WO2009062611A1 - Verfahren zum herstellen und schmelzen von flüssigem roheisen oder flüssigen stahlvorprodukten in einem einschmelzvergaser - Google Patents
Verfahren zum herstellen und schmelzen von flüssigem roheisen oder flüssigen stahlvorprodukten in einem einschmelzvergaser Download PDFInfo
- Publication number
- WO2009062611A1 WO2009062611A1 PCT/EP2008/009277 EP2008009277W WO2009062611A1 WO 2009062611 A1 WO2009062611 A1 WO 2009062611A1 EP 2008009277 W EP2008009277 W EP 2008009277W WO 2009062611 A1 WO2009062611 A1 WO 2009062611A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- oxygen
- gas
- oxygen nozzle
- outlet openings
- containing gas
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D3/00—Charging; Discharging; Manipulation of charge
- F27D3/16—Introducing a fluid jet or current into the charge
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B5/00—Making pig-iron in the blast furnace
- C21B5/001—Injecting additional fuel or reducing agents
- C21B5/003—Injection of pulverulent coal
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B7/00—Blast furnaces
- C21B7/16—Tuyéres
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23M—CASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
- F23M11/00—Safety arrangements
- F23M11/04—Means for supervising combustion, e.g. windows
- F23M11/042—Viewing ports of windows
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B1/00—Shaft or like vertical or substantially vertical furnaces
- F27B1/10—Details, accessories, or equipment peculiar to furnaces of these types
- F27B1/16—Arrangements of tuyeres
Definitions
- the application relates to a method and an apparatus for producing and melting liquid pig iron or liquid steel precursors in a melter gasifier.
- iron oxides or prereduced iron or mixtures thereof are added to the melter gasifier as iron-containing feedstocks, where they are melted by feeding carbonaceous material as solid carbon carriers and oxygen-containing gas in a fixed bed formed from the solid carbon carriers, the carbonaceous carrier gasifying and CO and H. 2 -containing reducing gas is generated.
- the supply of the oxygen-containing gas into the fixed bed takes place via a multiplicity of oxygen nozzles, called oxygen nozzle belts, which are distributed over the circumference of the melter gasifier in the region of the melter gasifier hearth.
- the oxygen nozzles pass through the metal shell of the melter gasifier and are supplied with oxygen-containing gas from outside the melter gasifier.
- the oxygen-containing gas may be oxygen or an oxygen-containing gas mixture; the terms oxygen-containing gas and oxygen are used synonymously below.
- the capacity of a melter gasifier for producing liquid pig iron or liquid steel precursors or its melting capacity increases with its volume.
- the active area of the oxygen nozzle belt becomes smaller and smaller relative to the cross-sectional area of the melter gasifier, since the periphery of the melter gasifier hearth grows only linearly with the diameter of the melter gasifier hearth, but the cross-sectional area increases with the square of the diameter of the melter gasifier. Hearth increases.
- the number of installable oxygen nozzles as well as the circumference will only increase linearly with the diameter of the melter gasifier hearth, while the melting capacity at least with the square of the Diameter of the melter gasifier hearth increases.
- the oxygen nozzles used have to conduct an ever greater amount of oxygen-containing gas into the melter gasifier.
- the hot gas streams in and over a large area above the raceway cause a state of fluidized bed formation or fluidization.
- EP0114040 a method is described how fluidization of the material located in front of the oxygen nozzles can be avoided by arranging two nozzle planes.
- the lower oxygen nozzle level a smaller amount of oxygen-containing gas is supplied, so that a fixed bed layer is formed, which allows, as described above for the energy and mass transfer, procedural effect of the countercurrent flow.
- only a limited amount of oxygen-containing gas can be introduced by means of this process.
- the oxygen introduced via the upper oxygen nozzle belt produces a fluidized bed.
- a plant according to the Austrian Patent AT382390B has only a single oxygen nozzle level opening into a fixed bed of coarse-grained feedstock.
