drive the electro-hydraulic proportional valve 20, and the electro-hydraulic proportional valve 20 outputs
  • the flow can actuate the hydraulic actuator 30 (such as a hydraulic cylinder, hydraulic motor, etc.).
  • the dither signal generated by the dither signal generating device 40 is used to achieve a reduction in the frictional force to the spool.
  • the electro-hydraulic proportional valve will overcome the static friction and sliding friction from receiving the PWM signal to generating the corresponding spool displacement. After the dither signal is superimposed on the input signal, the spool of the electro-hydraulic proportional valve will produce a slight additional vibration. If the arithmetic mean of the additional force of the dither signal is greater than the static friction of the spool, the spool will not appear stationary. The state, the influence of friction is significantly reduced, and the response speed and linearity of the electro-hydraulic proportional valve are improved.
  • both the PWM signal and the tremor signal are adjusted by the corresponding analog circuit generating means, the precision is low, the error is large, and a complete system is not formed, especially the electric system.
  • the characteristics of the liquid proportional valve are changed by external factors, the existing technology is difficult to track in real time, and the adjustability and adaptability are poor, and the improvement of the response speed and linearity of the electro-hydraulic proportional valve is limited.
  • the object of the present invention is to provide an electro-hydraulic proportional valve speed control method, device, system and engineering mechanical device having the same, which can significantly improve the response speed and linearity of the electro-hydraulic proportional valve.
  • the present invention also provides an electro-hydraulic proportional valve speed control method, the method comprising: obtaining an actual speed of a hydraulic actuator; and when the difference between the actual speed and the desired speed is greater than a predetermined value, according to the difference a value that adjusts the PWM signal applied to the electro-hydraulic proportional valve Frequency and/or duty cycle; calculating the frequency and/or amplitude of the dither signal based on the frequency and/or duty ratio of the adjusted PWM signal, and based on the difference between the actual speed and the desired speed a rate of change, the amplitude of the calculated dither signal is adjusted; and the adjusted dither signal and the adjusted PWM signal are input to the electro-hydraulic proportional valve together.
  • the present invention also provides an electro-hydraulic proportional valve speed control device, comprising: an actual speed acquiring device for acquiring an actual speed of a hydraulic actuator; and a PWM adjusting device for operating at the actual speed
  • the frequency and/or the duty ratio of the PWM signal applied to the electro-hydraulic proportional valve is adjusted according to the difference
  • the dither adjusting device is configured to be based on the frequency of the adjusted PWM signal And/or the duty ratio, calculating the frequency and/or amplitude of the dither signal, and adjusting the amplitude of the calculated dither signal according to the rate of change of the difference between the actual speed and the desired speed
  • And the input of the adjusted PWM signal and the adjusted dither signal to the electro-hydraulic proportional valve comprising: an actual speed acquiring device for acquiring an actual speed of a hydraulic actuator; and a PWM adjusting device for operating at the actual speed
  • the difference in the desired speed is greater than the predetermined value
  • the present invention also provides an electro-hydraulic proportional valve speed control system, the system comprising a controller, an electro-hydraulic proportional valve, a hydraulic actuator and a speed detecting device, wherein the PWM signal of the controller drives the electro-hydraulic ratio a valve and driving the hydraulic actuator, the speed detecting device detecting an actual speed of the hydraulic actuator, and feeding back the actual speed to the controller, wherein the controller is configured to perform the electro-hydraulic proportional valve speed control The controller of the control method.
  • the present invention also provides an engineering machine apparatus comprising the above-described electro-hydraulic proportional valve speed control system.
  • the feedback signal of the dither signal can be adjusted by the feedback adjustment of the PWM signal, so that the dither signal of the static friction force of the valve core which can overcome the electrohydraulic proportional valve can be applied to the electro-hydraulic ratio.
  • the valve improves the response speed and linearity of the electro-hydraulic proportional valve.
  • FIG. 1 is a block diagram of a prior art electro-hydraulic proportional valve speed control system
  • FIG. 2 is a block diagram of an electro-hydraulic proportional valve speed control system of the present invention
  • FIG. 3 is a block diagram of an embodiment of an electro-hydraulic proportional valve speed control system according to the present invention
  • FIG. 4 is a flow chart of a method for speed control of an electro-hydraulic proportional valve according to the present invention
  • FIG. 5 is a block diagram of an embodiment of an electro-hydraulic proportional valve speed control method according to the present invention.
  • Figure 6 is a block diagram of the electro-hydraulic proportional valve speed control device of the present invention. Description of the reference numerals
  • the present invention provides an electro-hydraulic proportional valve speed control system, which includes a controller 10, an electro-hydraulic proportional valve 20, a hydraulic actuator 30, and a speed detecting device 40, the controller 10 a PWM signal drives the electro-hydraulic proportional valve 20 and drives the hydraulic actuator 30, the speed detecting device 40 detecting the actual speed ⁇ of the hydraulic actuator 30 and feeding back the actual speed to the controller 10, the controller 10 according to the difference when the difference between the actual speed and the desired speed VsiW is greater than a predetermined value The value e, the frequency and/or the duty ratio of the PWM signal is adjusted, and the adjusted PWM signal is input to the electro-hydraulic proportional valve 20, wherein the controller 10 is further configured to: according to the adjusted PWM The frequency and/or duty cycle of the signal, the frequency and/or amplitude of the dither signal, and the magnitude of the calculated dither signal based on
