WO2009049988A1 - Mehrstufiger turbomolekularpumpen-pumpenrotor - Google Patents

Mehrstufiger turbomolekularpumpen-pumpenrotor Download PDF

Info

Publication number
WO2009049988A1
WO2009049988A1 PCT/EP2008/062519 EP2008062519W WO2009049988A1 WO 2009049988 A1 WO2009049988 A1 WO 2009049988A1 EP 2008062519 W EP2008062519 W EP 2008062519W WO 2009049988 A1 WO2009049988 A1 WO 2009049988A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
rings
pump
pump rotor
turbomolecular pump
Prior art date
Application number
PCT/EP2008/062519
Other languages
English (en)
French (fr)
Inventor
Heinrich Engländer
Original Assignee
Oerlikon Leybold Vacuum Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40184986&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2009049988(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Oerlikon Leybold Vacuum Gmbh filed Critical Oerlikon Leybold Vacuum Gmbh
Priority to EP08804453A priority Critical patent/EP2209995B1/de
Priority to US12/682,067 priority patent/US8562293B2/en
Priority to CN2008801108938A priority patent/CN101828040B/zh
Priority to JP2010528344A priority patent/JP5674468B2/ja
Publication of WO2009049988A1 publication Critical patent/WO2009049988A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/048Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps comprising magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/64Mounting; Assembling; Disassembling of axial pumps
    • F04D29/644Mounting; Assembling; Disassembling of axial pumps especially adapted for elastic fluid pumps