- the object of the present invention is to provide a method and a device by means of which it is also possible with Einschmelzvergasern large diameter and volume, without weakening the strength of the steel shell of the melter gasifier and to avoid or reduce fluidization of the fixed bed to ensure adequate oxygen supply ,
- the subject invention avoids the disadvantages discussed above in that in at least one oxygen nozzle oxygen-containing gas is passed in at least two gas streams in the fixed bed. With this measure it is possible, with the same number of passages for oxygen nozzles in the steel jacket of the melter gasifier, to provide more gas streams penetrating into the fixed bed. If at least two gas streams are introduced from all the oxygen nozzles, twice the number of gas streams is created compared to a conventional solution with one gas stream per oxygen nozzle. Thus, the volume flows of introduced gas can be lowered for each raceway, whereby a large-scale fluidization can be avoided or reduced. In case of a Introduction of two equal gas streams per oxygen nozzle, the volume flows of introduced gas, for example, reduced by half compared to the introduction with a gas stream.
- the volume flows of the introduced gas decrease correspondingly more.
- the introduction into at least two gas streams can take place at one, several or all oxygen nozzles.
- Two, three, four, five, six, or seven gas streams per oxygen nozzle can be introduced into the fixed bed.
- two to four gas streams are introduced, since with such a number the penetration depth of the raceway into the fixed bed is good and the individual raceways do not overlap. With more than seven gas streams, the penetration depths are low and there is a risk of overlapping the individual raceways.
- the oxygen-containing gas flows as a feed gas stream through the oxygen nozzle before it is introduced into the fixed bed.
- the at least two gas streams introduced into the fixed bed originate from a single feed gas stream for oxygen-containing gas. In this way, all gas streams introduced from an oxygen nozzle can be simultaneously controlled by controlling the feed gas flow.
- the at least two gas streams introduced into the fixed bed each originate from a separate feed gas stream. This makes it possible, by controlling the corresponding feed gas flow, to control each of the introduced gas streams individually, independently of other gas streams introduced from the oxygen nozzle.
- gas streams which have different flow directions emerge from an oxygen nozzle opening.
- the oxygen-containing gas is thereby introduced over a wider range in the fixed bed, and for each gas flow with a flow direction forms each own raceway with a lower local gas amount, which is the number Raceways increases and minimizes the risk of fluidization.
- each gas stream exits from its own oxygen nozzle orifice. Since a separate raceway forms before each oxygen nozzle opening, so increases the number of raceways, which is why the volume flow per raceway can be reduced. Correspondingly, the risk of fluidization of the fixed bed is reduced.
- Adjacent from the oxygen nozzle exiting gas streams may have the same or different flow directions.
- the flow directions for the gas flows at an angle of up to 45 °, preferably 5 ° to 15 ° to each other. This results in a uniform gasification of the melting and reaction zone before the oxygen nozzles.
- the larger the angle the better the individual raceways present in front of the same oxygen nozzle are separated from each other; however, as the angle increases, there is a risk of overlapping existing raceways in front of adjacent oxygen nozzles. Therefore, the angle should not be more than 45 °. Which angle is optimal depends on the proximity of adjacent oxygen nozzles to each other. With conventional numbers of oxygen nozzles on the melter gasifier and the resulting distances from 5 ° to 15 ° are particularly favorable.
- the said angle is the angle between the projections of the flow directions on a horizontal plane.
- the introduced into the fixed bed gas streams may have the same or different diameters. It is preferred that when using more than two T / EP2008 / 009277
- Gas flows the gas streams have different diameters.
- a mean gas stream having a diameter of two gas streams may be flanked with smaller, for both equal, diameters.
- the middle gas flow then enters the fixed bed and is less likely to overlap its raceway with the raceways of the adjacent smaller gas streams.
- each oxygen-containing gas feed gas stream is controllable in terms of pressure and, via the flow rate, amount. This ensures that the introduced into the fixed bed gas streams, which are indeed supplied by the Einspeisungsgasströme with oxygen-containing gas, with respect to pressure and, via the flow velocity, amount can be controlled.
- fine coal is also injected into the fixed bed via the oxygen nozzles.
- additional carbonaceous material is fed to the fixed bed.
- the operation of the oxygen nozzles is monitored by goggles.
- the condition of the oxygen nozzles can be checked and, in the case of unfavorable developments, such as, for example, laying of the oxygen nozzle openings, timely countermeasures initiated or the oxygen nozzle shut down.
- Another object of the present invention is an oxygen nozzle for feeding oxygen-containing gas into the fixed bed of a melter gasifier or coal gasifier, characterized in that it comprises at least one oxygen feed duct, and at least two oxygen flow outlet ducts with outlet openings, each of the oxygen flow outlet ducts being connected to at least one oxygen feed duct.