  • the frequency and/or amplitude of the dither signal can be adjusted in two ways: (1) according to the frequency and/or duty cycle of the adjusted PWM signal; and (2) according to the actual speed and expectation The rate of change in speed e.
  • the calculating the frequency and/or the amplitude of the dither signal includes: taking the frequency of the dither signal as an even fraction of the frequency of the adjusted PWM signal, and taking the dither signal
  • the amplitude is 0.075-0.125 of the mean value of the amplitude of the adjusted PWM signal. Since the relationship between the frequency of the dither signal and the frequency of the PWM signal and the amplitude of the dither signal and the duty ratio of the PWM signal (duty ratio determines the mean value of the amplitude), the frequency of the PWM signal changes. In this case, the frequency of the dither signal also needs to be changed accordingly; in the case of a change in the duty cycle of the PWM signal, the amplitude of the dither signal also needs to be changed accordingly.
  • the above value method can only obtain the close value of the frequency and/or amplitude of the dither signal. If the dither signal of this frequency and/or amplitude is applied to the electro-hydraulic proportional valve 20, the electric power cannot be completely eliminated. The hysteresis of the liquid proportional valve 20 and the defect of linearity difference, it is also necessary to perform the amplitude of the dither signal obtained by the above-mentioned value according to the rate of change of the difference e between the actual speed and the desired speed VsiW Fine tune.
  • the fine adjustment of the frequency amplitude value of the dither signal according to the rate of change of the difference e between the actual speed ⁇ and the desired speed V siW can be performed by a PID control algorithm or a fuzzy control algorithm known in the art.
  • the controller 10 is further configured to: when the difference e between the actual speed and the expected speed is greater than a predetermined value, perform the following steps until the difference e between the actual speed and the expected speed is less than or equal to a predetermined Up to the value: obtaining the actual speed of the hydraulic actuator 30 detected by the speed detecting device 40; adjusting the frequency and/or duty of the PWM signal according to the difference e between the actual speed and the desired speed Calculating a frequency and/or a magnitude of the dither signal according to the frequency and/or duty ratio of the adjusted PWM signal, and according to a rate of change of the difference e between the actual speed ⁇ and the desired speed V siW , Adjusting the amplitude of the calculated dither signal; and inputting the adjusted PWM
  • Fig. 3 is a block diagram showing an embodiment of an electro-hydraulic proportional valve 20 speed control system of the present invention.
  • the controller 10 is further configured to store the frequency of the adjusted PWM signal for each adjustment period (ie, one adjustment of each pair of PWM signals and the dither signal).
  • comparing the desired speed with a pre-stored actual speed determining an actual speed that is within a predetermined range from the expected speed, and having a pre-stored PWM signal corresponding to the actual speed
  • the frequency and duty cycle PWM signals and the dither signal having the pre-stored frequency and amplitude of the dither signal corresponding to the actual speed are input to the electro-hydraulic proportional valve 20.
  • a self-learning database can be established by the correspondence between the actual speeds of the components 30.
  • the content in the self-learning database can be more abundant, and finally covers all possible actual speeds, thereby Expected speed for each input Degree, an actual speed that is within a predetermined range from the difference in the desired speed can be found, and then a PWM signal having a frequency and/or a duty ratio of the PWM signal corresponding to the actual speed stored in advance and having a pre-stored value
  • the dither signal of the frequency and amplitude of the dither signal corresponding to the actual speed is input to the electro-hydraulic proportional valve 20, and based on the actual speed, the adjustment step performed by the above cycle is performed. Thereby, the adjustment process before reaching the actual speed is omitted, and the response speed can be further accelerated.
  • the PWM signal having the frequency and duty ratio of the PWM signal corresponding to the actual speed stored in advance and having the pre-stored and the actual speed may be directly
  • a dither signal of the frequency and amplitude of the corresponding dither signal is input to the electro-hydraulic proportional valve 20 without performing an adjustment step of subsequent cyclic execution.
  • the following steps may be cyclically performed until the difference between the actual speed and the desired speed is less than or equal to a predetermined value: acquiring the hydraulic actuator The actual speed of 30; adjusting the frequency and/or duty ratio of the PWM signal according to the difference between the actual speed and the desired speed; calculating the flutter according to the frequency and/or duty ratio of the adjusted PWM signal A frequency and/or amplitude of the shock signal, and adjusting a magnitude of the calculated dither signal according to a rate of change of the difference between the actual speed and the desired speed; and the adjusted PWM signal and the The adjusted dither signal is input to the electro-hydraulic proportional valve 20.
  • the frequency and duty ratio of the adjusted PWM signal and the frequency and amplitude of the adjusted dither signal are input and the adjusted PWM signal and dither are input during each adjustment period.