Definitions

  • the invention relates to a multi-stage pump rotor of a turbomolecular pump.
  • Prior art turbomolecular pumps operate at speeds of several tens of thousands of revolutions per minute.
  • the kinetic energy of a pump rotor operated at such a nominal speed is, in the case of larger turbomolecular pumps, within the range of the kinetic energy of a small car at a speed of 50-70 km / h.
  • this high kinetic energy of the rotor constitutes a high potential for destruction and injury, which can only be controlled with great effort for the mechanical shielding of the rotor.
  • turbomolecular pump pump rotors which are magnetically supported.
  • it is endeavored to arrange at least one radial bearing and the drive motor in the region of the center of gravity of the pump rotor.
  • the pump rotor is bell-shaped to accommodate the Nagnetlagerung and possibly also the drive motor in the bell cavity within the pump rotor.
  • the bell-shaped construction of the pump rotor results in a design-related mechanical weakening of the rotor.
  • the usually one-piece turbomolecular pump pump rotors can be countered only by the use of high-strength aluminum alloys, which are extremely expensive because of this design-induced weakening.
  • the object of the invention is to provide a multi-stage turbomolecular pump pump rotor having improved strength.
  • the pump rotor according to the invention is no longer in one piece and has at least two separate wing disk rings, each having a rotor ring and at least one wing disk.
  • the ends of the two rotor rings of adjacent wing disc rings are on the outside without play by a cylindrical Arm michsrohr, which is arranged between the adjacent wing discs of the adjacent rotor discs rings.
  • the reinforcing tube is not necessarily the axial and radial fixation of the two rotor rings to each other, but it includes the two rotor rings so tightly that it receives at least a portion of the centrifugal forces in the rotor ring resulting tangential forces and mechanically relieved the rotor rings in this way.
  • the pump rotor is no longer one piece, but designed in several pieces.
  • the pump rotor can be formed from a plurality of rotor rings, each with a single wing disc. Even if a rotor ring by high Centrifugal forces should break tangentially, this fraction remains locally limited to the respective rotor ring and can not readily extend to the entire pump rotor.
  • the respective components are specialized for their function. This makes it possible to optimize both the rotor ring and the reinforcing tube in terms of their function, namely the holding of the rotor blades on the one hand and the inclusion of the tangential forces on the other.
  • the rotor ring may for example consist of inexpensive and average tensile aluminum alloys or other materials.
  • a material is selected that can absorb high tensile forces.
  • the wing disk or the rotor blades can be made easier, or take more complex forms. This can lead to an improvement in the fluid mechanics in the pump stages at higher pressures within the turbomolecular pump receiving the pump rotor.
  • the total weight of the pump rotor can be reduced.
  • the wing disc ring can each, but need not, be integrally formed.
  • the wing disc ring may alternatively be composed of several segments. In the division of the rotor ring into several segments occur in the rotor ring virtually no tangential forces and these are introduced exclusively in the reinforcing tube.
  • the Fiügelinring is formed but eän harmonyig.
  • the closed one-piece wing disc ring is easier to produce and assemble.
  • the Arm istsrohr material is different from the material of the wing disc rings.
  • CFRP a material for the reinforcing tube CFRP
  • carbon fiber reinforced plastic is preferably used, which is particularly suitable because of its ability to absorb high tensile forces and because of its low weight as a material for the reinforcing tube.
  • At least one Rotorfiügelular on a single wing disk of rotor blades at least one Rotorfiügelular on a single wing disk of rotor blades.
  • the Limiting the rotor ring or rings to a single wing disc makes it possible to arrange a reinforcing tube between each wing wing pair of adjacent wing discs. As a result, a maximum of strength of the pump rotor with respect to the tangential forces is achieved.
  • not all of the impeller disk rings of the pump rotor necessarily have only a single disk disk.
  • wing disc rings are provided with a single wing disc, while in other axial areas of the pump rotor, where lower tagentiate forces occur or in which the rotor ring can be built radially stronger in that the wing disc ring concerned may also have two or more wing discs.
  • the wing disc rings are clamped axially axially between two rotor shaft clamping bodies.
  • the rotor rings may, for example, be self-centering with corresponding axial annular grooves and annular lands and be clamped together axially by the two rotor shaft clamping bodies.
  • at least one rotor support body may be provided, onto which the rotor rings of the wing disk rings are pushed.
  • the rotor support body may form the clamping body, but the clamping body but may also be formed separately from the rotor bearing bearing rotor support kör pern.
  • the rotor support body may be made of a different material than the rotor rings or the reinforcing tubes.
  • the pump rotor has a cavity for receiving a rotor bearing, which is preferably a magnetic bearing.
  • a rotor bearing which is preferably a magnetic bearing.
  • the axial denomination of the pump rotor in individual rotor rings is particularly advantageous because in particular the cavity portion of the pump rotor is exposed due to the limitation of the pump rotor space high tangential loads.
  • Fig. 1 shows a first Principalsbe ⁇ spiel a multi-stage
  • FIGS. 1 and 2 each show a multi-stage turbomolecule pump pump rotor 10; 40 shown.
  • the pump rotor 10; 40 can rotate at rated speeds between 20,000 and 100,000 rpm.
  • the two pump rotors 10; 40 are essentially the same structure and differ only in their internal structure.
  • the pump rotor 10 of Figure 1 is essentially formed by eight wing disc rings 17 which are axially braced together by two by a clamping screw 28 and a WeMe 30 axially braced clamping body 20, 22. Furthermore, the wing disc rings 17 is followed by a rotor-side Holweck cylinder 32.
  • the pump rotor 10 is not formed in one piece, as is usual in pump rotors according to the prior art, but is composed of a plurality of flywheel rings 17.
  • Each wing disc ring 17 is formed by a closed rotor ring 12, protrude from the radially rotor blades 16 to the outside, which in turn form a wing disc 14.
  • the rotor rings 12 are axially held together by the two axial clamping body 20, 22, which are braced axially by the clamping screw 28 and the shaft 30 together.
  • the two clamping bodies 20, 22 each also have outer cylindrical rotor support bodies 24, 26, on the support cylinders 25, 27, 29, 31 of which the respective rotor rings 12 are attached.
  • the rotor support bodies 24, 26 are used for the radial positioning or fixing of the rotor rings 12.
  • the outlet-integral piece clamping body 22 is formed in three stages, and has three support cylinders 27,29,31 on.
  • the rotor rings 12 sit with a slight clamping fit without gaps on the rotor support bodies 24, 26 and their support cylinders 25, 27, 29, 31.
  • the clamping screw 28 braces the rotor shaft 30, the pressure-side rotor support body 26 and the inlet-side rotor support body 24 axially together.
  • Each rotor ring 12 has an axial shoulder 15 at one or both axial ends.
  • a reinforcing tube 18 made of glass fiber reinforced plastic (CFRP) is placed axially under prestress.
  • the Arm michsrohre 18 take on rotation of the pump rotor 10 substantially on the generated by the centrifugal force in the rotor ring 12 tangential forces. In this way, 17 can be used as a material for the integral wing disk rings relatively inexpensive aluminum alloys.
  • the pressure-side rotor support body 26 has on the inside a hollow space 38, which has sufficient space for the arrangement of a rotor bearing of the rotor shaft 30, wherein the rotor bearing is preferably a magnetic bearing.
  • a Holweck cylinder 32 can connect to the pressure-side end of the pressure-side rotor support body 26.
  • the pump rotor 40 of Figure 2 has compared to the pump rotor 10 of Figure 1 only a modified structure of the rotor support body and clamping body.
  • a total of three rotor support bodies 24, 42, 48 are provided.
  • the einiass workede rotor support body 24 forms with the central rotor support body 42 two clamping bodies 20, 43, through which the three inlet side FSügeiusionnringe 17 are clamped together axially.
  • the remaining wing disc rings 17 ' are not axially braced, but axially fixed to each other by other design measures.
  • the central rotor support body 42 and the pressure-side rotor support body 48 are each formed in two pieces and each consist of a disk body 44, 52 and a cylindrical support cylinder 46, 50.
  • the disk body 44, 52 is made of aluminum and the support cylinder 46, 50 of carbon fiber reinforced plastic.
  • the two-component structure of the two rotor support bodies 42, 48 allows a further mass reduction of the rotor 40, whereby the kinetic rotation energy is reduced, which in turn has the consequence that the energy released in a rotor burst is lower, and realized higher speeds because of the reduced centrifugal forces can be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