- the oxygen nozzle may also have three, four, five, six, or seven oxygen flow outlet channels. Preferably, it has two to four Sauerstoffstromauslasskanäle, since in such a number, the penetration depth of the raceway formed before them is good in the fixed bed and the individual raceways do not overlap. With more than seven oxygen flow outlet channels, the penetration depths are low and there is a risk of overlapping the individual raceways.
- at least two oxygen flow outlet channels are connected to the same oxygen feed channel. This means that the oxygen feed channel branches into at least two oxygen flow outlet channels.
- the oxygen flow outlet channels are each connected to a separate oxygen feed channel.
- Oxygen nozzle orifice
- the outlet openings form the
- Sauerstoffstromauslasskanäle each have their own oxygen nozzle opening.
- the diameters of the individual outlet openings are different in order to adjust the gas volume and penetration depth of the respective raceways to the energetic and geometric requirements in the melter gasifier can.
- the distance of the circumference of adjacent outlet openings is up to three times the outlet opening diameter of one of the outlet openings. For large outlet port diameters, this is true for the smaller outlet port diameter. In an example with 3 outlet openings, a central outlet opening being flanked by two outlet openings of smaller, respectively equal, diameter, for example this smaller diameter. A greater distance would cause problems in the oxygen nozzle still accommodate enough wall thickness to accommodate cooling channels.
- the center axes of the sections of the oxygen flow outlet channels ending with the outlet openings form an angle of up to 45 °, preferably 5 ° to 15 °, to one another.
- the angle should not be more than 45 ", which angle is optimal depends on the proximity of adjacent oxygen nozzles to each other.With usual numbers of oxygen nozzles at the melter carburetor and resulting distances are 5 ° to 15 ° particularly favorable.
- the said angle is the angle between the projections of the central axes on a horizontal plane.
- each oxygen feed channel is provided with a regulator for controlling pressure and, via the flow velocity, amount of the oxygen-containing gas fed.
- the oxygen nozzle comprises a display device for monitoring the oxygen flow outlet channels and their outlet openings.
- the oxygen nozzle comprises a device for the injection of fine coal.
- FIG. 1 shows a segment of a cross section of a melter gasifier in the hearth area of the melter gasifier.
- FIG. 2 shows an oxygen nozzle in cross section.
- Figure 3a shows schematically a front view of an embodiment of a
- FIG. 3b shows a longitudinal section of the oxygen nozzle of FIG. 3a
- Figure 4a shows a front view of an oxygen nozzle
- Figure 4b shows a plan view of a section along the line AA 1 through the oxygen nozzle shown in Figure 4a.
- the oxygen nozzles 1a, 1b, 1c shown by way of example are, similar to blow molding in blast furnaces, annularly arranged at a certain distance d above the hearth on the circumference U of the melter gasifier and are supplied with oxygen-containing gas from outside via feed lines (not shown). For better Clarity, only three oxygen nozzles 1a, 1b, 1c are shown.
- the melter gasifier has the radius R. Due to high gas velocities, generally more than 100 m / s, the raceway described above forms in front of the oxygen nozzles. Here, the reaction takes place with the carbonaceous material, which is highly exothermic and serves to melt the feedstocks. The nozzles must be able to withstand very high temperatures up to more than 2000 ° C.
- the oxygen-containing gas is introduced at each oxygen nozzle 1a, 1b, 1c in two gas streams in the fixed bed, whereby two raceways 2a, 2b form before each oxygen nozzle 1a, 1b, 1c.
- the flow directions adjacent emerging gas streams, and thus the corresponding raceways, form an angle to each other in the projection on a horizontal plane, in this case, for example, the plane of the paper.
- the outlet openings of the Sauerstoffstromauslasskanäle each form their own oxygen nozzle opening.
- FIG. 2 shows an oxygen nozzle 1 in cross-section.
- the oxygen nozzle 1 has cooling channels 3 for cooling the tip and the body of the oxygen nozzle. After supplying the oxygen nozzle with oxygen-containing gas from outside the melter gasifier, the oxygen-containing gas flows as feed gas flow through the oxygen feed channel 4 of the oxygen nozzle before passing through the two oxygen flow outlet channels 5a, 5b branching off from the oxygen feed channel 4 Outlet openings 6a, 6b is introduced into the fixed bed.
- Such showers for monitoring the nozzle function are possible through straight-line oxygen flow outlet channels.
- Optional devices for injection of fine coal, which penetrate the body of the oxygen nozzle and terminate in the immediate vicinity of the outlet openings on the side of the raceway are not shown.