  • the present invention also provides an electro-hydraulic proportional valve speed control method, the method comprising: obtaining an actual speed of the hydraulic actuator 30; the difference between the actual speed and the desired speed is greater than a predetermined a value, according to the difference, adjusting a frequency and/or a duty ratio of a PWM signal applied to the hydraulic actuator 30; calculating a trembling signal according to a frequency and/or a duty ratio of the adjusted PWM signal The frequency and/or amplitude of the number, and adjusting the magnitude of the calculated dither signal based on the rate of change of the difference between the actual speed and the desired speed; and adjusting the dither signal and the The adjusted PWM signals are input to the electro-hydraulic proportional valve 20 together.
  • the calculating the frequency and/or the amplitude of the dither signal according to the frequency and/or the duty ratio of the adjusted PWM signal may include: taking the frequency of the tremor signal as the frequency of the adjusted PWM signal The even-numbered one is taken, and the amplitude of the dither signal is taken as 0.075-0.125 of the average value of the amplitude of the adjusted PWM signal.
  • the adjusting the amplitude of the calculated dither signal according to the rate of change of the difference between the actual speed and the desired speed may be performed by using a PID control algorithm or a fuzzy control algorithm.
  • FIG. 5 is a block diagram of an embodiment of an electro-hydraulic proportional valve speed control method according to the present invention.
  • the method may further include: storing a frequency and a duty ratio of the adjusted PWM signal, a frequency and a magnitude of the adjusted dither signal, and the adjusted PWM The actual speed corresponding to the signal and the dither signal; and when the desired speed is received, comparing the desired speed to the stored actual speed, determining an actual speed within the predetermined range with the desired speed, and having The PWM signal of the frequency and duty ratio of the PWM signal corresponding to the actual speed and the dither signal having the frequency and amplitude of the dither signal corresponding to the actual speed are input to the electro-hydraulic proportional valve 20.
  • Fig. 6 is a block diagram of the electro-hydraulic proportional valve speed control device of the present invention.
  • the present invention also provides an electro-hydraulic proportional valve speed control device, the device comprising: an actual speed acquiring device 11 for acquiring an actual speed of the hydraulic actuator 30; and a PWM adjusting device 12, for adjusting a frequency and/or a duty ratio of a PWM signal applied to the hydraulic actuator 30 according to the difference when the difference between the actual speed and the desired speed is greater than a predetermined value; the dither adjusting device 13 , for calculating the trembling signal according to the frequency and/or duty ratio of the adjusted PWM signal The frequency and/or amplitude of the number, and adjusting the amplitude of the calculated dither signal according to the rate of change of the difference between the actual speed and the desired speed; an output device 14 for using the adjusted PWM The signal and the adjusted dither signal are input to the electro-hydraulic proportional valve 20 together.
  • the calculating the frequency and/or the amplitude of the dither signal according to the frequency and/or the duty ratio of the adjusted PWM signal may include: taking the frequency of the tremor signal as the frequency of the adjusted PWM signal The even-numbered one is taken, and the amplitude of the dither signal is taken as 0.075-0.125 of the average value of the amplitude of the adjusted PWM signal.
  • the dithering adjustment device 13 can adjust the amplitude of the calculated dither signal according to the rate of change of the difference between the actual speed and the desired speed by using a PID control algorithm or a fuzzy control algorithm.
  • the apparatus may further include: a self-learning device, configured to store a frequency and a duty ratio of the adjusted PWM signal, a frequency and an amplitude of the adjusted dither signal, and the adjusted PWM The actual speed corresponding to the signal and the dither signal; and when the desired speed is received, comparing the desired speed to the stored actual speed, determining an actual speed that is within a predetermined range from the desired speed, and A PWM signal having a frequency and a duty ratio of a PWM signal corresponding to the actual speed and a dither signal having a frequency and a magnitude of a dither signal corresponding to the actual speed are input to the electro-hydraulic proportional valve 20.
  • a self-learning device configured to store a frequency and a duty ratio of the adjusted PWM signal, a frequency and an amplitude of the adjusted dither signal, and the adjusted PWM The actual speed corresponding to the signal and the dither signal; and when the desired speed is received, comparing the desired speed to the stored actual speed,
  • electro-hydraulic proportional valve speed control device of the present invention For a detailed description of the electro-hydraulic proportional valve speed control device of the present invention, reference may be made to the description of the electro-hydraulic proportional valve speed control system of the present invention, which will not be described herein.
  • the present invention also provides an engineering machine apparatus comprising the above-described electro-hydraulic proportional valve speed control system.
  • the construction machinery equipment may include, for example, an excavator, a pump truck, a crane, and the like.
  • the feedback signal of the dither signal can be adjusted by the feedback adjustment of the PWM signal, so that the dither signal of the static friction force of the valve core which can overcome the electrohydraulic proportional valve can be applied to the electro-hydraulic ratio.
  • the valve improves the response speed and linearity of the electro-hydraulic proportional valve.
  • the response speed and linearity of the liquid proportional valve can be further increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