Die Erfindung bezieht sich auf einen mehrstufigen Pumpenrotor (10) für eine Turbomolekularpumpe. Der Pumpenrotor (10) weist mindestens zwei separate Flügelscheibenringe (17) mit jeweils einem Rotorring (12) und mindestens einer Flügelscheibe (14) auf. Zwischen den Flügelscheiben (14) benachbarter Flügelscheibenringe (17) ist ein zylindrisches Armierungsrohr (18) vorgesehen, das die Rotorringe (12) der Flügelscheibenringe (17) außenseitig spielfrei umfasst. Das Armierungsrohr (18) nimmt einen großen Teil der im Betrieb auftretenden tangentialen Kräfte auf, so dass der Pumpenrotor (10) eine verbesserte Festigkeit bei hohen Rotordrehzahlen aufweist.

Description

Mehrstufiger Turbomolekularpumpen-Pumpenrotor
Die Erfindung bezieht sich auf einen mehrstufigen Pumpenrotor einer Turbomolekularpumpe.
Turbomolekuiarpumpen nach dem Stand der Technik werden mit Drehzahlen von mehreren 10.000 U/min betrieben. Die kinetische Energie eines mit einer derartigen Nenndrehzahl betriebenen Pumpenrotors liegt bei größeren Turbomolekuiarpumpen im Bereich der kinetischen Energie eines Kleinwagens mit einer Geschwindigkeit von 50 - 70 km/h. Im Falle eines Rotor-Burst steift diese hohe kinetische Energie des Rotors ein hohes Zerstörungs- und Verletzungspotenzial dar, das nur mit hohem Aufwand für die mechanische Abschirmung des Rotors beherrscht werden kann. 9 _
Besonders problematisch bezüglich ihrer Burst-Anfäiiigkeit sind fliegend gelagerte Turbomolekularpumpen-Pumpenrotoren die magnetisch gelagert sind. Bei magnetgelagerten Pumpenrotoren, die fliegend gelagert sind, ist man bestrebt, mindestens ein Radiallager und den Antriebsmotor im Bereich des Schwerpunktes des Pumpenrotors anzuordnen. Hierzu ist es erforderlich, dass der Pumpenrotor glockenartig ausgebildet ist, um in dem Glocken- Hohlraum innerhalb des Pumpenrotors die Nagnetlagerung und gegebenenfalls auch den Antriebsmotor unterzubringen. Der glockenförmige Aufbau des Pumpenrotors hat eine konstruktionsbedingte mechanische Schwächung des Rotors zur Folge, Bei den üblicherweise einstückigen Turbomolekularpumpen-Pumpenrotoren kann wegen dieser konstruktionsbedingten Schwächung nur durch die Verwendung hochfester Aluminiumlegierungen begegnet werden, die äußerst kostspielig sind.
Aufgabe der Erfindung ist es, einen mehrstufigen Turbomolekularpumpen- Pumpenrotor zu schaffen, der eine verbesserte Festigkeit aufweist.
Der erfindungsgemäße Pumpenrotor ist nicht mehr einstückig und weist mindestens zwei separate Flügelscheibenringe mit jeweils einem Rotorrϊng und mindestens einer Flügelscheibe auf. Die Enden der beiden Rotorringe benachbarter Flügelscheibenringe werden außenseitig spielfrei durch ein zylindrisches Armierungsrohr umfasst, das zwischen den benachbarten Flügelscheiben der benachbarten Rotorscheiben ringe angeordnet ist. Das Armierungsrohr dient nicht notwendigerweise der axialen und radialen Fixierung der beiden Rotorringe zueinander, jedoch umfasst es die beiden Rotorringe derart fest, dass es mindestens einen Teil der durch die Fliehkräfte in dem Rotorring entstehenden tangentialen Kräfte aufnimmt und die Rotorringe auf diese Weise mechanisch entlastet.
Der Pumpenrotor ist nicht mehr einstückig, sondern mehrstückig ausgebildet. Der Pumpenrotor kann aus einer Vielzahl von Rotorringen mit jeweils einer einzigen Flügelscheibe gebildet werden. Selbst wenn ein Rotorring durch hohe Fliehkräfte tangential zerbrechen sollte, bleibt dieser Bruch auf den betreffenden Rotorring lokal begrenzt und kann sich nicht ohne weiteres auf den gesamten Pumpenrotor ausdehnen.
Durch die axiale Stückelung des Pumpenrotors und durch die Verwendung eines Tangentialkräfte aufnehmenden Armierungsrohres, das die Rotorringe umfasst, wird einerseits die Gefahr eines Pumpenrotor-Burst erheblich verringert und andererseits, im Falle eines Burst eines Rotorringes, die damit verbundenen Zerstörungskräfte und die daraus wiederum resultierenden Gefahren für Mensch und Maschine erheblich reduziert.
Durch die Verwendung mehrerer Rotor-Ringe und der Armierungsrohre werden die jeweiligen Bauteile für ihre Funktion spezialisiert. Hierdurch ist es möglich, sowohl den Rotorring als auch das Armierungsrohr hinsichtlich ihrer Funktion, nämlich dem Halten der Rotorflügel einerseits und der Aufnahme der Tangentialkräfte andererseits, zu optimieren. Der Rotorring kann beispielsweise aus preiswerten und durchschnittlich zugfesten Aluminiumlegierungen oder anderen Werkstoffen bestehen. Für das Armierungsrohr dagegen wird ein Werkstoff gewählt, der hohe Zugkräfte aufnehmen kann.