- FIG. 3a schematically shows a front view of an embodiment of an oxygen nozzle with two oxygen flow outlet channels, whose outlet openings 8 and 9 each form separate oxygen nozzle openings.
- the 2 oxygen flow outlet channels are each connected to a separate oxygen feed channel.
- the associated oxygen flow outlet channels and oxygen feed channels have the same direction. When projected onto a horizontal plane, the two directions of the oxygen flow outlet channels cross each other.
- Figure 3b shows a longitudinal section of the oxygen nozzle of Figure 3a with cooling channels 10 for cooling the body and tip of the oxygen nozzle.
- FIG. 4a shows a front view of an oxygen nozzle in which the outlet openings 11, 12, 13, 14 of the oxygen flow outlet channels lie within an oxygen nozzle opening 15.
- the oxygen nozzle opening is slit-shaped and arranged horizontally.
- Figure 4b shows a plan view of a section along the line A-A 'through the oxygen nozzle shown in Figure 4a.
- This value indicates the amount of pig iron that is produced daily during normal operation. -Special hearth load (tons / m 2 , day).
- melter gasifier with conventional oxygen nozzles, in which per oxygen nozzle, a gas stream of oxygen-containing gas is introduced into the fixed bed: EP2008 / 009277
- Example 1 A melter gasifier with an absolute melting capacity of 1000 tons of pig iron / day is characterized by the following parameters:
- Example 2 Melt carburetor with an absolute melting capacity of 2500 tonnes of pig iron / day is characterized by the following parameters: Total number of raceways 28
- Example 3 Melt carburetor with an absolute melting capacity of 4000 tonnes of pig iron / day is characterized by the following parameters: Total number of raceways 30
- Example 4 Melt carburetor with an absolute melting capacity of 5800 tons of pig iron / day is characterized by the following parameters: Total number of raceways 34
- Step Example! 5 melter gasifier with an absolute melting capacity of 2500 tonnes of pig iron / day
- Example 6 melter gasifier with an absolute melting capacity of 4000 tons pig iron / day
- oxygen nozzles according to the invention can be retrofitted into existing melter gasifier plants without changing the melter gasifier.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Vertical, Hearth, Or Arc Furnaces (AREA)
- Furnace Charging Or Discharging (AREA)
- Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Manufacture Of Iron (AREA)
Abstract
Description
Claims
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2008323317A AU2008323317B2 (en) | 2007-11-13 | 2008-11-04 | Method for the production and the melting of liquid pig iron or of liquid steel intermediate products in a melt-down gasifier |
JP2010533463A JP2011503508A (ja) | 2007-11-13 | 2008-11-04 | ガス化溶融装置において液状銑鉄又は液状鉄鋼原材料製品の製造方法及び溶融方法 |
CN200880115978.5A CN101855506B (zh) | 2007-11-13 | 2008-11-04 | 用于在熔化气化器中制造和熔化液态的生铁或者液态的钢半成品的方法 |
RU2010123947/02A RU2487948C2 (ru) | 2007-11-13 | 2008-11-04 | Способ получения и плавления жидкого чугуна или жидких исходных продуктов стали в плавильном газогенераторе |
CA2705434A CA2705434A1 (en) | 2007-11-13 | 2008-11-04 | Method for the production and the melting of liquid pig iron or of liquid steel intermediate products in a melt-down gasifier |
US12/742,471 US8313552B2 (en) | 2007-11-13 | 2008-11-04 | Method for the production and the melting of liquid pig iron or of liquid steel intermediate products in a melt-down gasifier |
BRPI0820559-0A BRPI0820559A2 (pt) | 2007-11-13 | 2008-11-04 | Método para a produção e fusão de ferro-gusa líquido, ou produtos de metal líquido intermediários em um gaseificador de fusão |