公开了一种电液比例阀调速控制方法、装置、系统以及工程机械设备,该方法包括:获取液压执行元件的实际速度;在所述实际速度与期望速度之差大于预定值时,根据该差值,调节施加至所述电液比例阀的PWM信号的频率和/或占空比;根据所述调节后的PWM信号的频率和/或占空比,计算颤震信号的频率和/或幅值,并根据所述实际速度与期望速度之差的变化率,对所计算的颤震信号的幅值进行调节;以及将所述调节后的颤震信号以及所述调节后的PWM信号一起输入至所述电液比例阀。该方法可克服电液比例阀的阀芯的静摩擦力的颤震信号施加至电液比例阀,提高了电液比例阀的响应速度和线性度。

Description

电液比例阀调速控制方法、 装置、 系统以及工程机械设备 技术领域
本发明涉及控制领域, 具体地, 涉及一种电液比例阀调速控制方法、 装置、 系统以及具有该系统的工程机械设备。 背景技术
电液比例阀是介于液压阀和电液伺服阀间之间的一种液压控制阀, 电 液比例阀接收外部的控制信号, 根据该控制信号调节阀芯位移, 使阀门开 度与控制信号的强弱成比例变化, 对通过该电液比例阀的介质有效调节, 最终实现对应用该电液比例阀的系统进行精确控制。
目前常采用脉宽调制信号 (PWM信号) 作为电液比例阀的控制信号。 控制系统发送具有不同频率、 不同占空比的 PWM信号到电液比例阀, 电液 比例阀根据该 PWM信号的占空比成比例地调节阀芯位移, 使阀门开度与 PWM信号的占空比成比例变化。
在电液比例阀中, 由于加工误差的原因, 阀体孔与阀芯总会产生一定 的形状误差, 两者也不可能绝对同心与无锥度, 这就不可避免地在阀芯上 产生径向不平衡力, 将阀芯推向另一侧, 从而产生比较大的摩擦力。 此外, 电液比例阀衔铁与导套之间的摩擦力也制约着其控制精度的提高。 受摩擦 力影响, 执行机构将有瞬间不能响应指令信号, 从而给输出产生明显的滞 环和死区, 摩擦的存在使调节不能及时进行, 有时还造成调节的过量, 使 控制系统的控制品质变差。
因此, 当 PWM 占空比较小时, 存在着流量死区, 占空比较大时存在 着流量饱和现象。 这是因为施加给阀的控制信号是矩形电压波, 对应于此 电压波, 阀线圈上的电流只能相对缓慢地增大, 当大到一定程度才能产生 足够的电磁力来克服摩擦力, 而使阀芯移动。 这导致阀芯移动与电流值产 生明显的滞环、 线性度差。
为降低摩擦力对电液比例阀响应的影响, 目前常用的电液比例阀调速 控制系统如图 1所示, PWM发生装置 10根据 PWM设定值产生 PWM信号, 在 该 PWM信号中叠加由颤震信号发生装置 40所产生的颤震信号, 之后将该 PWM信号及颤震信号被一起输入至电液比例阀 20,以驱动该电液比例阀 20, 该电液比例阀 20所输出的流量可驱动所述液压执行元件 30 (诸如, 液压缸、 液压马达等) 动作。 所述颤震信号发生装置 40所产生的颤震信号用于实现 对阀芯的摩擦力的减小。 一般情况下, 电液比例阀从接收 PWM信号到产生 相应的阀芯位移, 先后要克服静摩擦力和滑动摩擦力。 在输入信号中叠加 颤震信号以后, 电液比例阀的阀芯将产生一个微小的附加振动, 如果颤震 信号附加作用力的算术平均值大于阀芯的静摩擦力, 则阀芯将不出现静止 状态, 使摩擦力的影响明显减小, 提高了电液比例阀的响应速度和线性度。
然而,在图 1所示的方法中,对 PWM信号和震颤信号都是通过相应的 模拟电路发生装置来调节的, 精度低、 误差大, 且相互之间没有形成一个 完整的系统, 特别是电液比例阀的特性受外界因素发生变化时, 现有的技 术难以实时跟踪, 可调节性和适应性差, 对于电液比例阀响应速度和线性 度的提高有限。 发明内容
本发明的目的是提供一种电液比例阀调速控制方法、 装置、 系统以及 具有该系统的工程机械设备, 可显著提高电液比例阀的响应速度和线性 度。
为了实现上述目的, 本发明还提供一种电液比例阀调速控制方法, 该 方法包括: 获取液压执行元件的实际速度; 在所述实际速度与期望速度之 差大于预定值时, 根据该差值, 调节施加至所述电液比例阀的 PWM 信号 的频率和 /或占空比; 根据所述调节后的 PWM信号的频率和 /或占空比, 计 算颤震信号的频率和 /或幅值, 并根据所述实际速度与期望速度之差的变化 率, 对所计算的颤震信号的幅值进行调节; 以及将所述调节后的颤震信号 以及所述调节后的 PWM信号一起输入至所述电液比例阀。
相应地, 本发明还提供一种电液比例阀调速控制装置, 该装置包括: 实际速度获取设备, 用于获取液压执行元件的实际速度; 以及 PWM 调节 设备, 用于在所述实际速度与期望速度之差大于预定值时, 根据该差值, 调节施加至所述电液比例阀的 PWM信号的频率和 /或占空比; 颤震调节设 备, 用于根据调节后的 PWM信号的频率和 /或占空比, 计算颤震信号的频 率和 /或幅值, 并根据所述实际速度与期望速度之差的变化率, 对所计算的 颤震信号的幅值进行调节; 输出设备, 用于将所述调节后的 PWM信号以 及所述调节后的颤震信号一起输入至所述电液比例阀。
相应地, 本发明还提供一种电液比例阀调速控制系统, 该系统包括控 制器、 电液比例阀、 液压执行元件以及速度检测装置, 所述控制器的 PWM 信号驱动所述电液比例阀并驱动所述液压执行元件, 所述速度检测 装置检测所述液压执行元件的实际速度, 并将该实际速度反馈给所述控制 器, 其中, 该控制器为执行上述电液比例阀调速控制方法的控制器。
相应地, 本发明还提供一种工程机械设备, 该设备包括上述电液比例 阀调速控制系统。
通过上述技术方案, 可在对 PWM信号进行反馈调节的同时, 通过对 颤震信号的反馈调节, 从而可将刚好可克服电液比例阀的阀芯的静摩擦力 的颤震信号施加至电液比例阀, 提高了电液比例阀的响应速度和线性度。
本发明的其他特征和优点将在随后的具体实施方式部分予以详细说 明。 附图说明