Wie Versuche und Berechnungen mit einstückigen Pumpenrotoren ergeben haben, ist auch bei großen Turbomolekularpumpen die Fliehkraft-Belastung in den Rotorflügeln nicht der drehzahlbegrenzende Faktor. Die Flügel selbst erlauben also eine höhere Drehzahl. Bei einem Burst des glockenförmigen Pumpenrotors verlaufen die Risse im wesentlichen in axialer Richtung, so dass auf diese Weise größere Rotor-Stücke entstehen. Die gesamte Rotationsenergie des Rotors wird dann in sehr kurzer Zeit geschossartig freigesetzt.
Bei einem Burst eines einzelnen Flügelscheibenringes eines mehrstückigen Rotors ist das dabei entstehende Geschoss erheblich kleiner und wird der Rotor durch den Kontakt des betreffenden Flügeischelbenringes mit dem Stator erheblich langsamer abgebremst, als bei einem Burst eines einstückigen Pumpenrotors.
Durch die Bildung des Pumpenrotors aus einzelnen Fiügeischeibenringen kann aus fertigungstechnischer Sicht die Flügelscheibe bzw. können die Rotorflügel einfacher hergestellt werden, bzw. komplexere Formen annehmen. Dies kann bei größeren Drücken innerhalb der den Pumpenrotor aufnehmenden Turbomolekularpumpe zu einer Verbesserung der Strömungsmechanik in den Pumpenstufen führen.
Durch die Verwendung eines leichteren Werkstoffes für das Armϊerungsrohr kann das Gesamtgewicht des Pumpenrotors reduziert werden.
Der Flügelscheibenring kann jeweils, muss jedoch nicht, einstückig ausgebildet sein. Der Flügelscheibenring kann alternativ auch aus mehreren Segmenten zusammengesetzt sein. Bei der Aufteilung des Rotorringes in mehrere Segmente treten in dem Rotorring praktisch keine tangentialen Kräfte mehr auf und werden diese ausschließlich in das Armierungsrohr eingeleitet.
Bevorzugt ist der Fiügelscheibenring jedoch eänstückig ausgebildet. Der geschlossene einstückige Flügelscheibenring ist einfacher herzusteilen und zu montieren.
Vorzugsweise ist der Armierungsrohr-Werkstoff verschieden von dem Werkstoff der Flügelscheibenringe. Als Werkstoff für das Armierungsrohr wird bevorzugt CFK, also kohlefaserverstärkter Kunststoff, verwendet, der insbesondere wegen seiner Fähigkeit, hohe Zugkräfte aufzunehmen und wegen seines geringen Gewichtes geeignet ist als Werkstoff für das Armierungsrohr.
Gemäß einer bevorzugten Ausgestaltung weist mindestens eine Rotorfiügelscheibe eine einzige Flügelscheibe aus Rotorflügeln auf. Die Begrenzung des bzw. der Rotorringe auf eine einzige Flügelscheibe erlaubt es, zwischen jedem FSügelscheiben-Paar benachbarter Flügelscheiben jeweils ein Armierungsrohr anzuordnen. Hierdurch wird ein Maximum an Festigkeit der Pumpenrotors bezüglich der tangentialen Kräfte erreicht. Allerdings müssen nicht notwendigerweise alle Flügelscheibenringe des Pumpenrotors jeweils nur eine einzige Flügelscheibe aufweisen. So können beispielsweise in dem Bereich des Pumpenrotors, in dem besonders hohe tangentiale Kräfte auftreten, Flügelscheibenringe mit einer einzigen Flügelscheibe vorgesehen werden, während in anderen axialen Bereichen des Pumpenrotors, in denen geringere tagentiate Kräfte auftreten bzw. in dem der Rotorring radial stärker aufgebaut werden kann, der betreffende Flügelscheibenring auch zwei oder mehr Flügelscheiben aufweisen kann.
Vorzugsweise sind die Flügelscheibenringe axial zwischen zwei Rotorwellen- Spannkörpern axial miteinander verspannt. Die Rotorringe können beispielsweise mit entsprechenden axialen Ringnuten und Ringstegen selbstzentrierend aufeinander liegen und durch die beiden Rotorwellen-Spannkörper entsprechend axial miteinander verspannt sein. Alternativ oder zusätzlich kann auch mindestens ein Rotorstützkörper vorgesehen sein, auf den die Rotorringe der Flügelscheibenringe aufgeschoben sind. Die Rotorstützkörper können die Spannkörper bilden, die Spannkörper können aber jedoch auch separat von den die Rotorringe tragenden Rotorstütz kör pern ausgebildet sein.
Der Rotorstützkörper kann aus einem anderen Material gefertigt werden, als die Rotorringe oder die Armierungsrohre.
Vorzugsweise weist der Pumpenrotor einen Hohlraum zur Aufnahme einer Rotorlagerung auf, die bevorzugt eine Magnetlagerung ist. Wie oben bereits ausführlich dargestellt, wird bei fliegend und magnetgelagerten Turbomolekularpumpen-Pumpenrotoren angestrebt, ein Radiallager und den Antriebsmotor in der Nähe des Pumpenrotor-Schwerpunktes anzuordnen. Hierfür ist ein entsprechender Hohlraum in dem Pumpenrotor uneriässiich, der dadurch eine glockenförmige Form erhält. Gerade bei magnetgeiagerten Pumpenrotoren von Turbomolekularpumpen ist die axiale Stückelung des Pumpenrotors in einzelne Rotorringe besonders vorteilhaft, da insbesondere der Hohlraum- Abschnitt des Pumpenrotors wegen der Beschränkung des Pumpenrotor- Bauraumes hohen tangentialen Belastungen ausgesetzt ist.