EP08849824A EP2215418B1 (de) | 2007-11-13 | 2008-11-04 | Verfahren zum herstellen und schmelzen von flüssigem roheisen oder flüssigen stahlvorprodukten in einem einschmelzvergaser |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT0182407A AT506042A1 (de) | 2007-11-13 | 2007-11-13 | Verfahren zum schmelzen von roheisen und stahlvorprodukten in einem schmelzvergaser |
ATA1824/2007 | 2007-11-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009062611A1 true WO2009062611A1 (de) | 2009-05-22 |
Family
ID=40342612
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2008/009277 WO2009062611A1 (de) | 2007-11-13 | 2008-11-04 | Verfahren zum herstellen und schmelzen von flüssigem roheisen oder flüssigen stahlvorprodukten in einem einschmelzvergaser |
Country Status (15)
Country | Link |
---|---|
US (1) | US8313552B2 (de) |
EP (1) | EP2215418B1 (de) |
JP (1) | JP2011503508A (de) |
KR (1) | KR20100083837A (de) |
CN (1) | CN101855506B (de) |
AR (1) | AR069285A1 (de) |
AT (1) | AT506042A1 (de) |
AU (1) | AU2008323317B2 (de) |
BR (1) | BRPI0820559A2 (de) |
CA (1) | CA2705434A1 (de) |
CL (1) | CL2008003359A1 (de) |
RU (1) | RU2487948C2 (de) |
TW (1) | TW200936769A (de) |
UA (1) | UA98677C2 (de) |
WO (1) | WO2009062611A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012025321A3 (de) * | 2010-08-25 | 2013-04-25 | Siemens Vai Metals Technologies Gmbh | Verfahren zur erhöhung der eindringtiefe eines sauerstoffstrahles |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT511206B1 (de) | 2011-05-19 | 2012-10-15 | Siemens Vai Metals Tech Gmbh | Verfahren und vorrichtung zum chargieren von kohlehaltigem material und eisenträger-material |
AT511738B1 (de) * | 2011-07-21 | 2013-04-15 | Siemens Vai Metals Tech Gmbh | Schmelzreduktionsaggregat und verfahren zum betrieb eines schmelzreduktionsaggregats |
CN108048610A (zh) * | 2018-01-10 | 2018-05-18 | 航天长征化学工程股份有限公司 | 一种直接气化还原铁的烧嘴组合装置及方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0195770A1 (de) * | 1985-03-21 | 1986-09-24 | VOEST-ALPINE INDUSTRIEANLAGENBAU GESELLSCHAFT m.b.H. | Verfahren zur Herstellung von flüssigem Roheisen oder Stahlvorprodukten |
JPS62263906A (ja) * | 1986-05-12 | 1987-11-16 | Sumitomo Metal Ind Ltd | 高炉羽口からの微粉炭吹込み方法 |
WO1997044618A1 (en) * | 1996-05-17 | 1997-11-27 | Xothermic, Inc. | Burner apparatus and method |
EP0823592A2 (de) * | 1996-08-05 | 1998-02-11 | The BOC Group plc | Sauerstoff-Brennstoff Brenner |
WO2006005577A1 (de) * | 2004-07-14 | 2006-01-19 | Messer Group Gmbh | Brennstoff-sauerstoff-brenner und verfahren zum betreiben des brenners |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1166000A (en) * | 1967-02-23 | 1969-10-01 | Steel Co Of Wales Ltd | Improvements in or relating to the Manufacture of Steel |
JPS5375104A (en) * | 1976-12-14 | 1978-07-04 | Kubota Ltd | Auxiliary combustion apparatus for cupola |
SU956571A1 (ru) * | 1981-02-02 | 1982-09-07 | Сибирский Ордена Трудового Красного Знамени Металлургический Институт Им.С.Орджоникидзе | Многосоплова фурма дл продувки металла |
AT378970B (de) * | 1982-12-21 | 1985-10-25 | Voest Alpine Ag | Verfahren und vorrichtung zur herstellung von flùssigem roheisen oder stahlvorprodukten |
JPS6050143A (ja) | 1983-08-29 | 1985-03-19 | Sumitomo Metal Ind Ltd | 合金鉄の製造法 |
DE3503493A1 (de) * | 1985-01-31 | 1986-08-14 | Korf Engineering GmbH, 4000 Düsseldorf | Verfahren zur herstellung von roheisen |
JP2600733B2 (ja) * | 1987-12-18 | 1997-04-16 | 日本鋼管株式会社 | 溶融還元法 |
JP3509128B2 (ja) | 1993-06-22 | 2004-03-22 | Jfeスチール株式会社 | 転炉型溶融還元炉の操業方法及び酸素上吹きランス |
CN1068052C (zh) | 1996-04-05 | 2001-07-04 | 新日本制铁株式会社 | 熔融还原装置以及操作该装置的方法 |
JPH1121610A (ja) | 1997-07-02 | 1999-01-26 | Kawasaki Steel Corp | ガス吹き用ランス及び転炉型精錬炉の操業方法 |