附图是用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与下面的具体实施方式一起用于解释本发明, 但并不构成对本发明的限 制。 在附图中:
图 1为现有技术中的电液比例阀调速控制系统的框图;
图 2为本发明的电液比例阀调速控制系统的框图;
图 3为本发明的电液比例阀调速控制系统的一实施方式的框图; 图 4为本发明的电液比例阀调速控制方法的流程图;
图 5为本发明的电液比例阀调速控制方法的一实施方式的框图; 以及 图 6为本发明的电液比例阀调速控制装置的框图。 附图标记说明
10 控制器 20 电液比例阀
30 液压执行元件 40 速度检测装置
110 PWM发生装置 120 颤震信号发生装置
11 实际速度获取设备 12 PWM调节设备
13 颤震调节设备 14 输出设备 具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。 应当理解的 是, 此处所描述的具体实施方式仅用于说明和解释本发明, 并不用于限制 本发明。
图 2为本发明的电液比例阀调速控制系统的框图。 如图 2所示, 本发 明提供了一种电液比例阀调速控制系统, 该系统包括控制器 10、 电液比例 阀 20、 液压执行元件 30以及速度检测装置 40, 所述控制器 10的 PWM信 号驱动所述电液比例阀 20并驱动所述液压执行元件 30,所述速度检测装置 40检测所述液压执行元件 30的实际速度 ^,并将该实际速度 反馈给 所述控制器 10, 该控制器 10在所述实际速度 与期望速度 V siW之差大 于预定值时, 根据该差值 e, 调节 PWM信号的频率和 /或占空比, 并将调节 后的 PWM信号输入至所述电液比例阀 20, 其中, 所述控制器 10还用于: 根据所述调节后的 PWM信号的频率和 /或占空比, 计算颤震信号的频率和 / 或幅值, 并根据所述实际速度 与期望速度 V siW之差 e的变化率 , 对 所计算的颤震信号的幅值进行调节, 并将调节后的颤震信号与所述调节后 的 PWM信号一起输入至所述电液比例阀 20。
通过该方案, 可在两个方面对颤震信号的频率和 /或幅值进行调节: (1 ) 根据调节后的 PWM信号的频率和 /或占空比; 以及(2)根据实际速度 与期望速度 之差 e的变化率 。
一般而言, 所述计算颤震信号的频率和 /或幅值包括: 取所述颤震信号 的频率为所述调节后的 PWM信号的频率的偶数分之一, 取所述颤震信号 的幅值为所述调节后的 PWM信号的幅值均值的 0.075-0.125。 由于颤震信 号的频率与 PWM信号的频率的此关系以及颤震信号的幅值与 PWM信号的 占空比(占空比决定了幅值均值)存在该关系, 故在 PWM信号的频率变化 的情况下, 颤震信号的频率亦需要进行相应的变化; 在 PWM信号的占空 比变化的情况下, 颤震信号的幅值亦需要进行相应的变化。
然而, 上述取值方式仅可得出颤震信号的频率和 /或幅值的接近值, 如 若将此频率和 /或幅值的颤震信号施加至电液比例阀 20, 并不能完全消除 电液比例阀 20的滞环及线性度差的缺陷, 故还需根据所述实际速度 与 期望速度 V siW之差 e的变化率 , 对以上述取值方式得出的颤震信号的幅 值进行微调。 其中, 根据所述实际速度 ^与期望速度 V siW之差 e的变化 率 对颤震信号的频幅值进行微调可采用本领域所公知的 PID控制算法或 模糊控制算法进行。 优选地, 所述控制器 10还用于在所述实际速度 与所述期望速度之 差 e大于预定值时, 循环执行以下步骤, 直至实际速度 ^与所述期望速 度 之差 e小于或等于预定值为止: 获取所述速度检测装置 40所检测的 所述液压执行元件 30的实际速度 ^; 根据该实际速度 ^与所述期望速 度 之差 e, 调节所述 PWM信号的频率和 /或占空比; 根据所述调节后 的 PWM信号的频率和 /或占空比, 计算颤震信号的频率和 /或幅值, 并根据 所述实际速度 ^与期望速度 V siW之差 e的变化率 , 对所计算的颤震信 号的幅值进行调节; 以及将所述调节后的 PWM信号以及所述调节后的颤 震信号输入至所述电液比例阀 20。 藉此, 可使得调节后的 PWM信号以及 调节后的颤震信号可满足控制精度的要求。
图 3为本发明的电液比例阀 20调速控制系统的一实施方式的框图。 优 选地, 如图 3 所示, 所述控制器 10还用于为于每一调节周期 (即, 每对 PWM信号及颤震信号进行一次调节) , 存储所述调节后的 PWM信号的频 率和占空比以及所述调节后的颤震信号的频率和幅值与输入该调节后的 PWM信号及颤震信号之后所述液压执行元件 30的实际速度之间的对应关 系; 并于该系统接收所述期望速度时, 将该期望速度与预先存储的实际速 度进行比较, 确定一与该期望速度之差处于预定范围内的实际速度, 并将 具有预先存储的与该实际速度相对应的 PWM信号的频率和占空比的 PWM 信号以及具有预先存储的与该实际速度相对应的颤震信号的频率和幅值的 颤震信号输入至所述电液比例阀 20。
通过于每一调节周期存储所述调节后的 PWM信号的频率和占空比以 及所述调节后的颤震信号的频率和幅值与输入该调节后的 PWM信号及颤 震信号之后所述液压执行元件 30的实际速度之间的对应关系, 可建立一自 学习数据库, 随着本系统执行次数的增多, 该自学习数据库中的内容可更 为丰富, 最终覆盖所有可能的实际速度, 从而可针对每一输入的期望速 度, 均可找到与该期望速度之差处于预定范围内的实际速度, 之后将具有 预先存储的与该实际速度相对应的 PWM信号的频率和 /或占空比的 PWM 信号以及具有预先存储的与该实际速度相对应的颤震信号的频率和幅值的 颤震信号输入至所述电液比例阀 20, 并在此实际速度的基础上, 执行以上 循环执行的调节步骤。 藉此, 省去了到达该实际速度之前的调节过程, 可 更进一步加快响应速度。 如若所述预定范围非常小, 且对调节精度要求不 高, 可直接将具有预先存储的与该实际速度相对应的 PWM信号的频率和 占空比的 PWM信号以及具有预先存储的与该实际速度相对应的颤震信号 的频率和幅值的颤震信号输入至所述电液比例阀 20, 而不执行后续的循环 执行的调节步骤。