Im Folgenden werden zwei Ausführungsbeispieie der Erfindung anhand der Zeichnungen näher erläutert. Es zeigen:
Fig. 1 ein erstes Ausführungsbeϊspiel eines mehrstufigen
Turbomoiekutarpumpen-Pumpenrotors mit einkomponentigen Rotorstützkörpern und
Fig. 2 ein zweites Ausführungsbeispiel eines Turbomolekularpumpen-
Pumpenrotors mit zweikomponentigen Rotorstützkörpern.
In den Figuren 1 und 2 ist jeweils ein mehrstufiger Turbomolekuiarpumpen- Pumpenrotor 10; 40 dargestellt. Der Pumpenrotor 10; 40 kann sich mit Nenndrehzahlen zwischen 20.000 und 100.000 U/min drehen. Die beiden Pumpenrotoren 10; 40 sind im wesentlichen gleich aufgebaut und unterscheiden sich nur hinsichtlich ihres inneren Aufbaus.
Der Pumpenrotor 10 der Figur 1 wird im wesentlichen gebildet von acht Flügelscheibenringen 17, die durch zwei durch eine Spannschraube 28 und eine WeMe 30 axial miteinander verspannte Spannkörper 20, 22 axial miteinander verspannt sind. Ferner schließt sich an die Flügelscheibenringe 17 ein rotorseitiger Holweckzylinder 32 an. Der Pumpenrotor 10 ist nicht einstückig ausgebildet, wie dies bei Pumpenrotoren nach dem Stand der Technik üblich ist, sondern ist aus mehreren Flügeischeibenringen 17 zusammengesetzt. Jeder Flügelscheibenring 17 wird von einem geschlossenen Rotorring 12 gebildet, von dem radial Rotorflügel 16 nach außen abragen, die ihrerseits eine Flügelscheibe 14 bilden.
Die Rotorringe 12 werden axial zusammengehalten durch die beiden Axial- Spannkörper 20, 22, die durch die Spannschraube 28 und die Welle 30 axial miteinander verspannt sind. Die beiden Spannkörper 20, 22 büden jeweils auch außenzylindrische Rotorstützkörper 24, 26, auf deren Stützzylindern 25, 27, 29, 31 die betreffenden Rotorringe 12 aufgesteckt sind. Die Rotorstützkörper 24, 26 dienen der radialen Positionierung bzw. Fixierung der Rotorringe 12. Der auslassseϊtige einstückige Spannkörper 22 ist dreifach gestuft ausgebildet, und weist drei Stützzylinder 27,29,31 auf. Die Rotorringe 12 sitzen mit leichtem Spannsitz spaltfrei auf den Rotorstützkörpern 24, 26 bzw. ihren Stützzylindern 25, 27, 29, 31 auf.
Die Spannschraube 28 verspannt die Rotorwelle 30, den druckseitigen Rotorstützkörper 26 und den einlassseitigen Rotorstützkörper 24 axial miteinander.
Jeder Rotorring 12 weist jeweils an einem bzw. an beiden axialen Enden einen axialen Absatz 15 auf. Im Bereich der Absätze 15 der benachbarten Rotorringe 12 ist jeweils ein Armierungsrohr 18 aus glasfaserverstärktem Kunststoff (CFK) unter Vorspannung axial aufgesetzt. Die Armierungsrohre 18 nehmen bei Rotation des Pumpenrotors 10 im wesentlichen die durch die Fliehkraft in dem Rotorring 12 generierten tangentialen Kräfte auf. Auf diese Weise können als Material für die einstückigen Flügelscheibenringe 17 relativ preiswerte Aluminiumiegierungen verwendet werden. Der druckseitige Rotorstützkörper 26 weist innenseitig einen Hohiraum 38 auf, der genügend Raum für die Anordnung einer Rotorlagerung der Rotorwelle 30 aufweist, wobei die Rotorlagerung bevorzugt eine Magnetiagerung ist.
An das druckseitige Ende des druckseitigen Rotorstützkörpers 26 kann, wie in den Figuren 1 und 2 dargestellt, ein Holweckzylinder 32 anschließen.
Der Pumpenrotor 40 der Figur 2 weist gegenüber dem Pumpenrotor 10 der Figur 1 lediglich einen veränderten Aufbau der Rotorstützkörper und Spannkörper auf. Vorliegend sind insgesamt drei Rotorstützkörper 24, 42, 48 vorgesehen. Der einiassseitige Rotorstützkörper 24 bildet mit dem mittleren Rotorstütz körper 42 zwei Spannkörper 20, 43, durch die die drei einlassseitigen FSügeischeibenringe 17 axial miteinander verspannt sind. Die übrigen Flügelscheibenringe 17' sind axial nicht verspannt, sondern durch andere konstruktive Maßnahmen axial zueinander fixiert.
Der mittlere Rotorstütz körper 42 sowie der druckseitige Rotorstützkörper 48 sind jeweils zweistückig ausgebildet und bestehen jeweils aus einem Scheibenkörper 44, 52 und einem zylindrischen Stützzylinder 46, 50. Der Scheibenkörper 44, 52 besteht jeweils aus Aluminium und der Stützzylinder 46, 50 aus kohlefaserverstärktem Kunststoff.
Der zweikomponentige Aufbau der beiden Rotorstützkörper 42, 48 erlaubt eine weitere Massenreduzierung des Rotors 40, wodurch die kinetische Rotationsenergte verringert ist, was wiederum zur Folge hat, dass die bei einem Rotor-Burst freigesetzte Energie geringer ist, und wegen der reduzierten Fliehkräfte höhere Drehzahlen realisiert werden können.