AT407398B (de) * | 1998-08-28 | 2001-02-26 | Voest Alpine Ind Anlagen | Verfahren zum herstellen einer metallschmelze |
AT407994B (de) * | 1999-08-24 | 2001-07-25 | Voest Alpine Ind Anlagen | Verfahren zum betreiben eines einschmelzvergasers |
CA2492243C (en) * | 2002-07-10 | 2010-06-08 | Mark Bernard Denys | Metallurgical vessel and method of iron making by means of direct reduction |
JP4119336B2 (ja) * | 2003-09-17 | 2008-07-16 | 大陽日酸株式会社 | 多孔バーナー・ランス及び冷鉄源の溶解・精錬方法 |
KR100732461B1 (ko) * | 2005-12-26 | 2007-06-27 | 주식회사 포스코 | 분철광석의 장입 및 배출을 개선한 용철제조방법 및 이를이용한 용철제조장치 |
-
2007
- 2007-11-13 AT AT0182407A patent/AT506042A1/de not_active Application Discontinuation
-
2008
- 2008-11-04 JP JP2010533463A patent/JP2011503508A/ja active Pending
- 2008-11-04 RU RU2010123947/02A patent/RU2487948C2/ru not_active IP Right Cessation
- 2008-11-04 AU AU2008323317A patent/AU2008323317B2/en not_active Ceased
- 2008-11-04 TW TW097142436A patent/TW200936769A/zh unknown
- 2008-11-04 UA UAA201005778A patent/UA98677C2/ru unknown
- 2008-11-04 EP EP08849824A patent/EP2215418B1/de not_active Not-in-force
- 2008-11-04 BR BRPI0820559-0A patent/BRPI0820559A2/pt not_active IP Right Cessation
- 2008-11-04 US US12/742,471 patent/US8313552B2/en not_active Expired - Fee Related
- 2008-11-04 KR KR1020107011947A patent/KR20100083837A/ko not_active Application Discontinuation
- 2008-11-04 WO PCT/EP2008/009277 patent/WO2009062611A1/de active Application Filing
- 2008-11-04 CN CN200880115978.5A patent/CN101855506B/zh not_active Expired - Fee Related
- 2008-11-04 CA CA2705434A patent/CA2705434A1/en not_active Abandoned
- 2008-11-12 CL CL2008003359A patent/CL2008003359A1/es unknown
- 2008-11-12 AR ARP080104925A patent/AR069285A1/es not_active Application Discontinuation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0195770A1 (de) * | 1985-03-21 | 1986-09-24 | VOEST-ALPINE INDUSTRIEANLAGENBAU GESELLSCHAFT m.b.H. | Verfahren zur Herstellung von flüssigem Roheisen oder Stahlvorprodukten |
JPS62263906A (ja) * | 1986-05-12 | 1987-11-16 | Sumitomo Metal Ind Ltd | 高炉羽口からの微粉炭吹込み方法 |
WO1997044618A1 (en) * | 1996-05-17 | 1997-11-27 | Xothermic, Inc. | Burner apparatus and method |
EP0823592A2 (de) * | 1996-08-05 | 1998-02-11 | The BOC Group plc | Sauerstoff-Brennstoff Brenner |
WO2006005577A1 (de) * | 2004-07-14 | 2006-01-19 | Messer Group Gmbh | Brennstoff-sauerstoff-brenner und verfahren zum betreiben des brenners |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012025321A3 (de) * | 2010-08-25 | 2013-04-25 | Siemens Vai Metals Technologies Gmbh | Verfahren zur erhöhung der eindringtiefe eines sauerstoffstrahles |
US8808422B2 (en) | 2010-08-25 | 2014-08-19 | Siemens Vai Metals Technologies Gmbh | Method for increasing the penetration depth of an oxygen stream |
AU2011295333B2 (en) * | 2010-08-25 | 2015-05-28 | Primetals Technologies Austria GmbH | Method for increasing the penetration depth of an oxygen stream |
Also Published As
Publication number | Publication date |
---|---|
CA2705434A1 (en) | 2009-05-22 |
AU2008323317A1 (en) | 2009-05-22 |
RU2010123947A (ru) | 2011-12-20 |
JP2011503508A (ja) | 2011-01-27 |
US8313552B2 (en) | 2012-11-20 |
BRPI0820559A2 (pt) | 2015-06-16 |
AR069285A1 (es) | 2010-01-13 |
EP2215418B1 (de) | 2012-12-26 |
US20100294080A1 (en) | 2010-11-25 |
RU2487948C2 (ru) | 2013-07-20 |
UA98677C2 (ru) | 2012-06-11 |
CN101855506A (zh) | 2010-10-06 |
AT506042A1 (de) | 2009-05-15 |
AU2008323317B2 (en) | 2014-01-09 |
EP2215418A1 (de) | 2010-08-11 |
TW200936769A (en) | 2009-09-01 |
KR20100083837A (ko) | 2010-07-22 |
CL2008003359A1 (es) | 2009-10-02 |
CN101855506B (zh) | 2014-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE68909047T2 (de) | Verfahren und vorrichtung zur reduktion von metalloxid enthaltendem material. | |