对于未能确定一与期望速度之差处于预定范围内的实际速度的情况而 言, 可循环执行以下步骤, 直至实际速度与所述期望速度之差小于或等于 预定值: 获取所述液压执行元件 30的实际速度; 根据该实际速度与所述期 望速度之差, 调节所述 PWM信号的频率和 /或占空比; 根据所述调节后的 PWM信号的频率和 /或占空比, 计算颤震信号的频率和 /或幅值, 并根据所 述实际速度与期望速度之差的变化率, 对所计算的颤震信号的幅值进行调 节; 以及将所述调节后的 PWM信号以及所述调节后的颤震信号输入至所 述电液比例阀 20。 在执行期间, 亦于每一调节周期, 存储所述调节后的 PWM 信号的频率和占空比以及所述调节后的颤震信号的频率和幅值与输 入该调节后的 PWM信号及颤震信号之后所述液压执行元件 30的实际速度 之间的对应关系。
图 4为本发明的电液比例阀调速控制方法的流程图。 如图 4所示, 相 应地, 本发明还提供了一种电液比例阀调速控制方法, 该方法包括: 获取 液压执行元件 30的实际速度; 在所述实际速度与期望速度之差大于预定值 时, 根据该差值, 调节施加至所述液压执行元件 30的 PWM信号的频率和 / 或占空比; 根据所述调节后的 PWM信号的频率和 /或占空比, 计算颤震信 号的频率和 /或幅值, 并根据所述实际速度与期望速度之差的变化率, 对所 计算的颤震信号的幅值进行调节; 以及将所述调节后的颤震信号以及所述 调节后的 PWM信号一起输入至所述电液比例阀 20。
其中, 所述根据调节后的 PWM信号的频率和 /或占空比, 计算颤震信 号的频率和 /或幅值可包括: 取所述震颤信号的频率为所述调节后的 PWM 信号的频率的偶数分之一, 取所述颤震信号的幅值为所述调节后的 PWM 信号的幅值均值的 0.075-0.125。
其中, 所述根据所述实际速度与所述期望速度之差的变化率对所计算 的颤震信号的幅值进行调节可通过利用 PID 控制算法或模糊控制算法进 行。
图 5 为本发明的电液比例阀调速控制方法的一实施方式的框图。 优选 地, 如图 5所示, 该方法可还包括: 存储所述调节后的 PWM信号的频率和 占空比、 所述调节后的颤震信号的频率和幅值、 以及该调节后的 PWM 信 号及颤震信号所对应的实际速度; 以及在接收到期望速度时, 将该期望速 度与所存储的实际速度进行比较, 确定一与该期望速度处于预定范围内的 实际速度, 并将具有与该实际速度相对应的 PWM信号的频率和占空比的 PWM 信号以及具有与该实际速度相对应的颤震信号的频率和幅值的颤震 信号输入至所述电液比例阀 20。
有关本发明的电液比例阀调速控制方法的详细描述可参照之前针对本 发明的电液比例阀调速控制系统的描述, 于此不再赘述。
图 6为本发明的电液比例阀调速控制装置的框图。 如图 6所示, 相应 地, 本发明还提供了一种电液比例阀调速控制装置, 该装置包括: 实际速 度获取设备 11, 用于获取液压执行元件 30的实际速度; 以及 PWM调节设 备 12, 用于在所述实际速度与期望速度之差大于预定值时, 根据该差值, 调节施加至所述液压执行元件 30的 PWM信号的频率和 /或占空比; 颤震调 节设备 13, 用于根据调节后的 PWM信号的频率和 /或占空比, 计算颤震信 号的频率和 /或幅值, 并根据所述实际速度与期望速度之差的变化率, 对所 计算的颤震信号的幅值进行调节; 输出设备 14, 用于将所述调节后的 PWM信号以及所述调节后的颤震信号一起输入至所述电液比例阀 20。
其中, 所述根据调节后的 PWM信号的频率和 /或占空比, 计算颤震信 号的频率和 /或幅值可包括: 取所述震颤信号的频率为所述调节后的 PWM 信号的频率的偶数分之一, 取所述颤震信号的幅值为所述调节后的 PWM 信号的幅值均值的 0.075-0.125。
其中, 所述颤震调节设备 13可通过利用 PID控制算法或模糊控制算法 来完成根据所述实际速度与所述期望速度之差的变化率对所计算的颤震信 号的幅值进行调节。
优选地, 该装置可还包括: 自学习设备, 用于存储所述调节后的 PWM 信号的频率和占空比、 所述调节后的颤震信号的频率和幅值、 以及 该调节后的 PWM信号及颤震信号所对应的实际速度; 并在接收到期望速 度时, 将该期望速度与所存储的实际速度进行比较, 确定一与该期望速度 之差处于预定范围内的实际速度, 并将具有与该实际速度相对应的 PWM 信号的频率和占空比的 PWM信号以及具有与该实际速度相对应的颤震信 号的频率和幅值的颤震信号输入至所述电液比例阀 20。
有关本发明的电液比例阀调速控制装置的详细描述可参照之前针对本 发明的电液比例阀调速控制系统的描述, 于此不再赘述。
另外, 本发明还提供一种工程机械设备, 该设备包括上述电液比例阀 调速控制系统。 该工程机械设备可包括诸如挖掘机、 泵车、 起重机等。
通过上述技术方案, 可在对 PWM信号进行反馈调节的同时, 通过对 颤震信号的反馈调节, 从而可将刚好可克服电液比例阀的阀芯的静摩擦力 的颤震信号施加至电液比例阀, 提高了电液比例阀的响应速度和线性度。 另外, 通过于自学习环节建立自学习数据库, 可进一步调高液比例阀的响 应速度和线性度。 以上结合附图详细描述了本发明的优选实施方式, 但是, 本发明并不 限于上述实施方式中的具体细节, 在本发明的技术构思范围内, 可以对本 发明的技术方案进行多种简单变型, 这些简单变型均属于本发明的保护范 围。
另外需要说明的是, 在上述具体实施方式中所描述的各个具体技术特 征, 在不矛盾的情况下, 可以通过任何合适的方式进行组合。 为了避免不 必要的重复, 本发明对各种可能的组合方式不再另行说明。
此外, 本发明的各种不同的实施方式之间也可以进行任意组合, 只要 其不违背本发明的思想, 其同样应当视为本发明所公开的内容。