Claims

Patentansprüche
1. Mehrstufiger Turbomolekularpumpen-Pumpenrotor (10; 40) mit
mindestens zwei separaten Flügelscheibenringen (17, 17r) mit jeweils einem Rotorring (12) und mindestens einer Flügelscheibe (14), und
einem zylindrischen Arrnierungsrohr (18) zwischen den Flügelscheiben (14) benachbarter Flügeischeibenringe (17, 17'), das die Rotorringe (12) der Flügeischeibenringe (17, 17') außenseitig spielfrei umfasst.
2. Mehrstufiger Turbomolekular-Pumpenrotor (10; 40) nach Anspruch 1, dadurch gekennzeichnet, dass der Werkstoff des Armierungsrohres (18) verschieden ist von dem der Flügeischeibenringe (17).
3. Mehrstufiger Turbomolekular-Pumpenrotor (10; 40) nach Anspruch 2, dadurch gekennzeichnet, dass der Werkstoff des Armierungsrohres (18) kohlefaserverstärkter Kunststoff ist.
4. Mehrstufiger Turbomolekular-Pumpenrotor (10; 40) nach einem der Ansprüche 1 - 3, dadurch gekennzeichnet, dass mindestens ein Flügelscheibenring (17) eine einzige Flügeischeibe (14) aufweist.
5. Mehrstufiger Turbomolekular-Pumpenrotor (10; 40) nach einem der Ansprüche 1 - 4, dadurch gekennzeichnet, dass die Flügeischeibenringe axial zwischen zwei Rotorwellen-Spannkörpern (20, 22) verspannt sind.
6. Mehrstufiger Turbomolekular-Pumpenrotor (10; 40) nach einem der Ansprüche 1 - 5, dadurch gekennzeichnet, dass die Rotorringe (12) der Fiügelscheibenringe (17, 17') auf mindestens einen Rotorstützkörper (24, 26; 42, 48) aufgesteckt sind.
7. Mehrstufiger Turbomolekular-Pumpenrotor (40) nach Anspruch 6, dadurch gekennzeichnet, dass der Rotorstützkörper (42, 48) mindestens teilweise aus kohlefaserverstärktem Kunststoff besteht.
8. Mehrstufiger Turbomolekular-Pumpenrotor (10; 40) nach einem der Ansprüche 1 - 7, dadurch gekennzeichnet, dass der Pumpenrotor (10; 40) einen Hohlraum (38) zur Aufnahme einer Rotorlagerung aufweist.
9. Turbomolekularpumpe mit einem mehrstufigen Turbomolekular- Pumpenrotor (10; 40) nach Anspruch 8 und einer Rotorlagerung, dadurch gekennzeichnet, dass die Rotoriagerung eine Magnetlagerung ist.
PCT/EP2008/062519 2007-10-11 2008-09-19 Mehrstufiger turbomolekularpumpen-pumpenrotor WO2009049988A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP08804453A EP2209995B1 (de) 2007-10-11 2008-09-19 Mehrstufiger turbomolekularpumpen-pumpenrotor
US12/682,067 US8562293B2 (en) 2007-10-11 2008-09-19 Multi-stage pump rotor for a turbomolecular pump
CN2008801108938A CN101828040B (zh) 2007-10-11 2008-09-19 用于涡轮分子泵的多级泵转子
JP2010528344A JP5674468B2 (ja) 2007-10-11 2008-09-19 ターボ分子ポンプのための多段ポンプロータ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007048703.9 2007-10-11
DE102007048703A DE102007048703A1 (de) 2007-10-11 2007-10-11 Mehrstufiger Turbomolekularpumpen-Pumpenrotor