EP0037809B1 (de) | Verfahren zur Herstellung von flüssigem Roheisen oder Stahlvormaterial sowie Anlage zur Durchführung des Verfahrens | |
DD212751A5 (de) | Verfahren und einschmelzvergaser zur erzeugung von fluessigem roheisen oder von stahlvorprodukten | |
DD243716A5 (de) | Verfahren und einrichtung zur herstellung von fluessigem roheisen oder stahlvorprodukten | |
EP2215418B1 (de) | Verfahren zum herstellen und schmelzen von flüssigem roheisen oder flüssigen stahlvorprodukten in einem einschmelzvergaser | |
EP0236669B1 (de) | Verfahren zur Herstellung von flüssigem Roheisen oder Stahlvormaterial | |
AT405521B (de) | Verfahren zum behandeln teilchenförmigen materials im wirbelschichtverfahren sowie gefäss und anlage zur durchführung des verfahrens | |
AT407052B (de) | Verfahren zur herstellung von flüssigem roheisen | |
DE69014057T2 (de) | Verfahren zur Schmelzreduktion von Metallen und Schmelzreduktionsofen. | |
DE4238020A1 (de) | Verfahren für den Betrieb einer Multimediendüse und das Düsensystem | |
EP2734649B1 (de) | Schmelzreduktionsaggregat und verfahren zum betrieb eines schmelzreduktionsaggregats | |
DE69518297T2 (de) | Verfahren zum Einschmelzen von Schrott | |
AT404138B (de) | Verfahren zur herstellung von flüssigem roheisen oder stahlvorprodukten sowie anlage zur durchführung des verfahrens | |
AT404022B (de) | Verfahren und anlage zur herstellung von flüssigem roheisen oder stahlvorprodukten aus eisenhältigemmaterial | |
AT405651B (de) | Vorrichtung zum dosierten einbringen von feinteilchenförmigem material in ein reaktorgefäss | |
DE69700267T2 (de) | Verfahren zum Beschicken eines Kupolofens mit Schrott und Koks | |
AT404254B (de) | Verfahren und anlage zur herstellung von roheisen oder flüssigen stahlvorprodukten aus eisenerzhältigen einsatzstoffen | |
DE10242594B4 (de) | Verfahren und Vorrichtung zum Einblasen von Vergasungsmittel in druckaufgeladene Vergasungsräume | |
AT405522B (de) | Verfahren zum behandeln teilchenförmigen materials im wirbelschichtverfahren sowie gefäss und anlage zur durchführung des verfahrens | |
DE69701703T2 (de) | Verfahren und vorrichtung zur direktherstellung von gusseisen aus eisenhaltigen erzen | |
DE60003570T2 (de) | Vorrichtung für die direktreduktion von eisen | |
DD226157A3 (de) | Verfahren zur erzeugung von fluessigem roheisen und reduktionsgas in einem abstichgenerator | |
AT404021B (de) | Verfahren zur herstellung von flüssigem roheisen oder stahlvorprodukten aus feinerz | |
EP2697587B1 (de) | Verfahren zum betrieb eines elektrolichtbogenofens | |
EP0877822A1 (de) | Verfahren zur herstellung von flüssigem roheisen oder stahlvorprodukten aus erz |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880115978.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08849824 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2008849824 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008323317 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 3121/DELNP/2010 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2705434 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010533463 Country of ref document: JP Ref document number: 12742471 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2008323317 Country of ref document: AU Date of ref document: 20081104 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20107011947 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: A201005778 Country of ref document: UA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010123947 Country of ref document: RU |
|
ENP | Entry into the national phase |
Ref document number: PI0820559 Country of ref document: BR Kind code of ref document: A2 Effective date: 20100513 |