Claims

权利要求
1、 一种电液比例阀调速控制方法, 该方法包括:
获取液压执行元件 (30) 的实际速度;
在所述实际速度与期望速度之差大于预定值时, 根据该差值, 调节施 加至所述电液比例阀 (20) 的脉冲宽度调制 (PWM)信号的频率和 /或占空 比;
根据所述调节后的 PWM信号的频率和 /或占空比, 计算颤震信号的频 率和 /或幅值, 并根据所述实际速度与期望速度之差的变化率, 对所计算的 颤震信号的幅值进行调节; 以及
将所述调节后的颤震信号以及所述调节后的 PWM信号一起输入至所 述电液比例阀 (20) 。
2、 根据权利要求 1所述的方法, 其特征在于, 所述根据所述调节后的 PWM信号的频率和 /或占空比, 计算颤震信号的频率和 /或幅值包括: 取所 述震颤信号的频率为所述调节后的 PWM信号的频率的偶数分之一, 取所 述颤震信号的幅值为所述调节后的 PWM信号的幅值均值的 0.075-0.125。
3、 根据权利要求 1所述的方法, 其特征在于, 所述根据所述实际速度 与所述期望速度之差的变化率对所计算的颤震信号的幅值进行调节通过利 用 PID控制算法或模糊控制算法进行。
4、 根据权利要求 1-3中任一项权利要求所述的方法, 其特征在于, 该 方法包括:
存储将所述调节后的颤震信号以及所述调节后的 PWM信号输入至所 述电液比例阀 (20) 之后所述液压执行元件 (30) 的实际速度与所述调节 后的 PWM信号的频率和占空比以及所述调节后的颤震信号的频率和幅值 之间的对应关系; 以及
在接收到期望速度时, 将该期望速度与预先存储的实际速度进行比 较, 确定一与该期望速度之差处于预定范围内的实际速度, 并将具有预先 存储的与该实际速度相对应的 PWM信号的频率和占空比的 PWM信号以及 具有预先存储的与该实际速度相对应的颤震信号的频率和幅值的颤震信号 输入至所述电液比例阀 (20) 。
5、 一种电液比例阀调速控制装置, 该装置包括:
实际速度获取设备(11 ), 用于获取液压执行元件(30)的实际速度; 以及
脉冲宽度调制 (PWM) 调节设备 (12) , 用于在所述实际速度与期望 速度之差大于预定值时, 根据该差值, 调节施加至所述电液比例阀 (20) 的 PWM信号的频率和 /或占空比;
颤震调节设备 (13 ) , 用于根据调节后的 PWM信号的频率和 /或占空 比, 计算颤震信号的频率和 /或幅值, 并根据所述实际速度与期望速度之差 的变化率, 对所计算的颤震信号的幅值进行调节; 以及
输出设备 (14) , 用于将所述调节后的 PWM信号以及所述调节后的 颤震信号一起输入至所述电液比例阀 (20) 。
6、 根据权利要求 5所述的装置, 其特征在于, 所述根据所述调节后的 PWM信号的频率和 /或占空比, 计算颤震信号的频率和 /或幅值包括: 取所 述震颤信号的频率为所述调节后的 PWM信号的频率的偶数分之一, 取所 述颤震信号的幅值为所述调节后的 PWM信号的幅值均值的 0.075-0.125。
7、 根据权利要求 5所述的装置, 其特征在于, 所述颤震调节设备 ( 13 ) 通过利用 PID控制算法或模糊控制算法来完成根据所述实际速度与所述期 望速度之差的变化率对所计算的颤震信号的幅值进行调节。
8、 根据权利要求 5-7中任一项权利要求所述的装置, 其特征在于, 该 装置包括:
自学习设备, 用于存储将所述调节后的颤震信号以及所述调节后的 PWM信号输入至所述电液比例阀 (20)之后所述液压执行元件(30) 的实 际速度与所述调节后的 PWM信号的频率和占空比以及所述调节后的颤震 信号的频率和幅值之间的对应关系; 并在接收到期望速度时, 将该期望速 度与预先存储存储的实际速度进行比较, 确定一与该期望速度之差处于预 定范围内的实际速度, 并将具有预先存储的与该实际速度相对应的 PWM 信号的频率和占空比的 PWM信号以及具有预先存储的与该实际速度相对 应的颤震信号的频率和幅值的颤震信号输入至所述电液比例阀 (20) 。
9、 一种电液比例阀调速控制系统, 该系统包括控制器 (10)、 电液比 例阀(20)、液压执行元件(30)以及速度检测装置(40), 所述控制器(10) 的脉冲宽度调制 (PWM) 信号驱动所述电液比例阀 (20) 并驱动所述液压 执行元件 (30), 所述速度检测装置 (40) 检测所述液压执行元件 (30) 的 实际速度, 并将该实际速度反馈给所述控制器 (10), 其特征在于,
所述控制器 (10) 为执行权利要求 1-4所述的方法的控制器。
10、 一种工程机械设备, 其特征在于, 该工程机械设备包括权利要求 9 所述的电液比例阀调速控制系统。
PCT/CN2011/079204 2011-08-31 2011-08-31 电液比例阀调速控制方法、装置、系统以及工程机械设备 WO2013029254A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/079204 WO2013029254A1 (zh) 2011-08-31 2011-08-31 电液比例阀调速控制方法、装置、系统以及工程机械设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/079204 WO2013029254A1 (zh) 2011-08-31 2011-08-31 电液比例阀调速控制方法、装置、系统以及工程机械设备