Publications (1)

Publication Number Publication Date
WO2009049988A1 true WO2009049988A1 (de) 2009-04-23

Family

ID=40184986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/062519 WO2009049988A1 (de) 2007-10-11 2008-09-19 Mehrstufiger turbomolekularpumpen-pumpenrotor

Country Status (7)

Country Link
US (1) US8562293B2 (de)
EP (1) EP2209995B1 (de)
JP (1) JP5674468B2 (de)
CN (1) CN101828040B (de)
DE (1) DE102007048703A1 (de)
TW (1) TWI453345B (de)
WO (1) WO2009049988A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033027A (ja) * 2009-08-01 2011-02-17 Pfeiffer Vacuum Gmbh ターボ分子ポンプ・ロータ
EP2896837A2 (de) 2014-01-21 2015-07-22 Pfeiffer Vacuum Gmbh Verfahren zur Herstellung einer Rotoranordnung für eine Vakuumpumpe und Rotoranordnung für eine Vakuumpumpe
US9932987B2 (en) 2013-11-30 2018-04-03 Leybold Gmbh Rotor disc and rotor for a vacuum pump

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2462804B (en) * 2008-08-04 2013-01-23 Edwards Ltd Vacuum pump
JP5412239B2 (ja) * 2009-02-24 2014-02-12 株式会社島津製作所 ターボ分子ポンプおよびターボ分子ポンプ用パーティクルトラップ
WO2011102006A1 (ja) * 2010-02-16 2011-08-25 株式会社島津製作所 真空ポンプ
JP5763660B2 (ja) * 2010-09-28 2015-08-12 エドワーズ株式会社 排気ポンプ
CN102011745B (zh) * 2010-12-31 2013-08-07 清华大学 一种磁悬浮分子泵的神经网络控制系统及方法
JP5664253B2 (ja) * 2011-01-12 2015-02-04 株式会社島津製作所 高真空ポンプ
US9314547B2 (en) 2011-09-09 2016-04-19 Abyrx Inc. Absorbable multi-putty bone cements and hemostatic compositions and methods of use
DE202013006436U1 (de) * 2013-07-17 2014-10-22 Oerlikon Leybold Vacuum Gmbh Rotorelement für eine Vakuumpumpe
US9827349B1 (en) 2013-11-26 2017-11-28 Abyrx Inc. Settable surgical implants and their packaging
CN104929978B (zh) * 2015-06-17 2018-01-05 川北真空科技(北京)有限公司 一种新型抗冲击分子泵转子
EP3786457B1 (de) * 2020-09-09 2022-09-07 Pfeiffer Vacuum Technology AG Rotoranordnung für eine vakuumpumpe, vakuumpumpe und verfahren zum herstellen einer solchen
GB2621837A (en) * 2022-08-23 2024-02-28 Leybold Gmbh Rotor assembly and vacuum pump

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5993993A (ja) * 1982-11-22 1984-05-30 Hitachi Ltd タ−ボ分子ポンプ用ロ−タ
JPS60203375A (ja) * 1984-03-28 1985-10-14 Hitachi Ltd タ−ボ分子ポンプのロ−タの製作方法
JPS6138194A (ja) * 1984-07-30 1986-02-24 Hitachi Ltd 高速度回転ロ−タ
JP2005180265A (ja) * 2003-12-18 2005-07-07 Boc Edwards Kk 真空ポンプ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3032260A (en) * 1955-07-12 1962-05-01 Latham Manufactruing Co Rotary apparatus and method of making the same
US4312628A (en) * 1979-05-21 1982-01-26 Cambridge Thermionic Corporation Turbomolecular vacuum pump having virtually zero power magnetic bearing assembly with single axis servo control
JPS6444498U (de) * 1987-09-11 1989-03-16
JPH0759955B2 (ja) * 1988-07-15 1995-06-28 ダイキン工業株式会社 真空ポンプ
JP3160039B2 (ja) * 1991-08-22 2001-04-23 エヌティエヌ株式会社 ターボ分子ポンプと動翼の加工方法
DE10010371A1 (de) * 2000-03-02 2001-09-06 Pfeiffer Vacuum Gmbh Turbomolekularpumpe
DE10331932B4 (de) * 2003-07-15 2017-08-24 Pfeiffer Vacuum Gmbh Turbomolekularpumpe
DE10353034A1 (de) * 2003-11-13 2005-06-09 Leybold Vakuum Gmbh Mehrstufige Reibungsvakuumpumpe
JP2006046074A (ja) * 2004-07-30 2006-02-16 Boc Edwards Kk 真空ポンプ
DE102006020081A1 (de) * 2006-04-29 2007-10-31 Pfeiffer Vacuum Gmbh Rotor- oder Statorscheibe für eine Molekularpumpe
GB2462804B (en) 2008-08-04 2013-01-23 Edwards Ltd Vacuum pump

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5993993A (ja) * 1982-11-22 1984-05-30 Hitachi Ltd タ−ボ分子ポンプ用ロ−タ
JPS60203375A (ja) * 1984-03-28 1985-10-14 Hitachi Ltd タ−ボ分子ポンプのロ−タの製作方法
JPS6138194A (ja) * 1984-07-30 1986-02-24 Hitachi Ltd 高速度回転ロ−タ
JP2005180265A (ja) * 2003-12-18 2005-07-07 Boc Edwards Kk 真空ポンプ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033027A (ja) * 2009-08-01 2011-02-17 Pfeiffer Vacuum Gmbh ターボ分子ポンプ・ロータ
US9932987B2 (en) 2013-11-30 2018-04-03 Leybold Gmbh Rotor disc and rotor for a vacuum pump
EP2896837A2 (de) 2014-01-21 2015-07-22 Pfeiffer Vacuum Gmbh Verfahren zur Herstellung einer Rotoranordnung für eine Vakuumpumpe und Rotoranordnung für eine Vakuumpumpe
DE102014100622A1 (de) 2014-01-21 2015-07-23 Pfeiffer Vacuum Gmbh Verfahren zur Herstellung einer Rotoranordnung für eine Vakuumpumpe und Rotoranordnung für eine Vakuumpumpe

Also Published As

Publication number Publication date
JP5674468B2 (ja) 2015-02-25
EP2209995B1 (de) 2012-11-14
EP2209995A1 (de) 2010-07-28
TW200925431A (en) 2009-06-16
DE102007048703A1 (de) 2009-04-16
CN101828040B (zh) 2012-05-30
CN101828040A (zh) 2010-09-08
US8562293B2 (en) 2013-10-22
US20100290915A1 (en) 2010-11-18
JP2011501010A (ja) 2011-01-06
TWI453345B (zh) 2014-09-21

Similar Documents

Publication Publication Date Title
EP2209995B1 (de) Mehrstufiger turbomolekularpumpen-pumpenrotor
DE69914083T2 (de) Schockbeständige verbundwerkstoffstruktur für ein bläsergehäuse
EP1357295B1 (de) Verdichter in mehrstufiger Axialbauart
DE4321173A1 (de) Kältemittel-Turboverdichter
EP0906514A1 (de) Rotor für eine turbomaschine mit in nuten anbringbaren schaufeln sowie schaufel für einem rotor
DE102014220317A1 (de) Fluggasturbinentriebwerk mit Stoßdämpfungselement für Fanschaufelverlust
DE2436635B2 (de) Hydraulische Maschine
DE102012214339A1 (de) Rotorwelle für eine Windturbine
EP2597313B1 (de) Schnell drehender Rotor für eine Vakuumpumpe
EP2994614A1 (de) Rotor für eine thermische strömungsmaschine
EP1851440A1 (de) Holweck-vakuumpumpe
EP1586745A1 (de) Verdichtergehäuse
EP3034788B1 (de) Kompressorschaufel einer gasturbine
EP3280916B1 (de) Vakuumpumpen-rotor
DE102008021683A1 (de) Rotierende Einheit für einen Axialkompressor
DE102011121925A1 (de) Verdichter und Verfahren zum Betrieb eines Verdichters
EP1201928B1 (de) Scheiben für eine Turbomolekularpumpe
DE102007006915A1 (de) Rotorelement für Turbopumpenrotoren sowie Turbopumpenrotor
DE102019215444A1 (de) Rotor für eine Turbomaschine, Turbomaschine mit Rotor
EP3088746B1 (de) Vakuumpumpe
DE102008058149A1 (de) Turbomolekularpumpe
AT502999A2 (de) Laufrad eines ventilators
DE202015004160U1 (de) Vakuumpumpen-Rotor
EP3205884B1 (de) Selbstpumpendes vakuum-rotorsystem
DE102008058151A1 (de) Turbomolekularpumpe

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880110893.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08804453

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010528344

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2008804453

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12682067

Country of ref document: US