Publications (1)

Publication Number Publication Date
WO2013029254A1 true WO2013029254A1 (zh) 2013-03-07

Family

ID=47755212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/079204 WO2013029254A1 (zh) 2011-08-31 2011-08-31 电液比例阀调速控制方法、装置、系统以及工程机械设备

Country Status (1)

Country Link
WO (1) WO2013029254A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0914486A (ja) * 1995-06-29 1997-01-14 Uchida Yuatsu Kiki Kogyo Kk 電磁比例制御弁の駆動制御装置及びその駆動制御方法
JP2002054758A (ja) * 2000-08-09 2002-02-20 Unisia Jecs Corp 電磁弁制御装置
US20030220702A1 (en) * 2002-01-07 2003-11-27 Mcnutt Alan D. State Machine for a pulse output function
CN101169141A (zh) * 2007-11-28 2008-04-30 三一重工股份有限公司 电液比例流量阀调速控制系统和方法
CN101718368A (zh) * 2009-12-01 2010-06-02 三一重工股份有限公司 比例电磁阀控制方法、装置和应用该装置的工程机械

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0914486A (ja) * 1995-06-29 1997-01-14 Uchida Yuatsu Kiki Kogyo Kk 電磁比例制御弁の駆動制御装置及びその駆動制御方法
JP2002054758A (ja) * 2000-08-09 2002-02-20 Unisia Jecs Corp 電磁弁制御装置
US20030220702A1 (en) * 2002-01-07 2003-11-27 Mcnutt Alan D. State Machine for a pulse output function
CN101169141A (zh) * 2007-11-28 2008-04-30 三一重工股份有限公司 电液比例流量阀调速控制系统和方法
CN101718368A (zh) * 2009-12-01 2010-06-02 三一重工股份有限公司 比例电磁阀控制方法、装置和应用该装置的工程机械

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI, ZHIFU: "Research and Design of Electro-hydraulic Proportional Control System Based on High Frequency PWM", MASTER'S DISSERTATION OF HUNAN UNIVERSITY, 2008 *
ZOU, WEI.: "Design on High Energy-efficient, Intelligent Proportional Controller", MASTER'S DISSERTATION OF ZHEJIANG UNIVERSITY, 2010 *

Similar Documents

Publication Publication Date Title
CN102384118B (zh) 电液比例阀调速控制方法、装置、系统以及工程机械设备
US7853360B2 (en) Method and device for determining a PWM signal on which a dither frequency is superimposed in order to control a solenoid valve
US7638965B2 (en) Motor control apparatus
CN102359644B (zh) 一种控制电磁阀的控制系统与控制方法
US6176207B1 (en) Electronically controlling the landing of an armature in an electromechanical actuator
CN102384119B (zh) 电液比例阀调速控制方法、装置、系统以及工程机械设备
KR102381611B1 (ko) 코일에 의해 가동될 수 있는 부재를 제어하기 위한 방법 및 솔레노이드 밸브
JP2009530167A (ja) 制御電磁弁のコイル電流を調整する調整器を備えた制御装置
JP4294344B2 (ja) 電動機の制御方法及び制御装置
JP2006029583A (ja) 結合モーメントの調整方法
US20200133312A1 (en) Solenoid valve control apparatus and control method of solenoid valve
CN103460595A (zh) 用于适配电子换向的电机的换向的方法和设备
JP2010250509A (ja) 駆動制御装置
WO2013029254A1 (zh) 电液比例阀调速控制方法、装置、系统以及工程机械设备
JP2014183678A (ja) モータ駆動装置
WO2013029255A1 (zh) 电液比例阀调速控制方法、装置、系统以及工程机械设备
US10755843B2 (en) Method and apparatus for controlling a solenoid valve
RU2395150C2 (ru) Система управления электромагнитным подвесом ротора
KR20150002919A (ko) 특이섭동이론에 기초한 영구자석형 스텝 모터의 위치 제어 장치 및 방법
JP4123099B2 (ja) 材料試験機
Paul et al. Anti-windup FOPI controller for step motor
Reinertz A comparative study on dither signals and their parameterisation
CN104303413B (zh) 用于定位无电刷电动驱动器的方法和设备
JP2018113819A (ja) 真空バルブ
JP2019132355A (ja) 電流制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11871633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11871633

Country of ref document: EP

Kind code of ref document: A1